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Abstract: Lateral vibration of underwater suspended pipeline was investigated for the case of 
pipeline oscillation due to vortex shedding. Firstly, tension force was defined at the connection 
legs on sea bottom. To define the dynamical equation the analogy of the Mathieu equation was 
applied, meanwhile Ince-Strutt diagram was used for its solution. As a numerical example we 
used the behavior of pipeline in a project between Turkey and North Cyprus in the East 
Mediterranean Sea. Good agreement was found between the theoretical results and 
experimental data of Danish Hydraulic Institute (DHI). 
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Symbols 
 
L0 –Length of leg, m; 
L – Lengthening of leg, m; 
∆L – difference of lengthening, m ; 
∆x – maximum horizontal displacement of 
pipeline, m; 
F0 – unite tension force in the leg, kN; 
F – Tension force in lengthening leg, kN; 
φ – Angle of displacement, grad; 
Ak – cross-section of leg, m2; 
Fx – horizontal projection of F – tension 
force, kN; 
P – external wave force, kN; 
µ – safety coefficient; 
uadm – permissible horizontal displacement; 
Fadm – permissible tension force in the leg; 
ω – Cyclic frequency of structure, rad/s; 
 θ – Frequency of the external force, rad/s; 
T – Period of structure, s; 
T0 – period of the external force, s; 
g – Gravitation acceleration, m/s2; 

ℓ  – Length of the pipeline section, m; 
E – Modulus of elasticity, kN/mm2; 

µ  – Poisson ratio; 
 δ – Thickness of pipeline, m; 
 R – External radius of pipeline, m; 
D – External diameter, m; 
 ρ – density of HDPE material, kg/m3; 
 ρ0 – density of water, kg/m3; 
M – mass of structure plus added water 
mass on the one meter, N/m; 
I   – moment of inertia of pipeline, m4; 
EI – stiffness of pipeline structure, kN.mm2; 
Fk – Karman force; 
Ck – non-dimensional Karman coefficient 
(for cylinders Ck≈1); 
S – area of the cross-section of pipeline; 
ωk – circular frequency of Karman vortex; 
Tv – vortex shedding period; 
Γ – vortex of strength magnitude; 
U∞ – incident velocity at the upstream end 
of the flow field; 
A – amplitude of pipeline displacement 
Ν – kinematical viscosity; 
Re – Reynolds number. 

 
Introduction: 
 
 In this research, we defined oscillation of suspended subsea pipelines [1] by analogy 
with suspended bridges and offshore tension leg platforms [2,4,5,9]. In this research the 

 
brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Vibroengineering

https://core.ac.uk/display/323312982?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
581. MATHEMATICAL FORMULATION OF INSTABILITY OF A SUBSEA SUSPENDENT PIPELINE. 

N. MESTANZADE1, L. YILMAZ 2 

 
 

 
 VIBROENGINEERING. JOURNAL OF VIBROENGINEERING.   DECEMBER 2010. VOLUME 12, ISSUE 4. ISSN 1392-8716 

460 

mathematical application of Mathieu equation with its numerical solution method are given [3]. 
The subsea vibration of long cylindrical body has many solutions in the technical literature 
[2,5,8]. But the dynamic equations for these structures have non-linear characteristics. 
Therefore, to solve the equations researchers must apply various numerical methods for 
investigating pipeline stability. The main problem is to solve the stability of a system that 
vibrates during vortex shedding [6,7]. The appropriate finite element code is given for 
comparing the accuracy of the obtained solution with the analytical one by different authors 
[15-17]. As an example we used a pipeline that extends between Turkey and North Cyprus [1] 
(Fig. 1).  

 
Fig. 1. Cyprus Peace water 

     
Statement of the Problem 
 
 

 
      
 
 
 
 
 
 
 
 
 
 
 
Fig. 2. The design scheme of the pipeline: 
a) in longitudinal direction, b) cross-section of pipe showing the vortex shedding (where x – differential 
index by displacement, V0 – mean velocity gradient from upstream to downstream direction at the outside 
of the pipeline, L0 – length of the vertical connection length) 
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The dynamic equation of pipeline with damping is given as [2,4,7]: 
 
 

0=−+ xxtttt FuuuCMu               (1) 

 
where: M – mass of pipeline structure together with added water mass; F – tension force in leg; 
u – horizontal displacement; t and x – differential index by time and displacement; C –strength 

constant, DCC wDρ5.0= ; CD – hydrodynamic strength coefficient; ρw – water density; D – 

diameter of leg. 
 Fig. 2 a, b defines the loads that affect the dynamic stability of the pipeline during 
vortex shedding. 
 If the damping effect is neglected, we can substitute the Eq. (1): 
 
 

0=− xxtt FuMu                            (2) 

 
and assume that 

tFFF ωcos10 −=                       (3) 

Displacement of the pipeline can be written as ( ) 







=

ℓ

πm
tyu sin , where y(t) – amplitude of 

harmonic displacement dependent on time; m – number of modes; L – length of pipe. 
Then, if we substitute Eq. (2) into the Eq. (3) we may write 
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Different modes are illustrated in Fig. 3. 
The result  is: 
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If we put in Eq. (5) instead of the θt value, we find another parameter
2

tω
τ =  giving tθcos  as 

τ2cos , where θ – frequency of the external force, 
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where 
M

F0






=
ℓ

π
ω  is circular frequency of lateral vibration of the pipeline system.  

  Equation (6) is known as Mathieu equation. In canonical form we can write it as 
follows [3, 6 ]: 
 

( ) 02cos2 =−+ yqaytt τ       (7) 
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                                                                                                               m=6 
 
 

Fig. 3. Different modes of the dynamical stability of the pipeline 
 

  
where a and q are constants. From Eq. (6) we can write [3,6]  
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If the force changes with harmonic law ( ),0 tPPP tΦ+=  where P – external wave force; P0 – 

unit wave force; Pt – wave force that is independent of time;  
Φ – function of time; T – period of wave motion. ( ) ( )tTt Φ=+Φ . Then this equation can be 

given: the Hill Equation [13, 14]: 
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( )[ ] 0212 =Φ−+ ytqytt ω             (9) 

 
The Mathieu equation has an oscillating nature, and depends on constants a and q: two solutions 
have stable and instable character (Fig. 4).  
 

 
Fig. 4. Two solution of Mathieu equation: a) instable; b) stable [4] 

 
 

 The domains of stability for the solution of the Mathieu equation are given in the Ince-
Strutt diagram (Fig. 5). The solution of the Mathieu equation to contact with the subsea pipeline 
instability is given below in the Eqs. (21-27), which is solved by diagram (Fig. 5) and by 
theoretical background . 
 

 
Fig. 5. Ince-Strutt diagram [6] 

 
Every curve of the graph is given by the Mathieu function. At first among four instable 

fields we can write exact equations, if we mark them as an
r and an

l (in this r index is right, and 
the l index is left hand side) as [13, 14]: 
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 In the shaded area the stable domains are given. In the shaded areas of the Ince-Strutt 
diagram we have parametric vibration case for different position of the pipeline. From Eq. (8) 
we observe that frequency of the system θ is larger as if a and q are smaller. So, the relationship 
of these parameters has constant values by the state of systems as kaq =  may be defined from 

points on the diagram as a line (Fig. 5). 
 
Vortex shedding 
 

In the starting process of separated flow around a circular cylinder a symmetric wake 
domain develops, but due to instabilities, asymmetry will soon occur. The consequence is that 
vortices are alternatively shed from each side of the cylinder depending on the cross-section of 
the pipeline [11]. Under shock wave forces and, as a consequence,  Karman vortex shedding 
from the pipeline has a horizontal displacement like the ∆x. Then the legs of structure have 
tension effect on the ∆L value (Fig. 2). The frequency effect of vortex shedding is defined by 

the formula 
D

V
22.0=θ  , where V – velocity of wind wave; D – diameter of pipeline. The 

coefficient 0.22 is the Strouhal number for a circular section of the pipeline [4,11]. The force 
affecting  the Karman vortex for rigid cylinders is: 

tFtSvCF kkkk ωωρ sinsin
2

1
0

2
0 =








=               (11) 

where Fk – Karman force; Ck – non-dimensional Karman coefficient (for cylinders Ck≈1); S – 
area of the cross-section of pipe line; ρ0 – density of water; ωk – circular frequency of the 
Karman vortex. Considering a long circular cylinder, the frequency of vortex shedding is given 
by the empirical formula [11]: 
 









−=

Re

7.19
1198.0

V

dθ
                                             (12) 

where θ is vortex shedding frequency, Re is Reynolds number, 
ν
Vd

=Re . This formula can be 

written generally between the range 250<Re<2x105 which is in the transition region. Each 
vortex eddy is mathematically represented as a local vortex shedding of strength magnitude 
(Fig. 6). 
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Fig. 6. Example of vortex shedding around the pipeline  

 
 

Eddies in one row are either placed exactly on the opposite side from those of the other 
row or they are symmetrically staggered (Fig. 7). So, if the pipeline has long horizontal 
dimensions, the vortex shedding are arranged in zigzag patterns. The mathematical description 
of these lines is given in the complex form as [11, 12].  

 

 
 

Fig. 7. Arrangement of vortices in a Von Karman vortex street 
 

 
 A stability investigation leads to the result that the first observation is given as 
instability of the system because of the vortex shedding around the boundary layer of the 
pipeline. The second observation has generally the unstable character, but becomes stable 
character for a definite ratio between the vortex street width h and distance l between two 
adjacent vortices in the same row: 

28.02cosh
1 1 == −

πl

h
        (13) 

From Fig. 7 we determine 

l
l

UTv =






 Γ
−∝

8
       (14) 

where Tv – vortex shedding period; Γ – vortex of strength magnitude; U∞ – incident velocity at 
the upstream end of the flow field. For simplicity let us put h≈D, where D – the cylinder 
diameter and let us approximate the vortex velocities to U∞ . Then we may write [11]: 
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28.0

D
UTv =∝         (15) 

Thus, if the length between vortex-shedding l is much larger than 12R (R – radius of pipe), then 
the flow field will be unstable. Experimental values of the mean relative spacing h/l vary 
between 0.19 and 0.3.  

 
Problem solution 
 
 There are many solutions to the Mathieu equation: Whitaker, Watson (1963) → a=b, 
q=-8c; Stratton (1942) →a=b-c2/2, 4q=c2; Yanke-Emde-Leush (1964) → a=4b, q=8c; 
National Bureau of Standard (1951) →a=b-c/2, q=c/4 [3,6,7,10,13,14]. 
            From Fig. 2, if we have fixed support and no displacement of this point then the system 
is unstable. If the foundation has small motion then this system may be stabile. If we change the 
sign of the Eq. (6) then accordingly to Eq. (8) we can write: 

2

2
24
θ
ω

ma −=                 (16) 

From the diagram (Fig. 8) we can see that a parameter depends on vibration amplitude. Then 
amplitude A has a small mass (pipeline) which will be unstable, that is a=m2 or a=1,4,9,…. 

which is given as ;...
3

2
;;2 321 l

g

l

g

l

g
=== ωωω for every number of modes. 

 The unstable field defined by m=1 has a main field and much avoidable field because 
of the biggest displacement and has a practical value because the biggest oscillation mode. For 
definition instability of oscillation of system can be used for analogy for dependence of tension 
leg [2,5].   
If we analyze Eq. (1) after different transformation we can define the amplitude of oscillation 
as: 
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, where T0 – period of pipeline structure; T – period of wave 

motion, relation of the maximum amplitude of displacement by lateral oscillation is: 

0
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CF
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π
=∗         (18) 

Its formula enables us to define maximum amplitude of pipeline oscillation from tension 
dependence during vibration – F to initial tension force –F0 . 
During small amplitude, when 10 << q , the stability of pipeline may exist if it fulfills the 

condition 
2

2q
a <  (Eq.(8)).  

In the non-linear systems the resonance appears from the following condition 
 

ωθ
q

p
≈         (19) 

 

where p and q – whole prime numbers. 
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1) If 1== qp , ωθ ≈  this case is a basic case or ordinary resonance. 

2) If 1=q , ωθ p≈  or 
p

θ
ω =  - Parametric resonance. This resonance type may be given 

in the linear systems with periodic coefficients, too. 
3) If 1=p , qv≈ω  - Resonance on the overtones for external frequency.  

Eq. (7) is the basic de-multiplication resonance, where p=1, q=2. Then we have 
2

θ
ω = .  

In the first approximation we write 
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where b and θ is defined from system of equations: 
 











−−=

−=

ψ
θ
ωθ

ω
ψ

ψ
θ
ω

2cos
2

2sin

2

2

q

dt

d

bq

dt

db

                        (21) 

 
If we introduce new change parameters u and v, then 

ψcosbu = ;             ψsinbv =                                    (22) 

The differential form of Eq.(19) we take into consideration the Eq.(20), we have 
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The solution of Eq. (23) with substitution of Eq. (19) the equation system is dependent on the 
roots of the characteristic equation  
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Then the mean square of the equation gives: 
2
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Thus, if the frequency of external force in the following interval is 
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then this system may give rise to parametric resonance and the amplitude of vibration will 
increase exponentially. This equality has an unstable field. Now we define the amplitude b and 
vibration rotation ψ. 
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According to Eqs. (22) and (24) we can see that by imaginary λ the amplitude b will be limited 
by a time function. If λ, the amplitude b will to increase by an exponential law. If in this system 
y=0 the state is unstable and the system can self-oscillate. 
 
Selected (used) data 
 

As a representative example for solution of the aforementioned problem we used the 
pipeline between Turkey and North Cyprus located at the narrowest part of the strait formed by 
Turkey and North Cyprus. The pipeline will provide water at a rate of 75 million m³ per year 
(2.38 m³/s). The pipeline will be a submerged floating structure and the subsea section of the 
pipeline will consist of 1.6 m diameter HDPE (High Density Polyethylene) pipe approximately 
78 km long. In the shore approach sections of the route, the pipeline will be either resting on the 
seabed or be trenched and backfilled below seabed level. Between the 250 m depth contours on 
both the Turkish and Cyprus sides, the pipeline will be suspended at a water depth of at least 
250 m. The pipeline will span from vertical legs anchored to the sea bed in spans of 
approximately 400 – 500 meters length.  
 
Numerical Results 
 
 We performed a numerical simulation using the following real data taken from the 
project [1]. The length of pipe for one section l=500 m; radius R=0.8 5m (D=1.7 m). The 
thickness of pipe δ=0.063 m. The Poisson ratio is ν=0.44. The density of HDPE material of 
pipe ρ=1.4x103 kg/m3. The density of sea water ρ0=1.03x103 kg/m3. The elasticity modulus of 
material E=120000 t/m2. The stiffness of pipe EI=7500 kN·mm2. The initial tension of legs was 
as F0=600; 800; 1000 kN. The mass of pipe on the unit is M=600 N/m. If the point (a; q) in the 
shaded domain of the stability graph is found then the Mathieu equation has the following 
relation (Fig. 5): 

( ) ( )xpBexpAey xixi
21

σσ −+=                                                  (30) 

where A and B are integration constants; p1(x) and p2(x) are periodic functions with 2π period; σ 
– real value of outside modes of boundary layer, which is equally half of real value of the inside 
mode.  
 The main results of this calculation are provided in Table 1. The relationship between 
amplitude of displacement and frequency are presented in Fig. 8 and Fig. 9. 
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Table 1. The main results of calculation of Mathieu equation coefficients 
 

F0, kN ω/θ m a q State 
600 0.5 1 1 0.5 Unstable 

  2 4 2 unstable 
  3 9 3 unstable 

800 0.57 1 1.3 0.65 unstable 
  2 5.2 2.6 unstable 
  3 11.7 5.85 unstable 

1000 0.65 1 1.7 0.85 unstable 
  2 6.76 3.38 unstable 
  3 15.2 7.6 unstable 

 

 
 
    a*, m 
    0.221 
    0.2 
    
    0.178 
 
  0.0396 
 
 
        0                  0.4                        0.5                   0.6                    0.7                   0.8                  

                                                                                                                          ω/θ 
Fig. 8. The amplitude of parametric reaction of pipeline 

 

 
Fig. 9. The diagram of parametric resonance of pipeline:             calculated;           with 

damping 01.0=
ω
ε

, dark grey [19] ;              Papaidoussis & Issid, 1974 [18];                Intec Engineering 

Group-Danish Technology Institute, 2007 [1]. 
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Discussion 
 

During mathematical formulation of instability problem at undersea we investigated 
the stability problem of undersea pipeline and application of the Mathieu equation allowed 
determination of theoretical formulation of pipe instability because of vortex shedding. To solve 
the problem, first of all the vortex shedding effect on the pipe was provided. The Mathieu 
equation was solved theoretically by using the analogy with suspended bridges [4, 9], TLP-type 
platforms [2, 5] as well as floating offshore platforms [11] and applying the most common 
numerical methods [6,7,13,15,16,17]. The theoretical findings show good agreements with the 
actual measurement results.  
 
Conclusion 
 

• By analogy with suspended bridges it may be stated that the suspended undersea 
pipelines will experience vibration with frequency equal to half of the frequency 
of the wind wave load; 

• During horizontal vortex shedding the pipeline looses dynamical stability and 
exhibits unstable character. Therefore it is necessary to calculate dynamical 
stability for such structures; 

• This problem is a non-stationary and therefore the stability problem may be an 
example which cannot be analyzed by statics methods;  

• Different modes of the dynamical stability of the pipeline are presented as 
symmetrical vibration modes m=1, 3, 5, …, which indicate parametric resonance 
case from Eqs. (16)-(17). That can be observed only by m=1, 3, 5, …. 

• Application of Ince-Strutt diagram enables definition of coefficients a and q 
without solution of the Mathieu equation and can be defined by Mathieu functions 
with analytical methods; 

• Numerical solutions indicate that all of the cases with different forces and modes 
are in an unstable state; 

• In order to avoid these unstable cases appropriate engineering measures must be 
considered. 
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