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ABSTRACT Ecology and management programs designed to track population trends over time 19 

increasingly are using passive monitoring methods to estimate terrestrial mammal densities. 20 

Researchers use motion-sensing cameras in mammal studies because they are cost-effective and 21 

advances in statistical methods incorporate motion-sensing camera data to estimate mammal 22 

densities. Density estimation involving unmarked individuals, however, remains challenging and 23 

empirical tests of statistical models are relatively rare. We tested the random encounter and 24 

staying time model (REST), a new means of estimating the density of an unmarked population, 25 
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using human volunteers and simulated camera surveys. The REST method produced unbiased 26 

estimates of density, regardless of changes in human abundance, movement rates, home range 27 

sizes, or simulated camera effort. These advances in statistical methods when applied to motion-28 

sensing camera data provide innovative avenues of large-mammal monitoring that have the 29 

potential to be applied to a broad spectrum of conservation and management studies, provided 30 

assumptions for the REST method are rigorously tested and met. 31 

KEY WORDS density, human volunteers, mammals, motion-sensing camera, random encounter 32 

and staying time method, REST. 33 

Abundance and density are fundamental ecological parameters that are difficult to measure 34 

because individuals move in and out of sample plots, and not all individuals present at sample 35 

units are detected (Royle and Nichols 2003). Heterogeneity in individual movement and 36 

presence at sample units necessitates estimating and correcting for the probability of detection. 37 

Count data from repeated surveys of sampling units fundamentally inform abundance estimates 38 

corrected for detection. Capture-mark-recapture (CMR) uses the marked individual as the sample 39 

unit with the pattern of captures over time assisting with abundance estimates (Seber 1982). In 40 

these cases, the model allows heterogeneity of capture probability among individuals (Pollock 41 

1982).  42 

  Ambiguity in the area over which researchers estimate abundance can make translating 43 

abundance into density (i.e., number/unit area) less than straightforward. Individuals living on 44 

the boundary of the study area substantially affect density estimates (Efford 2004). Spatially 45 

explicit capture recapture (SECR) models use the spatial pattern in the recaptures of individuals 46 

to estimate probable locations of home range centers within a study area to address this issue 47 

(Efford 2004, Royle et al. 2013). 48 
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Chandler and Royle (2013) built on the SECR model to consider sampling site locations 49 

and their associated count statistics to estimate density without the need for marking individuals. 50 

This model infers the number and locations of home range centers from the spatial 51 

autocorrelation of the count data. Surveyors must space sampling sites so an individual can 52 

encounter multiple traps, in contrast with the assumption of site independence assumed with 53 

previous models.  54 

  Researchers now commonly use motion-sensitive cameras to estimate habitat use, 55 

distribution, abundance, and density for unmarked wildlife populations (Burton et al. 2015). 56 

Minimal human intervention, reduced cost, and simplified logistics make camera surveys 57 

attractive for high profile species of conservation concern or in conditions that prevent direct 58 

observation or capture of individuals. Photos that identify individuals are useful in standard 59 

CMR methods, but photos of species that do not allow for individual identification can also be 60 

used to calculate abundance estimates using SECR models (Royle and Nichols 2003, Royle 61 

2004) and density (Chandler and Royle 2013, Ramsey et al. 2015).  62 

By assuming individuals encounter point detectors randomly, Rowcliffe et al. (2008) 63 

developed the random encounter model (REM). The REM uses independent estimates of travel 64 

speed (obtained through observation), time active each day, group size, and the area of the 65 

detection zone of each camera to relate photos/time to density (Rowcliffe et al. 2008). The model 66 

assumes that samples from each camera are independent and uses count data (photos/unit time) 67 

for estimations but bases estimation on individual movement rather than inferred spatial point 68 

process. The model depends on accurately estimating movement speed, time active, and group 69 

size, necessitating considerable additional effort that may not be possible for many species. 70 

Rowcliffe et al. (2016) present suggestions on feasible approaches.  71 
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Nakashima et al. (2018) modified Rowcliffe’s original method to measure the staying 72 

time of an individual within the detection area of remote cameras. They referred to this model as 73 

the random encounter and staying time (REST) method. The REST model assumes that 74 

researchers place cameras randomly relative to individual movement within the study area. With 75 

this assumption, the residence time of an individual at any given detector is a function of the 76 

duration of time the detector is deployed and the proportion of the study area it samples. Under 77 

the assumption of random movement, residence time scales linearly with the number of 78 

individuals, thereby allowing an estimate of density without the need to estimate rate of 79 

movement, home range size, or individual identity. The model also does not require closure of 80 

the study area in the sense that individuals do not leave or enter the area, but only that 81 

immigration, emigration, births, and mortality are balanced during the study period. 82 

The REST model calculates population density as a function of the residency time the target 83 

species spends in front of a camera. The equation, modified from Nakashima et al. (2018) to 84 

account for potentially different sampling durations and areas between cameras, is: 85 

𝜌𝜌� =
∑ 𝑡𝑡𝑖𝑖𝑛𝑛
𝑖𝑖=1

∑ 𝑇𝑇𝑖𝑖𝑛𝑛
𝑖𝑖=1 × a𝑖𝑖

 , 86 

(1) 87 

where 𝜌𝜌� is the estimated density, n is the number of cameras, ti is the staying time of an 88 

individual at the ith camera, Ti is the time the ith camera was active, and ai is the area sampled by 89 

the ith camera (its 100% detection zone; s in Nakashima et al. 2018).  90 

If a camera records multiple individuals at the same time, the model estimates residency 91 

time independently for each individual. Importantly, calculating the cumulative residence time (𝑡𝑡 92 

in the above equation) does not require identifying distinct residency bouts, eliminating the need 93 
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to define a camera detection, simply sum the time individuals spend in front of each camera. This 94 

method is applicable to territorial and non-territorial species, provided researchers distribute 95 

cameras randomly in relation to animal space-use patterns (i.e., no baiting or placing cameras 96 

only in areas with preferred habitat characteristics). 97 

The REST model assumes that cameras sample habitat proportional to their availability. 98 

The precision and accuracy of estimates to movement within the territory or home range relies 99 

on the assumption of equal probability of a home range existing within the study area (i.e., 100 

homogeneity of the point-pattern describing the distribution of home ranges). Additionally, 101 

detectability within the detection zone of the cameras must be perfect (p = 1). This method also 102 

assumes the detection device does not modify individual movement.  103 

Nakashima et al. (2018) tested the REST model using computer simulations and field 104 

surveys of duiker populations (red forest duiker [Cephalophus natalensis] and blue duiker 105 

[Philantomba monticola]) in Moukalaba-Doudou National Park, Gabon.  The REST model 106 

provided unbiased estimates of abundance for nearly all simulated populations representing 107 

paired and solitary movement, continuous movement, and movement with resting. The REST 108 

estimates from camera surveys of actual duiker populations were similar to estimates made via 109 

line transect surveys. Nakashima et al. (2018) provided strong evidence for the robustness of the 110 

REST method in computer simulations, but they did not know the true densities of the duiker 111 

populations they tested.  112 

We sought to test the REST method using known densities of human volunteers, which 113 

provided us with proof of concept. Human volunteers were advantageous because they allowed 114 

for more realistic movement paths than computer simulations. Our objective was to determine if 115 

movement rate, home range size, and density affected bias and precision of the estimates 116 
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produced by REST. We equipped human volunteers with global positioning system (GPS) 117 

devices and gave them precise movement rules such that home range size and movement rate 118 

were varied.   119 

STUDY AREA 120 

Our test took place at the Louise McKinney Riverfront Park in Edmonton, Alberta, Canada 121 

(53°N 113°W) on 16 and 23 September 2017. The entire park is approximately 4.0 ha in size and 122 

the weather on both days was clear and sunny (~15° C). The study area was approximately 1.5 123 

ha in size, and consisted of flat, open, grassy areas, walking paths, and a pavilion, all of which 124 

were accessible to the volunteers. 125 

METHODS 126 

The Research Ethics Office at the University of Alberta granted approval for using human 127 

volunteers in our test (application number pro00075181). We employed 12 volunteers as proxies 128 

for non-territorial, unmarked terrestrial mammals. We assigned volunteers to use first the entire 129 

park and then half the park as their home range. We designated home range boundaries with 130 

flags. We gave each volunteer either a GPSMap64 or a GPSMap78 unit (Garmin, Olathe, KS, 131 

USA), both of which are accurate within 5–10 m to track their movements every second for the 132 

duration of each scenario. 133 

We conducted 6 scenarios, each scenario being a different combination of movement 134 

rates and home range sizes. Each scenario lasted 16 minutes and included 3 movement patterns 135 

(jogging for 10 minutes and resting for 6 minutes, walking for 10 minutes and resting for 6 136 

minutes, and walking for 16 minutes continuously) performed within 2 home range sizes (0.75 137 

ha and 1.50 ha). We instructed volunteers to move independently of each other during each test 138 

but we synchronized their movement and rest periods.  139 
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We tracked the duration of each scenario using a stopwatch and used a whistle to signal 140 

when subjects were to change movement rates and end each scenario. Because of variation 141 

among volunteers in the time they took to start, stop, and save their individual tracks, each 142 

scenario varied slightly from 960 seconds (16 min; Table 1). We merged tracks collected over 143 

both days according to scenario in ArcMap version 10.5.1 (Esri, Redlands, CA, USA) and 144 

clipped each track to the shortest duration of any given volunteer within scenarios to standardize 145 

the number of points per person per scenario (932 ± 19 [SD] seconds). We created polygons 146 

consisting of 800 cells around each scenario based on the coordinates of the outermost tracks 147 

(Fig. 1). Each cell was approximately 20 m2. We summed the number of points per cell for each 148 

scenario as a proxy of time spent in each cell. If a point fell on the border of 2 adjacent cells, we 149 

randomly assigned it to 1 cell. 150 

We assumed the habitat characteristics in the study area were homogenous during this 151 

study, and detectability was perfect given that GPS units tracked each volunteer and never failed 152 

during the simulations. Volunteers were not attracted to detection devices because we did not 153 

actually deploy any cameras. 154 

We varied human densities to include 2, 6, and 12 people. We varied sampling effort by 155 

varying the number of cells selected randomly as camera deployments. We selected 8, 20, 50, or 156 

100 cells as camera deployment sites, resulting in 1%, 2.5%, 6.25%, and 12.5% coverage of the 157 

study area, respectively. We used 1,000 bootstrap samples with replacement of camera effort in 158 

each scenario of movement speed, human densities, and home range area for 72 different 159 

scenarios in R (R version 3.5.1, www.r-project.org, accessed 10 Oct 2018).  We estimated the 160 

density of human volunteers across each combination of movement speed, true human density, 161 

and home range area using equation 1. We then multiplied the resulting density by the area to 162 
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calculate abundance for comparison to the number of volunteers per scenario. We calculated 163 

means and confidence intervals across bootstrapped samples to estimate abundance and quantify 164 

precision (data and r code available online in Supporting Information).  165 

RESULTS 166 

The REST model provided accurate estimates of human density regardless of movement rate, 167 

home range area, camera effort, or number of volunteers (Fig. 2). Precision decreased when our 168 

sampling effort was low (i.e., 1% coverage). Neither movement rate nor home range size 169 

affected estimator accuracy, although the REST model consistently estimated abundance with 170 

lower precision under walking-and-resting and jogging-and-resting scenarios compared to 171 

scenarios representing homogenous walking speeds. 172 

In scenarios representing human densities of 2 people, we observed the least amount of 173 

error across all movement or home range size. In scenarios with 20 and 50 cameras, as human 174 

abundance in the park increased, precision decreased.  175 

Across all home range sizes and movement rates, the REST method accurately estimated 176 

human densities. We found no effect of home range size on estimator accuracy or precision. 177 

Estimators provided the greatest precision under continuous-walking scenarios across all levels 178 

of camera effort, human density, and home range size. The introduction of heterogeneity in 179 

movement rate did not affect estimator accuracy but did reduce precision.  180 

Not surprisingly, estimator precision increased with camera effort. With 100 camera 181 

cells, confidence intervals were, on average, an order of magnitude smaller than in scenarios 182 

with 8 camera cells (Fig. 2). 183 

DISCUSSION 184 
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The REST method accurately estimated human densities regardless of movement rate, home 185 

range size, and camera coverage in these scenarios. Increased density resulted in decreased 186 

precision because of the increased variability of staying times across cameras. Although 187 

movement rate and home range size did not affect estimator error, estimators were least precise 188 

in scenarios involving resting. Increased precision when volunteers were moving at slower paces 189 

continuously as opposed to moving and resting supports the theory that homogenous movements 190 

rates result in more precise estimates. Nakashima et al. (2018) noted that the REST method may 191 

be less precise for species that have long periods of inactivity because cameras rarely capture the 192 

target animal resting. Our human scenarios partially accounted for this potential bias by 193 

incorporating resting, in which volunteers did not move from their locations for approximately 194 

38% of the survey period during 2 of the scenarios. Despite this lack of movement, the REST 195 

method was still able to estimate density in those scenarios; however, the estimates were less 196 

precise than other movement rates. Further testing of the effects of species with long periods of 197 

inactivity may be warranted. We deviated from Nakashima et al. (2018) by using boot-strapping 198 

rather than likelihood-based quantification of uncertainty. As such, we demonstrate the potential 199 

for unbiased estimation of staying time even where it does not necessarily follow a parametric 200 

distribution. 201 

Nakashima et al. (2018) also suggested that cameras have sensitive sensor settings, no 202 

delay period between photos, or alternatively, take video recordings, and that the effective 203 

detection area be tested in situ according to methods proposed by Rowcliffe et al. (2011). We 204 

excluded potential effects of delayed camera capture rates and imperfect detectability by having 205 

each volunteer tracked every second. Camera capture rates and imperfect detectability, however, 206 

could present challenges in field settings when researchers use real cameras.   207 
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Environmental variation or attributes of the study species may influence detectability. 208 

Dense vegetation and inclement weather can decrease the effective detection areas of cameras, 209 

leading to overestimation of population density. Surveyors commonly clear vegetation blocking 210 

the camera view or deploy cameras in relatively open sites (Rowcliffe et al. 2011, Rovero et al. 211 

2013, Villette et al. 2016). Additionally, researchers must account for the variation in the 212 

detection area of cameras between daytime and nighttime, with nighttime detection areas being 213 

more limited. Regardless of where cameras are placed, researchers need to measure the effective 214 

detection area of each camera in the field to accurately measure population densities (Nakashima 215 

et al. 2018). 216 

Smaller species may be less detectable, resulting in lower capture rates and potentially 217 

causing underestimation, despite being present in the detection area (Tobler et al. 2008, Anile et 218 

al. 2016, Nakashima et al. 2018). Evaluation of the REST model across multiple species would 219 

complement our study for targeting its application.  220 

MANAGEMENT IMPLICATIONS 221 

Obtaining unbiased density estimates of unmarked terrestrial mammal populations continues to 222 

be a problem in wildlife management. Our evaluation of the REST method using human 223 

volunteers indicates the robustness of the method to variation in movement rate, home range 224 

size, and number of individuals estimated. Based on the results of the park scenarios, we suggest 225 

that future tests or applications of the REST method have >1% coverage of the study area to 226 

increase the precision of estimates. This method offers a cost-effective, unbiased means to 227 

estimate animal densities from motion-sensitive camera data without the use of marked 228 

individuals or estimates of home range sizes. The application of the REST method to motion-229 
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sensing camera studies may have the potential to improve monitoring efforts for several species, 230 

provided assumptions are met. 231 
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Figure Captions and Tables 284 

Figure 1.  Merged tracks of 12 human volunteers in the 800-cell polygon from scenario 5. In 285 

scenario 5, the entire Louise McKinney Riverfront Park, Edmonton, Alberta, Canada, was 286 

available to everyone on 16 and 23 September 2017, and the movement rate was walking for 10 287 

minutes and resting (no movement) for 6 minutes. 288 

Figure 2.  Bootstrapped mean estimates and 95% confidence intervals of human densities 289 

including 2, 6, and 12 people with motion-sensitive camera effort of 8, 20, 50, and 100 cameras 290 

across all 6 scenarios of movement rate and home range size in the Louise McKinney Riverfront 291 

Park, Edmonton, Alberta, Canada on 16 and 23 September 2017. Small (purple) and large 292 

(orange) in the legend refer to the home range size available to the volunteers, either 0.75 ha or 293 

1.5 ha, respectively. JogRest, Walk, and WalkRest refer to the movement rates in each scenario 294 

and are differentiated by triangles, circles, and squares, respectively. 295 

  296 
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Table 1. Movement rates of the human volunteers and home range sizes (ha) available in each 297 

scenario on 16 and 23 September 2017 at the Louise McKinney Riverfront Park, Edmonton, 298 

Alberta, Canada, where the cell area (m2) refers to the approximate cell size per scenario. We 299 

recorded the duration of each scenario in seconds (s), and included the number of points tracked 300 

per second (point freq). 301 

  302 

Scenario Home range 
(ha) Movement rate 

 Duration 
(s) 

Point freq 
(s) 

Cell area 
(m2) 

Total area 
(m2)  

1 0.75 Jog 5 min, rest 3 min (2×) 11,424 952 20 16,000 

2 0.75 Walk 5 min, rest 3 min (2×) 11,184 932 19 15,200 

3 0.75 Walk continuously (16 min) 11,268 939 20 16,000 

4 1.50 Jog 5 min, rest 3 min (2×) 11,208 934 20 16,000 

5 1.50 Walk 5 min, rest 3 min (2×) 10,752 896 20 16,000 

6 1.50 Walk continuously (16 min) 11,244 937 20 16,000 
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Summary for online Table of Contents 303 

The random encounter and staying time (REST) method produced unbiased estimates of density, 304 

regardless of home range size and movement rate of human volunteers. Although our tests 305 

suggest the REST method may be a viable means of unmarked mammal density estimation, 306 

further testing of the REST method may be warranted to account for species with varying body 307 

sizes and periods of non-movement. 308 

 309 
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