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Abstract

Comparative social science has a long history of attempts to classify societies and cultures

in terms of shared characteristics. However, only recently has it become feasible to conduct

quantitative analysis of large historical datasets to mathematically approach the study of

social complexity and classify shared societal characteristics. Such methods have the

potential to identify recurrent social formations in human societies and contribute to social

evolutionary theory. However, in order to achieve this potential, repeated studies are

needed to assess the robustness of results to changing methods and data sets. Using an

improved derivative of the Seshat: Global History Databank, we perform a clustering

analysis of 271 past societies from sampling points across the globe to study plausible cate-

gorizations inherent in the data. Analysis indicates that the best fit to Seshat data is five sub-

clusters existing as part of two clearly delineated superclusters (that is, two broad “types” of

society in terms of social-ecological configuration). Our results add weight to the idea that

human societies form recurrent social formations by replicating previous studies with differ-

ent methods and data. Our results also contribute nuance to previously established mea-

sures of social complexity, illustrate diverse trajectories of change, and shed further light on

the finite bounds of human social diversity.

Introduction

The emerging model of “recurrent social formations” postulates that only a small number of

stable social-ecological configurations exist for human societies [1, 2]. The basic idea is this:

one can observe a small set of the same empirical regularities in societies cross-culturally and

independent of geography or time. These regularities reflect social and environmental condi-

tions and how these conditions have interacted to settle into an overall configuration.

The model of recurrent social transformations combines qualitative insights from modern

bio-economic theory with quantitative insights gained using data reduction and algorithmic

techniques from computational science. This empirical approach attempts to avoid the pitfalls

of the widely-critiqued idea that societies evolve through a linear series of progressively more

complex forms toward an ethnocentrically defined endpoint [1–4]. For example, such
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computational analyses on datasets encoding information on social formations have proven

fruitful in the study of social complexity [1, 5, 6]. As these kinds of datasets and analyses con-

tinue to emerge, the robustness of previous results to changes in data and method should be

explored. Recurrent social formations identifiable by only one method may be nothing more

than a mirage—a kind of confirmation bias similar to the phenomenon of p-hacking (wherein

a single analytical method is misused to artificially create results that are almost certainly false-

positive but construed via metrics such as p-values to be “significant”). This article contributes

to assessing the robustness of recurrent social formations to changes in computational meth-

ods and data sets. That is, we use a multi-dimensional clustering algorithm to explore “clumps”

in data on human societies indicative of recurrent social formations, and we then compare our

results with those identified by researchers using alternative methods and datasets.

In the remainder of this paper, we provide background on the model of recurrent social for-

mations, use clustering to reveal and explore statistically significant typologies of past societies,

and we discuss our findings in the context of the conceptual model of recurrent social forma-

tions. Our results indicate that the Seshat dataset is robust in that it produces similar results

using different methods of analysis. However, our analysis also illustrates the potential to build

upon previously-developed methods. In particular, Turchin and colleagues [5] found that the

first principal component of the Seshat dataset (PC1) can serve as a useful time-resolved

approximation for a society’s overall “social complexity.” Our results demonstrate that the

PC1 metric does not necessarily capture nuance in the diversity of how societies are “socially

complex.” Indeed, when comparing across regions, there is significant overlap in PC1 between

societies of different clusters. In some extreme cases, societies in entirely different superclu-

sters can have similar social complexity factor scores. This nuance provided by a combination

of PC1 and cluster trajectories may be of importance for certain research questions. Further,

we find that plotting societies along axes of social “scale” and “non-scale” is a robust process

that reproduces the same results as a 2018 study by Peregrine [1], who similarly conducted a

social complexity cluster analysis on a sample of past societies but using different methods and

source data. In the end, multiple methods can provide an important check against confirma-

tion bias and open-up a broader range of research questions for comparative social scientists.

Background

Comparative social science has a long history of creating typologies of human societies [7]. In

anthropology, 19th century theorists proposed that the diversity of human societies resulted

from a non-Darwinian evolutionary process in which societies evolve more “Culture” over

time at different rates, and Anglo-American societies were viewed as the apex of this universal

shared Culture (e.g., [8]). The clearly ethnocentric typologies that resulted from this theory dis-

credited evolutionary anthropology for nearly a half century. However, in the second third of

the 20th century, anthropologists again began to study cultural evolution and created typolo-

gies of human societies based on empirical characteristics such as family size, levels of political

decision making, and subsistence technology (e.g., [7, 9–12]). Although many of these efforts

have been criticised as functionalist and overly simplistic, many argue that empirical “social

complexity typologies” have a place in modern scholarship [13, 14]. The idea is that compara-

tive social sciences must transition from typologies that are abstract and simple conceptual

aids (e.g., band, tribe, chiefdom) to a rigorous, empirical phylogeny of cultures and the kinds

of forms they tend to take—similar to biology’s transition from pre-Linnean attempts at organ-

ism classification to what is now modern biological taxonomy [13, 15].

The emerging conceptual model of “recurrent social formations” attempts to build upon

past attempts to categorize human societies in two ways. First, the model reconsiders the
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theoretical foundation of empirical typologies by using complex systems theory as a conceptual

foundation. That is, the model sees typologies as a consequence of social-ecological interac-

tions rather than discrete “stages” of evolution. For example, complex phenomena (such as

predator-prey ecologies, gene regulatory networks, weather systems, etc.) are often mathemati-

cally modeled as dynamical systems. These systems are usually discussed with emphasis on the

systems’ attractors—numerical values towards which the systems tend to evolve. Using the

concepts of attractor and of repellor as metaphors, Ullah et. al. [2] use this framework to

develop a cluster analysis of the Standard Cross-Cultural Sample dataset. They observe four

distinct clusters of societies based on features of subsistence, mobility, and demographic vari-

ables which, by analogy, may form attractors in the underlying dynamical system governing

subsistence behavior.

Similarly, Peregrine conducts an exploratory study that conceptualizes variation in human

societies as reflective of adaptive landscapes [1]. Adaptive landscapes describe peaks where the

fitness of some combination of traits is high and valleys where fitness is low (e.g., due to the

interaction of organisms and their environment). In an analysis of the Atlas of Cultural Evolu-
tion, Peregrine plots morphological traits of human societies in terms of a “Technology Factor”

and a “Scale Factor.” The Technology Factor is a composite of variables concerning writing,

land transport, social stratification, political integration, technological specialization, and

money; the Scale Factor is a composite of variables concerning fixity of residence, agriculture,

population density, and urbanization. This study, too, finds two superclusters and several

smaller, more refined clusters of societies in this space that, by analogy, may reflect peaks and

valleys in the adaptive landscape which further correspond with attractors and repellers in the

underlying dynamical system.

Second, researchers have begun to use computational methods to analyse human societies

and identify not only clusters of societies with related attributes but also quantify trajectories

of change in the social complexity of human societies. Rather than assuming evolutionary

stages, this approach attempts to quantify measures of social complexity using an explicit

methodology. For instance, Turchin et. al. [5] conduct a principle components analysis of

social attributes often considered indicators of social complexity. Consistent with earlier work

(e.g., a 1962 scale analysis by Carneiro [16]), they find that these attributes all correlate and

that one dimension accounts for a significant amount of variation in social complexity traits

(the first principle component of a principle components analysis–PC1 or the social complex-

ity factor). In essence, this PC1 metric creates a reasonable way to quantitatively measure and

compare the overall social complexity of societies in different world regions. Although their

study only performs a cursory cluster identification of societies that share similar attributes,

the study does quantify trajectories of change in social complexity and also suggests that such

trajectories share many recurring features cross-culturally.

The above studies suggest that human societies tend to evolve toward a finite set of recur-

rent social formations; however, this possibility needs further exploration. Recurrent social

formations identifiable by only one method or in one dataset may be nothing more than con-

firmation bias. In the remainder of this article, we ask: Do we find recurrent social formations

in the Seshat database that also replicate the trajectories of change in social complexity identi-

fied by Turchin and colleagues? Specifically, our study directly builds on the studies above by

using a novel clustering algorithm to evaluate how robust the observation of super-clusters

and recurrent changes in social complexity are to a change in method and dataset.

First, we use the clustering algorithm in an attempt to replicate Turchin and Colleagues’

results. This assesses whether their results are robust to a change in method of data reduction.

Second, we attempt to replicate Peregrine’s results of two superclusters and several smaller,

minor clusters of societies using the Seshat Database. This assesses whether the observation of
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two superclusters is robust to changing datasets. In the end, our analysis largely replicates pre-

vious findings and adds weight to the emerging model that human societies organize into a

finite number of social-ecological configurations constrained by ecology and social evolution-

ary processes.

Data and methods

We begin with the Seshat: Global History Databank [17]. This dataset encompasses informa-

tion on over 400 polities from 30 sampling locations across the globe. Seshat encodes social

complexity features pertaining to social structures, technologies, information systems, econo-

mies, subsistence strategies, and other variables for each polity. This database is designed to

measure different aspects of societies and evaluate theories of cultural evolution and the evolu-

tion of social complexity [5, 6, 18]. Central to evaluating theories for the evolution of social

complexity is a baseline description of differences in social complexity across cases and over

time [5].

In accordance with prior analyses, our cluster analysis is conducted on a subset of 51 vari-

ables from Seshat that the original authors of the database have deemed reliably identifiable

from the archaeological and historical records [5, 6]. These variables encode information such

as overall population, largest-settlement population, territory, hierarchy, and boolean variables

indicating the presence of various aspects of writing systems, texts in circulation, monetary

systems, public infrastructure, and government extent.

Our analysis is conducted on a derivative version of Seshat we have constructed and named

Shiny Seshat. This iteration upon the original database improves upon the imputation methods

used in previous analyses, primes the data to be more appropriately suited for temporally-

resolved, polity-wise analysis, and patches a number of human-error typographic mistakes in

the original dataset.

Imputation of missing values

Incomplete entries in the dataset are filled in using statistical imputation—a robust method for

performing analysis on incomplete data [19, 20] that has been previously used and explicated

in the context of Seshat data [5]. Data entries containing missing information may be subject

to systemic bias that has led to their incompleteness; thus, statistical imputation can help allevi-

ate bias in data as opposed to simple list-wise deletion of incomplete entries [20]. Particularly

in the archaeological and historical sciences, certain societies and cultures can tend to receive

more scholarly attention than other societies and cultures, and this can manifest in Seshat in

the form of incomplete data. Therefore, imputation is an important process to represent the

greatest amount of social variation in our analysis. However, we were unable to completely

replicate the imputation method used by Turchin and colleagues [5].

Fortunately, we managed to improve upon Turchin and colleagues’ results using a new

open-source imputation tool for Python known as datawig, [21] version 0.1.10. This tool uti-

lizes a deep neural network (DNN) that is especially suited for imputing both numeric and

non-numeric data. The imputer’s parameters (such as number of hidden layers for a feature,

hyperparameter optimization options, or feature encoding options) are customizable, but we

found datawig’s default, largely automatic determination of these parameters to be quite suffi-

cient for our purposes. We specify only to enable hyperparameter optimization and set the

number of training epochs to 1,000.

Central to imputation efforts are the replication of nine “Complexity Characteristics” (CCs)

encoding information on polity population (PolPop), territory (PolTerr), largest-settlement

population (CapPop), hierarchy (Hier), government (Gov), infrastructure (Infra), writing
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(Writing), written texts (Texts), and forms of money (Money), respectively [5, 22]. These CCs

are useful in that they can serve as broad measures of complexity within these domains even in

the absence of completely encoded data. For example, a Writing score is assigned based on the

values of the “Mnemonic devices,” “Non-written records,” “Script,” and “Written records” fea-

tures, but only one of these features need be encoded for a given polity to be assigned a Writing
score.

For each complexity characteristic, we create “regression terms” to input into the imputer

in order to provide additional prediction-improving information during the imputation train-

ing process. These terms are nearly identical to those indicated in Turchin’s piece on fitting

regression models to Seshat ([22] pg. 46). In practice, these terms are simply added as addi-

tional feature columns. They are:

x0;i;t ¼
X

t<t

e� ðt� t� 100Þ=100Yi;t� t ð1Þ

x1;i;t ¼
X

i6¼j

e� di;j=1100Yj;t� 1 ð2Þ

x2;i;t ¼
X

i6¼j

wi;jYj;t� 1 ð3Þ

where xn,i,t is term n for polity i at time t and Yj,t is the value of complexity characteristic Y for

polity j at time t. Here, x0,i,t helps encode the history of Y by summing all temporally previous

values with an exponential discount that grows greater the older the value is relative to t. We

use an exponential discount of e−(t−τ−100)/100 as series in Shiny Seshat are sampled at the scale

of centuries. This produces a factor of e0 for the most recent previous value, e−1 for the second

most recent value, e−2 for the third, etc.

x1, i, t helps encode spatial diffusion of Y between polities and includes a similar exponential

discount factor; δi,j is simply the distance between polities i and j in kilometers, and the 1100

kilometer constant originates from optimization conducted in Turchin’s work [22]. Finally, x2,

i,t helps encode linguistic distance; we let wi,j = 1 if polities i and j share a common language,

wi,j = 0.25 if they share a common language family, and wi,j = 0 otherwise (a value between 1

and 0.25 for common linguistic genus was not included as this is not readily coded in the cur-

rent public version of Seshat).

In previous analyses [5, 22], the fidelity of imputation prediction has been quantified using

the ρ2 metric [23]:

r2 ¼ 1 �

X

i
ðY�i � YiÞ

2

P
ið

�Y � YiÞ
2

ð4Þ

Where each Yi are the actual observations in the test set, �Y is the mean of all Yi, and Y�i are the

predicted values. Using this function, ρ2 = 1 is a perfect prediction, ρ2 = 0 is a prediction just as

good as simply replacing missing values with the mean of known values, and anything less

than zero is a worse prediction than simply predicting all values to be the mean of all Yi. How-

ever, when working with the Seshat data, we find on some occasions that we encounter the

edge-case of �Y ¼ Yi 8 i (when the perfect prediction is the mean of the data), leading to a divi-

sion by zero.

Specifically, this edge-case arises during the imputer’s training step when the equation is

used to optimize predictive fit on segments of data automated via k-fold cross validation.

Every so often, the algorithm happens to sample a subset of data from an integer-valued
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column (e.g., “Administrative levels”) where every data point happens to be the same (e.g., a

subsample of polity-centuries that all happen to have three administrative levels). Thus, the

perfect prediction (three administrative levels) is the mean of the data, and a division by zero

occurs and crashes the imputation program.

Thus, we modify the equation and create a new function, r2
m
, to include this additional case:

r2

m
¼

X

i
� jY�i � �Y j�Y þ 1when �Y ¼ Yi 8 i1 �

X

i
ðY�i � YiÞ

2

P
ið

�Y � YiÞ
2
otherwise

(

ð5Þ

Should the �Y ¼ Yi 8 i edge-case occur, this places r2
m
¼ 1 as a perfect prediction of all values

being the mean with r2
m

increasingly less than one as predicted values diverge from the mean.

In this manner, the usefulness of the metric is maintained in all cases, despite r2
m
¼ 0 being

semantically meaningless in the edge-case.

Once each regression variable is coded for, we begin training and testing the imputer on

data with known values. We estimate the fidelity of each CC prediction using 5-fold cross-vali-

dation. Table 1 indicates these results. In practice, we find that, for this case, r2
m
� r2 � R2.

During exploratory analysis, we discovered that not including spatial and linguistic distance

led to better predictions for every CC except for Texts and Money. We hypothesize this is due

to the imputer’s DNN being somewhat sensitive to including too much irrelevant information

during the training phase. This hints at the possible theoretical consequence that cultural diffu-

sion may, then, be a largely irrelevant factor in the development of many societal characteris-

tics. However, exploring this implication is beyond the scope of this study. Thus, we leave it at

that and only include x1,i,t and x2,i,t for the Money and Texts variables to improve the overall

prediction accuracy.

After each CC is imputed, we further impute every missing value in all other columns in

Seshat, allowing the imputer to use the already-imputed CCs as input. Additionally, the impu-

ter allows for the possibility of imputing non-numeric values. We utilize this to impute cate-

gorical features such as “bureaucracy source of support,” “degree of centralization,” “linguistic

family,” etc. We exclude from imputation only features indicating proper names of cultures,

places, and rituals. Predictive power for the individual variables is comparable to that of the

CCs themselves.

Data cleaning and reorganization

Beyond imputation of missing values, the most immediately recognizable difference between

Seshat and Shiny Seshat is that Shiny Seshat reorganizes information from individual listings

Table 1. Fidelity metrics for the prediction of each Complexity Characteristic (CC).

Complexity Characteristic r2 � r2
m
� R2

PolPop 0.86

PolTerr 0.58

CapPop 0.80

Hier 0.89

Gov 0.92

Infra 0.88

Writing 0.88

Texts 0.95

Money 0.79

https://doi.org/10.1371/journal.pone.0232609.t001
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of data points into a matrix-like format where rows are polities during a specific century and

columns are features. For brevity, we dub each “polity during a specific century” as a “polity-

century,” indicating that the row is not only sociopolitically distinguished but temporally dis-

tinguished as well, e.g. “The Ottoman Empire 1500CE-1600CE” or “Woodland Cahokia

300BCE-200BCE.” This avoids previous ambiguity using the term “polity” without regards to

the polity’s internal chronology, as a single polity’s features will usually take on multiple values

throughout its tenure. Thus, time-resolved analyses are done at the scale of polity-centuries
rather than at the scale of polities.

The following changes are also made:

• Seshat encodes binary features on a scale of “present,” “inferred present,” “inferred absent,”

and “absent.” Mirroring previous work [6, 22], these features are converted to the numeric

forms of 1.0, 0.9, 0.1, and 0.0, respectively

• Values encoded as ranges in Seshat are stored as medians in Shiny Seshat. For example, if

Seshat indicates that a particular polity has between 6 and 7 administrative levels (ranges

such as this typically indicate uncertainty and/or organizational complexity), we encode this

as “6.5” administrative levels. For analytic purposes, this simplifies the encoding while still

representing the full information for nearly all ranges.

• Polity-centuries spanning multiple Natural Geographic Areas (NGAs) are also more clearly

indicated as such in Shiny Seshat in the form of a simple list of NGAs for each polity-century.

If one wishes to compare NGAs instead of individual polity-century (such as we do for clus-

ter trajectories in the following sections), it requires only a few simple data transformations

to wrangle the dataset into an appropriate form.

• We perform a principal component analysis in the same manner as Turchin et. al. [5] and

include the first principal component (PC1) for each polity-century, though this component

differs slightly from the one from Turchin et. al.; the PC1 of Shiny Seshat only accounts for

68% of the variance (our code which performs this is included in S2 File). PC2 through PC6

account for 13%, 7%, 6%, 4%, and 2% of the remaining variance, respectively, while PC7

through PC9 all account for less than one percent of variance. Another difference from the

original dataset is that the eigenvalue for our PC2 exceeds the standard significance thresh-

old of 1.0; see the S1 Appendix for details on the PCA.

Algorithm

Sparse Subspace Clustering (SSC) is a clustering algorithm capable of efficiently dealing with

sparse, highly-dimensional data [24]. The algorithm is resilient to missing, erroneous, and

noisy data, and the algorithm is not overly sensitive to data points near subspace intersections.

The number of clusters k need not be known prior to clustering; however, a handful of hyper-

parameters are still required for the algorithm to function. The algorithm is summarized from

the work of Elhamifar and Vidal [24] in Algorithm 1.

Algorithm 1 Sparse Subspace Clustering (adapted from Elhamifar and Vidal [24])
Input: A matrix of data points Y
1. Solve the sparse optimization program (Eq 8)
2. Normalize the columns of C as ci  

ci
kcik1

3. Form an adjacency matrix W = |C| + |C|T

4: Perform spectral clustering on W
Output: Cluster labels for the data points in Y
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We choose to cluster using SSC as Seshat is, indeed, quite sparse in some categories prior to

imputation, highly dimensional, and contains lower-dimensional “subspaces” with meaningful

interpretations (our typologies in question).

The algorithm operates on the principle of “self-expressiveness” [24]. That is, we start by

assuming that every data point yi can be expressed as a linear combination of every other point

(with a total of n points):

yi ¼ ci0y0
þ ci1y1

þ � � � þ 0 � yi þ � � � þ cinyn ð6Þ

In essence, a greater weight cij indicates that data point yj belongs in the same cluster as yi,
and a weight cij approaching 0 indicates that yj is in a different cluster from yi.

In the semantics of polities as data points, this means the algorithm operates on the assump-

tion that no human society has a single feature of social complexity that is entirely unique.

That is, a polity’s quantitative particularities can always be expressed as some weighted mixture

of the aspects of other polities.

Now, we define a matrix y = [y1� � �yn] and formulate the equation

Y ¼ YCþ Eþ Z; diagðCÞ ¼ 0 ð7Þ

where C is a matrix of weights, E is a matrix to account for error in the dataset, and Z is a

matrix to account for noise in the dataset [24]. We wish to find a C, E, and Z that solve Eq 7,

thus we frame this as a sparse optimization program

min k C k1 þ lek E k1 þ
lz
2
k Z k2

F

such that Y ¼ YC þ Eþ Z; diagðCÞ ¼ 0

ð8Þ

where le ¼ ae=
ffiffiffi
n
p

, lz ¼ az=
ffiffiffi
n
p

, and F indicates the Frobenius norm [24]. We utilize an Alter-

nating Direction Method of Multipliers (ADMM) optimizer (algorithm also provided by Elha-

mifar and Vidal [24]) to solve this program.

Lastly, we formulate a matrix W = |C| + |C|T. This matrix serves as an adjacency matrix for

a graph—effectively turning linear combination weights between data points into edge weights

between nodes. Using a hyperparameterized threshold ρ to determine when a weight is too

small to indicate a connection, we are left with a graph containing a discrete number of con-

nected components. These components encode the clustering [24]. In practice, we simply

count the number of connected components and feed the graph into a spectral clustering func-

tion [25] to create labels for the data points in Y.

Our implementation of this algorithm is available as Python code (S1 File).

Cluster optimization

We begin by sampling from Shiny Seshat the 51 variables of analysis used in prior works (see

Whitehouse et. al. [6] Extended Data Table 5 for a full list of these variables); this is the subset

of data that we will perform clustering on. We then normalize each of these features using

min/max normalization. SSC involves a high number of matrix multiplications, so this pre-

vents floating-point overflow while still maintaining sufficient information to perform cluster-

ing. We also collapse polity-centuries into data points representing the entire base polity by

simply taking the mean across all time periods. Further, we found that including too many

highly-imputed data points diminished the algorithm’s ability to converge on a good cluster-

ing. Thus, for the analysis, we have paired down the dataset to only include data points with at

least 75% encoding for the fifty-one features, leaving us with 271 polities.
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Our primary means of gauging how good a clustering we have is silhouette analysis [26]. A

“silhouette coefficient” between -1 and 1 is calculated for each data point. This coefficient is a

measure of how close a data point is to the center of the cluster it has been assigned. A silhou-

ette coefficient close to 1 indicates that a data point is very near the center of its assigned clus-

ter. Conversely, a silhouette coefficient close to -1 indicates that a data point is much closer to

a different cluster’s center than it is its own cluster’s center. A silhouette coefficient close to 0

indicates that a data point is near a boundary between clusters roughly equidistant between

the centers of its assigned cluster and another cluster.

SSC requires a number of hyperparameters. We use hyperopt, a hyperparameter optimiza-

tion library [27], to select hyperparameters and find a clustering that minimizes the number of

data points with a negative silhouette coefficient. We found, however, that this process does

not converge upon the most optimal labelling but rather a labelling that is “fairly close” to opti-

mal. Thus, after performing automatic clustering, we manually optimize the labeling by iterat-

ing over data points with a negative silhouette to relocate them to the cluster where they have

the highest silhouette. Specially, we simply iterate through each negative-silhouette data point,

re-compute is hypothetical silhouette coefficients were it belonging each of the clusters, and

re-label it to whichever cluster in which it has the highest silhouette coefficient. Alternatively,

using other optimization criteria that do not involve the silhouette coefficient such as MDL or

information entropy would perhaps provide better, more streamlined automatic clustering

should this process need to be carried out again in future analyses.

Fig 1 provides a silhouette plot for each data point. We indicate the most “archetypal” poli-

ties for each cluster in Table 2. These are the polities with the highest silhouette coefficient in

their given cluster. The average silhouette score across all clusters is 0.18. Although no stan-

dard exists for what constitutes a “significant” average silhouette (especially in the social sci-

ences), we can compare this score against a score distribution obtained from performing the

same clustering process on similar data sets constructed randomly.

We construct a dataset in the same shape and general form as our clustering input dataset,

but instead filled with uniformly random values. It contains the same number of rows and col-

umns corresponding to each entry of actual data. For each column, we note the minimum and

maximum values taken on by the actual data, and generate a new uniformly random number

within these bounds for each entry. We then perform optimized clustering on this dataset and

calculate its silhouette score.

We repeat the above process 540 times and collect the results. We find that the mean silhou-

ette score from clustering each of 540 random data sets is −0.15 and that the silhouette score

exceeds 0.18 in only 3.9% of cases. In other words, there is a low probability that we are detect-

ing a “false positive” cluster signal in the Shiny Seshat data. In terms of qualitative significance

of the clustering, we explicate the uniqueness and significance of individual feature distribu-

tions in the following section.

Results

To sum up our results, we conceptually replicate previous studies. We find two equally viable

clusterings with insignificantly different average silhouette coefficients: A five-cluster solution,

and a two-supercluster solution. In this supercluster solution, Clusters 0 and 1 from the five-

cluster solution are grouped into a Supercluster A and Clusters 3 and 4 form Supercluster B,

with Cluster 2 from the five-cluster solution split arbitrarily between the two superclusters.

The five-cluster solution clearly covaries with Turchin and colleagues’ PC1 social complexity

factor. Similarly, we replicate Peregrine’s two supercluster morphospaces. The observation of

recurrent social formations is robust to our new method and change in dataset. We also
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document that “cluster trajectories” tell regional histories of how societies evolve and move

between clusters in the longue durée. These patterns provide a foundation for understanding

the causal forces that drive changes between forms of society.

Cluster analysis vs. the social complexity factor

Using the first principal component (PC1) of the Seshat dataset (which both our analysis and

that of Turchin et. al. [5] found to encode a majority of the data’s variance), we may quantify

each polity’s complexity in terms of the variables encoded in Seshat. The PC1 metric

Fig 1. Silhouette plot for each data point categorizedinto clusters. The dashed line indicates the average silhouette of 0.18.

https://doi.org/10.1371/journal.pone.0232609.g001

Table 2. Archetypal polities. These are the polities which have some of the highest silhouette scores in their respective

clusters.

Cluster # Archetypal Polity Approx. Era Mean PC1

0 Woodland Cahokia 600 BCE–700 CE -2.6

1 Cahokia Proper 1100 CE–1300 CE -1.5

2 Roman Kingdom 700 BCE–500 BCE CE 0.8

3 Papal States 1500 CE–1600 CE 2.6

4 Ottoman Empire 1600 CE–1900 CE 3.0

https://doi.org/10.1371/journal.pone.0232609.t002
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exemplifies the organization of the five clusters into two superclusters, with Clusters 0 and 1

having generally low PC1 values, Clusters 3 and 4 having generally high PC1, and Cluster 2

having a large variance in PC1 “bridging the gap” between the two superclusters (Fig 2). This

trend extends to many of the distributions of the clusters’ complexity characteristics; we gener-

ally see a “clumping” of superclusters with Cluster 2 spanning a large variance in the middle,

or a near-linear scaling of distribution means (S1 Fig).

We also analyze the distributions of Complexity Characteristics (CCs) between clusters (S1

Fig). We see that, for example, social hierarchies within clusters are roughly normally distrib-

uted and that more socially complex clusters tend to have taller hierarchies (Cluster 0 has

shorter hierarchies than Cluster 1, Cluster 1 has shorter hierarchies than Cluster 2, etc). Mann-

Whitney U tests indicate that nearly all distributions of Complexity Characteristics (CCs)

between clusters are unique (p< 0.05 in all cases and p< 0.001 in nearly all cases). What is

more interesting for revealing the nature of these clusters is seeing which distributions are not
likely to be unique; namely, CapPop for Clusters 1 and 2 (p> 0.26), Hier for Clusters 1 and 2

(p> 0.11), Money for Clusters 0 and 1 (p> 0.12), Money for Clusters 2 and 3 (p> 0.21), Writ-
ing for Clusters 0 and 1 (p> 0.35), and Writing for Clusters 3 and 4 (p> 0.26).

These results indicate two things. First, there is clear reason to differentiate subclusters

within their superclusters, but the Money variable may be measuring something that unifies

clusters into superclusters in the first place. Second, it seems the development of a written

script is almost synonymous with a society existing in any of Clusters 2, 3, or 4. Whether this

relationship is causal or simply highly correlated is yet to be explored.

Table 2 lists some of the most archetypal polities in each of our four clusters. These polities

are considered among the best fit data points in their respective clusters, and are thus especially

representative of the typical quantitative characteristics of the polities in each cluster. This

allows us to discuss cluster characteristics in terms of actual historical examples. The Seshat

Knowledge Graph [17] provides qualitative info on these polities.

Exemplary of Cluster 0, Woodland Cahokia is the period prior the rise of the urban city of

Cahokia proper. Populations were small and foraging was important for subsistence in this

period. Cultures in this period practiced mound-building and pottery, and there is evidence

for some high-status burials and crop cultivation in the latter half of the period. Cahokia

proper is exemplary of Cluster 1, with the sudden emergence of Cahokia as a immense and

densely populated center with a population capable of great feats of cooperation such as

mound-building and constructing large wooden palisades.

The Roman Kingdom period stands out as a Cluster 2 society as the small, disjoint villages

of the Copper, Bronze, and Iron age (Cluster 0 societies) give way to the beginnings of Rome

Fig 2. Distribution of Social Complexity (PC1) values for clustered polities.

https://doi.org/10.1371/journal.pone.0232609.g002
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as a city-state and, following the Kingdom period’s conclusion, to the rise of the Roman

Republic (a Cluster 3 society). Despite Rome’s classification as a Cluster 4 society during the

Principate and the Dominate, we see a return to Cluster 3 following the Empire’s collapse and

a thorough settling-in to this cluster as the Papal States become quantitatively exemplary of

Cluster 3 (see Fig 3 to follow this journey).

The Ottoman Empire stands out with the highest silhouette score in Cluster 4. The vast ter-

ritory of the empire stands in contrast to the relatively small region of the Italian peninsula

encompassed by the Papal States. Although the Ottoman empire had a shorter religious hierar-

chy in comparison to the Papal States, political hierarchies are matched or greater. Further, the

Ottoman Empire was consistently a unitary state throughout its tenure, whereas the Papal

States’ degree of centralization fluctuated over the centuries from strong singular bureaucra-

cies to loose associations of cities. Yet, both of these Supercluster B societies represent a much

greater state of social complexity than societies of Supercluster A.

Further, the clustering allows us to create a kind of analog for the social complexity trajecto-

ries of natural geographic areas (NGAs) provided by the PC1 metric (Figs 3, 4, 5 and 6). These

cluster trajectories illustrate a similar journey through time of cluster membership for the poli-

ties occupying an NGA. Temporally, NGAs almost always begin in Cluster 0 and eventually

move on to the other clusters. Long-term shifts in cluster membership are usually accompa-

nied by large shifts in PC1 (such as with Fig 3), whereas more rapid fluctuations between clus-

ters usually are accompanied by a relatively stable, if noisy, PC1 (such as with Fig 5). Notably,

societies never remain in Cluster 2 for the amount of time recorded for the other clusters, sug-

gesting that societies in Cluster 2 are perhaps in an unstable or transitional state. In all cases,

time spent in Cluster 2 is typically limited to 200-500 years, whereas time spent in all other

clusters can stretch on for millennia (Fig 7a). Further, when accounting for all trajectories, we

observe cluster shift frequencies that indicate the vast majority of societies leave Supercluster A

without returning, societies tend to pass through Cluster 2 on to Supercluster B, and a majority

of societies do not leave Supercluster B once they have entered, and those that do are likely to

return (Fig 7b).

Fig 3. Cluster trajectory for Latium.

https://doi.org/10.1371/journal.pone.0232609.g003
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Not all geographic areas are very complete in their cluster trajectories due to their data

sparseness. The trajectories presented here have been chosen as they are among the most com-

plete trajectories and display dynamics exemplary of their siblings (see the S3 File for all gener-

ated cluster trajectories).

The social complexity morphospace

Building from our cluster analysis, the data replicate the observation of an empirical morpho-

space of societal scale and technology as observed in a 2018 study by Peregrine [1]. Peregrine’s

Fig 4. Cluster trajectory for the Paris Basin.

https://doi.org/10.1371/journal.pone.0232609.g004

Fig 5. Cluster trajectory for Kachi Plain.

https://doi.org/10.1371/journal.pone.0232609.g005

PLOS ONE Recurrent social formations and their evolutionary trajectories

PLOS ONE | https://doi.org/10.1371/journal.pone.0232609 May 13, 2020 13 / 19

https://doi.org/10.1371/journal.pone.0232609.g004
https://doi.org/10.1371/journal.pone.0232609.g005
https://doi.org/10.1371/journal.pone.0232609


Fig 6. Cluster trajectory for Cahokia.

https://doi.org/10.1371/journal.pone.0232609.g006

Fig 7. (a). The mean consecutive time societies spend in each cluster. (b) Diagram of the total number of observed societal transitions

between Supercluster A, the transitionary Cluster 2, and Supercluster B. Arrow width is proportional to each count.

https://doi.org/10.1371/journal.pone.0232609.g007
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study analyzes a different dataset, the Atlas of Cultural evolution, and uses a different cluster-

revealing methodology involving Guttman scaling and morphospace analysis. The Atlas
encodes similar information to Seshat; to help reduce the data’s dimensionality, Peregrine uti-

lizes scale and technology factors derived from the Murdock-Provost scale of cultural com-

plexity [28] by Chick [29]. From Peregrine’s data, the Technology Factor is a composite of

variables concerning writing, land transport, social stratification, political integration, techno-

logical specialization, and money; and the Scale Factor is a composite of variables concerning

fixity of residence, agriculture, population density, and urbanization.

We present simple, roughly analogous alternatives to Peregrine’s Scale and Technology fac-

tors derived from Seshat data alternatively named factors of “Scale” and “Non-scale” for

greater clarity and rigor. We categorize Seshat’s population, territory, and hierarchy features as

features of scale and all other features (such as variables concerning infrastructure, writing,

and economy) as features of non-scale. In the same manner as we did prior to clustering, we

then min/max normalize all features of scale to be between 0 and 1. We then create a scale fac-

tor for each polity by simply summing together each polity’s normalized scale features. Since

all non-scale features are binary in nature (Shiny Seshat encodes them as present with a 1 and

absent with a 0, with varying degrees of uncertainty assigned intermediary values), we finally

assign polities a non-scale factor that is analogous to the total number of non-scale features

that are listed present for each polity. This method is further replicated by creating axes of nor-

malized Scale CCs (PolPop, PolTerr, CapPop, and Hier) and Non-scale CCs (Govt, Infra, Writ-
ing, Texts, and Money).

In Fig 8, we plot polities along the axes of scale and non-scale factors. This plot shows

almost precisely the same morphospace curve as Peregrine’s study [1], and the plot also shows

that our own clusters are quite clearly clumped together in this space. Density analysis of the

space exemplifies the two superclusters that polities tend to exist in, as well as an additional,

smaller smattering between the two clusters representing the centroid of Cluster 2. These

results are consistent with the proposition that human societies are well described by recurrent

social formations driven by underlying social-ecological interactions.

Discussion & conclusion

In this analysis, we have algorithmically uncovered discrete clusters of societies based on fea-

tures of government, economy, technology, religion, military, information systems, and popu-

lation variables provided by the Seshat: Global History Databank. Analysis indicates that

solutions of two and five clusters are the best fit to Seshat’s data, with lower-complexity Clus-

ters 0 and 1 in the first supercluster, higher-complexity Clusters 3 and 4 in the second super-

cluster. Cluster 2 is a kind of intermediary, “transient” cluster of societies transferring between

the two superclusters. Results hint at the possibility of the development of a written script play-

ing a role in the shift from the first supercluster to the second, although further exploration is

needed to determine if this relationship is causal or simply highly correlated.

Our cluster trajectories indicate that, while Seshat and the corresponding Social Complexity

(PC1) metric are resilient to differing methodologies, the PC1 metric does not always capture

much of the diversity between societies. Indeed, two societies with different technologies,

social organizations, and cluster membership may be calculated to have a near-identical PC1.

Tying in cluster analysis to study societies in terms of both PC1 and typology may be of use to

scholars seeking to utilize a more comprehensive approach to quantification. For example,

large changes in PC1 were shown to cross-culturally precede the development of judgemental

deities [6], thus contradicting the Moralizing Gods hypothesis. We hypothesize that these large

changes in PC1 may also temporally coincide with shifts in cluster membership.
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We offer the interpretation of our results within the framework of dynamical systems the-

ory. We hypothesize that there exists an underlying model with attractors in the space of scale

and non-scale that manifests in the form of the clusters that we have found. With this interpre-

tation, our analysis is ultimately more exploratory than explanatory. Though, our results offer

robustness to the theory behind recurrent social formations. Our methods and dataset differ

wholly from those of the study by Peregrine [1], yet we seem to observe the very same phe-

nomena of social complexity morphospaces. In the future, predictive mathematical models

should be constructed to describe the attractors that lead to clumping in the morphospaces

and shed light onto the dynamics that create these apparent “social steady-states”.

Fig 8. The empirical morphospace of cultural complexity: All datapoints by cluster (top plots), per-cluster probability

density (middle plots), and overall probability density (bottom plots).

https://doi.org/10.1371/journal.pone.0232609.g008
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Supporting information

S1 Fig. Distributions of Complexity Characteristics (CCs) across clusters. Using a kernel-

density estimation.

(TIF)

S2 Fig. PC2 plotted against PC1with datapoints by cluster (top), per-cluster probability

density (middle), and overall probability density (bottom).

(TIF)

S1 File. Clustering and plot generation code. We include our Python 3 implementation of

the clustering algorithm and all analysis and plot-generation code.

(ZIP)

S2 File. Shiny Seshat scrubbing code. We include our Python 3 program that begins with the

original, untampered Seshat database and performs the entire process of turning it into Shiny

Seshat (including all error correction, Complexity Characteristic creation, imputation of miss-

ing values, etc.).

(ZIP)

S3 File. A complete collection of cluster trajectories. We include trajectories for all Natural

Geographic Areas (NGAs) for which there is sufficient data (all polities with at least 75% com-

plete encoding for the 51 features of analysis; see the Data and methods section for details).

(ZIP)

S1 Appendix.

(PDF)
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