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ABSTRACT. The solution of the inverse kinematics is required in many technical applications. In this contribution a 
concept is proposed which reformulates the inverse kinematics (IK) of kinematically redundant manipulators as a linear 
programming (LP) problem. This formulation enables the explicit consideration of technical constraints as for example 
mechanical end-stops, velocity and, if necessary, acceleration limits as linear inequality constraints. Besides that, 
automatic collision avoidance within the workspace of the manipulator can be included. The kinematic redundancy is 
resolved with respect to quadratic criteria. As the LP problem at hand belongs to the small-size problems, the optimal 
solution can be found numerically in appropriate time using standard algorithms such as the simplex algorithm or 
interior point methods. This article closes with a numerical example of the LP-IK of a planar 4-link manipulator. 
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NOMENCLATURE 
 

Symbol Notation 
ℜ  Set of real numbers 

ϕ  Nonlinear vector function of forward 
kinematics 

w 
Position and orientation vector of the end-
effector 

m 
Number of position and orientation 
coordinates 

q Vector of manipulator joint coordinates 
n Number of manipulator joint coordinates 
J Jacobian matrix of the end-effector 
Z Quadratic cost function 
M Positive definite weight matrix 
Λ  Diagonal weight matrix 
f Potential function 
N Kinematical constraint at velocity level 
L Lagrange function 
λ  Lagrange multipliers 
p Affine dexterity 

Symbol Notation 
T∆  Discrete time interval 
k Manipulability measure 
I Identity matrix 

1. INTRODUCTION 

 
      Many technical applications require the solution of 
the inverse kinematics (IK) problem of kinematically 
redundant manipulators, i.e. manipulators whose number 

of mechanical degrees of freedom (DOF) is greater than 
the DOF of the tool center point (TCP). Examples are 
construction machines, where the operator wants to move 
a tool attached to the end-effector to the area of operation. 
However, to this day the IK problem of choosing 
appropriate actuator configurations, for example of 
hydraulic cylinders, is often solved manually by 
experienced operators. Therein, the operator has to define 
a map from Cartesian end-effector coordinates to joint 
coordinates of the manipulator at any instant of time. 
      For an operator it is more intuitive and hence easier to 
command the end-effector than to command the joints of 
the manipulator individually. This benefit becomes more 
and more evident with an increasing number of joints, i.e. 
with increasing kinematical redundancy. On the other 
hand, redundancy is often required in order to account for 
obstacles in the workspace and therefore to avoid 
collisions. 
        To overcome this difficulty algorithmic solutions to 
the IK problem are desired. The concept proposed in this 
contribution formulates inverse kinematics as a linear 
programming (LP) problem. This formulation offers the 
explicit consideration of technical bounds in form of 
linear inequality constraints. Examples for technical 
constraints are mechanical end-stops as well as velocity 
and acceleration limits which are taken into account 
during the process of optimization. The main task of 
moving the end-effector from its actual to a desired 
position (and orientation) is realised by the concept of 
“affine manipulability”, originally introduced by 
Schlemmer in [1] and [2]. The kinematical redundancy is 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Journal of Vibroengineering

https://core.ac.uk/display/323312792?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


 
394.  A LINEAR OPTIMIZATION APPROACH TO INVERSE  KINEMATICS OF REDUNDANT ROBOTS WITH RESPECT TO MANIPULABILITY.  

W. LALO, T. BRANDT, D. SCHRAMM, M. HILLER 

 

 
 VIBROMECHANIKA.  JOURNAL OF  VIBROENGINEERING.  2008 SEPTEMBER,   VOLUME  10,  ISSUE  3,  ISSN 1392-8716 

 
 

401

resolved by minimizing a quadratic criterion using the 
Lagrange Function such that the solution delivers a 
feasible manipulator configuration. Moreover automatic 
collision avoidance can be included by applying potential 
fields according to [3]. 
 

2. RELATED AND PREVIOUS WORKS 

      This section shortly discusses common methods for 
solving the IK which constitute the basis for the concept 
explained in section 3. 

In general, setting up the analytical forward kinematics of 
a serial-link manipulator 

)(qw ϕ= , (1) 

where mn ℜ→ℜ:ϕ , nℜ∈q  is the vector of manipulator 

joint coordinates and mℜ∈w  is the vector of position 
and orientation of the end-effector is a trivial task. 

2.1. Classical approach 

     As ϕ  is generally a nonlinear vector function the IK is 

usually solved by approximating (1) using the Taylor 
expansion of ϕ   and disregarding the terms of order 

higher than 1, such that 

)( 00 qqJww −≈−  (2) 

with )( 00 qw ϕ= . Here nm×ℜ∈J  denotes the Jacobian 

matrix which has a rectangular shape for redundant 
robots and is therefore not invertible.  

    To overcome this redundancy, a quadratic cost 
function  

qfqqMqqq TTZ −−−= )()()( 002
1 , (3) 

is introduced ([4], [5], [6]) where nn×ℜ∈M  is a positive 

definite weight matrix and 1×ℜ∈ nf  is a weight vector. 
Together with the kinematical constraint according to (2) 

)()()( 00 wwqqJq −−−=N  (4) 

the Lagrange function 

)()(),( qλqλq NZL T+=  (5) 

can be set up. The necessary condition for a local 
minimum is 
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This leads to the linear system of equations 
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which can then be solved efficiently as the matrix on the 
left hand side is usually sparse.  

One choice of M could be the mass matrix but usually is 
chosen as a diagonal weighting matrix. According to 
Komainda [4] the vector f can be regarded as an artificial 
generalized force which can be used for influencing the 
null space motion. If M is the identity matrix, f the zero 
vector and (7) is resolved for q, the IK equation 

)( 00 wwJqq −=− +  (8) 

is obtained where 

1)( −+ = TT JJJJ  (9) 

is the well-known Moore-Penrose pseudo-inverse matrix.  

2.2. Nonlinear programming approach 
      However the method shown above does not guarantee 
the provision for technical constraints. In fact, the motion 
of a joint near its limits strongly depends on the potential 
function f, if an artificial force is engaged. For this reason 
in [1], [7], [8] and [9] IK is formulated as a nonlinear 
programming problem (NLP). Besides taking the 
technological constraints into account it is possible to 
apply the nonlinear forward kinematics according to (1) 
as side conditions. Hence, the IK can be solved 
numerically exact as the forward kinematics is not 
linearized according to (2). 
      In the following Schlemmer’s [1] concept of “affine 
manipulability” is discussed because it forms the basis of 
the approach presented here.  
      Firstly, a quadratic criterion as cost functions to be 
minimized subject to the nonlinear forward kinematics is 
presented. While the quadratic criteria resolve the 
redundancy, the affine manipulability criterion (Fig. 1) 
moves the end-effector from 0w  to a similar, i.e. affine 

feasible position and orientation feasiblew . Thereby, w may 

contain position and/or orientation of the end-effector. 

 

 

Fig. 1.  Affine Manipulability according to [1] 

 

      The relationship between feasiblew  and desiredw  can then 

be formulated as 

)( 00 wwww −=− desiredfeasible p , (10) 

where p is the affine manipulability indicator or dexterity. 
Thereby, it is reasonable to restrict p such that 10 ≤≤ p , 

in order to prevent the end-effector from moving in the 
opposite or beyond the desired direction. It is obvious 

feasiblew

0w

desiredw
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that the optimum, i.e. maximum is reached if 1=p , so 

that desiredfeasible ww = .  

       The nonlinear problem can then be solved by a 
Sequential Quadratic Programming (SQP) algorithm [1]. 
However, solving NLP problems is computationally 
expensive. 

2.3. Linear programming approach 

       It is worth noting that Schlemmer already proposes 
the following LP1 problem with respect to affine 
manipulability: 

}{max1
,

pLP
pq

=  (11) 

subject to 

0wwqqJ =−−− )()( 00 p  (12) 

10 ≤≤ p , maxmin qqq ≤≤  (13) 

and further bounds with respect to velocity such as 

TT ∆≤−≤∆ max0min qqqq && , (14) 

where T∆  denotes the discrete time interval. 

       This proposal delivers an effective alternative for the 
IK at velocity level as the LP problem can be solved 
effectively with the well-known simplex algorithm or 
interior point methods [10]. However, the motions that 
are calculated suffer from jittering as can be seen in Fig. . 
Another approach of solving the IK with LP can be found 
in Ho [11]. Here the main idea is to define the cost 
function as the sum of absolute values of the elements in 

0qqq −=∆ , i.e. 
1

min q∆  which then has to be 

minimized subject to (2). 

3. LP APPROACH 

        Motivated by Schlemmer’s affine manipulability, 
here an LP formulation which considers the minimization 
of the quadratic cost function stated in (3) in order to 
overcome the jittering of LP1 is proposed. For this 
purpose the constraint in (4) is modified according to (12) 
which leads to  

0wwqqJq =−−−= )()()( 00 pN , (15) 

where p is the affine dexterity and is regarded as a 
parameter, not a variable. In the next step the Lagrange 
function is set up, differentiated and set to zero as 
described in section 2.1. Hence, the linear system of 
equations 
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is obtained. From now on p is considered to be a variable 
that has to be maximized and by rearranging (16) we 
finally the following LP2 problem 

}{max2
,,

pLP
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10 ≤≤ p , +∞≤≤−∞ λ , maxmin qqq ≤≤  

and further constraints at velocity level is obtained. 

3.1. Controlling smoothness of motion  

       One can additionally influence the manipulator’s null 
space motion by adding the quadratic function 

)()()( 2
1

2 ref

T

refZ qqΛqqq −−=  

to the cost criterion such that the following side 
conditions hold 
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Here nn×ℜ∈Λ  is a diagonal weighting matrix with 
positive diagonal elements and refq  is a reference point in 

joint space, which may be defined as the midpoint 
between the joint limits [1]. This definition leads to joint 
configurations, which lie far apart from the joint limits 
and consequently increase the manipulability. 

3.2. Singularity 

       Near singularities the joint velocities tend to have 
high values in spite of relatively small end-effector 
velocities. Even though the joint velocities are limited, it 
still causes jittering (Fig. 8). Komainda [4] proposes a 
modified side constraint where (4) is extended by Iλk , 
such that (7) changes to  
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Due to this extension the matrix on the left hand side of 
(19) cannot become singular for 0≠k . For this reason 
[4] refers to this as the robust inverse where k is the 
manipulability measure due to Yoshikawa [12]. However 
the effort for calculating k is high.  

        It is fact that the Lagrange multiplier λλλλ tends to have 
high values near singular configurations. For this reason 
limiting λλλλ by 

maxmin λλλ ≤≤  

may also prevent the jittering effect as can be seen in 
Fig. 9. The choices for minλ  and maxλ  are subject to 

further research. 
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4. SIMULATION RESULTS 

         The following section evaluates the proposed LP-IK 
applied to a redundant 4-link planar manipulator (Fig. 2).  

 

Fig. 2. Redundant 4-link planar manipulator 

        From the initial configuration as shown in Fig. 2 the 
main task is to pull in the end-effector horizontally. 
Furthermore, to demonstrate the engagement of joint 
limits, the first joint is limited to °= 951max,q . 

 

Fig. 3. x-y-motion of the manipulator according to LP1 

        It can be seen that the main task, i.e. pulling in the 
end-effector, can be realized. However, the trajectories in 
joint space are jittering (Fig.  and 4a). 

 

 

Fig. 4. a) Joint space motion according to LP1, b) Joint 
space motion due to LP2 

      In Fig. 4b one can see, that using LP2 due to the 
quadratic cost function, the jittering vanishes and 
technically reasonable motions are generated besides 

fulfilling the main task (Fig. 5). Moreover, the constraint 
of the first joint is maintained such that the end-effector 
cannot move in any further.  

 

Fig. 5. x-y-motion of the manipulator according to the proposed 
approach LP2 

       Accordingly the affine manipulability indicator p 
shows, that it is not possible anymore to maintain the 
desired end-effector motion as p nearly reaches zero 
(Fig. 6). 

 

Fig. 6. Affine dexterity according to the proposed approach 

      In the following the TCP is supposed to be moved 
from the initial configuration (Fig. 2) to an edge 
singularity (Fig. 7). 
 

 

Fig. 7. Displacement to an edge singularity 

       In this simulation one can see the influence of the 
Lagrange multipliers. Near edge singularities the 
Lagrange multipliers tend to have high values which 
cause a jitter effect (Fig. 8 at t=100). 

 

Fig. 8. Joint motion near singularity 
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      By limiting the multipliers it is possible to prevent the 
jitter effect as can be seen in Fig. 9. Furthermore, the 
affine dexterity tends to zero. 

 

 

Fig. 9. Dexterity and joint motion near singularity due to 
limited Lagrange multipliers 

 

5. CONCLUSION 

 

In this paper a concept for solving the inverse kinematics 
of redundant manipulators by formulating a linear 
programming problem is presented. It was shown that the 
solution of this LP problem leads to technically feasible 
results as quadratic criteria are taken into account. The 
affine dexterity is a possible concept to characterize the 
current manipulability of the manipulator. It can provide 
a beneficial tool in terms of human-machine interfaces 
(HMI). By limiting the Lagrange multipliers the 
numerical instability in the proximity of singular 
configurations can be overcome. This leads to smooth 
motions near the singularities. But finding adequate 
values for minλ  and maxλ  is still part of current research. 

Finding the solution of such LP problems can be done in 
appropriate time, as for example by the simplex 
algorithm, because the problems at hand belong to the 
small size problems.  
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