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Abstract. This work analyzes the vibrations of a fully-electroded annular piezoelectric bimorph 

plate with a free inner edge and an outer edge that is built-in with a periodicity. To this end, a 

variational formulation with the extensive use of Lagrange multipliers for a bimorph plate with 

polar orthorhombic symmetry is performed first. The mechanical displacement and the electric 

potential that must satisfy constraint conditions at the electrodes are expanded as the sums of 

powers in the thickness coordinate. The resulting piezoelectric bimorph plate equations are used 

along with the introduction of appropriate Lagrange multipliers to analyze the polar 

orthorhombic annular sectorial plates with free radial and inner circumferential edges, and an 

entirely built-in or free outer edge. The results are then combined to obtain the solutions for the 

mixed boundary value problem. The extended Hamilton’s principle with the method of 

Lagrange multipliers is employed, followed by a Frobenius-type series expansion for solution 

functions. The eigensolutions are calculated from the resulting transcendental equation and 

compared with those obtained from an FEA to ensure the validity of the procedure. 
  

Keywords: polar orthorhombic bimorph, annular plate, mixed boundary condition with 

periodicity, variational approximation procedure, Lagrange multipliers method. 

  

Introduction  

  

The vibration problem of annular and circular plates has been researched extensively using 

various theoretical or numerical approaches due to their wide range of applications in sensors 

and actuators. The free vibrations of annular and circular plates with various boundary 

conditions were well summarized by Leissa [1]. Free vibration problems of isotropic annular 

sector plates with simply supported radial edges were solved earlier using an exact method 

applied to a thin plate model [2]. Kobayashi et al. [3] obtained an analytical solution for the 

vibration of a Mindlin annular sector plate [4] with two simply supported radial edges and two 

free circumferential edges. Additionally, several numerical and semi- analytical studies have 

been performed to obtain approximate solutions for annular plates with various boundary 

conditions [5-16] by using the Rayleigh-Ritz method [5, 10], the Frobenius method [6], the finite 

difference method [7], the strip distribution transfer function method [11], the mode subtraction 

method [12], finite element method [13, 15], and so on. However, to the best of the authors’ 

knowledge, variational treatment of the vibration problem of annular piezoelectric plates with 

mixed boundary conditions has not been reported. 

This study analyzes the flexural vibrations of an annular polar orthorhombic bimorph plate 

with a mixed edge condition by means of variational approximation treatment [17-19]. The 

annular plate with a mixed outer circumferential edge with periodicity can be pictured as a 

combination of two types of sectorial plates with free inner edges, and one with a built-in outer 

edge and the other with a free outer edge. This problem applies to a bounded region containing 

several separated volumes with internal surfaces of discontinuity. Therefore, we must determine 

the dispersion relationships for both cases separately. These analyses are performed by 

employing the extended Hamilton principle with the Lagrange multipliers method within the 

framework of 2-D plate theory. The method of separation of variables is used, and the solution 

functions satisfying the differential equation in the radial direction are obtained by introducing a 

Frobenius-type series expansion [20, 21] about a regular point. The dispersion relationships are 
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obtained by making the solution functions satisfy exactly the edge conditions on the two facing 

circumferential edges. For the remaining portion of the variational equation, in which all edge 

conditions occur as natural type, only the waves satisfying the dispersion relationships are 

employed as solution functions to obtain the eigensolutions. The dispersion relationships 

obtained in the foregoing problems are then combined using the Lagrange multipliers formalism 

to obtain eigensolutions for the annular polar orthorhombic plate with a mixed boundary 

condition. 

 

Mathematical modeling 

 
          

                                              (a)                                                                    (b) 

Fig. 1. (a) 3-D view of an annular sector plate and 

(b) a plane view of an element with stress resultants and coordinates 

  

Consider an annular sector plate with faces of area S at x3 = ±h in a fixed cylindrical co-

ordinate system (r̂, θ̂ , ẑ) shown in Fig. 1(a). The x1 and x2 are the coordinates attached to the 

middle plane of the plate. The inner and outer radii are Ri and Ro, respectively, and the potential 

difference between the top and middle electrodes (and also the bottom and middle ones) is 

denoted as Ve. Fig. 1(b) shows an element of the annular sector plate with the relevant stress 

resultants required in the description of flexure of the plate. Introducing the modified Hamilton’s 

principle of linear piezoelectricity [17], the coupled variational equation for a bounded body 

containing an internal surface of discontinuity can be represented by: 
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where t, δ, ρ(m)
, H(m)

, skl
(m)

, and Ek
(m)

 indicate the time, the variational operator, the mass density, 

the Hamiltonian, the strain tensor, and the electric field (of the mth
 volume), respectively; SN

(m)
, 

SC
(m)

, and S(d)
 indicate the portion of the mth

 surface on which the traction tk
(m)

 and/or the charge 

σ(m)
 are prescribed, the portion of the mth

 surface on which the mechanical displacement uk
(m)

 

and/or the electrical potential φ(m)
 are prescribed, and the surface of discontinuity, respectively; 

and λk
(m)

, l (m)
, λk

(d)
, and l(d)

 are the Lagrange multipliers. In Eq. (1), a bar over a symbol signifies 

the prescribed quantity. 

This work assumes that the system obeys the linear constitutive equations, the infinitesimal 

strain-displacement relations, and the quasi-static electric field-electric potential relations [17]. 

Note that the actual coupling between the mechanical and electrical quantities in Eq. (1) occurs 

in the constitutive equations of the piezoelectricity and, under the thin plate assumptions 



 

818. FREE FLEXURAL VIBRATIONS OF A PIEZOELECTRIC BIMORPH PLATE WITH PERIODIC EDGE CONDITIONS. 

PILKEE KIM, JEEHYUN JUNG, JONGWON SEOK 

 

 

  

 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING. SEPTEMBER 2012. VOLUME 14, ISSUE 3. ISSN 1392-8716 
953 

employed here, the electrical part is reflected in the constitutive equations for the mechanical 

part.  

The 2-D variational equations for thin plates under all conditions (both natural and constraint 

types) arising as natural conditions can be obtained from the appropriate 3-D equations [17]. 

Using a series-expansion method and introducing the cylindrical coordinate system, we can 

obtain the following 2-D variational equation for the flexural portion of an annular plate with a 

free inner circumferential edge, a built-in or free outer edge, and two free radial edges: 
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where the time integration has been omitted and Φ is given, for a free and built-in outer edges, 

respectively, as: 
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Since the wavelength along the thin plates in elementary flexure is much larger than the 

thickness, the constitutive equations for τrz
(0)

 and τθ
(0)

 may be ignored. Using the 2-D strain-

displacement relations [19], the 2-D constitutive equations for the flexure of the piezoelectric 

plate with polar orthorhombic symmetry can be readily obtained (details are not provided here 

due to space limitation). 

Since the differential equation obtained from Eq. (2) is singular at r = 0, an expansion about 

a regular point (r = r0) is introduced and yields four independent series solutions, which 

converge quickly in the region of interest [21]. The resulting differential equation can be 

obtained in the form: 
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The four conditions prescribed to the inner and outer edges are: 
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Using the separation of variables, the solution may take the form: 
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where Re[ ] means the real portion of the argument and will be dropped hereafter. Furthermore, 

for the purpose of generality, the following dimensionless quantities are introduced: 
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where the expressions for c11
*
, and c22

*
 can be found in [22]. Introducing a Frobenius-type 

expansion [23] into w͂ in Eq. (7), we can let w͂ be: 

 

( )( ) 1

0
( ; , ) , ,    1, , 4,

L l

ll
G r rς ς

ς ξ α ξ ς+ −

=
Ω = Ω =∑ɶ ɶ ⋯  (9) 

4 4(1) (2)

1 2 1 1
( ) ( ) ( ) [ ( , ) ( ; , )] [ ( , ) ( ; , 0)],

e
w r w r w r A G r A V G rς ς ς ςς ς

ξ ξ ξ
= =

= + = Ω Ω + Ω Ω =∑ ∑ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (10) 

 

where L is a sufficiently large number satisfying the conditions for the convergence of the four 

solutions within the region of interest and w͂1(r͂) satisfies the homogeneous parts of the edge 

conditions in Eq. (6), and w͂2(r͂) satisfies the inhomogeneous parts; i.e., for β = 1, 2, we have the 

following edge equations to be satisfied: 

 

(i) For an inner circumferential edge: 

( ) ( )

2 2 2

0 0 1 /2 2 0 /2

2 2

0 0 0 1 0 /2

ˆ[( ) {( ) }] [ ( ) ] ,

ˆ ˆ[( ){( ) ( ) } { 2 2 ( ) }] 0,

r e r

r

r r w v r r w w V r r

r r r r w r r w Rw T R v w T v r r w

β β β β π β π

β β β β β β π

ξ δ δ
ξ δ

=− =−

=−

′′ ′+ + + − = +
′′′ ′′ ′ ′+ + + + − + + − − − + =

ɶ ɶ

ɶ

ɶ ɶ ɶ ɶ ɶ ɶ

ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ
 (11a) 

(ii) For an outer circumferential edge: 
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where δab is the Kronecker delta function. 

Under this circumstance, we can then obtain the four coupled homogeneous linear equations 

with only Aς
(1)

. The conditions required to obtain nontrivial solutions for these equations are a 

vanishing determinant of the 4×4 matrix associated with the vector composed of Aς
(1)

, which 

leads to the dispersion relationships and the associated amplitude ratios of Aς
(1)

. Since the 

solution function in Eq. (10) satisfies the differential equation and the four circumferential edge 

conditions exactly, the remaining portion of the variational equation is for the two radial edges 

and four corners. The final form of the remaining variational equation can be written as: 
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where Ψ is given, for free and built-in outer edges, respectively, as: 
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When N dispersion curves are taken, the solution functions for both free and built-in inner 

edges can be represented using the suppressed index notation in the form: 
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and we can obtain 2N homogeneous equations with 2N unknown constants Bµν for the 

homogeneous case (V̅e = 0) because all Aς
(2)

 vanish. The conditions required to have nontrivial 

solutions to these 2N coupled equations yield the eigenvalues and the associated amplitude ratios 

that result in mode shapes. For an inhomogeneous case, however, we can obtain 2N 

inhomogeneous equations with 2N unknown constants, Bµν, which can result in solutions to the 

forced vibration problem with a given non-vanishing V̅e.  

Consider a thin fully-electroded annular piezoelectric bimorph plate with a free inner edge 

and an outer edge that is built-in with a periodicity. If the annular plate includes P edges of 

discontinuity, then the number of volumes that must be treated independently should be P, and 

the variational equation should be modified to include the associated continuity conditions. Let 

the outer circumferential edge be divisible into P sub-plates with a periodicity of 2π/P in angle, 

and let the outer circumferential edge of the first sector (counted counterclockwise from the 

origin of the global coordinate system) be built-in. In addition, let the solution function 

satisfying the differential equation and the edge conditions be: 
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where the superscript (χ) means quantity associated with the χ th sectorial plate, χ = 2j–1 for the 

free inner and built-in outer circumferential edge conditions, χ = 2j for the free inner and free 

outer circumferential edge conditions, and j = 1, …, P/2. Since the solution functions, Eq. (15), 

satisfy all the portions of the variational equation except those of the radial edge and the corner 

conditions, all that remains in the variational equation is: 
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where ±Ɵi = (2i–1±1)π/P and ∆(k) = k (or P) for k ≠ 0 (or k = 0).  

Note that all the variations on the left-hand side of Eq. (16) are unconstrained everywhere 

except at t and t0, where they are constrained as in the classical version of Hamilton’s principle, 

and the Lagrange multipliers λVi
(j)

, λMi
(j)

, and λCi±
(j)

 (i = 1, 2) are varied freely. Therefore, the 

Lagrange multipliers can be obtained by taking the variations of the last eight terms in Eq. (16) 

and making the coefficient terms of all the independent variations vanish. Consequently, the 

most appropriate forms of the Lagrange multipliers can be obtained, after some straightforward 

calculations, in the form: 
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where ( )kℏ  and ( )kŻ  are +k (or –k) for odd (or even). It should be noted that since the Lagrange 

multipliers in Eq. (17) are arbitrary, the continuity conditions for the displacements and slopes 

are to be satisfied variationally. 

 

Results and discussion 

  
             

                                              (a)                                                                  (b) 

Fig. 2. 3-D views of a full annular plate with (a) one-half or (b) two diagonal quadrants of the outer 

circumferential edge built-in; inner circumferential edges are free for both cases 

 

Using the analysis in Sec. 2, we solved the free vibration problem of a full annular bimorph 

plate with a free inner circumferential edge and an outer circumferential edge that is built-in 

with periodicity. PZT-5 [24] was selected as the piezoceramic material for the bimorph plate. 

For the illustration purpose, two sets of outer circumferential edge conditions were considered: 

(a) a full annular plate with half of the outer circumferential edge built-in and (b) a plate with 

two diagonal quadrants of the outer circumferential edge built-in; the other portions are free in 

both cases. Figure 2 shows the 3-D schematic diagrams of these two cases. We obtained the 

dispersion relationships using the procedure described in Sec. 2. Fig. 3 shows the dispersion 

curves for the (a) built-in and (b) free portions of the annular bimorph plate, respectively, with  

r̅0 = 5π/3 and v̂ = 0.408. The effective Poisson’s ratio (v̂) of PZT-5 was used in this illustration. 

In this figure, the dimensionless frequency κΩ  is plotted against R(ξ) and I(ξ), which represent 

the real and imaginary values of the argument ξ, respectively. Note that a complex branch 

depicted in Fig. 3 always represents two branches, since its complex conjugate is also a branch. 

Therefore, whenever the number of branches is mentioned, a complex branch is counted twice. 

A certain number of these solutions (i.e., dispersion curves) are taken to describe the flexural 

behavior of the plate sufficiently. 

Table 1 gives the natural frequencies calculated for the first five modes of the full annular 

plate with either set of edge conditions, and Fig. 4 shows the associated mode shapes. A series of 

computations were performed by using the Maple [25] and the Matlab [26] and the results were 

compared with those obtained from the ANSYS [27] calculations in Table 3. A total of 19 

dispersion branches for the built-in portions and 18 branches for the free portions of the plate 

(including all the real branches in the frequency range of interest) were included for case (a). 

Two more branches for each portion were included for case (b) because these were necessary to 

represent the associated mode shapes properly. The number of branches was determined to 

maintain an appropriate level of numerical accuracy. The Table shows that the analytical results 
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are in good agreement with the finite element analysis. The relative error was less than 2 % for 

most of the cases. However, for the third mode of case (b), the relative error was slightly larger 

than 2 %, possibly due to the omission of substantial imaginary or complex branches required to 

represent the associated mode shapes properly. We did not attempt to include any additional 

branches due to computational limitations, but we believe that the accuracy can readily be 

improved by including more branches. 
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                                              (a)                                                                        (b) 

Fig. 3. Dispersion curves for the (a) built-in and 

(b) free outer circumferential portions of the annular bimorph plate 

 
Table 1. Dimensionless natural frequencies (C) for out-of-plane motion of the annular plate with a free 

inner edge and a periodically built-in outer edge, comparison with a finite element analysis* (F), and 

relative percent error (e); Case (a): one half of the outer circumferential edge is built-in; Case (b): two 

diagonal quadrants of the outer circumferential edge are built-in 
 

Mode 1 2 3 4 5 

Case (a) 

C  0.045285 

F  0.045812 

e  1.149426 

0.133302 

0.134650 

1.001066 

0.258571 

0.260551 

0.760156 

0.305640 

0.319477 

1.452726 

0.406086 

0.409701 

0.882418 

Case (b) 

C  0.175639 

F  0.178366 

e  1.528626 

0.176156 

0.178909 

1.538809 

0.338366 

0.346416 

2.323820 

0.398826 

0.406566 

1.903895 

0.448007 

0.451205 

0.708816 

 

As expected, the fundamental natural frequency of the plate under periodically built-in outer 

circumferential edge conditions was much smaller than the natural frequency of the plate under 

fully built-in edge conditions. The value of this frequency is determined by the spatial frequency 

of the built-in portions of the plate. Thus, the procedure developed in this study could help in the 

design of annular bimorph plate sensors and actuators, especially those that require natural 

frequency adjustments. 

 

Conclusions 

 

Natural frequencies of actuators and sensors composed of polarized piezoceramic bimorph 

plates must sometimes be adjusted, which can be problematic. To resolve this issue semi-

analytically, we first analyzed a more general polar orthorhombic annular sectorial plate with a 

free inner circumferential edge and a built-in or constrained outer circumferential edge. Using 

the results of the present study and the dispersion relationships from a previous study [19], we 

solved the free vibration problem of a full annular bimorph plate with a free inner 

circumferential edge and an outer circumferential edge that was built in or constrained with 

periodicity.  
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Mode Case (a): (19, 18)* Case (b): (21, 20)* 

1 

  

2 

  

3 

  

4 

  

5 

  
*Number of dispersion branches included in the calculation of mode shapes for the built-in outer 

circumferential edge portion and the free outer circumferential edge portion. 

Fig. 4. First five mode shapes for the flexural motion of the annular plate with free inner edge and 

periodically built-in outer edge conditions. Case (a): one-half of the outer circumferential edge is built-in; 

Case (b): two diagonal quadrants of outer circumferential edge are built-in 

 

The variational equation for this plate, which can be pictured as a combination of two types 

of sectorial plates with an appropriate number of internal edges of discontinuity, was derived 

using the variational principle. The results obtained in this study were consistent with those of a 

finite element analysis, which validated the present variational approach. The present analysis 

demonstrated that the variational approximation method can be applied to treat problems with 

internal surfaces of discontinuity by introducing the appropriate Lagrange multipliers. 

Furthermore, it was revealed that the natural frequency varies significantly with the periodicity 

of the outer edge conditions. We believe that the procedure developed in this study can be used 

to help design annular bimorph plate sensors and actuators that require natural frequency 

adjustments. This method can also provide a better understanding of the waves that make up the 

vibration compared to other methods. 
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