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Abstract. The non-linear non-planar dynamic responses of ar-sguare cantilevered
geometrically imperfect (i.e., slightly curved) lbeaunder harmonic primary resonant base
excitation with a one-to-one internal resonancenigestigated. By assuming two different
geometric imperfection shapes, the sensitivityhef perfect beam model predicted limit-cycles
to small geometric imperfections is analyzed bytieming them versus the imperfection
parameter incorporating the imperfect beam modeis Was carried out by assuming that the
corresponding frequency detuning parameter assaciaith each limit-cycle is fixed. Also,
other possible branches of dynamic solutions fer ¢brresponding fixed detuning parameter
within the interval of the imperfection amplitudeeadetermined and the importance of
accounting for the small geometric imperfectiondigcussed.
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Nomenclature

m - Mass per unit length of beam
D, .,i =n,{ -Flexural stiffness constants

v (x,t)w (X t)- Beam neutral axis deflection aloMgZ andX axes
v_(x)w (x) - Beam neutral axis natural deflection alofig axes

¢, ,i =v.w -Damping coefficients

F - Base excitation amplitude

0 - Excitation frequency

@, , 1 =2,y - Beamnth natural frequency along Z and Y axes

o - Excitation frequency detuning parameter

o - Beam cross section out-of-squareness deturgranpeter

neé - Current principle axes coordinate system ohieeoss-section
XYz - Inertial reference coordinate system

1. Introduction

The non-linear dynamic response of a long, slebdam has been the subject of many
theoretical and experimental efforts due to the fhat engineering structures like helicopter
rotor blades, spacecraft antennae, flexible sts]liairplane wings, gun barrels, robot arms,
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high-rise buildings, long-span bridges, and sulesyst of more complex structures can be
modeled as a beam-like slender member. Linear @d(ife. ignoring geometric imperfections)
modeling of small-amplitude vibrating beams may tdbote to results that match the
experimental observations but when the amplitudexcftation is large, it does not predict the
dynamic responses correctly. This is the consequehignoring several non-linearities such as
inertia, curvature, mid-plane stretching, naturgometric imperfection and various beam
effects like shear deformation, warping and rotamgrtia. In the following survey, a brief
summary of the most relevant works is presented.

Crespo da Silva and Glynn [1] investigated theutakflexural-torsional dynamics of
beams to primary resonances accounting for botimga@ and inertia non-linearities. They
found that the first and the second mode respousees are different and response curves for
higher modes are approximately independent of im@at curvature terms. Whirling responses
of near-square and near-circular cross-section betmlateral base excitation, using the
equations derived in [1] and ignoring the effectdaimping, is investigated by Hyer [2]. He
found that whirling motions exist near resonanceitakon but could not locate unstable
whirling motions. Crespo da Silva [3] used the saewmations including damping and
investigated the whirling motions of base-exciteghtdever beams. He found that some
whirling motions are unstable; furthermore, neitpéanar nor non-planar stable steady state
motions existed in some ranges of frequency detun@respo da Silva [4] investigated the
planar response of an extensional beam to a perediitation. He found that the effect of the
non-linearity due to mid-plane stretching is dominand that neglecting the non-linearities due
to curvature and inertia does not introduce sigaift error in the results. Also, unlike the
response of an inextensional beam, the single-megj@nse of an extensional beam is always
hardening. Pai and Nayfeh [5] investigated the plamar oscillations of compact (i.e. near-
square) beams under lateral base excitations. Bleayed Hopf bifurcations and found that the
system can exhibit quasi-periodic or chaotic matjdarthermore, the low-frequency modes are
dominated by geometric non-linearities while thghafrequency modes are dominated by
inertia non-linearities. Crespo da Silva and Zawetfs] studied the non-linear responses of
compact cantilever and clamped-pinned/sliding beiantise presence of a one-to-three internal
resonance. Zaretzky and Crespo da Silva [7] exmarially investigated the non-linear modal
coupling in the response of compact cantilever seand obtained good agreement with the
theoretical predictions of ref. [6]. Crespo da &iland Zaretzky [8] examined the flexural-
torsional coupling in inextensional beams for aecakone-to-one internal resonance between
an in-plane bending mode and a torsional mode =cited the in-plane mode. They found that
within certain ranges of the excitation amplitudiee in-plane bending component of the
coupled response saturates so that any furtheggpeimped into the system is transferred to
the torsional motion via the internal resonanceczko [9] used a geometrically accurate model
to investigate the bifurcations and internal resmea in extensional space-curved rods. The
model includes non-linear expressions of strainfuastions of generalized co-ordinates, non-
linear material equations, as well as all non-liteams in the equations of motion derived from
the balance of momentum and angular momentum. Hedfca vast variety of internal
resonance phenomena, which are caused by the rguplie to the inclusion of geometrical
non-linearities. Avramov [10] investigated the rarear oscillations of a simply supported
beam subjected to a periodic force at a combinat@onance. He used the center manifold
method and discovered the Naimark—Sacker bifunsatieading to almost-periodic oscillations.
Dwivedy and Kar [11] investigated the non-lineamdsnics of a base-excited slender beam
carrying a lumped mass subjected to simultaneoushbtwtion parametric resonance of sum
and difference type along with 1:3:5 internal remwses. They observed interesting phenomena
like blue sky catastrophe, jump down phenomenasamdltaneous occurrence of periodic and
chaotic orbits. Lacarbonar et al. [12] investigatexh-linear interactions in a hinged—hinged
uniform moderately curved beam with a torsionalrgprat one end. The beam mixed-mode
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response is shown to undergo several bifurcatiookjding Hopf and homoclinic bifurcations,
along with the phenomenon of frequency island ga@r and mode localizatiohuongo and
Egidio [13] applied the multiple scales method tmree-dimensional continuous model of
planar, inextensible and shear-undeformable stréighm to derive the equations governing the
system asymptotic dynamic around a bifurcation fpdihey studied the post-critical behavior
around the bifurcations. Paolone et al. [14] aredythe stability of a cantilever elastic beam
with rectangular cross-section under the actiora dbllower tangential force and a bending
conservative couple at the free end. The lineavilgtaof the trivial equilibrium is studied,
revealing the existence of buckling, flutter andildle-zero critical points.

Aghababaei et al. [15] derived the non-linear eignat and boundary conditions of
non-planar (two bending and one torsional) vibragiof inextensional isotropic geometrically
imperfect beams (i.e. slightly curved and twisteglamns) using the extended Hamilton's
principle. The order of magnitude of the naturabmetric imperfection was assumed to be the
same as the first order of vibrations amplitudehdligh the natural imperfection is small, their
study shows that in contrast to the case of sttdighms (i.e. geometrically perfect beams), the
vibration equations are linearly coupled and hawvedr and quadratic terms in addition to cubic
terms. Also, in the case of near-square or neatdar beams, coupling terms between lateral
and torsional vibrations exist. Furthermore, a peobof parametric excitation in the case of
perfect beams changes to a problem of mixed paranastd external excitation in the case of
imperfect beams. They have also investigated thielityaof the proposed model using the
existing experimental data.

Aghababaei et al. [16] investigated the non-lineam-planar steady-state responses of
a near-square cantilevered beam (a special caseegfensional beams) with geometric
imperfection under harmonic base excitation using equations in [15]. By applying the
combination of the multiple scales method and thaefkin procedure to two non-linear
integro-differential equations derived in [15], twwodulation non-linear coupled first-order
differential equations were obtained for the cabe g@rimary resonance with a one-to-one
internal resonance. They showed that the modulatiumations contain linear imperfection-
induced terms in addition to cubic geometric areftial terms. Variations of the steady-state
response amplitude curves with different parametesse presented. Bifurcation analyses of
fixed points show that the influence of geometmperfection on the steady-state responses can
be significant to a great extent although the ifgmtion is small. The phenomenon of
frequency island generation was also observed.

In this paper, by assuming two different geomeimperfection shapes, each limit-
cycle of the perfect cantilever beam is continuetsus the imperfection parameter (this is done
by assuming that the corresponding frequency deguparameter is fixed) and the sensitivity
of the limit-cycle to small geometric imperfections investigated. Also, other possible
branches of dynamic solutions for the correspondirgd detuning parameter within the
interval of the imperfection amplitude are deteresirand the importance of taking into account
the small geometric imperfections is discussed.

2. Prablem Description and Equations

The same notations as in [16] are used to anahgeynamic solutions in non-linear
vibrations of an imperfect and perfect, cantiledetgase-excited beam with near-square cross-
section, as shown in Fig. 1. It should be noted floa a perfect beam, the geometric
imperfection (small initial non-dimensional deflieet functions of the beam neutral axis,
v_(x) andw_(x)), as shown in Fig. 1, are zero (ive.(x)=w_(x)=0). In this figure,XYZ
and n¢& denote the inertial and the cross-section prieogglordinate systems, respectively.
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In this paper, the primary-resonant excitation loé hth mode in theZ-direction
(®,),2=0,,(1+c), which in turn excites theth mode in ther-direction (@,, ) through a

one-to-one internal resonaneg = w,, = @, with zero external detuning is analyzed i§ the

frequency detuning parameter). There exists sudntamal resonance for near-square beams.
Since the former and later modes are excited dijrést the primary resonance and indirectly
through the one-to-one internal resonance, resmdyti they are the only non-decaying
contributing modes in the response of the beam [L& assumed that none of the other modes
in the Y- andZ-directions is involved in any internal resonandththe 2 mode in theY- or Z-
direction.

v &

I

Fcos(Qt)

w(x,t) + w_(X)
’/Z X

Fig. 1. Geometrically imperfect cantilever beam under leasitation XYZ: inertial coordinate
systempcé : principle axes of the beam cross-section (deéfiastare shown exaggeratedly)

Expanding the in-plane and out-of-plane non-dimmmsi deflection variables (i.e.
v(x,t) andw(x,t), respectively) in power series involving a boodgaimg perturbation parameter

& as (X e) =gy, (X T, )+, X T T,)+ ... where 7 =VW and
H(X T, T,) =X, (x)a, (Tz)cos[a)nTa +p,0 0, )} , X, (x) is the nh normalized flexural mode

shape (i.e. single mode approximation of the resppit is assumed that th&” -plane and
out-of-plane flexural modes are interacting undher primary resonanc€ = w, (1+£°c)) and

T, =¢'t, i =0,2, the following modulation equations are obtainfadt the sake of briefness,
the modulation equations are directly adoptedafdetailed perturbation analysis, the reader is

referred to [16]):
_za)n R/’c = (C4 +CQ)R/5 _CIR/C +Capws -C 5|:(pv20 + R/zs)pvs - 2“/?: pvs:|
+ (CG _CZ)[pvs(pvic + pvfs)j|+ 2C2pvc Puc Pus
—26()” pv,s = _(CA +C9)pvc _Clpvs _C3pwc _CS[(pvzc + pvi)pvc + 2pvc pv§j|
_zczpvs Puc Pus — (CZ+CG)|:(pvsc + pvgs)pvc:|

(1a)

(1b)
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- 2a)rl pv,vc = (CS +C9)pws _Clpwc +C7pvs -C Sl:(pvsc + pvss)pws - 2pvvzc pws:l

. (1c)
+ prWC pVC pvs + (CG _C2)|:(pvc + pvs)pws:l

_an pv(vs = _(CS +C9)pwc _Clpws _C7pvc -C 5|:(pv3c + pvgs )pwc + 2pwc pvfs:l

(1d)
_2C2pws Py Pys — (C2+C6)|:(pvzc + pvzs)pwc:l_aﬂf a)nz

Where pic :aﬁn COS}/in ' pis :aﬁn Sin7/in and 7in = a)no'Tz _pin ! I =V.w.

In the above equations, denotes the scaled non-dimensional amplitude oé bas

1
excitation (i.e.s% =F), aﬂ:jx ,Ox and C, to C, are defined in the Appendix Il of ref.
0

[16]. It should be noted that the rat , /D, is ordered tol+&%5 for near-square beams
whered denotes the out-of-squareness of beam cross-semtidrappears in the constadj .
The damping factors in both directions are assutnee equald, =d, =d and ordered to
£°u which appears in the consta@ . The effect of geometric imperfection appearshie t
constantL,,C,,C,, andC,.

In Section 3, Egs. (1a)-(1d) are applied to deteenthe limit-cycles in non-linear non-
planar (bending-bending) vibrations of an imperfbase-excited cantilever beams with the
primary resonant excitation of the second flexunaldde in theZ-direction (i.e. ,, ), which in

turn excites the second flexural mode in Yadirection (i.e.w,, ) through a one-to-one internal
resonancem,, = ,, = w, . For the sake of simplicitya,, p,, andw are used instead @& ,,
P, andw,, y=v,w , respectively.

3. Imperfect Beam Limit-Cycles

Among the methods of constructing limit-cycles swashbrute-force approach [17],
harmonic balance method [18] and time-domain methja@], it was decided to use the brute-
force method. In this method, one chooses an linibadition, integrates the system of Egs.
(1a)-(1d) and ultimately converges to an attrathat may or may not be a limit-cycle. Since
the frequency-domain and time-domain methods hae& bwn restrictions to converge [17],
the brute-force method was used for its convenpeogramming. Applying the Egs. (1a)-(1d),
invoking v, (x)=w_(x)=0 (i.e. the perfect beam), and using the brute-foneghod, it was

possible to determine twelve distinct limit-cycfes the perfect beam.
3.1. Sensitivity to Small Geometric | mperfections

In this section, the effect of small geometric imipetions on the dynamic response of
the perfect beam is analyzed by assuming two diffesample imperfection shapes

V.(x) =¢(X,(x)+X (X)) , w.(x)=0, (2a)
V.(x)=0 ,w, (x)=c(X,(x)+X,(x)). (2b)
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Note that in Egs. (2a) and (2bX,(x) and X ,(x) are the first and second mode

shapes of natural undamped vibrations of the petfeam, respectively. The imperfection
shapes in Egs. (2a) and (2b) resemble a slightligeat cantilever beam idY and XZ planes,
respectively. Also, it is possible to determinefatiént limit-cycles for the fixed frequency
detunings within the imperfection amplitude (i.€)} interval of (0-0.001) for the two
imperfection shapes in Egs. (2a) and (2b), whiehrenxt shown here. The branches of periodic
solutions for the two imperfection cases in Eqs) @nd (2b) are computed by continuation of
the perfect beam limit-cycles using the Auto 2080] [continuation software.

3.1.1. Sensitivity analysis of the 1% limit-cycle

As Fig. 2 shows, the perfect beam model predidisigcycle at o =-0.01124¢€ and
¢ =0. By introducing an imperfection of the shape definn Eq. (2a) into the perfect beam,
applying the imperfect beam model modulation E4s){1d) and continuing the predicted
limit-cycle versus the imperfection amplitudefrom zero, one arrives at a stable branch of
periodic solutions that is terminated by a sup&oaii Hopf-bifurcation atc,. =1.64678& 10'
(see Fig. 2a). The post-bifurcation state is atitihdy stable steady state non-planar vibrations.
At the imperfection amplitude = 7.0034x 10*, the system state jumps to steady state planar
vibrations KZ) since the system poses a saddle-node bifurcatidthe specified imperfection
amplitude.

Fig. 2b shows the branches of periodic solutionsl amaotic bands for the
imperfection shape defined in Eqg. (2b). In thisecasy continuing the perfect beam model
predicted limit-cycle ato = -0.01124¢, a stable branch of periodic solutions is obtaiwbich
undergoes a period-doubling bifurcation. Continuaiof the period-doubled stable branch (not
shown) reveals the existence of another perioditmytbifurcation. The sequence of period-
doubling bifurcations persists which culminatesliaos.

Another branch of periodic solutions is obtained bByward and backward
continuation of the limit-cycle shown in Fig. 3 foc =0.0006] in Fig. 2b. When
€c=6.1935¢< 10° =c,,, the limit-cycles become homoclinic to the saddieds
(Pucs Pus Puc » Pus )= (0,0,0.0158123,0.011722. This is confirmed by the fact that the period
of limit-cycle approaches infinity asreaches the, ;.

As discussed in [16], the coefficie, in Egs. (1a) and (1b) is zero for the perfect
beam and also for both the imperfection cases ééfin Egs. (2a) and (2b). Thus, care should
be taken that the modulaton Egs. (la) - (1d) posélse symmetry
(Pucs Pus s Puc + Pus ) (= Pye —Pys »Puc 1Pus )- This indicates that for any asymmetric limit-ayof
the perfect and imperfect beams discussed in #pemp another limit-cycle may be obtained by
reversing the signs op,, and p, state variables. Here, by saying the limit-cyddesoming

homoclinic to saddle-focus it means that the twgrasetric limit-cycles (one of them obtained
by the above-mentioned method) come close to etwr asc approacheg,; from the left

until they meet at the saddle-focus, become merged,form a single symmetric limit-cycle
after homoclinic bifurcation.

The asymmetric branch of periodic solutions befaenoclinic bifurcation changes to
a symmetric branch after the homoclinic bifurcatidine symmetric branch undergoes two
cyclic-fold bifurcations and then loses symmetryotlgh a symmetry-braking bifurcation. A
stable asymmetric branch emanates from the symrbedking bifurcation. Finally, a sequence
of period-doubling bifurcations occurs culminatiinmg chaos. The chaotic motion transits to

steady state planaXZ plane) motion through a boundary crisis at aloat6.7x 10* .
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It is interesting to note that for imperfection dingles greater than = 6.7x 10*, the
out-of-plane vibrations are suppressed. In otherdgajomodal interaction between the primary
resonantly excited mode (i.e. the second flexuradi@) inXZ plane (see Fig. 1) and the second
out-of-plane flexural mode iKY plane through an internal resonance is canceled.

112.1

Steady-State Non-Planar (a)
112 Motions i
e 1119+ B
= Steady-State Planar (XZ)
& 111.8 Motions b
111.7 HF Juw .
111.6 : : 4
0 1.64678 7.00340 10x10°
115 1000 814 <
. (b (b) \ NcFa
! 3.97753.10% 800 9 4 CF3pn |-
5 M4} oo, K s 228 s%»..".?
il il 380 .
@ Chaos 600 | gjg F |
e 113 > 400 | 0000588 0.000592 0.000596 \ |
2 Chaos O steady-Stat
< eady-State|
112 E 200 I H HB 639,104 Motions
0 3.06047x10™ 5.86004 6.1935 6.7 10x10™
C C

Fig. 2. Branches of periodic solutions and the chaotiddbavhenc = -0. 011249
=004, 6=0002 a,f =6x10° for two geometric imperfection shapes, (--stable, (-----) unstable,
HF, Hopf-bifurcation; PD, Period-Doubling; PD Seridd-Doubling Sequence; CF, Cyclic-Fold; HB,
Homoclinic Bifurcation (a)v,(x) = ¢(X,(X) + X, (X)), (x) = 0, (b) W, (x) = ¢(X,(X) + X, (X)),v.(x) =0

Fig. 3 shows dynamic responses for six sample ifapgon amplitudesc and
o =-0.01124¢. The presence of sub-harmonic of or&zelin the second FFTc(=0.0003€) in

Fig. 3 is a characteristic of period-two limit-cgcli.e. the period of the limit-cycle is doubled
with respect to the period before period-doubliffgirioation. The fifth FFT ¢ =0.0006%) in

Fig. 3 contains only odd harmonics which certifitae symmetry of its corresponding limit-
cycle. The broadband nature in the third and d8&fs is the characteristic of chaotic motions.

3.1.2. Sensitivity analysis of the 2" limit-cycle

Fig. 4 shows the branches of periodic solutions @rabtic bands that may appear for
o =-0.0110¢t with values of imperfection amplitude up ¢c= 0.001.

Fig. 4a reveals the extent of sensitivity of thefgeet beam model predicted limit-cycle
to small geometric imperfections of the shape defim Eq. (2a) since the period of limit-cycle

tends to infinity asc —1.1014% 10'. The imperfect beam model poses a saddle-focus at
c=1.1014% 10'=c,, and the limit-cycles experience a homoclinic hihtion when

C=C,,. The symmetric limit-cycle changes to an asymroeirie after homoclinic bifurcation.
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The period decreases for imperfection amplitudegelathanc,; and the branch of periodic
solutions undergoes a number of cyclic-fold andguedoubling bifurcations. For values larger
than c..,, the system response is chaotic. The chaotic afallowed by periodic motions
that their period decreases through an infinite lnemrof reverse period-doubling bifurcations
until the system state is attracted by the lasiodesne branch of periodic solutions. The last
branch is terminated by a super-critical Hopf-hifition at ¢ =7.57904« 10'. The post-
bifurcation state is attracted by steady state planar vibrations. At the imperfection
amplitudec =9.978% 10°, the system state jumps to steady state planaatiohs KZ) since
the system poses a saddle-node bifurcation apieified imperfection amplitude.
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Fig. 3. The phase portraits, time traces, and FFTs of thé-tiyeles depicted from the branches in Fig. 2
for the imperfect beam model with, (x) = c(X, (X) + X,(X)),v.(X) =0 when o = —0.011249,

=004, 5 =0.002 ay,f =6x10°

As Fig. 4b shows, the period of limit-cycle dece=asonsiderably by increasing the
imperfection amplitude from zero. After passingotigh two cyclic-fold bifurcations, the stable
branch of symmetric periodic solutions loses symnethrough a symmetry-braking
bifurcation. A stable branch of asymmetric periodiolutions emanates from the later
bifurcation, undergoes four period-doubling bifuioas that results in stable period-doubled
branches of periodic solutions, and finally endshat symmetry-braking bifurcation SB2. The
unstable part of a branch of symmetric periodiaohs that passes through the SB2 is not
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clear in Fig. 4b. The stable part (to the righ&8&2) undergoes two cyclic-fold bifurcations and
loses its symmetry through SB3. A stable branclasyfmmetric periodic solutions emerges
from SB3 and goes through PD5, PD6, and CF5. Amitef number of period-doubling
bifurcations occur after and before PD5 and PD&peetively, culminating in chaos.

Care should be taken that the previous branchegenbdic solutions are located
within ¢=0 and ¢ =2.0508% 10'. As Fig. 4b indicates, for certain rangescpimore than
one periodic solution exists. For the values ofenfigction amplitude betweeg., and C.,
the dynamic response is chaotic. After the two tiemg branches in Fig. 4b, chaotic motion is
predicted. As shown in Fig. 4b, the chaotic motiamsits to steady state planar motion through
a boundary crisis at aboat=2.6079k 10'.

Comparing Figs. 2b and 4b, one finds that transifrom non-planar chaotic motions
to planar steady state motions occurs at differaities of imperfection amplitudes. This

indicates that the frequency detuning parameter ptay an important role on the amount of
sensitivity to geometric imperfections.
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B 400 CF1 0.000315333  |¥ 5=

! 0 ]
200 e PD1 fpp HF 5| § -
50 | ., CF2 - — 2 o
0 1.10147 272777 7.57904 10x10™

b) 1100

(b) <. PD8 e
1000 PD7 g;o—

‘8 900 ° CF7

= []

(O] ) >

- iz

ea
700 j o state. |
600 0.000131850  es—=— g * Motions
0 1.51056 2.05089 2.60791 10x10™

c
Fig. 4. Branches of periodic solutions and the chaotic bardsw = —0. 01105
4= 004,5=0002 a,f =6x10" for two geometric imperfection shapes, (J-stable, (-----) unstable,

HF, Hopf-bifurcation; PD, Period-Doubling; PD Serfdd-Doubling Sequence; CF, Cyclic-Fold; HB,
Homoclinic Bifurcation; BC, Boundary Crisis; SB, SymmnyeBraking (a)
V(%) = o(X,00 + X, (x))w, () = 0, (b) W, (x) = c(X, (%) + X, (X)), V. (x) = 0

3.1.3. Sensitivity analysis of the 3", 4™ and 5" limit-cycles

Figs. 5 and 6 represent the dynamic responsabédadmo imperfection cases that may
appear for the frequency detunings=—0.00516¢€ and o =—-0.00516, respectively.

In Fig. 5a, the periodic motions change to chaosuiiph a cyclic-fold bifurcation as
the imperfection amplitude increases beyome1.4996< 10°. In Fig. 5b, first the stable
periodic motions change to chaos through a cydlid-bifurcation atc = 3.09386« 10', then,
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the chaotic motions change to another symmetridogier motion through a cyclic-fold
bifurcation atc =3.1629k 10 .

In Fig. 6a and 6b, first the branches of symmatedodic solutions loses symmetry
through symmetry-braking bifurcations, then, thebt branches of asymmetric periodic
solutions emanating from the SBs experience peatmbling and cyclic-fold bifurcations,
respectively. In Fig. 6a, a sequence of PDs occuisiinating in chaos while in Fig. 8b,
transition to chaos occurs through the CF bifuorati

(a) 1514
Chaos
1512 | -
© - i
IO CF
o) L i |
S 1508
150.6 - .
150.4 ! P
0 1.4996 10x10"
(b) 151.4 334
151.3 ‘ 8 332 |
8 151.2 5 430
& 1511
150.9 326 ‘ : . 4
3.09386 3.16291 8.97017 10x10
c c

Fig. 5. Branches of periodic solutions and the chaotic banaswh= —0.005169
1= 004,5=0002 a,f =6x10"° for two geometric imperfection shapes, (J-stable, (-----) unstable,
PD, Period-Doubling; PD S., Period-Doubling Seqeei@@F, Cyclic-Fold; SB, Symmetry-Braking (a)
V(%) = (X, 09+ X, (00)w, (%) = 0, (b) W, () = (X, () + X, (), V. (x) =0

Fig. 7a indicates the least sensitivity to geomaitriperfections of the shape defined in
Eq. (2a). Fig. 7b shows a scenario similar to thatig. 6a except that the bifurcations occur at
different values o€.

3.1.4. Sensitivity analysis of the 7" and 8" limit-cycles

Parts (a) and (b) in Fig. 8 present the branchgseabdic solutions and the chaotic
bands predicted by the imperfect beam model foirttperfection shape defined in Eq. (2a) and
the frequency detunings =-0.00293¢ and o = —0.00186E, respectively. The results for the
imperfection shape defined in Eqg. (2b) are not sheince they are similar to their counterparts
except that the bifurcations occur at slightly eiiéint values of imperfection amplitude As
Fig. 8 represents, by a slight increase in the ifepéon amplitudec, the predicted limit-cycles
by the perfect beam model change to limit-cyclethwieriods of one-half and one-fourth the
corresponding perfect beam limit-cycles periodsFig. 8a, the branch of asymmetric period-
one-fourth periodic solutions undergoes two reauri®yclic-folds and ends at a symmetry-
braking bifurcation. A branch of symmetric periodgolutions passes through the SB
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bifurcation and continues up t=0.001. In Fig. 8b, the branch of asymmetric period-one-
fourth periodic solutions ends at a SB bifurcatidnbranch of symmetric periodic solutions
goes through the SB bifurcation while loses stgbithrough a CF bifurcation. For the
imperfection amplitudes betweep. andc =0.001, chaotic motion is predicted.
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326.5
326

3255
0 6.17300 7.40000

329 T

10x107*

—
(=2
=

CF }
3285

Period

SB
328 -

Chaos

327.5
0 8.56917

Cc

10x10™

Fig. 6. Branches of periodic solutions and the chaotic bardsw = —0. 005161
4= 004,5=0002 a,f =6x10" for two geometric imperfection shapes, (J-stable, (-----) unstable,
PD, Period-Doubling; PD S., Period-Doubling Sequei@F, Cyclic-Fold; SB, Symmetry-Braking (a)
V(%) = X, (9 + X, (00)w. () = 0, (b) W.(X) = (X, (X) + X, ()}, V. (x) =0
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0 5.23210 7.06005
C

10x10™

Fig. 7. Branches of periodic solutions and the chaotic bandswh= —0.004826
=004, 6=0002 a,f =6x10° for two geometric imperfection shapes, (--stable, (-----) unstable,
PD, Period-Doubling; PD S., Period-Doubling Sequei8B, Symmetry-Braking (a)
V() = e(X, (9 + X,00) W () = 0, (B) w. (%) = c(X, (%) + X, (x)).v.(x) =0
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Fig. 8. Branches of periodic solutions and the chaotic bardsww = 004, 5 = 0.002 a,,f = 6x10° for
the geometric imperfection shapgx) = c(Xl(x) + Xz(x)),w(x) =0, (—) stable, (-----) unstable, PD,
Period-Doubling; SB, Symmetry-Braking; CF, Cyclicl#o(a) o = —0.002938 (b) o = -0.001865

3.1.5. Sensitivity analysis of the 6™, 9" 10", 11", and 12™ limit-cycles

The continuation of the sixth, ninth, tenth, eleerand twelfth limit-cycles of the
perfect beam should be found in Fig. 9. The immida shape in Fig. 9 is assumed to be the
shape defined in Eqg. (2a). For the sake of bretity,continuation results for the imperfection
shape defined in Eq. (2b) are not shown since #reysimilar to their counterparts in Fig. 9
except that the bifurcations occur at slightly eiiént values of imperfection amplitude

The most sensitivity to small geometric imperfegtias observed in parts (a) and (c)
of Fig. 9. In part (a), for values of imperfectiamplitude greater than =2.36688 10*, the
response would be chaotic instead of periodic.drt ¢(b) of Fig. 9, the response is predicted to
be periodna (n= 1,2,3...) or chaotic depending on the amplitude of the irfgmtion. The upper
and lower branches in part (c) of Fig. 9 are oladiby continuation of the eleventh and tenth
limit-cycles of the perfect beam, respectively, stex the imperfection amplitude. As Fig. 9¢
indicates, the tenth limit-cycle predicted by therfpct beam may be drastically affected by a
small imperfection, i.e. period-one limit-cyclesegoredicted instead of the period-two limit-
cycles for imperfection amplitudes greater thaa1.90820< 10°. For imperfection amplitudes
less thanc.,, the system response may be attracted by anyedintlit-cycles corresponding to

the branches shown in Fig. 9c. Also, for imperfattivalues greater thag,., and less than
Cyc in the upper branch, the response may be chaofieriodic. The response is predicted to
be periodic of one single shape (lower branch)rfgrerfection amplitudes greater thgp. and
less thanc = 0.001.

63

© VIBROENGINEERING JOURNAL OF VIBROENGINEERING MARCH 2011.VOLUME 13,ISSUEL.ISSN1392-8716



613.SENSITIVITY ANALYSIS ON DYNAMIC RESPONSES OFGEOMETRICALLY IMPERFECTBASE EXCITED CANTILEVERED BEAMS.
O.AGHABABAEI, H. NAHVI, S.ZIAEI-RAD

Part (d) of Fig. 9 shows that the system poses apf-bifurcation at
C,. =4.11610« 10'. For ¢ >c,. , steady-state non-planar motion is predicted austef the
twelfth period-one limit-cycle of the perfect beam.

(a) 401 _ (b) 100
400.5 i CE 99 o "
o ol §
o 400 o =
© 98 8.81860; %“
D 3995 ch 81860«
aos
399 97 B
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398.5 , 9 4
0 2.36688 10x10” 0 6.59974 10x10

(¢} 110 :g (d) 648 Steady-State Non-Planar

109 ~ § (‘i 64.75 Motions
3 174.07 CF15 | §
5 174 01  888480x10” § 64.7
o [+1]

88 Ty 64.65

. HF
86 PD CF2 646
0 1.90820 c 10x10% 0 4.11610 10x10

Fig. 9. Branches of periodic solutions and the chaotic barswe = 004, 5 = 0.002 a,,f =6x10° for
the geometric imperfection shapgx) = c(Xl(x) + Xz(x)),wo(x) =0, (—) stable, (-----) unstable, PD,

Period-Doubling; PD S., Period-Doubling Bifurcatj@¥F, Cyclic-Fold; HF, Hopf-Bifurcation, (a)
o =-0.003285, (b) o =-0.001618 (c) o =-0.000975 (d) o =-0.001

Actually, one finds the importance of taking intccaunt the geometric imperfection
by considering the predicted possible dynamic reses of the imperfect beam model in Figs. 2
and 4-9 and comparing them with the perfect beamainpredicted limit-cycles. These figures
show that presence of small geometric imperfectiona near square cantilevered beam may

lead to unexpected and completely different dynamsponses with respect to those predicted
by the perfect beam model.

4, Conclusions

Investigation of the effect of small geometric imfeetions on the dynamic response
of cantilevered near-square beams should be cosdibetsed on two points of view. First is the
extent to which the geometric imperfection may etffa predicted periodic response by the
perfect beam model and the second, is the compar$obranches of periodic solutions
obtained by continuation of similar limit-cycleseglicted by the perfect and imperfect beam
models.Depending on the frequency detuning parameterséinaitivity of the predicted limit-
cycles by the perfect beam model to small geométrmerfections may be to a great extent,
thus, ignoring the small geometric imperfectionsl applying the perfect beam model, may
result in completely different and unexpected rssul
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