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Abstract: Wavelet finite elements with two kinds of variables for 1D structural mechanics are 
constructed based on B-spline wavelet on the interval (BSWI) and the generalized variational 
principle. In contrast to the traditional method, the BSWI element with two kinds of variables 
(TBSWI) can improve the solution accuracy of the generalized stress apparently, because 
generalized displacement and stress are interpolated separately. Another superiority of the 
elements constructed is the interpolating function BSWI, which has very good approximation 
property, further guarantees solution accuracy. Euler beam, Timoshenko beam and Elastic 
foundation beam are studied providing several numerical examples to verify the efficiency. 
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1. Introduction 
 

The wavelet method can be viewed as a method in which the approximating function is 
defined by use of a multiresolution technique based on scaling or wavelet functions, similar to 
those used in signal and image processing [1]. Wavelet finite element method (WFEM) is a new 
numerical method, which takes scaling and wavelet functions to substitute polynomial in 
traditional method. Based on the superior properties (multiresolution, orthogonality etc.) of 
wavelet, WFEM hold many superior properties, such as multi-resolution property and various 
basis functions for structural analysis, so WFEM is widely used by many researchers both in 
numerical analysis domains [2-6] as well as in structural analysis field [7-13]. The wavelet 
method was proved to converge for a wide class of elliptic operator equations including, in 
particular, differential operators as well as singular integral operators by Dahlke and S. Dahlke 
et al. [6]. Based on Daubechies wavelet, Li B. constructed Daubechies wavelet element and 
adaptive scheme for structural response analysis [7-8]. References [9-11] proposed a crack 
identification method for beam, I-beam and running rotor system based on wavelet finite 
element model and determinant transformation method. You Q. et al. [12] studied the 
simulations on the boundaries of the simply supported and a continuous bridge. Zhong Y. T. et 
al. [13] proposed a new wavelet-based element and support vector regression for pipe crack 
detection. 

To the above wavelet elements for structural analysis the finite element formulations are all 
derived from generalized potential energy functional, which has only one generalized field 
function, generalized displacement field function. They should calculate moment by 
differentiation of displacement and calculation error would be brought into the results. 
Multivariable finite element method (MFEM) can solve this problem. Based on multivariable 
generalized variational principle [14-17], generalized displacement, stress and strain field 
functions are all treated as independent variables, so they are interpolated separately in MFEM. 
Shen P. C. did a lot of work on MFEM. Based on multivariable variational principle, he derived 
the formulation of multivariable potential energy functional for many structures in his book [18]. 
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Using spline function to substitute polynomial as interpolating function, Shen P. C. analyzed the 
bending, vibration and stability problems of beam, plate and shell etc. by MFEM [19-22]. Han J. 
G. introduced wavelet into MFEM and constructed multivariable wavelet finite element method 
(MWFEM) for a thick plate [23]. However, there is a deficiency of using spline wavelet as 
interpolating function in Han’s research. Spline wavelet does not have explicit expressions, 
which will bring many troubles to the integration and differentiation of wavelet coefficients. 

BSWI has explicit expressions, and is the best one among all existing wavelets in 
approximation of numerical calculation [2]. Therefore, taking BSWI as interpolating function, 
the BSWI element with two kinds of variables is constructed in this paper. Firstly, the 
multivariable formulations are derived from generalized potential energy functional with two 
kinds of variables, then taking BSWI as interpolating function to discrete generalized 
displacement and stress field functions. The structures of Euler beam, Timoshenko beam and 
Elastic foundation beam are analyzed and the results are compared with BSWI element and 
traditional method to verify the efficiency. 

 
2. B-spline wavelet on the interval [0, 1] 
 

Chui and Quak constructed B-spline wavelet on the interval [24], and gave its 
decomposition and reconstruction algorithm in 1994 [25]. In practical numerical calculation, 
BSWI of even order is frequently chosen, to have at least one inner wavelet on the interval [0, 
1], the following condition must be satisfied 

122 −≥ mj                                                        (1) 

where m  and j are the order and scale of BSWI respectively. While 0 scale mth order 

B-spline functions and the corresponding wavelets are given by Goswami J. C. in Ref. [26], j 

scale mth order BSWI (simply denoted as BSWImj) scaling functions )(, ξφ j
km  and the 

corresponding wavelets )(, ξψ
j

km  can be evaluated by the following formulas 
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Therefore, one-dimensional scaling functions Φ  at the lower resolution approximation 
space jV  are given by 

, 1 , 2 ,2 1
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Φ          (4) 

Semi-orthonormal wavelets Ψ  at detail space jW  are 
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Ψ         (5) 

Let 0j  be the scale for which the condition Eq. (1) is satisfied. Then for each 0jj > , let 
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0=l , we can get the scaling and wavelet functions easily through Eq. (2) and Eq. (3). There 

are 1−m  boundary scaling functions and wavelets at 0 and 1, 12 +−mj  inner scaling 

functions, and 222 +− mj  inner wavelets.  

The eleven scaling functions )(3
,4 ξφ k  for m = 4 at scale j = 3 are given below, among them, 

0 boundary functions are )(3
3,4 ξφ
−

, )(3
2,4 ξφ
−

, and )(3
1,4 ξφ
−

; 1 boundary functions are 

)(3
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7,4 ξφ ; inner functions are )(3

0,4 ξφ , )(3
1,4 ξφ , )(3

2,4 ξφ , )(3
3,4 ξφ , and 

)(3
4,4 ξφ . Fig. 1 shows the scaling functions and wavelets: 
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3. TBSWI elements for one-dimensional structures 
 
3. 1 Euler beam 
 

As shown in Fig. 2, there are n+1 nodes on the standard solving domain, and two degrees of 

freedom (DOF) at each node. In order to construct the TBSWI element, we should first translate 

the solving domain { }[ ]x x a, bΩ = ∈  to standard solving domain { }s [0,1]ξΩ ξ= ∈ . 
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                     (a)                                        (b) 

Fig. 1. BSWI43 on the interval [0,1] (a) scaling functions (b)wavelets 

el

ξ

1w 2w 3w 4w 2−nw 1−nw nw 1+nw

  

1θ 1+nθ

 
Fig. 2. The standard solving domain and placement of nodes and DOFs of Euler beam 

 
Assuming the coordinate values are: 
[ ] ( )11            , 11 +≤≤∈

+
nhxxx nh                                                (6) 

we define transformation formula: 

( )10               1
≤≤

−
= ξξ

el

xx
                                                  (7) 

Therefore, using Eq. (7), we can map x to standard solving domain. 

Substituting Eq. (6) to Eq. (7), we can obtain the mapping value hξ  of each node 

( )11,10               1
+≤≤≤≤

−
= nh

l

xx
h

e

h

h ξξ                                       (8) 

Based on the generalized potential energy functional with two kinds of variables, there are 
two DOFs at each node. Displacement and moment field function are treated as independent 
variables, the generalized potential energy functional with two kinds of variables for Euler 
beam bending is [18]: 

( )
2 2

2
2 2

1
, ( ) ( )

2 2

b b b b

p i i
ia a a a

d w M
w M M dx dx q x wdx p w x mw dx

EIdx
λ= − − − − −∑∫ ∫ ∫ ∫Π             (9) 

where E is elastic modulus; I = BH3/12 is inertia moment, and B is the beam width, H is the 

beam height; q(x) is distributed load; Pi is concentrated load and xi is acting position; λ  is the 

vibration eigenvalue, and m  is density; ( )w x  is the transverse displacement function; ( )M x  

is moment function. 
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By using scaling functions in Eq. (4) as the interpolating function to form field function, and 

translating the corresponding coordinate to standard solving interval, the displacement field 

function and moment field function can be obtained as following: 

ew wΦ e)( T=ξ                                             (10) 

eM MΦ e)( T=ξ                                              (11) 
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Substituting Eqs. (10) - (11) into Eq. (9), according to the generalized variational principle 
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So the TBSWI formulation for Euler beam bending is: 
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The TBSWI formulation for Euler beam vibration is: 
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To distributed load, 
1

0
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where the integral terms are: 
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Following Eq. (12) and (13), we can solve the bending and vibration problems of Euler beam 
as traditional method. 
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3. 2 Timoshenko beam 
 

Considering the influence of shear deformation, Timoshenko proposed the beam theory with 
two generalized displacement in 1921 [27]. Fig. 3 shows the placement of nodes and DOFs on 
the standard solving domain. There are two generalized displacement on each node, 
displacement and slope. The transformation formula between solving domain and the standard 
solving domain is the same as to Euler beam. 

el

ξ

1w 2w 3w 4w 2−nw 1−nw nw 1+nw

        

1θ 2θ 3θ 4θ 2−nθ 1−nθ nθ 1+nθ

 
Fig. 3. The standard solving domain and placement of nodes and DOFs of Timoshenko beam 

 
The generalized potential energy functional with two kinds of variables of Timoshenko 

beam is [18]: 
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where k
τ

 is the shear deformation coefficient which can be evaluated numerically [28]; G is 

the shear modulus; A is cross-section area. Other symbols are the same as in Eq. (9). 
By taking scaling functions in Eq. (4) as the interpolating function to form the field function, 

and translating the corresponding coordinate to standard solving interval, displacement field 
function and moment field function can be obtained as following: 
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Substituting Eqs. (16)-(18) into Eq. (15), according to generalized variational principle 
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Therefore, the TBSWI formulation for Timoshenko beam bending is: 
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The TBSWI vibration formulation for Timoshenko beam is: 
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To distributed load, 
1

0

( )e T
el q dξ ξ= ∫P Φ , while to concentrated load, )( i
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where the integral terms are: 
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3. 3 Elastic foundation beam 

 
Generally, there are three typical computational models for Elastic foundation beam: 

Winkler foundation model, elastic semi-infinite foundation model and layered foundation model, 
while Winkler foundation model is commonly used. 

According to Winkler assumption, the generalized potential energy functional with two 
kinds of variables for bending and vibration of Elastic foundation beam is [18]: 

 

( )
2 2

2 2
2 2

1
, ( ) ( )

2 2 2

b b b b b
e

p i i
ia a a a a

kd w M
w M M dx dx w dx mw dx q x wdx p w x
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λ= − − + − − −∑∫ ∫ ∫ ∫ ∫Π  (22) 

 

where 
ek  is the Winkler foundation coefficient, other symbols are the same as in Eq. (9) and 

Eq. (15). 
Taking BSWI scaling functions in Eq. (4) as interpolating function to discrete solving 

domain, and according to generalized variational principle, the TBSWI formulation for bending 
of Elastic foundation beam is: 
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The TBSWI formulation for vibration problem is: 

















=























−

−−
e

e

e

e

e

mk
EI w

M

w

M
00

0020

02
00

0

00

Γ
ΓΓ

Γ
Γ

λ
                                (24) 

To distributed load, 
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4. Numerical examples 
 

In order to verify the correctness and efficiency of the TBSWI element of Euler beam, 
Timoshenko beam and Elastic foundation beam constructed in section 3, several numerical 
examples of corresponding beam under different boundary conditions and load are provided 
here. The BSWI scaling functions at scale 3=j , order 4=m  are chosen to discrete the 
solving domain and establish the TBSWI elements (simply denoted as TBSWI43). 

 
4. 1 Euler beam 
 

Example 1: Simply supported Euler beam with distributed load. As shown in Fig. 4, the 
corresponding parameters are: elastic modulus E = 1.2×106 N/m2, beam width B = 0.1 m, beam 
height H = 0.05 m, beam length L = 1 m, distributed load q = 1 N/m, respectively. 

 
Fig. 4. The Euler beam with distributed load and simply supported on two ends 

 
Adopting BSWI43 as trial function, the bending problem of Euler beam shown in Fig. 4 is 

analyzed. The corresponding results are shown in Table 1 and Table 2. Table 1 gives the solving 
results of displacement and moment at every node, and compared the results of TBSWI43 (22 
DOFs) with BSWI43 (11 DOFs), BEAM3 element (66 DOFs) and the theoretical solution [29]. 
With respect to displacement solution, all elements can get the solution with nearly the same 
accuracy, while in terms of moment solution it can be observed that the results of TBSWI43 are 
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the same of BEAM3 with more DOFs. So with less DOFs, TBSWI43 can get the results with 
good precision both of displacement and moment. In Table 2, the central displacement and 
moment of TBSWI43 are compared with Spline element with two kinds of variables and 
BSWI43 element. From the results, it can be easily noticed that the displacement and moment 
results of TBSWI are equal to the exact solution, which is better than the other two elements in 
moment solving. 

 
Table 1. Displacement and moment of Euler beam simply supported with distributed load 

Transverse displacement Moment 
x TBSWI43 

(22 DOFs) 
BSWI43 

(11 DOFs) 
Beam3 

(66 DOFs) 
Exact [29] 

TBSWI43 

(22 DOFs) 
BSWI43 

(11 DOFs) 
Beam3 

(66 DOFs) 
0 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

L/10 -0.003270 -0.003270 0.003269 -0.003270 -0.045000 -0.045052 -0.045000 
2L/10 -0.006186 -0.006186 0.006185 -0.006187 -0.080000 -0.079427 -0.080000 
3L/10 -0.008470 -0.008470 0.008467 -0.008470 -0.105000 -0.104427 -0.105000 
4L/10 -0.009920 -0.009920 0.009917 -0.009920 -0.120000 -0.120052 -0.120000 
5L/10 -0.010417 -0.001042 0.001041 -0.010417 -0.125000 -0.126302 -0.125000 
6L/10 -0.009920 -0.009920 0.009917 -0.009920 -0.120000 -0.120052 -0.120000 
7L/10 -0.008470 -0.008470 0.008467 -0.008470 -0.105000 -0.104427 -0.105000 
8L/10 -0.006186 -0.006186 0.006185 -0.006187 -0.080000 -0.079427 -0.080000 
9L/10 -0.003270 -0.003270 0.003269 -0.003270 -0.045000 -0.045052 -0.045000 
10L/10 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 0.000000 

 

Table 2. Central displacement and moment of simply supported Euler beam with distributed load 

Methods DOFs EIw/qL4 M/qL2 

TBSWI 22 0.01302 0.12500 
14 0.01302 0.13021 
28 0.01302 0.12630 
42 0.01302 0.12558 

Spline FEM with two 
kinds of variables [18] 

56 0.01302 0.12532 
BSWI 11 0.01302 0.12630 
Exact 0.01302 0.12500 

 
Example 2: Cantilever Euler beam with sinusoidal load. As shown in Fig. 5, the 

corresponding parameters are: bending rigidity EI = 1 Nm2, beam length L = 1 m, distributed 
sinusoidal load ( ) ( )sinq x x Lπ= . 

 

 

Fig. 5. Equal cross-section cantilever beam with sinusoidal load 
 
Table 3 lists the displacement, slope and moment results of TBSWI43, BSWI43 element and 

theoretical solution. The relative errors of TBSWI43 (22 DOFs), 8 BEAM3 elements (24 DOFs) 
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and 64 BEAM3 elements (192 DOFs) etc. are shown in Fig. 6. By comparing the results, we 
can observe that TBSWI43 can provide results with great precision. With 22 DOFs, TBSWI43 
can provide results even better than 64 BEAM3 elements (192 DOFs). Transverse displacement, 
slope and moment results of TBSWI43 are all very close to the exact solution, especially to 
moments, TBSWI43 provides great results better than BSWI43. So TBSWI43 is very effective at 
solving the displacement, slope and moment. Furthermore, it is better than other methods in 
terms of moment solving.  

Table 3. Displacement, slope and moment of cantilever beam with sinusoidal load 

Transverse Slope Moment 
x TBSWI43 

(22 DOFs) 
BSWI43 

(11 DOFs) 
Exact 

TBSWI43 

(22 DOFs) 
BSWI43 

(11 DOFs) 
Exact 

TBSWI43 

(22 DOFs) 
BSWI43 

(11 DOF) 
Exact 

0 0.0000 0.0000 0.0000 -0.0000 0.0000 -0.0000 0.3183 0.3182 0.3193 
L/8 -0.0023 -0.0023 -0.0023 -0.0348 -0.0348 -0.0349 0.2398 0.2393 0.2398 
2L/8 -0.0083 -0.0083 -0.0083 -0.0602 -0.0602 -0.0602 0.1671 0.1662 0.1671 
3L/8 -0.0170 -0.0170 -0.0170 -0.0771 -0.0771 -0.0771 0.1053 0.1041 0.1053 
4L/8 -0.0273 -0.0273 -0.0273 -0.0871 -0.0871 -0.0871 0.0578 0.0565 0.0578 
5L/8 -0.0386 -0.0386 -0.0386 -0.0922 -0.0922 -0.0922 0.0258 0.0246 0.0258 
6L/8 -0.0502 -0.0502 -0.0502 -0.0942 -0.0942 -0.0942 0.0079 0.0070 0.0079 
7L/8 -0.0620 -0.0620 -0.0620 -0.0946 -0.0946 -0.0946 0.0010 0.0006 0.0010 
8L/8 -0.0739 -0.0739 -0.0739 -0.0947 -0.0947 -0.0947 0.0000 0.0001 0.0000 
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Fig. 6. Relative error of TBSWI43 element and BEAM3 element for the cantilever beam with sinusoidal 
load 

Example 3: Vibration of Euler beam. The corresponding parameters are: elastic modulus E = 

2.06×1011 N/m2, beam width B = 0.012 m, beam height H = 0.02 m, beam length L = 0.565 m, 

density 37890 kg / mm = . 
The vibration problems of Euler beam under six different boundary conditions are analyzed. 

The results of the first three circular frequencies are given in Table 4, and the corresponding 
mode shapes are compared with theoretical solution in Fig. 7. Through comparison with 
BSWI43 and theoretical solution in ref. [30], we can observe that TBSWI43 performs well in 
terms of vibration analysis. With respect to circular frequency, TBSWI43 yields results that are 
better than BSWI43. As for the mode shapes in Fig. 7, the results of TBSWI43 almost coincide 
with the theoretical solution, confirming that TBSWI43 is efficient in vibration analysis. 
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Table 4. The first three frequencies of Euler beam under different boundary conditions 

Euler beam Methods 1ω /rad·s-1 2ω /rad·s-1 3ω /rad·s-1 

TBSWI43 (44 DOFs) 324.929 2036.297 5702.712 
BSWI43 (22 DOFs) 324.929 2036.305 5701.927 

Condition 1 (C-F) 

 Exact [30] 324.893 2036.216 5702.036 
TBSWI43 (44 DOFs) 2067.605 5699.432 11173.422 
BSWI43 (22 DOFs) 2067.615 5699.668 11175.059 

Condition 2 (C-C) 

 Exact [30] 2067.604 5699.430 11173.162 

TBSWI43 (44 DOFs) 2067.607 5699.483 11173.815 
BSWI43 (22 DOFs) 2067.615 5699.677 11175.140 

Condition 3 (F-F) 

 Exact [30] 2067.604 5699.430 11173.162 

TBSWI43 (44 DOFs) 912.089 3648.357 8208.900 
BSWI43 (22 DOFs) 912.090 3648.419 8209.543 

Condition 4 (S-S) 

 
Exact [30] 912.089 3648.357 8208.803 

TBSWI43 (44 DOFs) 1424.858 4617.467 9634.209 
BSWI43 (22 DOFs) 1424.861 4617.579 9635.171 

Condition 5 (S-F) 

 
Exact [30] 1424.857 4617.451 9633.942 

TBSWI43 (44 DOFs) 1424.858 4617.454 9634.083 
BSWI43 (22 DOFs) 1424.861 4617.577 9635.146 

Condition 6 (C-S) 

 
Exact [30] 1424.857 4617.451 9633.942 

C: clamp supported; F: free; S: simply supported. 

4. 2 Timoshenko beam 

Example 1: Timoshenko beam clamped on two sides with distributed load. As shown in Fig. 
8, the corresponding parameters are: bending rigidity EI = 13/6×1010 Nm2, shear rigidity GA = 
1011 N, shear coefficient 6 5k

τ
= , beam length L = 10 m, distributed load q = 105 N/m. 

Displacement, slope and moment results of TBSWI43 and traditional element are compared 

in Fig. 9. It can be observed from the results that with 33 DOFs, TBSWI43 can provide results 

with the same accuracy of 100 traditional elements (202 DOFs), confirming that the TBSWI43 

is an efficient method. 

Example 2: Timoshenko beam simply supported on two sides with linear distributed 

variable load. As shown in Fig. 10, the corresponding parameters are: bending rigidity EI = 1 

Nm2, shear rigidity GA = 1 N, shear coefficient 6 5k
τ
= , beam length L = 1 m, distributed load 

q = 1 N/m. 
Solution for transverse displacement, slope and moment is listed in Table 5, and the results 

of TBSWI43 are compared with 100 traditional elements and theoretical solution. The attractive 
point here is the moment solution, even compared with 100 traditional elements (202 DOFs), 
TBSWI43 (33 DOFs) can also get the results better than traditional elements. So TBSWI43 
element can do excellent job in analysis of Timshenko beam with variable load, especially in 
terms of moment solution. 

Example 3: Vibration problem of Timoshenko beam. The corresponding parameters are: 

elastic modulus E = 2.06×1011 N/m2, shear modulus G = 5×1012 N/m2, shear coefficient 

6 5k
τ
= , beam width B = 0.01 m, beam height H = 0.2 m, beam length L = 1 m, density 

37890 kg/mm = . 
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(c) Condition 3                            (d) Condition 4 
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Fig. 7. The first three mode shapes of Euler beam 

 

Fig. 8. Clamp supported Timoshenko beam with distributed load 
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Fig. 9. Solving solution of TBSWI43 element and traditional element for a Timoshenko beam 

 

 
Fig. 10. Simply supported Timoshenko beam with linear distributed variable load 

 

Table 5. Displacement, slope and moment of simply supported Timoshenko beam 

Transverse 
displacement 

Slope Moment 

x 
1 

TBSWI43 

100 
Traditional 
elements 

1 
TBSWI43 

100 
Traditional 
elements 

1 
TBSWI43 

100 
Traditional 
elements 

Theoretical 
solution 

0 0.000000 0.000000 -0.038889 -0.038886 0.000000 -0.001666 0.000000 
L/10 -0.031333 -0.031333 -0.037231 -0.037227 -0.033000 -0.034611 -0.033000 
2L/10 -0.060672 -0.060671 -0.032355 -0.032353 -0.064000 -0.065456 -0.064000 
3L/10 -0.086040 -0.086039 -0.024563 -0.024562 -0.091000 -0.092201 -0.091000 
4L/10 -0.105504 -0.105502 -0.014356 -0.014354 -0.112000 -0.112845 -0.112000 
5L/10 -0.117188 -0.117185 -0.002431 -0.002430 -0.125000 -0.125390 -0.125000 
6L/10 -0.119296 -0.119294 0.010311 0.010311 -0.128000 -0.127835 -0.128000 
7L/10 -0.110134 -0.110132 0.022770 0.022768 -0.119000 -0.118180 -0.119000 
8L/10 -0.088127 -0.088126 0.033645 0.033642 -0.096000 -0.094426 -0.096000 
9L/10 -0.051842 -0.051841 0.041436 0.041432 -0.057000 -0.054571 -0.057000 
10L/10 0.000000 0.000000 0.044444 0.044438 0.000000 0.000000 0.000000 
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As shown in Table 6, the results of vibration problem for the Timoshenko beam under six 
different boundary conditions are compared with theoretical solution in ref. [30] of a thin beam. 
The satisfactory results indicate that TBSWI Timoshenko beam element is efficient in vibration 
analysis. It can obtain satisfactory results for different boundary conditions. Thus, TBSWI 
element can perform well both in the case of bending analysis and free vibration analysis. 

 
Table 6. First three frequencies of Timoshenko beam under different boundary conditions 

Timoshenko beam Methods 1ω /rad·s-1 2ω /rad·s-1 3ω /rad·s-1 

TBSWI43 1036.861 6484.444 18132.558 Condition 1 (C-F) 

 
Exact 

(thin beam)[30] 
1037.254 6500.361 18201.199 

TBSWI43 6575.049 18079.067 35679.436 Condition 2 (C-C) 

 

Exact 
(thin beam)[30] 

6600.309 18194.007 35667.525 

TBSWI43 6594.983 18171.464 35935.073 Condition 3 (F-F) 

 
Exact 

(thin beam)[30] 
6600.309 18193.007 35667.525 

TBSWI43 2909.373 11619.159 26192.240 Condition 4 (S-S) 

 

Exact 
(thin beam)[30] 

2911.617 11646.466 26204.552 

TBSWI43 4544.637 14710.661 30837.107 Condition 5 (S-F) 

 

Exact 
(thin beam)[30] 

4548.501 14740.058 30753.952 

TBSWI43 4538.802 14676.962 30734.660 Condition 6 (C-S) 

 

Exact 
(thin beam)[30] 

4548.501 14740.058 30753.952 

C: clamp supported; F: free; S: simply supported. 
 

4. 3 Elastic foundation beam 
 

Example 1: Bending problem of Elastic foundation beam. As shown in Fig. 11, the 
corresponding parameters are: elastic modulus E = 1.2×106 N/m2, beam width B = 0.1 m, beam 
height H = 0.1 m, beam length L = 1 m, distributed load q0 = 1 N/m, Winkler foundation 
coefficient ke = 1000EI/L4. 

 

 
Fig. 11. Elastic foundation beam simply supported with distributed load 
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In Table 7, the solution of central displacement and moment are compared with Spline 
mixed FEM with two kinds of variables [18], BEAM3 and theoretical solution [31]. To 
displacement solution, the three methods can all obtain perfect results, while to moment 
solution TBSWI performs better than Spline mixed method with two kinds of variables. Fig. 12 
shows the displacement and moment comparison of TBSWI element and BEAM3 element 
along beam length, the two elements are inosculated very well, which further proves that 
TBSWI element is an efficient element, very capable in generalized stress analysis. 

 
Table 7. Central displacement and moment of Elastic foundation beam 

Simply supported beam with 

distributed load Methods DOFs 

100wqL4/EI 100MqL2 

TBSWI43 22 0.1116 0.79642 

Spline mixed FEM with two 

kinds of variables [18] 
34 0.1116 0.7899 

BEAM3 33 0.1116 0.79667 

Theoretical solution [31] 0.1116 0.7966 
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Fig. 12. Displacement and moment of Elastic foundation beam 
 
Example 2: Vibration of Elastic foundation beam. The corresponding parameters are: elastic 

modulus E = 1.2×106 N/m2, beam width B = 0.1 m, beam height H = 0.1 m, beam length L = 1 
m, density 37890 kg / mm = , Winkler foundation coefficient ke = 1000EI/L4. 

The first order frequency coefficient is shown in Table 8, and the results are compared with 
spline mixed element with two kinds of variable [32], Spline element [33] and theoretical 
solution [34]. We can witness that TBSWI43 element performs very well both in the case of a 
simply supported and clamp supported Elastic foundation beam. The solution indicates that 
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TBSWI element is not only efficient in static analysis of Elastic foundation beam, but also in 
free vibration analysis. 

 
Table 8. First order frequency coefficient of Elastic foundation beam ( )* 2

minL m EIα ω=  

Methods Simply supported Clamp supported 

TBSWI43 33.1272 38.7371 

Spline mixed FEM with two 

kinds of variables [32] 
33.1272 38.7382 

Spline FEM [33] 33.1273 38.7376 

Theoretical solution [34] 33.1272 38.7584 

 
5. Conclusion 
 

Based on B-spline wavelet on the interval and the multivariable generalized potential energy 
functional, we constructed BSWI element with two kinds of variables for 1D structural 
mechanics. The matrix formulations are derived from multivariable generalized potential energy 
functional, and BSWI is selected as trial function to construct the generalized displacement field 
function and generalized stress field function. Euler beam, Timoshenko beam and Elastic 
foundation beam under different boundary conditions are analyzed. 

To traditional method, there is only one generalized field function, displacement, so they 
should calculate generalized stress and strain by differentiation of displacement, which will 
affect the solving precision. However, the BSWI element with two kinds of variables 
constructed in this paper can avoid this problem, because generalized displacement and 
generalized stress are treated as independent variables, which can be solved directly instead of 
differentiation. Besides, the semi-orthogonal, compactly supported BSWI is selected as a trial 
function, which is excellent in approximation of numerical calculation among all existing 
wavelets. In order to verify the TBSWI element, the bending and vibration problems of Euler 
beam, Timoshenko beam and Elastic foundation beam were analyzed. Computational results 
indicate that the TBSWI element is a steady and efficient method, which can perform very well 
not only in static analysis, but in vibration analysis as well. 
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