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ABSTRACT 

Visual Saliency Estimation and Its Applications 

by 

Fei Xu, Doctor of Philosophy 

Utah State University, 2020 

Major Professor: Heng-Da Cheng,  
Ph.D. Department: Computer Science 

 

Visual Saliency Estimation (VSE) aims to imitate the human visual system to 

estimate the degree of human attention attracted by different image regions and locate the 

salient object. The current VSE approaches on natural images model generic visual stimuli 

based on lower-level image features, e.g., central-bias spatial distance, local/global contrast, 

and feature correlation, and still suffered from some drawbacks. First, these methods 

formulated the center-bias constraint using the image center, which fail when the objects 

are near the image borders. Second, many region-based methods were based on the 

assumption that every small region is homogeneous. Such limitation makes these methods 

cannot achieve good results when the images have complicated backgrounds. 

This research focuses on solving these challenges by proposing a new framework 

with more robust task-related priors, and extend the framework into the other real 

problems.  

The new framework formulated VSE on natural images as a quadratic program (QP) 

problem. It proposes an adaptive center-based bias hypothesis to replace the most common 

image center-based center-bias, which is much more robust when the objects are far away 

from the image center. Second, it models the smoothness term on saliency statistics of each 
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color and forces the pixels with similar colors to have similar saliency statistics. The new 

smoothness term is more robust than that based on region dissimilarity when the image had 

a complicated background or low contrast. The new approach achieves the best 

performance among 11 latest methods on three public natural image datasets. 

Three approaches based on the framework are utilized to imitate the radiologists’ 

attention to detect breast tumors from breast ultrasound images. The first approach 

proposes a novel hybrid framework for tumor saliency estimation (TSE), which is the first 

optimization framework to detect tumor saliency by integrating both high-level domain-

knowledge and robust low-level saliency assumptions. The second approach estimates the 

tumor saliency via breast anatomy modeling based on Neutro-Connectedness. It proposes 

a new objective function to handle the images without tumors and achieved more accurate 

detection results. The strategy of modeling image structure based on Neutro-

Connectedness theory can be applied to model tissue relationships in other medical image 

tasks such as thyroid tumor detections, liver tumor detections, lung tumor detections, etc. 

The third approach utilizes a deep neural network to generate semantic breast anatomy. A 

new background map generation method weighted by the semantic probability and spatial 

distance is proposed to improve the performance. The experimental results demonstrate the 

new approach obtains the best performance comparing with the latest methods on two 

breast ultrasound image datasets. 

 

(105 pages) 
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PUBLIC ABSTRACT 

 

Visual Saliency Estimation and Its Applications 

Fei Xu 

 

The human visual system can automatically emphasize some parts of the image and 

ignore the other parts when seeing an image or a scene. Visual Saliency Estimation (VSE) 

aims to imitate this functionality of the human visual system to estimate the degree of 

human attention attracted by different image regions and locate the salient object. The 

study of VSE will help us explore the way human visual systems extract objects from an 

image. It has wide applications, such as robot navigation, video surveillance, object 

tracking, self-driving, etc.  

The current VSE approaches on natural images models generic visual stimuli based 

on lower-level image features, e.g., locations, local/global contrast, and feature correlation. 

However, existing models still suffered from some drawbacks. First, these methods fail in 

the cases when the objects are near the image borders. Second, due to imperfect model 

assumptions, many methods cannot achieve good results when the images have 

complicated backgrounds. In this work, I focuses on solving these challenges on the natural 

images by proposing a new framework with more robust task-related priors, and I apply 

the framework to low-quality biomedical images.  

The new framework formulates VSE on natural images as a quadratic program (QP) 

problem. It proposes an adaptive center-based bias hypothesis to replace the most common 

image center-based center-bias, which is much more robust even when the objects are far 

away from the image center. Second, it models a new smoothness term to force similar 
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color having similar saliency statistics, which is more robust than that based on region 

dissimilarity when the image has a complicated background or low contrast. The new 

approach achieves the best performance among 11 latest methods on three public datasets. 

Three approaches based on the framework by integrating both high-level domain-

knowledge and robust low-level saliency assumptions are utilized to imitate the 

radiologists’ attention to detect breast tumors from breast ultrasound images. 
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CHAPTER 1 

INTRODUCTION 

1.1 Backgrounds 

Visual saliency estimation (VSE) aims to model human visual mechanisms and 

plays an important role in automatic object detection and image segmentation [1-3]. It 

measures the degrees of human attention attracted by different image regions. The image 

center and local & global contrasts are three typical clues modeled in VSE approaches. 

Generally, VSE approaches can be classified into two categories based on saliency 

generation strategies. First, the direct mapping methods [4-9] transform image features into 

saliency values by using predefined maps; second, the optimization models [10-17] focus 

on modeling different hypotheses into one unified framework, and the saliency values are 

generated by optimization techniques. The approaches in the former category are simple 

and faster; however, they have poor performance using images with low contrast and big 

objects. While approaches in the latter category can achieve better performance by 

automatically adapting and balancing different components of the models.  

In recent years, VSE for natural images analysis is one of the most popular research 

topics. One of the earliest saliency models proposed by Itti et al. [4] was based on the 

biological model proposed by Koch and Ullman [5]. It generated an early bottom-up 

computational framework for saliency detection. Hou et al. [6] proposed the spectral 

residual method to detect salient objects based on Fourier Transform. The method 
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calculates saliency values fast but was only sensitive to the boundary pixels of the salient 

objects. The phase spectrum based saliency detection was another frequency domain-

related method proposed by Guo et al. [7]. To address the problems of poor borders and 

low-resolution map, Achanta et al. [8] proposed an efficient frequency-turned approach to 

generate a full resolution saliency map. However, this method still could not highlight full 

salient region. 

    In [9], Cheng et al. showed that the region-based global contrast method could 

achieve quite a good saliency detection. They also demonstrated that the color space 

smoothing on the saliency map was an effective approach to reduce saliency noise. The 

method not only could highlight object boundaries but also could highlight object regions. 

However, it failed when the objects had low contrast.  

   All the methods mentioned above are directly mapping models: calculating 

saliency values based on a predefined map: pixel or region color difference, spectral 

residual, phase information, and gradient. The methods used the unified models to process 

various images, and they failed in many cases, such as big smooth objects, low image 

contrast, complicated background and not centered objects. Therefore, optimization 

models based visual saliency estimation method have attracted more and more attention 

recently. 

   Chang et al. [10] modeled the saliency detection as a quadratic program (QP) 

optimization problem. They modeled three constraints in the objective function: saliency 

estimation term, objectness estimation term and the interaction term. The constraints were 
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heavily dependent on saliency and objectness priors, and the smooth term was only defined 

based on adjacent superpixels. Chen et al. [11] proposed an optimization method based on 

the low-rank matrix, which modeled the center-bias prior, semantic prior and color prior 

in the objective function. The method treated the low-rank problem as an approximation 

convex problem with equality constraints, which could only obtain local optimal. Jiang et 

al. [12] proposed a supervised method with regional contrast and background feature 

constraints. It used random forest regression to learn the saliency estimator based on richer 

descriptors. Kim et al. [13] proposed a supervised method based on random forest 

regression. They extracted high-dimensional features in color space and modeled the 

saliency detection as a linear program (LP) optimization problem. Li et al. [14] modeled 

the saliency detection as a QP problem. They modeled the region’s rarity, center-bias, and 

regions’ correlation hypotheses. The method used the image center to model the center-

bias hypotheses, which failed if the salient object is close to image borders, and the method 

generated an inaccurate saliency map when the image has a complicated background. In 

[15] and [16], the saliency detection was formulated as a random walk problem in the 

absorbing Markov chain with boundary prior constraint.  

Existing optimization-based saliency estimation methods still suffered from some 

drawbacks. First, these methods formulated the center-bias constraint using the image 

center, which made them have low performance when the objects are near the image 

borders. Second, many region-based methods assumed that every small region was 

homogeneous, and they modeled the smoothness term based on region features. Due to the 
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limitations, these methods cannot achieve good results when the images have complicated 

backgrounds.  

1.2 Outline  

The rest of the dissertation is organized as follows. In Chapter 2, we propose the 

generalized bottom-up framework for salient object detection on natural images. In Chapter 

3, we apply the framework into breast ultrasound images and propose a novel hybrid tumor 

saliency estimation approach by integrating breast ultrasound image knowledge and low-

level saliency assumptions for breast tumor detection. In Chapter 4, we estimate the tumor 

saliency via breast anatomy modeling based on Neutro-Connectedness. It proposes a new 

objective function to handle the images without tumors and achieve more accurate 

detection results. In Chapter 5, a new approach is discussed, which utilize a deep neural 

network to generate semantic breast anatomy. A new background map generation method 

weighted by the semantic probability and spatial distance is proposed to improve the 

performance. The future work is discussed in Chapter 6. 
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CHAPTER 2 

A ROBUST VSE FRAMEWORK FOR SALIENT OBJECT DETECTION 

2.1 Basic Idea 

We formulate VSE as a quadratic program (QP) problem with robust constraints. 

We do not need to assume that the closer the image region to the image center is, the higher 

saliency value the region may have. Alternatively, we use the newly proposed adaptive 

center to model the center-bias constraint. The adaptive center is calculated based on image 

local contrast and can locate the object automatically. In addition, we do not need to assume 

that the small regions generated by the superpixels method or other segmentation methods 

are homogeneous. Therefore, the smoothness term is not defined on the region features but 

the saliency statistics (sum) of each color.  

2.2 Problem formulation  

We model the VSE problem as a convex optimization problem, and the 

optimization is to assign optimal saliency values for a set of image region�  {��}���
� . To 

facilitate the discussion, we define � = (��,��,⋯ ,��)�as a vector of saliency values for N 

image regions, where  �� ∈ [0,1]   denotes the saliency value of the ith image region. 

The problem is formulated as  

minimize   �(�) = �����(�) + ��������(�)

subject to   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�         

   ∑ ��
�
��� = 1              

         

                    ��� = 0,� = (��,��,⋯ ��),�� = {0,1}

                             (1) 

where the data term ����� models the region-based global contrast and the adaptive center-

bias, ������� models the color-based smoothing, and � is defined to balance the influence 
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of the two terms; �� is assigned to 1 if the ith region is adjacent to the image border, and 0 

otherwise. 

We utilize the method in [18] to segment the image into N regions. Similar to the 

method in [9], we extract regions’ histograms in lab color space as the region features and 

only keep n bins for each histogram. In the data term, the newly proposed adaptive center-

bias hypothesis and the global contrast-based hypothesis are modeled. It forces the image 

region with high global contrast value and/or short distance to the adaptive center to have 

high saliency value. In the smoothness term, we model the robust correlation hypothesis 

based on color saliency.  

2.2.1 Data term 

  �����(�) = ��(� + ��)                                                        (2) 

In Eq. (2), Edata(S) is a linear function of S; the terms � = (��,��,⋯ ,��)�and� =

(��,��,⋯ ,�� )�are two N × 1 vectors denoted the global contrast and adaptive center-bias 

of the image regions, respectively. Large value of di indicates the low global contrast 

between the ith region and other image regions, and small di indicates the high global 

contrast (Eqs. (3) - (5)). The term STD defines the cost on the global contrast, and STC 

defines the cost based on the newly proposed adaptive center-bias. The relative importance 

between the two terms is specified by � which will be discussed in section 2.4.2.  

� = (��,��,⋯ ,��)� is the global contrast vector defined by 

        �� = � ���

�

���
                                                                (3) 

  ��� = exp (−��(��,��))                                                (4) 

where wij is the color contrast between the ith region and the jth regions, and Hi and Hj are 
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the color histograms of region i and j, respectively. ds(Hi, Hj) defines the dissimilarity 

between two regions using the Bhattacharyya distance as 

�����,��� = �1 − ∑ ���(�)��(�)�                             (5) 

where  ��(�) and ��(�) are the values of the kth bins of histograms Hi and Hj, respectively.  

The term C models the proposed adaptive center-bias. Most methods used the 

image center to calculate center-bias values and failed when the objects are far from the 

image center. Here, we propose a new method based on an adaptive center to compute the 

center-bias value. C is defined by 

� = exp (‖��� − ��‖� ��⁄ )                                              (6) 

 �� = ∑ ���
�(��)

�
��� ∑ ��(��)�

���⁄                                        (7) 

where RCi is the coordinate of the ith region center, AC is the adaptive center, ‖∙‖� is the 

l2 norm, dD is the diagonal distance of the image, �� = (xi, yi) is the coordinates of the ith 

pixel, M is the number of pixels, and wl (pi) is the local contrast of the ith pixel. The local 

contrast map is calculated by using the local range filter. We first transform the color image 

into gray image, then the local range output wl (pi) is computed by using max ({�(�)|� ∈

���×�
��  }) − min ({�(�)|� ∈ ���×�

��  }), where �(p)  is the gray value of the pth pixel, 

���×�
��  is a set that contains all the pixels (including pi) of the 3-by-3 neighborhood around 

pi. 

As shown in Eq. (7), the adaptive center AC is the weighted center of the local 

contrast map, e.g., if the energy of the local contrast map concentrated on the left side of 

the image, the adaptive center will move to the left. To overcome the effect of the local 

contrast noise, we use the mean value of the local contrast values as a threshold (discussed 

in section 4.1), and the local contrast values less than the threshold will be set as 0.   
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2.2.2 Smoothness term 

Most region-based methods [10, 11, 14] model the smoothness term based on the 

region-based correlation hypothesis: two similar regions should have similar saliency 

values if they are close to each other. The similarity between two regions is calculated by 

using the mean of the regions’ color values. These methods can achieve good results for 

smooth images; but if the image regions are inhomogeneous, the mean values cannot 

describe the region features precisely and the performance will drop dramatically. In [9], 

Cheng et. cl demonstrated that replacing saliency value of each color using the weighted 

average saliency values of similar colors can reduce large amount of noise. Inspired by 

their work, we model the smoothness term on color saliency, which makes similar colors 

have similar saliency statistics (sum).   

�������(�) = (� − � × �)�(� − � × �)                                  (8) 

In Eq. (8), �������(�) is a quadratic function of   S, and A is an NN transition 

matrix which is proposed to smooth the saliency map. 

� = � × � × ��                  

� = �

��
�

��
�

⋮
��

�

� ,�� = (ℎ�,ℎ�,⋯ ℎ�)�                                       (9) 

In Eq. (9), H is an Nn matrix containing histograms of N regions; and V is an n

n matrix saving the L2 distance between each color pairs (Lab color); only top 1/4 nearest 

color distances are kept, and the others are set to zero; Hi is column vector saves the values 

of the ith region’s color histogram; the maximum number of histogram bins n is 

1728 (12 × 12 × 12), only valid bins (ℎ� ≠ 0) are employed in computation. 

   In order to smooth region saliency values based on color saliency, we introduce 
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the transition matrix A. � × � will output the smoothed saliency values of each region 

based on color saliency.  

The histogram matrix HT realizes the mapping from region saliency values (S) to 

color saliency values (�� × �). The value of the ith element in  �� × � is the sum of 

saliency values of all pixels with color value i. 

 The color distance matrix V works as a weighted mean filter. It replaces the 

saliency values of each color by the average saliency values of its m-nearest neighbors. 

The value of the ith element in � × �� × � is the smoothed saliency value of color i. 

� × � × �� × � maps the smoothed saliency value of each color to region saliency value. 

The proposed smoothness term is a QP problem with linear equality and inequality 

constraints. The original problem can be rewritten as follows: 

minimize ��(�) =  ��(� + ��) +                                

                         �(� − � × �)�(� − � × �)
subject to   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�

∑ �� 
�
��� = 1

                    ��� = 0,� = (��,��,⋯ ��),�� = {0,1}

                           (10) 

2.3 A primal-dual interior-point method for QP optimization 

We formulate the visual saliency estimation as a QP problem with linear equality 

and inequality constraints, and the primal-dual method can be applied to optimize the 

problem globally. The inequality constraints can be rewritten as a set of functions: 

��(�) = −�� ≤ 0,� = 1,2,⋯ ,�    

��(�) = ���� − 1 ≤ 0,� = � + 1,� + 2,⋯ ,2�
                     (11) 

In Eq. (11), N is the number of image regions and Sk is the saliency value of the kth 

region. We write all inequality constraints in a matrix (Eq. (12)). 



10 
 

 
 

�(�) = �

��(�)
��(�)

⋮
���(�)

� = �
−�

� − 1
�

��×�
                                        (12) 

And the derivative matrix of Eq. (12) is 

��(�) =

⎣
⎢
⎢
⎡

∇��(�)�

∇��(�)�

⋮
∇���(�)�⎦

⎥
⎥
⎤

= �
−I
I

�
��×�

                                     (13) 

where I is the identity matrix. 

In the primal-dual interior method, we update the dual residual (rd), primal residual 

(rp), and the centrality residual (rc) in each iteration, and stop the optimization processing 

when the sum of the L2 norms is less than 10��. 

The dual residual is  

�� = ∇��(�)� + ��(�)�� + �(1)� + �(2)�

 = � + �� + 2�(I − �)�(� − ��) +

�
−I
I

�
�

� + �(1)� + �(2)�             

                             (14) 

where vectors λ = (λ�,λ�,⋯ ,λ��)�  and ν = (��,��)�  are the dual feasible parameters, 

and O is a 2N1 vector and all the values are 1s. 

The primal residual is  

�� = ���� − 1
���

�                                                                       (15) 

The centrality residual is 

 �� = −����(�)�(�) − (1/�)�                                              (16) 

where t is the step is size and initialized as 1. 

The partial derivatives of rd, rp and rc with respect to variables S, � and � are: 
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���

��
= 2�(I − �)�(I − �),               

���

��
= ����(�) × �

−I
I

� ,
���

��
= ���

���
                                       (17) 

���

��
= �

−I
I

�
�

,
���

��
= ������(�)�,

���

��
= 0�×��                      (18) 

���

��
= [� �],

���

��
= 0�×��,

���

��
= 0�×�                                (19) 

In each iteration, we get the Newton step (∆�,∆�, ∆�) by solving Eq. (20) using 

the partial derivatives in Eqs. (17) - (19).    

⎣
⎢
⎢
⎢
⎡

���

��

���

��

���

��
���

��

���

��

���

��

���

��

���

��

���

�� ⎦
⎥
⎥
⎥
⎤

�
∆�
∆�
∆�

� = − �

��

��

��

�                                           (20) 

The variables �,� and � are updated using the following equations. 

���� = �� + �� × ∆�,λ� = λ + �� × ∆λ,

ν� = ν + �� × ∆ν
                         (21) 

In Eq. (21), �� is the step size and updated by using the line search method in each 

iteration; �� and S0 are initialized as 1 and (1 �)(1,1,⋯ ,1)�⁄ , respectively.  

In order to deal with the salient regions connecting to image border, the saliency 

value of each boundary region is replaced by the average saliency value of its three most 

similar regions (Eq. (5)). 

2.4 Experimental results  

2.4.1 Evaluation metrics 

All experiments are performed by using Matlab (R2014a, MathWorks Inc., MA) 

on a Windows-based PC equipped with a dual-core (3.6 GHz) processor and 8 GB memory. 
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The precision-recall (P-R) curve, F-measure and mean absolute error (MAE) are 

employed to evaluate the overall performance of saliency detection method. The precision 

and recall ratios are defined as following: 

�������� =
|�� ∩ ��|

|��|
,������ =

|�� ∩ ��|

|��|
 

where SM denotes the binary saliency map, while GT is the ground truth binary map, and 

|��| denotes the white pixel number of the saliency map. The P-R curve shows the mean 

precision and recall rate of all saliency maps on a dataset.  For each method, the P-R curve 

is calculated by segmenting the saliency map with threshold range from 0 to 255, and 

computing the precision and recall rates by comparing the thresholding result with the 

ground truth. To obtain the average precision and recall rates, it uses an adaptive 

thresholding method [8], which chooses two times the mean saliency value as the threshold. 

The F-measure [9] and MAE [19] are defined as 

�� =
(1 + ��)�������� ∙ ������

�� ∙ �������� + ������
 

��� = � |�(��) − �(��)|
�

���
 

where ��  is set to 0.3 as suggested in published saliency detection methods, �� is the 

coordinate of the ith image pixel, S(��) is the saliency value of the ith pixel, and G is the 

binary ground truth. 

In this section, we validate the performance of the newly proposed method on three 

public datasets: ASD [8], SED1 [20], ECSSD [21]. The ASD dataset contains 1000 images 

selected from MSRA [37] dataset, and the manually labeled boundaries of salient objects 

are used for the ground truth; the SED1 dataset has 100 images and pixel-wise masks; and 
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each image in SED1 only has one object; the ECSSD dataset has 1000 images and their 

corresponding users labeled ground truths.  

We compare the proposed method with the most recent 10 state-of-the-art methods, 

including LC [22], spectrum residual (SR) [6], phase spectrum (PS) [7], frequency-tuned 

(FT) [8], histogram-based contrast (HC) [9], region-based contrast (RC) [9], fusing generic 

objectness and visual saliency (SVO) [10], context-aware (CA) [23], low rank (LR) [11],  

estimating visual saliency (EST) [14]. We use the corresponding original implementations 

for all methods. We implemented the method PS [7] because we could not obtain the 

original implementation.   

In addition, we validate the effectiveness of the newly proposed adaptive center-

based constraint and the color saliency statistics-based smooth term using the datasets. 

2.4.2 Parameter tuning 

On SED1 dataset, we evaluate the performance of the proposed method with five 

thresholds: 0.3, 0.5, mean value, median value, and the tenth maximum value. The 

 Fig. 2.1. Local contrast threshold tuning: � and � are set to �√� and 2 �, 

respectively. 
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proposed method can generate better results if we use the mean or median value as the 

threshold (see Fig. 2.1). Therefore, we set the mean value of the local contrast map as the 

threshold in all our experiments.  Parameter �  is used to balance the influence of the 

adaptive center-based term (���) and the global contrast based term(���); parameter � 

is applied to balance the influence of data term and the smoothness term. On ASD dataset, 

we evaluate the performance of the proposed method with  α and β range from 0 to 10N. 

The step size is 0.2√�  , and the step size of � is 0.4N. We obtain better P-R curve when 

� is equal to 1.8√�  and � is equal to 1.2N (see Fig. 2.2), and we will choose the two 

values in all experiments. 

2.4.3 Example results 

We compare the newly proposed method with the latest five state-of-the-art 

methods (RC, SVO, CA, LR, and EST) on several sample images from the dataset, and the 

overall performance comparisons are shown in the section 2.4.6. 

 
Fig. 2.2. Parameters tuning with different � and �. 
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As shown in Fig. 2.3, the regions around the salient objects will get high saliency 

values in RC method; though the SVO method can highlight the entire salient objects, it 

also generates high saliency values for the background; the CA method gives high saliency 

values to object boundaries, but it fails to highlight the entire objects; the EST method 

obtains good results when a salient object is uniform and has high contrast with the 

background, but it will fail when the object is not uniform and the image has low contrast. 

The saliency estimation results in Fig. 2.3 demonstrate that the proposed method can 

highlight the entire salient object and generate low saliency values to the background, in 

Fig.2.3. Example results of six different methods. 

 

  Original     RC[9]          SVO[10]        LR[11]          CA[23]      EST[14]          Ours         GT   
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spite of not uniform objects or low image contrast.    

2.4.4 The effectiveness of adaptive center constraint 

Similar to the procedures in section 2.2, we compare the methods using image 

center-based constraints with our method using adaptive center constraint. In our methods, 

  and � are set to 2√� and 2N, respectively. As shown in Fig.2.4, the proposed method 

using adaptive center-based data term is more robust than other center-bias methods.  

2.4.5 The effectiveness of the newly proposed smoothness term  

We compare the saliency estimation results of the method using the newly proposed 

smooth term with that of the method using region correlation-based smooth term [14]. In 

this experiment, we first test our method with the newly proposed smooth term on the two 

datasets; and then test our method again by replacing the smooth term with the regions 

Fig.2.4. Examples of adaptive center effectiveness. FC is fixed center. AC is adaptive center. From 

the last three columns we can see that using the adaptive center can make the high saliency more 

concentrated on the objects than using the fixed center. 

Original       RC            SVO           LR           CA            EST           FC            AC            GT 
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correlation-based one. The parameters are the same with those in [14]. The results of 15 

images are shown in Fig. 2.5. 

The results in Fig. 2.5 demonstrate that the newly proposed color saliency-based 

smooth term is more robust than the region correlation-based smooth term: our method 

with the newly proposed smooth term can generate more accurate saliency map; however, 

our method with the region-correlation smooth term generates high background saliency 

values especially when the background is complicated. 

2.4.6 Comparison with state-of-the-art 

In this section, we compare the overall performance of the proposed approach with 

10 state-of-the art methods (SR [6], PS [7], FT [8], HC [9], RC [9], CA [23], SVO[10], 

LRS [11], EST [14], and LC [22]), on ECSSD, ASD and SED1 datasets. As shown in Figs. 

2.6-2.8, the proposed method outperforms 10 methods (SR, PS, FT, HC, RC, CA, SVO, 

  (a)             (b)             (c)              (a)             (b)             (c)              (a)             (b)            (c) 

 Fig.2.5. The effectiveness of  the new smoothness term. (a) the original images (b) the results of 

using regions’ correlation term (c) the results of using our smoothness term. 
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LRS, EST and LC) on the three datasets; our MAE values, the F-measure values and P-R 

curve are better than all 10 methods on ECSSD and SED1 datasets.  

  

Fig. 2.6: Evaluation results of different methods on the ECSSD dataset. 

Fig. 2.7: Evaluation results of different methods on the SED1 dataset. 

Fig. 2.8: Evaluation results of different methods on the ASD dataset. 
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CHAPTER 3 

A HYBRID VSE FRAMEWORK FOR TUMOR DETECTION  

In this chapter, a new VSE approach is applied to imitate the radiologists’ attention 

to detect the tumor using breast ultrasound (BUS) images. 

3.1 VSE in breast ultrasound images 

Breast cancer is the most frequently diagnosed cancer and account for about 29% 

of all new female cancer cases [24]. Automatic BUS segmentation is a key component in 

computer-aided diagnosis (CAD) systems and has the advantages of operator-

independence and high reproducibility [25, 26]. However, developing automatic 

segmentation approaches for BUS images is challenging, due to the speckle noise, low 

contrast, weak boundary, and artifacts; furthermore, strong priors to object features such 

as tumor size, shape and echo strength vary considerably across patients and machine 

settings cannot work well on images from multiple sources [27]. 

 Many automatic BUS segmentation approaches have been proposed in the last 

decade [25-34].  The major strategy of most automatic approaches is to locate tumors 

automatically by modeling domain-related priors. However, some strong constraints such 

as the number of tumors, tumor size, and predefined tumor locations, were utilized in the 

approaches, which result in dramatic performance degradation in clinical practice where 

BUS images could be collected under different settings or situations such as low image 

contrast, more artifacts, containing no tumor/more than one tumors per image, etc. 
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Therefore, it is crucial to develop automatic BUS segmentation techniques that are 

invariant and robust to images settings.  

Tumor saliency estimation aims to model the visual clues of tumors in BUS images 

that attract radiologists’ attention during the tumor detection process. The saliency 

estimation outputs the saliency value of each BUS image pixel regarding the pixel’s 

possibility of belonging to a tumor. In [2], Shao et al. proposed a computational saliency 

estimation model for fully automatic tumor segmentation. The model combined tumor 

prior knowledge and saliency estimation hypothesis and achieved very good performance 

using their BUS image dataset. However, it had two main drawbacks: 1) it always outputs 

a salient region and could not deal with images without tumor; 2) the computational model 

failed to handle the images with large tumors, shadows, and low contrast (Fig. 3.1). Xie et 

al. [1] proposed to model intensity, blackness ratio, and superpixel contrast; and the final 

saliency value of each pixel was the average of values of the three components. It shared 

the same drawbacks with [1] due to the nature of direct mapping and the strategy of 

“winner-take-all.”  

       (a)                    (b)                         (c)                       (d) 

Fig. 3.1. Tumor saliency estimation examples.  (a)Two BUS images with the 

ground truths (white boundaries); (b) results of the method in [17]; (c) results 

of the method in [27]; (d) results of the proposed method.   
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Xu et al. proposed a general bottom-up saliency estimation model [3] that 

integrated many robust hypotheses: the global contrast, adaptive center-bias, boundary 

constraint and the smoothness term based on the color statistic. The model was flexible, 

and the global optimum could be reached by using the primal-dual interior-point method. 

However, the model always outputs a salient region and could not handle BUS images 

without tumors due to the equality constraint used.  

To solve the above drawbacks, we propose a novel hybrid framework for tumor 

saliency estimation, which follows a two-step strategy. The first step determines if a BUS 

image has tumor(s) utilizing the adaptive reference point (RP) generation [20]. Weighted 

maps are generated iteratively based on the relative locations of two consecutive RPs. The 

final RP indicates the possible location of tumor; and the final weighted map gives the 

possibility of local regions in a tumor. In the second step, it formulates the tumor-saliency 

estimation problem as a quadratic programming (QP) problem which integrates both high-

Fig. 3.2. Flowchart of the proposed method.  

 

existence 
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level domain-knowledge and robust low-level saliency assumptions. In this framework, it 

incorporates Neutro-Connectedness (NC) [25] to generate more robust and accurate 

boundary connectedness and to measure the corresponding degree of confidence 

simultaneously. The adaptive center-bias and regions’ correlation hypothesis are also 

integrated in the framework. Fig. 3.2 shows the flowchart of the proposed framework on 

BUS images.  

3.2 Tumor existence determination 

Existing tumor saliency detection or segmentation methods assume that there exists 

a tumor in each BUS image and cannot handle the image without tumor; however, as an 

automatic tumor detection or segmentation system, it is important to identify whether there 

is a tumor or not.  Besides, the convex optimization frameworks cannot deal with the image 

without the salient object. The equality constraint will force that there must be at least one 

salient object in the saliency map.  

In [26], Xian et al. proposed an algorithm to automatically generate the adaptive 

reference point (RP) based on the breast anatomy. The RP was generated accurately and 

fast and could detect the darker regions (candidates of the tumors). The weighted map was 

constructed based on the RPs and the intensity map. The region is nearer the RP, the 

intensity value of the region in the weighted map is higher, vice versa. As shown in Fig.3.3, 

the weighted map enhanced the low -intensity pixels/regions near RP and decayed the high-

intensity pixels/regions far away from RP.  
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Based on the observation, the weighted map of the BUS image without tumor is 

smoother than that of the BUS images with tumor. In Fig. 3.3, the four max intensities of 

the weighted maps are 0.043, 0.0152,0.9086 and 0.0035, listing from left to right, top to 

bottom, respectively.  It chooses the local maximum, mean, and standard deviation of the 

weighted map as the feature vector and applies threshold or Decision Tree to classify. The 

tumor existence determination result and discussion are in Section 3.4.  

3.3 Tumor Saliency Estimation 

Researchers have applied several saliency hypotheses to construct mathematics 

models for visual saliency estimation, such as rarity hypothesis, center-bias hypothesis, 

correlation hypothesis, etc. In this work, it utilizes the adaptive center-bias, regions’ 

correlation hypotheses, the boundary NC map, and weighted map to model the tumor-

saliency estimation problem as a convex optimization problem.  

Firstly, it used a quick shift algorithm in [30] to over-segment the image into N 

superpixels, noted as {��}���
���. Similar to the method in [27], it extracts regions’ average 

              (a)                                (b)                                (c)                                 (d) 

Fig. 3.3. Weighted maps. (a) BUS images with tumor; (b) and (d) weighted 

maps with RPs (marked with red color); (c) BUS images without tumor. 
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intensities as the region features. To facilitate the discussion, it defines S =

(��,��,⋯ ,��)�as a vector of saliency values for N image regions, where �� denotes the 

saliency value of the ith image region and �� ∈ [0,1]. The optimization of the model is to 

assign the optimal saliency values for a set of image regions. 

3.3.1 Problem formulation 

The problem is formulated as  

minimize   E(S) = ��(� + �� + ��) + 

                       +  � ∑ ∑ ��� − ���
�

���
�
��� ���

�
���   

������� ��   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�;

∑ ��
�
��� = 1

                                                (22) 

In Eq. (22), the term � = (��,��,⋯ ,�� )� denotes the NC map，and �� defines the 

NC between the ith region and the boundary; the term � = (��,��,⋯ ,�� )� is the distance 

map, and  �� defines the distance between the ith region and the adaptive-center; the term 

� = (��,��,⋯ ,�� )� is the weighted map, and  �� is the value of the ith region; the terms 

��� and ��� define the similarity and the spatial distance between the ith and the jth regions, 

respectively. The term STT defines the cost using the NC map, the term STW defines the 

cost on the weighted map, and the term STC defines the cost based on the adaptive center-

bias. The last term is the smoothness that forces the regions with similar features to have 

similar saliency values.  

The formulated problem is a typical QP problem with linear equality and inequality 

constraints. The original problem can be rewritten as follows:  
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�������� ��(�) =  �∑ ����
�
��� + � ∑ ���� +�

��� γ ∑ ����
�
��� �  

                       +  � ∑ ∑ ��� − ���
�

���
�
��� ���

�
���   

������� ��   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�;

∑ ��
�
��� = 1

                            (23)                     

3.3.2 NC map generation 

Boundary connectivity is an effective prior utilized in many visual saliency 

estimation models [3, 19, 35-38]. Most models define the boundary connectivity by using 

the shortest path between the local regions and the boundary. However, such connectivity 

cannot handle noisy data well. The Neutro-Connectedness (NC) theory [29, 30] introduced 

a new domain, the degree of confidence, to measure the confidence of the connectedness. 

The new domain is very useful to avoid the fake connectedness caused by uncertainty, such 

as noise. 

In [30], the NC of two regions contains three parts: the degree of truth, the degree 

of confidence, and the degree of false, ��(�,�) = [�(�,�),�(�,�),1 − �(�,�)] where i and 

j indicate the ith and jth pixels or regions, respectively. 

Here, NC map is defined on the image region {��}���
���. To calculate the NC triplet 

between all the regions with the boundary set, it applies the definitions of NC and 

computation algorithm in [29,30]. For more details of NC theory, refer [29,30]. The three 

basic ideas of NC are summarized as follows: 

a) NC of two adjacent regions i and j 

��(�,�) = ��� (−������ − ������/��)                                (24) 

��(�,�) = 1 −  ��� (ℎ(�),ℎ(�))                                  (25) 
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where ����� is the regions average gray level of the ith region, �� = 0.5, and ℎ(�) is the 

inhomogeneity of the ith region [29,30]. 

b) NC of a path 

The degree connectedness of a path is defined as the minimum value of �� along 

the path, and the confidence is the maximum �� value along the path.  

c) NC of any two regions 

The degree of connectedness is defined by the strongest path of all paths connecting 

the two regions. It uses the confidence of the strongest path as the degree of confidence of 

the two regions. For more information about how to deal with ties, refer [29,30]. 

As the particular characteristic that no tumor is touching the border, it sets the 

border regions as the background seeds to generate the NC map by using the algorithm in 

[29]. Fig. 3.4 shows some samples, T maps and I maps. 

(a)                                  (b)                               (c) 

Fig. 3.4. T map and I map samples. (a) BUS images with tumor; (b)  

T maps; (c) I maps. 

 



27 
 

 
 

 T and I maps of image regions employed in the framework are defined as � =

(��,��,⋯ ,�� )�  and � = (��,��,⋯ ,�� )�, and they are � × 1 vectors. 

3.3.3 Adaptive center bias and weighted map generation 

Traditional saliency estimation models usually use the image centers as important 

visual clues to estimate the saliency maps. However, they failed when objects are far away 

from the centers. The approach in [3] solved this problem on natural images by estimating 

the adaptive center using the weighted local contrast map. However, the local contrast map 

was sensitive to noise and could not achieve good performance on BUS images. Instead of 

detecting the top and bottom lines of mammary layer [2], a new tumor detection approach 

was proposed by utilizing the RP and weighted map [29].  

The weighted map vector in the framework is defined as � = (��,��,⋯ ,�� )�  

�� = ��� (−��/��)                                                      (26)                                               

where �� is the mean value of the ith region in the weighted map, and  σ� = 0.5.  

 The reference point is used as the adaptive center in the saliency detection model.  

It is defined as � = (��,��,⋯ ,�� )�  

�� = ��� (‖��� − ��‖� ��⁄ )                                      (27)                                        

where ��� is the coordinate of the ith region’s center and the value is in [0,1]. RP is the 

reference point position. ‖∙‖� is the �� norm. �� is equal to √2/2. 
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3.3.4 Regions’ correlation  

It uses the region correlation hypothesis to force the closer similar regions to have 

similar saliency value.  

It defines ��� as the similarity, and  ��� as the spatial distance between the ith and 

the jth regions. 

  ���  = exp (−������ − ������/σ�)                          (28)                                                                   

���  = exp (−���� − ����
�

��⁄ )                               (29)             

where Gray is the regions average gray level vector, In Eq. (29), ��� is the coordinate of 

the ith region’s center and the value is in [0,1] . σ� = 0.5. �� is equal to √2/2.  ‖∙‖� is the 

�� norm.                                

3.3.5 Optimization 

It uses the primal-dual method to optimize the QP with linear inequality and 

equality constraints [3]. It can obtain the global optimal value quickly. There are three 

important steps to apply the primal-dual interior-point method: (1) modify the KKT 

conditions and obtain the dual, prime and centrality residuals; (2) obtain the primal-dual 

search direction; and (3) update � and the dual variables. 

In the primal-dual interior method, �� and ��  are initialized as 1 and (1 �)��⁄ , 

respectively; and the dual residual, primal residual, and the centrality residual are updated 

in each iteration, and the optimization processing stops when the sum of the  �� norms is 

less than 10��.  
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3.4 Experimental results 

3.4.1 Datasets, metrics and setting 

In this section, it validates the performance of the newly proposed method using a 

BUS image dataset containing 706 ultrasound images, in which 96 images have no tumors, 

and 610 images have tumors [27].  

Metrics of VSE is the same as section 2.4.1. 

Metrics of tumor existence determination: two metrics, precision ratio, recall ratio 

are utilized: 

�� =
|��|

|��|
,�� =

|��|

|�����|
 

where |��| is the number of correct detected images with tumors, and |��| is the total 

number of images detected with tumors;  |�����| is the total number of images with 

tumors in the dataset. 

Parameter setting: all the experiments are based on the parameters: � = 10, � = 2, 

and  � = 80. 

3.4.2 Tumor existence determination 

Based on the observation, the maximum value of the weighted map is very useful 

for tumor detection.  Simple thresholds are applied to the maximum value, and the result 

is shown in Table 1.  It uses the Decision Tree classifier with 10-fold cross-validation. The 

mean accuracy is 100%. 
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3.4.3 Parameter tuning for the TSE framework 

� , � and �. As presented in previous section, the detection framework has 4 major 

parts. The NC map or weighted map cannot always provide the correct information to 

generate the saliency map (see Figs 3.4).  It is very important to balance the effect of each 

part.  

The values of  � , � and � are used to balance the influence of the adaptive center-

bias term, weighted map and smooth term, respectively. It evaluates the performance of 

the proposed method with �  ranging from 0 to 200,  �  ranging from 0 to 200, and � 

ranging from 0 to 200 on the randomly selected subset containing 20 images. There are 

three stages to choose the parameters. In the first stage, it makes the step size of three 

parameters be 40 and roughly obtain the range of each parameter, which can achieve better 

P-R curve performance and MAE value if the P-R curve is similar. In the second stage, the 

step size is 10. The step size is 2 in the third stage. As shown in Fig. 3.5, we obtain a better 

P-R curve when � is close to 10 , � is close to 2 and � is close to 80, respectively. 

TABLE 3.1. Results of thresholding 

  Thresholds PR RR 

0.02 98.07% 99.84% 

0.03 99.84% 99.51% 

0.04 99.02% 99.67% 

0.05 99.84% 99.84% 

0.057 100% 99.34% 
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3.4.4 The effectiveness of NC term in the TSE framework 

The NC map with the boundary connectivity based on the graph shortest path is 

computed. In this experiment, it used the algorithm of [37] and defined the edge weight for 

each pair of adjacent nodes as ������ − ������ to obtain the background map, where 

����� is the average gray level of the ith region. The examples of 5 images are shown in 

Fig. 3.6. 

The results in Fig.3.6 demonstrate that the two methods can achieve better results 

on the smooth BUS images (the 3rd and 4th rows). The method based on graph shortest 

path (GS) fails to handle the BUS images with too small or too large tumors, or poor quality 

with noise. And the maps generated by NC method are much smoother than that of GS 

method.  

Fig. 3.5.  The P-R curve of different parameter values. 
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3.4.5 Overall performance of the TSE framework 

 The proposed method is compared with most recently published methods SMTD 

[2], OMRC [3], RBD [35] and RRWR [17]. The saliency results of ten BUS images from 

the dataset are shown in Fig. 3.7. The proposed method can make the high saliency value 

concentrate on the tumor and the background areas have low saliency value while the 

methods SMTD, RBD and RRWR made the background regions around the tumor have 

higher salient values. This situation will cause the recall ratio of the methods higher but 

the precision ratio lower. And the result maps are more accurate than that of other methods. 

Especially, SMTD and OMRC cannot produce good saliency maps, even miss the big 

Fig. 3.6. The GS map and NC map samples. 

 

Original images                  GS map                     NC map 
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tumors (the 6th  and 10th rows of Fig. 3.7). 

The performance of the proposed method is evaluated using the metrics and the 

dataset:  MAE values, the F-measure values, and P-R curves. As shown in Fig. 3.8, the 

Fig. 3.7. The extensive results. 

   BUS Images       SMTD            OMRC              RRBD            RRWR                Ours            Ground truth 
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proposed method is better than other methods. The methods, SMTD, RBD and RRWR, 

can obtain relatively high average recall ratios, but the precision ratios and F-measures are 

low. It is because the saliency maps generated by those methods make the tumors, as well 

as the background around the tumors have high saliency value. 

  

Fig. 3.8.  The PR curve and the recall, precision, F-measure and MAE of five methods. 
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CHAPTER 4 

TUMOR SALIENCY ESTIMATION VIA BREAST ANATOMY MODELING 

In this chapter, a new VSE framework is applied to imitate the radiologists’ 

attention to detect the breast tumor using breast ultrasound (BUS) images via breast 

anatomy modeling. 

4.1 VSE in BUS images via breast anatomy modeling 

In BUS images, tumors typically attract the attention of radiologists even under 

very different imaging conditions. Examples of applying VSE to BUS images are shown 

in Fig. 4.1. Many approaches [1, 2, 44] were proposed to model the visual cues attracting 

radiologists’ attention. In [2], Shao et al. proposed a model based on saliency estimation 

for fully automatic tumor detection. The model combined tumor prior knowledge and 

human visual saliency estimation hypothesis and achieved very good performance using 

      (a)                (b)                (c)               (d)               (e)               (f) 
Fig. 4.1. Visual saliency estimation for BUS images.  (a) Four original BUS images; 

(b-d) results of [17], [2], and [44], respectively; (e) results of the proposed method; 

and (f) the ground truth (GT). The region with higher intensity indicates the region 

has higher probability belonging to a tumor. 
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their own BUS image dataset. The model could locate the tumor accurately most of the 

cases; however, it had two main drawbacks: 1) always outputs a salient region even there 

was no tumor in the image (Fig. 4.2 (b)); and 2) could not deal with some special cases 

well, such as missing some parts of the objects when the images had large tumors (the 2nd 

and 4th rows of Fig, 4.1 (c) ), and low contrast (the  3rd row of Fig. 4.1 (c)). Xie et al. [1] 

computed tumor saliency by comprising intensity, blackness ratio, and superpixel contrast 

separately; and the average of the values of the three components was the final saliency 

value of each pixel. The drawbacks were shared as [2] due to the nature of the mapping 

which directly transferred image features into saliency values by using a unified mapping 

and the strategy of “winner-take-all”. Xu et al. [3] proposed a general bottom-up saliency 

estimation model that integrated the robust hypotheses: the global contrast, adaptive center-

bias, boundary constraint and the smoothness term based on color statistic. The model 

generated a local contrast map and utilized its weighted center as the adaptive center 

instead of the fixed image center, which was much more robust when the objects were far 

            (a)                           (b)                            (c) 
Fig. 4.2. The methods [2] and [44] always generated salient regions in the images without 

tumors. (a) Original BUS images without tumors, (b) and (c) the saliency maps generated 

by using method [2] and [44], respectively. The region with higher intensity indicates that 

the region belongs to a tumor with higher probability. 
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away from the image center. The model was flexible, and the global optimum could be 

reached by using the primal-dual interior-point method. However, the model could not deal 

with low contrast or gray-level images; furthermore, it always located a salient region and 

could not handle images without salient objects. Recently, Xu et al. [44] proposed a novel 

hybrid framework for tumor saliency estimation. In the framework, it integrated the 

background map, foreground map [26] and adaptive center-bias. However, it shared the 

same drawback as [3] that the data term in the objective function only penalized pixels with 

nonzero saliency values; and the equality constraint forced the summation of all saliency 

values to be 1 that led to at least one relative salient object in every image (Fig. 4.2 (c)).   

To overcome the above challenges, we propose a novel optimization-based 

approach for estimating tumor saliency map of BUS image. First, we construct a novel cost 

function that penalizes the inconsistency between image features and saliency values for 

both salient and non-salient pixels. By doing so, the equality constraint [3, 44] can be 

eliminated, and the new approach does not output salient regions for every BUS image. 

Second, breast anatomy is modeled by using Neutro-Connectedness theory [29, 30] and 

Fig. 4.3. Pipeline of the proposed approach. 
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applied as non-local context information to solve the problem of outputting wrong salient 

regions for BUS images with dark shadows (see Figs. 4.6-4.7). The tumor regions will have 

higher connectedness than that of the background in the low contrast images. The results 

will be much more reliable by utilizing the breast anatomy knowledge, and it makes the 

shadow layer with high rate be background; especially, for the images having large tumors. 

The framework of the proposed method is shown in Fig. 4.3.  

4.2 Problem formulation 

In the proposed approach, tumor saliency estimation (TSE) is formulated as a 

Quadratic Programming (QP) problem, and it focuses on solving the problems in existing 

approaches by building a united optimization-based framework that incorporates robust 

cognitive hypothesis, e.g., the adaptive center-bias, and region-based correlation 

hypothesis, and the background and foreground cues.  

Let {��}���
��� be a set of image regions generated by a quick shift algorithm [45s], 

and S= (��,��,⋯ ,��)�be a vector of saliency values, where �� denotes the saliency value 

of the ith region and �� ∈ [0,1]. The TSE problem is formulated as  

minimize   �(�) = ������(�) + �������(�)
������� ��   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�;

                                                  ��� = 0,� = (��,��,⋯ ��)�,�� = {0,1}

              (30) 

where the data term �����  models the background cue, foreground cue and adaptive 

center-bias cue; and the smoothness term ������� models the region-based correlation;  � 

balances the influence of the two terms; the equality constraint ��� = 0 is only applied to 

the mask border regions; and  bi is 1 if the ith region is adjacent to the image border, and 0 

otherwise.  
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�����(�) = ���(�) + ����(�)                                 (31) 

���(�) = �� ∙ (−(ln(�) + � ln(�)))                  (32) 

����(�) = (1 − �)� ∙ (−ln (�) )                          (33) 

In Eq. (31),  ���  defines the cost of assigning non-zero saliency value to each 

region, and ���� defines the cost of assigning zero value to a region. In previous 

optimization-based approaches [44], only ��� was defined, and no explicit cost was given 

for outputting zero saliency values. In order to avoid the configuration of all zero saliency 

values for the entire image, a constraint  ∑ �� = 1 was defined to force the output to have 

at least one salient region for every image. This is one of the major drawbacks of previous 

approaches and makes them unable to deal with BUS images without tumors. In order to 

overcome the drawback, ���� is defined in the data term of the cost of assigning zero value 

to an image region. This strategy can avoid the zero-configuration problem, because all 

zeros will lead to a high penalty if a salient region (tumor) exists in the image; and it outputs 

all zeros only when no tumor exists. In Eqs. (32)-(33), � = (��,��,⋯ ,�� )�  is the 

foreground map, and defines the probability of each image region to be a tumor region; 

� = (��,��,⋯ ,�� )� is the distance map, and  ��  defines the distance between the ith 

region and the adaptive center; and � balances the contribution of the two terms.  T denotes 

the background map, and defines the probability of an image region to be a background 

region. The definitions of W, D and T will be given in section 4.2.2 

�������(�) = ∑ ∑ ��� − ���
�

���
�
��� ������

�
���                             (34) 
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������� in Eq. (34) defines the penalty on similar regions with different saliency 

values. The terms ��� and ������ define the similarity and spatial distance between the ith 

and the jth regions, respectively.  

The problem defined by Eqs. (30) – (34) is a typical QP problem with linear 

equality and inequality constraints. The original problem can be rewritten as follows:  

�������� ��(�) = � ∑ −��ln (��)
�
��� + � ∑ −��ln (��) +�

���

                � ∑ −(1 − ��)ln (��)
�
��� +   ∑ ∑ ��� − ���

�
���

�
��� ������

�
���   

������� ��   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�;

                    ��� = 0,� = (��,��,⋯ ��)�,�� = {0,1}

                     (35)                 

where   �= ��, refer Eqs. (30) and (32). 

4.3 Data term 

The data term is composed of three major components: foreground map (W), 

distance map (D), and background map (T). W models priors of general tumor appearance; 

D models the adaptive center-bias hypothesis; and T is defined as the weighted 

connectedness between image and border regions. The definitions of the three parts are 

guided by breast anatomy.  

Skin 

Fat 

Mammary 

Tumor 

Muscle 

               (a) BUS image                                 (b) Breast Anatomy 

Fig. 4.4. An example of breast anatomy.  
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4.3.1 Breast anatomy modeling using Neutro-Connectedness.  

 Breast anatomy represents the structure of the breast and is useful for breast tumor 

detection and classification in clinical practice. Breast contains four primary layers: skin 

layer, fat layer, mammary layer, and muscle layer [47]. BUS image regions in different 

layers have different appearances (e.g, intensities and textures); and breast tumor mainly 

exists in the mammary layer (see Fig. 4.4). Breast anatomy was utilized in [2,26] for tumor 

segmentation. In [2], Shao identified two horizontal lines to remove the fat and muscle by 

applying phase congruency [46] and Otsu’s thresholding. However, it was difficult to 

identify the two horizontal lines accurately; in some cases, part of the tumor could be 

divided into the fat region. In this work, we propose a new Neutro-Connectedness (NC) 

[29] based framework that models breast anatomy by incorporating region similarity and 

image depth. It decomposes BUS images into 3 to 5 layers.  

 There are two components in NC: the degree of connectedness t and confidence of 

connectedness c,  NC(�,�) = [�(�,�),�(�,�)] where i and j indicate the ith and jth pixel or 

region, respectively. Image regions from the same layer have strong connectedness (e,g., 

high t and c values), and from different layers have weak connections. NC builds on the 

following three fundamental concepts: 

(1) NC of two adjacent regions i and j. The degree of connectedness of two adjacent 

regions is defined as their similarity, noted as ��; and the degree of confidence is 

defined as the homogeneity between them, noted as ��. 

(2) NC of a path. The degree of connectedness of a path is defined as the minimum 

value of �� along the path, and degree of confidence is the minimum �� value along 

the path.  
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(3) NC of any two regions. The degree of connectedness is defined by the strongest 

path between the two regions. It uses the confidence of the corresponding path as 

the degree of connectedness confidence of the two regions.  

NC computation generates NC maps that demonstrate the degrees of connectedness 

and confidence among image regions, and NC trees that show regions’ structure. Each NC 

tree contains a group of image regions that share common properties. All NC trees form an 

natural decomposition of an image. In this work, NC is applied to decompose BUS images 

into different layers; and we redefine the NC of two adjacent regions by utilizing the region 

similarity and image depth. The depth term penalizes the growth of NC trees along the 

vertical direction to avoid the cross-layer expanding. 

 ��(�,�,�) = ���(�,�) ∙ ���(�,�)                                        (36) 

  ��(�,�) = ��� (ℎ(�),ℎ(�))                                     (37) 

���(�,�) = ��� (−|�(�) − �(�)|/��
�)                        (38) 

     ���(�,�) = ��� (−|���(�) − ���(�)|/��
�)                          (39) 

In Eq. (36), ��� denotes the similarity between the ith and jth regions, and ��� is the 

normalized depth difference between the ith region and the root region (k) of a NC tree. In 

Eq. (37), ℎ(∙) defines the homogeneity of a region [29, 30]. In Eq. (38), �(�) and �(�) are 

the normalized intensities of the ith and jth regions, respectively;  ���(�) denotes the row 

index of the ith region center. ��
� and ��

�  control the shapes of the two exponential 

functions. ��
� is 0.5 the same as [44]. Without the depth term in Eq. (39), the layer of the 

region i will be determined by the connectedness values between region i and different root 

regions. For illustration, the ith region is at the bottom of the image, and the root region k 

is at the top of the image, and the jth layer is between them. If the connectedness between 
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the ith region and the root region k is the maximum among the connectednesses of the ith 

region with the root regions, and the ith region would be expanded into the layer of the root 

region k. In such a case, the NC tree expanded by the root region k would cross the group 

j, which does not match the breast anatomy.  The expanding of the layer along  the vertical 

direction should be avoided,  but only along the horizontal direction using Eq. (39). ��
� 

controls the span of the layer, and larger ��
� will result in fewer layers. The initial ��

� is 

chosen by applying values from 0.1 to 0.5 with a step size of 0.1 on the training dataset 

(refer section 4.3.2) to generate the layers.  Eighty percent of the training dataset images 

were decomposed into three to five layers when ��
� = 0.2, and the other images were 

decomposed into 6 or more layers. However, we can control the layer number to be 3 to 5 

by initializing ��
� as 0.2 and updating it adaptively. If the number of layers is greater than 

five, decrease ��
� by 0.05; and increase  ��

� by 0.05, otherwise. 

After computing the NC of two adjacent regions, the connectednesses of a path and 

Fig. 4.5. Effectiveness of different ��
�. (a) ��

� = 0.2, before merging;(b)- (e): with ��
� =  0.05, 0.1, 0.15 and 

0.2, after merging, respectively. From top to bottom, the same color indicates the same layer.  

Original images      GT                   (a)                     (b)                    (c)                    (d)                   (e) 
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between any two regions can be calculated easily. The left boundary regions of an image 

are set as the roots for generating NC trees. All the regions on a tree are in a group (layer). 

If a layer cannot cover more than 75% of the image width, it will be merged into its nearest 

layer. The effectiveness of the merging step with different ��
� is shown in Fig. 4.5 (a) and 

(e). Note that each generated image layer is composed of a group of image regions that 

have high connectedness with each other; those regions have high probability from the 

same biological tissue layer, but the generated image layer is not the biologic tissue layer.  

4.3.2 Foreground map (FG) generation.  

The foreground map measures regions’ possibilities to be tumor regions. We 

propose a two-stage strategy to generate the foreground map by using both image 

appearance and breast anatomy. The Z-shaped function is used for each layer to emphasize 

regions with low intensities. Layer’s location generated in the last section Breast anatomy 

modeling using Neutro-Connectedness is employed to reduce the impact of the dark 

regions from the fat and shadow regions. The Z-shaped function [26] is utilized; however, 

the parameters a, b, and c in Eq. (40) are chosen adaptively for different layers of different 

images, and the intensities are mapped in [0,1].  

Z(�(�); �,�,�) =

⎩
⎪
⎨

⎪
⎧

1, �(�) ≤ �  

1 −
(�(�)��)�

(���)(���)
, � < �(�) ≤ �

(�(�)��)�

(���)(���)
,

0,

� < �(�) ≤ �
�(�) > �          

                          (40)     

Firstly, the global values of a, noted as ��, and c, noted as ��, were calculated using 

all layers of an image. According to the experiments on the training dataset (see section 

4.6.2), we choose  �� and �� as following:  
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�� = �,������� �� 
∑ (�)�(�)��

∑ (�)�
= ε�

�� = �,������� �� 
∑ (�)�(�)��

∑ (�)�
= ε�

� = 1,2,⋯ �

                                          (41) 

where �(�)is the intensity of the region �, respectively. ε� = 1/10 and ε� = 6/10  based 

on experiments, respectively. 

Table 4.1 Algorithm 1: Foreground map (FG) generation 

 Since the fat layer is darker than other regions, if using unified parameters a, b and 

c in  Eq. (40) to generate the foreground map, it will make the fat layer have the highest 

value and miss part of the tumor in some cases (refer  Fig. 4.6(c)). Therefore, it refined the 

FG maps for the layers by introducing local ��, ��, and �� adaptively for each layer. Where 

��and �� are generated in the same way as global values based on the ith layer; and  �� is 

Input: ����
���

��������
 

Output: FG, layerW 
1.Calculate global �� and ��  

2. for  i from 1 to layerNum do 
       Generate local parameters ��, �� , and  ��; 

    Check whether it’s a dark layer or a normal layer. 

�� = min���,���，�� = min���,��� ,�� = ����(�� < ��) 

       Apply ��, �� , and  �� to (40) to generate the initial ���; 
               end for 

3.Separate the layers into three groups and update the values of loopS and �����. 
4.To reduce the shadow layer’s influence, assign the intensities of the shadow 

layer’s regions to be the highest as the new ��; update  ��,and ��.   

5. for i from loopS to ����� do 
        if it is a dark layer indicating that a big tumor exists 

           �� = max���,��� ,�� = max���,���,  �� = (�� + ��)/2;   

else 
           �� = min���,��� ,�� = min���,���,�� = ����(�� < ��).  

Apply the new local parameters to (40) to generate the FG in the layer and 
assign the layer weight using (43). 

end for 
6.Normalize  layerW to [0,1], and the final FG is the dot product of FG and (1- 

layerW). 
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the mean of  the intensities less than ��. If �� is small, it indicates that most of the regions 

in the layer have low intensities due to  the following two reasons: (1) if the layer locates 

at the bottom or top, it has a high probability that the layer is a non-mammary dark layer 

(e.g., fat layer); (2) otherwise, it is a large tumor in the mammary layer with high 

probability. If  �� is larger than the global ��, it indicates that most of the regions in the 

layer have high intensities; therefore, it has a very low probability to contain a tumor. The 

condition �� − �� < 0.1(�� − ��) is used to determine whether there is a dark layer, and 

the condition �� >  �� is used to check if the layer is a smooth bright layer in Algorithm 

1. The step 2 of Algorithm 1 is the first stage to generate the initial FG maps.  

The tumor-like regions may also exist in the top and/or bottom layers, and there 

may be more than one dark layers. Thus, to exclude tumor-like regions, we separate layers 

into the bottom, top, and middle groups, and assign different weights to the layers in 

different groups to refine the foreground map. Based on observation, if the distance 

between the ith layer and the layers in middle group is larger, the ith layer belongs to the 

top or bottom group, and has no tumor with higher probability. The middle group of 

different images could contain vary number of layers (1 to 5). If the middle part contains 

fewer layers, each layer contains a tumor with higher probability. Therefore, in the second 

stage, it refined the FG maps of the dark layers in the middle group and initialized the 

weights for the top and bottom groups as (42) and the middle group as (43). 

�������
�� =  �������

�� = max (�� − �
��������

�
��

�

,1);                      (42) 

�������
�� = exp (

����������

�(�������������)
);                                           (43) 
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where �������
�  indicates the weight for the ith layer locating in L,  � ∈ {��,��,��} 

which indicates the layer in the top (LT), bottom (LB) and middle (LM), respectively.  

�������� is the number of total layers in the image.   

 Separate the layers into three groups and update the values of ����� and ����� by 

the strategy:  �����  is the beginning layer of the bottom group and initialized as 

��������. ����� is updated to be �������� − 1 if the last two layers are dark layers 

and other dark layers between ����� and �������� -2 exist. ����� is the ending layer of 

the top group and initialized as 1. ����� is updated to be ����� +1 if the first layer is a 

dark layer and other dark layers between �����  and �����  -1 exist. Assign the layer 

weight using  (42). If there is only one dark layer or two continuous dark layers exist, keep 

the layers as mammary-like layers. Assign the layer weight using  (43). Update the ����� 

and  �����. The details of the foreground map generation are described in Algorithm 1.  

Fig. 4.6 shows some comparison examples of the proposed method and the method 

[26]. As shown in the Fig. 4.6 (c), the boundaries of the tumors in FG maps generated by 

[26] were missed which were caused by the impact of the shadow layers. The proposed 

method reduces the impact of the shadow layers by integrating the layers’ information, and 

generates more accurate FG maps (see Fig. 4.6 (d)). In Figs. 4.6 (a) and (c), some parts of 

the tumors were missed due to the effect of the global parameters. In such a case, some 
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regions have much higher intensities than that in the tumor,  and applying the unified global 

parameters in Z function makes these regions get low values in FG maps. As shown in Figs. 

4.6 (a) and (d), the proposed method solves this problem by combining the local and global 

parameters of each layer. 

4.3.3 Distance map generation  

Traditional saliency estimation models usually use the image center as an important 

visual cue to estimate the saliency map. However, it will fail when objects are far away 

from the center. The approach in [3] solved this problem on natural images by estimating 

the adaptive center (AC) using weighted local contrast map; but the local contrast map was 

sensitive to noise and could not achieve good performance on BUS images. In this section, 

we define the AC as the weight center of the foreground map. 

Fig. 4.6. Examples of FG generation. (a) Original BUS images; (b) the ground truths; (c) the 
foreground maps by [5]; and (d) the final foreground maps of the proposed approach. The 
region with high intensity belongs to the tumor with the higher probability, vice versa. 
 

            (a)                             (b)                            (c)                              (d) 
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AC =
∑ (�,�)�(�,�)�,�

∑ (�,�)�,�

� = 1,2,⋯ M,and � = 1,2,⋯ ,N
        (44) 

where W(x,y) is the value of pixel (x, y) in the foreground map, and M and N are the number 

of image rows and columns, respectively. 

 The AC distance vector will force the regions far away from the AC to gain small 

saliency value and is defined as � = (��,��,⋯ ,�� )�  

�� =  ��� (− ‖(�,�)� − ��‖� ��
�⁄ )                         (45) 

where (�,�)� is the normalized coordinates of the ith region’s center. ‖∙‖� is the �� norm; 

and ��
� is set to 0.1 by experiments. 

4.3.4 Background map (BG) generation  

Boundary connectivity is an effective prior utilized in many visual saliency 

estimation models [3, 19, 35-38]. Most models define the boundary connectivity by using 

the shortest path between the local regions and the boundary. However, such connectivity 

could not handle noisy data well. The degree of confidence domain in NC is very useful 

for avoiding the fake connectedness caused by uncertainty, such as noise. As the particular 

characteristic that no tumor is touching the border, it sets the border regions as the 

background seeds to generate the NC map using the algorithm in [29], noted ��� as the NC 

value of the ith region in the NC map. The higher ��� indicates the higher probability that 

the region belongs to background. 

We define the value T in the BG map as follows: 

  �� = ���
� × �������                     (46) 

where the ith region belongs to the jth layer, and ������� is the jth layer’s weight.  

Fig. 4.7 shows some comparable samples. The connectedness based on graph 
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shortest path failed to handle the BUS images with too small or too large tumors (see the 

2nd-4th rows of Fig. 4.7 (c)), or poor quality with noise (see the 1st row).  The results 

generated by NC without layers’ information will make the tumor regions have higher 

connectedness than the background regions in the low contrast images (see the 2nd and 4th 

rows of Fig. 4.7 (d)). Moreover, the maps generated by the NC method are much smoother 

than that of graph shortest path method. The BG result will be much more reliable by 

utilizing NC with the layers’ information, and it makes the shadow layer with a high rate 

to be background; especially, for the images having large tumors.  

4.4 Smoothness term 

We utilize regions’ feature correlation to force similar regions to have similar 

saliency values. Specifically,  

��� ∙ ������  = ��� ∙ ��� �−�(�,�)� − (�,�)��
�

��
�⁄ �                               (47)             

Fig.4.7. Examples of BG generation. (a) Original BUS images; (b) the ground truth; (c) obtained by 
graph shortest path[48]; (d) obtained by [44] without breast anatomy; and (e) obtained by the proposed 
method. The region with high intensity belongs to the background with higher probability, vice versa. 

 

           (a)                         (b)                          (c)                            (d)                          (e) 
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where ��� measures the similarity of regions i and j; and  ������ is defined based on the 

spatial distance between the ith and the jth regions; and ‖∙‖� is the �� norm.                    

4.5 Optimization 

The primal-dual method is applied to optimize the proposed QP problem, and the 

global optimal can be achieved [49]. There are three steps to generate the optimization 

solution: (1) modify the Karush-Kuhn-Tucker (KKT) conditions and obtain the dual, prime 

and centrality residuals; (2) obtain the primal-dual search direction; and (3) update � and 

the dual variables. The details of the optimization are described as follows: 

The inequality constraints can be rewritten as a set of functions: 

��(�) = −�� ≤ 0,� = 1,2,⋯ ,�    

��(�) = ���� − 1 ≤ 0,� = � + 1,� + 2,⋯ ,2�
                   (48) 

where N is the number of image regions, and Sk is the saliency value of the kth region. We 

write all inequality constraints in a matrix: 

�(�) = �

��(�)
��(�)

⋮
���(�)

� = �
−�

� − 1
�

��×�
                 (49) 

The derivative matrix is 

��(�) =

⎣
⎢
⎢
⎡

∇��(�)�

∇��(�)�

⋮
∇���(�)�⎦

⎥
⎥
⎤

= �
−E
E

�
��×�

                    (50) 

where E is the identity matrix. 

The dual residual is  
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�� = ∇��(�)� + ��(�)�� + ��                                          

= − αln(�) − � ln(�) + αln(�)                                 

+ ∑ ∑ 4 × (�� − ��)���
�
��� ������

�
��� + �

−E
E

�
�

� + ��

       (51) 

where α  and �  balance the three terms defined in Eqs. (1) and (3); and vectors λ =

(λ�,λ�,⋯ ,λ��)� and ν are the dual feasible parameters. 

The primal residual is  

�� = ���� − 1
���

�                                       (52) 

where O is a 2N-by-1 vector, and all the values are 1s. 

The centrality residual is 

�� = −����(�)�(�) − (1/�)�                              (53) 

where g is the step size, and initialized as 1. 

The partial derivatives of rd, rp and rc with respect to variables S, � and � are as 

follows: 

  
���

��
= �

∑ 4 × �∑ (���
�
��� × ������� − ��� × ������,�� � = ��

���

∑ ∑ 4 × ��� − ������
�
��� ������,�� � ≠ ��

���

           (54) 

       
���

��
= −����(�) × �

−E
E

� ,
���

��
= ��                                   (55) 

���

��
= �

−E
E

�
�

,
���

��
= −������(�)�,

���

��
= 0�×��                   (56) 

���

��
= �,

���

��
= 0��×�,

���

��
= 0                  (57) 

In each iteration, the Newton step (∆�,∆�, ∆�) is obtained by solving Eq. (58) 

using the partial derivatives in Eqs. (54) - (57).    
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The variables �,� and � are updated using the following equations. 

���� = �� + �� × ∆�,λ� = λ + �� × ∆λ,

ν� = ν + �� × ∆ν
        (59) 

In Eq. (59), �� is the step size and updated by using the line search method in each 

iteration; �� and S0
 are initialized as 1 and  (1 �)(1,1,⋯ ,1)�⁄ , respectively. The dual 

residual, primal residual, and centrality residual are updated in each iteration, and the 

optimization stops when the sum of the  �� norms is less than 10��.  

4.6 Experimental Results  

4.6.1 Dataset, Metrics and setting 

The newly proposed method was validated on a dataset containing 562 BUS images 

from a public benchmark [27] and a private dataset of 96 BUS images without tumors [44]. 

The two datasets are collected from the Second Affiliated Hospital of Harbin Medical 

University, the Affiliated Hospital of Qingdao University, and the Second Hospital of 

Hebei Medical University under different types of ultrasound devices, including GE 

VIVID 7(General Electric Healthcare, Chicago, IL, USA), GE LOGIQ E9(General Electric 

Healthcare, Chicago, IL, USA), Hitachi EUB-6500(Hitachi Medical Systems, Chiyoda, 

Japan), Philips iU22(Philips Healthcare, Amsterdam, Netherlands), and Siemens 

ACUSON S2000(Siemens Healthineers Global, Munich, Germany). The ultrasound 

images from Harbin Medical University were collected by GE VIVID 7 and Hitachi EUB-

6500; the images from Qingdao University were collected by GE LOGIQ E9 and Philips 
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iU22; and Hebei Medical University used Siemens ACUSON S2000 to collect the 

ultrasound images. The ground truths of the images were generated by four experienced 

radiologists [27]. Informed consent to the protocol was obtained from the involved patients 

and all images in the datasets are de-identified. All experiments are conducted by using 

Matlab (R2018a, MathWorks Inc., MA) on a Windows-based PC equipped with a dual-

core (3.6 GHz) processor and 8 GB memory. 

Metrics of saliency estimation are the same as in section 2.4.1. 

Parameter setting. All the experiments are based on the parameters: � = 4, � = 40.  

4.6.2 Parameters tuning 

Values of � and �. As presented in the section 4.2, the detection framework has 4 

major parts. Applying one of the data terms cannot always provide the correct information 

to generate the saliency map (see Figs. 4.6-4.7.).  The tuning parameter �  controls the 

relative impact of the data term and smoothness term on the optimization. And  � controls 

the balance effect of foreground cue and background cue. It evaluates the performance of 

the proposed method with � ranging from 0 to 100 and  � ranging from 0 to 3000, using 

randomly selected subset of 60 images from the 562 images (Xian et al. 2018b). There are 

three stages to choose the parameters. In the first stage, it makes the step size of � and � 

be 50 and 500 respectively,  and obtains the range of each parameter which can achieve 

better P-R curve performance and MAE value if the P-R curve is similar. In the second 

stage, the � step size is 20, and the � step size is 100. And in the third stage, the � step size 

is 2, and the � step size is 20.  
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As shown in Fig. 4.8, the proposed approach achieves much better performance 

when the value of � is much bigger than that of �; and when the value of � is less than 10, 

and  � is less than 50, the performances are similar on the P-R curves; therefore, based on 

the minimum MAE, � = 4 and � = 40. 

Values of a and c. As presented in the section 4.3, the value a in the Z function will 

make the regions with lower intensities have higher values because of the low-intensity 

appearance of the tumor, and value c will make the regions with high intensities have low 

values. We choose a and c based on  tuning  �� and �� in (41) using the training dataset 

with 60 images. We evaluate the P-R curve performances with �� ranging [0.1, 0.4] and 

�� ranging [0.5, 0.8] with the step size 0.1 and choose the parameters which can achieve 

the best P-R curve performance. Based on our experiments, the performances are 

competitive when ��  is fixed at less than the 0.2, and ��  varies in [0.5, 0.8]; and the best 

P-R curve was obtained when �� is 0.1 and �� is 0.6. 

Fig. 4.8 The parameters  �  and  � tuning. 
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4.6.3 The effectiveness of the breast anatomy 

Here, it compares the methods without the layers’ information in the FG and BG 

generation on the images in the dataset [27] remaining 502 images. In our methods,   

and � are set to 4 and 40 respectively. As shown in Fig. 4.9, the proposed method without 

layers’ information in both terms, abbreviated as OUR_NL, will fail to locate the tumor or 

most parts of the tumor (see Figs. 4.9 (c) and (h));  and the proposed method without layers’ 

information in the BG term, abbreviated as OUR_NL_BG, will locate the objects much 

more accurately than OUR_NL. However, it will miss some parts of the tumor (see the 1st 

and 2nd rows of  Figs. 4.9 (d) and (i)) and cannot concentrate the high saliency values on 

the salient objects (see the 3rd and 4th  rows of Figs. 4.9(d) and (i)). The overall 

performances of OUR_NL, OUR_NL_BG, and OURS in Figs. 4.13-4.14 demonstrate that 

the proposed method with the layers’ information in the two terms is more robust than that 

without it.  

Fig. 4.9. Effectiveness of the breast anatomy. (a) and (f) Original BUS images;  (b) and (g) the ground 
truths; (c) and (h) without layers’ information in both terms, OUR_NL; (d) and (i) without layers’ 
information in BG term, OUR_NL_BG ; and (e) and (j) the saliency map with layers’ information in 
both terms. 

     (a)            (b)             (c)            (d)           (e)            (f)            (g)             (h)            (i)            (j) 
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4.6.4 The effectiveness of the new objective function 

We illustrate the effectiveness of the new objective function by two category 

samples. 1) on the dataset [27] remaining  502 images, apply FG and BG generated by the 

proposed method as the weighted map and NC map to the objective function in [44] which 

is one-way penalty objective function, abbreviated as OUR_OPT. Fig. 4.10 shows some 

comparable samples results. The OUR_OPT method always locates the tumor position 

correctly and generates good saliency map on the images with large tumors (see Figs. 4.10 

(a) and (c)). However, it will make the other non-tumor regions have high saliency values 

on the images with small tumors (see Figs. 4.10 (e) and (g)).  The method with the proposed 

objective function can concentrate high saliency values on the tumor regions and low 

values on the other regions.  In addition, we apply the new method to the image without 

tumor, and compare the result with that of RRWR [17], SMTD [2], HFTSE [44] and 

OUR_OPT. The sample results are shown in Fig. 4.11.  The saliency maps are normalized 

to [0, 1]. Fig.4.12 shows that the two penalty terms optimization framework can generate 

much more accurate saliency map than that of others.  

       (a)                  (b)                 (c)                 (d)                (e)                 (f)                (g)              (h) 

 Fig. 4.10. Effectiveness of the new objective function. (a) and (e) original images; (b) and (f) the 
ground truths; (c) and (g) saliency maps obtained by OUR_OPT; and (d) and (h) saliency maps 
generated by the proposed method. 
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4.6.5 Overall performance 

 The proposed method is compared with most recently published methods SMTD 

[2], OMRC [3], MR [19], RRWR [17], HFTSE [44] and three models generated by the 

proposed method with different components in the optimization framework on the 

benchmark [27] remaining 502 images. RRWR, MR and OMRC are the bottom-up models 

and achieve good performances on the natural images. SMTD is the directly mapping  

method for tumor saliency estimation, and HFTSE is an optimization model to determine 

the existence of tumor and estimates tumor saliency for the image having tumors. OUR_NL 

is the two-penalty objective function with FG and BG maps in HFTSE; and OUR_NL_BG 

is the two-penalty objective function with the layered FG and the BG maps in HFTSE; and 

OUR_OPT is a one-penalty objective function with the layered FG and BG in HFTSE.  

Fig. 4.12 shows the comparison results of the nine models. The proposed method 

and other two models OUR_NL_BG, OUR_OPT can locate the tumors accurately; 

especially, for the image with the big or small tumors. OUR_NL_BG model, without the 

layers’ information in the BG terms, can generate a similar saliency map as the proposed 

(a)                      (b)                          (c)                          (d)                            (e) 

     Fig. 4.11.  Effectiveness of the new objective function on images without tumors. (a)-(e): 

original images, the saliency maps generated by [17],[2],[44], the new proposed approach, 

respectively. The ground truths will be an image with all pixels having intensities 0. The 

region with higher intensity indicates that the region with higher probability belongs to a 

tumor. 
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method; however, it would miss some part of the tumor as described in section 4.3.2 

Background map generation. OUR_OPT model can highlight the non-tumor regions as 

well as the tumor regions. Therefore, this model can achieve higher recall ratio, as shown 

    (a)           (b)          (c)           (d)           (e)           (f)          (g)           (h)           (i)            (j)          (k) 

Fig. 4.12 Visual effects of detecting saliency maps by nine methods. (a) original images; (b) the ground 

truths; (c)-(k): the saliency maps generated by [3], [17], [19], [2],[44], OUR_NL,  OUR_NL_BG, 

OUR_OPT,  and OURS.
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in Fig. 4.14. OUR_NL model, without the layers’ information in both terms, will force the 

regions with very high value in FG and very low value in BG to have high saliency value. 

Thus, it will make a very small part of the object to be the salient object. It will cause a 

higher precision ratio but lower recall ratio as shown in Fig. 4.14. HFTSE would miss parts 

of large tumors and miss the entire object in the image with low contrasts (see the 5th row 

of Fig. 4.12). SMTD would miss the object in the images with very big or very small tumors 

(see the 5th, 8th and 10th rows of Fig. 4.12) and make the surround dark regions have high 

saliency values. OMTC, MR and RRWR worked better on the image with large tumors 

than that with small ones, even missed small tumors (see the 5th row in Fig. 4.12); 

moreover, these methods made the background regions around the tumors have higher 

saliency values. This situation will make these methods have higher recall ratios but lower 

precision ratios.  

 The overall performances of the nine models are shown in Figs. 4.13-4.14 using 

the metrics MAE values, ��������� values, and P-R curves. As shown in Fig. 4.13, the 

proposed method, noted as OURS, achieves a competitive P-R curve and the highest 

��������� and the lowest MAE. As discussed, SMTD, MR, RRWR and HFTSE can obtain 

relatively high average recall ratios, but the precision ratios and F-measures are quite low. 

The reason is that these methods make the tumor and its surrounding background have high 

saliency values. OUR_NL only highlights a small part of the tumor as a salient object and 

can achieve the highest precision ratio and the lowest recall ratio. As shown in Figs. 4.13-  

4.14, OUR_NL_BG generates a much better overall performance than the model 

OUR_NL. It indicates that adding the layers’ information on FG term will have a 

significant impact on improving the performance. Moreover, the model Ours with layers’ 
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information on both terms generates better overall performance than the model 

OUR_NL_BG. It suggests that using layers’ information on BG has a positive effect, but 

not as much as on FG. 

  

Fig. 4.14. The ���������, mean precision and recall  ratios, and MAE of applying 
the nine models. 
 

Fig 4.13. Precision-Recall curves of applying the nine models. 
 



62 
 

 
 

CHAPTER 5 

BREAST ANATOMY ENRICHED TUMOR SALIENCY ESTIMATION  

In this chapter, a new VSE approach is studied to detect breast tumors, which 

utilized a deep neural network to generate semantic breast anatomy. A new background 

map generation method weighted by the semantic probability and spatial distance was 

proposed to improve the performance. 

5.1 VSE via deep neural network  

Many automatic BUS segmentation approaches have been studied [25-34, 50-51].  

Domain-related knowledge was utilized to locate tumors automatically in traditional 

methods. However, the performances of the models were instable due to collected images 

under various sources and periods using different machines with various qualities of the 

images, such as low contrast, more artifacts, etc. [50-51] proposed BUS segmentation 

models based on deep neural networks and [51] demonstrated that the CNN models could 

achieve much better performance than the traditional models. However, the two challenges 

existed: 1) no enough BUS image data available for training; 2) segmentation results 

completely based on the training dataset and the deep network. 

Visual saliency estimation (VSE) measures the probabilities of human attention 

attracted by different image regions, which is essential and accessible for detecting the 

objects and achieving automatic segmentation [3,9,13,38,51,52]. Recently, CNN-based 

models are widely used to detect visual saliency with a specific task. Three strategies are 
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employed in the most of CNN-based modes: 1) utilize more than one deep neural network 

to generate the saliency maps [51,52]; 2) integrate the high-level semantic knowledge by 

the deep neural network and low-level hand-craft features or visual saliency hypothesis  

[13,52]; 3) refine the object boundary in the final step [13]. The studies showed that CNN-

based models generated much better performance than the bottom-up models. 

 For BUS images, many VSE methods have been investigated [1,2,44,55]. 

Examples are shown in Fig. 5.1. [55] presented a novel unsupervised framework to 

estimate the tumor saliency based on integrating breast anatomy modeling. It decomposed 

the BUS image into several horizontal layers by Neutro-Connectedness (NC) theory, which 

would make the regions with strong connectedness gather into the same layer. However, 

the generated layers cannot present semantic anatomy information. In this paper, we 

propose a novel TSE top-down model. Firstly, we utilize U-Net [50] to generate the initial 

four semantic breast anatomy layers (skin, fat, mammary, and muscle layers) [51]. Then it 

refines the wrong breast anatomy layers by combining the non-semantic decomposing 

layers based on NC theory (refer [29]). The final saliency maps are generated by the 

    (a)                (b)               (c)              (d)                (e)               (f) 

Fig. 5.1. Tumor saliency detection examples.  (a) original images; (b)the 

ground truths; (c)-(f) the saliency maps generated by [2], [44], [55] and the 

proposed method, respectively. 
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optimization framework integrating foreground cue, background cue, adaptive-center bias, 

and region-based correlation.  

The pipeline of the proposed approach is shown in Fig. 5.2. 

5.2 The proposed method 

The proposed approach generates the tumor saliency map by the existing united 

optimization-based framework [55] integrating robust cognitive hypotheses, e.g., the 

adaptive center-bias, and region-based correlation, and the background and foreground 

cues.  The saliency map is  S= (��,��,⋯ ,��)�  which is  a vector of saliency values, and  

�� denotes the saliency value of the ith region and  �� ∈ [0,1] . N is the number of 

superpixels generated by [45]. The optimization formulation is: 

�������� �(�) = ���−(� ln(�) + � ln(�))� +

         �(1 − �)�(−ln(�)) + ∑ ∑ ��� − ���
�

���
�
��� ���

�
���   

subject to   0 ≤  �� ≤ 1,� = 1,2,⋯ ,�; 

  ��� = 0,� = (��,��,⋯ ��)�, �� = {0,1}

                (60) 

��� = ��� (−��′� − �′��/��
�)                                   (61) 

Fig. 5.2. The pipeline  of the proposed model. 
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���  = exp (−���� − ����
�

��
�⁄ )                            (62) 

In Eq. (60), the term � = (��,��,⋯ ,�� )� is  the background map, and larger �� 

indicates the ith region belonging to the background with higher probability; the term � =

(��,��,⋯ ,�� )� defines the coordinate distances between the regions’ centers and the 

adaptive-centers, and larger ��  value indicates that the region is closer to the adaptive-

center; the term � = (��,��,⋯ ,�� )� is the foreground map, and larger  �� indicates the 

higher probability of the ith region belonging to the foreground, and the terms ��� and ��� 

define the similarity and the spatial distance between the ith and the jth regions, 

respectively. The term (1-S)T(−ln(�)) defines the cost on the background map and forces 

the regions with smaller values in the background map to have higher values in the saliency 

map; specifically, assigns 1 to the regions with 0 values in the background map due to the 

higher penalty. The term ST (-ln(�)) defines the cost of the adaptive-center bias and forces 

the regions with larger distances to have smaller values in the saliency map;  specifically, 

assigns 0 to the regions with the largest distance from the adaptive center. The term 

ST(−ln(�)) defines the cost of the foreground map and forces the regions with smaller 

value in foreground map to have smaller values in the saliency map; specifically, assigns 

0 to the regions with 0 values in the foreground map due to the high penalty. The quadratic 

term models the region-based correlations which force similar regions with similar saliency 

values. Parameters � , �, and � are used to balance the impact of each component. the 

equality constraint  ��� = 0 is applied to all the regions; �� is 1 if the ith region is adjacent 
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to the image border, and 0 otherwise. In Eqs. (61) and (62), �′� and ��� are the intensity and 

region center of the ith region, respectively.  | ∙ | is the �� norm, ‖∙‖� is the �� norm, and 

��
� = ��

� = 0.5 by [55].  

5.2.1 Semantic breast anatomy (SBA) map generation 

Initial SBA map. The breast contains four primary layers: skin layer, fat layer, 

mammary layer, and muscle layer. Regions in different layers have different appearances, 

and the tumor always exists in the mammary layer.  Due to the limitation of the number of 

training data, it is a challenge to generate accurate tumor segmentation results based on 

CNN.  

The proposed approach  utilizes the well-known U-Net [51], which consists of fully 

convolutional encoder and decoder sub-networks with skip connections. [52] demonstrated 

that the U-Net could generate good performance on a limited BUS images dataset for 

producing the initial SBA map. The number of convolutional filters in the network is (32, 

32, 64, 64, 128). The input images have dimensions of 256×256 pixels, noted as I. The 

segmentation result of U-Net, SA, has dimension 256×256, and the segmentation 

probability map, SP, has dimension 4×256×256. ���,�,�  denotes the pixel in SP and 

indicates the probability of pixel I(i,j) belonging to the kth category. The value ���,� is k = 

max (���,�,�|���
� ). The pixel-based maps I, SP and SA are converted into the region-based 

maps ��, ��� and ���using the region-based optimization framework. The label with the 

largest value of the labels of each superpixel will be the region label. ��′� indicates the 
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skin, fat, mammary, and muscle layer, and i is 1, 2, 3, 4, respectively. More details will be 

discussed in section 5.3.2. 

 Table 5.1 Algorithm 2: Refine SBA map 

Input: ���, NCL; ���contains 4 layers, NCL contains 3-5 layers by [55]. 
Output: ���;  

1. nl is the maximum layer of NCL 
2. For each layer in SA’, check the validation of the layer by whether covering more than 75% 

columns of the image [55] 
3. ���� = ��′� ∩ ���� − ��′� ∪  ���

� ∪  ���
� ; 

4. ���� = ��′� ∩ �����  −��′� ∪  ��′� ∪  ���
�  

5. �� �� = 3 
6. ���� = ���� − ���

� ∪  ���
� ∪  ���

�; 
7. ���� = ����� − ���� ∪  ���

� ∪  ���
� 

8. �� |���
�

|/� > 0.5 and ���� = ∅ and ��′� is valid 

9. ����=∅ 
10. if �� = 4, Do the lines 12-22;  
11. if �� = 5, change ����  into ���� ; and change ����� and ���

� into �������, Do line 12-
22 

12.   if the mammary layer ��′� is valid, 
13. if  ��′� is valid and ��′� ∩ ���� ≠ ∅, 
14. ���� = (���� − ���

�) ∪ ( ���
� ∩ ���� ) 

15. else: ���� = ���� − ���
� ∪  ���

� ∪ ���
� 

16. if  ��′� is valid and ��′� ∩ ������� ≠ ∅, 
17. ���� = (����� ∩ ���

�) ∪  ���
� − ���

� 
18. else: ���� = ����� − ���� ∪  ���

� 
19. else 
20. ���� = ���� − ���

� ∪  ���
� ∪  ���

�; 
21.  ���� = ����� − ���� ∪  ���

� ∪  ���
�  

22. The rest of the region will be in ����        

 

Refine SBA map. Based on observation, U-Net generates acceptable SBA map in 

most cases, even using small training dataset. However, some anatomical layers missed 

most of the parts and cross-layer (one layer is divided into more than one parts with no 

connections by other layers) appears in some cases. It refines the original SBA map by the 

NC anatomical map, named NCL, which decomposes the BUS image into several 

horizontal layers by NC and the regions in the same layer with strong connectedness [55].  

Algorithm 2 is to refine the initial SBA map by NCL. The refined map contains 5 layers; 
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the 1 and 5 layers are skin layers due to the skin layer existing in the top and bottom in 

some cases.   

After refining, the new semantic anatomy (NSA) maps, are kept the same as SA in 

most of the cases (see the 1st row of Fig. 5.3). The refinement is to avoid cross-layer and 

incomplete layer, and to keep the high recall ratio on the mammary layer (see Fig. 5.3). It 

will reduce the probability of missing the tumor (see 2nd-5th rows of Fig. 5.3(c)) and recover 

the incomplete layer generated by the deep learning models (see Fig.5.3(e)).  

5.2.2 Foreground map (FG) generation 

The foreground map (FG) measures image regions’ possibilities to be tumor 

regions. [55] proposed two algorithms to identify the dark/shadow layers and generate a 

foreground map for each layer, and it produced good results; especially, on the images with 

Fig.5.3 The visual effects of refining SBA maps.  (a)  original images; (b)ground truths; (c) 

SBA maps generated by U-Net;    (d) the non-semantic layers generated by [55]; (e) the refined 

SBA maps; (f) the FG based on (c); (g)the FG based on (e). 

      (a)             (b)               (c)                (d)               (e)               (f)                (g) 
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large and/or small tumors.   We applied the algorithm in [55] to output a flag with three 

values. If flag =-1, it indicates a smooth layer (most of the regions in the layers with high 

intensities); If flag =1, it indicates a dark/shadow layer; otherwise, it is a normal layer. We 

adopt the same algorithm to identify the dark layer and employ the Z-function to generate 

the FG. The effectiveness is shown as Figs. 5.3 (f) and (g). 

5.2.3. Adaptive-center distance map generation 

 [3] proposed the adaptive-center bias instead of the fixed image center bias which 

estimated the adaptive center (AC) using weighted local contrast map on natural images. 

[44, 55] demonstrated the effectiveness of generating the AC by weighted foreground map 

on BUS images. In this approach, we adopt the method to generate the AC and the distance 

map � . �� = exp (− ‖��� − ��‖� ��
�⁄  where the ���  is the center coordinate of the ith 

region; ‖∙‖� is the �� norm and ��
� = 0.1 [55]. 

5.2.4. Background map (BG)  

Boundary connectivity is an effective prior utilized in many visual saliency 

estimation models [1, 27, 29, 44, 45, 55]. [44, 55] has demonstrated the boundary 

connectivity based on NC theory which calculates neutron connectedness between the 

regions and the boundary regions [29] is effective to avoid noisy data and generate much 

smoother and more accurate background map on BUS images. Therefore, we generate the 

NC map by the algorithm in [29] and note ��� as the NC value of the ith region in the NC 

map. The value of the ith region in the initial BG map is defined as �� = ���
�. 
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Meanwhile, we define the layer weight based on the region-based semantic 

probability maps ��� (refer the section 5.2.1). The initial weight for each layer is defined 

as the mean value of the probabilities that regions in the layer belong to the mammary layer. 

If the mammary layer is valid, we assign ���,� = max (���
�,�,�������); otherwise, 

assign all the regions with weight 1. 

   ������� =
∑ ���

�,��∈����

|����|
�                                     (63) 

where ������� is the probability of the kth layer belonging the mammary layer; ���
�,� is 

the predicted probability of the ith region belonging to the mammary layer; ���,� is the 

probability of ith region in the kth layer belonging to the mammary layer. 

To avoid the isolate region in the non-mammary layer with very small nc value, we 

define the final value of the ith region in the initial BG map weighted by the probability of 

mammary layer and the distance from the AC, noted as �� = 1 − (1 − ���
�) × ���,� × ��

�. 

�′� is assigned to be 1 if  ���� = 1 in the mammary layer and �� > 0.5 or  ���� = 0 in the 

non-mammary layers and �� ≥ 0.75; otherwise �′� = ��. The � should be normalized. The 

new defined background map will avoid the situation that some isolating non-tumor 

regions obtain the lowest values and decrease the saliency values of the tumor regions a lot 

even the tumor regions gains the highest values in the foreground map (see Fig. 5.4). The 

effectiveness of the new background map will be discussed in section 5.3.3. 
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5.2.5. Optimization 

The optimization framework is similar as that in section 4.2, therefore, we utilize 

the same optimization method with the same initial and stop conditions as section 4.5.  

The Fig.5.4 shows the final optimal saliency maps generated with different 

components in the objective function. The model with the BG in [55] will decrease the 

tumor saliency values when non-tumor regions gain the lowest value in BG (see Fig.5.4(g)). 

The overall performance will be discussed in section 5.3.3. 

5.3 Experimental Results 

5.3.1 Datasets, metrics and setting 

We train and test the U-Net using a dataset with 325 images. 229 images in the 

dataset contain breast tumors, and other 96 images have no tumors [51]. The training and 

validation dataset are random chosen 90% images from the total dataset (the images with 

  (a)                  (b)                  (c)                   (d)                  (e)                   (f)                (g) 
Fig 5.4   The effects of different components in the objective function.  (a) original 

images; (b) ground truths ; (c) the FG; (d) the BG map in [55]; (e) the proposed BG; 

(f) the saliency map based on (d); (g) the saliency map using new BG. 
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tumor and without tumor are 90%, respectively), and the ratio of training set and validation 

set is 8:2. The rest 10% dataset is used as test dataset. The training set is that the number 

of epochs is 100, and the batch size is 5, and learning rate is 0.1.  

We validate the performance of the newly proposed TSE method using a dataset 

containing 562 BUS images from a public benchmark [27]. Due to tuning the parameters 

in Eq. (60), we randomly choose 60 images as a training dataset, and the rest is utilized to 

evaluate the overall performance. 

Metrics of saliency estimation are the same as section 2.4.1. 

Parameter setting: all the experiments are based on � = 10, � = 51, � = 6. 

5.3.2 Parameters tuning 

As presented in section 5.2.1, there are four components in the objective function. 

Therefore, the parameters � , �, and   � are utilized to balance the impact of each components and 

generate better performance. The tuning parameter �  controls the relative impact of the adaptive-

center term, and � controls the relative impact of the foreground map, and � controls the relative 

impact of the background map. The larger value of � , � and � indicates the corresponding term 

has greater impact on the performance. We evaluate the performance of the proposed method on 

randomly selected subset of 60 images from the 562 images [27] under different parameters and 

choose the range of each parameter which could obtain the better P-R curve and MAE value if the 

P-R curve is similar. Since the objective function in the paper is similar with that in [55], we adopt 

the initial ranges for the three parameters based on the experiments in [55] that the performances 
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are similar when the parameter on the foreground map is less than 50, and the parameter on the 

background map is less than 10. Therefore, we range � from 0 to 10 with step size 5, � from 1 to 

151 with step size 50 and  � from 1 to 21 with step size 5. As shown in Fig.5.5, the P-R curves are 

competitive under most of the parameter combination, and it achieves a better P-R curve and MAE 

when � is 10, and  � is 51, and, � is 6. 

5.3.3 The overall performance of the proposed method 

 The proposed model is compared with most recently published TSE methods 

SMTD [2], HFTSE [44], TBAM [55], and two models generated by the proposed method 

with the background map generated by different strategies on the 502 images. SMTD, 

HFTSE, and TBAM are the bottom-up VSE models with the specific breast tumor 

appearance knowledge. SMTD defined a unified global contrast mapping to estimation the 

tumor saliency. HFTSE proposed an optimization TSE model after determining the 

existence of tumor. The proposed method is noted as OURs, with the local contrast strategy 

generating the FG map and the new proposed BG map. OUR_ BG1 is the optimization 

Fig. 5.5. The parameters tuning. 
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model with the BG map generated by HFTSE in Eq. (60) and the FG map with local 

contrast strategy. 

The comparison visual effects of detecting saliency map by the five models are 

shown in Fig. 5.6. OUR_ BG1 with the background map generated by TBAM obtains a 

similar saliency map on most of the cases that the tumor regions gain the lowest values in 

the background map.  However, it will only highlight the non-salient regions and decrease 

the saliency values of the tumor regions when there are some isolating non-tumor regions 

obtaining the lowest values in the background map (see Fig. 5.4 and the 1st -3rd rows of Fig. 

5.6). SMTD would miss the parts of object in the images with very big (see the 1st and 2nd 

rows of Fig. 5.6) and make the surround dark regions have high saliency values (see the 

3rd -6th rows of Fig. 5.6). This situation will make the model SMTD could achieve high 

 (a)             (b)              (c)             (d)             (e)               (f)             (g) 
Fig. 5.6 The visual effects of detecting the saliency maps by the five models. (a) original images; 

(b)ground truths; (c)-(g) the saliency maps generated by [2], [44], [55] OUR_BG1 and OURs, 

respectively. 
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recall ratio but low precision ratio (see Fig. 5.7). HFTSE would miss parts of large tumors 

and make the surrounding tumor regions have high saliency values (see the 2nd -6th rows 

of Fig. 5.6). TBAM model generated accurate saliency maps when detecting the correct 

layer with tumor (see 1st ,2nd and 4th rows of Fig. 5.6 ),  especially  for  the  images  with  

large  or  small tumors, but it failed in the cases that the tumor in the top or bottom part of 

the images(see 2nd row of Fig. 5.1 and 5th row of Fig.5.6 ).  

 The overall performances of the seven models are shown in Fig. 5.7-5.8. As shown 

in Fig.5.7-5.8, the proposed model OURs achieves the best P-R curve and lowest MAE, 

Fig. 5.7 The P-R curves of the five models. 

Fig. 5.8 The metrics MAE and ���������  values of the five models. 
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highest ��������� values. As discussed, SMTD and HFTSE achieved relative high recall 

ratio and quite low precision ratio due to highlight the surrounding tumor regions as well 

as tumor regions. TBAM achieved a balance metrics MAE and ��������� values, but it 

failed in the cases when detecting the tumor layer wrong. This situation will make the 

model hardly achieve better overall performance without guided by semantic knowledge. 

OUR_BG1 generates the competitive P-R curve as OURs. However, OURs achieves much 

better ��������� values, which indicates a better background map generation will improve 

the TSE performance a lot.  
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CHAPTER 6 

CONCLUSION AND FUTURE WORK 

This dissertation is comprised of my main work in Visual Saliency Estimation 

(VSE) and applications. The main contributions are summarized as follows.  

(1) The new VSE model in natural images formulates saliency estimation as a 

quadratic program (QP) problem based on robust hypotheses. First, we propose an adaptive 

center-based bias hypothesis to replace the most common image center-based center-bias. 

It calculates the weighted center by utilizing local contrast, which is much more robust 

when the objects are far away from the image center. Second, we model smoothness term 

on saliency statistics of each color. It forces the pixels with similar colors to have similar 

saliency statistics. The proposed smoothness term is more robust than the smoothness term 

based on region dissimilarity when the image has a complicated background or low 

contrast. 

(2) The proposed hybrid framework for tumor saliency estimation (TSE) is to detect 

the breast tumor on the ultrasound images by modeling radiologists’ attention mechanism. 

The TSE framework involves two steps: tumor existences and tumor saliency estimation. 

The decision tree is utilized to determine tumor existences based on the foreground map 

information. In the second step, the optimization framework integrates both high-level 

domain-knowledge (the Neutro-Connectedness (NC) map) and robust low-level saliency 

assumptions (the adaptive-center and the correlation) to improve the performance.  
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 (3) We propose a novel optimization model to estimate tumor saliency for BUS 

images by integrating breast anatomy knowledge. Breast anatomy modeling solves the 

missing boundary problem caused by the shadows. Meanwhile, applying the combination 

of global and local parameters in each layer solves the problem of missing parts of large 

tumors. Extensive experiments demonstrate that more accurate foreground and background 

maps are generated when the images have large or small tumors. Moreover, we propose a 

new objective function to handle BUS images without tumors. The new objective function 

could be applied to other optimization frameworks to perform natural image saliency 

estimation, object detection, and segmentation as well. The strategy of modeling the 

anatomy knowledge by Neutro-connectedness theory can be applied to model tissue 

relationships in medical images of many tasks such as thyroid tumor detections, liver tumor 

detections, lung tumor detections, and abdominal small organ detections.  

 (4) We propose a novel TSE model guided by the semantic breast anatomy 

knowledge for BUS images. In the novel model, the non-semantic breast anatomy 

modeling is integrated to solve the cross-layer and incomplete mammary layer in the 

semantic anatomy map generated by U-Net. The strategy is effective when the semantic 

information could not have been generated accurately due to limited data or unknown data. 

A new background map generation method is proposed to improve the performance, which 

is weighted by the semantic probability and spatial distance on the mammary layer. 

 In the future, I will focus on improving the performance of tumor saliency 

estimation based on the deep neural network. Moreover, we will also explore the possibility 
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of applying Visual Saliency Estimation models to other biomedical image data, such as 

Computed Tomography Images, X-ray Images, Magnetic Resonance Imaging, and 

Biomedical Sequence Images. 
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