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Abstract. The article considers mathematical model intenaedtudy of dynamic stability and

parametric resonance of flexible ultrasonic wavegsifor applications in technology and
medicine. Considered problem is reduced to the-kralwn Mathieu equation applied in the
theory of dynamic stability of elastic systems. d@aeters of the Mathieu equation defining
stability of the waveguide are determined by meainfinite elements method using ANSYS
software and APDL programming language.

Keywords: flexible waveguide, longitudinal vibrations, flenal vibrations
1. Introduction

This article is devoted to study of dynamic stapibf flexible two-step waveguides
for transmission of ultrasonic vibrations and skiobé considered as continuation of the cycle
of authors’ articles related to this problem [1, Ppss of stability is a negative phenomenon
during operation of waveguide systems with largamdérness ratio and it is manifested in the
form of parametric resonance, i.e. generation afdverse vibrations with considerable
amplitude induced by longitudinal vibrations andihg circular frequencyw = nQ/Z, where
Q is circular frequency of longitudinal vibrations,is a natural number [3, 4]. Parametric
resonance can lead to the fracture of the wavegsidtem and also causes decrease in
efficiency of its operation in the cases when isiBfing action of ultrasound is determined by
the amplitude of longitudinal vibrations. In thislation it is of interest to study effect of
parameters of the waveguide system on its dynataiislisy.

2. Problem formulation

The object of this study is a waveguide consisthgwo cylindrical sections (steps)
with a constant cross-section connected by the #ntoansitional section of Fourier horn type.
Profile of the transitional section is found by eéngal way and described by polynomial
function [1, 2]. Step lengths of the waveguitlg and L, are chosen to provide its resonance

for the first order longitudinal vibration modetht frequencyf = 25kHz. For these purposes
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it is possible to use resonant curves given ir?]1lengthsL; and L, are related by one-to-
one correspondence and it makes it possible tofgpmdy one of these parameters, elg.,
during subsequent tracing of stability diagram. Feach resonant configuration of the
waveguide described by the first step lengthit is necessary to determine critical amplitudes
&, of longitudinal vibrations of the waveguide inmuibss-section corresponding to the loss of
stability for different mode orders of flexural vétions. In other words it is necessary to trace
stability diagram on the plan@,, &) for the plurality of flexural vibration modes.

3. Modeling approach and numerical results
3.1 Reduction of the problem to Mathieu’s equation

As it was previously shown [1, 2], the most predisehnique of modeling flexural
vibrations of flexible waveguides is the one basedTimoshenko theory. According to this
theory flexural vibrations of the waveguide withvariable cross-section under the action of
axial driving force are described by equation

D~(77 a)T:0, (1)

wheren is the transverse displacement amplitude,
a is the amplitude of cross-section angular dispteergs.
Differential operatoD is of the form

o o 02 ds B
o &((KSGS(X) + P(X,t))&j + pS(X)? - KSG(& + S(X)&j
- bl b P(xt)) & 02
KSGS(X)& &([J(X)[E - S j@xj_ KGS(x) + N(X)ﬁ

where K 4 is the shape factor of the waveguide cross-section

G is the shear modulus of the waveguide material,

S is the waveguide cross-sectional area,

P(x,t) = p(x) cost is the axial driving force,

p(x) is the driving force amplitude,

Q is the circular frequency of the driving force,

p is the waveguide material density,

J is the centroidal moment of inertia of the wavdgucross-section,

E is the modulus of elasticity of the waveguide eniat.

According to Bubnov-Galerkin method we will seaagiproximate solution of the Eg.
(1) in the form of expansion in terms of naturald®as of the waveguide flexural vibrations:

() A = 0.0 LX) p@) @

. R u .
where basis vector-functlon&pm(x)=((pr(%)(x) ga,ﬁf)(x)) are the eigenvectors of the
generalized eigenvalue problem:

(Do - ®’B(X)) % =0, ®)
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and coefficientsd,,(t) of the expansion are unknown functions of time.

Eigenvaluesw,, of the problem (3) correspond to the natural ¢encrequencies of
the mth mode of the waveguide flexural vibrations, fioocs (p%)(x) — to the transverse
displacement amplitudes for thheth mode of the waveguide flexural vibrations, andctions
9@ (x) — to the angular displacement amplitudes.

Differential operatorD, and matrixB(x) can be derived from the opera@runder

condition P=0 and harmonic law of solutions variation in timé?(at? —-w?) by

separating terms comprising natural frequenaieand can be determined by the following
equations:

d d ds d
Dozl &[KSGS(X)&j —KSG[&+S(X)&] |
p a 4 da)
KSGS(X)dx dx[EJ(X)dxj K.GS(x)
(S(x) 0O
B(X)=| ", J(X)j. (4)

It can be shown that operatDy, is Hermitian, i.e.

L
' Dovdx =[V' Douidx,
0

o—ar

where vector-functiondl and V satisfy boundary conditions describing clamping of

the waveguide ends.
Since operatoD,, is Hermitian and elements of the matBig) are non-negative, then

eigenvectors of the problem (3) satisfy generalizetlogonality condition [5, part 15.4.6]
L
[#mB(X)@,dx=0 for m=n.
0

With account for the Egs. (4) this condition carnviyéten in the form:

L

[ (SCpm'er” + 3o o) dx=0.

0

According to the Bubnov-Galerkin method coefficeerfd,,(t) should satisfy the

following condition:

L
[eaD-(7 @
0

Jldx=0. (5)

Approximation error originating from substitutior exact solution of the Eq. 1 with
approximate solution (2) and appearing in the diowi(5) is determined by the vector:
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( + ©20,) (P Y +@( p()(PD))
A AT
D7 a) =% G+ 020 )200p@ — Pnc0 d [ POOINP) | |

Inserting approximation error into the condition) (e obtain with account for the
orthogonality condition equation of the form:

0, + 020, +cost -y ¢,y =0 (6)
m
with coefficients defined by expression:

L e
Com =%( [(s()(0®)? + J(x)«pf?)z)dxj ( [6(03(002) (0@ dx-
0 0

L
-] c(x)s<x)(cp%>)'<<pa”)'dx} .

where o(X) = p(X)/S(x) is the amplitude of the axial stresses inducedhieyaction

of driving force P(x).
Eq. (6) in the case of single-mode vibrations cpomding to the one term in the
expansion (2) takes the form:

y+(a—2qcos22)y=0, )

where new variableg = Qt/2, a=40?2/Q?, q=-2c,,/Q? and y(2) =0, (22/Q)
are introduced.

Eq. (7) is known as Mathieu equation. Stability itsf solutions depends on the
parameters a and g and can be represented inrtheofostability regions on the plan@, q) .
Graphic representation of the stability region&nswn as Ince-Strutt diagram. Boundaries of
the stability regions correspond ta-geriodic solutions of the Eq. (7) and they areetatned
by characteristic equation which is usually writterthe form of continued fraction. In the case
g— 0 Eg. (7) takes the form of harmonic oscillationsi@ipn which has2periodic solution

under conditiona = %, where n is natural number. This implies that dpr> 0 boundaries of
the stability regions are defined by equatiéh~ 2w, /n. For n=1 (principal instability
region) this equation takes the folfn~ 2w, , i.e. circular frequency of the driving force shibu

be equal to the doubled natural circular frequeofcthe waveguide flexural vibrations. More
precise equation of boundaries of the principaltabiity region can be obtained using
characteristic equation:

Q~2w,,\1£q.
3.2 Calculation of parameters of the Mathieu equati

For determination of the parametessand q in the Eq. (7) for each resonant
configuration of the waveguide it is necessary atculate natural frequencies and modes of
flexural vibrations as well as distribution of thenplitudes(x) of the axial stresses along the
waveguide length. As it was previously shown [1, Bhtural frequencies of vibrations
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calculated on the basis of Timoshenko theory cpoed with high precision (error no more
than 0.2 %) to the natural frequencies calculatechbgins of finite elements method (FEM). In
this relation we used ANSYSsoftware for determination of natural frequenciesl modes of
vibrations. Accounting for the need of solving seace of the problems corresponding to the
plurality of the waveguide resonant configuratioaad differing only with geometric
parameters process of modeling was automated bpsrafacreation of input listing in APDL
(ANSYS Parametric Design) language. The listingsists of plurality of cycles with each
cycle corresponding to modeling of single wavegudefiguration and including the following
main actions:

1. Building of the waveguide geometric model angdliaption of boundary conditions.

2. Generation of finite element mesh.

3. Modal analysis of the waveguide.

4. Post-processing of analysis results and calounlatf the parametersandg.

For each configuration of the waveguide parameféssL,) which are necessary for

building of its geometric model are read from tie €reated during tracing of the resonant
curve for the longitudinal vibrations using MathCADsoftware. Since the problem is
symmetric we considered geometric model in the fofmtwo volumes corresponding to the
quarters of the waveguide with application of syrmmn&oundary conditions on the sectional
plane. Depending on the type of vibrations underseration additional boundary conditions
were also applied: symmetry boundary conditionstfier division plane of the volumes in the
case of longitudinal vibrations and constraint dindagrees of freedom for the input cross-
section displacements in the case of flexural ¥ibns. The latter type of boundary conditions
led to extraction of both flexural vibrations andagter-wavelength longitudinal vibrations,
which were excluded from consideration during sgbsat post-processing. During modal
analysis of the longitudinal vibrations first twoodes of vibrations corresponding to the
waveguide movement as a rigid body and to the dirder longitudinal vibration mode were
extracted. During modal analysis of the flexurdirations first ten modes of vibrations were
extracted, one of which was identified during ppsieessing as a quarter-wavelength
longitudinal vibration mode of the first order. Nedl frequenciesf, of flexural vibrations

found as a result of modal analysis were useddtmutation of the parametaraccording to the
equation a:4fnz/f2 . During post-processing we used interpolation mdlgsis results onto

the lines (paths) in the role of which longitudiratis of the waveguide (path P1) and its
generating line (path P2) were chosen. As a redud, so-called path variables on which
mathematical operations including differentiationdaintegration can be performed were
formed. During post-processing of results of thegitudinal vibrations modal analysis we used

path P1 and axial componeunt, of displacement of this path points correspondimghe

amplitudeé of the longitudinal vibrations as the path var@at\lumerical differentiation of this
path variable with respect to the axial coordinads used for determination of amplitude of the

dg

axial stresses according to the equatioar(x) = Ed—. Unlike the parametea parameteiq
X

depends both on the lengly characterizing waveguide configuration and amgit&(0) of

vibrations of the waveguide input cross-sectionweleer, since any change of the amplitude
£(0) leads to the proportional change of the med=nistresses amplitude, i.e.

E£(0) duy
U0 dx
cross-section by linear dependence and it is seffido calculate its value(L;) = q(Ly, &)

for the certain arbitrary value of the amplitudg0) =¢&;, e.g. £ =1um. During post-

o(X) = , then parametey will be related to the vibrations amplitude of timput
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processing of results of the flexural vibrationsdabanalysis we used paths P1 and P2. In the
role of the first path we used variable componagt of displacement of the path P1 points
orthogonal to the waveguide axis and correspondmghe amplituden of the flexural
vibrations (eigenfunctioryp,ﬁl)). In the role of the second path variable componggp of

displacement of the path P2 points parallel towh&eguide axis was used. This variable was
used for determination of the amplitud®f the waveguide cross-section angular displacésnen

(eigenfunction (o,(f)) according to the equatior(x) ~ 2u,,(x)/d(x), where d(x) is the
waveguide diameter. Quarter-wavelength longitudimddration mode was excluded from
consideration by means of checking conditi¢nx1(L)/uy1(L)|< 0.1, where u,, is the
component of displacement of the path P1 pointalighrto the waveguide axis for the
considered vibration mode. This condition is sa@tsfonly for the flexural vibrations.
Calculation of the parametgrwas implemented by means of numerical integratiaiues of
the parametera andq for all nine flexural vibration modes were writtéar every waveguide
configuration into the text file for the subsequeeading by MathCABD software during
tracing of the stability diagram.

3.3 Tracing of the stability diagram

Parametea was determined during tracing of the stabilitygiém for each value of
the lengthL; corresponding to the resonant configuration ofvtheeguide. Then critical value
0. (L) of the parametey corresponding to the paramegewas found from the characteristic
equation of boundaries of the stability regionsisTéritical value corresponds to the critical
amplitude &, of vibrations of the waveguide input cross-sectioe. g, (L) = q(L;,&,) -
Since parameteq is related to the vibrations amplitude of the inptoss-section by linear

dependence theq(Ly, &)/ a(Ly, &o) = &c /&0 » whence it followss, (Ly) = &0 (L) /Go(Ly) -
Fig. 1 provides calculated plots of dependencénefpgarametera andq on the length
L, for the 8th order flexural vibration mode and Fiyshows plots of the lower and upper

boundaries of the instability region correspondimghis mode.

Parameter a
Parameter q

o
¥

0.1

0 0.02 0.04 0.06 0.08 0.1 ] 0.02 0.04 0.06 0.08 0.1
First step lengttL;, m First step length; , m
Fig. 1a Fig. 1b

As it follows from the Fig. 1a, values of the lelndt, equal to 0.0585 and 0.0878 m
correspond to the value of the parametexqual to unity. It follows from the Fig. 2a thatr f
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these values of the length loss of the waveguialeilgy occurs for indefinitely small values of
the amplitude of the input cross-section vibratitimast corresponds to the point (1, 0) on the
Ince-Strutt diagram graphed on the plgiaeq) . In the real conditions owing to the presence of

damping loss of stability will occur only for nor values of the amplitude [4].
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4, Conclusion

Developed mathematical model can be used for stfithe influence of geometric and
structural parameters of the waveguide on its dyoastability, which is important for
development of efficient designs of flexible ulbag: waveguides for application in technology
and medicine.
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