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Abstract
This research assesses the performance of filtering
schemes for tracking uncooperative satellites through
space-based optical measurements, and identifies a sim-
ple and numerically stable methodology that ameliorates
the poor performance of standard filtering schemes at a
substantially reduced cost in comparison to nonlinear par-
ticle filter-based remedies. Traditional filtering schemes,
such as the extended Kalman filter (EKF) and unscented
Kalman filter (UKF), both diverge when tracking a resi-
dent space object (RSO) in geosynchronous orbit (GEO)
when there is a long time duration between measure-
ments. This divergence is identified as a consequence
of nonlinearity in the dynamics and nonlinearity in the
optical measurements, both of which cause the underly-
ing density of the state to deviate from a Gaussian distri-
bution. A Gaussian sum filter based on using a Gaus-
sian mixture model (GMM) for the probability density
function can be implemented in order to avoid this diver-
gence, but this comes at a high computational cost and
has numerical sensitivity problems under reasonable or-
bital conditions. An alternative filter algorithm has been
developed, referred to as the extended step-back Kalman
filter (ESBKF), which is shown to effectively track the
RSO in GEO while avoiding the computational burden
and numerical sensitivity of the GMM filter. This filter
applies the measurement updates to statistics at a time in
the past when the distribution was approximately Gaus-
sian, and then propagates the updated statistics forward to
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the present. In this manuscript the mathematical structure
and properties of the ESBKF are presented, and its utility
is demonstrated on tracking an RSO in a GEO orbit with
right-ascension and declination angle measurements from
an observer satellite.

1 Introduction

The increasing abundance of orbital debris in GEO repre-
sents a significant challenge for the future of space travel
and satellite operation. Avoiding collision events with
high probability in real time will require orbit estima-
tion algorithms that can utilize sparse observations while
maintaining computational expediency [2]. For example,
limited resources require tracking of objects in GEO with
long time increments between observations. This long
time increment allows for nonlinear dynamics to signif-
icantly deviate an initially Gaussian distribution, which
estimates the debris location in state space, far from the
Gaussian class.

The predominant filtering algorithm used for tracking
at low computational cost is the Extended Kalman fil-
ter (EKF). The EKF propagates forward-in-time between
measurements and approximates the mean and covariance
as having been generated through linear dynamics [3]. If
the duration between measurements is short, the updated
statistics when a measurement is received tracks well with
how the Kalman filter (KF) was developed. The Kalman
filter was created based on continuous linear dynamics
and discrete linear measurements. If the initial distribu-
tion of the state is Gaussian, and the measurement dis-
tribution is also Gaussian, then the Kalman filter yields
the optimal estimation of the state when a measurement
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is processed by combining the state density and the mea-
surement density into a new Gaussian distribution and the
resultant mean and covariance from this distribution are
what are produced by the Kalman update equations. A
problem arises when one of the distributions is not well-
approximated as a Gaussian due to nonlinearity. The pri-
mary distribution of concern is that of the state vector,
since most dynamical systems encountered in real-world
situations contain intrinsic nonlinearity. Nonlinear mea-
surement effects do have an impact but in simulations
conducted, the state vector distribution is the primary cul-
prit of failure of the EKF.

Several alternative filtering algorithms have been de-
veloped over the last several decades to attempt to resolve
nonlinear effects. A class of filters called particle filters
use nodes or particles generated from an initial Gaussian
distribution and propagate the particles through the non-
linear dynamics to obtain posterior mean and covariance
via sample statistics. A subset of particle filters are sigma-
point filters, of which one of them is called the Unscented
Kalman filter (UKF). The UKF creates sigma points
which are particles obtained deterministically based on
the matrix square root of the covariance matrix. Asso-
ciated weights are assigned to each sigma point particle
and propagate through the dynamical model. Determin-
istically obtaining the particles via sigma points rather
than Monte-Carlo sampling methods allows for yielding
at least second-order accurate statistics without the need
for orders of magnitude more particles [4]. The UKF also
breaks down, however, when the posterior distribution be-
comes severely skewed. It does, however, yield a larger
post measurement covariance therefore compensating for
bias in the mean. Another common algorithm, a Gaussian
Sum filter or Gaussian Mixture model (GMM), is a par-
ticle filter which attempts to approximate the state vector
distribution by a sum of weighted Gaussian distributions
[1]. The idea is that each particle will propagate the Gaus-
sian statistics forward in time linearly and following the
EKF update procedure. It obtains a better posterior esti-
mate of the mean and variance since the geometry of the
distribution will more closely resemble the true distribu-
tion since the geometry, which has skewness, is provided
by the location of the various Gaussian distributions. This
algorithm is computationally expensive and also requires
updating the weights of each particle via evaluation of var-
ious Gaussian distributions which has been found to be

numerically sensitive.
Another algorithm has been developed in this research

effort, the Extended Step-Back Kalman filter (ESBKF),
which reduces the concern of approximating a non-
Gaussian distribution of the state vector. The strategy for
this algorithm is to apply the measurement update to the
last point in time when the distribution is either exactly
Gaussian or well-approximated as a Gaussian immedi-
ately following a measurement update, and then propa-
gating the new distribution forward to the present. The
ESBKF avoids the need to approximate a non-Gaussian
distribution by maintaining a more precise and accurate
Gaussian approximation for the state vector, and it does
this at a computational cost on the same order of magni-
tude as the EKF. We will: (1) explain the development
of the ESBKF; (2) demonstrate that, with linear dynam-
ics and linear measurements, it coincides exactly with the
standard Kalman Filter; (3) illustrate its utility in sur-
mounting the shortcomings of other filtering strategies for
this problem.

2 Kalman Filter Background
At each step, the Kalman filter [3] begins by propagating
the mean of the state vector X̂ and its covariance matrix
P forward in time by,

X̂(t−) = Φ(t, t0)X̂(t−0 ), (1)

P (t−) = Φ(t, t0)P (t−0 )ΦT (t, t0)

+

∫ t

t0

Φ(τ, t0)GQGT ΦT (τ, t0) dτ,
(2)

where Φ is the state transition matrix of the dynamical
system.

Once a measurement Z̃ is available, the statistics are
updated by

K(t) = P (t−)HT (t)[H(t)P (t−)HT (t) +R]−1,

X̂(t+) = X̂(t−) +K(t)(Z̃ − Ẑ),

P (t+) = [I −K(t)H(t)]P (t−)[I −K(t)H(t)]T

+K(t)RKT (t),

(3)

where H is the measurement geometry matrix, and R is
the covariance matrix of the measurement noise.
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Derivation of the Kalman update equations (3) was
based on both the state vector and measurement proba-
bility density functions being Gaussian. The dynamics
were also assumed linear, so that if the initial distribu-
tion is Gaussian, it will remain Gaussian as it propagates
forward-in-time. Below we will find that the step-back
Kalman filter that we derive in this work will match the
Kalman filter definition when both the dynamics and mea-
surement models are linear.

2.1 Extended Kalman filter

In the situation where nonlinearities are present in the dy-
namics and measurement model, the Kalman filter can be
reformulated based on first order approximations. This re-
formulation is called the Extended Kalman filter [3]. Here
we review its derivation for the purpose of exposing the
structure of our modified approach. The first order ap-
proximation of the propagation of the statistics through
nonlinear dynamics is as follows. The nonlinear dynam-
ics are defined by the integral equation

X(t−) = X(t−0 ) +

∫ t

t0

Ẋ(X(τ), τ) dτ. (4)

The State Transition Matrix (STM) Φ is also the Jacobian
of the dynamics, and is given by,

Φ(t, t−0 ) =
∂X(t)

∂X(t0)

∣∣∣∣
X(t0)=X̂(t−0 )

. (5)

It is calculated by integrating through time based on a for-
mulation from the Leibniz’s Integral Rule. The Leibniz’s
Integral Rule is given by

d

dx

(∫ b

a

f(x, t) dt

)
=

∫ b

a

∂

∂x
f(x, t) dt.

Applying the chain rule to obtain the derivative with re-
spect to the initial condition(s),

d

dx0

(∫ b

a

Ef(x, t) dt

)
=

∫ b

a

(
∂

∂x
f(x, t)

)(
∂x

∂x0

)
dt.

(6)

Therefore, the STM is calculated by combining (4), (5),
and (6), to give

Φ(t, t−0 ) = I +

∫ t

t0

∂Ẋ

∂X
Φ(τ, t−0 ) dτ.

Next recall that the statistics of the state vector at t0 are
defined by

X̂(t−0 ) = E[X(t−0 )],

P (t−0 ) = E
[
(X(t−0 )− E[X(t−0 )])(X(t−0 )− E[X(t−0 )])T

]
.

Applying a first order Taylor expansion to the dynamics
centered around X̂(t−0 ), we find

X(t−) = X̂(t−) + Φ(t, t−0 )(X(t−0 )− X̂(t−0 )).

The propagated mean value and covariance matrix will
then be calculated by using the expectation operator. First,
the mean value will be determined,

E[X(t−)] = E[X̂(t−) + Φ(t, t−0 )(X(t−0 )− X̂(t−0 ))]

= E[X̂(t−)] + Φ(t, t−0 )E[X(t−0 )]− Φ(t, t−0 )E[X̂(t−0 ))]

= X̂(t−).

Then the covariance matrix before incorporating process
noise is obtained as follows,

P (t−) = E[(X(t−)− E[X(t−)])(X(t−)− E[X(t−)])T ]

= E[Φ(t, t−0 )(X(t−0 )− E[X(t−0 )])

· (X(t−0 )− E[X(t−0 )])T ΦT (t, t−0 )]

= Φ(t, t−0 )E(X(t−0 )− E[X(t−0 )])

· (X(t−0 )− E[X(t−0 )])T ]ΦT (t, t−0 )

= Φ(t, t−0 )P (t−0 )ΦT (t, t−0 )

Adding the process noise to the covariance matrix will
give the same result as (2).

P (t−) =Φ(t, t−0 )P (t−0 )ΦT (t, t−0 )

+

∫ t

t0

Φ(τ, t−0 )GQGT ΦT (τ, t−0 ) dτ.
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When a measurement is available, the mean and co-
variance will be updated following the same lineariza-
tion methodology. The nonlinear measurement model and
measurement Jacobian are the following, respectively,

Z =g(X(t)),

H(t) =
∂Z

∂X(t)

∣∣∣∣
X(t)=X̂(t)

.

In the same manner as the original Kalman filter, the up-
date equations are the following,

K(t) = P (t−)HT (t)[H(t)P (t−)HT (t) +R]−1,

X̂(t+) = X̂(t−) +K(t)(Z̃ − Ẑ),

P (t+) = [I −K(t)H(t)]P (t−)[I −K(t)H(t)]T

+K(t)RKT (t).

2.2 Divergence of Extended Kalman filter

When tracking a RSO in GEO through space-based opti-
cal measurements, when the duration between measure-
ments is small, the linear approximation behind the EKF
is accurate, and it yields a covariance matrix such that
when implemented into calculating the Kalman Gain ma-
trix, the mean and covariance are correctly updated after a
measurement. However, when the duration between mea-
surements is too long, equation (3) loses fidelity, and the
propagated covariance matrix is not sufficiently accurate.
When this happens, the updated mean value can be moved
farther from the truth and the covariance matrix can be-
come overly confident about the wrong mean value. As
seen in Figure 1, this leads to skewed filter statistics af-
ter the measurement update, and subsequent filter diver-
gence.

The reason why the updated state distribution is not rea-
sonably accurate when using the EKF update equations is
that the intersection of the measurement distribution and
the state vector Gaussian approximation places the up-
dated distribution in the incorrect location. The correct
location is where the measurement distribution intersects
the true state vector distribution, which has skewness and
is non-Gaussian. Figure 2 illustrates the density functions
utilized in the EKF and how it compares with the true dis-
tribution.
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Figure 1: Extended Kalman filter divergence
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Figure 2: Extended Kalman filter density functions
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3 Unscented Kalman filter
As a widely used alternative filtering algorithm for han-
dling nonlinear dynamics, the UKF can resolve the diver-
gence problem if skewness in the state vector distribution
is not too severe. This is shown in Figure 3. However,
the UKF diverges when updates are conducted at a time
when the state vector distribution is severely skewed. The
covariance matrix propagated by the sigma points is larger
that what the EKF yields when skewness in the true distri-
bution is inherited. This is illustrated in Figure 4, which
also demonstrates the true distribution having skewness
and the Gaussian distribution updated by UKF algorithm.
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Figure 3: Unscented Kalman filter convergence
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Figure 4: Unscented Kalman filter density functions

The updated statistics shown in Figure 4 lead to diver-

gence when propagated forward in the future. This di-
vergence behavior is illustrated in Figure 5. The break-
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Figure 5: Unscented Kalman filter divergence

down of traditional Kalman filtering methods for tracking
an RSO in GEO provides our motivation to obtain some
alternative means to acquire more accurate statistics.

4 Step-Back Kalman filter Equiva-
lence for a Linear System

The premise for the SBKF is to apply the measurement
update at a time in the past where the probability distribu-
tion of the state is Gaussian, or at least well-approximated
by a Gaussian. The distribution at the start of all the pre-
viously described filter algorithms is modeled as a Gaus-
sian. After a measurement update is performed, the result-
ing mean and covariance are then modeled as describing a
new Gaussian distribution. The SBKF begins exactly the
same as the Kalman filter by propagating forward in time
and obtaining a measurement prediction, Ẑ, and measure-
ment Jacobian, H(t). Using the chain rule, the measure-
ment Jacobian with respect to the state vector at time t0
can be calculated by

H(t0) = H(t)Φ(t, t0). (7)

Also, the contribution of process noise added to the co-
variance matrix during propagation from t0 to t is given
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as,

Pq =

∫ t

t0

Φ(τ, t0)GQGT ΦT (τ, t0) dτ.

Applying H(t0) and Pq to find the Kalman update at
time t0 and corresponding statistics at time t is given by

Pq0 = Φ−1(t, t0)PqΦ−T (t, t0),

K(t0) = [P (t−0 ) + Pq0]HT (t0)

· [H(t0)[P (t−0 ) + Pq0]HT (t0) +R]−1,

X̂(t+0 ) = X̂(t−0 ) +K(t0)(Z̃ − Ẑ),

X̂(t+) = Φ(t, t0)X̂(t+0 ),

P (t+0 ) = [I −K(t0)H(t0)][P (t−0 ) + Pq0]

· [I −K(t0)H(t0)]T +K(t0)RKT (t0),

P (t+) = Φ(t, t0)P (t+0 )ΦT (t, t0).

(8)

In the case where the both the dynamics and mea-
surement models are linear, the SBKF can be shown to
yield identical results as the Kalman filter for X̂(t+) and
P (t+). Equation set (8) will match equation set (3) in
a linear system as demonstrated by the following argu-
ments.

Inserting the measurement Jacobian relationship (7)
into the Kalman Gain at t0,

K(t0) = [P (t−0 ) + Pq0]ΦT (t, t0)HT (t)

· [H(t)Φ(t, t0)[P (t−0 ) + Pq0]

· ΦT (t, t0)HT (t) +R]−1.

With some simplifcation, we find

Φ(t, t0)[P (t−0 )+Pq0]ΦT (t, t0)

= Φ(t, t0)P (t−0 )ΦT (t, t0)

+ Φ(t, t0)Pq0ΦT (t, t0)

= P (t−).

(9)

Therefore, if K(t0) is multiplied by Φ(t, t0), then

Φ(t, t0)K(t0) = K(t). (10)

Applying (10) toward X̂(t+) as given in (8),

X̂(t+) =Φ(t, t0)X̂(t+0 )

=Φ(t, t0)[X̂(t−0 ) +K(t0)(Z̃ − Ẑ)]

=X̂(t−) +K(t)(Z̃ − Ẑ).

(11)

This matches X̂(t+) as given in (3). Now, the covari-
ance matrix P (t+) will be demonstrated to match by sim-
ilar arguments. We modify expressions as follows

Φ(t, t0)[I −K(t0)H(t0)]

= Φ(t, t0)[I −K(t0)H(t)Φ(t, t0)]

= Φ(t, t0)[I −K(t0)H(t)Φ(t, t0)]

= Φ(t, t0)−K(t)H(t)Φ(t, t0)

= [I −K(t)H(t)]Φ(t, t0),

(12)

By expanding P (t+) represented in (8) and applying
(9), (10), and (12),

P (t+)

= Φ(t, t0)
[
[I −K(t0)H(t0)][P (t−0 ) + Pq0]

· [I −K(t0)H(t0)]T

+K(t0)RKT (t0)
]
ΦT (t, t0)

= [I −K(t)H(t)]Φ(t, t0)[P (t−0 ) + Pq0]

· ΦT (t, t0)[I −K(t)H(t)]T

· Φ(t, t0)K(t0)RKT (t0)ΦT (t, t0)

= [I −K(t)H(t)]P (t−)[I −K(t)H(t)]T

+K(t)RKT (t).

(13)

Therefore, P (t+) in (13) matches the same expression
in (3). The equivalence between the Kalman filter and
the Step-Back Kalman filter in a linear system has now
been demonstrated, however, the primary purpose of de-
velopment of the SBKF is the significant advantage over
the KF when using the extended forms, EKF and ESBKF.
The extended forms are used when nonlinear dynamics
and/or nonlinear measurements are present.

5 Extended Step-Back Kalman fil-
ter

Nonlinearities present in either or both the dynamics and
measurement model, an extended form of the SBKF can
be formulated and implemented. The ESBKF follows the
same linearization approach as the EKF.

H(t0) = H(t)Φ(t, t−0 ).
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Also, the contribution of process noise added to the co-
variance matrix during propagation from t0 to t is given
as,

Pq =

∫ t

t0

Φ(τ, t−0 )GQGT ΦT (τ, t−0 ) dτ,

Following the update procedure in (8), the ESBKF
methodology for updating statistics at time t is given as
follows:

H(t0) =H(t)Φ(t, t−0 ),

Pq0 =Φ−1(t, t−0 )PqΦ−T (t, t−0 ),

K(t0) =[P (t−0 ) + Pq0]HT (t0)

[H(t0)[P (t−0 ) + Pq0]HT (t0) +R]−1,

X̂(t+0 ) =X̂(t−0 ) +K(t0)(Z̃ − Ẑ),

X̂(t+) =X̂(t+0 ) +

∫ t

t0

Ẋ(X(τ), τ) dτ,

Φ(t, t+0 ) =I +

∫ t

t0

∂Ẋ

∂X
Φ(τ, t+0 ) dτ.

P (t+) =Φ(t, t+0 )P (t+0 )ΦT (t, t+0 ).

5.1 ESBKF Results
When nonlinear effects are present in a dynamical model,
an initially Gaussian distribution may evolve into a distri-
bution with non-zero skewness. Approximating this dis-
tribution as a Gaussian is essentially what the EKF and
UKF attempt to do but if the actual location of the state
vector is in a region where a Gaussian distribution is a
poor approximation, and the Kalman update equations
will not yield an accurate updated location. Avoidance
of having to deal with a non-Gaussian distribution for the
state vector would be ideal which is the primary motive
behind the development of the ESBKF.

To illustrate ESBKF resolves this issue of divergence
of the EKF, the same orbital mechanics model was con-
sidered involving an observer satellite tracking an RSO
in GEO by using optical angle measurements. Sample
statistics were generated and used to compare the proba-
bility distributions generated by the EKF, ESBKF, and the
skewed distribution from the propagation through nonlin-
ear orbital dynamics. Initial statistics of the GEO object
and the time when the measurement is taken were selected

to give a clear demonstration of divergence and improve-
ment by the ESBKF. The density functions generated are
depicted in Figure 6.
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Figure 6: Step-Back Kalman filter density functions

The two optical angle measurements taken by the ob-
server satellite essentially yield a line of sight from the ob-
server to the GEO object. This line of sight does not how-
ever give any direct measurement for distance along the
line of sight vector. Therefore, when the EKF generates
an update it does so by placing a higher weight at the inter-
section of the line of sight and the assumed Gaussian dis-
tribution of the state. To expand further, the Kalman up-
date equations were derived based on the recognition that
the resultant probability distribution from the product of
two Gaussian distributions, in this case for the state vec-
tor and the measurement model, is a new unique Gaussian
distribution. In the orbital dynamics simulation, the mea-
surement model has a Gaussian distribution in the angle
measurement domain which translates to a non-Gaussian
distribution in the state domain but is located in the neigh-
borhood of the line of sight from the observer to the GEO
object. The intersection of the measurement distribution
and the assumed Gaussian distribution for the state gener-
ates a Gaussian distribution whose location deviates from
the true location because the assumption that the state
is Gaussian distributed is not valid at the time when the
measurement is received (at three weeks). In contrast,
the updated distribution in Figure 6 lies within the true
non-Gaussian state density function prior to the update.
Therefore, the filter statistics forward from this point in
the future will yield convergent results, as seen in Figure
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7.
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Figure 7: Extended Step-Back Kalman filter
convergence

6 Unscented Step-Back filter

An unscented form for the Step-Back Kalman filter has
also been developed in this research effort and has al-
lowed for handling not only the nonlinear dynamics bet-
ter, which the ESBKF does effectively, but the nonlinear
measurements as well. Essentially the algorithm propa-
gates deterministically selected particles forward in time
and when a measurement is received, the measurement
estimates for each particle are applied to each particle at
the previous point in time in the past when the state distri-
bution was well-approximated as a Gaussian distribution.
The updated particles are then propagated forward to the
current time and from that point the filter sets the current
time as the point when the next measurement will be ap-
plied.

7 Monte-Carlo Particle filter

Monte-Carlo particle filters generate a large number of
state vectors {xi} sampled from initial conditions, re-
ferred to as particles. These particles are propagated for-
ward in time and the filter statistics are the sample statis-
tics computed from these particles, namely the sample

mean

x̂ =
1

N

N∑
i=1

xi

and sample covariance

P =
1

N − 1

N∑
i=1

(xi − x̂)(xi − x̂)T . (14)

An example is a Gaussian Sum filter based on a GMM,
for which deterministic particles or nodes are selected
based on the initial statistics and propagated forward in
time [1]. The measurement update relies on the assump-
tion that each particle has a unique underlying Guassian
distribution for the state and therefore a weighted update
for the statistics is carried out. This methodology allows
for a more accurate representation of the true distribu-
tion prior to an update because the collection of weighted
Gaussian distributions fills out more of the geometry of
the actual distribution. A major drawback for this algo-
rithm is that, if the particle number is too small, it is nu-
merically sensitive when the assigned weights for each
particle are updated after a measurement is received. It
was found that a GEO orbit model only allowed for nu-
merically stable weight updates with reasonable particle
numbers to be obtained at points in time when even the
EKF was functioning effectively. The premise behind the
GMM is sound but due to numerical limitations and com-
putational burdens of handling large numbers of particles,
the ESBKF was found to resolve the convergence issue
without the numerical sensitivity or computational cost
constraints.

8 Conclusion
Computationally efficient tracking and surveillance of
RSOs in orbit around Earth, particularly in GEO where
communication satellites are most present, is critical for
the future of space exploration. The traditionally used
low cost filtering algorithm for nonlinear dynamical be-
havior is the EKF but it has limitations based on the un-
derlying assumptions of linearized dynamics and mea-
surements and presumed Gaussianity of distributions. For
short durations between measurements, the EKF handles
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the filtering process well, but once nonlinear effects be-
come significant, the algorithm will place an updated state
estimate in the incorrect location. Two particle filter al-
gorithms, the UKF and GMM, both attempt to avoid the
divergence problem by more accurately representing the
state distribution prior to a measurement update by in-
creasing the covariance of the Gaussian distribution or
modeling with multiple weight Gaussian distributions, re-
spectively. Each of these have limitations and will suc-
cumb to nonlinear effects of gravitational nonlinear dy-
namics. A new technique, the ESBKF, was developed in
this research to mitigate the effect of the nonlinear dynam-
ics. The primary idea behind this algorithm is that when
a measurement is available to process for an update of the
state vector statistics, the update is applied to the last point
in time when the state distribution is known to be well-
approximated as a Gaussian (for example, the last time an
update was performed), and the filter is then propagated
forward. This results in a distribution post-update that re-
sides near the actual location of the RSO being tracked,
which was validated for an RSO in GEO by Monte-Carlo
simulation. Furthermore, the computational burden of the
ESBKF is on the same order of magnitude as the EKF.
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