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Abstract.Oscillating cylindrical body in a viscous fluiditiates oscillating and not oscillating, slow stgaate creeping,
flows. Solution of the creeping flow can be deduifdlbw of the ideal fluid is determined. In thisper plane steady-state
flow of the ideal fluid past a circular cylindedaped symmetrically in a channel, is found. Theothieof analytical
functions and conformal mapping are applied.
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Introduction fluid which follows the dominant periodic flow.
Theoretical investigation of this secondary flowdaits

In recent years there has been a considerablee@ser initiation are presented by Schlichting [3, 4]. Tiwaole

in the incidence of thromboembolic complications ininvestigation of this complex flow can be resolvietb
various diseases (obliterating atherosclerosisiteshting three subsequent parts. In the first part of irigatibn the
thromboangiitis, etc.) For example, asmany as oifiom  fluid is assumed to be ideal and longitudinal vijoc

States each year[ 1].In addition to well-known datg ‘ .

technologies, such new methods as ballon, lased, ar 3

ultrasonic ~ angioplasty,  etc. ~also gain  wide,,,,, ;s ss000000000000000000000 /m/////
recognition.Ultrasonic medicinal thrombolysis, — —\ — - — womawa - —\—
i.e.,combined application of ultrasound frequentynore = AN = =~
than 100kHz and certain drugs was found to cause — = — \A\!})’A\M‘LA‘H -

twofold increase in the rate of thrombolysis indlidey ——— ~— — —  _ “AALMAAIR 0 —
some fibrinolytic preparations. Ultrasonic thromysi$ is ””//”””%/””/””/””””’””
implemented using special waveguides equipped witt 2 4

working tips of various shape. The oscillationsgitency . . . .

of the tips is 19-44 kHz; cavitation, acoustic ayuhtact Fi9- 1. Schematic of waveguide for ultrasonic angioplasith
effects are major thrombolytic mechanisms][1]. increased ability to follow the curvatures of aderand veins. 1-

. - . . internal surface of blood-vessel; 2- liquid (blop8) waveguide
The paper deals with original device [2] for aasonic in which longitudinal resonant oscillations are eeted; 4-

angioplasty, presented in Fig. 1. The specificsttié o5onator; 5- radial cavitations streams and aeaitations jets
device is the ability to generate directed cawtatstream
destroying the deposits on internal surfaces obdble- Applying this velocity the boundary layer soluticor
vessels. _ _the viscous fluid flow can be found, and this is gecond
When cylindrical body executes high frequency swingsart of the whole investigation. In this part thenrinear
oscillations in a viscous fluid, flow of this fluidan be Navier-Stokes equations are solved approximatkéyfitst
resolved into two principle parts. The first andyniee the  approximation presents only oscillatory part of ftww,
most pronounced flow is oscillations of the fluitl the ¢ the second approximation has the steady-statess a
same frequency as the body with progressively mdluc component, already mentioned above. Neverthelesy, o
amplitude when distance from the body increase® Thphe |ongitudinal component on the oscillating boidy

second flow is less well understood and has noog&i found from this solution. Evaluation of a steadgtstflow
component. It consists of slow steady-state flowtt# iy the vicinity of the body is the third part of eth
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investigation. When the steady-state flow is sldvent
inertia forces are small and can be neglected et
viscosity of the fluid is the most important. S tflow,
discussed in the third part of the investigatioan de
named as creeping or Stokes flow. Notice that ajhahe
flow is steady-state the non-linear convective gare in
the Navier-Stokes equations.

maps the fluid domain ABCDEF in Fig. 3 to the upper
half-plane of the variablez; with the same part ABC

eliminated (Fig. 3a).
If a point z=rye" =r,(cos6 +isin®) marked off on

the circle in thez plan, then image of this point ig plane

is
Determination of the ideal fluid flow is a clasdica

problem and is widely covered in the literature wdwer
solutions in explicit form are found only for thedividual
cases. Analytical solution of the plane uniform gmtial
flow past two cylinders is presented by Crowdy [Bhy
aditional obstacle in the fluid creates a considlera
challegne for the researche. The problem of recoctatg
the free surface of cavitating flow has been sulidy
Antipov, Silvestrov [6]. The steady flow of an iddhid
in 6a channel with a free surface is investigatetivo
stationary plates are in the fluid. An inverse moethof
transformation from the physical planeyj to the plane
(o,w ), where ¢ is velocity potential,y is stream
function, is presented by Borges [7].

In this paper plane steady-state flow of the idaatl
past a circular cylinder, placed symmetrically inteannel,
is found.

2. Conformal mapping

E
1
b} = B @ F
rﬂ
C 6 \a
QJ Streamline X
=
Fig.2. The circular cylinder placed symmetrically in anhel

The circular cylinder is placed in a channel wid#h
(Fig. 2). The stationary fluid flow is assumed frdime
point F in the direction of D, therefore axisis the
symmetry line and also the stream line. The uppet of
the flow above thex axis can be considered. This fluid
domain
¢= f(z) of the complex variablez = x + iy, conformally

mapping the fluid flow domain to the upper halfpta
n >0 of the functiong =& +in, will be deduced.

The function

7, =" _g?

(1)
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x, = €*°¥ coqasing)—e?,
y, = €Y sin(asing).
9
1-b! U
F E D C (0] A F
b) ' ©
_-| +1 E_,
F E D C B A 1

Fig. 3. Domains of the auxiliary variablég and{

The image ABC in Fig. 3a is symmetric and tangefits
the curve at A, B are parallel to the axg. This can be
proved when differentialsdx, =0, dy, =+ae®d0 are

derived for6 =0and 6 == . The line ABC in Fig. 3a can
be assumed as an arc of a circle and then mappte to
upper half-plane [6] of the variable

Ky

2
a_.-a
1_(1_68]
4]

When k; = 2,k, =-1 are assumed and expression (1)
is used the analytic function

g:

B (eadro -e? )2 + (eadro - ea)2
oo f o]

S ()

is singly connected. The analytic functionor

sinha

&% _cosha .
e®" _cosha

2
° sinha

®3)

These relatively simple formulae have the inverse
expression
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V,=U_.cos0=U_. cosi, wheres is the length of the arc

- r

E =1|n zs—nha + e’a (4) © a o

fo 1— ¢-1 from A. On the other handv, = where ¢ is
c+1 on  0s

velocity potential,y is stream function W= @ +iy .
or

. S
Therefore, the stream functioty = IV ds=U._r sin—
E:|n[(1+g+,/g—1)sjnha+e-""]. (5) " A
fo is determined on the surface of the circular cy@imdVhen
Image of the conformal mapping (1) is not an exactmaginary part i of the analytic functionw is deduced

circle, therefore image of the fluid flow domain, the whole functionw can be expressed [7]
determined by Eq. (2) or Eq. (3), is not an exaqtar half-

plane Im¢>0. On the other hand image of the line 1

. : . u.r, rsiné
n=Im¢=0 in the z plane is not exact circle. w(g):#j dé-C,. (6)
Calculations, made by the Eq. (5), shows that inwgbe 4 —1‘5 Kl

line —1<&<+1,n=0 (Fig. 3b) is in close proximity to an
ellipse. The big semi-axis of the ellipse coincigath the Parametet in this integral is a point inside the upper half
diameter AOC of the circle ia plane. The length of the plane domainz >0 (Fig. 3b). Wheng approaches the
small seml-a>-(|s depends on thellf rgno h/r, |s. 15, 1.0 border pointg = &, ,
and 5 the ratio of the small semi-axis to the Emisaxis

is 0.993, 0.984 and 0.940 correspondingly. It may b
considered that the circular wire is deformed by2@6, _Uerg 1 sn6 : . .

1.6% and 6.0%. When the ellipses in theplane are (P(éO)_ - j&—io £ is a singular integral. The angle
assumed, deviations of the image not exceed 0.0008% 1

0.004% and 0.06%. So the images of the lined (Fig. 2) have to be determined as a functiondpfand is
—1< & <+1lin thez plane can be assumd as an ellipses that,

; 2 ) g -a _ A9
differ little from the circle. The pointg=0 is not the given in Eq. (5). If(1+g+| 1-5 )smha+e pe

-1< &, <41, the Plemelj formula

have to be applied. The real part of the potential
+1

highest point in thez plane. When¢=0 is inserted in h T ( i9) d Imz<lo St sno. It
Eq. (5) and identity en z= 5 np +i an mz= 5 =r,sino.
(1+i)sinha+e?® = cosha+isinha = 1-¢2 o2
>\ arctaanh follows that asin®=arctan————, PBg=—7—.
= 4/1+ 2sinh® a ' ¥“amama 1+ &+ By sinha
is substituted, expression,af<1, Potential of the fluid velocity is expressed
H 2
z_ In(1+ 2sinh a)+i arctantanha - 11_ &2
r 2a a ~arctan
0 U.h 1+ &+ B
as 242 ' (P(E.:o): 7t j P dg . (7
z(a+?J+i(1— 3 jza+i 1 o

When h— « the parametera— 0 and B, —>a’.
can be proved. The ter@a? / 3 is displacement down of The function
the point ¢=0, but this displacement is greater then

deformation of the circle because imagecef O does not 1-£2
coincide with the highest point of the image cur¥ée arctanl——> ay1-2%.
equal intervals [-1;0], [0;+1] of the plane are mapped to *5+Bs

unequal arcs. The Tricomi integrals [7]

3. Potential flow in the channel 0

ITK—@L =1U,4(8) k=12,...

76780 J1-¢2

now can be used in Eq. (7)T (¢)U,(&) are
orthogonal Chebyshev polynomials of the first ahé t

The complex potential w=wz) of the ideal
incompressible fluid can be found if analytic fupat
zZ= z(g) is determined. If cylinder moves with the velocity
U.in the direction of thex axis (Fig. 1), the normal
components of the cylinder and fluid velocity caite
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second typeT(§)=¢, T,(¢)=28% -1, Uy(g)=2¢, ...
The velocity potential from Eq.(7) in the case—»> 0 is

o(&)=-U.ry&. If h— oo and circle is not restricted, the

conformal mapping of the fluid flow domain is pressd
by simple function

Z=r0(g+\/g2——1). (8)

On the circle z=r,(cosb +ising), thus & = cosd

and it follows from Eq. (7)@(£)=-U,r,cos— . The
r

[0}
tangent component of the velocity

0 .
sza—(fzucsme. (9)

o&)= Ucro(1+ a+§a2j52(é),
where
Bz(i): _al—Ta_ (1— a- a2)§ + a(l— a)§2 _gazgs.

If the real part of Eq.(10) is applied and expraessf the
arc lengths=r,0 is used the relative component of the

velocity

2 2
Virg :%ZUCKH%)QM—%W 9} (11)

can be deduced. This is velocity of the fluid whbe
cylinder moves in a channel with fluid stacionany i

This value coincides with the well-known classicalinfinity. The tangent component of the fluid velyci

solution.
4. Velocity on the cylinder surface

If circular cylinder is in a channel, the functi¢f),
instead of (8), should be applied. The constanis

assumed less then 1. Sin@e=r,e" =r,(cos6 +isin)
the approximation

5cos0—-isin®

c=cos@—-asin’0—a’sin’0 5

+... (10)

follows from Eq. (2). Whenh/r, =15,10; 7 the error of

the real part approximation is correspondingly G.3%%;
2.9%. If approximations

2

X
B 1 _elsnha~a+a’2a’, arctank~ x| 1- —
S 3 3

are used, then
\/1—§2 2 2] 2
arctan—————~a l+a+—a 1-¢°B ,
L+ &+ Py a(+ jE j el

where

2

B,(¢)=1-a(l+a)l+&)+a’(1+¢)? —a? %

Thus, from Eq. (7) and Tricomi integrals,
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relative to the cylinder can be obtained if the poment
(11) is added to the translation velocity, = U sinf.

This velocity component presents projection ofiakcity
U, to the tangentr (Fig. 1), i. e. velocity of the fluid at

the infinity with respect to the cylinder. Theredor

2 2
v.=U,||2+2 |sno-2 sn%e
3 2

is velocity component of the fluid relative to tbhglinder
when terms witha® and less are ignored.

(12)

Conclusions

Conformal mapping of the fluid flow domain to the
half-plane can be realized by relatively simple lgina
function (2) or (3) , and the inverse function ¢4)(5) can
be solved. These functions present an approximate
mapping of a domain with circular cylinder in thedaie
of the channel.

The boundary value problem is solved to obtaina flu
flow velocity in the fluid domain and on the cylied
surface. The explicit solutions (11), (12) of thilid
velocity on the circular cylinder are deduced foe tase
when width of the channelh2is much more then the
diameter of the cylinde®r, .

If his very large anda=mnr,/h can be neglected in

comparison with 1, velocity solution (11) coincidetth
well-known solution (9) for an unbounded domain.
Nevertheless, the same solution is valid when andiut

a?<<1 and can be neglected. So boundaries of the

channel have to be sufficiently close to the cydindo
influence the fluid flow velocity on the cylindenr$ace.
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