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Abstract: Electromyography signal can be used for biomediapplications. It is complicated in
interpretation, so it acquires advanced methodsétection, decomposition, processing, and classifin.
The techniques of EMG signal analysis such ariilty, wavelet transform, and modeling will be prasd

in this paper to provide efficient and effectiveywaf understanding the signal. A comparison stisdgiso
given to show performance of various EMG signallgsia methods. This paper provides researcherod go
understanding of EMG signal and its analysis pracesl This knowledge will help to develop more it
and efficient applications.
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1. Introduction reconstruction algorithms have various limitatioaad
considerable computational complexity and many show
The main purpose for the interest high variance. Recent advances in technologiedgoiak
electromyography (EMG) signal is clinical applicati It  processing and mathematical models have made it to
is usually used clinically for the diagnosis of maagical develop advanced EMG detection and analysis teaksiq
and neuromuscular problems. EMG is also used inymar{4,5,6,7,16,19]. So far, research and extensivertsfihave
types of research laboratories, including thoselived in  been made in the area, developing better algorithms
biomechanics, motor control, neuromuscular physgiglo upgrading existing methodologies, improving detatti
movement disorders, postural control, and physicalechniques to reduce noise, and to acquire acc@si®
therapy. EMG is controlled by nervous system andsignals. It is quite important to carry out an istigation to
depends on anatomical and psychological propedfes classify the actual problems of EMG signals analysid
muscles. It is an electrical signal acquired froiffiecent  justify the accepted measures. Mathematical approac
organs. EMG is usually a function of time, desalibe  usually include: wavelet transform, time-frequency
terms of amplitude, frequency and phase [1,16]. fils¢  approaches, Fourier transform, Wigner-Ville Distitibn,
recording of EMG activity was made by Marey in 1890 statistical measures, and higher-order statistigavelet
who introduced the term electromyography. Cliniesg¢ of  transform is well suited to non-stationary signdile
surface EMG for the treatment of different disoedeegan EMG. Higher-order statistical methods may be used f
in the 1960s. Hardyck was the first practitionerowdsed analyzing the EMG signal due to the unique properaf
EMG [1]. In 1980s, Cram and Steger introduced miadl  statistical methods applied to random time series.
method for scanning a variety of muscles using MGE This paper relates to the upgrading existing
sensing device [2]. During the past 15 years, rebebas methodologies, filtering, processing, decompositimd
resulted in a better understanding of the properté modeling of EMG signal.
surface EMG recording. Recently a surface
electromyography is increasingly used for recordimgn 2. Methods
superficial muscles in clinical protocols, where
intramuscular electrodes are used for deep mustye[8). There were several phases to the signal approach
The technology of EMG is relatively new. There atdl  such as: data acquisition, data pre-processinga dat
limitations in detection and characterization of M@ modeling, data analysis and interpretation. Theaah
signal, estimation of the phase, acquiring exdormation have been done by using the system EMG. A surface
due to derivation from normality. Traditional syste electrode picked up on the main groups of musofes
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lower limbs: the Rectus Femoris, the Vastus Laigrhe
Medial Hamstrings, the Lateral Gastrocnemius, amel t
Anterior Tibialis with only minimal crosstalk from
adjacent muscles. Functional evaluation was cagign
20 patients with spastic diplegia (the average Hgr.)
after clinical evaluation. The demographic dataufjects
are presented in Tab.1.

procedures aimed at minimizing the influence ofseabn
the detected signal are highlighted by Cram ef2l.In
practice, the collected signal may still be coregpty
noise. If the type of noise present in a signakriswn a
priori then the Wiener filter, may be applied teeauate its
presence [8]. The main disadvantage of this apprasic
that in many practical applications the noise i&nawn.
Design of application specific integrated circudr fthe
biomedical instrument has become quite important
recently. Hardware chips have also been designéditteo
EMG signal to achieve the accurate signal for the

Table 1. Demographic data of subjectsSD)

Subjects Height (cm) ~ Weight (kg) prosthetic arm control and other applications Iikenan
Typical 168+ 10 65+ 8 computer interactions [9]. This paper introduces a
Spastic diplegia 162+ 6 61+ 5 procedure for filtering electromyography signalfete is

presented the polynomial filter based on micropssoe
Zilog 8 [10]. The filter consists of the followingodules:
AC preamplifier, oscillator, CA preamplifier, and
microprocessor Zilog 8 (Z8). Communication with the

OT .each group are algo given in the same tqble. Trfilter is established via the serial port (RS232)he
difficulties that the patients most commonly conipdal 'schematic of data filtering is presented in Fig.1.

about were: climbing stairs and bending down. Gai.
abnormalities of these persons were usually treaftdda
combination of rehabilitation, orthosis, and suyg€efhe
subjects were analyzed while walking barefoot al@ng
straight pathway 10 m long. Patients were recruited
Glenrose Rehabilitation Hospital in Edmonton (latiory
Syncrude Centre for Motion and Balance). The mok&mn
uses Instrumented Gait Analysis to provide quaitga
data on a subject’s joint motion, net joint rotgtéorces
and muscle activation. Raw EMG offers valuable
information in a particularly useless form. This
information is useful only if it can be quantifigd7].
Various signal-processing methods are applied om ra
EMG to achieve the accurate and actual EMG siditak
section gives a review on EMG signal processinggugie
various methods.

The standard deviation values of the demograpéta d
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Fig. 1. Schematic of data filtering by using microprocesso
Zilog 8

The velocity of data transmission is around 9600
bps. The raw information from the subject is aedibn of
positive and negative electrical signals, theirgfrency
and their amplitude give us information on the caction

o ) o ) or rest state of the muscle. Figure 2 shows outpuhe
Filtering of the signal is important. It is used 1o fjer algorithm.

focus on a narrow band of electrical energy thabfis
interest to us rather than all the electrical sigrhat the
sensors will pick up. Electromyography (EMG) signate
usually affected by noise, which may be generatgd b
different sources, such as the hardware employesidoal
amplification and digitization, the movement of leb
during data collection and the activity of motoritsn
distant from the detection point. There are mamesyof
filters and several methods to determine the “ogkirout-

off frequency. Types of filters include the classic
Butterworth, Fourier series, Kalman, cubic and tjain
spline, and finite impulse response (FIR) filteFslter
equations, such as in the Butterworth filter, aegj@iently

3. Results
3.1. Filtering of EM G signal by using hardwar e filter
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recursive. Current values depend on the previolisesa
which introduces a phase lag into the signal. THitses

are, therefore, applied in both forward and reverse

directions in order to remove the phase lag. Sosefull
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Fig. 2. EMG signal after filtering
Results obtained from the analysis of synthetic

and experimental EMG signals show that the methiod o
filtering can be successfully and easily appliegiactice
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A 4

The maximization of the quality of EMG signal HIED
can be done by the following ways: the noisy sigeuld S
contain the highest amount of information from EMG
signal as possible and minimum amount of noise

contamination.
| o
> |:

3.2. Wavelet transform

2

to attenuation of background activity in EMG signahe D
main advantages of using the filter are that iedsy to ii ¢
implement and fast in real-time applications.

LoFD

Various signal-processing methods are applied on
raw EMG to achieve the accurate and actual EMGasign
Attempts to gain quantitative information from EMG Fig. 3. Discrete wavelet transform: S — signal; HiFD —thjgass
record|ngs have been exten5|ve|y |nvest|gated Mml flltel’, LoFD - low pass flltel’, cA — wavelet coafients for hlgh
is represented as function of time. Both the tinmel a Scale: cD —wavelet coefficients for low scale
frequency domain approaches have been attempttukin
past. | will propose the wavelet transform (WT) as

efficient mathematical tool for local analysis obm
stationary and fast transient signal. One of theinma cD
properties of wavelet transform is that it can be

implemented by means of a discrete time filter baltie
WT represents a very suitable method for the diaasion HiFR
of EMG signals [12,27]. It is an alternative to ethime S
frequency representations with the advantage ohgbei y

linear, yielding a multiresolution representationdanot
being affected by crossterms [18,20,21,22,23,24jddy CA N
certain conditions, the EMG signal will be consgtbras g

the sum of scaled delayed versions of a singleoprpé.
The WT is described by Eqn.1 [25,26]: LoFR

A 4

A

<

>

Fig. 4. Inverse discrete wavelet transform: S — signaFRHi-

. o . high pass filter; LoFR — low pass filter; cD — waatetoefficients
C(scale positior) = I f(t)-y(scale positiont)dt (1) for low scale; cA — wavelet coefficients for higtate

where: The A and D sequences obtained as the result of

IDWT are still massive in terms of the number ahgtes,
which contributes to large dimensionality of featgipace.
Besides, the sequences have a high noise component
inherited from the original EMG signal (Fig.5-6).

C (scale, position) — wavelet coefficient,
f(t) — signal,

y(scale, position) — wavelet function.

cD L

:

WT will be also used to analyze signals at
different resolution levels. It will be analyzed eth
relationship between wavelet coefficients and timeet HIFR.
frequency plane. The DWT is a transformation fuf t
original temporal signal into a wavelet basis spadee
time-frequency wavelet representation is perfornigd
repeatedly filtering the signal with a pair of dits that cut 0 . I_\—
the frequency domain in the middle. Specificalhe DWT 7
decomposes a signal into an approximation signdl @an
detail signal. The approximation signal is subsetjye LoFR
divided into new approximation and detail signalis
process is carried out iteratively producing a 8t Eig 5 The reconstruction of detailed sequence; 0 — igreabis
approximation signals at different detail levelsales) and  equal 0; HiFR — high pass filter; LoFR — low pastefil cD —
a final gross approximation of the signal. This dam wavelet coefficients for low scale; D- detailed seqce
expressed as follows (Fig.3-4):

P
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Fig. 6. The reconstruction of approximation sequence; the-
signal is equal 0; HiFR — high pass filter; LOFR wpass filter;
cA — wavelet coefficients for high scale; A- approation
sequence

The scales were chosen in conjunction with the
sampling rate to give wavelets with a period in 3r20 ms
range. This range was reported for single humanckaus
action potentials. The magnitude ©fa,d was a measure
of the matching of the original with tHdb4' scaled and
translated wavelet. Results of the decompositienshown
in figure 7. Analysis was performed using the Matk
Wavelet Toolbox. The level of decomposition isatdxed
by numbers close the signals. The sequences htgsedi
value of level and frequency. The sigmalhas high scale
and low frequency. The detailed sequen@hs ds) have
the lower scale thass. The biggest scale has sigudg| and
the lowest scale has sigrml Those are the signals with
the highest frequency.

Decomposition at level 5:5 =35 +d5+dd +d3 +d2 + d1
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Fig. 7. Wavelet decomposition
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3.3. Regression model of EMG signal

In 1975, Graupe and Cline first introduced the
autoregressive moving average model (ARMA) to
represent EMG signals. The empirical result of Geaand
Cline shows that the EMG could be considered statip
over sufficiently short time intervals [1]. Shertias
emphasized the non-stationary nature of the EMGused
an autoregression, integrated moving average model
(ARIMA). He characterized the non-stationary natofe
the EMG during different phase of muscle activij. [
Since 1983, Doerschuk has approached a problenasimi
to Graupe and Cline, namely control of prosthetwices
from EMG signals, by autoregressive models of rplgti
EMG signals [6]. In 1986, Zhou represented the amaf
EMG as an autoregressive model with his delayed
intramuscular EMG signal as the input [7]. The nipde
referred to as “tissue filter,” relate the intrarouler EMG
signal waveform to the surface EMG. Assuming that
prototypes of intramuscular and surface EMG siglaaés
available, the parameters of the time series molalzd
transforms the intramuscular signals to the surfageals
are identified. The identified model is then used i
estimating the intramuscular signal from the swefsignal.
This model is illustrated using real EMG waveforms.
Hefftner in 1988 evaluated the previous models and
selected an autoregressive model for EMG signature
discrimination because of its computational spe&8].[
Graupe in 1989 proposed a non-stationary identiéier
time-varying autoregressive parameters [9]. In 19%hru
considered that the more precise model such as ARMA
ARIMA was not necessary for dynamic muscle
movements [14]. The computation cost of ARIMA model
is high, and the determination of the model order i
complex and sometimes difficult. AR model was chmose
by Tohru mainly because of its computational cobkictv
is a problem in the simulation. Their investigatioms
based on AR model parameters computed by quasi-
stationary processing. The regressive (time sariedel)
has been used to study EMG signal. A surface eléetr
were picked up EMG activity from all the active roles
in its vicinity, while the intramuscular EMG is Hily
sensitive, with only minimal crosstalk from adjaten
muscles. Thus, to combine convenience and acctinacg
is a great need to develop a technique for estigati
intramuscular EMG and their spectral propertiesmfro
surface measurement. Researchers have represehié€sl s
signal as an AR model with the delayed intramuscula
EMG as the input. Model studies have been perfortoed
characterize the human gait of typical subjectsattents
with lower limbs deformities [11,15].

Presented by author approach of muscle activity is
based on regression function (Eqn.2).

A
Yn=U,-8a, n=1,2,...\, 2

where:

A

Y , — output data of model (EMG signalririnstant),

u,— input data of model (EMG signalininstants before),
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a - unknown model coefficients,
N — sample size.

The matrixa is determined by Eqn. 3-4:

a=u"u)" Uy, @
where:
U - the matrix of input data,

Y - the vector of output data,
a=[a a,..a] k=12..K (@

where:
K — the coefficient size.

The regression model presents the relationshipdsivthe
muscle activity inn instant and muscle activity im
instants before. Below is presented the methochafdel
identification.

Real dat Mode

U1

—> pes U

uz —>
—> Y uz Q

us a=? us a=v —>
— —>

Un Un
B —>]

Fig. 8. Method of model identificatioru, — input dataY— output
data,a— unknown model coefficients,- noise

also given in the same table. EMG model coeffitseof
patients with spastic diplegia were compared toEMG
model coefficients of typical subjects [10].

Table 2. Regression model coefficients of patients withstipa

diplegia ¢£SD)
Muscles a; & as
Medial 1,43t0,2 -0,930,13 | 0,420,08
Hamstrings
Rectus 1,62t0,25 | -1,150,15| 0,550,13
Femoris
Tibialis 1,2#0,11 -0,8%0,2 0,270,05
Anterior
Vastus 1,41+0,21 | -0,950,18 | 0,230,05
Lateralis
Lateral 1,36t0,15 | -0,760,15| 0,350,07
Gastrocnemius

The value of model coefficierst; and az for the
Medial Hamstrings and the Tibialis Anterior is héghfor
subjects with spastic diplegia. For the Vastus ladi® the
Rectus Femoris, and the Lateral Gastrocnemiusvahe
of model coefficientsa; and a; are higher for typical
subjects. Analysis of model coefficients showst tihere
is no significant difference of coefficier#t, in each group.
Statistical analysis was performed on the wholeufaijon
of typical subjects, those with spastic diplegia. A
characterization of the difference was obtained by
computing the following parameters such as: thadsted
deviation, correlation, and variance.

The best results were obtained for approach where

the EMG signal inn instant depends on EMG signal in

three instants before. The relative error was ato2tb.
The vectorY and matrixU are expressed as Eqn.5:

Y3 Y, Y, Yo

Y, Y, Y, Y,
Y=1Ys g = Yy Y3 Y2 (5)

YN L YN YN Yk

where:
U - the matrix of input data,

Y - the vector of output data.

Table 3. Statistical parameters of the regression matieD)

Groups Correlation Variance
Typical subjects 0.9140.04 0,00%0,001
Spastic diplegia 0.92+0.06 0,00%0,002

, )

The indicators show that proposed model is
correct. The major advantage of mathematical mnget
description a signal just by few coefficients. Treposed
method can be applied during clinical diagnosist iu

needs to determine model coefficients for different
pathologies.
4, Conclusion

Electromyography is a good tool for the

documentation of muscle activity. EMG signal casrie

To study the performance of the regression modelaluable information regarding the nerve systengn&i

of muscle activity, several realizations of a nump@cess

conditioning and signal processing are very ciitita

models were generated and the model coefficient® weobtain a reliable results from surface EMG. Althbug

estimated. The regression model coefficients fdiepts

with spastic diplegia are presented in Table 2. §thadard
deviation values of the model coefficients for mascare

many literatures have already suggested variolmigges
to improve the quality of acquired signals, thesgaiature
of EMG signals is still harness for enlarging the
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application of EMG for various clinical studies. e, [13]
still there is an eminent request for novel techagthat
address improving the quality of measured EMG dgna
Therefore, this topic is highly significant and eérgsting
for most investigators and clinicians in field obwement
analysis and kinesiology. So the aim of this papas to
give information about methodology to analyze tigmal.
Techniques for EMG signal such as: filtering,[15]
decomposition process, and modeling were discugsed
this paper. It is very likely that applying EMG ddtelps to
define gait pathology in a large number of patiekitsth
the help of advanced computing software, mathewatic
modeling has proved to be convenient and powerfdlﬂ]
method for monitoring human gait. The advantage of
proposed model is possibilities to classify humaiit ¢p [18]
different groups of pathology. The considerations
introduce an incomplete analysis of spacious proble
connected with classification and improvement of
apparatus of human gait, which is the result ofliiméed  [19]
number of collected data.
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