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Abstract. This paper introduces a hybrid technique for formulation of frequency response 
functions (FRFs) for nonlinear MDOF systems, based on the Structural modification using 
frequency response function (SMURF) technique. The technique can produce FRFs at the 
desired coordinates on the structure. The term “hybrid” indicates that the underlying linear 
system is reduced by expressing it in FRF form, while the nonlinearities are treated in the form 
of describing functions based on spatial elements. The method uses several FRFs instead of the 
spatial model therefore it is characterized by lower computational costs. Moreover, the 
experimentally measured FRFs of the underlying linear structure can be applied in this 
technique. A system with cubic stiffness and friction damping nonlinearities is used as a 
numerical case study to verify the proposed technique. 
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Introduction  
 

In modal analysis a set of FRFs is used to derive a mathematical model of a structure. At 
present this experimental method is a well-established procedure for identification of linear 
systems [1, 2]. However, in the presence of nonlinearity, derivation of a general nonlinear 
model from FRF measurements is a cumbersome task and has yet to be found. It makes the 
establishment of a general nonlinear methodology difficult and as a result most of the proposed 
methods only deal with nonlinearity for specific cases. 

One of the main obstacles when calculating the responses of a nonlinear structure, in 
theoretical approaches such as harmonic balance method (HBM), is that due to the coupled 
nature of nonlinear problems, all responses are computed simultaneously. When dealing with a 
large system, this results in a costly optimization problem with large number of unknowns      
[3, 4]. 

In practice, it is not possible to measure the responses at all DOFs due to the physical 
inaccessibility or the difficulties faced in the measurement of rotational DOFs. Therefore, a 
limited number of FRFs are available from measurement for comparison purposes. While the 
conventional theoretical methods produce a large number of FRFs, it makes sense to develop a 
formulation for obtaining the theoretical responses only at the limited measured coordinates, 
which results in reduction of a the number of nonlinear equations to be solved. 

Kuran and Ozguven [5] and Tanrikulu et al. [6] used the describing function method (DFM) 
to achieve a matrix description of the nonlinearities. The use of the DFM is further documented 
in [7-11]. Chong and Imregun [12-14] used first-order describing function to identify nonlinear 
eigenvalues and eigenvectors of resonant modes. The method is equivalent to a nonlinear modal 
superposition and is compatible with existing linear modal analysis tools. Elizalde and Imregun 
[15, 16] attempted to deal with the problem of obtaining the theoretical responses at a few 
coordinates, using the first order describing function. They obtained closed form expression for 
frequency response functions of a nonlinear MDOF system. Considering cubic stiffness and 
friction damping nonlinearities, they showed that the method can successfully predict the 
nonlinear behavior of real structures. However, such an advantage is not so attractive 
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considering the heavy computational burden incurred, due to direct manipulation of mass, 
stiffness and damping coefficients. 

This paper introduces a technique for formulation of FRF of MDOF nonlinear systems for 
selected coordinates, called hybrid formulation (HF). In this approach, the system is separated 
into underlying linear system and nonlinear components, where the last is based on discrete 
representation of the nonlinearities (typically stiffness and/or damping related), which are 
amplitude-dependent. The nonlinear components are replaced by their reaction forces on the 
underlying linear system. The term hybrid arises from this fact that the underlying linear system 
has been reduced by expressing it in the FRF form, while the nonlinearities are kept in the 
physical domain (in the form of describing functions). Then, the nonlinear responses are 
obtained via solving a set of nonlinear algebraic equations, which is usually solved by a 
Newton-Raphson scheme, or more specialized algorithms. As the method uses only a few 
numbers of FRFs from the underlying linear system instead of the spatial model, it has lower 
computational cost compared to the methods like HBM, which requires the computation of all 
the responses at once. The proposed technique has been programmed in MATLAB [17] and a 
modified Newton-Raphson approach was used to deal with a large set of nonlinear equations, 
incorporating the so-called trust-regions and pre-conditioned gradients (PCG) [18-20]. 

The method computes the response at the selected coordinates only, which is the prime 
advantage, especially when dealing with large nonlinear structures or in an experimental 
identification procedure, due to reduction of the computational cost. Moreover, it can use the 
experimentally derived FRFs, so that the errors related to the modeling of the system can be 
eliminated. 
 
Theory 
 

N-DOF nonlinear mass spring system is depicted in Fig. 1a. Fig. 2a shows its underlying 
linear system which can be obtained by removing nonlinear elements between the i th and rth 
DOFs (Nl-elir) and between the sth DOF and the ground (Nl-els). 

 

 
(a) 

 
(b) 

Fig. 1. (a) N-DOF nonlinear system, (b) underlying system 
 

Fig. 2 illustrates the free body diagram of the system, where the nonlinear action and 
reaction forces between the underlying linear system and the nonlinear elements Nl-elir and Nl-
els are presented. If the system is excited at kth DOF and the response is measured at l th DOF, the 
governing equation for the experimental system can be given by: 
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l lk k ls s li i lr rx F R R Rα α α α= + + +
ɶ ɶ ɶɶ    (1) 

 
where lxɶ  is the displacement of l th DOF of the system shown in Fig. 1a. The nonlinear nature 

of the system is acknowledged by a “ ˜ ” symbol on top. αlk, αlj, αls and αlr are the receptances of 
the underlying linear system (Fig. 1b). Fk is the excitation force and ,r iR Rɶ ɶ

 
and sRɶ are the 

reaction forces of the added components at rth, i th and sth DOFs respectively. According to 
Newton’s third law: 
 

i rR R= −
ɶ ɶ      (2) 

 

 
Fig. 2. Free body diagram of the N-DOF system 

 

Defining ir i rR R R= = −
ɶ ɶ ɶ  and substituting iRɶ  and rRɶ  by irRɶ and irR− ɶ  respectively 

according to the Eq. (2) in Eq. (1), we have: 
 

( )l lk k ls s li lr irx F R Rα α α α= + + −
ɶ ɶɶ    (3) 

 
If the response xɶ  is sufficiently close to a pure sinusoid and provided that little energy is 

leaked to frequencies other than the fundamental, then it is reasonable to assume that the 
nonlinear function Rɶ  is also of a periodically oscillating nature. It is possible to find a 
linearized coefficient νɶ  which provides the best average of the true restoring force. This 

coefficient acts on the fundamental harmonic of the nonlinear response (1stxɶ ) for a single load-
cycle, in such a way that: 
 

1 1. sin( ) sinst stR x x x t xν ω θ τ≈ ≈ + =
ɶ ɶ ɶ ɶ ɶ ɶ   (4) 

 
In order to find the nonlinear coefficient νɶ , the restoring force Rɶ  is expanded around xɶ  

via a Fourier series, neglecting all the higher-order terms: 
 

1 1 2 2. ...st st st st
a b c d

Neglected terms

R x x x x xν σ σ σ σ≈ = + + + +
ɶ ɶ ɶ ɶ ɶ ɶ ɶ

���������
   (5) 

 
where the σ functions are given by: 
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2
1 1 1

1 0

2
1 1 1

1 0

1
( sin , cos )sin

1
( sin , cos )cos

st st st
a st

st st st
b st

g x x d
x

g x x d
x

π

π

σ τ ω τ τ τ

π

σ τ ω τ τ τ

π

=

=

∫

∫

ɶ ɶ ɶ

ɶ

ɶ ɶ ɶ

ɶ

  (6) 

 
so the nonlinear coefficient νɶ  is uniquely defined by: 
 

1 1st st
a bν σ σ= +ɶ      (7) 

 
Introducing Eq. (4) into Eq. (3) yields: 

 

( ) ( ). . ( ). .( )l lk k ls s s s li lr ir i r i rx F v x x v x x x xα α α α= − − − − −ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (8) 

 
Setting kF  to be constant for all the frequency range and dividing both sides by kF , we 

have: 
 

( ) ( ). . ( ). .( )lk lk ls s s sk li lr ir i r ik rkv x v x xα α α α α α α α
∗ ∗ ∗ ∗
= − − − − −ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ  (9) 

 

where , ,lk sk ikα α α
∗ ∗ ∗
ɶ ɶ ɶ

 
and rkα

∗
ɶ  are the receptances of the nonlinear system. 

If p nonlinear elements were between the DOFs (i, r) = (i1, r1), (i2, r2), …, (ip, rp) and q 
nonlinear elements were between the DOFs s = (s1, s2, …, sq) and the ground, Eq. (8) and Eq. 
(9) are modified as: 
 

( ) ( )
1 1 1

. . ( ). .( )
q p ps i r

l lk k ls s s s li lr ir i r i r
s s ir i r

x F v x x v x x x xα α α α

= =

= − − − − −∑ ∑ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ ɶ  (10) 

 

( ) ( )
1 1 1

. . ( ). .( )
q p ps i r

lk lk ls s s sk li lr ir i r ik rk
s s ir i r

v x v x xα α α α α α α α
∗ ∗ ∗ ∗

= =

= − − − − −∑ ∑ɶ ɶ ɶ ɶɶ ɶ ɶ ɶ ɶ  (11) 

 
Defining n as those DOFs associated with nonlinear elements, { xɶ } can be split into n and 

(N-n) components. Expression (10) represents a system of n nonlinear equations (lxɶ , defined 

for the DOFs l n∈ ) with n unknowns, the nonlinear responses at the n DOFs { nxɶ }, where 

typically n << N. This demonstrates that a nonlinear system can be fully described by first 

calculating the nonlinear responses at the n DOFs only. Once the nonlinear responses {nxɶ } are 

calculated, the problem has been reduced to a linear one. The remaining nonlinear responses 

{ N nx
−

ɶ } (responses of DOFs associated with linear elements) can be found all at once by 

solving equation (10) on an individual basis, for ( )l N n∈ − .  

 
Numerical case study 
 

A three DOFs mass-spring system with two nonlinear components is considered here as the 
numerical case study (Fig. 3). The system is comprised of three masses, whose motion is 
defined at all times by the response coordinates y1, y2 and y3. The masses are linked to each 
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other and to the ground by the stiffness and damping linear elements, creating fully-populated 
linear matrices. The system is driven by a single harmonic force of constant amplitude imposed 
at mass m2.  

 

 
Fig. 3. Diagram for the analyzed sample cases 

 
The numerical values for all the coefficients of the underlying linear system are shown 

below in matrix format, where a proportional hysteretic damping mechanism has been assumed: 
 

1

2

3

11 12 13

21 22 23

31 32 33

0 0 31.59 0 0

0 0 0 55.401 0 kg,

0 0 0 0 24.212

200491.263 64920.98 36279.371
N

64920.98 398118.365 17503.205

36279.371 17503.205 132578.825

m

M m

m

k k k

K k k k

k k k

   
   

= =   
      

− −   
   = = − −   
   − −   

1

2

3

,
m

0

12 N,

0

0.12 %.

F

F F

F

η

   
   

= =   
   
   

=

 
 

In addition to the linear system, two nonlinear elements have been incorporated, represented 
by the two thick links and boxes in Fig. 3. Both cubic stiffness and friction damping types are 
considered here. The numeric values of these coefficients are listed in Table 1. The nonlinear 
elements were placed in a way to provide a sufficiently general arrangement considering the 
size of the system. It has a mixture of grounded and non-grounded nonlinear elements, a 
nonlinear region comprised of DOFs 2 and 3, as well as a region away from nonlinearities, 
represented by DOF 1. 
 

Table 1. Nonlinear coefficients for the Sample Cases 1 and 2 
 

Type 
Sample Case 2 

γ (N) 
Sample Case 1 

β (N/m3) 
DOF DOF 

- - - 1 1 
- - - 2 1 
- - - 3 1 
- - - 2 2 

Non-grounded 1.25 7.82·106 3 2 
Grounded 2.10 1.44·107 3 3 

 
The mathematical model of a cubic stiffness element can be expressed as: 
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3R ky yβ= +
ɶ      (12) 

 
where the coefficient k represents the linear component of the spring, while the coefficient β 
accounts for the nonlinear effects due to the term y3. Introducing (12) into (6), and dropping the 
superscript 1st for the sake of clarity, we have: 
 

2
3

0

1
( )sin

2sin( )cos( ) 0

a

b

ky y d
Y

π

σ β τ τ
π

σ π π

= +

= =

∫ɶ    (13) 

 
Introducing these functions into (7) and developing further (the subscript k in kvɶ  meaning a 

stiffness-related coefficient): 
 

2
3 3

0

2 2
2 3 4

0 0

22 2
2 4

0 0

2

1
( , ) ( sin sin ) sin

1 1
( , ) sin sin

( , ) sin sin

3
( , ) ( ) ( )

4

k

k

k

k

y y k Y Y d
Y

y y k Y Y d
Y Y

k Y
y y d

k Y
y y

π

π π

π π

ν τ β τ τ τ
π

ν τ β τ τ
π π

β
ν τ τ τ

π π

β
ν π π

π π

= +

= +

= +

= +

∫

∫ ∫

∫ ∫

ɶ ɶɶ ɺ
ɶ

ɶ ɶɶ ɺ
ɶ ɶ

ɶ

ɶ ɺ

ɶ

ɶ ɺ

 (14) 

 
and we finally arrive to the first-order representation of a cubic stiffness element: 
 

23
( , )

4
y y k Yν β= +

ɶɶ ɺ     (15) 

 
where the nonlinear part of the coefficient is given by: 
 

23
( , )

4
y y Yν β=

ɶɶ ɺ     (16) 

 
This linearized coefficient effectively averages the changes in the nonlinear function. 
Developments hitherto apply to a grounded element in which its only coordinate in motion 

is y. If the nonlinear element is attached between two moving nodes y1 and y2 (meaning it is not 
grounded), a variable change is needed to apply the same procedure: 
 

1 2,z y y= −  ( )1 1 1sin ,y Y tω= +Θɶ  ( )2 2 2sin ,y Y tω= +Θɶ  

( )sin sin ,zz Z t Zω τ= +Θ =ɶ ɶ  1 2 ,Z z y y= = −
ɶ  ( )1 2, ,z y yΘ =∡  (17) 

 
and the nonlinear restoring force becomes: 
 

( ) ( ), , .kg z z v z z z≈ɶ ɶɺ ɺ     (18) 
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Introducing this variable change and applying a similar procedure, the following expression 
is readily available: 
 

23
( , )

4k z z k Zν β= +
ɶɶ ɺ     (19) 

 
where the nonlinear part of the coefficient is given by: 
 

23
( , )

4k z z Zν β=
ɶɶ ɺ     (20) 

 
The friction damping mechanism can be mathematically expressed as: 

 

( ) ( ),  for slip conditionLimit

y
g y y cy y Y

y
γ= + >

ɺ
ɶɶ ɺ ɺ

ɺ
  (21) 

 
where the yɺ  term is used to ensure that the restoring force always opposes the direction of 

motion. This model is only valid during the “slip” stage, occurring at displacements over a 

certain limit LimitYɶ , which is related to the properties of the surfaces in contact. Barely below 

this threshold a phenomenon known as “stick-slip” exists, which is characterized by intermittent 
motion and stationary behavior. Such a condition invalidates Eq. (21). 

Following a similar approach as we did for the cubic stiffness nonlinearity, a first-order 
analysis of a friction damping element yields: 

 
4

( , )ccv y y i c i
Y

γ
ω

π
= +ɶ ɺ

ɶ
    (22) 

 
For non-grounded nonlinear elements, the relevant describing function is: 

 
4

( , )c

ij

v z z i c i
Z

γ
ω

π
= +ɶ ɺ

ɶ
    (23) 

 
The imaginary number i in Eqs. (22) and (23) is used to introduce a phase lag between the 

restoring force and its correspondent physical displacement, given that this nonlinearity is 
velocity-dependent. 
 
Results and discussion 
 

The nonlinear FRFs 1

2

Y

F

ɶ

, 2

2

Y

F

ɶ

 and 3

2

Y

F

ɶ

 together form a set of three complex nonlinear 

equations with three complex unknowns (the responses 1Yɶ , 2Yɶ  and 3Yɶ ), valid for a single 

frequency ω. The responses can be solved by using a standard Newton-Raphson algorithm. The 
performance of the proposed method will be compared with the harmonic balance method 
(HBM), which is a recognized benchmark for nonlinear problems. After applying the 
minimization process for every step frequency ∆ω, the nonlinear response is obtained and 
shown in Figs. 4-5 for the cubic stiffness case. Figs. 6 and 7 provide the results for the friction 
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damping case. The dashed lines represent the linear response, while the solid lines represent the 
results obtained from the harmonic balance method. Finally, the “•” marks are the results from 
the HF method. It can be observed that the HF method (“•” marks) is in complete agreement 
with the benchmark HBM (solid line), both exhibiting nonlinear distortions when compared to 
the linear case (dashed line). 

For the cubic stiffness case, the effect of the nonlinearity is a jump phenomenon, being more 
noticeable in the first and second modes as indicated in Figs. 4 and 5. It is observed that the 
responses can be calculated at the resonant regions only, where the nonlinearities are expected 
to become active, everywhere else being replaced by the linear responses. The results for the 
friction damping case (Figs. 6-7) reveal that the effect of the nonlinearity is an overall reduction 
in the amplitudes, being more noticeable in the first and second modes. This explains why this 
nonlinear mechanism is so welcome (and even induced) in turbine bladed disks, where higher 
amplitudes are a risk for the structure stability. The third mode is less affected because, at 
higher frequencies, the nonlinear damping force is overwhelmed by the linear restoring forces; 
the more pronounced effect in the second mode can be explained by the fact that two masses are 
in opposite motion, generating an additive effect of the friction forces. 
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Fig. 4. FRFs of underlying linear system (---), nonlinear system via HF method (•), nonlinear system via 
HBM (___) for the cubic stiffness case (zoom-in of the resonances are shown in the next figure) 
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Fig. 5. Nonlinear FRFs for the cubic stiffness case (zoom-in of individual resonances) 
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Fig. 6. FRFs of underlying linear system (---), nonlinear system via HF method (•), nonlinear system via 
HBM (___) for the friction damping case (zoom-in of the resonances are shown in the next figure) 
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Fig. 7. Nonlinear FRFs for the friction damping case (zoom-in of individual resonances) 

 
Conclusions 
 

In this paper a technique for frequency response function formulation of nonlinear MDOF 
systems called hybrid formulation (HF) was proposed. The technique is based on Structural 
modification using frequency response function (SMURF) technique. The term hybrid indicates 
that the underlying linear system is reduced by expressing it in FRF form, while the 
nonlinearities are represented in the form of describing functions (physical domain). The 
nonlinear elements have been formulated based on an already proven “engine”, the describing 
function method (DFM). The introduced formulation neglects the existence of sub/super 
harmonics, this being one of our main assumptions. This assumption, while inaccurate for a 
time domain representation, works very well in the frequency domain, which considers average 
quantities in a single load-cycle. 

The performance of the method was compared with the harmonic balance method (HBM), 
which is a recognized benchmark for nonlinear problems. The advantages of the proposed 
formulation were illustrated by analyzing two sample cases for which the theoretical nonlinear 
FRFs were obtained. While the results of the HF are in excellent agreement with the 
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benchmark, it has lower computational cost. It is due to this fact that the technique only 
produces FRFs at the desired coordinates. Also the method uses a few FRFs from underlying 
linear system, instead of the spatial model. Moreover as the method only needs FRFs of several 
coordinates, it can employ the experimentally derived FRFs for the underlying linear system. 
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