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Combining Non-orthogonal Transmission with
Network-Coded Cooperation: Performance Analysis

under Nakagami-m Fading
Chao Wang, Xun Li, Ping Wang, and Geyong Min

Abstract

This paper investigates efficient transmission design in a class of multi-user cooperation networks, in which
multiple information sources intend to distribute their messages to a sufficient proportion of ambient destinations
with the assistance of multiple relays, under Nakagami-m fading. We apply a relaying scheme that combines
non-orthogonal transmission with network coding techniques to efficiently utilize available channel resources.
Specifically, the sources and relays are divided into clusters, terminals within each of which are allowed to non-
orthogonally access the same channel. A class of finite-field network codes are adopted in the relays. We provide
the methods to derive the system decoding error probability and diversity-multiplexing tradeoff (DMT). Through
error probability and finite-SNR DMT analysis for certain clustering strategies, and infinite-SNR DMT analysis for
general situations, we show that the considered relaying scheme can notably improve system performance over the
conventional approach that demands only orthogonal transmission in network-coded cooperation networks.

Index Terms

Multi-user relay networks, Network-coded cooperation, Non-orthogonal transmission

I. INTRODUCTION

Due to the rapid development of wireless communication technologies, a large variety of novel mo-
bile Internet and Internet-of-things (IoT) applications and services have emerged in recent years. A
very important future mobile communication application scenario is the content distribution network
where information sources (content generators) broadcast their messages to ambient destinations (content
subscribers). For instance, Fig. 1(a) illustrates a potential example in intelligent transportation systems
(ITS). Allowing roadside unit (source S1) and vehicles (sources S2 and S3) to share their sensing data
regarding a complex traffic environment with other vehicles (destinations D1, D2, and D3), under the
framework of vehicular cloud networks [1], can enable vehicles to access others’ sensors. The accuracy
and reliability of individual environment perception can be greatly enhanced. Other promising applications
include advertisement broadcasting in shopping malls and video sharing in stadiums supported by the 5G
device-to-device (D2D) technology [2]. These wireless systems in general consist of several sources and
potentially many destinations. The content-rich source messages (e.g., in the form of multimedia files)
should be delivered in severe signal propagation environments (e.g., high-speed or indoor environments).
Providing a high quality of message distribution can be challenging.

This work was funded in part by the National Natural Science Foundation of China (Grant No. 61771343) and the National Key R&D
Program of China (Grant No. 2018YFB0105101). This is also a part of a project that has received funding from the European Union’s
Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No. 752979. The material in this
paper was presented in part at the 2019 IEEE Wireless Communications and Networking Conference (WCNC), Marrakesh, Morocco, April
2019. (Corresponding author: Ping Wang)

C. Wang is with the College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China. He was with the
Department of Computer Science, University of Exeter, Exeter, EX4 4QF, U.K. (e-mail: chaowang@tongji.edu.cn).

X. Li and P. Wang are with the College of Electronics and Information Engineering, Tongji University, Shanghai, 201804, China. (e-mails:
1732864@tongji.edu.cn, pwang@tongji.edu.cn)

G. Min is with the Department of Computer Science, College of Engineering, Mathematics, and Physical Sciences, University of Exeter,
Exeter, EX4 4QF, U.K. (e-mail: g.min@exeter.ac.uk).

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Open Research Exeter

https://core.ac.uk/display/323311411?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


2

Fig. 1: (a) An ITS application scenario of (b) a multi-source multi-relay multi-destination network

Introducing cooperative relays to improve communication performance in wireless networks has at-
tracted much recent interest [3]. When a number of relays (e.g., R1 and R2 in Fig. 1(a)) are utilized to assist
in the data distribution from several sources to several destinations, the network structure can be abstracted
as a multi-source multi-relay multi-destination network shown in Fig. 1(b). From an information-theoretic
viewpoint, multi-hop networks are fundamentally different from single-hop networks, since relays bring
complicated interference and signal processing issues. The capacity of even very small relay networks is
unknown. Efficient transmission designs and their performances in many types of networks are far from
being well-understood.

In addition to providing power gain, the advantages of cooperative relays have been exploited mainly
from two aspects. First, recent achievements in network information theory have shown that relays can
provide degrees of freedom (DoF) gain to multi-user wireless networks (see e.g., [4]–[7]). This implies
that, the capacity region of multi-hop relay networks may be much larger than that of single-hop networks,
at least for the high signal-to-noise ratio (SNR) regime. The basic idea behind high-DoF transmission
designs is to properly coordinate multiple non-orthogonally activated terminals, with a sufficient knowledge
of the network channel state information (CSI), such that the inter-user interference can be effectively
eliminated or mitigated.

Another research trend takes more practical conditions, including imperfect channel knowledge and
limited node coordination, into consideration and exploits relays’ capability of providing diversity gain
for improving transmission reliability [8], [9]. Extensive investigations have been conducted to design
efficient relaying schemes for link-level information delivery between a single source-destination pair.
These schemes can be readily employed in multiple-user networks when different users’ transmissions are
orthogonalized. However, each relay is normally forced to separately forward different sources’ messages,
using, for example, repetition coding or distributed space-time coding. Network resources are inefficiently
utilized.

Applying the network coding (NC) technique [10] at relays is capable of realizing efficient network-
level transmissions in wireless cooperative networks. For instance, the binary NC can provide excellent
performance in multi-source single-relay [11] and single-source multi-relay [12] networks. Nevertheless,
directly employing the binary XOR operation to combine source messages in multi-source multi-relay
networks may not be able to attain full diversity. Summation in high-order finite field has been considered
as a solution. The maximum distance separable network codes (MDS-NC) [13]–[15] and random linear
network codes (RLNC) [16] developed following this principle are proven to be maximal-diversity-
achievable in the uplink cooperative networks with multiple sources, multiple relays, and one destination.
Further NC designs suitable for such a network structure have been proposed in [17]–[21]. The system
model is also extended to reuse-mode D2D networks with arbitrary sources, relays, and destinations in
[22]–[24].
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To concentrate on novel coding strategies design and evaluation, most of existing related works demand
all sources and relays to be orthogonally activated, so that inter-user interference can be avoided [13]–
[20]. Message transmissions are commonly assumed to be conducted under Rayleigh fading [13]–[22],
due to mathematical tractability. In a single-hop multi-source single-destination network, it is known that
orthogonalization leads to an inferior achievable rate region compared with permitting all sources to
non-orthogonally share the channel (i.e., a multiple-access (MAC) channel) [25]. Reference [26] studies
the case that two sources are activated concurrently (but relays are still orthogonalized) and shows
that it can outperform orthogonalizing all sources. Our earlier work [27] proposes a novel NC-based
relaying scheme that permits arbitrary sources (and relays) to transmit their messages together. Through
the infinite-SNR diversity-multiplexing tradeoff (DMT) analysis, it is shown that the performance of the
repetition-coding-based and orthogonal-NC-based relaying schemes can be improved. These observations
demonstrate the potential of combining non-orthogonal transmission with NC techniques in multi-user
cooperation networks. But the applicability of such results is still relatively limited.

First, same as [15]–[21], the system model considers uplink transmission with only one destination.
Many future content distribution applications may need to deliver services to a number of ambient content
subscribers. Due to the fact that the decoding results of destinations are dependent (affected by the relays),
the system performance cannot be straightforwardly attained from the single-destination case. Second,
similar to [13]–[22], analytical results are obtained under only Rayleigh fading. In many application
scenarios (e.g., vehicular and indoor transmissions), the wireless signal propagation characteristics can
be better modelled by the Nakagami-m fading [28]. Transmission design and performance in these
two environments can be very different, especially when the source-destination, source-relay, and relay-
destination channels have diverse fading properties. Finally, performance gain is discovered using only
a high-SNR indicator, the infinite-SNR DMT. Hence one may ask if the advantage of combing non-
orthogonal transmissions with NC still exists, in more general conditions.

In this paper, we provide investigations on this question. Our main contributions are as follows.
1) We study the communication problem in a class of wireless multi-user network-coded cooperation

networks where several sources intend to broadcast their messages to a sufficient proportion of multiple
destinations, with the assistance of a number of relays, in a Nakagami-m fading environment. Such a
general system model can contain those considered in many related works as special cases. We adopt the
idea proposed in [27] and apply a novel cluster NC (C-NC) relaying scheme to conduct message delivery.
The scheme divides sources and relays into clusters, and allows terminals within each cluster to transmit
messages together. The relays employ a class of finite-field NC to simultaneously forward multiple source
messages. By this means, the advantages of NC and non-orthogonal transmission techniques can both be
exploited.

2) We provide a framework to calculate the achievable system decoding error probability, through which
the finite-SNR/infinite-SNR DMT and certain other performance indicators can also be identified. The
error probability is a function of the clustering strategy and various system parameters. For the finite-SNR
regime, we focus on the case that the number of terminals in each cluster is bounded by three. By finding
the individual decoding error probabilities in the two-user and three-user MAC channels, we can derive
the closed-form expressions of our C-NC scheme’s achievable error probability and finite-SNR DMT. It
is shown that the system performance can be significantly better than requiring orthogonal transmission
among all sources and relays.

3) For more general clustering strategies that allow arbitrary numbers of terminals in each cluster,
we derive the achievable infinite-SNR DMT, and also provide discussions regarding the impact of node
partition approaches in several special network structures. The results can be used to facilitate finding
the best clustering solution for different system setups. A notable performance gain over orthogonal
transmission can also be observed. Consequently, a more complete picture of the potentials of combining
non-orthogonal transmission with NC is exhibited.

The remainder of the paper is organized as follows. Section II introduces our system model and the C-NC
relaying scheme. In Section III, we first present the method to calculate the system error probability. The
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individual decoding probabilities in two-user and three-user MAC channels are derived and then applied
to the performance analysis of the C-NC scheme. In Section IV, we present the achievable infinite-SNR
DMT for general clustering strategies and provide discussions. Section V concludes the paper.

Notations: We use |A| and Ā to denote the cardinality and complement set of set A. For a Gamma
distributed random variable X ∼ Gamma (α, β) with integer shape parameter α and rate parameter β,
its PDF is denoted by fX(x) = βαxα−1e−βx

Γ(α)
and its CDF is denoted by F (x;α, β) = 1−

∑α−1
i=0

(βx)i

i!
e−βx,

where Γ(α) = (α−1)! is the gamma function. (a)+ is used to denote max{0, a}. The exponential equality
X

.
= ρb means b = limρ→∞

log2X
log2 ρ

.

II. SYSTEM MODEL AND TRANSMISSION SCHEME

We investigate data distribution in a class of wireless single-antenna networks in which a set of M
sources S = {S1, · · · , SM} intend to broadcast their messages IS1 , · · · , ISM to a set of N destinations
D = {D1, · · · ,DN}. To enhance performance, a set of K half-duplex decode-and-forward relays R =
{R1, · · · ,RK} are used to assist in the message delivery. We denote the set of source messages by
I = {IS1 , · · · , ISM}. It is desired to guarantee a sufficient proportion, σ% (0 < σ ≤ 100), of the
destinations to receive the complete set I. Otherwise, if less than dN · σ%e destinations can do so, we
say the transmission fails and an error event is declared. Such a multi-source multi-relay multi-destination
cooperative network is illustrated in Fig. 1(b).

Assume that source messages are encoded using capacity-achieving Gaussian random codes with data
rate R bit/codeword. The transmission of each codeword spans one time slot, in a narrow-band Nakagami-
m slow-fading environment. The channel fading coefficient between any transmitter a and receiver b is
denoted by hb,a. The channel power gains between different sources and destinations are modeled as
independent random variables following Gamma distribution with integer shape parameter msd and rate
parameter msd

ΩDn,Sj
, i.e., |hDn,Sj |2 ∼ Gamma

(
msd,

msd
ΩDn,Sj

)
, for j ∈ {1, · · · ,M} and n ∈ {1, · · · , N}. The

value msd measures the small-scale source-destination channel fading phenomenon. The special case msd =
1 represents Rayleigh fading. ΩDn,Sj = E{|hDn,Sj |2} quantifies the impact of large-scale fading between
Sj and Dn. The similar consideration holds for the source-relay channels and relay-destination channels,
i.e., |hRk,Sj |2 ∼ Gamma

(
msr,

msr
ΩRk,Sj

)
and |hDn,Rk |2 ∼ Gamma

(
mrd,

mrd
ΩDn,Rk

)
for k ∈ {1, · · · , K}. For

the whole transmission period, hb,a remains fixed and is known at only the receiver b. Due to the lack
of transmitter-side channel knowledge, power adaptation is not considered. The sources transmit signals
with the same power ρs, and the relays transmit with power ρr.

To efficiently conduct message distribution, we borrow the concept presented in [27] and propose
combining non-orthogonal transmission with NC techniques in the considered multi-user cooperation
network. Specifically, as illustrated in Fig. 1(a), we partition the M sources into µ (1 ≤ µ ≤ M ) non-
overlapping clusters S1, · · · , Sµ, where Sj =

{
S

[j]
1 , · · · , S

[j]
|Sj |

}
and S

[j]
i represents the ith source node in Sj .

The relays are also divided into κ (1 ≤ κ ≤ K) clusters R1, · · · , Rκ, in which Rk =
{

R
[k]
1 , · · · ,R

[k]
|Rk|

}
and R

[k]
i is the ith relay terminal in Rk. Clearly,

∑µ
j=1 |Sj| = M and

∑κ
k=1 |Rk| = K.

We allow the terminals within each cluster to be activated non-orthogonally in order to reduce overall
channel consumption, while different clusters accessing different channels (i.e., time slots) to avoid
unnecessarily large inter-user interference. Therefore, a total of µ+ κ time slots are consumed to deliver
I from the sources to the destinations. The first µ time slots are assigned to the µ source clusters. At the
jth time slot (j ∈ {1, · · · , µ}), all nodes within Sj broadcast their messages together to the relays and
destinations. Afterwards, each of the remaining κ time slots is reserved for an individual relay cluster.
At each time slot, every receiving node applies successive interference cancellation (SIC) to its received
signal for facilitating decoding.

At the relays we employ a class of finite-field network codes, the MDS-NC [13], [15]. (The RLNC
can also be applied. In this case, the coding coefficients are randomly generated.) The network coding
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function applied at the ith relay Ri (i ∈ {1, · · · , K}) aims to combine the sources’ messages in a certain
finite field to generate a new network codeword IRi =

∑M
j=1 γi,jISj . The coding construction follows that

for an MDS code and the coding coefficients γi,j are designed to guarantee the global encoding kernels
to be linearly independent. (Such network codes always exist if the coding field size is sufficiently large.)
Therefore, the complete source message set I can be fully recovered using any M messages among
IS1 , IS2 , · · · , ISM , IR1 , IR2 , · · · , IRK .

To avoid error propagation, a relay is activated only if it attains all messages in I from the transmissions
of sources. Otherwise, it does not participate in the cooperative message distribution process. Use R̂k

(R̂k ⊆ Rk) to denote the set of activated relays in Rk. The received signal of node b (b ∈ R ∪ D when
t ≤ µ, and b ∈ D when t > µ) at time slot t is expressed as:

yb[t] =
∑
a∈Tt

hb,axa + εb[t], (1)

in which Tt = St for t ∈ {1, · · · , µ}, Tt = R̂t−µ for t ∈ {µ + 1, · · · , µ + κ}, xa is the signal sent by a,
and εb[t] denotes the unit-power additive white Gaussian noise (AWGN).

We term our transmission scheme cluster network-coded (C-NC) relaying. Clearly, if we set µ = M
and κ = K, each source and relay cluster contains a single node. All terminals in the network are thus
activated orthogonally. This special case is termed orthogonal NC (O-NC) relaying. It is the scheme applied
to multi-user network-coded cooperation networks in most existing related works. Inter-user interference
is avoided at the cost of a large channel consumption of M+K time slots. If µ = 1 and κ = 1, all sources
and relays are non-orthogonally activated in two time slots respectively. This is termed non-orthogonal NC
(NO-NC) relaying. For a single-hop multi-transmitter single-receiver network, demanding all transmitters
to non-orthogonally send their signals can achieve better performance (in terms of e.g., capacity region
and infinite-SNR DMT) than activating a subset of transmitters at a time [25], [29]. But in our considered
network, this may not be the case because the system performance is determined by the joint impacts of
source-destination, source-relay, and relay-destination transmissions.

We aim to evaluate the performances of our C-NC scheme for different clustering strategies (including O-
NC and NO-NC), to reveal the advantages of combining non-orthogonal transmission with NC techniques.
Our main performance metric is the error probability. Let the number of destinations that are able to
correctly recover all the messages in I be ζ (0 ≤ ζ ≤ N ). The message distribution is considered to be
successful only if ζ ≥ dN · σ%e. The system error probability Perr, i.e., the probability of occurring an
error event, is hence defined as

Perr = Pr {ζ < dN · σ%e} . (2)

We will show that when the number of terminals in each cluster is no more than three, closed-form
expressions of Perr can be attained. To evaluate performance simultaneously from the perspectives of
channel usage efficiency and communication reliability, using Perr one can further derive the achievable
DMT. To this end, we assume that the sources’ and relays’ transmit powers can be expressed as ρs = asρ
and ρr = arρ for some constants as and ar. If we allow the average transmission data rate of each source
R̄ = R

µ+κ
(in bit/source/time slot) to be chosen according to r log2(1 + ρ) with multiplexing gain r, the

achievable diversity gain d(r, ρ) measures the negative slope of the log-log plot of system error probability
versus the common operating SNR ρ. The complete tradeoff between r and d(r, ρ) is termed finite-SNR
DMT, i.e., [30]:

r =
R̄

log2(1 + ρ)
and d(r, ρ) = − ρ

Perr

∂Perr

∂ρ
. (3)

Further, if we allow ρ → ∞, the performance of any clustering approach with arbitrary cluster sizes
can be evaluated asymptotically through the infinite-SNR DMT [31]:

r∗ = lim
ρ→∞

R̄

log2 ρ
and d∗(r∗) = − lim

ρ→∞

log2 Perr

log2 ρ
. (4)

d∗(r∗) captures the slope of the curve log2 Perr plotted against log2 ρ in the high-SNR region.



6

III. FINITE-SNR PERFORMANCE ANALYSIS

We start our performance analysis by presenting the general method of deriving Perr.

A. System Error Probability Derivation
The decoding behaviors of the destinations are dependent, and cannot be separately considered. To find

Perr, we introduce a binary vector πππ = [π
[1]
1 , · · · , π

[1]
|R1|, · · · , π

[κ]
1 , · · · , π[κ]

|Rκ|] indicating the decoding status
of the K relays, i.e., whether they can be activated. If R

[k]
i , the ith relay in Rk, fully recovers I, then

π
[k]
i =1. Otherwise, π[k]

i = 0. The set of all realizations of πππ is denoted by

Vπ =
{
πππ : π

[k]
i ∈ {0, 1}, 1 ≤ k ≤ κ, 1 ≤ i ≤ |Rk|

}
. (5)

Let Pr{πππ} denote the probability that a particular realization of πππ ∈ Vπ occurs, and Perr|πππ denote the
conditional probability that the desired message distribution fails (i.e., less than dN · σ%e destinations
recover I) given πππ. The overall system error probability (2) thus is:

Perr =
∑
πππ∈Vπ

Pr{πππ}Perr|πππ. (6)

We can consider πππ as a sequence of K independent Bernoulli random variables. Therefore,

Pr {πππ} =
κ∏
k=1

|Rk|∏
i=1

(
Pr
{
π

[k]
i = 1

})π[k]
i
(

Pr
{
π

[k]
i = 0

})1−π[k]
i

. (7)

The event π[k]
i = 1 occurs only if R

[k]
i correctly decodes all source signals, in each of the first µ time

slots. From (1) we can see that at time slot t (t ∈ {1, · · · , µ}), the sources in St and R
[k]
i form an |St|-

user MAC channel. We use Q[s]
A,b to denote the probability that, in a MAC channel formed by a set of

transmitters A = {a1, · · · , a|A|} and a common receiver b, the terminal b can successfully decode exactly
s (0 ≤ s ≤ |A|) messages through SIC. Now, the probability that R

[k]
i correctly recovers all messages

sent from St can be expressed as Q[|St|]
St,R[k]

i

. This results in

Pr
{
π

[k]
i = 1

}
=

µ∏
t=1

Q
[|St|]
St,R[k]

i

. (8)

For each πππ, substituting (8) and Pr
{
π

[k]
i = 0

}
= 1− Pr

{
π

[k]
i = 1

}
into (7) leads to Pr {πππ}.

Given πππ, the destinations’ decoding behaviors become independent. Define a binary vector τ|πππτ|πππτ|πππ =
[τ1|πππ, · · · , τN |πππ] to indicate their decoding status: τn|πππ = 1 if Dn obtains I and τn|πππ = 0 otherwise.
The set of all realizations of τ|πππτ|πππτ|πππ that result in failure of the desired transmission is:

Vτ|πππ =

{
τ|πππτ|πππτ|πππ :

N∑
n=1

τn|πππ < dN · σ%e , τn|πππ ∈ {0, 1}

}
. (9)

This leads to

Perr|πππ =
∑

τ|πππτ|πππτ|πππ∈Vτ|πππ

N∏
n=1

(
Pr{τn|πππ = 1}

)τn|πππ(Pr{τn|πππ = 0}
)1−τn|πππ . (10)

To find Pr{τn|πππ = 1}, the conditional probability that destination Dn is capable of attaining all source
messages given relay decoding status πππ, we denote the cluster of nodes that transmit signals at time
slot t (t ∈ {1, · · · , µ + κ}) by Tt|πππ. The probability that Dn can successfully decode the messages of st
(0 ≤ st ≤ |Tt|πππ|) nodes in Tt|πππ is the probability Q[st]

Tt|πππ ,Dn . After µ+ κ time slots, the probability that Dn
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can obtain I is the probability that it correctly decodes at least M signals from all the
∑µ+κ

t=1 |Tt|κκκ| signals
it received. Defining vector sss = [s1, · · · , sµ+κ],

Vs|πππ =

{
sss :

µ+κ∑
t=1

st ≥M, 0 ≤ st ≤ |Tt|πππ|

}
(11)

represents the set of all potential decoding status that allows a destination to recover I. Then

Pr
{
τn|πππ = 1

}
=
∑
sss∈Vs|πππ

µ+κ∏
t=1

Q
[st]
Tt|πππ ,Dn . (12)

Substituting (12) into (10), and then substituting (7) and (10) into (6) lead to Perr. From the above
derivation process, we can see that if the probabilities Q

[s]
A,b in MAC channels are known, the error

performance of our C-NC scheme can be attained. Using Perr, we can further derive the finite-SNR DMT,
and potentially other performance indicators such as spectral efficiency and energy efficiency [32]. When
|A| = 1, Q[0]

A,b and Q
[1]
A,b can be easily found by using the Gamma CDF. Hence identifying Perr of the

O-NC scheme is straightforward. However, deriving the closed-form expressions of Q[s]
A,b can be very

involved when the size of A is large. [33] studies the 2-user MAC channel under Rayleigh fading. In the
following subsection, we present the results for |A| = 2 and |A| = 3 under Nakagami-m fading, and then
use the results to find the performance of the C-NC scheme when the number of nodes in each cluster is
upper-bounded by 3. The more general situations are analyzed through the infinite-SNR DMT in Section
IV.

B. Individual Decoding Probabilities in MAC Channels
Consider a MAC channel formed by a set of simultaneously activated transmitters A = {a1, · · · , a|A|}

and a common receiver b. Each transmitter a ∈ A uses independent Gaussian random codes to en-
code its message with rate R and transmitter-side SNR ρa. b applies SIC for decoding. Let |hb,a|2 ∼
Gamma(ma,

ma
Ωb,a

) denote the channel fading power gain between a and b. If for a given subset G ⊆ A,
the following two events E1,G and E2,Ḡ occur [33],

E1,G: log2

(
1+

∑
a∈J ρa|hb,a|2

1+
∑

a′∈Ḡ ρa′|hb,a′|2

)
> |J |R, ∀J ⊆G, (13)

E2,Ḡ: log2

(
1+

∑
a∈K ρa|hb,a|2

1+
∑

a′∈K̄∩Ḡ ρa′ |hb,a′|2

)
< |K|R, ∀K⊆Ḡ, (14)

then b can decode signals from nodes in G, but not those from the remaining nodes in Ḡ. The probability of
occurring such events, denoted by QGA,b = Pr{E1,G, E2,Ḡ|G,A}, is termed individual decoding probability
that b recovers the messages of the nodes in G. Consequently, the probability that b recovers exactly s
(0 ≤ s ≤ |A|) messages, i.e., Q[s]

A,b, is calculated by:

Q
[s]
A,b =

∑
|G|=s

QGA,b, (15)

where the summation is taken over all possible G that satisfy |G| = s.
If A = {a1}, i.e., a point-to-point channel, it is simple to have Q

[0]
A,b = F (2R − 1;ma,

ma
ρaΩb,a

) and

Q
[1]
A,b = 1−Q[0]

A,b, in which F (x;α, β) denotes the Gamma CDF. The following proposition provides the
expressions of QGA,b in a two-user MAC channel. Those in a symmetric three-user MAC channel, where
ma = m and ρaΩb,a = ρΩ for all a ∈ A, are presented in Appendix A.1

1Due to paper page limit, we consider only the symmetric network case. The individual decoding probabilities in general 3-user MAC
channels can be derived by following the same procedure presented in Appendix A.
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Proposition 1: Consider a 2-user MAC channel with A = {a1, a2}. Let m1 = ma1 , m2 = ma2 ,
β1 =

ma1

ρa1Ωb,a1
, β2 =

ma2

ρa2Ωb,a2
, and ηs = 2sR − 1 for any integer s. When β1 = β2, the probability that b

successfully recovers both transmitters’ messages, Q{a1,a2}
A,b , is

Q
{a1,a2}
A,b =

m1−1∑
i=0

i∑
j=0

(−1)jβm2+i
1 ηm2+j

1 ηi−j2 ηm2+je
−β1η2

(m2 − 1)!j!(i− j)!(m2 + j)
+

m2−1∑
i=0

m1−1∑
j=0

βi+j1 (η2 − η1)iηj1e
−β1η2

i!j!
. (16)

When β1 6= β2, the probability Q{a1,a2}
A,b is

Q
{a1,a2}
A,b =

m1−1∑
i=0

i∑
j=0

m2+j−1∑
l=0

(−1)jβi1β
m2
2 ηi−j2 e−β1η2

(
ηl1e
−(β2−β1)η1 − (η2 − η1)le−(β2−β1)(η2−η1)

)
(m2 − 1)!j!(i− j)!l!(β2 − β1)m2+j−l/(m2 + j − 1)!

+

m2−1∑
i=0

m1−1∑
j=0

βj1β
i
2(η2 − η1)iηj1e

−β1η1e−β2(η2−η1)

i!j!
. (17)

The individual decoding probabilities that b recovers the message of only one transmitter are

Q
{a1}
A,b =

m1−1∑
i=0

i∑
j=0

βi1β
m2
2 ηi1(m2 + j − 1)!e−β1η1

j!(i−j)!(m2−1)! (β1η1+β2)m2+j

(
1−

m2+j−1∑
l=0

(β1η
2
1 +β2η1)l

l!
e−(β1η2

1+β2η1)

)
, (18)

Q
{a2}
A,b =

m2−1∑
i=0

i∑
j=0

βi2β
m1
1 ηi1(m1 + j − 1)!e−β2η1

j!(i−j)!(m1−1)! (β2η1+β1)m1+j

(
1−

m1+j−1∑
l=0

(β2η
2
1 +β1η1)l

l!
e−(β2η2

1+β1η1)

)
. (19)

Finally, for an empty decoded message set φ, Qφ
A,b = 1−Q{a1}

A,b −Q
{a2}
A,b −Q

{a1,a2}
A,b .

Proof: Denote Hi = ρai |hb,ai |2 ∼ Gamma(mi, βi) for i ∈ {1, 2}. The binomial expansion (x+ y)n =∑n
i=0

(
n
i

)
xn−iyi and the relationship between the PDF and CDF of random variable X ∼ Gamma(α, β),

i.e.,
∫ x

0
fX(x′)dx′ = F (x;α, β) = 1−

∑α−1
i=0

(βx)i

i!
e−βx will be used.

The basic idea is to divide the sample space of the bivariate Gamma distribution (H1 and H2) into
sub-regions based on the decoding events defined in (13) and (14), and then take integrals regarding the
PDF to reach the corresponding individual decoding probabilities. Specifically,

Q
{a1,a2}
A,b = Pr {H1>η1, H2>η1, H1+H2>η2} = P{A1}+ P{A2}. (20)

A1 and A2 denote two sub-regions, the union of which corresponds to the events H1 > η1, H2 > η1, H1 +
H2 > η2, and P{Ai} is the probability that a random sample locates in Ai [33], [34]:

P{A1} =

∫ η2−η1

η1

(∫ ∞
η2−x2

fH1(x1)dx1

)
fH2(x2)dx2 =

∫ η2−η1

η1

(
1−F (η2−x2;m1, β1)

)
fH2(x2)dx2

=
βm2

2 e−β1η2

Γ(m2)

m1−1∑
i=0

i∑
j=0

(
i

j

)
βi1(−1)jηi−j2

i!
·
∫ η2−η1

η1

xm2−1+j
2 e−(β2−β1)x2dx2.

P{A2}=

∫ ∞
η2−η1

(∫ ∞
η1

fH1(x1)dx1

)
fH2(x2)dx2 =

(
1− F (η2 − η1;m2, β2)

)(
1− F (η1;m1, β1)

)
.

If β1 = β2, we can complete the integral in P{A1} and attain

P{A1} =

m1−1∑
i=0

i∑
j=0

(−1)jβi1β
m2
2 ηi−j2 e−β1η2

(m2 − 1)!j!(i− j)!
· (η2 − η1)m2+j − ηm2+j

1

m2 + j
.
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When β1 6= β2, we have

P{A1} =

m1−1∑
i=0

i∑
j=0

(−1)jβi1β
m2
2 e−β1η2ηi−j2 (F (η2−η1;m2+j,β2−β1)−F (η1;m2+j,β2−β1))

(m2 − 1)!j!(i− j)! (β2 − β1)m2+j /(m2 + j − 1)!
.

Substituting the expressions of P{A1} and P{A2} into (20) leads to (16) and (17).
The probability that b correctly decodes only a1 but not a2, Q{a1}

A,b , can be calculated as

Q
{a1}
A,b = Pr {H2 < η1, H1 > η1(H2 + 1)} =

∫ η1

0

(∫ ∞
η1(x2+1)

fH1(x1)dx1

)
fH2(x2)dx2

=
βm2

2 e−β1η1

Γ(m2)

m1−1∑
i=0

i∑
j=0

(
i

j

)
βi1η

i
1Γ(m2 + j)

i! (β1η1 + β2)m2+j · F (η1;m2 + j, β1η1 + β2). (21)

This is the expression in (18). Due to symmetry, the probability that b correctly decodes only a2, i.e., the
individual decoding probability Q{a2}

A,b , can be obtained by swapping m1 and m2, and swapping β1 and β2

in the above equation. This leads to (19) and completes the proof.
Using Proposition 1, we can attain the probabilities that the receiver b decodes two, one, and zero

transmitters in A as Q[2]
A,b = Q

{a1,a2}
A,b , Q[1]

A,b = Q
{a1}
A,b +Q

{a2}
A,b , and Q[0]

A,b = Qφ
A,b, respectively. These results

can be used to derive Pr {πππ} in (7) and Perr|πππ in (10), and thus to identify the system error probability Perr

of our C-NC scheme in (6), if each cluster has no more than two terminals. Consider a 6-source, 4-relay,
25-destination example network. We can divide the 6 sources into three 2-node clusters and divide the 4
relays into two 2-node clusters. The C-NC scheme uses 5 time slots to complete the distribution of the
6 source messages. If the O-NC scheme is adopted, a total of 10 time slots would be required to deliver
the same amount of information. In Appendix A, we also present the individual decoding probabilities in
a special symmetric three-user MAC channel. Using these results, one can attain Q

[3]
A,b, Q

[2]
A,b, Q

[1]
A,b, and

Q
[0]
A,b for A = {a1, a2, a3}. Clustering strategies that have 3-node clusters can also be analyzed. In the

above network, one can partition the 6 sources into two clusters each with 3 nodes, while keeping two
2-node relay clusters. 4 time slots suffice for completing the message distribution. Comparison between
these clustering methods is presented in the following subsection.

Now, if we consider the special case that ma1 = ma2 = 1, the results in Proposition 1 become

Q
{a1,a2}
A,b = (β1η

2
1 + 1)e−β1η2 when ρa1Ωb,a1 = ρa2Ωb,a2 , Q{a1,a2}

A,b =
β2e−β1η2(e−(β2−β1)η1−e−(β2−β1)(η2−η1))

β2−β1
+

e−β1η1e−β2(η2−η1) when ρa1Ωb,a1 6= ρa2Ωb,a2 , Q{a1}
A,b = β2e−β1η1

β1η1+β2

(
1− e−(β1η2

1+β2η1)
)

, and finally Q
{a2}
A,b =

β1e−β2η1

β2η1+β1

(
1− e−(β2η2

1+β1η1)
)

. They are consistent with [33]. Hence all results presented in our paper can
be directly applied to Rayleigh fading environments.

C. Numerical Results
In this subsection, we use an example network with M = 6, K = 4, and N = 25 to demonstrate

the performance of our C-NC scheme. For presentation simplicity, the sources and cooperative relays are
considered to have the same power ρs = ρr = ρ, and the large-scale fading power gains are normalized
to Ωb,a = 1 for all transmitter-receiver pairs. We first consider the case with Nakagami shape (small-scale
fading) parameters msd = 1, msr = 3, and mrd = 2. The destination decoding proportion parameter σ = 85,
which means at least 85% or 22 of the 25 destinations are expected to successfully attain the 6 source
messages. For fair comparison, we require different schemes to have the same average transmission rate
R̄ bit/source/time slot.

There are multiple ways to partition the sources and relays. For instance, we can set µ = 3, κ = 2, and
S1 = {S1, S2}, S2 = {S3, S4}, S3 = {S5, S6}, R1 = {R1,R2}, R2 = {R3,R4}. The sources and relays
are divided into five 2-node clusters. We term the C-NC scheme with this clustering strategy “C-NC-1.”
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Fig. 2: (a) Error probability and (b) DMT in 6-source, 4-relay, 25-destination networks.

Fig. 2(a) illustrates the error performance comparison of the C-NC-1 scheme (using 5 time slots) with
the orthogonal direct transmission (O-DT) without relaying (using 6 time slots) and the O-NC scheme
(using 10 time slots), when R̄ is fixed at R̄ = 1/6. Clearly, both C-NC-1 and O-NC achieve much higher
diversity gain and smaller error probability than the O-DT scheme. Network-coded cooperation provides
protection to the source message distribution. Our C-NC-1 scheme has lower error probability than the
O-NC scheme due to its efficient usage of available channel through non-orthogonal transmission. The
performance advantage can become more significant if we allow the transmission data rate to scale with
SNR. For example, we also display the error performance when the multiplexing gain in (3) is r = 1

16
,

i.e., R̄ = 1
16

log(1 + ρ). The C-NC-1 scheme’s error probability is much smaller than the O-NC scheme’s
now, especially when SNR increases. A larger achievable diversity gain is observed.

We can also divide the 6 sources into two 3-node clusters, while keeping the relays as two 2-node
clusters. Four time slots are used to complete the transmission. This scheme is termed “C-NC-2” and its
error probability can be derived using the results presented in Proposition 1 and Appendix A. From Fig.
2(a), it is seen that such a clustering method does not provide performance improvement over C-NC-1,
for the considered rates R̄ = 1

6
and R̄ = 1

16
log(1+ρ), because of large inter-user interference. In addition,

we can even discard one relay. This reduces the maximally achievable diversity gain, but may demand a
smaller channel consumption. For instance, in such a 6-source 3-relay network, we treat the sources and
relays as three 3-node clusters, and 3 time slots are sufficient to finish the delivery of source messages.
This scheme is termed “C-NC-3.” We can see from Fig. 2(a) that it achieves lower error probability than
the C-NC-1 scheme for the scenario R̄ = 1

6
when SNR is small, and for r = 1

16
when ρ is not too large.

Therefore, discarding certain relays can even be advantageous.
Using the closed-form expressions of Perr, we can further apply (3) to derive the entire finite-SNR

DMT, to obtain a more complete description of the performances of the C-NC scheme. In Fig. 2(b),
we plot some results for the same 6-source 4-relay 25-destination network structure, but with a different
decoding proportion coefficient, σ = 100, and different fading characteristics, msd = 2, msr = 3, and
mrd = 2. All destinations are expected to fully recover all the six source messages. It is seen that for
the two chosen operating SNR ρ = 5 dB and ρ = 15 dB, the C-NC-1 scheme achieves strictly better
finite-SNR DMT than the O-NC scheme, which implies both higher channel usage efficiency and higher
communication reliability. The results shown in the figure provide a positive answer to the question raised
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in Section I: Combining non-orthogonal transmission with NC techniques is able to achieve performance
improvements over orthogonal transmission in more general network-coded cooperation networks with
multiple destinations, under Nakagami-m fading and finite SNR. In addition, comparing the two C-NC
schemes with different clustering strategies, one of them can be better for different operating r.

Clearly, for different system parameters (network structure, transmission rate, operating SNR and mul-
tiplexing gain, channel fading statistics, and communication quality requirement, etc.), choosing different
clustering strategies can lead to various performance. Properly partitioning the sources and relays is thus
of importance, especially when the large-scale fading between different nodes (i.e., Ωb,a) has diverse
properties. This can be directed by the error probability and DMT results presented in our paper. One can
simply enumerate all possible clustering approaches (including discarding a subset of relays) and compare
their performance to make the selection decision. Note that now the closed-form expressions of Perr and
d(r, ρ) can only be obtained for clustering solutions with limited cluster sizes. For more general cases,
we can consider resorting to the asymptotic performance analysis by letting ρ→∞.

IV. HIGH-SNR ASYMPTOTIC PERFORMANCE ANALYSIS

In this section, we present the achievable infinite-SNR DMT of our C-NC scheme. Clustering strategies
in certain special network structures are also discussed.

A. Achievable Infinite-SNR DMT
To help presentation, we first define some notations. Use M1, M2, · · · , Mµ to denote the ordered sizes

of the source clusters such that M1 ≥ M2 ≥ · · · ≥ Mµ (i.e., M1 is the size of the largest source cluster
and Mµ is that of the smallest). Similarly, use K1, K2, · · · , Kκ to denote the ordered sizes of the relay
clusters with K1 ≥ K2 ≥ · · · ≥ Kκ. Further, let M0 = K0 = 0, and for each value U ∈ {0, 1, · · · , K}, we
can find the integer κU such that

∑κU−1
k=0 Kk < U ≤

∑κU
k=0 Kk. Set K̃ [U ]

k = Kk for k ∈ {0, 1, · · · , κU −1},
and K̃

[U ]
κU = U −

∑κU−1
k=0 Kk. Finally, letting Ũ

[U ]
uv = U + 1 −

∑u
j=0Mj −

∑v
k=0 K̃

[U ]
k be a function of U

and non-negative integers u and v, define two sets regarding the integer two-tuple (u, v):

V [U ]
1 =

{
(u, v) : 0< Ũ [U ]

uv ≤Mu+1

}
and V [U ]

2 =
{

(u, v) : 0< Ũ [U ]
uv ≤K̃

[U ]
v+1

}
. (22)

For instance, consider a 6-source 4-relay example network with µ = 2, κ = 2, and M1 = 4, M2 = 2,
K1 = 3, K2 = 1. For U = 1, we have κ1 = 1 since

∑0
k=0Kk < U ≤

∑1
k=0Kk. Using K̃

[1]
0 = K0 = 0,

K̃
[1]
1 = U−K0 = 1, and expression Ũ [1]

uv = 2−
∑u

j=0Mj−
∑v

k=0 K̃
[1]
k , we obtain V [1]

1 = {(0, 0), (0, 1)} and
V [1]

2 = φ. For U = 4, we have κ4 = 2. Using K̃ [4]
0 = K0 = 0, K̃ [4]

1 = K1 = 3, K̃ [4]
2 = U −K1 −K0 = 1,

and Ũ
[4]
uv = 5 −

∑u
j=0Mj −

∑v
k=0 K̃

[4]
k , we have V [4]

1 = {(1, 0), (0, 1), (0, 2)} and V [4]
2 = {(1, 0)}. Using

these notations, the achievable infinite-SNR DMT, as defined in (4), of our C-NC scheme is summarized
in the following proposition.

Proposition 2: Applying the C-NC scheme in the considered M -source, K-relay, N -destination net-
work with source clusters S1, · · · , Sµ and relay clusters R1, · · · , Rκ, the achievable DMT

d∗(r∗) = min
U∈{0,1,··· ,K}

{
(K − U) d̂(r′) + (b(1− σ%)Nc+ 1) d̃(r′, U)

}
, (23)

where r′ = (µ+ κ)r∗ is the effective multiplexing gain for source message (i.e., R = r′ log2 ρ), and d̂(r′)
and d̃(r′, U) reflect respectively the diversity order at each relay and each destination:

d̂(r′) = msr min
{

(1− r′)+
,M1 (1−M1r

′)
+
}
, (24)

d̃(r′, U) = min

{
min

(u,v)∈V [U ]
1

{
d̃

[U ]
uv,1(r′)

}
, min

(u,v)∈V [U ]
2

{
d̃

[U ]
uv,2(r′)

}}
, (25)
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d̃
[U ]
uv,1(r′) = msd min

{
Ũ [U ]
uv

(
1− Ũ [U ]

uv r
′
)+

,Mu+1 (1−Mu+1r
′)

+

}
+

u∑
j=0

msdMj (1−Mjr
′)

+
+

v∑
k=0

mrdK̃
[U ]
k

(
1− K̃ [U ]

k r′
)+

, (26)

d̃
[U ]
uv,2(r′) = mrd min

{
Ũ [U ]
uv

(
1− Ũ [U ]

uv r
′
)+

, K̃
[U ]
v+1

(
1− K̃ [U ]

v+1r
′
)+
}

+
u∑
j=0

msdMj (1−Mjr
′)

+
+

v∑
k=0

mrdK̃
[U ]
k

(
1− K̃ [U ]

k r′
)+

. (27)

Proof: See Appendix B.
It can be clearly seen that, similar to Perr presented in Section III, the achievable DMT is also affected

by system parameters including network structure (M , K, N ), operating multiplexing gain (r∗), channel
fading statistics (msd, msr, mrd), communication quality requirement (σ), and the clustering strategy (µ, κ,
|S1|, · · · , |Sµ|, |R1|, · · · , |Rκ|). Proposition 2 provides the method of deriving the DMT, for each clustering
approach. Consider again the aforementioned example network with M = 6, K = 4, N = 25, σ = 85,
msd = 1, msr = 3, and mrd = 2. Let us set µ = κ = 2, and divide the sources into S1 = {S1, S2, S3, S4}
and S2 = {S5, S6}, and the relays into R1 = {R1} and R2 = {R2,R3,R4} (we term it “C-NC-4”).
Using M1 = 4, M2 = 2, K1 = 3, and K2 = 1, we have r′ = 4r∗, b(1 − σ%)Nc + 1 = 4, and
d̂(r′) = 3 min {(1− r′)+, 4(1− 4r′)+}.

For U = 0, we have κ0 = 0, K̃ [0]
0 = 0, and Ũ [0]

uv = 1−
∑u

j=0 Mj −
∑v

k=0 K̃
[0]
k . It is easy to see that the

sets V [0]
1 = {(0, 0)} and V [0]

2 = φ. In this case, d̃(r′, 0) = msd min
{
Ũ

[0]
00 (1− Ũ [0]

00 r
′)+,M1(1−M1r

′)+
}

=

min
{

(1 − r′)+, 4(1 − 4r′)+
}

. For U = 1, following earlier discussion, we have κ1 = 1, K̃ [1]
0 = 0,

K̃
[1]
1 = 1, Ũ [1]

uv = 2−
∑u

j=0Mj −
∑v

k=0 K̃
[1]
k , V [1]

1 = {(0, 0), (0, 1)}, and V [1]
2 = φ. It is straightforward to

show d̃(r′, 1) = min
{

2(1− 2r′)+, 4(1− 4r′)+
}

.
Similarly, we can also find d̃(r′, U) for U ∈ {2, 3, 4}. Applying (23) leads to d∗(r∗) = min{16 −

64r∗, 19 − 268r∗, 28 − 448r∗} for 0 ≤ r∗ ≤ 1
16

. This result is displayed in Fig. 3(a). We can compare it
with d∗(r∗) = 4(1− 6r∗)+ and d∗(r∗) = min{4(1− r∗)+, 24(1− 6r∗)+}, achieved respectively by O-DT
and non-orthogonal DT (NO-DT). For small r∗, our C-NC-4 scheme significantly increases achievable
diversity gain, due to the utilization of cooperative relays. Compared with d∗(r∗) = 16(1−10r∗)+, attained
by the O-NC scheme, allowing non-orthogonal transmission among terminals obtains better diversity gain,
for small values of r∗.

To achieve high diversity gain for a wider range of multiplexing gain, one can adopt other clustering
strategies. For example, we can choose to evenly partition the sources, i.e., |S1| = |S2| = 3, while
keeping |R1| = 1 and |R2| = 3 (termed “C-NC-5”). It strictly outperforms the C-NC-4 scheme, in
terms of DMT. Further, we can also set µ = κ = 1, which leads to the NO-NC scheme. Different
from the case in single-hop networks, requiring all terminals to non-orthogonally send messages does
not always result in better DMT than O-NC. In this example, the NO-NC scheme achieves d∗(r∗) =
min{16− 32r∗, 20− 200r∗, 24− 288r∗} for 0 ≤ r∗ ≤ 1

12
, and outperforms the O-NC scheme only when

0 < r∗ < 1
16

. In Fig. 3(b) we consider the same network structure but with different channel statistics,
msd = mrd = 2 and msr = 3, and decoding requirement, σ = 100 (corresponding to the case shown in
Fig. 2(b)). Now the NO-NC scheme is always worse than the O-NC scheme. In both figures, we can see
that if we divide the sources into three 2-node clusters and also divide the relays into two 2-relay clusters
(i.e., the C-NC-1 scheme), a strictly better performance than O-NC can be attained.

It should still be noted that d∗(r∗) is a high-SNR performance metric. If one clustering approach attains
a higher value of d∗(r∗) than another method, the error probability of the former can be guaranteed to
be smaller when the SNR ρ is sufficiently large. But for the low- and median- SNR regimes, it may
not be true. This can be seen from Fig. 2(a) and Fig. 3(a), by comparing the achievable Perr and d∗(r∗)
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Fig. 3: Achievable infinite-SNR DMT in 6-source, 4-relay, 25-destination networks.

of the C-NC-1 and C-NC-3 schemes for r = 1
16

. In addition, d∗(r∗) is related to only the number of
terminals in each cluster. A clustering strategy with R1 = {R1,R2}, R2 = {R3,R4} obtaines the same
infinite-SNR DMT as another strategy with R1 = {R1,R4}, R2 = {R2,R3}. But the actual system error
probabilities of these two methods can be different, even through they have the same high-SNR slopes. This
is true especially if the channels between terminals exhibit diverse fading characteristics. Therefore, DMT
provides a relatively coarse indicator for selecting clustering solutions. Properly deciding non-orthogonal
transmission among sources/relays according to system parameters is also important.

In what follows, we provide further discussions regarding Proposition 2, to gain more insights into the
performance of the C-NC scheme. To simplify notation we set z = b(1− σ%)Nc+ 1.

B. Maximally Achievable DMT
The maximally achievable diversity gain of the C-NC scheme can be readily calculated by setting r∗ = 0.

Following Proposition 2, it is seen that d̂(0) = msr, d̃
[U ]
uv,1(0) = msd(U + 1) +

∑v
k=0(mrd−msd)K̃

[U ]
k , and

d̃
[U ]
uv,2(0) = mrd(U + 1) +

∑u
j=0(msd −mrd)Mj . Clearly, if mrd ≤ msd:

d∗(0) = min
U∈{0,··· ,K}

{
(K − U)msr + z(Umrd +msd)

}
= zmsd + min{Kmsr, Kzmrd}. (28)

Otherwise, for the case mrd > msd, if K < M ,

d∗(0) = min
U∈{0,··· ,K}

{
(K − U)msr + z(U + 1)msd

}
= zmsd + min{Kmsr, Kzmsd}. (29)

Finally, if mrd > msd but K ≥M , we have

d∗(0)=min
{

min
U∈{0,··· ,M−1}

{
(K−U)msr+z(U+1)msd

}
, min
U∈{M,··· ,K}

{
(K−U)msr+z(Mmsd+(U+1−M)mrd

}}

=


zmsd+Kmsr if zmrd>zmsd≥msr

zMmsd+(K−M+1)msr if zmrd≥msr>zmsd.

zMmsd+(K−M+1)zmrd if msr>zmrd>zmsd

(30)

It is seen that d∗(0) is irrelevant to M1, · · · ,Mµ and K1, · · · , Kκ. This means that, if the transmission
data rate R̄ is fixed (i.e., r∗ = 0), any approach of partitioning the M sources and K relays would result
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in the same high-SNR error probability curve slope. This can be seen in Fig. 2(a) by comparing the Perr

results of the O-NC, C-NC-1, and C-NC-2 schemes for the case R̄ = 1
6
. In addition, d∗(r∗) becomes zero

when r∗ ≥ 1
(µ+κ)M1

. The maximally achievable multiplexing gain is affected by the terminal partition, due
to inter-user interference. The complete tradeoff between the two gains for different clustering strategies
can be very different.

To attain the highest diversity gain for each operating multiplexing gain r∗, one can enumerate all
clustering strategies to find the method that provides the largest d∗(r∗). For example, in the network
considered in Fig. 3(a), when r∗ = 1

15
, applying our C-NC scheme by dividing the six sources into µ = 2

identical clusters each with 3 nodes, and keeping all relays as a single 4-node cluster (termed “C-NC-6”)
outperforms all other approaches. But in the scenario considered in Fig. 3(b), C-NC-1 is the best scheme
for r∗ = 1

15
.

Moreover, we can even choose using only a subset of the available relays to assist the sources, to avoid
having to reserve channel resources (i.e., time slots) for all half-duplex relays. For instance, the C-NC-3
scheme neglects one relay and sets µ = 2, κ = 1, and |S1| = |S2| = |R1| = 3. It can lead to better
performance than other methods in both scenarios in Fig. 3, for some median values of r∗. Certainly, if
none of the available relays is chosen to help the sources, the best way of activating the sources is to
set µ = 1, i.e., the NO-DT scheme which achieves positive diversity gain when r∗ < 1

M
. Therefore, for

each possible multiplexing gain 0 ≤ r∗ ≤ 1
M

, we can try different numbers of relays and enumerate all
clustering strategies to find the highest achievable diversity gain, as summarized in the following corollary.
For the considered example network, the results are shown in Fig. 3 by the curves labelled “Optimal.”

Corollary 1: Define sets M = {(M1, · · · ,Mµ) : M1 ≥ · · · ≥ Mµ > 0,
∑µ

j=1Mj = M, 1 ≤ µ ≤ M}
and Kk = {(K1, · · · , Kκ) : K1 ≥ · · · ≥ Kκ > 0,

∑κ
j=1Kj = k, 1 ≤ κ ≤ k} for k ∈ {1, · · · , K}.

Let d∗K0
(r∗) = msd min{(1 − r∗)+,M(1 −Mr∗)+} be the DMT of the NO-DT scheme. The maximally

achievable infinite-SNR DMT in the considered network is

d∗max(r∗) = max
{
d∗K0

(r∗),max
M,K1

{d∗(r∗)},max
M,K2

{d∗(r∗)}, · · · , max
M,KK

{d∗(r∗)}
}
, (31)

for 0 ≤ r∗ ≤ 1
M

, and maxM,Kk{d∗(r∗)} denotes the maximization of d∗(r∗) calculated by (23) over all
M1, · · · ,Mµ, K1, · · · , Kκ in sets M and Kk.

In certain network structures, some clustering solutions can strictly outperform others. This is discussed
in the following subsection.

C. Clustering Strategies in Special Network Structures
Consider a special network structure in which M = µΘ holds for some integer Θ. One can evenly

divide the sources into µ clusters with the same size Θ. Now d̂(r′) in (24) becomes

d̂(r′) = msr min
{

(1− r′)+,Θ(1−Θr′)+
}
. (32)

For each choice of (u, v) ∈ V [U ]
1 , the value d̃[U ]

uv,1(r′) in (26) becomes

d̃
[U ]
uv,1(r′) =msdmin

{
Ũ [U ]
uv

(
1−Ũ [U ]

uv r
′
)+

,Θ(1−Θr′)+
}

+umsdΘ(1−Θr′)++
v∑
k=0

mrdK̃
[U ]
k

(
1−K̃ [U ]

k r′
)+

,

and for each choice of (u, v) ∈ V [U ]
2 , the value d̃[U ]

uv,2(r′) in (27) becomes

d̃
[U ]
uv,2(r′) =mrd min

{
Ũ [U ]
uv

(
1− Ũ [U ]

uv r
′
)+

, K̃
[U ]
v+1

(
1− K̃ [U ]

v+1r
′
)+
}

+ umsdΘ(1−Θr′)+

+
v∑
k=0

mrdK̃
[U ]
k

(
1− K̃ [U ]

k r′
)+

.

Substituting these equations into (23) leads to the achievable DMT.
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With the same value of µ, instead of evenly dividing the sources, one can also choose other clustering
solutions, which would cause M1 > Θ. Following the proof procedure in Appendix B, it can be shown
that when 0 < r∗ < 1

(µ+κ)M1
, their achievable DMT would always be smaller than that attained by the

above approach. For example, in the scenarios shown in Fig. 3, the C-NC-5 scheme (with M1 = 3 and
M2 = 3) performs strictly better than the C-NC-4 scheme (with M1 = 4 and M2 = 2). This result is
summarized in the following corollary.

Corollary 2: In networks with M = µΘ, dividing the sources into equal-size Θ-node clusters achieves
better infinite-SNR DMT than other source partition methods with the same µ.

Now, consider the situation that the number of relays K can be written as K = κΘ for some integer Θ.
We can also evenly partition the relays into κ Θ-node clusters. However, this approach may not be able
to outperform uneven clustering strategies. For instance, in a network with M = 6, K = 10, N = 25,
σ = 100, msd = msr = mrd = 2, given M1 = M2 = 3 and κ = 2, one may set K1 = 9 and K2 = 1,
or set K1 = K2 = 5. Following Proposition 2, when 9

188
≤ r∗ ≤ 1

16
, the former strategy achieves higher

diversity.
Finally, for networks where both M = µΘ and K = κΘ apply, we can set the sources to µ clusters and

relays to κ clusters, each with Θ nodes. For example, in the aforementioned 6-source 4-relay network,
one can choose µ = 3, κ = 2, Θ = 2 (i.e., C-NC-1), or µ = 6, κ = 4, Θ = 1 (i.e., O-NC). When only
K = 3 relays are considered, we can choose µ = 2, κ = 1, Θ = 3 (i.e., C-NC-3). Although in general
these approaches do not necessarily lead to the maximal DMT presented in Corollary 1 for all operating
multiplexing gain, the expressions of their DMT performance are relatively simple. Specifically, for each
U ∈ {0, 1, · · · , K}, we have κU =

⌈
U
Θ

⌉
. Let Θ̃ = U − (κU − 1)Θ. When mrd ≤ msd, it is easy to show

that

d̃(r′, U) = (κU − 1)mrdΘ(1−Θr′)+ +mrdΘ̃(1− Θ̃r′)+ +msd min{(1− r′)+,Θ(1−Θr′)+}.

Otherwise, when mrd > msd, define τU =
⌈
U+1

Θ

⌉
and Θ̂ = U + 1− (τU − 1)Θ. Then

d̃(r′, U) = (τU − 1)msdΘ(1−Θr′)+ +msd min{Θ̂(1− Θ̂r′)+,Θ(1−Θr′)+},

if τU ≤ µ (i.e., U + 1 ≤M ). If τU > µ, we have

d̃(r′, U) = µmsdΘ(1−Θr′)++(τU−µ−1)mrdΘ(1−Θr′)++mrd min{Θ̂(1−Θ̂r′)+,Θ(1−Θr′)+}.

Substituting these equations into (23) leads to the achievable DMT.
When both M

µ1
= K

κ1
= Θ1 and M

µ2
= K

κ2
= Θ2 can apply, for integers Θ1 > Θ2, following the proof

procedure in Appendix B, it can be shown that dividing sources and relays into (µ1 +κ1) Θ1-node clusters
achieves better DMT performance than that with (µ2 + κ2) Θ2-node clusters. This means, partitioning
the terminals into larger-size clusters can produce better performance, in terms of infinite-SNR DMT. For
example, in a network with M = 4 and K = 4, setting µ = κ = 1 and |S1| = |R1| = 4 (i.e., the NO-NC
scheme) attains higher DMT than setting µ = κ = 2 and |S1| = |S2| = |R1| = |R2| = 2. They both
strictly outperform the case with µ = κ = 4 and |Si| = |Ri| = 1 for all i ∈ {1, 2, 3, 4}, which is the
O-NC scheme. This also explains the observation that the DMT curves of C-NC-1 are strictly higher than
those of O-NC in Fig. 3. We summarize such a result as follows.

Corollary 3: In networks with M = µΘ and K = κΘ (Θ > 1), the C-NC scheme that allows Θ nodes
to transmit non-orthogonally achieves higher infinite-SNR DMT than the O-NC scheme.

All the above results exhibit that properly permitting non-orthogonal transmission in network-coded
cooperation networks has clear advantages over demanding only orthogonal transmissions.

V. CONCLUSION

We investigate the advantages of combining non-orthogonal transmission with network coding tech-
niques in wireless cooperative networks. A general form of multi-user relay networks is considered, in
which several relays are used to assist multiple sources to distribute messages to a sufficient proportion
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of ambient destinations, under Nakagami-m fading. We apply an efficient C-NC relaying scheme that, in
addition to employing a class of maximum-diversity-achieving finite-field network codes in the relays,
divides sources and relays into clusters such that multiple terminals can share the same channel resource.
We have presented the error probabilities and finite-SNR DMT of the C-NC scheme with cluster sizes
bounded by three, and also the infinite-SNR DMT for general situations. Our results have shown that
permitting proper non-orthogonal transmission can provide notable performance improvement over the
conventional approach that orthogonalizes all terminals. Such a design may potentially be applied in many
other types of cooperation networks with different network coding solutions and fading characteristics.

APPENDIX

A. Individual Decoding Probabilities in a 3-user MAC Channel
Denote Hi = ρai |hb,ai |2 ∼ Gamma(mi, βi), for i ∈ {1, 2, 3}. In what follows, we focus on the case

with mi = m and βi = mi
Ωb,aiρai

= β, ∀i. The derivations of the individual decoding probabilities follow
the similar procedure in the 2-user case. The sample space of three Gamma-distributed random variables
H1, H2, and H3 are partitioned into non-overlapping sub-regions according to the decoding events defined
in (13) and (14). The probability that a random sample locates in each sub-region A can be attained by
taking integrals of the following form:

P(A) =

∫ χ32

χ31

(∫ χ22

χ21

(∫ χ12

χ11

fH1(x1)dx1

)
fH2(x2)dx2

)
fH3(x3)dx3, (33)

where χi1 and χi2 represent the integral boundaries of Hi for i ∈ {1, 2, 3}.
Consider first the case that b is capable of decoding all three transmitters. According to (13) and (14),

this requires: H1 > η1, H2 > η1, H3 > η1, H1 +H2 > η2, H1 +H3 > η2, H2 +H3 > η2, H1 +H2 +H3 > η3,
where ηs = 2sR − 1. These events can be proven to correspond to six non-overlapping sub-regions in the
three-dimensional sample space. Hence we can write

Q
{a1,a2,a3}
A,b = P{A1}+ P{A2}+ P{A3}+ P{A4}+ P{A5}+ P{A6}. (34)

The six-tuple [(χ11, χ12), (χ21, χ22), (χ31, χ33)] for P{A1}-P{A6} can be respectively expressed as [(η3−
x2 − x3,∞), (η2 − x3, η3 − η2), (η1, η2 − η1)], [(η2 − x3,∞), (η3 − η2,∞), (η1, η2 − η1)], [(η3 − x2 −
x3,∞), (η1, η3 − η1 − x3), (η2 − η1, η3 − η2)], [(η1,∞), (η3 − η1 − x3,∞), (η2 − η1, η3 − η2)], [(η2 −
x3,∞), (η1, η2 − η1), (η3 − η2,∞)], and [(η1,∞), (η2 − η1,∞), (η3 − η2,∞)].
P{A1}-P{A6} can be derived with closed-form expressions by completing the integrals according to

(33). When β1 = β2 = β3 = β, the decoding probability Q{a1,a2,a3}
A,b is

Q
{a1,a2,a3}
A,b =

m−1∑
i=0

i∑
j=0

j∑
l=0

(−1)i−j+lβ2m+ie−βη3ηj−l3

l!(i− j)!(j − l)!(m+ i− j)(m− 1)!(m− 1)!

·

(
η2m+i+l−j

1 (η2m+2i−2j−ηm+l) ηm+l

m+ l
+

m+i−j∑
q=0

(−1)qηm+l+q
1 ηm+i−j−q

2 ηm+l+qη2m+i−j+l

q!(m+i−j−q)!(m+l+q)/(m+i−j)!

)

+
m−1∑
i=0

i∑
j=0

2(−1)jβm+iηm+j
1 ηi−j2 ηm+je

−βη2

j!(i− j)!(m− 1)!(m+ j)
·
(
1− F (η3 − η2;m,β)

)
+

m−1∑
i=0

i∑
j=0

(−1)jβm+iηm+j
1 (η2m+2j − ηm+j)(η3 − η1)i−je−β(η3−η1)

j!(i− j)!(m− 1)!(m+ j)

(
1− F (η1;m,β)

)
+
(
1− F (η1;m,β)

)(
1− F (η2 − η1;m,β)

)(
1− F (η3 − η2;m,β)

)
.

The event that b can decode a1 and a2 but not a3 is guaranteed as long as the following conditions are
satisfied: H1 > η1(1 + H3), H2 > η1(1 + H3), H1 + H2 > η2(1 + H3), H3 < η1. Comparing these with
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the conditions for calculating Q{a1,a2}
A,b in the two-user MAC channel in (20), we can see that Q{a1,a2}

A,b can
in fact be derived using

Q
{a1,a2}
A,b =

∫ η1

0

P̃12|x3fH3(x3)dx3, (35)

where P̃12|x3 denotes the probability defined in (20) but replacing η1 and η2 with η1(1+x3) and η2(1+x3)
respectively. When β1 = β2 = β3 = β, solving the integral provides us with

Q
{a1,a2}
A,b =

m−1∑
i=0

i∑
j=0

m+i∑
l=0

(m+ i)!(m+ l − 1)!βm+i−lηm+j
1 ηi−j2 ηm+je

−βη2F (η1;m+ l, β(1 + η2))

(−1)jj!(i− j)!l!(m+ i− l)!(m− 1)!(m− 1)!(m+ j)(η2m+2l + 1)

+
m−1∑
i=0

m−1∑
j=0

i+j∑
l=0

(i+ j)!(m+ l − 1)!βi+j−l(η2 − η1)iηj1e
−βη2F (η1;m+ l, β(1 + η2))

i!j!l!(i+ j − l)!(m− 1)!(η2m+2l + 1)
.

By symmetry, Q{a1,a3}
A,b and Q{a2,a3}

A,b have the same form as the above expression.
Furthermore, when H1

1+H2+H3
> η1, H2

1+H3
< η1, H3

1+H2
< η1, and H2 + H3 < η2, the receiver b can

decode only a1. The corresponding sample space can be shown to include two non-overlapping sub-
regions, denoted by A7 and A8. Therefore, we have Q

{a1}
A,b = P{A7} + P{A8}, in which P{A7} and

P{A8} can be derived by calculating the integrals in (33) with [(χ11, χ12), (χ21, χ22), (χ31, χ33)] being
[(η1(1 + x2 + x3),∞), (0, η1(1 + x3)), (0, η1)] and [(η1(1 + x2 + x3),∞), (x3

η1
− 1, η2 − x3), (η1, η2 − η1)].

When mi = m and βi = β, ∀i ∈ {1, 2, 3}, we have

Q
{a1}
A,b =

m−1∑
i=0

i∑
j=0

j∑
l=0

βlηi1e
−βη1(m+ i− j − 1)!(m+ j − l − 1)!F (η1;m+ j − l, β(η1 + 1))

l!(j − l)!(i− j)!(m− 1)!(m− 1)!(η1 + 1)2m+i−l

−
m−1∑
i=0

i∑
j=0

m+i−j−1∑
q=0

q+j∑
l=0

(q + j)!(m+ i− j − 1)!(m+ q + j − l − 1)!βlηq+i1 e−βη2

j!l!(q + j − l)!(i− j)!q!(m− 1)!(m− 1)!(η1 + 1)3m+i+q+j−2l

·F (η1;m+q+j−l, β(η2 + 1)) +
m−1∑
i=0

i∑
j=0

m+i−j−1∑
q=0

(m+ i− j − 1)!βm+j+qηi1
(i−j)!(m−1)!(m−1)!(1+ηm+i−j−q)

·

(
j∑
l=0

q∑
s=0

(m+l+s−1)!
(
F (η2−η1;m+l+s, β(η2+1)

η1
)− F (η1;m+l+s, β(η2+1)

η1
)
)

(−1)q−sl!(j − l)!s!(q − s)!e−βηs1(β(2 + η1 + 1
η1

))m+l+s

−
j∑
l=0

q∑
s=0

(−1)se−βη3ηm+l+s
1 ηq−s2 ηm+l+s

l!(j − l)!s!(q − s)!(m+ l + s)

)
.

Again, due to symmetry, Q{a2}
A,b and Q{a3}

A,b have the same form as the above equation.
For the more general cases where β1 = β2 = β3 does not hold, the derivation of these decoding

probabilities can follow the same procedure. We can respectively consider β1 = β2 6= β3 and β1 6= β2 6= β3

to calculate the above integrals. We omit the results due to page length limit.

B. Proof of Proposition 2
We start our proof by finding the achievable DMT in a MAC channel formed by a cluster of transmitters
A = {a1, · · · , a|A|} and a receiver b. Let the channel power gain between a ∈ A and b follow Gamma
distribution with integer shape parameter m and rate parameter m

Ωb,a
. Consider that all transmitters send

messages with the same transmitter-side SNR ρ. Following Section III-B, the probability that b recovers
only the first s (s ∈ {0, 1, · · · , |A|−1}) transmit messages is Pr

{
E1,G, E2,Ḡ|G = {a1, · · · , as}

}
. It is upper-

bounded by Pr
{
E2,Ḡ|G

}
, which is further upper-bounded by Pr{log2(1+

∑
a∈Ḡ ρ|hb,a|2) < (|A|−s)R} =



18

Pr{Has+1 + Has+2 + · · · + Ha|A| < 2(|A|−s)R − 1}, with Hai = ρ|hb,ai |2 ∼ Gamma(m, m
ρΩb,a

). Since

the error probability upper bound Pr{
∑|A|

i=s+1Hai < 2(|A|−s)R − 1} is bounded between the associated
probabilities when all Hai have the same rate parameters m

ρmaxa{Ωb,a}
and m

ρmina{Ωb,a}
, its diversity order

equals that when all channels have a same value of Ωb,a. Now let Ωb,a = Ω, ∀a. The sum of n i.i.d.
Gamma distributed random variables with shape parameter α and rate parameter β is a Gamma distributed
random variable with shape parameter nα and rate parameter β. Hence the upper bound can be written
as F (2(|A|−s)R − 1; (|A| − s)m, m

ρΩ
). Let R = r′ log2 ρ for ρ → ∞. Using the expression of F (x;α, β),

Q
[s]
A,b is upper-bounded by

(|A|
s

)∑∞
i=(|A|−s)m

(m
Ω
ρ(|A|−s)r′−1)i

i!
e−

m
Ω
ρ(|A|−s)r′−1

. When (|A| − s)r′ − 1 < 0, it is

easy to see e−
m
Ω
ρ(|A|−s)r′−1 → 1 and the upper-bound is dominated by (m

Ω
ρ(|A|−s)r′−1)(|A|−s)m for ρ→∞.

Therefore, asymptotically we can express Q[s]
A,b as

Q
[s]
A,b

.
= ρ−m(|A|−s)(1−(|A|−s)r′)+

.

Since mini∈{s̄,s̄+1,··· ,|A|}{i(1 − ir′)+} = min{s̄(1 − s̄r′)+, |A|(1 − |A|r′)+} [29], the probability that b
cannot decode at least s̄ ∈ {1, 2, · · · , |A|} messages is

∑|A|
i=s̄Q

[|A|−i]
A,b

.
= ρ−d(r′) with

d(r′) = min{ms̄(1− s̄r′)+,m|A|(1− |A|r′)+}. (36)

The probability that b recovers all the |A| transmitted messages can be found by 1−
∑|A|

i=1 Q
[|A|−i]
A,b .

We extend the system to two clusters of transmitters A1 and A2, intending to send their messages to a
common receiver b. All transmitters within the same cluster are activated simultaneously, but the two clus-
ters are orthogonalized. Without loss of generality, assume |A1| ≥ |A2|. We aim to find the error probability
that b cannot decode at least s̄ messages from the |A1|+|A2| transmitters. It is the probability that b cannot
decode at least s̄1 ∈ {max{0, s̄−|A2|}, · · · ,min{s̄, |A1|}} messages from A1, and at least s̄2 = s̄−s̄1 mes-
sages from A2. This probability can be written as

∑min{s̄,|A1|}
s̄1=max{0,s̄−|A2|}

(∑|A1|
i=s̄1

Q
[|A1|−i]
A1,b

)(∑|A2|
j=s̄2

Q
[|A2|−j]
A2,b

)
.

When ρ → ∞, it is dominated by the probability of the case s̄1 = min{s̄, |A1|}. Therefore, it can
be expressed as ρ−d(r′), where d(r′) = min

{
ms̄(1 − s̄r′)+,m|A1|(1 − |A1|r′)+

}
if s̄ ≤ |A1|, and

d(r′) = m|A1|(1−|A1|r′)+ + min
{
mŝ(1− ŝr′)+,m|A2|(1−|A2|r′)+

}
otherwise with ŝ = s̄−|A1|. The

probability that errors come first from the larger cluster dominates.
In addition, we consider the case |A1| + |A2| = A for a fixed integer A, and the size of cluster A1

can be chosen between dA
2
e and A. For each value of |A1|, when ρ → ∞ the probability that b cannot

decode at least s̄ messages can be written as ρ−d(|A1|,r′) where the diversity order d(|A1|, r′) is a function
of both |A1| and r′. It can be shown that when 0 ≤ r′ ≤ 1

|A1| , we have d(A, r′) ≤ d(|A1|, r′) ≤ d(dA
2
e, r′).

This means, unevenly clustering the available transmitters leads to smaller achievable diversity order than
evenly dividing them for 0 ≤ r′ ≤ 1

|A1| . The worst case is that all transmitters are set to the same cluster
and interfere each other.

The above results can be extended further to systems with more clusters. Specifically, consider that
there are C orthogonalized transmitter clusters A1, · · · , AC with |A1| ≥ · · · ≥ |AC |. It can be shown
that when the SNR is sufficiently high, the probability that the common receiver b cannot decode at least
s̄ messages is dominated by the probability that all errors are from the largest clusters. To derive the
achievable DMT, we let |A0| = 0 and find the integer τ such that

∑τ−1
i=0 |Ai| < s̄ ≤

∑τ
i=0 |Ai|. The

asymptotic behavior of the error probability can be expressed as ρ−d(r′), where d(r′) =
∑τ−1

i=0 m|Ai|(1−
|Ai|r′)+ +min{mŝ(1− ŝr′)+,m|Aτ |(1−|Aτ |r′)+} and ŝ = s̄−

∑τ−1
i=0 |Ai|. In addition, if the total number

of transmitters is fixed, evenly partitioning the transmitters results in higher achievable diversity order than
any uneven clustering strategy.

Now, we consider another situation with two sets of transmitter clusters C1 = {A1, · · · , AC1}, and C2 =
{B1, · · · , BC2}, intending to send information to a common destination b. All clusters are orthogonalized,
but the nodes in each cluster are activated non-orthogonally. Use mi and Ωi to denote Nakagami fading
parameters of the channels between clusters in Ci and b. Again, we are interested in the probability that b
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cannot decode at least a certain number of s̄ ∈ {1, 2, · · · ,
∑
A∈C1 |A|+

∑
B∈C2 |B|} transmitted messages.

Without loss of generality, assume |A1| ≥ |A2| · · · | ≥ |AC1| and |B1| ≥ |B2| · · · ≥ |BC2|. Following the
above discussion, we know that within each set of transmitter clusters, the probability that b cannot decode
at least some number of messages is dominated by the probability that all errors come from the largest
clusters. Therefore, consider an integer v ∈ {0, 1, · · · , C2}. If all the messages from the first v clusters in
set C2 are decoded with errors, then b should be unable to decode at least s̄−

∑v
k=0 |Bk| messages from

clusters A1, · · · , AC1 . Find the integer u such that 0 < s̄ −
∑u

j=0 |Aj| −
∑v

k=0 |Bk| ≤ |Au+1|. Define
Ũuv = s̄−

∑u
j=0 |Aj| −

∑v
k=0 |Bk|. When ρ→∞, the probability of seeing this event can be expressed

as ρ−d
[s̄]
uv,1(r′), where

d
[s̄]
uv,1(r′) =

v∑
k=0

m2|Bk|(1− |Bk|r′)+ +
u∑
i=0

m1|Ai|(1− |Ai|r′)+

+ min{m1Ũ
[s̄]
uv(1− Ũ [s̄]

uvr
′)+,m1|Au+1|(1− |Au+1|r′)+}. (37)

Similarly, consider integer u ∈ {0, 1, · · · , C1}. If all the messages from the first u clusters in set C1 are
decoded with errors, then b should be unable to decode at least s̄−

∑u
k=0 |Ak| messages from clusters B1,

· · · , BC2 . Therefore, find the integer v such that 0 < s̄−
∑u

j=0 |Aj|−
∑v

k=0 |Bk| ≤ |Bv+1|. The probability

of seeing this event, when ρ→∞, is ρ−d
[s̄]
uv,2(r′), where

d
[s̄]
uv,2(r′) =

u∑
i=0

m1|Ai|(1− |Ai|r′)+ +
v∑
k=0

m2|Bk|(1− |Bk|r′)+

+ min{m2Ũ
[s̄]
uv(1− Ũ [s̄]

uvr
′)+,m2|Bv+1|(1− |Bv+1|r′)+}. (38)

In the high-SNR region, the overall error probability is dominated by that with the smallest diversity
order. This means, we can define two sets

V1 = {(u, v) : 0 < Ũuv ≤ |Au+1|} and V2 = {(u, v) : 0 < Ũuv ≤ |Bv+1|}. (39)

The probability that b cannot decode at least s̄ messages is ρ−d̃(r′) with diversity order

d̃(r′) = min
{

min
(u,v)∈V1

{duv,1(r′)} , min
(u,v)∈V2

{duv,2(r′)}
}
. (40)

Armed with the above results, we can start proving Proposition 2. We aim to find the dominant factor
in the system error probability Perr in (6). First, focus on Pr(πππ) for a particular relay decoding status πππ.
Let ||πππ|| denote the norm of vector πππ. The event πππ means that after the sources complete broadcasting
their messages, a total of ||πππ|| relays can obtain the source message set I and thus can participate in
the following message forwarding process. In other words, each of the remaining K − ||πππ|| relays has at
least one source message that is not successfully recovered. For each relay, the probability that it cannot
decode at least one message from S1, · · · , Sµ, i.e., Pr

{
π

[k]
i = 0

}
, can be expressed as Pr

{
π

[k]
i = 0

}
.
=

ρ−min{msr(1−r′)+,msrM1(1−M1r′)+}, with r′ = (µ + κ)r∗. Substituting Pr
{
π

[k]
i = 0

}
and Pr

{
π

[k]
i = 1

}
=

1− Pr
{
π

[k]
i = 0

}
into (7) gives

Pr{πππ} .= ρ−(K−||πππ||)d̂(r), (41)

in which d̂(r) = min{msr(1 − r′)+,msrM1(1 −M1r
′)+}. Therefore, different realizations of πππ with the

same value of ||πππ|| (asymptotically) have the same occurring probability. Let U = ||πππ||. Then for each
value of U ∈ {0, 1, · · · , K}, we aim to find the realization of πππ that causes the largest value of Perr|πππ.
Such a Perr|πππ would dominate the decoding error probability given U .

Assume that a particular relay decoding status πππ occurs and ||πππ|| = U . For each destination Dn, the
probability Pr{τn|πππ = 0} is the probability that Dn cannot decode at least U + 1 messages sent from
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the M sources and U activated relays. Following the above discussion, the worst case occurs when all
the activated relays come from the largest relay clusters, i.e., all the relays in the first τU − 1 relay
clusters and (U −

∑τU−1
k=0 Kk) relays in the τU th largest relay cluster are activated to assist in the source

message transmissions. This means, Dn sees two sets of transmitter clusters. The first set is the source
clusters, with sizes M1, · · · , Mµ respectively. The second set is the activated relay set, with sizes K̃1,
· · · , K̃τU , respectively. The probability Pr{τn|πππ = 0} can thus be calculated by the above process with
C1 = {A1, · · · ,Aµ} with |Ai| = Mi for i ∈ {1, · · · , µ}, C2 = {B1, · · · ,BτU} with |Bk| = K̃k for
k ∈ {1, · · · , τU}, r′ = (µ+κ)r∗, and s̄ = U +1. The system error probability is defined as the probability
that less than dN · σ%e destinations can recover I. Substituting Pr{τn|πππ = 0} and Pr{τn|πππ = 1} =
1 − Pr{τn|πππ = 0} into equation (10) leads to the worst case conditional error probability, and the term
(b(1 − σ%)Nc + 1)d̃(r′, U) shown in Proposition 2. Therefore, for each value of U ∈ {0, · · · , K}, the
worst case error probability has diversity order (K − U)d̂(r′) + (b(1− σ%)Nc+ 1)d̃(r′, U). Finally, for
all possible values of U , the largest error probability value (with the smallest diversity order) dominates
the overall error probability and leads to the result in Proposition 2. The proof is complete.
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