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Abstract – High-dose propofol is being investigated for 

its potential antidepressant effect. Propofol is titrated 

to induce burst suppression, a specific EEG pattern. 

However, propofol is difficult to dose due to 

uncertainty in each patient’s pharmacokinetics (PK) 

and pharmacodynamics (PD), and the lack of a 

commercially available monitor of propofol 

concentration. Clinicians currently infer the proper 

drug dose after observing the EEG response to the 

given dose. In this report we share our development of 

an automated controller to optimally administer 

propofol-induced burst suppression. We designed a 

deep deterministic policy gradient (DDPG) algorithm, 

which includes two deep neural networks and relates 

a 2-dimensional action space with a 3-dimensional 

state space. Our DDPG prototype did not satisfy our 

minimum training criteria. However, we share our 

diagnosis of current limitations in training a DDPG-

based RL agent to administer propofol to PK-PD-

simulated in silico patients. We also discuss potential 

solutions to improve RL agent training and 

performance.  

 

I. CLINICAL BACKGROUND 

 

A recent open-label clinical trial at the University 

of Utah demonstrated potential efficacy in propofol’s 

antidepressant effects [1], which are being further studied 

in a randomized controlled trial [2], along with revised 

dosing strategies for propofol.  In the interventional 

group, high-dose propofol is administered to induce a 

specific burst suppression ratio (BSR), which is 

monitored and measured by the BIS™ Monitor 

(Medtronic, Dublin, Ireland), for a specific duration of 

time. Burst suppression is an EEG pattern with alternating 

periods of bursts and quiescence [3], which is similar to 

the EEG patterns observed in electroconvulsive therapy, 

and can alternatively be induced by anesthetics like 

propofol [4] or isoflurane [5] at higher doses.   

 
Figure 1. EEG recording of propofol-induced burst suppression during a high-

dose treatment. The alternating periods of bursts and quiescence are segmented, 

then the ratio is determined by dividing the duration of suppressed EEG activity 

by the duration of the entire epoch of 60 seconds. 

 

Titrating propofol to execute the treatment 

protocol is challenging, because patients' 

pharmacokinetics (PK) and pharmacodynamics (PD) vary 

[6, 7], and cannot be determined easily. Without 

technological assistance to administer propofol, clinicians 

are limited to their intuition and experience. There is 

neither a patient-specific nor standardized process to 

accurately and reliably control propofol-induced burst 

suppression (PIBS). This challenge impacts our clinical 

investigation of propofol’s antidepressant effects.  

 

II. TECHNICAL BACKGROUND 

 

Dosing Based on PK-PD Modeling  

 

PK-PD models can offer a way to conceptualize 

and estimate a patient’s BSR response to administered 

propofol. Parameters from published PK models can be 

individualized to a specific patient by relating the 

propofol administered to the BSR observed in the patient's 

EEG. Effect site concentrations estimated based on the 

individualized PK model can then be used to estimate the 

patient’s pharmacodynamics. Based on individualized 

PK-PD models, the propofol administration can be 

adjusted to achieve the desired levels and durations of 

burst suppression. 

 

The main limitation of this approach is that 

individualizing model parameters would require a careful 

experimental design, which is not practical in the clinical 
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Figure 2. PK simulation of an administered propofol bolus, illustrating the 

accumulation of propofol in the central compartment (red) and in the effect-site 

compartment (blue). Drug accumulation in the effect-site lags behind the 

accumulation of drug concentration in plasma [7].   

 

 

 
Figure 3. An example of a sigmoidal PD Hill Curve, relating effect-site 

concentrations to BSR. The concentration-response relationship is nonlinear 

and less sensitive to effect-site concentration changes at the BSR extremes. PD 

model parameters vary between and within patients.  

 

setting. Neither plasma nor effect-site concentrations can 

be verified, because monitors for real-time propofol 

concentration monitoring are not available. Without any 

previous knowledge of how a particular patient responds 

to a drug, clinicians have to rely on population-based 

assumptions.  

 

Without prior individualized estimations of a 

patient’s PK-PD parameters, we can still apply PK-PD 

principles to guide decision making. We can also apply 

known, population-based distributions of PK-PD 

parameters and use machine learning to develop a 

controller that is robust enough to overcome the 

challenges of variability, uncertainty, and nonlinearity in 

PIBS. 

 

Reinforcement Learning  

 

Reinforcement learning (RL) is an intuitive goal-

oriented control technique, which has demonstrated 

proficiency in solving challenging robotic tasks [8] and 

recently in controlling propofol anesthesia [9]. Without an 

explicit control algorithm or an individualized model of 

the patient, an RL “agent” may be able to learn optimal 

behavior on how to dose propofol and control BSR. The 

RL agent learns through experience from a reward 

function and observations from the environment.   

 

 
Figure 4. Block diagram illustrating the general structure of an RL agent’s 

interaction with the environment. The Reward is the feedback that enables 

training and adjusts the determination of future actions.  

 

Though the general structure of reinforcement 

learning is relatively simple, we must integrate the 

method with a simulated patient-environment; and 

properly structure the state space, action space, and 

reward function to effectively train the RL agent. We 

must also consider human factors, when deploying a RL 

agent in the real world.  

 

For example, for commercializing an automated 

dosing system, it may be more practical if the clinician is 

kept in the control loop, due to regulatory concerns. In this 

case, clinicians would manually administer propofol, 

while the RL agent provides guidance to their decision 

making. The number of recommended dosing 

adjustments should be minimized and should not 

overburden the clinician.  

 

III. OBJECTIVES 

 

In this report, our objective is to develop and 

successfully train a RL agent on simulated patients of the 

same age, weight, and sex. Specifically, we seek to train 

the RL agent to optimally administer propofol and target 

a desired BSR. We hypothesize that our algorithm can 
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train a RL agent to reduce the average-absolute BSR error 

to <5%. 

 

IV. METHODS 

 

Create Simulated Patient   

 

 Published PK-model parameter distributions [7] 

and our group’s own estimations of ke0 (mean ± SD of 

0.136 ± 0.027 1/min), Hill coefficient (6.57 ± 1.70), and 

EC50 (7.40 ± 1.61 mcg/mL) were used to simulate the 

pharmacokinetics and -dynamics of 250 female patients 

with a height of 187 cm, age of 42 years, and weight of 

96 kg. 

 Prior to any agent action, each simulated patient 

received a standard induction: bolus of 3 mg/kg and 

infusion of 300 mcg/kg/min. 

 

 

Define RL State and Action Spaces 

 

The RL state space is defined as: 

1) BSR(t) – Target  

2) |BSR(t) – Target| – |BSR(t-5 seconds) – Target| 

3) Infusion(t) 

The BSR Target was defined as 80% BSR. 

 

The first state-variable tracks the proportional 

BSR error over each time step. The second state-variable 

tracks the change of the absolute BSR error over the last 

5 seconds. The third state-variable tracks the represents 

infusion rate at time t. Though the infusion rate is not 

directly changed by the patient-environment, we believe 

that knowledge of the infusion rate can contribute to the 

RL agent’s learning.  

 

The RL action space is defined as: 

1) Bolus, 0-100 mg 

2) Infusion Rate, 0-400 mcg/kg/min 

 

The time step was defined as 60 seconds.  

 

We determined our action space to reflect the 

real-world decision making in our clinical investigation: 

In order to control BSR, clinicians either delivered a bolus 

dose of propofol or they adjusted the infusion rate. In our 

simulation, the RL agent applies both a bolus and infusion 

rate at each time step, within the ranges specified above. 

 

Create a RL Agent 

 

We applied a deep deterministic policy gradient 

(DDPG) algorithm [10] to create a reinforcement learning 

agent, which can handle continuous-multidimensional 

state and action spaces to solve complex problems 

 

The DDPG-based RL agent is made up of two 

deep neural networks: the actor and the critic. When a 

DDPG-based RL agent processes its observations (states) 

from the environment (patient), the actor network 

determines a set of actions to apply to the environment 

(patient), while the critic network estimates the Q-value 

from the state-action combination. The Q-value is directly 

determined by the reward function and the discounted 

future rewards, according to the Bellman equation [11]. 

The actor is trained to maximize the long-term “reward,” 

while the critic is trained to accurately estimate the Q-

values from the combined state-action space. 

 

The reward function is designed to steer the RL 

agent towards choosing actions based on specific states 

such that its propofol administration choices would 

achieve reaching the desired BSR target:  

 

𝑟(𝑠𝑡, 𝑎𝑡) = ∫ | 𝐵𝑆𝑅(𝜏) − 𝑇𝑎𝑟𝑔𝑒𝑡 | 𝑑𝜏
𝜏=𝑡+𝑠𝑡𝑒𝑝

𝜏=𝑡

 

  

This reward function is suitable in targeting a 

user-specified BSR during the induction and emergence 

phases of PIBS. Over the course of training, the function 

is designed to reduce the cumulative absolute BSR error. 

 

Training the DDPG Agent 

 

 We followed the DDPG training algorithm 

described by Lillicrap et al. presented at ICLR 2016 [10], 

which specifies how the RL agent is trained, and how the 

actor and critic network weights are adjusted. The training 

was implemented in MATLAB (MathWorks, Natick, 

Massachusetts), using its Reinforcement Learning 

Toolbox (version 1.2).   
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Figure 5. Block diagram illustrating the general structure of the DDPG 

algorithm, with the actor and critic networks interacting with the patient model. 

The critic network estimates the patient model's Q-value from the state-action 

combination. The Loss guides how the critic network adjusts its weights to 

optimize the critic's estimation. The actor network adjusts its weights according 

to 1) the gradient of critic output with respect to the applied action, and 2) the 

gradient of the actor output with respect to the actor weights, which together 

make up the overall gradient of the actor’s performance based on Estimated 

Q(s,a) [11]. 

 

The RL agent was trained on each of the 250 

simulated patients consecutively and for 120-steps per 

patient, where each step had a duration of 60-seconds. 

Ninety seconds after administering the standard induction 

dose, the RL agent began administering propofol and 

training its deep neural networks.   

 

The Ornstein-Uhlenbeck noise process [12] was 

applied to the actor’s action output before being applied 

to the patient and the critic network. Noise was used to 

promote exploration and avoid convergence toward local 

maxima. We selected a noise variance of 0.500 and 

variance decay rate of 10-5, which reduces the noise 

variance after each time step throughout the entire 

training process. 

 

After completing the training for each patient, we 

recorded the total reward over the 120-step training 

period. We also recorded a 5-patient moving reward 

average, which is based on the average of the total 

rewards of training five consecutive patients. Based on 

the hypothesis, the goal was for the average-absolute BSR 

error to be below 5% (criterion). 

 

Because the reward function is a sum of absolute 

BSR error, we can calculate this average-absolute BSR 

error for each patient by dividing the total reward 

accumulated while training the system with that patient 

by the total time (120 time steps x 60 seconds per time 

step = 7200 seconds).  

 

Our goal is to observe either a patient with an 

average-absolute BSR or an average from treating five 

consecutive patients (throughout any of the 250 patients 

in training) that satisfies the criterion of average-absolute 

BSR error below 5%  

 

V. INITIAL RESULTS  

 

After training on 250 patients, our DDPG agent 

did not meet the training criterion, nor demonstrate 

convergence toward the Critic’s estimated discounted 

long-term reward. The best absolute-average BSR error 

was 7.65% BSR for a single patient, and 14.5% BSR for 

a 5-patient average. The DDPG agent also reported an 

average-absolute BSR error of over 20% BSR in 103 of 

the 250 patients (58.8%). 

 

 
Figure 6 The 5-patient moving reward average (blue) illustrates the DDPG 

agent’s performance as training progresses across patients. The agent’s goal is 

to maximize the Q-value (calculated as the negative absolute BSR error and 

discounted future negative BSR errors) through each time-step and training for 

each patient rewards. Though noise and exploration in the action space can 

explain some fluctuations in performance, the DDPG does not demonstrate 

long-term improvement. An average-absolute BSR error of 20% is illustrated 

(red) to represent the possibility of the DDPG agent becoming “stuck” at the 

upper BSR extremes (~100% BSR) throughout the entire training for one 

patient. A successfully trained DDPG agent would achieve an average-absolute 

BSR error that decreases below the training criterion (yellow) and further 

converge toward the discounted long-term reward’s average-absolute BSR 

error (green). 
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Figure 7 Example of training with patient #121, showing BSR, reward, and 

drug administration over time. The drug administration (green) includes a 

combination of a bolus and infusion, which affects the BSR (blue) and its 

corresponding reward (magenta). Even within a patient, we do not observe a 

consistent trend in improving the reward across time steps. The red vertical line 

on the BSR plot represents t = 90 seconds after the standard induction dose.  

 

VI. DISCUSSION 

 

For this initial design of DDPG agent, its patient-

environment, and training structure, we reject our 

hypothesis, because the DDPG agent did not achieve a 

reward that surpasses the minimum training criteria, 

across the 250 patients it was trained on.  

 

After observing the BSR signals and the rewards 

accumulated for each patient, we suspect that DDPG 

agent may be challenged in reducing BSR at the higher 

BSR extremes. Figure 7 blue reflects the inability to 

moderately decrease BSR (undershoot), while Figure 8 

reflects the continual inability to significantly decrease 

BSR toward the target BSR of 80%. This can potentially 

be attributed to: 1) we cannot apply actions to directly and 

rapidly remove propofol from the patient-environment, 

and 2) the pharmacodynamic relationship between 

propofol concentration and BSR is nonlinear, while our 

reward function is linear.  

 

In order to reduce BSR, we must reduce propofol 

delivery and rely on the patient to clear propofol through 

pharmacokinetics. This clearance is not as rapid as that of 

an administered bolus. In order to reinforce reductions in 

propofol delivery, longer time steps may be required to 

realize more significant changes in BSR and in the 

reward. The agent could benefit from the addition of 

memory and recurrent neural networks, as consecutive 

time steps of reduced propofol input may be required to 

effectively reduce BSR, as well as moderate the decrease 

in BSR over time.   

 

 
Figure 8. Example of a 120-step training with one patient, in which the RL 
agent is unable to decrease drug delivery, drug concentration, and BSR in the 

simulated training subject. The proposed reward function does not provide 

sufficient negative reinforcement to properly adjust the actor.  

 

The reward function, as it was defined, might not 

have been properly “shaped” and can lead to a “vanishing 

gradient” problem in machine learning, in which the actor 

network is unable to adjust its weight, based on the 

feedback provided by the reward function. At the higher 

concentration and BSR extremes, the slope of the 

pharmacodynamic curve diminishes. Given that it is 

already difficult to reduce concentration, reducing BSR 

also becomes more difficult, while the current rewards 

function relies on changes in BSR magnitude. Thus, the 

changes in rewards across the action space would also 

diminish at the upper BSR extremes. This directly 

impacts the gradient of the policy’s performance, which 

ultimately impacts how the actor network updates its 

weights [10]. 

 

VII. CONCLUSION 

 

We created a PK-PD patient-model and 

integrated it into a reinforcement learning algorithm. Our 

current RL agent did not satisfy our minimum criterion 
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and was unable to converge toward higher rewards and a 

lower average-absolute BSR error.  

 

Beyond modifying the reward function to 

improve the control of BSR accuracy precision, we must 

also train the RL agent to target a specific duration (12-15 

minutes) of a specific BSR range (70-90%), as specified 

by the high-dose treatment protocol. We can also consider 

developing and deploying multiple agents with different 

goals, trained by different reward functions through the 

PIBS treatment. We must also consider how we integrate 

the RL agent with real-world clinical settings. We 

currently envision keeping the clinician in the control 

loop, and also seek to limit the number of dosing 

adjustments (e.g. no more than 5 adjustments) over each 

treatment, so that the clinician is not overburdened.  

 

When we have demonstrated successful training 

in an RL agent, we plan to train the agents using patient-

models with different sex, height, age, and weight 

combinations. Performance of a trained RL agent will be 

tested on a patient testing set that has not been seen during 

training. We also plan to apply a noise model to the BSR 

signal itself. We can evaluate the intra-patient, and inter-

patient, and inter-treatment performance of a RL-based 

control approach for PIBS. If successful, these 

improvements in BSR control will directly support our 

clinical investigation of PIBS and other potential 

applications in anesthesia. 
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