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Abstract. Rubber-bearing isolation systems have been used in buildings and bridges. These 
base isolation systems will become more popular in the future due to their ability to reduce 
significantly the structural responses induced by earthquakes and other dynamic loads. To 
ensure the integrity and safety of these base isolation systems, a structural health monitoring 
system is needed. One important problem in the structural health monitoring is the identification 
of the system and the detection of damages. This problem is more challenging for the rubber-
bearing isolation systems because of their nonlinear behavior. In this paper, experimental 
studies have been conducted for the system identification of nonlinear hysteretic rubber-
bearings. Experimental tests of a rubber-bearing isolator under El Centro and Kobe earthquakes 
have been performed. The Bouc-Wen models with 3, 5 and 6 unknown parameters, 
respectively, have been investigated to represent the hysteretic behavior of rubber-bearing 
isolators. The extended Kalman filter (EKF) approach has been used to identify the nonlinear 
parameters of the Bouc-Wen models for the rubber-bearing isolators. Our experimental studies 
demonstrate that the Bouc-Wen models are capable of describing the nonlinear behavior of 
rubber-bearing isolators, and that the EKF approach is effective in identifying nonlinear 
hysteretic parameters. 
 

Keywords: rubber bearings, hysteretic model, system identification, extended Kalman filter. 
 
Introduction 
 

Base isolation is an innovative performance-based design approach to mitigate earthquake 
damage potential owing to their excellent performance in reducing the response of structures 
subject to seismic loads. High damping rubber-bearing isolators have been used in buildings, 
bridges and other civil structures. In addition, more and more civil infrastructures are expected 
to be installed with such isolators in the future [1, 2]. The rubber-bearing systems are usually 
introduced between the superstructure and the foundation to provide lateral flexibility and 
energy dissipation capacity. A variety of isolation devices, including elastomeric bearings (with 
and without lead core), have been developed and used for the seismic design of buildings during 
the last 20 years [3, 4, 5]. 

To ensure the integrity and safety of these base isolation systems, a structural health 
monitoring system should be developed. Unfortunately, little has been studied in this important 
subject area to date. For the health monitoring of rubber-bearing isolators and the corresponding 
base-isolated structures, one important task is the system identification of these isolators. To 
accomplish this effort, a suitable nonlinear hysteretic model should be established. 

On the other hand, an objective of structural health monitoring systems is to identify the 
state of the structure and to detect the damage when it occurs. In this regard, analysis techniques 
for damage identification of structures, based on vibration data measured from sensors, have 
received considerable attention. A variety of system identification techniques in time domain 
have been developed for nonlinear and/or multi-degree-of freedom (MDOF) structural systems, 
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such as the least-square estimation (LSE) [6, 7, 8], the extended Kalman filter (EKF) [9, 10, 11], 
the unscented Kalman filter (UKF) [12], recursive model reference adaptive algorithm [13], and 
the sequential non-linear least-square estimation (SNLSE) [14, 15], quadratic sum-squares error 
(QSSE) [16, 17], Monte Carlo filter [18], and wavelet multi-resolution technique [19], etc.  

In this experimental study, the Bouc-Wen model is selected to describe the nonlinear 
behavior of rubber-bearings, which has the advantages of being smooth-varying and physically 
motivated. Further, experimental tests using a particular type of rubber-bearing (GZN110) have 
been conducted to identify the parameters of the hysteretic model. Based on experimental data 
measured from sensors, the EKF method has been used to identify the model parameters. 
Different earthquake excitations and the Bouc-Wen model with different unknown parameters 
have been considered. Measured acceleration response data and the EKF approach are used to 
identify unknown linear and nonlinear parameters. Experimental results demonstrate that the 
Bouc-Wen model is capable of describing the nonlinear behavior of rubber-bearings, and that 
the EKF approach is quite effective in identifying the non-linear hysteretic parameters.  

 
Analytical model for rubber-bearing 

 
Several hysteretic models for describing the dynamic behavior of rubber-bearings have been 

proposed in the literature, including piecewise-linear hysteretic models, polynomial hysteretic 
models, curvilinear hysteretic models, etc. Among these models, the Bouc-Wen model seems to 
be more flexible, involving more model parameters to be adjusted. And the hysteresis loop of 
Bouc-Wen model is smooth and fit the hysteretic character of rubber bearings. So the Bouc-
Wen model is adopted to describe the rubber-bearings in this paper. 

Consider a single-degree-of freedom hysteretic system (SDOF) excited by a ground 
acceleration in which x is the relative displacement. The equation of motion can be expressed 
as: 
 

( ) 0xmz,xRxm T ɺɺɺɺ −=+  (1) 

 
where z is a hysteretic variable, m is the mass coefficient, and 0xɺɺ  is the ground acceleration. 

The total restoring force ( )z,xRT consists of elastic and hysteretic components as follows:  

 
( ) ( )kzkxxcz,xRT αα −++= 1ɺ  (2) 

 
where c and k are, respectively, the damping and stiffness coefficients, and 10 ≤≤ α  is a 
weighting parameter. The restoring force is purely hysteretic if 0=α  and is purely elastic if 

1=α . A hysteresis model with degradation given by [12, 20] is: 
 

( )( ) ηγβν
nn

zxzzxxAz ɺɺɺɺ −−=

−1
 (3) 

 
In the above expression, ν and η  are degradation shape functions. In general, degradation 

depends on the response duration and severity. A convenient measure of the combined effect of 

duration and severity is the hysteretic energy ( ) ( )
0

1
t

E t kzxdtα= −∫ ɺ  dissipated through 

hysteresis from time t = 0 to the present time t. Since the quantity ( )
0

t

t zxdtε = ∫ ɺ  is proportional 
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to ( )E t , it may also be used as a measure of response duration and severity. Many functional 

relations between ν , η  and ε  are possible. From practical considerations, both ν  and η  are 
assumed to depend linearly on ε  as the system evolves [12, 20]: 
( ) εδεν

ν
+=1  (4) 

( ) εδεη
η

+=1  (5) 

Two unspecified constant degradation parameters 
ν
δ  and 

η
δ  are thereby introduced. 

From Eqs. (1)-(5), there are seven loop parameters (A,α , β ,γ , n,
ν

δ ,
η

δ ) in the Bouc-Wen 

model describing the hysteretic behavior. However, it has been shown that A = 1 is quite 
reasonable, and hence it will be used in this study. Consequently, there remain six parameters 
(α , β ,γ , n,

ν
δ ,

η
δ ) in the Bouc-Wen model. To clarify whether every parameter contribute 

equally to the system response and whether the variations in some parameters combine to annul 
the effect of each other, attempts were made in the past to understand the influence of each 
parameter on the system response. For example, Ma, et al. [20] and Yin, et al. [15] studied the 
sensitivity of the Bouc-Wen model parameters using a one-factor-at-a-time method and 
provided a graphical representation of the sensitivity ranking. In these loop parameters 

ν
δ and 

η
δ  are the most insensitive, the rank does not change under different parametric initial values. 

Thus 0=
ν

δ  and 0=
η

δ  are adopted in this paper. Then, the unknown hysteresis loop 

parameters in the Bouc-Wen model are reduced to α , β ,γ , n. Chen, et al. [21] used A = 1, 

10.=β , 90.=γ , n = 2 for the laminated and stirruped rubber bearings. Yin, et al. [15] also 

suggested that A = 1, 50.=β , 50.=γ , n = 2 for rubber bearings. In this paper, these 

parameters suggested by Yin, et al. are adopted for a reference and the following experimental 
results are compared with these suggested values. 
 
Extended Kalman filter 

 
In this section, a brief summary of the extended Kalman filter (EKF) approach is given. 

Consider a m-DOF structure with the displacement vector, x, and velocity vector, xɺ . Let us 

introduce an extended state vector, ( ) ΤΤΤΤ
= },,{ θxxZ ɺt , where 1 2[ , , , ]nθ θ θ

Τ Τ
= …θ  is an n-

unknown parametric vector with iθ  (i = 1, 2, …, n) being the ith unknown parameter of the 

structure, including damping, stiffness, nonlinear and hysteretic parameters. In what follows, 
the boldface letter represents either a vector or a matrix. The vector equation of motion of the 
structure can be expressed as:  
 

( ) ( ) ( )ttdt/td wfZgZ += ,,   (6) 

 
in which w(t) = model noise (uncertainty) vector with zero mean and a covariance matrix Q(t), 
and f is the excitation vector. A nonlinear discrete vector equation for an observation vector 
(measured responses) can be expressed as follows: 
 

( ) 1111 1,,
++++

++= kkkk k vfZhY  (7) 

 
in which 1+kY is a l-dimensional observation (measured) vector at ( ) tkt ∆+= 1  (sampling time 

step t∆ ). In Eq. (7), 1+kv is a measurement noise vector assumed to be a Gaussian white noise 
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vector with zero mean and a covariance matrix kjkjkE δ=
Τ Rvv ][ , where kjδ  is the Kronecker 

delta. 

Let 11 ++ k|kẐ  be the estimate of 1+kZ  at ( ) tkt ∆+= 1 , and k|k
ˆ

1+Z  be the estimate of 1+kZ  at 

tkt ∆= . The recursive solution for the estimate 11 ++ k|kẐ  of the extended state vector is given 

by: 
 

)]1,,([ 1111111 +−+=
+++++++

kˆˆˆ
kkkkk|kk|k fZhYKZZ  (8) 

( 1)

1| 1 1 1 | |
ˆ ˆ ˆ ˆ{ | , , , } ( , , )

k t

k k k k k k t k

k t

E t dt
+ ∆

+ +

∆

= = + ∫…Z Z Y Y Y Z g Z f  (9) 

1−

+

Τ

+++

Τ

+++
+= ][ 1111111 kk|kk|kk|kk|kk|kk RHPHHPK  (10) 

 

In Eq. (10), 1+kK  is the Kalman gain matrix, k|k 1+P  and k|k 1+H  are given by: 

 

1,1,11 +

Τ

+++
+= kkkk|kkkk|k QΦPΦP  (11) 

k|kk
ˆkkkk|k k

11
])/1,,([ 1111

++
=++++

∂+∂= ZZZfZhH  (12) 

 
where kk ,1+Φ  is the transition matrix of the extended state vector from kZ  to 1+kZ , and k|kP  is 

given by: 
 

ΤΤ

−−−
+−−= kkkk|kkk|kk|kkk|k KRKHKIPHKIP ][][ 111  (13) 

 
In the recursive solution above, k|kP  is the error covariance matrix of the estimated 

extended state vector, and the details of the EKF method are referred to Yang et al. [10]. To 
initiate the recursive solution, the initial values for the unknown extended state vector 

( ) ΤΤΤΤ
= },,{ θxxZ ɺt , including unknown parameters and unknown state vector, should be 

estimated. Likewise, the initial error covariance matrix 00|P  of the estimated extended state 

vector, the covariance matrix R of the measurement noise vector v(t), and the covariance matrix 
Q of the system noise vector w(t) should be assigned as will be described later. 
 
Experimental Studies 
 
Experimental tests 

 
Rubber-bearings GZN110 supplied by Hengshui Zhentai Seismic Isolation Instrument CO., 

LTD were used as the base isolator of a structural model, and a mass with m = 132 kg is 
supported by rubber bearings as shown in Fig. 1(a). Two earthquake excitations will be used, 
including the El Centro and Kobe earthquakes. In the tests, the base-isolated structural model 
was placed on the shake table that simulated different kinds of earthquakes as shown in Figs. 
1(a) and (b). During the tests, the shake table and the mass were each installed with one 
acceleration sensor and one displacement sensor to measure the responses. The absolute 
acceleration response of the mass a1 and the earthquake ground acceleration ad were measured. 
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Also, the displacements of the mass and the base were measured for the correlation study. The 
sampling frequency of all measurements is 200 Hz. 

 

       
Fig. 1(a). Experimental setup (Global)                       Fig. 1(b). Experimental setup (Local) 

 
Experimental results 

 
To identify the parameters of rubber-bearings, different unknown parameters in the Bouc-

Wen model will be considered. 
 

Bouc-Wen Model I (3 Unknown Parameters) 
 

First, we consider the loop parameters, β γ  and n to be constants, i.e., 50.=β , 50.=γ  and 

n = 2. Hence, the unknown parameters are c, k and α  in which c  and k  are the linear damping 
and stiffness parameters and α  is the ratio of post-yielding stiffness to pre-yielding stiffness. 
Then, the hysteretic nonlinear equation can be rewritten as: 
 

2
5050 zx.zz.xz ɺɺɺ −−=  (14) 

 

The extended state vector in the EKF method is ( ) Τ
= },,,,,{ αkczxxt ɺZ , where x and xɺ  are 

the relative displacement and relative velocity, respectively, of the mass with respect to the 

shake table. The initial values used for Z, P, Q and R are: Τ
= }5020,0.1,0,0,,0{0|0 .Z , 

]}01,01,011,1,,1diag{[ 555
0|0 =P , R =1, and 6

710 IQ −

= . 

 
Case 1: El Centro earthquake 

In this test, a scaled El Centro earthquake with a PGA of 0.4g is applied to the base. The 
measured earthquake ground acceleration da  and the absolute acceleration response of the 

mass 1a  are shown in Fig. 2. Based on the acceleration measurements and the EKF solution, the 

identified unknown parameters are presented in Fig. 3. It is observed from Fig. 3 that the 
unknown parameters converge nicely after 3.5 seconds. Further, the identified displacements, 
including the absolute displacement and relative displacement (inter-story drift) of the mass, are 
shown in Fig. 4 as blue solid curves, whereas the measured displacements are shown as red 
dashed curves for comparison. It is observed from Fig. 4 that the identified displacements match 
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the experimental ones well. Thus the parameters predicted in Fig. 3 can describe the nonlinear 
hysteretic characteristics well. 
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Fig. 2. Measured acceleration responses and shake        Fig. 3. The identified model parameters, 
table acceleration due to El Centro earthquake               case 1: El Centro earthquake 
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Fig. 4. The identified relative and absolute         Fig. 5. Measured acceleration responses and shake 
displacement, case 1: El Centro earthquake        table acceleration due to El Centro earthquake 
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Fig. 6. The identified model parameters,             Fig. 7. The identified relative and absolute 
case 2: Kobe earthquake                                      displacement, case 2: Kobe earthquake 

 
Case 2: Kobe earthquake  
 

In this test, a scaled Kobe earthquake with a PGA of 0.2g is applied to the base. The 
measured earthquake excitation ad and the absolute acceleration response of the mass a1 are 
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shown in Fig. 5. Based on the acceleration measurements and the EKF solution, the identified 
parameters are presented in Fig. 6. A comparison between Figs. 3 and 6 indicates that the 
identified model parameters are identical under different excitations. 
 
Bouc-Wen Model II (5 Unknown Parameters) 
 

In this situation, we consider the parameter n to be 2.0, i.e., n = 2, and the other loop 
parameters, α , β  andγ , to be unknown in Eqs. (2) and (3). Then, the extended state vector in 

the EKF method is ( ) Τ
= },,,,,,,{ γβαkczxxt ɺZ , where c, k, α , β  and γ  are the unknown 

parameters to be identified. The initial values used for Z, P, Q and R are: 

0|0 {0,0,0,0.1,20,0.5,0.5,0.5} ,Τ
=Z  5 5 5 5 5

0|0 diag{[1,1,1,10 ,10 ,10 ,10 ,10 ]},=P  R = 3 and 

8
710 IQ −

= . 
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Fig. 8. The identified model parameters,                Fig. 9. The identified relative and absolute 
case 3: El Centro earthquake                                  displacement, case 3: El Centro earthquake 

 
Case 3: El Centro earthquake 
 

Similar to case 1, a scaled El Centro earthquake with a PGA of 0.4g is applied to the base. 
Based on the acceleration measurements shown in Fig. 2 and the EKF solution, the identified 
parameters are presented in Fig. 10. Further, the identified displacements are shown in Fig. 11 
as blue solid curves, whereas the measured displacements are represented as red dashed curves 
for comparison. It is observed from Fig. 11 that the identified displacements match the 
experimental ones well. 

 
Case 4: Kobe earthquake  
 

Similar to case 2, a scaled Kobe earthquake with a PGA of 0.2g is applied to the base. Based 
on the acceleration measurements shown in Fig. 5 and the EKF solution, the identified 
parameters are presented in Fig. 10. As observed from Fig. 10, all parameters converge nicely 
after 3.5 seconds. The identified displacements are provided in Fig. 11 as blue solid curves, 
whereas the measured displacements are shown as red dashed curves for comparison. 

 
Bouc-Wen Model III (6 Unknown Parameters) 
  

Experimental data obtained previously will be analyzed again by including the loop 
parameter n as an unknown parameter. In this case, the model involves 4 unknown loop 
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parameters and 2 unknown linear parameters. Hence, the extended state vector in the EKF 
becomes ( ) { , , , , , , , , } .t x x z c k nα β γ Τ

= ɺZ  The initial values for Z, P, Q and R are: 
12

0|0 {0,0,10 ,0.1,40,0.5,0.5,0.5,2} ,− Τ
=Z  3 3 3 3 3 3

0|0 diag{[1,1,1,10 ,10 ,10 ,10 ,10 ,10 ]},=P  R = 10 

and 9
710 IQ −

= . 
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Fig. 10. The identified model parameters,         Fig. 11. The identified relative and absolute 
case 4: Kobe earthquake                                    displacement, case 4: Kobe earthquake 
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Fig. 12. The identified model parameters,         Fig. 13. The identified relative and absolute 
case 5: El Centro earthquake                             displacement, case 5: El Centro earthquake 

 
Case 5: El Centro earthquake 
 

Based on the measured data in Case 1 for the El Centro earthquake excitation and the EKF 
approach, the identified results are shown in Figs. 12 and 13, respectively, for the unknown 
parameters and the displacement responses. A comparison of Figs. 3, 8 and 12 indicates that the 
identified parameters are identical for all Bouc-Wen Model I and Bouc-Wen Model II as well as 
Bouc-Wen Model III for the El Centro earthquake excitation. 

 
Case 6: Kobe earthquake 
 

Based on the measured data in Case 2 for the Kobe earthquake excitation and the EKF 
approach, the identified results are shown in Figs. 14 and 15 respectively, for the unknown 
parameters and the displacement responses. A comparison of Figs. 6, 10 and 14 indicates that 
the identified parameters are identical for both Bouc-Wen Model I and Bouc-Wen Model II as 
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well as Bouc-Wen Model III for the Kobe earthquake excitation. Finally, an examination of 
Figs. 3, 8, 12, 6, 10 and 14 reveals that all the identified parameters are about the same for all 
Bouc-Wen Models and for all earthquake excitations. Likewise, the predicted displacement 
responses correlate very well with the experimental data as presented in Figs. 4, 7, 9, 11, 13  
and 15. 
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Fig. 14. The identified model parameters,             Fig. 15. The identified relative and absolute 
case 6: Kobe earthquake                                        displacement, case 6: Kobe earthquake 

 
Conclusions  
 

In this paper, experimental studies have been conducted for the system identification of 
nonlinear hysteretic rubber-bearings. Experimental tests of a rubber-bearing isolator under El 
Centro and Kobe earthquakes have been performed to generate the acceleration response data 
for the system identification purpose. The Bouc-Wen models with 3, 5 and 6 unknown 
parameters, respectively, have been investigated to represent the hysteretic behavior of rubber-
bearing isolators. The EKF approach has been used to identify the nonlinear parameters of the 
Bouc-Wen models for the rubber-bearing isolators, including the equivalent stiffness, damping 
coefficient and hysteretic parameters. Our experimental studies demonstrate that the Bouc-Wen 
models are capable of describing the nonlinear behavior of rubber-bearing isolators, and that the 
EKF approach is quite effective in identifying nonlinear hysteretic parameters. 
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