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Abstract. For efficient application of thin-layer rubber-metal elements (TLRME) in modern 
mechanical engineering, including vibration insulation, it is necessary to determine ruggedness 
characteristics of TLRME. Numerous experimental studies have demonstrated that at tension 
and compression this characteristic is influenced essentially by value of specific load, 
compliance of non-elastomeric layers and way of fastening of elastomeric layers in the TLRME 
package. In the present article the calculation method of ruggedness constant of TLRME is 
presented at static load, tension - compression, in the field of small deformations taking into 
account the deformation of a glutinous layer. The solution is obtained by the method of Ritz 
using the principle of the minimum complete potential energy of deformation. The obtained 
solution allows to obtain asymmetrical ruggedness constant of TLRME at tension - compression 
without the assumption regarding dissimilar modularity of rubber. 
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Introduction 

 
Multi-layer thin-layer rubber-metal shock-absorbing elements (further – TLRME) are widely 

used in various fields of mechanical and civil engineering (ρ = а/h  >> 10, a – is a typical 
geometrical dimension in the design project; h – is a width of rubber layer), and have lots of 
structural advantages, in particular, they ensure greater rigidity under axial compression and 
lower rigidity under shift and spinning. In such constructions very thin metal layers are used as 
supporting intermediate layers, to which rubber layers are attached by vulcanization.  

The calculations of rigid dependencies (of the type “Force - Settlement”) for such thin-layer 
metal elements being pressed and by using already classic solutions [2 – 6], demonstrated that 
there is inherent difference between the calculated values and the experimental data, when layers 
of works [5, 6] have certain geometrical dimensions. At the same time, the closer Poisson 
coefficient is to 0.5 and the thinner are rubber and supporting layers in compensating elements, 
the greater is the divergence. The result of experimental studies [5, 6] of such elements being 
compressed is that the rigid feature of multi-layer compensating elements is considerably 
influenced by: low compressibility of rubber material, especially, when Poisson coefficient of 
rubber changes within 0,480 ÷ 0,499; deformation of supporting layers being sufficiently thin.  

To ensure safe performance and when designing thin-layer rubber-metal compensating 
devices, it is necessary to obtain analytical dependence for rigid feature “Force – Settlement” of 
such kind of elements. It is only possible having the correct design model, which will enable us 
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taking into account and estimating all the geometrical parameters as well as physical and 
mechanical features of materials of the considered elements.  

Variety of application of TLRME based on number of degrees of freedom is given in Table 
1. 
 
 

Table 1.  Classification of TLRME by number of degrees of freedom 
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In connection with advances of information technology in the field of control and steering of 
electromechanical systems, inventors and scientists pay particular attention to development of 
underwater robots. To this theme is devoted the work on studying and creation of the robot of 
fish [1].   

In given work as object probes fish of the form of a salmon (Fig. 1 – 5 is accepted.) 
http://www.earthlife.net/fish/ [1, 2]. The main idea of probes consists that there is a possibility to 
replace the reinforced muscles of TLRME (Fig. 2 – 3). Elements of muscles of fish are shown in 
Fig. 1 and Fig. 2 [2]. 
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Fig. 1. A salmon: the case, a tail and fins 

 
 
 
 

                                   
 

Fig. 2. Sections of a salmon. In conditional section it is possible to observe red and white muscles of fish 
 

 
 
 

It is not excluded that in robotics muscles can be replaced by TLRME, with a special control 
system of internal forces. 

In the project [1] it is supposed to use excitation of the robot from the power supply of the 
internal forces, located in the main case of the robot (head) (Fig. 3, 4). Ideas of excitation of 
movement of the robot by internal nonlinear interactions and by nonlinear external interactions 
are presented in Fig. 5. 

 
 
 
 
 

  
 

Fig. 3. The general scheme of the robot of fish              Fig. 4. Possible active excitation of the robot from  
           with passive fins and with active remote or    shock-vibrating interactions in the case of fish 
           adaptive excitation of the case 
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Fig. 5. Scheme of unicomponent excitation of a tail of the robot 

 
 

Unique conveyance of the case probably only in the presence of nonlinearity of force Rx., 
which can be received TLRME. Thus the probe overall objective is directed on studying of 
possibilities of using TLRME in creation of the case, a tail and fins of the robot of fish. As the 
study of problem of TLRME in space of three co-ordinates and time with complicated steering 
and boundary conditions is highly complex only the one-dimensional problem of the analysis of 
forces of a static TLRME of a tail of the robot is considered in this paper. 

Considering that for TLRME the shift ruggedness in some applications is less than 
ruggedness at axial compression, in this work we propose one of the design models for 
analytical calculation of rigid feature of multi-layer compensating elements being compressed, 
which enables taking into account low compressibility of material of rubber layers and 
deformation of non-elastomeric supporting layers.   
 
Materials and methods 
 

The method of obtaining analytical dependence “Force - Settlement” of multi-layer 
compensating element under axial compression is considered. Only small deformations are 
investigated. Application of the proposed method is demonstrated by the example of designing 
multi-layer shock-absorber, which consists of thin flat rectangular elements.  

The geometrical design model is illustrated in Figs. 6 (a)-(b).   
 

 
(а) 
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(b) 

 

Fig. 6. Computational model: (a) - shock absorber. (b) – nth -  layer of shock absorber 
 
 

Proposed method uses the variational method, which is based on the principle of minimal 
potential energy [1, 8] for low compressible material. The potential energy of the studied 
element in case of small deformations is expressed as: 
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where:  G – modulus of rigidity for each layer; µ – Poisson coefficient of material of each rubber 
layer; P – longitudinal force of compression; ∆ – settlement of the entire element; s – hydrostatic 
pressure function in each layer; u, v, w – displacements of randomly chosen point in each layer, 
respectively, in directions x, y, z; V – volume of each layer. The summing up is carried out for all 
rubber and non-elastomeric layers of a multi-layer element. 

Deformations εij in each layer are found using the following formulae: 
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The potential energy for the entire element is calculated by summing up formula (1) for all 

rubber and non-elastomeric layers. Physical and mechanical features of the material layers and 
geometrical parameters of layers have such indexes: e – for rubber layers; m – for non-
elastomeric layers. 

In order to use functional (1) when choosing functions of displacements u (x, y, z), v (x, y, z), 
w (x, y, z) and functions of hydrostatic pressure s (x, y, z), it is enough to fulfill geometrical 
boundary conditions and the conditions of coupling rubber and non-elastomeric layers for 
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displacement functions. For simplicity let us suppose all the layers have same dimensions in the 
design (a and b), all the rubber layers have width he, and the non-elastomeric layers have width 
hм. For the considered problem the necessary geometrical conditions are: 
     
we(x,у,0.5he) = -0.5∆;  we(x,у,-0.5he) = 0.5∆;             
 uе(x,у, ±0.5hе ) = uм(x,у,±0.5hе);  vе(x,у,±0.5hе)  = vм(x,у,±0.5he).                            (3) 
 

When writing displacement functions analytically let us suppose that: for rubber layers the 
hypothesis of plane sections is valid; for non-elastomeric layers the condition of homogeneous 
deformation is fulfilled.  In this case, taking into account the geometrical conditions (3), the 
desired displacement functions can be chosen in the form for: 
- rubber layers: 
 
uе = С1 x ( z2 – he

2/4 ) + К1 x  ,       ve = С2 у ( z2 – he
2/4 ) + К2 у,    

 we = - С3( z
3/3 – zhe

2/4 )/he
3 – С4 z  ,    se = С5( z

2 – he
2/4 ), 

 
- non-elastomeric layers: 
 
 uм = К1 x, Vм =К2 у,  wм = sм = 0        (4)     
   
where:  С1, С2, С3, С1, С2, К1, К2 – are unknown constants, which can be found using the 
settlement of the element ∆ from the minimum condition of full potential energy of deformation 
(1) of the entire element: 
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 ∆ – the desired unknown settlement of the element, which, by using equations (3) – (5), can be 
found from the equation:  

 
∆ = - С3 hе

3/6  + С4 hе .                (6)  
 

From algebraic equation system (5) and (6) for the considered element the desired 
dependence "Force – Settlement" can be written as: 

2121

21

21

21

e

e

21
1

)(
25.11

5,2

BBBB

BB
BB

BB

baG

nhP

µ
µ

χ

−
++

+

+
+

=∆      (7) 

 
where:  

ee

mm

e hG

hG

h

b

h

a

BB

===

+=+=

χβα

βα

,,

12

5
1;

12

5
1

e

2

2

2

1
                 (8) 

а, b,  he, hm – geometrical parameters of flat rectangular rubber and non-elastomeric layers; 
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Ge, Gm – modulus of rigidity of material, respectively, of rubber and non-elastomeric layers; 
n – number of rubber layers in the packet. 

If rubber and non-elastomeric layers have different dimensions, which let us ignore the low 
compressibility of rubber layers and flexibility (he <  hm, Ge << Gm, parameterχ→ ∞) of non-

elastomeric layers, then from formula (7) we obtain dependence for element settlement: 
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which coincides with the dependence “Force - Settlement”, obtained in work [3] without taking 
into account the compressibility of rubber and deformation of non-elastomeric layers.   

Results 
 

From formula (7) it follows that neglecting of deformation of non-elastomeric layers when 
determining settlement of the element may lead to significant quantitative errors. As an example 
let us consider the element of such geometry: 
 
a = b = 8 cm, he = 0,2 cm, Ge = 10 kg/cm2, hм = 0,02 cm, Gм = 2,8x105 kg/cm2. 
 
From (7) for the desired settlement ∆ of the element and taking into account deformation of non-
elastomeric layers we obtain the expression: 
 

∆ = [
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where:  
∆

* - settlement of the element (see (10)) only taking into account low compressibility of rubber 
layer and neglecting deformation of non-elastomeric layers. It is obtained in [3, 10] and is the 
particular case of formula (7). 

The numerical values are quite well described by formula (9) for the experimental results of 
work [6]. In the considered example neglecting deformation of non-elastomeric layers leads to 
underrating the value of element settlement approximately per 30%. 

If the geometry of thin-layer element is such that it is possible to neglect only flexibility of 
non-elastomeric layers, then from formula (7) for settlement of element follows the dependence: 
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It can be recommended, using the results of experiment under axial compression for multi-layer 
element, with quite rigid non-elastomeric layers, to obtain Poisson coefficient of rubber material. 
This problem for low compressible material formulated in [7] requires complicated experimental 
technique, and application of formula (11) allows us to apply fairly simple experimental 
investigation. 



 
528. BEND WITH COMPRESSION OF THIN-LAYER RUBBER-METAL ELEMENTS. V. GONCA1,A, J. SHVAB1,B, J. VIBA1,C 

 

 
 VIBROMECHANIKA. JOURNAL OF VIBROENGINEERING.   MARCH 2010. VOLUME 12, ISSUE 1. ISSN 1392-8716 

74 

Conclusion 
 

Reported study proposes a method for determination of rigidity dependence “Force – 
Settlement” for multi-layer shock-absorbing elements being under pressure and enables taking 
into account low compressibility of material of rubber layers and deformation of non-
elastomeric layers. The considered method is relatively simple when using it for thin-layer 
elements of any configuration. The method provides more thorough analysis of ready elements 
and allows us to make decisions on optimal design of thin-layer shock-absorbing elements more 
effectively. 
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