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Abstract— The Advanced Video Laryngoscope is designed to 

address the high stress situation of an inexperienced healthcare 

provider performing an intubation on a patient. The technology 

is superior to current video laryngoscopes in that it utilizes 

machine learning techniques to guide the healthcare provider in 

real-time, providing augmented reality cues to anatomical 

features, feedback to prevent critical levels of deoxygenation of 

the patient, and an automated system to assess the difficulty of 

airway and call on the assistance of other physicians if first-pass 

intubation is not successful. By providing real-time assistance to 

the operator, this device will increase the success rate of first-pass 

intubation and decrease the risk of complications for the patient. 

Index Terms — intubation, laryngoscopy, object detection, 

YOLO algorithm 

I. INTRODUCTION 

Intubation is frustratingly dangerous and difficult to get 

right; 400,000 procedures require three or more attempts, and 

220,000 of these difficult intubation patients die. Complication 

rates increase dramatically with multiple intubation attempts; 

it is paramount that first-pass intubations succeed [1]. 

Laryngoscopy is a technique used to allow a health care 

provider a view of the throat, specifically the region of the 

vocal folds. The procedure is often performed to assist in 

intubation, the delivery of a tube directly to the airway through 

the vocal folds; this is used to oxygenate the patient. 

Laryngoscope tools were developed over 75 years ago and 

were later augmented with image recording hardware and a 

screen to allow the caregiver a visualization of the airway. 

The additions of optics created an leap in laryngoscopy 

technology. The developments ameliorated the critical 

weakness of traditional laryngoscopes: the lack of 

visualization of the vocal cord and esophageal region during 

intubation [1, 2]. However, when comparing first-pass success 

rates, the ability of the health care provider to place a tube in 

the airway on the first try, of video and direct laryngoscopes, 

the outcomes vary. Some studies indicate an improved first-

pass success rate [3] while others show little to no benefit [4, 

5]. Furthermore, some studies have even indicated an 

increased risk of complications with video laryngoscopes [4, 

6]. Effectively, studies have demonstrated that the core goal of 

laryngoscopy or “first pass success rate” was not significantly 

impacted by these developments. It should be noted that the 

studies reporting positive results with use of the video 

laryngoscope allowed users to choose their method, direct or 

video laryngoscopy; however, studies that assigned the 

 
 

intubation method randomly to users, reported decreased 

success rates. 

Interestingly, studies have shown that video laryngoscopy 

led to a greater increase in first-pass success rate for 

inexperienced healthcare providers [3], such as EMTs and first 

and second year ER Residents. Indeed, these individuals must 

often perform intubations in high stress situations with limited 

guidance and must act as first-responders. Mistakes that often 

occur with inexperienced healthcare providers include 

insertion of the endotracheal tube into the esophagus or 

inserting the tube through the vocal folds at the incorrect depth 

leading to low levels of oxygenation for the patient. 

Additionally, a stressful situation may cause the healthcare 

provider to lose track of time when performing a difficult 

intubation; it is imperative that the intubation process is done 

in a timely manner or the patient may suffer brain injury or 

death. Indeed, it is difficult to successfully perform an 

intubation on a first pass, thus patients are more likely to 

experience complications if intubation is not done correctly. 

The risk of complications increases dramatically with every 

failed intubation [7], thus it is essential to correctly place the 

intubation tube into the trachea on the first attempt. Less 

significant complications, such as tracheal injuries, can cost a 

hospital $2,000, and a patient approximately $11,000 if 

readmission to the hospital is necessary [8]. Additional 

complications include brain damage or death, which may cost 

hospitals millions of dollars in compensation [9]. This is in 

addition to the patient's suffering. Therefore, it is in the best 

interest of patients, hospitals, health care professionals, and 

insurance providers that intubations succeed. 

A. A Smarter Laryngoscope 

The Advanced Video Laryngoscope is the next evolution of 

video laryngoscopes. The Advanced Video Laryngoscope is 

designed to improve first pass success rates by not only 

allowing the caregiver to visualize the airway, but to receive 

real-time guidance and feedback in a stressful procedure with 

anatomical variation. With the use of artificial intelligence, 

our laryngoscope records the patient’s unique anatomy, and 

overlays visual cues on the screen, to guide the caregiver in a 

time-efficient manner. If needed, this device will be able to 

call on assistance of another physician. 

This device is unique in its use of artificial intelligence and 

deep learning neural networks. The intubation region may 

vary immensely from patient to patient as a result of obesity, 

tumors, trauma, and mucus or saliva buildup. Each of these 

situations may lead to a difficult intubation that the caregiver 

has not yet experienced; the Advanced Video Laryngoscope’s 

use of machine learning can account for all of these degrees of 
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variation and guide the user through a successful first-pass 

intubation in real-time. Therefore, the patient will have 

reduced risks of complications as a result of intubation. 

II. METHODS 

A. Data Collection Device 

In order to build an airway management dataset, an 

automatic data collection device was designed and 

implemented in the University of Utah hospital. The device 

was designed to be compatible with a variety of video 

laryngoscopy systems to collect high-fidelity video data 

without needing to interact with health care providers [15]. In 

this way, data is collected more consistently, and the workload 

of providers is not affected.  

Additionally, it was necessary to design the device in such a 

way as to run a trained neural network for real-time use. The 

device includes a micro-processor which can store only 

limited amounts of data at any one time. Overloading the 

system could potentially affect the performance of any neural 

network programmed into the device. Hence, a system was 

developed to automatically upload the procedural data from 

the device to our server each day. The data from that day 

would then be cleared from the device and prepared to collect 

new procedural data for the next day.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

B. Data Processing and Annotation 

Once the data was collected by the device, the data was 

stored in a secure, HIPAA compliant workstation, and ready 

for processing. Videos were split into frames, and redundant 

frames were removed. Furthermore, frames with patient 

identifiers were removed.  

An annotation team consisting of senior medical students, 

anesthesiology residents, and anesthesiologists was formed to 

annotate images from intubation videos. Each annotator would 

be assigned a set of images to identify and label features. 

These features include airway anatomy such as the epiglottis, 

arytenoids, vocal folds, as well as airway management tools 

such as an endotracheal tube and introducer. Additionally, 

features to be labeled included indicators of trauma such as 

blood and bruising.  

Each image was classified by two annotators, one to 

identify anatomical features and place bounding boxes around 

them, and another to tighten or correct the location of the label 

bounding box. In this way a database was created, and two 

datasets were developed for neural network training. There 

was a small initial dataset composed of 32 patient cases which 

contained ~280 images with 4 classes, and a large dataset 

composed of 114 patient cases which had ~1700 images with 

11 classes. The large dataset was composed of 1459 instances 

of the epiglottis, 1756 instances of the vocal cords, 963 

instances of an endotracheal tube, 1689 instances of 

arytenoids, 190 instances of an introducer, 108 instances of the 

trachea rings, 142 instances of blood, 100 instances of an NG 

tube, and 108 instances of the esophagus 

Furthermore, a third dataset was formed by performing 

augmentation techniques on the large dataset. Specifically, the 

color, hue, and saturation of images within the dataset were 

randomly altered to introduce additional variability into the 

dataset, which could not be naturally collected from the 

intubation procedure. Such augmentation to the data could 

improve the performance of the object detection models, 

thereby leading to improved real-time guidance cues and 

assistance to healthcare providers.  

The datasets were split into training and testing sets 

composed of 90% and 10% of the datasets, respectively. 

Testing the predictive performance of a trained network was 

done so on test set images, images not utilized in training. The 

verification metrics were determined from performance on the 

training set, during training time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

C. Anatomical Feature Object Detection 

In order to build an anatomical feature recognition system 

for real-time use, it was necessary to choose a neural network 

which balanced accuracy and performance with processing 

time. The YOLOv3 (you only look once) algorithm has such 

capabilities [14]. The YOLOv3 algorithm reduces the multi-

step process of detecting a feature and its location in context to 

other features in the image, which is common in other object 

detection algorithms. This consolidation of multiple pipelines 

Fig. 2.  Workflow of collecting, storing, and processing procedural, 
high-fidelity data from VLs for machine learning. 

Fig. 1.  System to collect, store, and send procedural data to data 

management system for future processing. System device connects to 
video laryngoscope tower.  
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increases the algorithm’s efficiency with processing real-time 

data.  

In addition to the standard YOLOv3 model which utilizes 

the Darknet-53 architecture, we looked at the YOLOv3-tiny 

model [14] which reduces the number of convolutional layers 

present in the architecture. This reduction in layers leads to 

improved processing time, which is useful for real-time 

applications, but with potentially poorer accuracy and 

performance for anatomical feature recognition.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D. Neural Network Verification  

When determining the performance of our neural networks, 

several verification metrics were calculated for each network 

trained on the small dataset, the large dataset, and the 

augmented large dataset. These metrics include values for 

Intersection over Union (IoU) (1) which determines how well 

a trained network places a predictive bounding box over a 

feature, and then compares the placement to ground truth 

labels from the expert annotators. This value ranges from 0-1, 

with one being a perfect overlap of trained network prediction 

to expert annotation.  

Additionally, precision (2), recall (3), and F1-score (4) 

values were calculated. Each of these values is an indicator for 

accuracy and performance by considering the number of true 

positives (TP), false positives (FP), and false negatives (FN) 

predictions the trained network makes during verification 

testing. Mean average precision (5) value determines the 

performance of the trained network for predicting all classes 

present in a dataset. The mean average precision value is 

defined as the summation of some threshold, k = 1 to N, of the 

precision at threshold k, P(k), times change in recall at 

threshold k,  ∆r(k).  

 

 

 

 

 

 

 

 

 

Furthermore, we determined total detection time and 

average inference time for all models when trained on the 

three datasets. Total detection time is the time it takes a 

trained network to process predictions for all images in a 

dataset. The average inference time is the time it takes a 

trained network to make all predictions for a single image. 

These time values are indicators for how well an algorithm 

would perform with real-time tasks.  

III. RESULTS 

The three tables below describe the six combinations of 

YOLOv3 models and datasets. Table 1. describes the 

performance of each model combination for each class in the 

associated dataset, as well as the mean average precision value 

for each combination. 

When training the standard Yolov3 network model on the 

large dataset of approximately 1700 images and eleven 

classes, the model performed well. As seen in Table 2., the 

mean average precision of the model lies above 85%; 

precision, recall, and F1-score values all lie at a value of 0.90 

and above. The total detection time when performing 

verification testing of the training set was 44 seconds (Table 

3). While the accuracy is immensely high, the detection time 

is a bit lacking, which is not ideal for real-time processing.  

Tables 1 and 2 display the results of training the large 

dataset on the YOLOv3-tiny model. The mean average 

precision is slightly below the 85% value. However, the 

precision, recall, and F1-score of this model are at a value of 

0.90 and above. At a value of 14 seconds, the total detection 

time of the large dataset on the tiny model is substantially 

lower than that of the YOLOv3 standard model. Indeed, the 

accuracy of the YOLOv3-tiny model is on par with the 

standard YOLOv3 model, but with a far improved processing 

time. This is indicative that the YOLOv3-tiny model would be 

useful for real-time use.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 1 and 2 display the results of training the Yolov3 and 

Yolov3-tiny models on the small dataset, containing less than 

300 images and only 4 classes. While the standard Yolov3 

model performs decently well, though mean average precision 

is down to 69.89%. The Yolov3-tiny model, however, 

IoU = TP/(FP +TP +FN)  
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Fig. 3.  YOLO algorithm determines location and classification of 

object in an image. YOLO trains both components within the same 
network, improving processing time. 
 

Table 1.  Comparison of feature recognition and mean average 

precision. 
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performed quite poorly. Mean average precision dropped to a 

value below 20%. A comparison of performance for the 

standard Yolov3 model on small and large datasets can be 

seen in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

It was expected that the models trained on the large datasets 

with augmented data would perform as well if not better than 

the models trained on the standard large dataset. 

Augmentation of data provides additional variability to the 

dataset which may have not been captured traditionally from a 

video laryngoscope. Indeed, the YOLOv3 standard model 

trained on the augmented large dataset had the greatest mean 

average precision value of all combinations and had the 

greatest value for all verification metrics.  

 

 

Interestingly, the YOLOv3-tiny model performed better 

when trained on the standard large dataset rather than the 

augmented large dataset. Additionally, this combination had 

the best inference time.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IV. CONCLUSION 

A. Performance Outcome  

When comparing the various combinations of algorithms 

and datasets for training, the YOLOv3-tiny algorithm trained 

on the small dataset performed the worst. This is 

demonstrative of the necessity for balance between size of 

dataset and how deep the network is. If a shallower network 

trains on a limited dataset, the performance will likely be poor, 

compared to a deep network trained on a limited dataset, or a 

small and efficient network trained on an extensive dataset. It 

should be kept in mind, however, that deep networks trained 

on smaller datasets tend to overfit thereby decreasing how 

generalizable the model is. 

 The YOLOv3 algorithm trained on the augmented large 

dataset performed with the greatest mean average precision, 

though training and processing time with this algorithm are 

more extensive. The YOLOv3-tiny algorithm trained on the 

standard large dataset performed with a mean average 

precision >.80 and had the shortest inference time. The 

performance of the tiny algorithm in both accuracy and 

processing time are indicative of its potential for use in 

practical applications such as the advanced video 

laryngoscopy device. The YOLOv3-tiny algorithm will be 

used in the continued development of this device and system.  

 

 

B. Limitations 

When training and testing the models, the datasets were 

split into two sets for training and testing. This limits the 

number of images the networks are trained on. Additionally, 

all verification metrics were calculated from training 

performance, though visualizations of predictive bounding box 

placement were made on test images, not used for training of 

the networks. In the future, cross-validation techniques will be 

used, which utilize the full extent of the dataset for training 

and verification, useful for limited data. In this way, we may 

optimize the training of our network with full use of our 

dataset and obtain a better representation  of performance and 

accuracy for our network when detecting anatomical features.  
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