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Abstract. The article considers mathematical model intended for study of dynamic stability and 
parametric resonance of flexible ultrasonic waveguides for applications in technology and 
medicine. Considered problem is reduced to the well-known Mathieu equation applied in the 
theory of dynamic stability of elastic systems. Parameters of the Mathieu equation defining 
stability of the waveguide are determined by means of finite elements method using ANSYS 
software and APDL programming language. 
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1. Introduction 
 

This article is devoted to study of dynamic stability of flexible two-step waveguides 
for transmission of ultrasonic vibrations and should be considered as continuation of the cycle 
of authors’ articles related to this problem [1, 2]. Loss of stability is a negative phenomenon 
during operation of waveguide systems with large slenderness ratio and it is manifested in the 
form of parametric resonance, i.e. generation of transverse vibrations with considerable 
amplitude induced by longitudinal vibrations and having circular frequency 2Ω=ω n , where 

Ω is circular frequency of longitudinal vibrations, n is a natural number [3, 4]. Parametric 
resonance can lead to the fracture of the waveguide system and also causes decrease in 
efficiency of its operation in the cases when intensifying action of ultrasound is determined by 
the amplitude of longitudinal vibrations. In this relation it is of interest to study effect of 
parameters of the waveguide system on its dynamic stability. 

 
2. Problem formulation 
 

The object of this study is a waveguide consisting of two cylindrical sections (steps) 
with a constant cross-section connected by the smooth transitional section of Fourier horn type. 
Profile of the transitional section is found by empirical way and described by polynomial 
function [1, 2]. Step lengths of the waveguide 1L  and 2L  are chosen to provide its resonance 

for the first order longitudinal vibration mode at the frequency kHzf 25= . For these purposes 
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it is possible to use resonant curves given in [1, 2]. Lengths 1L  and 2L  are related by one-to-

one correspondence and it makes it possible to specify only one of these parameters, e.g. 1L , 

during subsequent tracing of stability diagram. For each resonant configuration of the 
waveguide described by the first step length 1L  it is necessary to determine critical amplitudes 

crξ  of longitudinal vibrations of the waveguide input cross-section corresponding to the loss of 

stability for different mode orders of flexural vibrations. In other words it is necessary to trace 
stability diagram on the plane ),( 1 crL ξ  for the plurality of flexural vibration modes. 

 
3. Modeling approach and numerical results 
 
3.1 Reduction of the problem to Mathieu’s equation 
 

As it was previously shown [1, 2], the most precise technique of modeling flexural 
vibrations of flexible waveguides is the one based on Timoshenko theory. According to this 
theory flexural vibrations of the waveguide with a variable cross-section under the action of 
axial driving force are described by equation 

 

( ) 0=⋅ TαηD ,        (1) 

 
where η is the transverse displacement amplitude, 
α is the amplitude of cross-section angular displacements. 
Differential operator D is of the form 

         





















∂

∂
+−











∂
∂









−

∂
∂

∂
∂









∂
∂

+−
∂

∂
+








∂
∂

+
∂
∂

=

2

2

2

2

)()(
)(

),(
)()(

)()()),()((

t
xJxGSK

xxS

txP
ExJ

xx
xGSK

x
xS

dx

dS
GK

t
xS

x
txPxGSK

x

ss

ss

ρ

ρ
D  

where sK  is the shape factor of the waveguide cross-section, 

G is the shear modulus of the waveguide material, 
S is the waveguide cross-sectional area, 

txptxP Ω= cos)(),(  is the axial driving force, 

p(x) is the driving force amplitude, 
Ω is the circular frequency of the driving force, 
ρ is the waveguide material density, 
J is the centroidal moment of inertia of the waveguide cross-section, 
E is the modulus of elasticity of the waveguide material. 
According to Bubnov-Galerkin method we will search approximate solution of the Eq. 

(1) in the form of expansion in terms of natural modes of the waveguide flexural vibrations: 
 

( ) ( )T
m

mmm
T xxttxtx ∑ ⋅= )()()(),(ˆ),(ˆ )2()1( ϕϕθαη ,    (2) 

 

where basis vector-functions ( )Tmmm xxx )()()( )2()1( ϕϕϕ =  are the eigenvectors of the 

generalized eigenvalue problem: 
 

0))(( 2
0 =⋅− ϕω xBD ,       (3) 
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and coefficients )(tmθ  of the expansion are unknown functions of time. 

Eigenvalues mω  of the problem (3) correspond to the natural circular frequencies of 

the mth mode of the waveguide flexural vibrations, functions )()1( xmϕ  – to the transverse 

displacement amplitudes for the mth mode of the waveguide flexural vibrations, and functions 

)()2( xmϕ  – to the angular displacement amplitudes. 

Differential operator 0D  and matrix )(xB  can be derived from the operator D under 

condition 0=P  and harmonic law of solutions variation in time ( 222 ω−→∂∂ t ) by 

separating terms comprising natural frequencies ω and can be determined by the following 
equations: 
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It can be shown that operator 0D  is Hermitian, i.e. 
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where vector-functions u  and v  satisfy boundary conditions describing clamping of 

the waveguide ends. 
Since operator 0D  is Hermitian and elements of the matrix B(x) are non-negative, then 

eigenvectors of the problem (3) satisfy generalized orthogonality condition [5, part 15.4.6] 
 

0)(
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With account for the Eqs. (4) this condition can be written in the form: 
 

0))()((
0
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According to the Bubnov-Galerkin method coefficients )(tmθ  should satisfy the 

following condition: 
 

( ) 0ˆˆ
0

=⋅∫
L

TT
n dxαηϕ D .       (5) 

 
Approximation error originating from substitution of exact solution of the Eq. 1 with 

approximate solution (2) and appearing in the condition (5) is determined by the vector: 
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Inserting approximation error into the condition (5) we obtain with account for the 
orthogonality condition equation of the form: 

 

0cos2 =⋅Ω++ ∑
m

mnmnnn ct θθωθɺɺ       (6) 

 

with coefficients defined by expression: 
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where )()()( xSxpx =σ  is the amplitude of the axial stresses induced by the action 

of driving force P(x). 
Eq. (6) in the case of single-mode vibrations corresponding to the one term in the 

expansion (2) takes the form: 
 

0)2cos2( =−+ yzqayɺɺ ,      (7) 
 

where new variables 2tz Ω= , 224 Ω= na ω , 22 Ω−= nncq  and )2()( Ωθ= zzy n  

are introduced. 
Eq. (7) is known as Mathieu equation. Stability of its solutions depends on the 

parameters a and q and can be represented in the form of stability regions on the plane ),( qa . 

Graphic representation of the stability regions is known as Ince-Strutt diagram. Boundaries of 
the stability regions correspond to 2π-periodic solutions of the Eq. (7) and they are determined 
by characteristic equation which is usually written in the form of continued fraction. In the case 

0→q  Eq. (7) takes the form of harmonic oscillations equation which has 2π-periodic solution 

under condition 2na = , where n is natural number. This implies that for 0→q  boundaries of 

the stability regions are defined by equation nnω2≈Ω . For 1=n  (principal instability 

region) this equation takes the form nω2≈Ω , i.e. circular frequency of the driving force should 

be equal to the doubled natural circular frequency of the waveguide flexural vibrations. More 
precise equation of boundaries of the principal instability region can be obtained using 
characteristic equation: 

 

qn ±≈Ω 12ω . 

 
3.2 Calculation of parameters of the Mathieu equation 
 

For determination of the parameters a and q in the Eq. (7) for each resonant 
configuration of the waveguide it is necessary to calculate natural frequencies and modes of 
flexural vibrations as well as distribution of the amplitude σ(x) of the axial stresses along the 
waveguide length. As it was previously shown [1, 2], natural frequencies of vibrations 
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calculated on the basis of Timoshenko theory correspond with high precision (error no more 
than 0.2 %) to the natural frequencies calculated by means of finite elements method (FEM). In 
this relation we used ANSYS® software for determination of natural frequencies and modes of 
vibrations. Accounting for the need of solving sequence of the problems corresponding to the 
plurality of the waveguide resonant configurations and differing only with geometric 
parameters process of modeling was automated by means of creation of input listing in APDL 
(ANSYS Parametric Design) language. The listing consists of plurality of cycles with each 
cycle corresponding to modeling of single waveguide configuration and including the following 
main actions: 

1. Building of the waveguide geometric model and application of boundary conditions. 
2. Generation of finite element mesh. 
3. Modal analysis of the waveguide. 
4. Post-processing of analysis results and calculation of the parameters a and q. 
For each configuration of the waveguide parameters ),( 21 LL  which are necessary for 

building of its geometric model are read from the file created during tracing of the resonant 
curve for the longitudinal vibrations using MathCAD® software. Since the problem is 
symmetric we considered geometric model in the form of two volumes corresponding to the 
quarters of the waveguide with application of symmetry boundary conditions on the sectional 
plane. Depending on the type of vibrations under consideration additional boundary conditions 
were also applied: symmetry boundary conditions for the division plane of the volumes in the 
case of longitudinal vibrations and constraint on all degrees of freedom for the input cross-
section displacements in the case of flexural vibrations. The latter type of boundary conditions 
led to extraction of both flexural vibrations and quarter-wavelength longitudinal vibrations, 
which were excluded from consideration during subsequent post-processing. During modal 
analysis of the longitudinal vibrations first two modes of vibrations corresponding to the 
waveguide movement as a rigid body and to the first order longitudinal vibration mode were 
extracted. During modal analysis of the flexural vibrations first ten modes of vibrations were 
extracted, one of which was identified during post-processing as a quarter-wavelength 
longitudinal vibration mode of the first order. Natural frequencies nf  of flexural vibrations 

found as a result of modal analysis were used for calculation of the parameter a according to the 

equation 224 ffa n= . During post-processing we used interpolation of analysis results onto 

the lines (paths) in the role of which longitudinal axis of the waveguide (path P1) and its 
generating line (path P2) were chosen. As a result, the so-called path variables on which 
mathematical operations including differentiation and integration can be performed were 
formed. During post-processing of results of the longitudinal vibrations modal analysis we used 
path P1 and axial component 1xu  of displacement of this path points corresponding to the 

amplitude ξ of the longitudinal vibrations as the path variable. Numerical differentiation of this 
path variable with respect to the axial coordinate was used for determination of amplitude of the 

axial stresses σ according to the equation 
dx

d
Ex

ξ
σ =)( . Unlike the parameter a parameter q 

depends both on the length 1L  characterizing waveguide configuration and amplitude ξ(0) of 

vibrations of the waveguide input cross-section. However, since any change of the amplitude 
ξ(0) leads to the proportional change of the mechanical stresses amplitude, i.e. 

dx
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u

E
x x

x

1

1 )0(
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ξ
σ = , then parameter q will be related to the vibrations amplitude of the input 

cross-section by linear dependence and it is sufficient to calculate its value ),()( 0110 ξLqLq =  

for the certain arbitrary value of the amplitude 0)0( ξξ = , e.g. mµξ 10 = . During post-
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processing of results of the flexural vibrations modal analysis we used paths P1 and P2. In the 
role of the first path we used variable component 1yu  of displacement of the path P1 points 

orthogonal to the waveguide axis and corresponding to the amplitude η of the flexural 

vibrations (eigenfunction )1(
nϕ ). In the role of the second path variable component 2xu  of 

displacement of the path P2 points parallel to the waveguide axis was used. This variable was 
used for determination of the amplitude α of the waveguide cross-section angular displacements 

(eigenfunction )2(
nϕ ) according to the equation )()(2)( 2 xdxux x≈α , where d(x) is the 

waveguide diameter. Quarter-wavelength longitudinal vibration mode was excluded from 
consideration by means of checking condition 1.0|)()(| 11 <LuLu yx , where 1xu  is the 

component of displacement of the path P1 points parallel to the waveguide axis for the 
considered vibration mode. This condition is satisfied only for the flexural vibrations. 
Calculation of the parameter q was implemented by means of numerical integration. Values of 
the parameters a and q for all nine flexural vibration modes were written for every waveguide 
configuration into the text file for the subsequent reading by MathCAD® software during 
tracing of the stability diagram. 

 
3.3 Tracing of the stability diagram 

 
Parameter a was determined during tracing of the stability diagram for each value of 

the length 1L  corresponding to the resonant configuration of the waveguide. Then critical value 

)( 1Lqcr  of the parameter q corresponding to the parameter a was found from the characteristic 

equation of boundaries of the stability regions. This critical value corresponds to the critical 
amplitude crξ  of vibrations of the waveguide input cross-section, i.e. ),()( 11 crcr LqLq ξ= . 

Since parameter q is related to the vibrations amplitude of the input cross-section by linear 
dependence then 0011 ),(),( ξξξξ crcr LqLq = , whence it follows )()()( 10101 LqLqL crcr ξξ = . 

Fig. 1 provides calculated plots of dependence of the parameters a and q on the length 

1L  for the 8th order flexural vibration mode and Fig. 2 shows plots of the lower and upper 

boundaries of the instability region corresponding to this mode. 
 

 

           
    First step length 1L , m         First step length 1L , m 

                                  Fig. 1a                                                                               Fig. 1b 

As it follows from the Fig. 1a, values of the length 1L  equal to 0.0585 and 0.0878 m 

correspond to the value of the parameter a equal to unity. It follows from the Fig. 2a that for 
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these values of the length loss of the waveguide stability occurs for indefinitely small values of 
the amplitude of the input cross-section vibrations that corresponds to the point (1, 0) on the 
Ince-Strutt diagram graphed on the plane ),( qa . In the real conditions owing to the presence of 

damping loss of stability will occur only for non-zero values of the amplitude [4]. 

 

         
                      First step length 1L , m                                                         First step length 1L , m 

                                  Fig. 2a                                                                                Fig. 2b 
 

 

 
4. Conclusion 
 

Developed mathematical model can be used for study of the influence of geometric and 
structural parameters of the waveguide on its dynamic stability, which is important for 
development of efficient designs of flexible ultrasonic waveguides for application in technology 
and medicine. 
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