
Model Reference Predictive Adaptive Control for Large Scale Soft Robots

Phillip Hyatt1, Curtis Johnson1, and Marc D. Killpack1

Abstract— Past work has shown Model Predictive Control
(MPC) to be an effective strategy for controlling continuum
joint soft robots using rudimentary models, however the in-
accuracies of these models often mean that an integration
scheme must be combined with MPC. Presented in this work
is a novel dynamic model formulation for continuum joint
soft robots which is more accurate than the authors’ previous
models yet remains fast enough for MPC. This model is based
on the Piecewise Constant Curvature (PCC) assumption and
a relatively new configuration representation and allows for
computationally efficient simulation. Due to the difficulty in
determining model parameters (damping and spring effects)
as well as effects common in continuum joint soft robots
(hysteresis, complex pressure dynamics, etc.), we submit that
most model-based controllers of continuum joint soft robots
would benefit from some form of model adaptation. In this
work a novel form of adaptive MPC is presented based on
Model Reference Adaptive Control (MRAC). We call our novel
adaptive MPC approach MRPAC. We show that like MRAC,
MRPAC is able to compensate for ”known unknowns” such
as unknown inertias and spring and damper coefficients. Our
experiments also show that like MPC, MRPAC is also robust to
”unknown unknowns” such as unmodeled external forces and
any forces not represented in the form of the adaptive model.
Experiments in simulation and hardware show that MRPAC
outperforms MPC and MRAC in every case except for that in
which MPC uses a perfect model in simulation.

I. INTRODUCTION

Large scale soft robots hold promise as platforms which
are safe to work in human and delicate environments and
which can accomplish tasks for which rigid robots are ill
suited. Some tasks for which large scale soft robots are
uniquely well suited include whole-arm wiping tasks, reaching
through unmodeled cluttered environments, and any task
where incidental unmodeled contact is likely or desirable.
Continuum joint soft robots have specifically been modeled
after examples in nature which excel at these types of tasks
(anteaters, octopi, elephants, etc.).

One major obstacle to the use of continuum joint soft
robots is the accuracy of their control. Because soft robot

1All authors are with Brigham Young University, Mechanical Engineering
Department

continuum joints are not necessarily constrained to rotate
about a single well defined axis, even the kinematic modeling
of these robots is relatively difficult when compared to rigid
robots. Furthermore, the rigid body dynamics which govern
the motion of traditional robots are complicated in continuum
joint soft robots by pressure dynamics, energy storage and
dissipation in the joints, as well as buckling in some load
cases. These factors make the accurate modeling and model-
based control of continuum joint soft robots very difficult.

In this work we present a novel method for dynamic
modeling of continuum joint robots which can be evaluated
fast enough for real-time Model Predictive Control (MPC).
This novel dynamics model is in fact a small extension of
well-established dynamics models of continuum joint robots
based on piecewise constant curvature (PCC) approximations,
and a relatively new choice of configuration variables.

We also present a novel form of adaptive MPC which can
adapt this model in order to improve dynamic performance
and eliminate steady state error. The adaptive law and much
of the theoretical basis for this controller are derived from
Model Reference Adaptive Control techniques.

The structure of this paper is as follows: Section II will
discuss the state of the art in continuum soft robot modeling
and control, as well as the hardware, models and methods
specific to this work; Section III will explain the hypotheses
about the model and proposed controller as well as the
design of the experiments performed; Section IV will report
the results of the experiments performed and discuss their
importance; Section V will discuss the importance of the
presented work to the field and provide suggestions for future
work.

II. MATERIALS AND METHODS

A. Related Work

There is a significant body of work which has been done
to accurately model the kinematics and dynamics of soft
robots. In [1], [2] the continuum joint is modeled using
Cosserat-beam theory. In [3] and [4] methods based on
recursive Newton Euler approaches are taken, while in [5]

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DigitalCommons@USU

https://core.ac.uk/display/323312055?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and [6] dynamic equations are derived using Lagrangian
mechanics. In [7] and [8] lumped parameter models are
derived by dividing the continuum joint into a number of
finite length sections. The trade-off between accuracy and
computational complexity in these methods can be seen by
varying the number of the finite sections. [9] provides a
more comprehensive review of dynamics models for soft and
continuum joint robots. Notably, there has also been work to
show that learned models can represent soft robot dynamics
as in [10].

In [11] and [12] the authors derive the dynamic equations
of a continuum arm by integrating over infinitesimal discs
and using the method of Lagrange. No assumptions of
constant curvature are made. These works are similar to our
own, the main differences being our choices of generalized
coordinates and our assumption of constant curvature. These
two differences allow us to derive closed form analytical
expressions for the terms in our equations of motion such as
the mass and coriolis matrices.

In [13] and [14] the authors derive simpler models based on
the PCC assumption. However they neglect generalized forces
caused by rotations (inertias). They also model the mass of
each PCC section as being concentrated at a point which is
fixed in some coordinate frame. Because the mass and inertia
of the joints used in this work are non-negligible, we model
the mass as distributed uniformly throughout infinitesimal
discs and the center of mass of each section is calculated
analytically assuming uniform density.

Control strategies for soft robots vary from open-loop
control such as in [15], [16] to Reinforcement Learning [17]
to MPC [18]. In [19] and [20] the authors demonstrate the
performance of MPC on the same joints used for this work.
These implementations of MPC used a learned model of
the dynamics based on a less-accurate representation of the
continuum joint dynamics. The model inaccuracy involved
in that work prompted the development of the more accurate
model and adaptive control techniques presented in this work.

Given a dynamic model of the correct form, the nature
of soft robots is still such that certain parameters of that
model may be difficult to estimate. Adaptive MPC is a
well established method in the literature which combines the
strengths of MPC with adaptive control [21], [22]. The method
developed in this paper is a form of adaptive MPC which
borrows ideas from Model Reference Adaptive Control for
manipulators [23]. Specifically, our work can be considered

Fig. 1: A continuum joint such as the ones that comprise the
robots used for this work.

an extension to that in [24]. The main extensions are that
the method in this work uses a single MPC controller for
all joints as opposed to one controller for each joint. The
regressor used for parameter estimation is also refined based
on our new model and the adaptation scheme is altered to
consider both position and velocity errors.

B. Robot Platform Description and Modelling

The robots used for this work are composed of continuum
joints such as the one seen in Figure 1. These joints are made
of four separate pressure controlled chambers surrounding
a relatively in-extensible spine, allowing each joint to bend
about two axes. We choose to model the kinematics of each
joint using arcs of constant curvature. Each arc, which traces
out the path in space occupied by the inextensible spine, can
be described using three variables as described in [25]. These
variables are the length of the in-extensible spine (h) and the
two components of the vector which describes the rotation
from the bottom to the top of the arc (u and v). These values
are labeled in Figure 1. We assume that the spine is perfectly
in-extensible so h becomes a constant kinematic parameter.

First we note some useful kinematic relationships. The
variables u and v can be thought of as the nonzero portions
of the axis-angle representation of the rotation between the
bottom and top discs of the joint and therefore

φ =
√
u2 + v2 (1)

where φ is the magnitude of the axis-angle vector [u, v, 0]T .
Note that because the frame tangent to the arc rotates as the
length along the curve l is increased, we know that φ, u, and
v are not constant along the entire arc. However we note

that the vector ρ from the base of the joint to the center of
curvature is the same for all points along the arc. At any
point l along the arc this value can be calculated as

ρ =
l

φ2

 v

−u
0

 . (2)

Because the magnitude of this vector ||ρ|| is the radius of
curvature, we may also relate φ and l using the arc-length
formula

φ =
l

||ρ||
(3)

We now wish to derive a means by which we can calculate
u and v at any point l along the arc given only l, h, and u
and v at the end of the arc. Given a point which lies at a
distance l along the arc, we may say using Equation 2

ρl = ρh

l

φ2l

 vl

−ul
0

 =
h

φ2h

 vh

−uh
0

 . (4)

Replacing φ terms using Equation 3 we obtain

l||ρ||2

l2

 vl

−ul
0

 =
h||ρ||2

h2

 vh

−uh
0

vlul

0

 =
l

h

vhuh
0

 .
(5)

In other words, the generalized coordinates u and v vary
linearly along the length of the arc. This will become a very
useful property of this kinematic representation when deriving
equations of motion.

Using the method of Lagrange, the equations of motion
for a system of rigid bodies take the form

Mq̈ + Cq̇ + g = τ (6)

where M is the mass matrix, C is the Coriolis matrix, g is
a vector of gravity torques, q is a vector of the generalized
coordinates, and τ is a vector of the generalized torques.
These matrices are derived using partial derivatives of kinetic
and potential energy terms. Since partial derivatives are easily
taken using a symbolic mathematics toolbox such as sympy,
the problem of dynamic modeling is reduced to the selection
of generalized coordinates and the representation of kinetic

and potential energy.

In order to accurately express kinetic and potential energy
we choose to model the continuum joint, as many have done
before, with an infinite set of infinitesimally small discs.
However the assumption of constant curvature, the choice of
generalized coordinates, and current tools in symbolic math
libraries will allows us to produce analytical expressions for
M , C, and g, whereas previous methods have not yielded
these closed form expressions.

We can define the kinetic energy of an infinitesimally thin
disc as

T =
1

2
(µdl)ṗT ṗ+

1

2
ωT Iω

=
1

2
(µdl)ṗT ṗ+

1

2
ωT

µdlr2

4 0 0

0 µdlr2

4 0

0 0 µdlr2

2

ω
=

1

2
(µdl)ṗT ṗ+

1

2

[
µdlr2

4
ω2
x +

µdlr2

4
ω2
y +

µdlr2

2
ω2
z

]
=
µ

2

[
ṗT ṗ+ r2

(1

4
ω2
x +

1

4
ω2
y +

1

2
ω2
z

)]
dl

(7)

where µ is the linear density of the disc, dl is some
infinitesimal length, ṗ is the velocity of the center of the
disc, ω is the angular velocity of the disc expressed in the
disk frame, and I is the inertia of the disc expressed in the
disc frame.

The linear and angular velocity of each disk (ṗ and ω) can
be found using a configuration dependent jacobian J which
is defined such that[

ṗ

ω

]
= J(u, v, l)

[
u̇

v̇

]
[
ṗ

ω

]
=

[
Jṗ(u, v, l)

Jω(u, v, l)

][
u̇

v̇

]
.

(8)

Using this relationship, we see that we can simplify the
expression for kinetic energy (Equation 7) by scaling portions
of the jacobian. The new inertia-weighted jacobian is defined
as

Jweighted =

√
µJṗ,x
√
µJṗ,y
√
µJṗ,z√
µr

2 Jω,x√
µr

2 Jω,y√
µr√
2
Jω,z

(9)

allowing us to rewrite Equation 7 for the kinetic energy

of a disc as

T =
1

2
q̇TJweighted(u, v, l)

TJweighted(u, v, l)q̇dl. (10)

By treating a continuum joint as a series of infinitesimal
discs and integrating the kinetic energy of each disc along
the length of the arc we can write the total kinetic energy of
a joint as

T =
1

2
q̇T
[∫ h

0

Jweighted(u, v, l)
TJweighted(u, v, l)dl

]
q̇

(11)

We note here that the Jacobian can be expressed analytically
at every point along the joint as a function of l, the configura-
tion variables uh and vh, and the kinematic parameter h using
Equation 5. Given this analytical expression for Jweighted
we can integrate over the definite bounds to get an analytical
expression for JTweightedJweighted, which we recognize as
the joint space inertia matrix or mass matrix M .

We use a symbolic mathematics library (sympy) to calculate
JTweightedJweighted, and and to integrate this expression
analytically between the definite bounds 0 and h in order to
obtain M . Once M has been obtained symbolically in sympy,
it is then relatively straightforward to take partial derivatives
in sympy in order to obtain an expression for the Coriolis
matrix C using the method outlined in [26].

In order to find the gravity torques (g) we must first find
the joint center of mass. By inspection we can see that a
joint’s center of mass must project down onto the vector ρ,
however the vector to the center of mass must also contain
some component in the z direction (orthogonal to the space
spanned by u and v). We find the components of the CoM
vector by again dividing the joint into a series of infinitesimal
discs of height dl.

Assuming the joint has uniform density along its length,
the portion of the CoM vector along the z axis is given by

z̄ =

∫ h
0
zdV∫ h

0
dV

(12)

Using the trigonometric relationship seen in Figure 2, namely

z(l) = ||ρ||sin(l
h
φ) (13)

as well as the volume formula for an infinitesimally thin disc

dV = πr2dl, (14)

Fig. 2: A side view of a continuum joint

we can now integrate to find z̄:

z̄ =

∫ h
0
||ρ||sin(lhφ)πr2dh∫ h

0
πr2dl

z̄ =
πr2||ρ||

∫ h
0
sin(lhφ)dl

πr2h

z̄ =
−
[
||ρ||hφcos(

l
hφ)
]h
0

h

z̄ =
−||ρ||
φ

(cos(φ)− 1).

(15)

Recognizing that ||ρ|| = h
φ ,

z̄ =
h

φ2
(1− cos(φ)). (16)

In order to find the component of the CoM vector which
lies in the plane of u and v we follow a similar procedure.
We will use x to represent the portion of the CoM vector
which lies along ρ. Using the trigonometric relationship seen
in Figure 2, namely

x(l) = ||ρ||(1− cos(l
h
φ)), (17)

we can now integrate to find x̄:

x̄ =

∫ h
0
||ρ||(1− cos(lhφ))πr2dh∫ h

0
πr2dl

x̄ =
πr2||ρ||

∫ h
0

(1− cos(lhφ))dl

πr2h

x̄ =
||ρ||(l − h

φsin(lhφ)
]h
0

h

x̄ =
||ρ||
φ

(φ− sin(φ)).

(18)

Recognizing that ||ρ|| = h
φ ,

x̄ =
h

φ2
(φ− sin(φ)). (19)

Using the derived equations for z̄, x̄, and the normalized
version of ρ we obtain the vector from the base of the joint
to the center of mass:

CoM =
h

φ2

 (φ− sin(φ)) vφ
(φ− sin(φ))−uφ

(1− cos(φ))

 . (20)

The potential energy of the joint is simply the dot product
of this vector, expressed in the inertial frame, with the gravity
vector expressed in the same frame:

V = CoM ·Grav. (21)

Having calculated the potential energy, the gravity torques
are calculated simply by taking the negative partial derivative
of V with respect to q:

g =
∂V

∂q
. (22)

The method above has yielded us analytical expressions
for M , C, and g with the generalized coordinates u and
v. Although complex, these closed form expressions can be
exported from sympy into C code which can be evaluated
within microseconds, allowing for real-time model-based
control of these continuum joints.

C. Development of Model Reference Predictive Adaptive

Control

In this section we give brief overviews of both MPC and
MRAC in order to clarify notation and establish a background
for the development of MRPAC. For in-depth explanations
of MPC and MRAC we refer the interested reader to [27]
and [28] respectively.

1) Model Predictive Control: Any dynamic system may
be represented in state variable form as

ẋ = Ax + Bu + w (23)

where x is the vector of states, u is the vector of system
inputs, and w is a vector of offsets or disturbances. Using
any discretization method (Euler, semi-implicit Euler, matrix
exponential, etc.) we can create a discretized state space
model:

xk+1 = Adxk + Bduk + wd. (24)

The above equation can be used to forward simulate the
states of our system, given initial conditions and inputs. In
MPC these discretized dynamic equations are the constraints
of our optimization while xk and uk are the optimization
variables. In an MPC solver looking forward over a horizon
of T time steps, a trajectory optimization may be formulated
as:

J =

T∑
k=0

[
(xgoal − xk)

T
Q(xgoal − xk)

+ (ugoal − uk)
T
R(ugoal − uk)

]
s.t.

xk+1 = Adxk + Bduk + wd ∀ k = 0, ..., T − 1

(25)

where J is the objective function value, xgoal and ugoal

are the goal states and inputs respectively. By defining a
quadratic cost function and enforcing only linear dynamics
constraints we have defined a convex optimization problem
suitable for solution using a very fast convex solver. We
choose to use the state of the art solver OSQP [29] as the
convex solver used for our implementation of MPC. In order
to lengthen the horizon of MPC and decrease solve times
we also use the input parameterization technique outlined in
[27].

MPC solves the above trajectory optimization for the
entire horizon of length T , however only the first input
(u0) is applied to the system. After applying this input, the
optimization is solved again using state information which is
updated using sensor feedback. The discrete-time model can
also be updated with a new linearization centered at the new
operating point. This process is repeated with MPC only ever
applying the first input, but solving over an entire horizon of
value T . The fact that MPC is forced to re-solve the trajectory
optimization problem with the most current state and model
information is what leads to the robustness of MPC to model
error as will be shown hereafter.

2) Model Reference Adaptive Control: MRAC is a form of
adaptive control which seeks to drive a system to behave like
a reference system. Because we are interested in controlling
continuum joint soft robots we specifically follow the imple-
mentation of MRAC outlined in [23] which is specific to robot
manipulators. In this derivation of MRAC for manipulators
the authors take advantage of several special properties of
manipulator dynamics. Firstly, they express the mass matrix,

coriolis matrix, and gravity torques as being linear in certain
manipulator parameters. Stated mathematically:

Mq̈ + Cq̇ + g = τ

= Y (q̈, q̇, q)a
(26)

where Y (q̈, q̇, q) is a nxp regressor and a is a px1 vector
containing the manipulator parameters. In rigid body manipu-
lators it can be shown that a contains the link masses, inertias,
and the positions of centers of mass. Using the soft robot
continuum joint dynamic model in Section II-B to derive M ,
C, and g it can be seen by inspection that all of these terms
are linear in the joint mass m, as well as square of the joint
radius r2 and joint height h2.

In [23] the authors present a method by which joint
accelerations need not be measured or estimated in order to
calculate the regressor. Instead they exploit several properties
of manipulator dynamics in order to rewrite the regressor as
a function of joint positions, joint velocities, reference system
velocities, and reference system accelerations:

τ = Y (q, q̇, q̇ref , q̈ref)a. (27)

This is very useful in practice because while accurate
measurements or estimates of actual joint accelerations are
hard to obtain, the acceleration of the reference system is a
calculated value that we know perfectly.

When using MRAC, we generally do not know the
parameter vector a perfectly, so we desire to estimate it.
We will denote our estimate â. The adaptive parameter vector
â is adapted according to the law:

˙̂a = −Γ−1Y (q, q̇, q̇ref , q̈ref)T s (28)

where

s = ˙̃q + Λq̃

˙̃q = q̇ − q̇ref
q̃ = q − qref .

(29)

The final step in manipulator MRAC as explained in [23]
guarantees that not only parameter error, but also position
error will be driven to zero. In order to ensure this, the final
control law for MRAC is defined as:

τ = Y (q, q̇, q̇ref , q̈ref)T â−KDs (30)

In the above equations, Γ, Λ, and KD are all tuning
parameters used to determine how quickly the adaptive

parameters can change and how quickly position error is
driven to zero. In general, the higher these values are driven,
the faster the adaptive parameters change and the faster
the position error is reduced. However, as one may expect,
increasing these values too high can lead to instability.

Defining f = M(q)q̈ref + C(q, q̇)q̇ref + g(q) + Kdq̇ +

Kspringq, the regressor used for the continuum joint soft
robot in this work is of the form:

Y (q, q̇, q̇ref , q̈ref) =
[
∂f
∂m

∂f
∂h2

∂f
∂r2

∂f
∂q

∂f
∂q̇

]
.

(31)

3) Model Reference Predictive Adaptive Control: MRPAC
combines the strengths of both MPC and MRAC to yield a
model-based optimal controller which can adapt its model
online, but remains robust to unmodeled disturbances. As
with MPC we begin with a model of the system, however
this time we explicitly model the error in our model as a
torque disturbance term:

ẋ = Ax + Bu + w + τdisturbance. (32)

If the error in our model is simply due to incorrect estimates
of the manipulator parameters, then we should be able to
represent this disturbance exactly using the same regressor
as MRAC, namely:

τdisturbance = −Y (q, q̇, q̇ref , q̈ref)â. (33)

The negative sign is necessary because we adapt the parame-
ters in â according to the MRAC adaptation law. MRAC’s
adaptation law is designed to estimate a torque which, when
applied to the system, will ”cancel out” the system’s dynamics.
In MRPAC we want to represent the system’s dynamics
themselves instead of the torque needed to cancel them out.
These two quantities are opposite in sign, hence the negative
sign shown here.

It is important to note here that in MRPAC we are using
the regressor and adaptive parameters to represent our model
error, while in MRAC they are used to represent the system
dynamics in their entirety. We can not expect â therefore, to
contain the same values for MRAC and MRPAC. In fact, if
given a perfect model, â should theoretically remain zero for
MRPAC.

Also, it is important to note that Γ and Λ are the only
tuning parameters for the estimation of â in MRPAC. While
in MRAC there must be an error term multiplied by KD

in order to ensure that position error is decreased, in MPC
the tracking error is decreased by virtue of the optimization
which seeks to minimize it.

In order to make a fair comparison between MRAC and
MRPAC we use the same regressor for both controllers.

III. EXPERIMENTS

Adaptive control techniques are useful in the case where
we do not know a priori a complete and accurate model
of our system. After all, if we did have a complete and
accurate model then we could predict perfectly the behavior
of our system and use model-based control techniques to
make it behave however we want. We will classify all
modeling error into two categories: known unknowns and
unknown unknowns. Known unknowns correspond to values
or parameters in our model that we are accounting for, but
whose values are uncertain or unknown. For example inertias,
damping coefficients, and spring coefficients may be known
unknowns. Unknown unknowns in our model correspond
to phenomena which occur in the real system, but are not
represented in our model. If we assume all spring and damping
elements in our system are linear while they are in fact
nonlinear, then we do not have the ability to represent the
nonlinear effect of the spring and this nonlinear effect is an
unknown unknown.

A. Simulation Experiments

In the simulation portion of the experiments, a simulation
is created using the model outlined in Section II-B and this
simulated system is controlled using three different controllers.
The goal of each controller is to drive the system to follow
a reference trajectory generated by a reference system. The
three controllers implemented are MPC, MRAC, and the
MRPAC algorithm detailed in Section II-C.3.

The reference system used for these experiments can be
thought of as two uncoupled, critically-damped mass-spring-
damper systems each modeled by the equation:

mẍ+ bẋ+ k(x− r) = 0. (34)

The masses (of mass m) are driven by the springs to the
reference positions (r) and the damping coefficient (b) is
always chosen such that the system is critically damped
(b =

√
4mk). The rise time of the reference system can be

altered by varying the spring constant (k). We choose a rise
time such that the system has settled to steady state within
about one second.

As mentioned in the adaptive control literature, model
parameter estimation and adaptive control schemes require
sufficient ”excitation” in order to converge or to adapt. We
provide this excitation by changing the reference positions
(r) of our system every 2 seconds. Reference positions are
drawn from a uniform distribution bounded above and below
by − π

2
√
2

and π
2
√
2

. These bounds are chosen so that the
resulting total bend angle (φ =

√
u2 + v2) is never greater

than π
2 .

1) Case 1: Perfect Regressor (known unknowns): The first
experiment performed is designed to show the performance
of all three controllers in the case where the regressor can
fully describe the dynamics of the system. The hypothesis
to be tested is that given a perfect regressor, both MRAC
and MRPAC should be able to compensate for the system’s
dynamics perfectly and should drive the system to follow
the reference trajectory exactly. Since MPC cannot adapt its
model, we expect that increasing model error will lead to
increasing tracking error.

To test this hypothesis we control the same system using
the three controllers outlined in Section II-C (MPC, MRAC,
and MRPAC) and provide each with the same regressor.
Because MPC and MRPAC require a model, we introduce
model error in order to see its effect on their performance.
The method used for introducing model error is to make
our estimates of h, m, Kspring, Kdamper a scalar multiple
of their simulated value. Because MRAC does not utilize
a model apart from the regressor, it is invariant to model
error. All adaptive parameters for MRAC and MRPAC are
initialized at zero.

Each controller is run for simulated 5 minutes of ”excita-
tion” (new reference commands every 2 seconds) in order to
allow the adaptive parameters to settle. After 5 minutes of
”excitation” the performance of each controller is evaluated
during one additional minute. The integrated position error
during the evaluation minute is shown in Figure 3 as a function
of the model error. As an example, the joint trajectories during
the evaluation minute using a modeling error scalar of 1.5 is
seen in Figure 4.

2) Case 2: Imperfect Regressor (unknown unknowns):

The second experiment performed is designed to show the
performance of all three controllers in the case where the
regressor cannot fully describe the dynamics of the system.
The hypothesis to be tested is that given an imperfect regressor,
MRAC and MRPAC should not be able to compensate for

Fig. 3: Tracking error sensitivity to model error for all three
controllers in simulation.

Fig. 4: Joint trajectory tracking using all three controllers in
simulation. This is the case of errors in the model parameters
used for MPC and MRPAC. Note that the performance of
MRAC and MRPAC is indistinguishable.

the system’s dynamics perfectly and should therefore struggle
to drive the system to follow the reference trajectory exactly.
However, because MPC has been shown to be robust to
modeling error, both MPC and MRPAC should be robust to
the unmodeled forces.

To test this hypothesis, instead of simulating a system
in which a spring force drives the joint towards the zero
configuration, we simulate a system in which the spring force
drives the joint towards a nonzero configuration. This is a
phenomenon observed in the real robot hardware because of
slight inconsistencies in the manufacture of the plastic bellows.
This offset spring force can be thought of as a constant torque
which is applied to the joint in one direction. Because the

Fig. 5: Simulated tracking error sensitivity to unmodeled
offset forces/torques (unknown unknowns) if the rest of the
model is perfect.

regressor does not contain any terms which correspond to a
constant torque offset, this force cannot be represented by the
regressor and therefore constitutes an ”unknown unknown”.
While we do know about this constant offset and likely would
include a constant term in the regressor, we anticipate that
there will be forces which we do not know about or whose
form is unknown to us. This simple experiment allows us
to see the potential effects of these completely unmodeled
forces.

In order to see the sensitivity of each controller to this
unmodeled force which cannot be represented with the
regressor, we vary the offset between u = v = .05 rad
and u = v = .25 rad. We do this for each model error tested
in the first experiment, yielding a surface of tracking error
which is a function of both a scaled model error as well as
an unmodeled constant torque.

Again, after 5 minutes of ”excitation” the performance
of each controller is evaluated during one additional minute.
The integrated position error during the evaluation minute is
shown in Figure 5 as a function of the model error. As an
example, the joint trajectories during the evaluation minute
using a spring offset of u = v = .25 are seen in Figure 6.

B. Hardware Experiments

In order to validate both simulations, we implement the
same three controllers (MPC, MRAC, and MRPAC) on the
soft continuum joint shown in Figure 1 and compare their
performance.

The soft continuum joint used for this experiment is

Fig. 6: Simulated joint trajectory tracking of all three
controllers with a perfect model besides an unmodeled offset
torque. Note that the performance of MPC and MRPAC is
indistinguishable.

actuated by four plastic bellows, each of which can be
controlled independently. A pressure difference in each of
the bellows causes a rotation about one or both of the joint’s
axes. The angle about each of these axes (denoted u and v
in Figure 1) is the robot’s position and what we attempt to
control. We expect this hardware platform to illustrate the
sensitivity of each controller to both known unknowns and
unknown unknowns.

Both sources of error are present in hardware. Because no
system identification was performed previously, the aforemen-
tioned model parameters such as h, m, Kspring, Kdamper

are not known perfectly. Additionally, we observe the effects
of various offset forces and nonlinear behavior in the plastic
bellows used to actuate the joint. For example, even with equal
pressures in each of the four bellows, the continuum joint
remains slightly bent, indicating some unmodeled force. This
is simulated (see Section III-A.2) as a constant spring offset,
but the actual source of this offset is unknown. Likewise, the
continuum joint exhibits unknown nonlinear behavior near
the extremes of its range of motion or in certain directions,
where its stiffness or damping vary.

We track the orientation of a frame on top of the joint
relative to a frame below the joint in order to estimate the state
of the joint real-time. We reuse the same reference trajectory
from the simulation with one minor change: the command
changes every five seconds instead of every two. This was
adjusted in an attempt to be conservative with experimental
hardware and software while still validating the performance

Fig. 7: Joint trajectory tracking of all three controllers in
hardware.

of each controller.

As in the simulation experiments, we excite the system
with the same 150 commands used in simulation (12.5
minutes) before evaluating each of the controllers for the
last 30 commands (2.5 minutes). The joint trajectories for
this evaluation period are shown in Figure 7.

IV. RESULTS

A. Simulation Experiments

1) Case 1: Perfect Regressor (known unknowns): The
first experiment was designed to see the sensitivity of each
controller to known unknowns, or model error where at least
the form of the model is known. The results of this experiment
can be seen in Figure 3. An example of the joint angle
trajectories achieved by each controller is shown in Figure 4.
As expected, MRAC is unaffected by this kind of model error
because MRAC was initialized with all parameters equal to
zero and adapted the parameters to their values based on the
MRAC adaptation law. We see that given a correct form of
the model, MRAC is able to find a very good model and track
the reference trajectory with very little error. When MPC is
given a perfect model, we see that it performs better than
either MRAC or MRPAC, reducing tracking error to near
zero over the entire evaluation period of 60 seconds. However
we see that it is the most sensitive to model error, especially
when inertial, damping, and spring effects are underestimated.

The data presented in Figure 3 seem to validate the
hypothesis that MRAC and MRPAC can both compensate for
model error, given a model with the perfect form. We see
that MRPAC is able to perform almost identically to MRAC

in all cases except when inertial, damping, and spring effects
are grossly underestimated. Upon further inspection of the
data we found that for this case the adaptive parameters for
MRPAC had not quite settled during the five minute excitation
period and that given more time, the tracking performance
of MRPAC again approached that of MRAC. This is an
interesting and important note - that where MPC performs
worst, MRPAC has the most tracking error to overcome, and
therefore may take longer to converge its adaptive parameters
to a steady state. This suggests that the transient responses
of these controllers is an important topic of future research.

2) Case 2: Imperfect Regressor (unknown unknowns):

The second experiment was designed to see the sensitivity
of each controller to unknown unknowns, or model error
where the form of the model is not completely known. The
results of this experiment can be seen in Figure 5. An
example of the joint angle trajectories achieved by each
controller is shown in Figure 6. As can be seen from the
figure, every controller’s performance suffers because of this
additional modeling error, however MRAC is by far the
most sensitive. Note that the x axis of the plot denotes the
value of both u and v, and the entire bend angle is equal to
φ =

√
u2 + v2. Keeping this in mind, with a spring offset

of about 4◦ (u = v = .05) MRAC’s tracking performance
is worse than MPC with 50% error on estimates of masses,
lengths and spring and damper coefficients. This represents
a very significant decrease in performance due to a relatively
small, but completely unmodeled, disturbance. This is the
main motivation behind the development of MRPAC. MRPAC
can be seen from this figure to inherit from MPC insensitivity
to completely unmodeled disturbances or dynamics, and can
be seen from Figure 3 to inherit from MRAC insensitivity to
partially modeled disturbances or dynamics.

We can vary the magnitude of both scalar modeling error
as well as the unmodeled spring offset in order to develop a
surface of tracking error which is a function of both known
unknowns and unknown unknowns. This surface can be seen
in Figure 8. This is useful information because in reality we
are likely to encounter both instead of just one. From the
Figure we can see that MRPAC consistently has the lowest
tracking error of the three controllers, except when MPC has
a perfect model or when the model used for MRPAC grossly
underestimates inertial, damping, and spring effects. As stated
earlier, we have observed that the performance of MRPAC
can be improved in the latter case by allowing it to adapt

Fig. 8: Simulated joint trajectory tracking error as a function
of both model parameter error (known unknowns) and a
spring offset error (unknown unknowns)

for longer. However these experimental results do outline
an important fact, which is that the transient responses of
MRAC and MRPAC are not the same. The exact differences
between them and the exact reasons remain for future work.

B. Hardware Experiments

The joint trajectories for the hardware experiments are
shown in Figure 7. It is important to note that, unlike the
simulation, we cannot separate the perfect regressor and
imperfect regressor cases in the hardware. Because of the
nature of the continuum joint, we expect some combination
of both cases in the performance results.

Generally, we see from the results that MPC struggles
to eliminate steady state error. This matches the behavior
simulated in Figure 4 and is expected because MPC does
not have the ability to compensate for unmodeled system
dynamics which exist in the continuum joint. MRAC and
MRPAC, on the other hand, do have the ability to compensate
for unmodeled system dynamics. Consequently they both
track the steady state reference trajectory much closer than
MPC. This indicates that the hypothesis presented in Section
III-A.1 is demonstratively true. MRAC and MRPAC certainly
compensate for the system’s dynamics and drive the system
to follow the reference trajectory. They are incapable of
following the reference trajectory exactly however, as is
simulated in Figure 4, where both trajectories deviate very
little from the reference. This is because of the impossibility
of separating the test cases in hardware. MRAC and MRPAC

both compensate for unmodeled system dynamics (known
unknowns) but there are still modeling errors (unknown
unknowns) which cause these deviations.

The simulated effect of unknown unknowns is shown in
Figure 5. Tracking error increases for all control methods
as the magnitude of these modeling errors increase, but they
increase dramatically for MRAC, hence its poor performance
exhibited in Figure 6. This same pattern emerges in hardware
experiments. There are several instances during the evaluation
period where unknown forces cause deviation from the
reference trajectory. For examples of this, see the upper
plot (u) of Figure 7 at 65, 100, and 135 seconds and the
bottom plot (v) at 30, 45, and 95 seconds. All controllers
are negatively affected, but MPC and MRPAC are more
robust than MRAC. In other words, when encountering such
disturbances, MRAC is forced to artificially adapt dynamic
parameters in an attempt to eliminate the error. In contrast,
MPC and MRPAC are better able to filter disturbances because
they re-solve the trajectory optimization over the whole time
horizon, not just a single time step. These results indicate
that the hypothesis outlined in Section III-A.2 is true as well.
MRAC and MRPAC do not track the reference trajectory
perfectly because of the unknown disturbances but MPC and
MRPAC are more robust to them.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented a novel dynamic modeling
approach for one joint of a continuum joint robot. We have
shown that while not linear in the same parameters as rigid
robots, joint accelerations using this model can be shown to be
linear in other parameters. This linearity in model parameters
can be exploited for system identification, or as we show later
in the paper, for adaptive control. Future work in the area
of continuum joint dynamic modeling may include system
identification on hardware, as well as verification that the
proposed model accurately describes the joint’s dynamics.
While the presented model is only valid for one joint, another
straightforward extension to this work would be to derive
the dynamic models using similar ideas and assumptions
(constant curvature assumptions, u and v parameterization,
and a symbolic math library) in order to derive a dynamic
model for a robot with many joints and links.

In this paper we have also shown that MPC is an
effective control strategy for controlling continuum joint soft
robots with low-fidelity models. But the practical challenges
of controlling soft robots are numerous. Medium to high

fidelity models (such as the one presented in this paper)
are promising, but are also time and labor intensive and
may not even improve performance. Even equipped with
a perfect model, determining soft robot model parameters
accurately is a formidable task. As such, our presented control
strategy, MRPAC, contributes a novel approach to overcome
these challenges by adapting the dynamic model while still
leveraging the benefits of MPC.

All told, MRPAC inherits two invaluable traits: the adaptive
capabilities of MRAC and the robustness of MPC. As a
result, MRPAC outperforms both MPC and MRAC on a
soft continuum joint, where both known unknowns (such
as unknown spring and damper coefficients) and unknown
unknowns (such as unmodeled external forces or offsets)
exist. MRPAC successfully compensates for modeling errors
to eliminate steady state error while also demonstrating
robustness to modeling disturbances.

Future research into MRPAC should include further in-
vestigation into how to identify a minimal regressor which
still accurately represents a system’s dynamics. Although not
discussed in this work, the time taken by MRAC and MRPAC
to converge to steady-state adaptive parameters was notably
different for MRPAC it depended heavily on the model used
to start with. The exact differences between the transient
response of each control method as well as investigation into
the reasons for these differences is left to future work.

Although the problems of accurate soft robot modeling
and control remain interesting and unsolved problems, we
believe that the dynamic model and adaptive control methods
presented in this work represent an important contribution to
the field.

REFERENCES

[1] F. Renda, M. Cianchetti, M. Giorelli, A. Arienti, and C. Laschi, “A
3D steady-state model of a tendon-driven continuum soft manipulator
inspired by the octopus arm,” Bioinspiration and Biomimetics, vol. 7,
no. 2, 2012.

[2] T. G. Thuruthel, E. Falotico, M. Cianchetti, F. Renda, and C. Laschi,
“Learning global inverse statics solution for a redundant soft robot,”
ICINCO 2016 - 13th International Conference on Informatics in Control,
Automation and Robotics, Doctoral Consortium, vol. 2, pp. 303–310,
2016.

[3] Rongjie Kang, A. Kazakidi, E. Guglielmino, D. T. Branson, D. P.
Tsakiris, J. A. Ekaterinaris, and D. G. Caldwell, “Dynamic model of a
hyper-redundant, octopus-like manipulator for underwater applications,”
2011 IEEE/RSJ International Conference on Intelligent Robots and
Systems, pp. 4054–4059, 2011.

[4] W. Khalil, S. Member, and G. Gallot, “Dynamic Modeling and
Simulation of a 3-D Serial Eel-Like Robot,” vol. 37, no. 6, pp. 1259–
1268, 2007.

[5] E. Tatlicioglu, I. D. Walker, and D. M. Dawson, “New dynamic
models for planar extensible continuum robot manipulators,” IEEE
International Conference on Intelligent Robots and Systems, pp. 1485–
1490, 2007.

[6] I. S. Godage, D. T. Branson, E. Guglielmino, G. A. Medrano-Cerda,
and D. G. Caldwell, “Shape function-based kinematics and dynamics
for variable length continuum robotic arms,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 452–457,
2011.

[7] T. Zheng, D. T. Branson, R. Kang, M. Cianchetti, E. Guglielmino,
M. Follador, G. A. Medrano-Cerda, I. S. Godage, and D. G. Caldwell,
“Dynamic continuum arm model for use with underwater robotic
manipulators inspired by Octopus vulgaris,” Proceedings - IEEE
International Conference on Robotics and Automation, pp. 5289–5294,
2012.

[8] N. Giri and I. D. Walker, “Three module lumped element model of a
continuum arm section,” 2011 IEEE/RSJ International Conference on
Intelligent Robots and Systems, pp. 4060–4065, 2011.

[9] I. D. Walker, “Continuous Backbone “Continuum” Robot Manipulators,”
ISRN Robotics, vol. 2013, pp. 1–19, 2013.

[10] T. G. Thuruthel, E. Falotico, F. Renda, and C. Laschi, “Learning
dynamic models for open loop predictive control of soft robotic
manipulators,” Bioinspiration & Biomimetics, vol. 12, no. 6, p. 066003,
2017.

[11] H. Mochiyama and T. Suzuki, “Dynamical modelling of a hyper-flexible
manipulator,” in Proceedings of the 41st SICE Annual Conference. SICE
2002., vol. 3. IEEE, 2002, pp. 1505–1510.

[12] ——, “Kinematics and dynamics of a cable-like hyper-flexible ma-
nipulator,” in 2003 IEEE International Conference on Robotics and
Automation (Cat. No. 03CH37422), vol. 3. IEEE, 2003, pp. 3672–
3677.

[13] V. Falkenhahn, T. Mahl, A. Hildebrandt, R. Neumann, and O. Sawodny,
“Dynamic modeling of constant curvature continuum robots using the
euler-lagrange formalism,” in 2014 IEEE/RSJ International Conference
on Intelligent Robots and Systems. IEEE, 2014, pp. 2428–2433.

[14] ——, “Dynamic modeling of bellows-actuated continuum robots using
the euler–lagrange formalism,” IEEE Transactions on Robotics, vol. 31,
no. 6, pp. 1483–1496, 2015.

[15] R. F. Shepherd, F. Ilievski, W. Choi, S. A. Morin, A. A. Stokes, A. D.
Mazzeo, X. Chen, M. Wang, and G. M. Whitesides, “Multigait soft
robot,” Proceedings of the National Academy of Sciences, vol. 108,
no. 51, pp. 20 400–20 403, 2011.

[16] M. T. Tolley, R. F. Shepherd, B. Mosadegh, K. C. Galloway, M. Wehner,
M. Karpelson, R. J. Wood, and G. M. Whitesides, “A resilient,
untethered soft robot,” Soft Robotics, vol. 1, no. 3, pp. 213–223, 2014.

[17] H. Zhang, R. Cao, S. Zilberstein, F. Wu, and X. Chen, “Toward
effective soft robot control via reinforcement learning,” in International
Conference on Intelligent Robotics and Applications. Springer, 2017,
pp. 173–184.

[18] C. M. Best, M. T. Gillespie, P. Hyatt, L. Rupert, V. Sherrod, and M. D.
Killpack, “A new soft robot control method: Using model predictive
control for a pneumatically actuated humanoid,” IEEE Robotics &
Automation Magazine, vol. 23, no. 3, pp. 75–84, 2016.

[19] P. Hyatt, D. Wingate, and M. D. Killpack, “Model-Based Control
of Soft Actuators Using Learned Non-linear Discrete-Time Models,”
Frontiers in Robotics and AI, vol. 6, p. 22, 2019. [Online]. Available:
https://www.frontiersin.org/article/10.3389/frobt.2019.00022

[20] P. Hyatt and M. D. Killpack, “Real-Time Nonlinear Model Predictive
Control of Robots Using a Graphics Processing Unit,” IEEE Robotics
and Automation Letters, vol. 5, no. 2, pp. 1468–1475, 2020.

[21] J.-S. Kim, “Recent advances in adaptive mpc,” in ICCAS 2010. IEEE,
2010, pp. 218–222.

[22] M. Bujarbaruah, X. Zhang, U. Rosolia, and F. Borrelli, “Adaptive mpc
for iterative tasks,” in 2018 IEEE Conference on Decision and Control
(CDC). IEEE, 2018, pp. 6322–6327.

[23] J. J. E. Slotine and W. Li, “on the Adaptive Control of Robot
Manipulators.” International Journal of Robotics Research, vol. 6,
no. 3, pp. 49–59, 1987.

[24] J. S. Terry, J. Whitaker, R. W. Beard, and M. D. Killpack, “Adaptive
control of large-scale soft robot manipulators with unknown payloads,”
in ASME 2019 Dynamic Systems and Control Conference. American
Society of Mechanical Engineers Digital Collection, 2019.

[25] R. L. Allen, T. and, T. Duggan, H. G., and K. Albert, “Closed-Form
Non-Singular Constant-Curvature Continuum Manipulator Kinematics,”
RoboSoft, 2020.

[26] B. Siciliano, L. Sciavicco, L. Villani, and G. Oriolo, Robotics:
modelling, planning and control. Springer Science & Business Media,
2010.

[27] P. Hyatt, C. S. Williams, and M. D. Killpack, “Parameterized and
gpu-parallelized real-time model predictive control for high degree of
freedom robots,” arXiv preprint arXiv:2001.04931, 2020.

[28] E. Lavretsky and K. A. Wise, “Robust adaptive control,” in Robust
and adaptive control. Springer, 2013, pp. 317–353.

[29] B. Stellato, G. Banjac, P. Goulart, A. Bemporad, and S. Boyd, “OSQP:
An operator splitting solver for quadratic programs,” ArXiv e-prints,
Nov. 2017.

https://www.frontiersin.org/article/10.3389/frobt.2019.00022

	Introduction
	Materials and Methods
	Related Work
	Robot Platform Description and Modelling
	Development of Model Reference Predictive Adaptive Control
	Model Predictive Control
	Model Reference Adaptive Control
	Model Reference Predictive Adaptive Control

	Experiments
	Simulation Experiments
	Case 1: Perfect Regressor (known unknowns)
	Case 2: Imperfect Regressor (unknown unknowns)

	Hardware Experiments

	Results
	Simulation Experiments
	Case 1: Perfect Regressor (known unknowns)
	Case 2: Imperfect Regressor (unknown unknowns)

	Hardware Experiments

	Conclusions and Future Work
	References

