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ABSTRACT 

Hydraulic fracturing (HF) is a process of fluid injection into the well in order to create 

tensile stresses in the rock to overcome the tensile strength of the formation.  In this 

study, the development and application of a fuzzy model to predict the efficiency of 

hydraulic fracturing is presented with application in a coal mine as an unconventional 

reservoir. The most important parameters affecting the HF process of a coal seam 

are: dip, thickness, seam uniformity, roof and floor conditions, reserve of coal seam 

and coal strength. In the developed model, the efficiency of hydraulic fracturing of 

coal seams is calculated as a dimensionless numerical index within the range 0-100. 

The suggested numerical scale categorizes the efficiency of HF of seams to very 

low, low, medium, high and very high, each one being specified by a numerical range 

as a subset of the above range (0-100). HF in the coal bed in PARVADEH 4 Tabas 

mine in Iran is investigated as a case study. The results show that the developed 

model can be used to identify seams that have high potential for HF  

Moreover, a three-phase hydro-mechanical model is developed for simulating 

hydraulic fracturing. The three phases include: porous solid, fracturing fluid and 

reservoir fluid. Two numerical simulators (ANSYS Fluent for fluid flow and ANSYS 

Mechanical for geomechanical analysis) are coupled together to model multiphase 

fluid flow in hydraulically fractured rock undergoing deformations, ranging from linear 

elastic to large, nonlinear inelastic deformations.  The two solvers are coupled, using 

system coupling in ANSYS Workbench. The coupled problem of fluid flow and 

fracture propagation is solved numerically. The fluid flow model involves solving the 

Navier-Stokes equations using the finite volume method. The flow model is coupled 



 
 

 
 

with the geomechanics model to simulate the interaction between fluid flow inside 

the fracture with rock deformations. For any time step, the pore pressures from the 

flow model are used as input for the geomechanics model for the determination of 

stresses, strains, and displacements. The strains derived from the gomechanics 

model are in turn used to calculate changes to the reservoir parameters that are fed 

as input to the flow model. This iterative process continues until both (fluid and solid) 

models are converged. The laboratory-scale study of hydraulic fracturing in the 

Second White Specks (SWS) shale was simulated using the developed model. The 

numerical and experimental results were compared. Comprison of the results shows 

that the numerical model can predict the behaviour of the shale under hydraulic 

fracturing with a good accuracy.  
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Chapter 1. Introduction 

 
1.1 HYDRAULIC FRACTURING 

The technology of hydraulic fracturing has been widely used for reservoir 

stimulation, especially for unconventional reservoirs (Economides and Nolte, 

2000). The difference between a conventional and unconventional reservoir is 

migration. The unconventional reservoir has hydrocarbons that were formed within 

the rock and never migrated. The conventional reservoir is a porous rock formation 

that contains hydrocarbons that have migrated from a source rock (Beaumont and 

Foster, 1988). In general, the process of hydraulic fracturing can be defined as 

initiation and propagation of fractures due to the pressurization of fluid flow within 

existing fractures. Optimal design of hydraulic fracturing is a fundamental problem 

in Civil, Mining and Petroleum Engineering and plays a critical role in many 

applications within the industry. Hydraulic fracturing is a coupled process and it 

means a change in fluid pressure or fluid mass produce a change in the volume of 

the porous medium and vice versa. Hydraulic fracturing involves the interaction 

between four different phenomena: 

(1) Porous medium deformation;                   

(2) Pore fluid flow; 

(3) Fracturing fluid flow; and                            

(4) Fracture propagation (Economides and Nolte, 2000).  

Coupled rock deformation and fluid flow in fractured porous media is important for 

reservoir simulation because rock deformation exerts an important influence on 

reservoir production (Economides and Nolte, 2000).  
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The equations and constitutive relations governing these coupled processes are 

the continuity equation and the Navier-Stokes equation for porous medium, 

Darcy’s law for fracturing fluid flow and the theory of linear elasticity for rock 

deformation. The focus of this study is the effect of fluid flow and formation 

properties on hydraulic fracturing process (Economides and Nolte, 2000).  

The interaction between fluid and solid processes, commonly known as coupling, 

arises in geological media due to the presence of deformable, fluid-filled pores and 

discontinuities. Depending on the type of processes involved, the hydromechanical 

(HM) response of a rock mass can be fully reversible if associated with elastic 

deformations only, or irreversible if associated with processes such as yielding, 

fracturing, and frictional slipping along discontinuities. Advances in theoretical and 

numerical modelling in coupled HM processes have been driven by several 

geomechanical applications, including (Yun and Hui, 2011): 

 Rock engineering: e.g., landslides and slope instabilities, dam foundation 

failures, and stability of underground and surface excavations; 

 Nuclear waste management: e.g., design and performance assessment of 

underground nuclear waste repositories; 

 Oil and gas exploration and production: e.g., borehole stability, reservoir 

compaction and subsidence, and hydraulic fracturing and stimulation; 

 Geothermal energy extraction: e.g., enhanced geothermal systems; 

 Mining: e.g., coal mining and coal methane extraction; and 
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 Storage of fluid underground: e.g., carbon sequestration, geological storage 

of natural gas, and liquid waste disposal (Mahabadi, 2012). 

The interaction between fluid and structure occurs in a system where flow of a fluid 

causes a solid structure to deform which, in turn, changes the boundary condition 

of the fluid system. This can also happen the other way around where the structure 

makes changes in the fluid flow properties. This kind of interaction occurs in many 

natural phenomena and man-made engineering systems, hence it becomes a 

crucial consideration in the design and analysis of different engineering systems 

(Yun and Hui, 2011). 

Hydraulic fracturing is the process of creating a fracture in a formation by means 

of internal fluid pressure. The fracturing process may happen naturally in the 

earth’s crust, such as with joints, dikes and veins (Pollard, 1987; Pollard and Aydin, 

1988; Lacazette and Engelder, 1992) or it can be man-made by pumping a 

hydraulic fracturing fluid with a high rate and pressure in a borehole. Hydraulic 

fracturing creates and grows fractures and the stimulation effect is to increase the 

surface area of the wellbore and to change flow geometry around the well, as a 

result of which productivity of the well increases. The first hydraulic fracturing job 

was done during the 1930’s when wellbore acidizing was done with the help of 

pressurized fluid and as a result the well production was enhanced (Gidley et al. 

1989). 

Hydraulic fracturing is a common technique not just for enhancing hydrocarbon 

production but also for geothermal energy extraction (Sasaki, 1998; Berumen et 
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al., 2000). It is widely used for other purposes like hazardous solid waste disposal 

(Hunt et al., 1994; Hainey et al. 1999), measurement of in-situ stresses (Hayashi 

et al., 1997; Raaen et al., 2001), fault reactivation in mining (Board et al. 1992) and 

remediation of soil and ground water aquifers (Murdoch and Slack 2002).  

At the present time, hydraulic fracturing is extensively used to improve the 

productivity of oil and gas wells. Of the production wells drilled in North America 

since the 1950s, about 70% of gas wells and 50% of oil wells have been 

hydraulically fractured (Valko and Economides, 1995).  

Most models developed for hydraulic fracturing in unconsolidated sands are based 

on linear elastic fracture mechanics (LEFM), tensile fracture (Mode I fracture), 

lubrication theory for fluid flow through fracture, and Carter’s leakoff model for flow 

through porous medium (Adachi et al. 2007; Daneshy, 1973; Perkins and Kern, 

1961; Geertsma and de Klerk, 1969).  

The geometry of the induced fracture is dominated by the rock’s mechanical 

properties, in-situ stresses, the rheological properties of the fracturing fluid and 

local heterogeneities such as natural fractures and weak bedding planes. In the 

case of an isotropic and homogeneous medium, the in-situ stress state is the 

controlling factor on fracture development (Weijers, 1995).  

This study presents the development and application of a fuzzy model to predict 

the efficiency of hydraulic fracturing of a coal seam and a finite element model for 

production of the behaviour of a shale reservoir. A coal seam is a dark brown or 

black banded deposit of coal that is visible within layers of rock. These seams are 

https://energyeducation.ca/encyclopedia/Coal
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located underground and can be mined using either deep mining or strip 

mining techniques depending on their proximity to the surface. These seams 

undergo normal coal formation and serve as a conventional coal resource and 

unconventional gas (methane) resource. The reserves of coal are immense, and 

are the largest of all of the fossil fuels (Boyle et al., 2015). The aim of this study is 

to investigate various factors affecting hydraulic fracturing, pre-production and 

post-fracture production in unconventional reservoirs. The main aim of this 

dissertation is to investigate the pre-production and post-fracture steps of hydraulic 

fracturing to help improve the production of gas from unconventional reservoirs. A 

number of numerical poroelastic models have been developed based on two-way 

coupling of the governing equations of fluid flow and geomechanics (Fung et al., 

1992; Koutsabeloulis and Hope, 1998; Settari and Walters, 1999; Tortike and 

Farouq Ali, 1993) using the finite element method (Chin et al., 2000; Koutsabeloulis 

and Hope, 1998; Lewis and Schrefler, 1998). A numerical method is developed to 

simulate the hydro-mechanical evolution of the fracture and the surrounding rock 

in the finite element analysis framework. The propagation and the exchanges of 

fluid with the low permeability porous medium are considered. The ability of 

cohesive elements to model fluid-driven crack propagation in the viscosity-

dominated regime is investigated. Hydraulic fractures for reservoir stimulation 

typically propagate in the viscosity-dominated regime. In this study, we focus on 

the governing equations of the coupled problem: lubrication equation, pressure 

continuity and cohesive zone model. 

This project also presents the development and application of a fuzzy model to 

javascript:%20void(0)
javascript:%20void(0)
javascript:%20void(0)
https://energyeducation.ca/encyclopedia/Coal_formation
https://energyeducation.ca/encyclopedia/Resource
https://energyeducation.ca/encyclopedia/Coal_reserve
https://energyeducation.ca/encyclopedia/Fossil_fuel
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predict the efficiency of hydraulic fracturing of a coal seam, considering a number 

of key factors which have been ignored by other researchers. The most important 

parameters affecting the HF process of a coal seam are: dip, thickness, seam 

uniformity, roof and floor conditions, coal seam reserve and coal strength (Couch, 

2009). The hydraulic fracturing has been investigated numerically through a FEM-

based model in different Stree Intensity Factor (SIF), J-integral, elastic modulus, 

Poisson’s ratio, fluid pressure and fluid viscosity. The two models developed in this 

research can be used to improve the efficiency and production rate of hydraulic 

fracturing. The outcome of this research can be useful in describing various 

aspects of behaviour of hydraulic fracturing in unconventional reservoirs. 

1.2 Hydraulic Fracturing in Coal Mining 

The most important objectives of HF in a coal mine are to achieve: reduced costs; 

faster development; faster mining; safer mining; concentrating production at fewer 

locations; achieving higher production rates per shift (each of two or more recurring 

periods in which different groups of workers do the same jobs in relay); mining with 

smaller underground crews; smaller capital expenditure per extracted ton of coal; 

working under protectively supported roofs and more productive crews. To take 

advantage of HF in a coal seam, a number of factors should be considered. Seam 

dip, seam thickness, seam uniformity, seam floor condition, seam roof condition 

and gas concentration are some of the most important factors that affect the 

potential of coal seam gas to be extracted by HF (Robert 2002). Due to high 

quantity of methane gas in PARVADEH Tabas coal mine the factor of gas 

concentration is not considered in this study. 
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Hydraulic fracturing (HF) is one of the methods to make coal mining operation safer 

and more economic. One of the hazards in underground coal mining operation is 

the sudden coal gas emission leading to coal explosion. To reduce the risk of gas 

emissions to ensure safer mining, it is necessary to pre-drain coal seams and 

surrounding layers. This study presents the development and application of a fuzzy 

model to predict the efficiency of hydraulic fracturing, considering the above 

factors. In the fuzzy model, the efficiency of hydraulic fracturing of coal seams is 

calculated as a dimensionless numerical index within the range 0-100. The 

suggested numerical scale categorizes the efficiency of HF of seams to very low, 

low, medium, high and very high, each one being specified by a numerical range 

as a subset of the above range (0-100). The model is used to study the potential 

of hydraulic fracturing in a coal bed in PARVADEH 4 coalmine in Iran, which will 

be undergoing stress variation due to future mining activities. The mine consists of 

5 seams with different characteristics.  

1.3. Aim and objectives 

The main aim of this study is to develop numerical modelling tools to help improve 

the production of gas from unconventional reservoirs. Moreover, the mechanisms 

involved in HF which could help with enhancing gas extraction are studied and the 

potential design and geological impacts are evaluated. The pre-production and 

post-fracture steps of hydraulic fracturing were investigated.  

The main objectives of this dissertation are as follow: 

1. Developing a Fuzzy model considering geological parameters like seam dip, 
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thickness, uniformity, roof condition, floor condition, strength and reserve to 

quantify potential of hydraulic fracturing. 

2. Developing a coupled model to study the interaction between fluid and rock during 

fluid injection. 

3. Designing appropriate fluid and solid parameters in order to improve production. 

4. Propagating fracture within the targeted layer (e.g. Coal or shale) during pumping. 

In this study, a numerical approach is developed to evaluate the methane 

production for various given parameters. This study presents the development and 

application of a fuzzy model to predict the efficiency of hydraulic fracturing which 

has been ignored by other researchers.  Many researchers have considered only 

fracture propagation models and ignored geological parameters. In this study, a 

numerical approach is developed to evaluate the methane production for various 

given parameters. This study presents the development and application of a fuzzy 

model to predict the efficiency of hydraulic fracturing which has been ignored by 

other researchers. The fuzzy model is able to quantify potential of hydraulic 

fracturing between 0-100 in each targeted layer of rock before starting injection.  

The factors affecting the development of coal bed methane extraction by the HF 

method are examined. As a case study, HF in the coal bed in PARVADEH 4 Tabas 

mine in Iran, which will be undergoing stress variation due to future mining 

activities, is investigated. The deformation of coal induced by mining pressure 

would change the pore volume of matrix, which would lead to the change of coal 

seam permeability. As a result, mined area will be dangerous for miners due to 

increasing methane gas presence.  



Chapter 1                                                                                                          Introduction 

 

9 
 

Tabas Coal Mine is located about 60 km South West of Tabas City where the 

extraction is carried out by longwall mining which is a form of underground 

coal mining method where a long wall of coal is mined in a single slice. The 

average coal bed gas content is in the order of 15 m3/t (cubic meter per ton). 

Moreover, the hydraulic fracturing is investigated in a shale reservoir. A numerical 

method is developed to simulate the hydro-mechanical evolution of the fracture 

and the surrounding rock in the finite element analysis framework. The propagation 

and the exchanges of fluid with the low permeability porous medium are 

considered. The ability of cohesive elements to model fluid-driven crack 

propagation in the viscosity-dominated regime is investigated. Hydraulic fractures 

for reservoir stimulation typically propagate in the viscosity-dominated regime. The 

application of the coupled model to a case study in Canada is presented. In this 

study, the focus is on the geological parameters (fuzzy model) and the interaction 

between fluid and solid parameters (coupled model).  

1.4 Structure of the Dissertation 

Chapter one of this dissertation presented an introduction to hydraulic fracturing, 

applications of hydraulic fracturing, and hydraulic fracturing models.  

Chapter two introduces the governing equations for fracture mechanics analysis, 

mechanics of fluid flow in the fracture and presents the basics of the numerical 

tools used in this thesis including: the finite element method, the finite volume 

method and the fuzzy logic.  

Chapter three presents the application of the fuzzy logic model to study the effect 
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of geological parameters on the efficiency of hydraulic fracturing process. The 

model is used to study the potential of hydraulic fracturing in a coal bed in 

PARVADEH 4 coalmine in Iran, which will be undergoing stress variation due to 

future mining activities.  

In Chapter four, a three-phase hydro-mechanical model is developed for simulating 

hydraulic fracturing. The complexities involved in coupling fracture mechanics and 

fluid flow simulations are discussed in detail. A parametric study is conducted by 

changing various model parameters to study their effects on the hydraulic 

fracturing process. The results show that changes in rock mechanical properties 

as well as fluid parameters could lead to significant changes in the hydraulic 

fracture propagation. 

The last chapter outlines the results achieved by using these models and suggests 

further steps to develop the presented methodology. Some applications of this 

research finding are discussed in more detail. Immediate future works to extend 

this project are presented.
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Chapter 2. Theoretical Foundation and Numerical Modelling 
 
In this chapter, the theoretical foundation of the problems solved in the next 

chapters will be introduced. The numerical tools to simulate these problems will be 

explained in detail. Subsequently, the advantages of these methods will be 

discussed. 

2.1: Fracture Mechanics 

Fracture mechanics is a field of solid mechanics that deals with the behaviour of 

crack bodies subjected to stresses and strains. Centre of attention in fracture 

mechanics is the initiation and propagation of fractures. Theoretical ideas and 

experimental approaches have been developed, which permit responses to 

queries like:  

• Will a fracture propagate under applied load?  

• When a fracture propagates, what is it’s speed and direction?  

• Will crack growth stop?  

• What is the residual strength of a construction (part) as a function of the 

(initial) crack length and the load?  

• What is the proper inspection frequency (time interval between each 

inspection)? 

• When must the part be repaired or replaced?  

Several fields of science are involved in responding to these queries: material 

science, chemistry, theoretical and numerical mathematics, experimental and 

theoretical mechanics (Schreurs, 2012). Therefore, the field of fracture mechanics 
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can be subdivided into several specializations, each with its own concepts, theory 

and terminology (Schreurs, 2012). 

Rocks in reservoirs tend to fracture if loaded with stress above some critical level. 

Rock and fracture mechanics can provide a fundamental understanding of this 

process and is thus crucial to analyzing the hydraulic fracturing process. Variations 

in geomechanical conditions such as elastic modulus of the rock mass, in-situ 

stresses, fracture deformation and failure mechanisms, directly impact the fracture 

geometry (Warpinski et al., 1982; Warpinski et al., 2012). 

To study the mechanical characteristics of rock and fracture, some initial studies 

were carried out to better understand the behaviour of intact rock under uniaxial 

stress. These studies involved analyzing laboratory experiments on samples under 

homogeneous and isotropic conditions (Hoek and Martin, 2014). Kirsch (1898) 

analyzed the problem of an infinite elastic plate with a circular hole subjected to 

uniform tensile stress (Figure 2.1). During hydraulic fracturing process, when the 

elevated fluid pressure exceeds the sum of the tensile strength of the rock and the 

minimum principal stress, tensile failure can occur and propagate the initiated 

fracture (Zhao, et al. 2019). 
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Figure 2.1: Infinite tensile plate with a circular hole (Kirsch, 1898) 

where:  

σ0= normal tensile stress,  

ϴ= loading direction,  

A= radius of the hole,  

R= radial coordinate,  

σϴϴ= hoop stress,  

σrϴ= shear stress,  

σrr= radial stress and 

x and y= two axes of two-dimensional Cartesian coordinates. 

The stress distribution within the plate, as indicated by Equations (2.1-2.3), was 

examined using polar coordinate systems near the circular hole (Grekov and 
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Yazovskaya, 2014; Bochkarev and Grekov, 2014). 

                                    𝜎𝑟𝑟 =
𝜎0

2
(1 −

𝑎2

𝑟2) {1 − (1 − 3
𝑎2

𝑟2) cos 2𝜃}      (2.1)       

                                    𝜎𝛳𝛳 =
𝜎0

2
{(1 +

𝑎2

𝑟2) + (1 + 3
𝑎4

𝑟4) 𝑐𝑜𝑠 2𝜃}        (2.2)       

                                     𝜏𝑟𝛳 =
𝜎0

2
{(1 −

𝑎2

𝑟2) (1 + 3
𝑎2

𝑟2) 𝑠𝑖𝑛 2𝜃}             (2.3)              

 

Various kinds of geometric discontinuity, such as a sharp change in geometry, 

opening, hole, notch, crack, and so on are known to be the main source of failure 

in a large number of catastrophic failures of structures. Such discontinuities 

generate substantial stress concentrations which reduce the overall strength of 

material.  

2.2. Linear Elastic Fracture Mechanics (LEFM) 

Linear elastic fracture mechanics (LEFM) is based on the analysis of cracks in 

linear elastic materials. It provides a tool for solving most practical problems in 

engineering mechanics, such as safety and life expectancy estimation of cracked 

structures and components. The main success of the theory is based precisely 

upon linearity, which makes it possible to combine very simply the theoretical, 

numerical, and experimental analyses of fracture. Today, stress analyses of the 

complex geometry of structures as well as of test specimens are provided by 

powerful computers using finite element methods (Bui et al., 2011).  

A regular planar crack includes two surfaces (top and bottom), and the tip of the 

crack is a sharp connecting point of these surfaces. If the fractured solid is 
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subjected to external loads, the fracture surfaces move with respect to each other. 

Using a local Cartesian coordinate system located at the fracture tip, the relative 

fracture displacement can be explained by three independent crack modes (Irwin, 

1957). These modes are typically called Mode I, Mode II, and Mode III, showing 

opening, sliding, and tearing of the fracture respectively as shown in Figure 2.2. 

 

        (a) Mode I                                      (b) Mode II                          (c) Mode III 

Figure 2.2: Fracture modes (Sun and Jin, 2012) 

 
In addition, the stresses acting near the fracture tip explain the crack deformation 

modes. In two-dimensional cases, the stress states corresponding to these three 

modes are defined by Equations (2.4)-(2.6) (Westergaard, 1939). 

𝜎𝑦𝑦 =
𝐾𝐼

√2𝜋𝑥
+ 𝑂(√𝑥), 𝜏𝑥𝑦 = 𝜏𝑦𝑧 = 0     𝑓𝑜𝑟 𝑀𝑜𝑑𝑒 𝐼       (2.4) 

𝜏𝑥𝑦 =
𝐾𝐼𝐼

√2𝜋𝑥
+ 𝑂(√𝑥), 𝜎𝑦𝑦 = 𝜏𝑦𝑧 = 0     𝑓𝑜𝑟 𝑀𝑜𝑑𝑒 𝐼𝐼       (2.5) 

𝜏𝑦𝑧 =
𝐾𝐼𝐼𝐼

√2𝜋𝑥
+ 𝑂(√𝑥), 𝜎𝑦𝑦 = 𝜏𝑥𝑦 = 0     𝑓𝑜𝑟 𝑀𝑜𝑑𝑒 𝐼𝐼𝐼       (2.6) 
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where K
I , KII ,  KIII are the stress intensity factors corresponding fracture modes I, 

II, and III, respectively and 𝑂√𝑥 is second term of the stress which is negligible. 

These equations were introduced by Irwin (1957) for the first time in order to 

estimate the stress state and the level of singularity at the crack tip. The following 

stress intensity factor equations were derived from the Westergaard functions ( 

equation 2.7) (1939): 

𝜎𝑥𝑥 = 𝜎𝑦𝑦 =
𝜎∞

√1 − (
𝑎
𝑥)

2
       (2.7) 

where: 

σxx and σyy= stresses along y=0 and x>a 

𝜎∞= infinite stress at the crack tip 

a= crack length 

x= distance to crack tip 

Westergaard expressed the rectangular coordinates as complex numbers, z=x+iy. 

This allows stress to be expressed as a function of x and y, 𝜎 = 𝑓(𝑥, 𝑦).  

2.3 Computational analysis   

 
The analysis of hydraulic fracturing has received a broad interest from the 

petroleum engineering community. Due to the significant increase in the 

importance of hydraulic fracturing, some modelling tools have been developed to 
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study the progressive failure phenomenon in unconventional reservoirs. The finite 

element method (FEM) is the most widely used numerical tool in fracture 

mechanics. Various developments, such as singularity or interface elements have 

been recommended to refine the linear elastic fracture mechanics modelling in the 

FEM. In the FEM, individual elements are linked together by a topological mapping, 

and local polynomial representation is employed for the fields within the element. 

The solution of FE model is a function of the quality of mesh, and the mesh has to 

conform to the geometry. As a result, by refining the mesh locally (Chan et al, 

1975), the displacement near the fracture tip can be captured. 

The FEM is an efficient method to calculate the stress intensity factor due to the 

complexity of the geometry and boundary conditions. In this study the finite 

element software ANSYS is used to simulate the hydraulic fracturing process. In 

ANSYS, there are 3 main ways to evaluate fracture mechanics parameters:  

 Stress intensity factors (K):  is the magnitude of stress singularity at the 

crack tip 

 J-integral JINT (J):  represents a way to calculate the strain energy 

release rate. 

 Energy release rate VCCT (G): indicates that the work required to 

propagate a crack is the same as the energy to close the crack. 

 

2.3.1-Stress Intensity Factors (SIF)  
 
Crack propagation analysis requires the evaluation of the parameters such as the 

energy release rate and stress intensity factors (SIF) to determine the length, 
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velocity and orientation of the crack propagation. The stress intensity factor, K, is 

used in fracture mechanics to predict the stress state near the tip of a crack caused 

by loads. The stress intensity factor is the magnitude of stress singularity at the 

crack tip (Anderson 1994).  

It is a parameter to characterize the stress field ahead of a sharp crack in a test 

specimen or a structural member. The parameter, K, is related to the stress level 

(σ) in the structural member and the size of the crack, and has the unit of 

(MPa.mm0.5). In general, the relationship is represented by:  

 

𝐾 = 𝜎√𝑎  𝑝             (2.8) 

 
where p is a geometrical parameter that depends on the structural member and 

crack size, and a is the crack length. All structural members or test samples that 

have flaws can be loaded to different levels of K. This is similar to the situation 

where unflawed structure can be loaded to different levels of stress (σ) (Barsom 

and Rolfe, 1999). 

The magnitude of stress intensity factor depends on sample geometry, the size 

and location of the crack, and the magnitude and the modal distribution of loads 

on the material.  

The energy release rate for crack growth or strain energy release rate is the 

change in elastic strain energy per unit area of crack growth. The well-known 

criteria for crack propagation are maximum circumferential (hoop) stress (Erdogan 

and Sih 1963), maximum energy release rate (Nuismer 1975), and maximum strain 

energy density (Sih 1974). Both the orientation of crack growth and the stress at 

which the growth would take place are predicted by the above criteria. They predict 
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slightly different angles for the initial kink, but they all predict kink initiation. 

Cracks with direction change are defined as kinked cracks. Due to the sudden 

change in tangent orientation at the kink points, the orientation would be the one 

that locally releases the maximum energy or satisfies some other mixed mode 

criteria. But these do not necessarily occur with KII = 0 for the developing kink 

(Cotterell and Rice 1980). Cotterell and Rice (1980) indicated that the Erdogan 

and Sih (1963) criterion is a more practical basis at the developing kinks. Thus, the 

Erdogan and Sih (1963) measure could be employed to calculate fracture 

propagation direction, 

    𝜃 = 2arctan (
1

4
(

𝐾𝐼

𝐾𝐼𝐼
∓ √(

𝐾𝐼

𝐾𝐼𝐼
)
2

+ 8))          (2.9) 

where θ is the crack growth angle in the crack-tip local coordinate system. 

Equation (2.9) gives two directions for crack propagation; the one with positive 

tensile stress is acceptable.  

2.3.2- J-integral JINT (J)  
 
The J-Integral evaluation is based on the domain integral method proposed by 

Shih. The domain integration formulation applies area integration for 2-D problems 

and volume integration for 3-D problems. Area and volume integrals offer much 

better accuracy than contour integral (contour integration is a method of 

evaluating integrals along paths in a complex plane) and surface integrals (a 

surface integral is a generalization of multiple integrals to integration over surface), 

and are easier to implement numerically (Shih et al., 1986).  

J-integral is described as a path-independent line integral that determines the 

https://en.wikipedia.org/wiki/Integral
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strength of the singularities for stresses and strains near a fracture tip. J-integral, 

also known as J, was established by Rice[14]. 

𝐽 = lim
𝛤→0

∫𝑛.𝐻. 𝑞𝑑𝛤

𝛤

          (2.10) 

𝐻 = 𝑊𝐼 − 𝜎
𝜕𝑢

𝜕𝑥
                (2.11) 

where, W is strain energy density, Γ is the contour path, n the normal on the path, 

H is potential energy, I is dimenetionless integral , x is coordinate direction ,  u is 

corresponding displacement vector,  and q is the virtual crack extension direction. 

The J-integral is normally employed in rate-independent quasi-static crack analysis 

to determine the energy release associated with crack propagation. If the material 

response is linear, it can be associated to the stress intensity factor. This 

relationship for homogeneous, isotropic materials is as follows: 

𝐽 =
1

𝐸̅
(𝐾𝐼

2 + 𝐾𝐼𝐼
2) +

1

2𝐺
𝐾𝐼𝐼𝐼

2           (2.12) 

where 𝐸=E for plane stress and 𝐸=E/(1-𝜐2)
 
for plane strain, axisymmetric and 

three dimensional conditions (Hasanpour, and Choupani, 2009). 

Asumptions, such as defining the geometry of the crack, constitutive models of 

rocks and fluids and fluid flow differ in many models which have been proposed to 

study hydraulic fracturing. The standard method of energy release rate from the 

fracture mechanics theory is used to define the criteria for the crack growth(Courtin 

et al, 2005). 
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Because of the singularity of strain field in edges, modelling of the crack as a 

discontinuity has always been considered as a challenge in numerical approaches. 

In addition, complexity arises while modelling HF specially when a force like fluid 

pressure generates the fracture. 

In the modelling process, fluid pressure was considered as a uniform pressure on 

the injection hole shell and the fracture. Stress intensity factor and Rice's released 

elastic energy (J-Integral), which are the fracture mechanics variables, were 

studied under plane strain conditions. In this work modelling was carried out in 

Ansys using quadratic elements in 2D and 3D. The mesh was refined around 

fracture tip and a linear elastic finite element analysis was carried out under a 3D 

stress condition (Courtin et al, 2005). 

2.3.3- Energy release rate VCCT (G)  

 
Energy release rate is based on the assumption that the energy needed to 

separate a surface is the same as the energy needed to close the same surface. 

The approach for evaluating the energy-release rate is based on the virtual crack-

closure technique (VCCT). The VCCT is applied to partition the fracture modes, 

i.e. to determine the energy release rate contributions related to fracture modes I, 

II, and III (Delorenzi, 1982). 

 

2.4. Hydraulic fracturing models 

The first simplified theoretical models for hydraulic fracturing were developed in 

the 1950s (Crittendon 1950, Harrison et al. 1954 and Hubbert and Willis 1957). 
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One of the most important papers published in this area was by Perkins and Kern 

who adapted the classic Sneddon plane strain crack solution to develop the so-

called PK model (Figure 2.3) (Perkins and Kern, 1961). Later, Nordgren adapted 

the PK model to formulate the PKN model, which included the effects of fluid loss 

(Nordgren, 1972). Khristianovic and Zheltov (1995), and Geertsma and de Klerk 

(1969) independently developed the so-called KGD (plane strain) model (Figure 

2.3). The radial or penny-shaped model (Figure 2.4) with constant fluid pressure 

was solved by Sneddon. The problem of a flat elliptical crack under constant 

loading was studied by Green and Sneddon (Adachi et al, 2007).  

The PKN and KGD models differ in one major assumption: the way in which they 

convert a three-dimensional solid and fracture mechanics problem to a two-

dimensional plane strain model. Khristianovic and Zheltov (1995) assumed plane 

strain in the horizontal direction i.e. all horizontal cross sections act independently 

or equivalently, which is equivalent to assuming that the fracture width changes 

much more slowly vertically along the fracture surface from any point on the 

fracture surface than it does horizontally. In practice this is true if the fracture height 

is much greater than the length or if free slip occurs at the boundaries of pay zone 

(a pay zone is a reservoir or part of a reservoir that contains hydrocarbons that can 

be extracted economically). Perkins and Kern (1961), on the other hand, assumed 

that each vertical cross section acts independently (Figure 2.3), which is equivalent 

to assuming that the pressure at any section is dominated by the height of the 

section rather than the length of the fracture. This is true if the length is much 

greater than the height. This difference in one basic assumption has led to two 
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different ways of solving the problem. In the case of the PKN model, the effect of 

the fracture tip is not considered; the concentration is on the effect of fluid flow and 

the corresponding pressure gradients (Dahi, 2009). In the KGD model, however, 

the tip region plays a much more important role (Dahi, 2009). 

 

Figure 2.3: PKN and KGD fracture Geometry (Adachi et al, 2007) 

In Figure 2.3, L is the fracture length, H is the frature hight and wm is the fracture 

width. Review of the literature indicates that there is a lack of 3 dimensional models 

for simulating of hydraulic fracturing and this area needs more research effort. 

 

Figure 2.4: Penny-shaped fracture geometry (Adachi et al, 2007) 
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In the figure 2.4, P is pressure, R is radius of the frature, Qo is fluid injection rate 

and w is the fracture width.     

 

 

2.5. Fracture Initiation 

Reservoir rocks are mainly subjected to three principal in-situ stresses, namely the 

vertical stress, the maximum horizontal stress, and the minimum horizontal stress. 

The in-situ stresses should be transformed into cylindrical coordinates due to the 

shape of wells in order to define the fracture initiation criteria (Figure 2.5). 

Assuming isotropic, homogeneous, and linearly elastic formation, stresses acting 

on the wall of a cylindrical well are derived from Kirsch's equation as (Dieley and 

Owens, 1969; Bradley, 1979; Aadnoy et al. 1987; Aadnoy, 1988): 

𝜎𝑟𝑟 = 𝑃𝑤                                                                        (2.13) 

𝜎𝜃𝜃 = (𝜎ℎ + 𝜎𝑣) − 2(𝜎ℎ − 𝜎𝑣) cos 2𝜃 − 𝑃𝑤           (2.14) 

𝜏𝑟𝜃 = 0                                                                           (2.15) 

where Pw is the fluid pressure acting on the cylindrical wall,  𝜎𝑣  is the vertical 

stress, 𝜎ℎ the minimum horizontal stress, and 𝜃is the fracture angle. Considering 

the fracture direction is perpendicular to the minimum principal stress (𝜃=90°) 

(where there is minimum resistance to fracture initiation), the tensile stress, 𝜎𝜃𝜃 is 

simplified as (Hossain et al. 2000): 

𝜎𝜃𝜃 = 3𝜎ℎ − 𝜎𝑣 − 𝑃𝑤           (2.16) 
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Figure 2.5: Stress transformation on crack tip 

Incorporating the tensile strength of the rock, 𝜎t , Hubbert and Willis (1957) defined 

the fracture initiation pressure, p
wf . The fracture is initiated when the tensile stress 

exceeds the sum of the fracture initiation pressure and the tensile strength of the 

rock. 

𝑃𝑤𝑓 = 3𝜎ℎ − 𝜎𝑣 − 𝑃𝑤 + 𝜎𝑡          (2.17) 

Equation (2.16) assumes that there is no fluid exchange between the well and the 

surrounding formation. Therefore, the fracture initiation pressure is an upper bound 

solution. If fluid penetrates the formation, the resulting increase in pore pressure 

decreases effective stress and thus the fracture initiation pressure. Schmidt and 

Zoback (1989) added poro-elasticity and derived Equation (2.18) as a lower bound 

pressure for the fracture initiation (Valko and Economides, 1995). 

𝑃𝑤𝑓 = 3𝜎ℎ − 𝜎𝑣 − 2𝜂𝑝𝑒𝑃𝑤 + 𝜎𝑡          (2.18) 

where 𝜂pe is the poro-elasticity parameter defined as Equation (2.19) with Biot 

coefficient, 𝛼biot  and 𝜈 is the Poisson’s ratio. 
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𝜂𝑝𝑒 =
𝛼𝑏𝑖𝑜𝑡(1 − 2𝜈)

2(1 − 𝜈)
          (2.19) 

When low viscosity fluids are used with low pumping rates, it is expected that more 

fluid transfers to the formation, and thus fracture initiations takes place at lower 

pressure (Hossain et al. 2000).   

 
2.6. Fracture propagation  

The fracture propagation criterion is derived from Linear Elastic Fracture 

Mechanics (LEFM), which was established based on the Griffith’s concepts of 

crack stability (Griffith, 1920; Griffith, 1924). The stress field around an elliptical 

crack and a criterion for crack propagation were proposed in Griffith (1924). The 

load bearing capacity of a material containing a fracture is proportional to the 

square root of the fracture length (According to LEFM). Therefore the linear elastic 

solution is singular at the fracture tip. The intensity of the singularity is represented 

by stress intensity factor, which depends on the geometry and the loading 

condition. This concept was developed by Irwin (1957) in three elementary modes; 

Mode I (opening mode), mode II (shearing or sliding mode) and mode III (tearing 

mode).  

The opening mode occurs in symmetrical extension and bending of fractured 

materials where movement is perpendicular to the plane of fracture. The sliding 

mode is experienced in skew-symmetric plane loading of fractured materials 

where, at the leading edge of the fracture, the movement is in the plane and parallel 
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to the orientation of the fracture. The tearing mode occurs in skew-symmetric 

bending (twisting) or skew-symmetric loading in which the movement is 

perpendicular to the plane of the material and in the plane of fracture surface. In 

LEFM, each of the crack extension modes are related with a corresponding 

fracture tip stress intensity factor KI, KII and KIII. 

The asymptotic displacement along y-axis at the crack tip for mode I can be 

determined as (Irwin, 1957): 

𝑢𝑦 =
𝐾𝐼

2𝐺
(

𝑟

2𝜋
)
1

2⁄

sin
𝛳

2
(𝑘 − 1 − 2𝑐𝑜𝑠2

𝜃

2
)          (2.20) 

where: 

uy=displacement discontinuity along y axis  

G=shear modulus 

r, θ= polar coordinates with origin at fracture tip  

KI=stress intensity factor for mode I and 

 𝑘 = 3 − 4𝜈 for plane strain with 𝜈 being Poisson’s ratio. 

Based on Griffith’s ideas for fracture stability, fracture propagation can be 

simulated through a cycle of steps. Firstly stress intensity factor is computed for a 

given geometry and loading condition. Then the crack growth criterion is used to 

check if the fracture is stable or not. In the third step, if fracture is unstable, 

propagation occurs to a certain distance (Clifton and Abou-Sayed, 1979). The 
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fracture is extended if the stress intensity factor is equal or greater than a critical 

value known as fracture toughness, KIC, or critical stress intensity factor which is a 

material property (Clifton and Abou-Sayed, 1979). 

Henshell and Shaw (1975) and Barsoum (1976) proposed special crack tip 

singular elements for the finite element modelling of linear elastic media containing 

fractures. In these 8-noded isoparametric elements, the mid-side nodes which are 

close to the crack tip, are moved to their quarter point. It has been proved that such 

a shift of nodes results in required stress singularity at the fracture tip (Barsoum,  

1976; Henshell and Shaw, 1975). The quarter point crack tip elements have been 

successfully applied in modelling fracture problems both in finite element method 

(Ingraffea, 1977a; Murti and Valliappan, 1986; Owen and Fawkes, 1983) and 

boundary element method (Blandford et al., 1981; Smith and Mason, 1982). 

Using the displacement correlation method, numerical results of displacements 

field at the crack tip are used to determine the stress intensity factor. The stress 

intensity factor at the fracture tip for mode I (crack opening) can be determined as 

follows (Ingraffea, 1977a; ingraffea and Manu, 1980; Murti and Valliappan, 1986): 

𝐾𝐼 =
𝐺

(𝑘 + 1)
√

2𝜋

𝐿
{4(𝑢𝑦𝐵 − 𝑢𝑦𝐶) + 𝑢𝑦𝐷 − 𝑢𝑦𝐴}          (2.21) 

where u
yA

,u
yB

,u
yC

,u
yD

are the nodal displacements at different nodes and L is the 

length of fracture tip element. The above technique has been found to provide very 

good accuracy when compared with existing analytical solutions providing that 
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following guidelines are abided by (Ingraffea, 1977a; Murti and Valliappan, 1986): 

 A reduced numerical integration scheme for fracture tip elements 

 An aspect ratio of close to one for fracture tip elements 

 The length of fracture tip elements about 15-25% of the fracture length 

 The angle of fracture tip elements at the fracture tips less than 90 degrees. 

In poroelastic materials, diffusion process at the crack tip region controls the 

behaviour of the crack. This is the characteristic feature of fracture mechanics 

problems related to poroelastic media. Craster and Artinkson (1996) showed that 

the pore pressure is nonsingular in the case of poroelastic fracture problems. The 

pore pressure field at fracture tips only experiences a temporal singularity during 

undrained phase and becomes non-singular after dissipation of the undrained 

response. However, they showed that the pore pressure gradient at the tip is 

singular, if permeable fracture faces are considered. The fracture propagation 

problems in poroelastic media are classified into two groups of transient (Boone 

and Ingraffea, 1990; Detourney and Cheng, 1991) and steady state (Yoffe, 1951) 

problems. 

In this study, Eq. 2.21 is used to determine stress intensity factor at the crack tip. 

In order to take advantage of symmetry of the geometry of the model, Eq. 2.21 can 

be expressed in the following form (to avoid complexity) (Boone and Ingraffea, 

1990; Detourney and Cheng, 1991): 

𝐾𝐼 =
𝐺

(𝑘 + 1)
√

2𝜋

𝐿
{8𝑢𝑦𝐵 − 2𝑢𝑦𝐴}          (2.22) 
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Once KI is numerically equal to the fracture toughness of the material KIC, the 

hydraulic fracture propagates to the following node and the numerical model 

advances to the next time step (Boone and Ingraffea, 1990; Detourney and Cheng, 

1991).  

2.7. Mechanics of fluid flow in the fracture 

 
The major fluid flow parameters are the fluid viscosity μ and injection rate qi. 

Consider a Newtonian fluid flowing laterally through a narrow slit (Fig. 2.6). In the 

case of laminar flow (the general case for flow inside hydraulic fractures), the 

pressure drop along some length Δx of the slit is (Economides, 2000): 

 

∆𝑝𝑛𝑒𝑡

𝛥𝑥
=

12𝜇𝑞

ℎ𝑓𝑤3                (2.23) 

where hf is fracture height, Δpnet is pressure drop and w is fracture width. 

 

 

Figure 2.6: Fluid flowing laterally through a narrow fracture (Economides, 2000) 
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The fracture is essentially a channel of varying width over its length and height. 

The local pressure gradient within the fracture is determined by the fracturing fluid 

rheology, fluid velocity and fracture width. Equations governing fluid flow within the 

fracture can be derived using the principle of conservation of momentum and 

lubrication theory applied to a fluid travelling in a narrow conduit. The rheology of 

fracturing fluids is generally represented by a power law model that incorporates 

two parameters K and n. In recognition that fluid flow within a fracture is laminar 

for most fracturing applications (Perkins and Kern, 1961), the global pressure 

gradient along the length of a fracture can be expressed as: 

𝑑𝑝

𝑑𝑥
∝

𝐾𝑣𝑥
𝑛

𝑤
1+𝑛                      (2.24) 

where vx is the average fluid velocity along the length of the fracture and is defined 

in terms of the volumetric injection rate qi, fracture height hf and height-averaged 

fracture width 𝑤̅. Material balance or conservation of mass suggests that vx is 

proportional to qi/𝑤̅hf. Equation 2.24 then becomes 

𝑑𝑝

𝑑𝑥
∝

𝐾

𝑤
1+2𝑛 (

𝑞𝑖

ℎ𝑓
)
𝑛

              (2.25) 

In the special case of a Newtonian fluid (n = 1 and K = μ, where μ is the fracturing 

fluid viscosity), Eq. 2.25 reduces to (Economides, 2000) 

𝑑𝑝

𝑑𝑥
∝

𝜇

𝑤
2 (

𝑞𝑖

𝑤ℎ𝑓
)                (2.26) 
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where the term 𝑤̅hf is readily recognized as the average fracture cross-sectional 

area. Equation 2.26 is essentially Darcy’s law with the permeability proportional to 

𝑤̅2. Equations 2.24 and 2.25 are formulated in terms of the average velocity and 

implicitly ignore change in the fracture width over its height. The varying width 

profile has an effect on the flow resistance relative to the case of a constant-width 

channel. The increase in the flow resistance is accentuated during periods of 

fracture height growth into barriers at higher stress. The varying width profile 

affects other physical phenomena that are highly sensitive to the velocity 

(Economides, 2000). 

 

2.8. Numerical Tools 

2.8.1. Fuzzy logic in hydraulic fracturing of coal seam 

Fuzzy logic is a powerful tool for the analysis of systems that work with vague 

parameters and receive qualitative inputs, and uncertain and simple analytical 

information of the conditional IF-THEN type. These IF-THEN rule statements are 

used to fotmulate the conditional statements that comprise fuzzy logic in an 

algorithm in shortest time and with suitable results.  A fuzzy set is an extension of 

the concept of crisp set. While a crisp set only allows full membership or no 

membership to every element of a universe of discourse, a fuzzy set permits for 

partial membership (Dubois and Prade, 2010). 

Over the past decades, the Fuzzy Set Theory (FST) has been employed in 

geotechnical engineering problems to address the problem of uncertain data due 

to lack of accuracy, incompleteness, vagueness and randomness of the 
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information as well as incorporating subjective expert judgment into problem 

analyses. Introduced by Zadeh in 1965, FST provides a means for representing 

epistemic uncertainty using set theory (Dubois and Prade, 2010). 

The fuzzy set theory includes fuzzy variables or fuzzy functions, fuzzy logic, fuzzy 

inference system, fuzzy probability, and hybrid fuzzy set. Fuzzy inference has been 

used in this study. Fuzzy inference system defines relationships between input and 

output variables of a system by using linguistic labels in a collection of IF-THEN 

rules, Mamdani and Takagi-Sugeno systems being the most commonly used. 

Details on the FST can be found in e.g., Zimmermann, (1991) and Celikyilmaz and 

Turksen, (2009).  

Since early 80’s when the first applications of FST in geotechnical engineering 

appeared, it has been developing intensively and currently it is employed in wide 

variety of problems for instance, slope stability, rock engineering, tunnelling, 

project management, and even constitutive modelling of geomaterials. In this 

study, the potential of HF in coal mining is studied using the fuzzy logic. The effects 

of different parameters on the potential of HF are defined. This definition is 

subjective. When the results are evaluated in terms of geotechnical parameters, 

qualitative words are usually employed such as excellent, favourable, poor, etc. 

These terms are ambiguous and vague (Chen and Pham, 2000). 

Fuzzy logic refers to the study of approaches and principles of human reasoning. 

The classical logic deals with propositions (e.g., conclusions or decisions) that are 

either true or false. Each proposition has an opposite. The classical logic, thus, 

deals with mixtures of parameters that represent propositions (Chen and Pham, 



Chapter 2                                                Theoretical Foundation and Numerical Modelling 

 

34 
 

2000). As each parameter stands for a hypothetical proposition, any combination 

of them assumes a value. The main content of classical logic is the study of rules 

that permit new logical parameters to be generated as functions of certain existing 

parameters (Chen and Pham, 2000). 

2.8.1.1. Fuzzy logic 

A fuzzy set can be described as a set with fuzzy boundaries. Let X be the universe 

of discourse and its elements be denoted as x. In classical set theory, a crisp set 

A of X is defined as function 𝑓𝐴(𝑥) called the characteristic function of A 

𝑓𝐴(𝑥): 𝑥 → [0,1]                           (2.27) 

where 

𝑓𝐴(𝑥) = {
1, 𝑖𝑓  𝑥 ∈ 𝐴
0, 𝑖𝑓 𝑥 ∉ 𝐴

                       

This set maps universe X to a set of two elements. For any element x of universe 

X, characteristic function 𝑓𝐴(𝑥) is equal to 1 if x is an element of set A, and is equal 

to 0 if x is not an element of A. In the fuzzy theory, a fuzzy set A of universe X is 

defined by function 𝜇𝐴(𝑥) called the membership function of set A (Zadeh, 1992) 

𝜇𝐴(𝑥): 𝑥 → [0,1]                                 (2.28) 

where 

𝜇𝐴(𝑥) = 1 𝑖𝑓 𝑥 𝑖𝑠 𝑡𝑜𝑡𝑎𝑙𝑙𝑦 𝑖𝑛 𝐴                     
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𝜇𝐴(𝑥) = 0 𝑖𝑓 𝑥 𝑖𝑠 𝑛𝑜𝑡 𝑖𝑛 𝐴                             

0 < 𝜇𝐴(𝑥) < 1    𝑖𝑓 𝑥 𝑖𝑠 𝑝𝑎𝑟𝑡𝑙𝑦 𝑖𝑛 𝐴 

This set permits a continuum of feasible options. For any element x of universe X, 

membership function 𝜇𝐴(𝑥) equals the degree to which x is an element of set A. 

This degree, a value between 0 and 1, represents the degree of membership, also 

called membership value, of element x in set A (Zadeh, 1992). The evaluations of 

the fuzzy rules and the combination of the results of the individual rules are 

performed using fuzzy set operations. The operations on fuzzy sets are different 

than the operations on non-fuzzy sets. Let μA and μB be the membership functions 

for fuzzy sets A and B. Table 3.7 contains possible fuzzy operations for OR and 

AND operators on these sets, comparatively. The mostly used operations for OR 

and AND operators are max and min, respectively. For complement (NOT) 

operation, Eq. (2.29) is used for fuzzy sets (Mendel, 1995). 

𝜇A̅(𝑥) = 1 − 𝜇𝐴(𝑥)                              (2.29) 

Table 2.1: Fuzzy set operations 

OR (Union) AND (intersection) 

MAX        Max{μA (x), μB (x)} MIN              Min{μA (x), μB (x)} 

ASUM     μA(x) + μB(x) − μA(x)μB(x) PROD            μA(x)μB(x) 

BSUM      Min{1,μA(x) + μB(x)} BDIF      Max{0,μA(x) + μB(x) − 1} 
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After evaluating the result of each rule, these results should be combined to obtain 

a final result. This process is called inference. The results of individual rules can 

be combined in different ways. Table (3.8) contains possible accumulation 

methods that are used to combine the results of individual rules. The maximum 

algorithm is generally used for accumulation. x′ is the sum of elemens in fuzzy sets 

in Table 3.8 (Mendel, 1995). 

Table 2.2: Accumulation methods 

Operation Formula 

Maximum Max{μA (x), μB (x)} 

Bounded 

sum 

Min{1, μA (x) + μB (x)} 

Normalized 

sum 

μA (x)+μB (x) 

Max{1,Max{μA (x′),μB (x′)}} 

In order to design a fuzzy system we need to creat membership functions and 

fuzzy rule bases which will be discussed in the next chapter. 

2.8.1.2. Fuzzy inference 

After constructing the rule bases, an inference engine is needed. A fuzzy inference 

system (FIS) is a system that employs the fuzzy set theory to map inputs to 

outputs. The most frequently used fuzzy inference method is known as Mamdani 

approach, which was introduced, by Mamdani and Assilian in 1957. It was the first 

attempt to control a steam engine and boiler combination by synthesizing a set of 
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linguistic control rules acquired from experienced human operators. An equally 

influential publication by Zadeh (Zadeh, 1973) was inspired by Mamdani method. 

Interest in fuzzy control has persisted and the literature on the subject has 

mushroomed quickly. A survey of the field with fairly extensive references may be 

found in Lee (1990) or, more recently, in Sala et al., (2005). The rule of Mamdani 

inference is as follows: 

 

In fuzzy sets the SUP is upper limit of . 

Mamdani’s fuzzy inference system can be used as a decision making model to 

categories geotechnical sites based on water, soil, support, infrastructure, input, 

and risk factor related information.  

Many inferences can be used in fuzzy logic. For instance, techniques of inference 

when the IF part is invoked, are GAMMA, MIN-AVG, MIN-MAX and approaches of 

inference of the THEN part are MAX, BSUM. In this study, MAX-MIN operator is 

used. The reason of this choice is less membership degree in the IF part and 

maximum membership degree in the THEN part (Ataee, 2009). The last step of 

designing a fuzzy system is defuzzification which will be discussed in the next 

chapter. 
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2.8.2. Numerical modelling in rock mechanics 

 
In the past three decades, numerical techniques have become widely available, 

due to the rapid develpments in computer hardware and software. The suitability 

of these methods for analysis and design of very complex geotechnical systems is 

another reason for their popularity. Several analytical methods are applicable in 

rock mechanics to circumstances  similar to the ones for which they were 

developed; although, there are numerous issues for which no past experience is 

available (Pande and Beer, 1990). In such cases, numerical approaches are the 

first choice to solve the design issues. Furthermore, numerical techniques should 

be employed as a supportive technique together with analytical and experimental 

approaches. 

According to Jing and Hudson (2002), numerical approaches in rock mechanics 

can be categorized into continuum, discontinuum and hybrid techniques as 

explained below: 

Continuum methods are: 

 The finite element method (FEM) 

 The finite difference method (FDM) 

 The boundary element method (BEM) 

 The finite volume method (FVM) 

Discontinuum methods are: 

 Discrete (or Distinct) elements method (DEM) 
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 Discrete fracture network (DFN) 

Hybrid methods are: 

 Hybrid FEM/BEM 

 Hybrid DEM/BEM 

 Hybrid FEM/DEM 

The choice of continuum or discontinuum approaches relies on the problem scale 

and the fracture system geometry. Discontinuum techniques are acceptable for 

moderately fractured rock masses where large-scale displacements of individual 

blocks are feasible (Jing, 2003).  

There is no absolute guide on which approach is better than another and when 

one or another should be employed. (Bobet et al., 2009). 

FEM is a systematic numerical approach which can be applied for rock mechanics 

and geomechanical design issues. It has the potential to deal with material 

heterogeneity, anisotropy, non-linearity, complex boundary conditions, in-situ 

stresses and gravitational stresses (Jing and Hudson, 2002). Consequently, in this 

work, FEM will be employed as the major numerical technique to carry out the 

numerical analysis. 

2.8.3. Finite Element Method 

FEM is a common numerical approach, which can be used for rock and soil 

mechanics problems (Singiresu, 2004). FEM is the numerical solution of the 

mathematically weak form of a problem in engineering, which mainly consists of 
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six steps as explained briefly below (Singiresu, 2004):  

Step 1: Discretization of the domain 

The domain is splitted into small elements. Elements are linked at points called 

nodes. The specific arrangement of elements is called a mesh (Figure 2.4). 

- Step 2: Selection of a proper shape function 

The unknown variable is interpolated with certain shape functions that are localized 

to those finite elements (Singiresu, 2004). 

- Step 3: Calculating the element stiffness matrices  

In the finite element method for the numerical solution of partial differential 

equations, the system of linear equations represented by the stiffness matrix, is 

solved in order to ensure an approximate solution to the differential equation. 

- Step 4: The assemblage of elements (global stiffness matrix) 

Element stiffness matrices are assembled in this step to give the global stiffness 

matrix or the stiffness matrix of the structure. With this, the overall equilibrium 

equations are obtained. The element stiffness of all the elements need to be 

determined and then assembled together in a systematic manner. 

- Step 5: Finding the displacement for each node 

- Step 6: Computation of element stresses and strains  

Steps 5 and 6 will be discussed later through an example (Singiresu, 2004). 

https://en.wikipedia.org/wiki/Finite_element_method
https://en.wikipedia.org/wiki/Partial_differential_equations
https://en.wikipedia.org/wiki/Partial_differential_equations
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FEM produces an estimated solution. The solution can be improved by using a 

finer mesh (more elements) to represent the structure (Cook et al., 2001). 

 

Figure 2.7: Finite elements and meshing for discretization of the domain (Singiresu, 2004) 

To illustrate the abovementioned steps, an example is given below. Assuming a 

2D problem, the domain is discretised with a number of triangular elements (step 

1), as indicated in Figure 2.7. A typical linear triangular element is shown in Figure 

2.8 (Singiresu, 2004). 
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Figure 2.8: A linear triangular element(Singiresu, 2004) 

The process to find the interpolation functions (shape functions, step 2) is 

described below (Adeeb, 2010). 

To compute the shape functions, normally there are two approaches: the intuitive 

method and rigorous structured method. Both are the same, but the rigorous 

structured method is most acceptable for higher order elements. For this example, 

the latter method is only discussed. 

According to the number of degrees of freedom, the interpolation functions based 

on the Pascal triangle are chosen as below (Adeeb, 2010): 

 

𝐮(𝑥, 𝑦) = 𝑎1 + 𝑎2𝑥 + 𝑎3𝑦          (2.30) 

𝐯(𝑥, 𝑦) = 𝑏1 + 𝑏2𝑥 + 𝑏3𝑦          (2.31) 
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where, u, v are displacement functions and x, y are point coordinates. The 

displacement function must be capable of rigid body displacements of the element. 

The constant terms used in the polynomial (a to a3 and b to b3) ensure this 

condition (Adeeb, 2010).  

{
𝐮
𝐯
} = (

1 0  𝑥    
0 1 0

 0 𝑦 0
  𝑥 0 𝑦

)

{
 
 

 
 
𝑎1

𝑏1

𝑎2

𝑏2

𝑎3

𝑏3}
 
 

 
 

          (2.32) 

𝐮 = 𝑋𝑎          (2.29) 

{
 
 

 
 
𝐮𝟏

𝐯𝟏

𝐮𝟐
𝐯𝟐

𝐮𝟑

𝐯𝟑}
 
 

 
 

=
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𝑎1

𝑏1

𝑎2

𝑏2

𝑎3

𝑏3}
 
 

 
 

          (2.33) 

𝐮𝐞 = 𝐴𝑎          (2.34) 

𝑎 = 𝐴−1𝑢𝑒          (2.35) 

𝐮 = 𝑋𝑎 = 𝑋𝐴−1𝑢𝑒          (2.36) 

Therefore, the shape function Ni is equal to (Adeeb, 2010):  

𝐍 = 𝑋𝐴−1          (2.37) 

𝐍 = [
𝑁1 0 𝑁2

0 𝑁1 0  
  0 𝑁3 0

    𝑁2 0 𝑁3
]          (2.38) 

After computing the shape functions, the stiffness matrix of the element is 
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calculated (step 3). The elemental stiffness matrices are assembled to give the 

global stiffness matrix. The global stiffness matrix is employed to calculate the 

global force and displacement. To determine the element stiffness matrix, the 

following steps are taken (Adeeb, 2010): 

As shown in equation (2.36), the complete element displacement (u) is: 

𝐮 = 𝐍. 𝑢𝑒          (2.39) 

Therefore, the stiffness matrix is equal to: 

𝐊 = ∫𝐵𝑇 . 𝐶. 𝐵. 𝑑𝑣 = 𝑡 ∫𝐵𝑇 . 𝐶. 𝐵. 𝑑𝐴 = 𝑡 ∫ ∫ 𝐵𝑇
1

−1

1

−1

. 𝐶. 𝐵𝑑𝑦𝑑𝑥          (2.40) 

where t is the thickness of the element and the constitutive matrix [C] contains 

elastic constants. The dimension of the [C] matrix relies on on the strain 

components. For example in 2D problems, strain has three components (𝜀𝑥𝑥, 𝜀yy, 

𝛾𝑥𝑦) so the dimension of [C] is 3×3. For 3D problems, the strain components are 6 

so the dimension of [C] is 6×6. 

For plane stress conditions (Adeeb, 2010): 

𝐂 =
𝐸

1 − 𝜈2
[

1 𝜈 0
𝜈 1 0

0 0
1 − 𝜈

2

]          (2.41) 

and for plane strain: 
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𝐂 =
𝐸

(1 + 𝜈)(1 − 2𝜈)
[

1 − 𝜈 𝜈 0
𝜈 1 − 𝜈 0

0 0
1 − 2𝜈

2

]          (2.42) 

The matrix [B] also known as the strain-displacement matrix, is defined as (Adeeb, 

2010): 

[𝐁] = [𝐎]. [𝐍]          (2.43) 

The [O] matrix is the operation matrix. For this example, it can be defined as 

(Adeeb, 2010): 

[𝐎] =

[
 
 
 
 
 
 
𝜕

𝜕𝑥
0

0
𝜕

𝜕𝑦
𝜕

𝜕𝑦

𝜕

𝜕𝑥]
 
 
 
 
 
 

          (2.44) 

Therefore, 

𝐁 =

[
 
 
 
 
 
 
𝜕𝑁1

𝜕𝑥
0

𝜕𝑁2

𝜕𝑥

0
𝜕𝑁1

𝜕𝑦
0

𝜕𝑁1

𝜕𝑦

𝜕𝑁1

𝜕𝑥

𝜕𝑁2

𝜕𝑦

       0
𝜕𝑁3

𝜕𝑥
0

       
𝜕𝑁2

𝜕𝑦
0

𝜕𝑁3

𝜕𝑦

       
𝜕𝑁2

𝜕𝑥

𝜕𝑁3

𝜕𝑦

𝜕𝑁3

𝜕𝑥 ]
 
 
 
 
 
 

          (2.45) 

Now the stiffness matrix of this element can be calculated: 

𝐊 = ∫𝐵𝑇 . 𝐶. 𝐵. 𝑑𝑣 = 𝑡 ∫𝐵𝑇 . 𝐶. 𝐵. 𝑑𝐴 = 𝑡 ∫ ∫ 𝐵𝑇
1

−1

1

−1

. 𝐶. 𝐵𝑑𝑦𝑑𝑥          (2.46) 

where t is the thickness of the element (Adeeb, 2010). 
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After computing the element stiffness matrices, they are assembled to create the 

global stiffness matrix (step 4). In this case, the global equilibrium equations are 

(Reddy, 1984): 

𝐊.𝐔 = 𝐅          (2.47) 

where K is the global stiffness matrix, U is the vector of global displacements and 

F is the global vector of loads. From equation (2.45), displacements for each node 

can be computed as follows (step 5): 

𝐔 = 𝐊−𝟏. 𝐅          (2.48) 

Eventually, from the displacements, the strains and stresses for elements can be 

computed (step 6) (Reddy, 1984).    

A piecewise implementation of the variational approaches describes the finite 

element technique. In these methods, the approximation functions are algebraic 

polynomials and the unknown coefficients indicate the values of the solution at a 

finite number of preselected points, called nodes. The variational approaches 

include the Ritz technique, the least-squares technique, the collocation technique, 

the Petrov-Galerkin and the Galerkin method (Reddy, 1984). All these approaches 

seek an approximate solution in form of a linear mixture of suitable functions. 

Among them, the Galerkin method has proved to be superior, mainly due to its 

simplicity and wider range of applicability (Reddy, 1984).  
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2.8.4. Discretization with Finite Elements 

Discretizing the equivalent model with finite elements, as shown in Fig. 2.9, we can 

achieve a finite element equation for the solid medium as 

𝑲𝒖𝑼 = 𝐹                        (2.49) 

where Ku is the global stiffness of the solid elements, U is the global nodal 

displacement, and F is the equivalent global nodal force of the net pressure. 

As only net pressure has contribution to F, Eq. (2.49) can be rewritten as 

         𝑲𝒖𝑼 − 𝑩𝑷 = 0                                                                              (2.50) 

where P is a vector of nodal net pressure, and matrix B transfers the net pressures 

into equivalent nodal forces. The conservation of the incompressible fluid in the 

fracture leads to its weak form as (Bao et al, 2014)                                                                                                 

∫ [−∇(𝛿𝑝). 𝑞 + (𝛿𝑝)
𝜕𝑤

𝜕𝑡
+ (𝜕𝑝)𝑔] 𝑑𝑙 + 𝛿𝑝𝑞|𝑆𝑙𝑡

= 0                                    (2.51) 

 

where ∆ is the gradient operator, 𝛿p is any allowable testing function, q is the fluid 

flux, lt is the half fracture length at time t, and S is the collection of boundary 

conditions of flow. Therefore, a finite element equation for fluid flow within the 

fracture is cast as 

𝑲𝒘(𝑾)𝑷 + 𝑳𝑾 + 𝑯 = 0                                                                     (2.52) 

where W is a width vector formed by the nodes on the fracture surface, Kw is the 

assembly of the flux stiffness of the fluid elements and is a function of W, L is the 

assembly of the length of the fluid elements, and H includes the contributions of 

the fluid leak-off and the fluid injection (Devloo et al, 2006). 

Taking time integration with Eq. (2.52), we have 

∫ [𝑲𝒘(𝑾)𝑷 + 𝑳𝑾 + 𝑯]𝑑𝑡
𝑡𝑛+1

𝑡𝑛
= 0                                        (2.53) 
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The backward Euler scheme for time difference is used in this research. So 

according to Eq. (2.53) we have    

𝑲𝒘(𝑾𝒏+𝟏)𝑷𝒏+𝟏𝑡 − 𝑳(𝑾𝒏+𝟏 − 𝑾𝒏) + 𝑯𝐷𝑡 = 0                          (2.54) 

 

 

 

Figure 2.9: Discretization with finite elements 

 

where Wn+1 and Pn+1 are the unknown fracture width and net fluid pressure at the 

(n + 1)th step, respectively, Wn is the known fracture width at the nth step, and Dt is 

the time step between the nth step and the (n + 1)th step. 

Eq. (2.54) can be rewritten in an alternative way as (Garagash ,  Detournay, 2005)  

𝑲𝒘(𝑼𝒏+𝟏)𝑷𝒏+𝟏∆𝑡 + 𝑳΄(𝑼𝒏+𝟏
𝒇

− 𝑼𝒏
𝒇
)  + 𝑯∆𝑡 = 0             (2.55) 

where Uf 
n+1 and Uf

n are the displacements of the nodes on the fracture surface at 

the (n + 1)th step and nth step, respectively, and L´ determines the contribution of 

nodal displacements on the fracture surface to fracture widths. Note that Uf 
n+1 is 

a subset of U n+1, and Uf n is known a priori (Bao et al, 2014). 
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In every step, Eq. (2.55) leads to a new equation written as 

𝑲𝒖𝑼𝒏+𝟏 − 𝑩𝑷𝒏+𝟏 = 0                                              (2.56) 

Un+1 and Pn+1 can be obtained by solving the coupled Eqs. (2.55) and (2.56) (Bao 

et al, 2014). 

 

2.8.5. Finite Volume Method 

The finite volume method is a discretization method, which is well suited for the 

numerical simulation of various types (elliptic, parabolic or hyperbolic, for instance) 

of conservation laws. It has been extensively used in several engineering fields, 

such as fluid mechanics, heat and mass transfer and petroleum engineering. Some 

of the important features of the finite volume method are similar to those of the 

finite element method (Odeon, J.T, 1991). 

In the early 1970’s, the finite volume method was introduced. Exceptionally, in the 

Weighted Residual Method, the weighting function takes the form of the following 

(Sayma, 2009):  

𝑊̅𝑖 = 1          (2.57) 

In the finite volume method, several weighted residual equations are generated by 

splitting the solution domain into sub-domains known as ‘control volumes’. The 

weighting function is set as unity over the control volumes one at a time, and zero 

elsewhere. This entails that the residual over each volume must become zero. 

A finite volume discretization is derived by starting from the integral form of the 

flow equations. The integral form (Sayma, 2009) is another way of representing 

the flow equations. For instance, the continuity equation for a control volume 𝛺 

with a surface boundary Γ can be stated as (Sayma, 2009): 
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𝜕

𝜕𝑡
∫𝜌𝑑𝛺
𝛺

+ ∮𝜌𝑈⃑⃑ 𝑑𝛤 
𝛤

= 0          (2.58) 

where 𝑈⃑⃑ = 𝑢⃑ + 𝑣 + 𝑤⃑⃑ , u,v, w are the flow velocity vectors, t is the time and 𝜌 is density 

(Sayma, 2009). 

The above equations states that the rate of accumulation of fluid within domain 𝛺 

equals to the rate of the flux through its boundaries. 

Similarly, integral formulations can be acquired for the momentum equations. For 

instance, the integral form of the momentum equation can take the form (Sayma, 

2009): 

𝜕

𝜕𝑡
∫𝜌𝑢𝑑𝛺
𝛺

+ ∮(𝜌𝑢𝑈⃑⃑ + 𝑝 − 𝜏)
𝛤

𝑑𝛤         (2.59) 

where τ is the viscous flux given by: 

𝜏 = 𝜇 (
𝜕𝑢

𝜕𝑥
+

𝜕𝑢

𝜕𝑦
+

𝜕𝑢

𝜕𝑧
)          (2.60) 

The integral forms can be expressed for the y and z momentum equations in a 

similar way. 

The finite volume formulation can initiate from this integral form. The basis of the 

Finite Volume formulation is shown by the fact that the variation of any quantity 

within a volume relies completely on the surface values of the fluxes. 

The Finite Volume formulation begins by subdividing the solution domain into small 

volumes. Afterwards, the integral form of the conservation laws for each volume 

can be individually written. The global conservation can be recovered by adding 

up the fluxes of the sub-volumes (Sayma, 2009). 

Let’s take for instance the volume in Figure 2.10, which is splitted into 4 sub-

volumes (Sayma, 2009). 
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Figure 2.10: Finite volume subdivisions (Sayma, 2009) 

 
The flux through the internal subdivisions cancels out. For intance the flux going 

through boundary BD of volume 3 is equal in magnitude and opposite in sign to 

the flux going through boundary DB of volume 4. A system of algebraic equations 

is formulated by working out the fluxes through all the boundaries on each sub-

volume in terms of the field variable either at the volume center point or at the 

vertices. These equations are then solved for the unknown parameters (Sayma, 

2009). 

In this study finite volume approach was employed to discretize fluid flow 

equations. The theoretical and numerical tools to simulate the hydraulic fracturing 

problem in this study, including fracture mechanics, fluid mechanics, finite 

element method, finite volume method and fuzzy logic, were introduced in this 

chapter.  
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Chapter 3. Fuzzy model for hydraulic fracturing in Tabas coal mine 

3.1 Introduction 

In underground coal mines, the gas content of coal seam increases with depth and 

mining intensity and is a primary factor in mining safety and efficiency. Coal is a 

complex porous medium that consists of primary pores and fissures that result 

from tectonic movement, thus, it has a large amount of free space and multiple 

pore surfaces. Coal seam gas exists in adsorbed and free states. Only free gas 

can flow to a working face or be extracted. Coal bed methane is one of the main 

causes of underground coalmine explosions. Regardless of the negative financial 

and environmental impacts of coal bed gas, it is still considered as a fuel source 

(MacDonald, 1990).  

Methane is present within the natural pores of coal and micro pores of coal matrix. 

Some of this methane is absorbed by coal molecules and bonded to them 

(Holditch, 1989). If underground coal seams are pressurized, coal molecules will 

be trapped within the seams. If there is a pressure drop (due to mining, 

construction of a front or gas drainage drilling), coal molecules will begin to move 

towards the low pressure area. As coal has high potential for absorbing methane, 

coal layers will accumulate a considerable amount of gas (Sereshki, et al, 2003).  

Coal is of a porous nature with low permeability, its pore structure is far more 

complex than ordinary layers of other rocks (Soeder, 1991). Natural fractures, coal 

permeability and hydraulic fractures generate a path for gas and water to flow into 

coal seams from the cleats. Cleats in a coal seam are natural systematic fractures 

similar to those of sedimentary rocks (Kendall & Briggs, 1993). Cleat systems are 
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among the features of gas reservoirs that influence the economic feasibility of gas 

drainage from coal layers. This affects the success or failure of such projects, and 

is influential in the progress of gas drainage operations (Dhir, 1991).  

Hydraulic fracturing is routinely applied to stimulation of coalbed methane wells 

around the world. Hydraulic fracturing can improve the permeability of coalbed 

methane reservoirs effectively, which is of great significance to the commercial 

production of coalbed methane. The basic task of mining engineers is to generate 

more coal and methane gas at a given level of labour input and material costs, 

ideal quality and maximum efficiency. To make these goals attainable, it is required 

to automate and mechanize mining operations. HF can result in significant cost 

reduction and higher levels of profitability for coalmines. Hence, mining engineers 

are continuously looking for different ways to mechanize mining procedures, 

especially gas drainage of coal mines that provides a great potential for reduced 

cost of ventilation, increased safety and improved profitability (MacDonald, 1990).  

Methane drainage operation is carried out in underground coalmines to prevent 

sudden gas and coal outbursts and to improve safety. Normally, coal beds possess 

low gas recovery. When the coalface is mined, a pressure difference is generated 

between the faces and somewhere deep inside the coal bed layer. This results in 

methane emission into the working face. Gas emission is further facilitated by 

horizontal and vertical fractures induced by the changing ground stress conditions 

(Sereshki, et al, 2003).  

In this study, the development of an incremental mehtod to assess the methane 

production for different variables is investigated. The parameters affecting the 
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development of coal bed methane extraction by the HF technique are examined. 

As a case study, HF in the coal bed in PARVADEH 4 Tabas mine in Iran, which 

will be undergoing stress variation due to future mining activities, is investigated. 

Tabas Coal Mine is located about 60 km South West of Tabas City where it will be 

mined by longwall mining. The average coal bed gas content is in the order of 15 

m3/t (MacDonald, 1990). 

3.2 Hydraulic Fracturing of Coal 
 
Hydraulic fracturing is the process of creating fractures in rock and placing 

proppants into the fractures. Hydraulic fracturing is regularly used for stimulation 

of oil, gas, and coalbed methane wells around the world. The stimulation effect is 

achieved in coal seams as in other reservoirs, by producing conductive fractures, 

connecting the well to the coal reservoir. The conductivity of the fracture is 

commonly maintained by placing round and sieved sand proppant in the fracture 

channel. The proppant prevents the fracture faces from closing back completely 

on one another after the treatment (Jeffrey, 2012). 

The coalbed methane (CBM) industry began after the realization that large 

methane contents of coals could often be produced profitably if the seams were 

dewatered and if a permeable path to the wellbore could be established for the 

gas.  

Although hydraulic fracturing had been highly developed for conventional gas 

reservoirs of low-permeability, adjustments to the process were necessary for the 

coal because of the following phenomena (Jeffrey, 2012): 
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• The surface of the coal adsorbs chemicals of the fracturing fluid. 

• The coal has an extensive natural network of primary, secondary, and tertiary 

fractures that open to accept fluid during hydraulic fracturing but close upon the 

removal of the fluid pressure, which is followed by damage, fluid loss, and treating 

pressures higher than expected (Jeffrey, 2012). 

• Fracturing fluid can leak deep into natural fractures of coal without forming a filter 

cake. 

• Multiple, complex fractures develop during treatment. 

• High pressures are often required to fracture coal. 

• Young’s modulus for coal is much lower than that for conventional rock. 

• Induced fractures in some vertical CBM wells may be observed in subsequent 

mine troughs. 

• Horizontal fractures take place in very shallow coals. 

• Fines and rubble result from fracturing brittle coal. 

• Coal seams to be fractured may be multiple and thin, perhaps only 0.3 or 0.6 

meter thick, requiring a strict economical method to the operations (Jeffrey, 2012). 

To produce the water and gas from the coal seam, holes are introduced that 

penetrate the casing, cement and a short distance into the coal. These holes are 

normally generated using perforating guns that consist of a string of shaped 

explosive charges that, when set off, shoot an explosively generated jet through 

the steel, cement and rock to a distance of 200 to 400 mm into the coal. On the 

other hand, a high pressure water and sand slurry can be directed at the casing to 

cut a hole or slot through the casing and into the coal (Jeffrey, 2012). Hydraulic 
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fracturing is then done by isolating the perforated section, generally by installing a 

plug inside the casing that presses against the casing to hold itself in place. 

Pumping fluid down the well then pressurizes the section perforated. The fluid 

pressure increases until the in situ stress and strength of the rock are exceeded, 

resulting in formation of a fracture. This fracture is extended as a hydraulic fracture 

by continuing to pump the fracturing fluid into it as it grows in size into the reservoir. 

The rate of growth of the fracture relies on the fluid injection rate, its overall shape 

and a number of other rock properties and fluid characteristics (Jeffrey, 2012).  

The rate of fracture propagation diminishes with time and, generally after 15 to 20 

minutes, growth has slowed to a few meters per minute. Hydraulic fracture 

treatments in coal would typically generate fractures extending to between 100 and 

300 m, but smaller and larger fractures can be formed depending on the injection 

rates, seam thickness, fracturing fluid type and volume, and other features of the 

coal, surrounding rock, in situ stress and treatment execution. Volumes used per 

fracture treatment range from a few hundred liters for test fractures up to up to 

around one million liters. Average treatments might be approximately 250,000 

liters in volume. Injection pressures rely on the depth of the interval being fractured 

and generally range from 10 MPa to 40 MPa. Average pressures might be 25 MPa. 

Both the volume injected and the pressure responses are dependent on the 

features of the site and the stimulation design (Jeffrey, 2012). Figure 3.1 

demonstrates hydraulic fractures in a horizontal production well and a coal seam 

which is commonly isolated by thick shale and claystone, acting as natural barriers 

to vertical movement of groundwater. A fracking fluid unit, wastewater ponds, 
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borehole casing, gas bearing formation, pre-existing fault and location of induced 

seismicity were shown in the figure. 

 

 
 

 
Figure 3.1: Hydraulic fractures in coal bed methane (John Williams Scientific Services Pty 

Ltd, 2012) 

 
 
3.3 Injection of fluids and proppants in hydraulic fracturing 

In general, it is necessary to inject fluids and proppant into the well to initiate 

fracturing in the coal seam and to keep the fractures open so that gas and water 

can flow to the well. Injection takes from tens of minutes to a few hours (Taleghani 

2009).  

The fracture faces expose a large area of the seam to the lower producing 

pressure, allowing the water and gas to drain directly into the propped fractures at 

an accelerated rate (Economides & Martin 2007). Hydraulic fracture treatments 



Chapter 3                                     Fuzzy model for hydraulic fracturing in Tabas coal mine 

 

58 
 

are designed to place a propped conductive fracture in the coal seam that will 

efficiently stimulate production from the seam. The stimulation effect achieved 

relies both on the conductivity and size (length and height) of the fracture and on 

the permeability and thickness of the coal seam. Effective stimulation of a low-

permeability seam needs longer moderate conductivity hydraulic fractures, while 

stimulation of a high-permeability seam demands shorter high-conductivity 

fractures (Economides & Martin 2007). 

The fluids and particles should only be injected into the target coal layer and not 

the units above and below. This can be achieved through accurate subsurface 

characterisation so that perforation and subsequent injection only happens at the 

target coal layer. Nevertheless, some fracture treatments are designed to generate 

a fracture that propagates vertically through several adjacent thin layers because 

stimulating each layer individually would not be cost effective. The fracturing fluid 

is mainly made up of water, with the next largest component being the proppant, 

which is transported into the fractures to hinder them from closing once the high 

fluid pressure is removed. Proppant is generally sand but can also be nut shells, 

ceramics or bauxite (Beckwith 2010). 

Some hydraulic fracturing fluids also contain either a gel mixed in with the water to 

increase viscosity or a friction-reducing additive. Viscosity is a measure of a fluid’s 

resistance to flow. The main difference between fracturing with water or 

‘slickwater’, which is water with a friction reducing additive, or a water-gel mixture, 

is that the increase in viscosity from the addition of gel allows more proppant to be 

moved into the fractures (APLNG 2013b). Fracturing with gel may need a volume 
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of up to 1.2 percent of additives, compared to water fracturing which generally 

holds a 0.1 percent volume of additives (APLNG 2013b). Most operators in 

Australia use water-gel mixtures (APLNG 2013b; Golder Associates 2010b).  

A range of other chemicals are employed including acid, biocides, stabilisers, pH 

buffers and breakers. A summary of the fracturing fluids and proppants utilized is 

provided in Table 3.1. The fluid composition and volume changes during injection 

are tailored to suit the site-specific condition at each well. The usual order of 

operations involves the following considerations (Economides & Martin 2007):  

If there is significant calcium carbonate present in the coal, then a dilute mix of 

acid and corrosion inhibitors is injected to dissolve it. Acid is also employed to 

stabilise pH and to clean the perforation tunnels. Injection of high pressure water 

to initiate fracturing using corrosion inhibitors, clay stabilisers, biocides and 

optionally gelling agents continues until a drop in pressure is recorded that signifies 

initiation of fracturing. If a gelling agent is utilized then ‘breaker’ chemicals are 

progressively added to the slurry to breakdown the gel and decrease the viscosity 

close to that of water to make it easier to extract the injected fluid back. A small 

volume of water or uncrosslinked gel is injected at the end of the treatment to flush 

the last slurry to the perforations so that no proppant is left in the well. The typical 

gelling agents are natural polymers such as guar gum derived from the pods of the 

guar bean (Economides & Martin 2007).  
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Table 3.1: Summary of the fluids and particles used in hydraulic fracturing fluid in 
Australia ( Economides & Martin 2007; Golder Associates 2010b; APLNG 2011; AGL  2011; 

Santos 2011; QGC 2011; Arrow Energy 2012b). 

Injected 
substance 

Purpose and notes Used materials 

Water Fractures the coal when injected 
under high pressure. Volume of 
water required is ~0.2 to 1.3 ML 
per well. 

Bore water, farm pond 
water or groundwater 
previously extracted from 
coal seams is often used 

Proppant Keeps the fractures open once the 
high pressure fluid is removed. The 
latest technology advances in 
proppants include high strength 
ceramics and sintered bauxite 

Sand, Resin-coated sand, 
Ceramics, Bauxite 

Acid Dissolves calcite in the coal prior to 
fracturing. Not all wells require this 
treatment because coal seams do 
not always contain calcite 

Hydrochloric acid, 
Muriatic acid, Acetic acid 

Gelling 
agent  

or  

Clay 
stabilisers 

Increases the viscosity of the fluid, 
to allow more proppant to be 
carried into fractures. Not all 
hydraulic fracturing uses a gel; gel-
free fracturing is termed 
‘slickwater’ 

Guar gum, Starches, 
Cellulose derivatives 

Polydimethyldiallylammon
ium chloride  
(Claytrol) 

Tetramethylammonium 
chloride  
(Claytreat 3C) 

Crosslinker Increases the viscosity of gelling 
agents. 

There are different crosslinkers for 
different gelling agents 

Borate salt , Ethyl glycol, 
Isopropanol 

Disodium octaborate 
tetrahydrate 

Boric acid, Boric oxide 
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Injected 
substance 

Purpose and notes Used materials 

Biocide Limits or prevents growth of 
bacteria that could damage the 
gelling agent. 

The natural polymer gelling agents 
are good food for bacteria so they 
encourage bacterial growth - 
biocides kill these bacteria 

Glutaraldehyde, Boric 
acid, Caustic soda 

2,2-Dibromo-2-
cyanoacetamide, 
bronopol 

Tetrakis(hydroxymethyl)p
hosphonium sulfate  

Sodium hypochlorite, 
Sodium thiosulfate 

 

pH buffer Keeps the pH of the fluid in a 
specified range. Required for the 
stability of crosslinked polymers 

Acetic acid, Sodium 
hydroxide 

Potassium carbonate, 
Sodium carbonate,  

Breaker Chemically breaks the bonds of the 
gel in order to reduce the viscosity 
back to that of water. Only required 
if a gel is used 

Hydrogen peroxides, 
Sodium persulfate 

Diammonium 
peroxidisulphate 

Friction 
reducers 

Reduce fluid surface tension Oxyalkylated alcohol 

 
 
3.4 Vertical and horizontal wells for gas drainage in HF 

Vertical wells drilled in advance of mining to drain seam gas need stimulation to 

speed up the drainage process and to permit fewer wells to successfully drain the 

area targeted. A particular distance between wells might be 200 to 400 m. 

Hydraulically fractured wells at this spacing might need five years or more to drain 

50 percent of the gas in place (Jeffrey, 1999). Closer spaced wells drain the gas 

more rapidly, but the total costs of drilling, completion and operating promptly 
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increase. Thus, employing vertical wells to drain gas before mining needs 

important lead-time and upfront investment. There is good scope for mines to 

partner with a coal seam methane producers to reduce the cost to the mine 

significantly. Hydraulic fracturing is regularly applied to stimulate coal seam 

methane boreholes (Jeffrey et al., 1997, Jeffrey et al., 1998, Diamond and Oyler, 

1987). 

Horizontal boreholes are drilled and hydraulically fractured in oil and gas 

reservoirs. The fracture treatments are undertaken to stimulate production and 

connect the horizontal well into layered reservoir formation. The horizontal layering 

in the reservoir invariably imparts a permeability anisotropy to the rock. Usually, 

the vertical permeability is significantly lower than the horizontal permeability. 

Furthermore, hydraulic fractures bypass the near wellbore damage zone, which 

can be an important factor in reducing the productivity of any horizontal well or 

drainage borehole. Hydraulic fractures can be placed in horizontal drain holes by 

running inflatable straddle packers on an injection string. Fluid bypass or even 

fracturing of the coal under the packers may take place (Jeffrey, 1999).  

Several trials of placing hydraulic fractures in coal layers have been carried out 

(Croft, 1980, Kravits, 1993, Jeffrey, 1999) with some success reported by Kravits. 

Special pumps and blenders are required if sand is included in the treatment, but 

some stimulation effect can be attained by employing only water. Fracturing 

horizontal wells have been developed in the petroleum industry and might be 

adapted to fracturing horizontal drain wells in coal seams (Croft, 1980, Kravits, 

1993, Jeffrey, 1999). Potential of hydraulic fracturing, as a stimulating technique, 
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in the Parvade4 Tabas coal mine in Iran will be studied in the next sections. Vertical 

wells as an access way to the coal seam and horizontal well as a production well 

can be used in the Tabas coal seams. 

3.5 Tabas Coal Mine  

Tabas coal region is one of the most comprehensive coal resources in Iran. Tabas 

coal mine is located in the central part of Iran near the city of Tabas in Yazd 

Province and situated 75 km from southern Tabas. The mine area is a part of 

Tabas-Kerman coalfield. The coalfield is splitted into 3 parts in which PARVADEH 

region, with the extent of 1200 km² and 1.1 billion tones of estimated coal reserve, 

is the largest and main part for excavation and exploitation for future years 

(IMPASCO 2005). The coal seam has eastern-western expansion with reducing 

trend in thickness toward east. Its thickness ranges from 0.5 to 2.2 m but in most 

places it has a consistent 1.8 m thickness. The large volume of coal reserve and 

appropriate geometry of coal seams in Tabas have created an ideal condition for 

application of HF. The most important coal seam in the Tabas region is C1 with 

the average thickness of 1.8 m. Figure 3.2 shows Parvadeh 1, 2, 3, 4, central and 

east Parvadeh coal mine in the Parvadeh region, which are major resource of 

coking coal in central Iran (IMPASCO 2005). 
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Figure 3.2: PARVADEH 4 Coal mine in PARVADEH Region (IMPASCO 2005) 

In this region, the longwall mining technique has been employed for a section of 

the C1 seam in the mine No 1. The development and opening of the orebody have 

been carried out through inclined openings. Table 3.2 shows the average 

geomechanical parameters of the coal and the overburden rocks of PARVADEH 

4 Tabas coal seam (IMPASCO 2005). 

Table 3.2: PARVADEH 4 Tabas coal seams data (IMPASCO 
2005) 

Seam B1 B2 C1 C2 D 

Thickness (m) 0.4-0.9 0.5-1 0.8-1.1 0.4-0.8 0.4-0.7 

Dip (degree) 9 8 7 9 11 

Uniformity Semi-
uniform 

Uniform Semi 
Uniform- 
Uniform 

Un-uniform Un-uniform 

Roof Type Claystone Siltstone Siltstone Siltstone Siltstone 

Floor Type Siltstone Claystone Sandstone Siltstone Siltstone 

Strength (MPa) 4.7 4.5 4.4 4.4 4.4 

Reserve (ton) 29785000 72877000 64936000 30862000 7753000 
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3.6 Objectives of HF and the parameters affecting HF 

The most important objectives of HF in a coal mine are to achieve: reduced costs; 

faster development; faster mining; safer mining; concentrating production at fewer 

locations; achieving higher production rates per shift; mining with smaller 

underground crews; smaller capital expenditure per extracted ton of coal; working 

under protectively supported roofs and more productive crews.  

To take advantage of HF in a coal seam, a number of parameters should be 

considered. Seam dip, seam thickness, seam uniformity, seam floor condition, 

seam roof condition and gas concentration are some of the most important 

parameters that affect the potential of coal seam gas to be extracted by HF (Robert 

2002). Due to high quantity of methane gas in PARVADEH Tabas coal mine the 

factor of gas concentration is not considered in this study. 

3.6.1 Seam dip 

Coal seam’s dip is the angle at which coal deposits are inclined to the horizontal 

plane. Most coal gas drainage activities occur in flat or nearly flat seams. Usually, 

seams with low slope are more amenable for HF. Seams with slope of over 35 

degrees have low potential for hydraulic fracturing. The application of HF turns out 

to be  more complex with increase in seam slope. The best operational conditions 

are level layers (Ataee, 2009) .  

3.6.2 Seam thickness 

The thickness of the seam and its regularity are key parameters in coal seam 

hydraulic fracturing and great irregularities cannot be accommodated. The 

thickness that can be worked, at present, ranges from 0.5m and 5m. Where coal 
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seams are limited in thickness and the individual seams within the coal measures 

are normally less than 0.5 m thick, hydraulic fracturing may be utilized to link 

separate seams over a target horizon of 2 to 5 m (Ataee, 2009). 

3.6.3 Seam uniformity 

The effect of faulting on the geomechanics of HF is one of the most difficult issues 

to estimate. In some cases, the presence of faults or jointing can have a dominant 

effect on the geomechanics of a retreating mining operation. If there are complex 

geological conditions such as faults and seam pinch-outs, the applicability of HF 

will be minimized. The amount of coal seam displacement and the number of faults 

present over the length of a seam are very important parameters that affect the 

condition of the working face and the decision to mechanize the operation of the 

seam. In this study, the displacement index (Im) as a factor to measure geological 

disturbances has been used as follows:  

 

𝐼𝑚 =
𝑚

𝑡
            (3.1) 

 
 

where m is the displacement of a seam by faults and t is the thickness of the 

seam.  

Table 3.3 indicates the level of seam uniformity with respect to the displacement 

index. In this classification, seam uniformity ranges from 0 to 1, where seams with 

an index Im =0 are completely uniform and seams with a displacement index of 

more than 1.5, are considered to be non-uniform (Unrug and Szwilski, 1982). 
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Table 3.3: Seam uniformity classification (Unrug and Szwilski, 1982) 

Seam uniformity Condition Seam Uniformity Score Seam Displacement index 

Uniform 1-0.6 0-0.05 

Semi-uniform 0.6-0.35 0.5-1 

0.35-0.2 1-1.5 

Non-uniform 0.2-0.13 1.5-2 

0.13-0.08 2-2.5 

0.08-0.04 2.5-3 

0 3 

 
 
3.6.4 Roof conditions 
 
During the hydraulic fracturing process, the fractures should be kept open in order 

to extract the methane gas but if the roof of coal seam is not strong enough, it will 

push the fractures and close them. Also after hydraulic fracturing in coal seam, 

due to cutting coal seam by shearer machines, strong roof is unavoidable. Both 

operational experience and research results have demonstrated that roof stability 

is relative (Unrug and Szwilski, 1982). For an unstable roof, certain methods are 

necessary to monitor and change the factors contributing to the unstable 

conditions and to upgrade its stability after HF.  

Quantitative techniques are available to evaluate the propensity of roofs to cave 

in. These techniques use different parameters such as lithological sequences, 

amount of roof convergence at the gob edge, lack of support over a time period 

before caving, seismic wave velocity, drill core strength, average frequency of 

bedding plane and rock strength and bed separation resistance. The following 

empirical equation is used to determine the roof strength index (Unrug and 

Szwilski, 1982). 

 

𝑄𝑟 = 0.016 × 𝜎𝑐 × 𝐾1 × 𝐾2 × 𝐾3 ×
𝑚

𝐾−1
           (3.2) 
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where  Qr is the roof strength index, 𝜎 c is the average uniaxial compressive 

strength of the core (kg /cm2),  K1 is an factor that considers the reduction in 

strength from the laboratory to a field,  K2 is a factor to consider the reduction in 

strength with creep loading,  K3 is a factor to consider for reduction in strength with 

rise in humidity, m is the thickness of the immediate roof (cm) and K is a swelling 

coefficient with a value between 1.3–1.5. The roof strength index represents 

several design parameters which are based on a roof classification system (see 

Table 3.4). Table 3.5 indicates the values of various factors for different kinds of 

roofs (Unrug and Szwilski, 1982). 

 

Table 3.4: Roof strength and time exposure classification (Unrug and Szwilski, 1982) 

 
Roof type Roof strength 

index 
Description 

Unstable 0≤Qr ≤18 After exposure, roof caves in immediately or after a 
short delay 

Low stablility 18≤Qr ≤35 Roof very difficult to control. Full of cavities, 
fractures and fissures, caves in easily 

Medium 
stability 

35≤Qr ≤60 Easily to be caved. From fractured roof with local 
falls to fairly good roof 

Stable 60≤Qr ≤130 Good roof with excellent caving properties to hardly 
any caving 

Very stable Qr ≥130 Very strong and very stable. Artificial caving is 
necessary 

 
 

Table 3.5: K value for different rocks (Unrug and Szwilski, 1982) 

Rock 
type 

Sandstone Mudstone Siltstone 

K1 0.33 0.42 0.5 

K2 0.7 0.6 0.6 

K3 0.6 0.4 0.4 
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3.6.5 Floor conditions 
 
The floor should be sufficiently strong to withstand intrusions. Intrusion of soft 

floors can perturb advancing and also make the roof conditions complex to control 

due to high convergence. During mining operations, some coal may be left as 

support. Stability of strata is remarkably influenced by the reaction of floors to any 

type of support, installed along or behind mining faces. If the design of the support 

is to be determined by a satisfactory rate of closure or deformation along a mining 

face and its ends, then, in order to ensure support balance and stability, the stratum 

pressure within the face area should be monitored. This necessitates: (a) constant 

pressure and deformation distribution along the face; (b) a floor bearing capacity 

beyond the effective stratum pressure applied on it through the supports. Where 

footwall rocks are delicate, support systems may fail by punching into the 

peripheral rock of ore bodies. The failure mode is equivalent to bearing capacity 

failure of a foundation and may be analysed as such. The floor rock bearing 

capacity is directly related to the uniaxial compressive strength of rocks. Generally, 

a higher strength would lead to a greater bearing capacity and a wider potential for 

HF of the coal layer (Hartman, 1987). 

 

 
3.6.6 Seam reserve 
 
Coal reserve is measured tonnage of coal that has been calculated to occur in a 

coal seam. The coal reserve should be adequately large to utilize hydraulic 

fracturing. It takes 15–20 days to drill the wellbore and install the equipment in 

order to begin the hydraulic fracturing.  In case a coal seam is not thick and does 
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not accomodate sufficient gas to be a feasible target for production by itself, the 

HF will not be economical. A large coal reserve would result in lower installation 

cost per cubic meter of extracted coal bed methane (Ataee, 2005). 

 
3.6.7 Coal Strength 
 
Coal strength is one of the important factors that can affect in initiation and 

propagation of fractures in HF. As seen in Table 3.6, by increasing uniaxial 

compressive strength of coal, more shear force is required to overcome the coal 

strength (Peng and Chiang, 1984). 

 

Table 3.6: Shear stress and uniaxial compressive strength of coals by considering 
stiffness (Peng and Chiang, 1984) 

Coal Type Uniaxial Compressive 
Strength (MPa) 

Shear Stress 
 (MP) 

Soft 9.81 14.7 

Medium 9.81-19.61 14.7-29.4 

Hard 19.61-29.42 2.94-44.1 

 
 
 
3.7 Membership degrees of effective parameters in hydraulic fracturing 
 
A membership function is a curve that defines how each point in the input space 

is mapped to a membership value (or degree of membership) between 0 and 1. 

The membership degree quantifies the grade of membership of each element in 

the fuzzy set. 

Seam dip is one of the major parameters that determine the HF potential of coal 

seams. A fuzzy membership grade of seam dip has been developed, as shown in 

Figure 3.3. It should be noted that “very low” is allocated a membership grade of 

1.0 at a seam dip ≤8 degrees after which it gradually declines to 0. On the other 
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hand, “very high” means a membership grade of 0 for a seam dip ≤45 degree and 

gradually increases to 1.0 at a seam dip ≥50 degree. Other qualitative legends 

(low, medium and high) are defined as shown in Figure 3.3. 

 
 

 
Figure 3.3: Membership function diagram for seam dip 

 

Seam thickness is defined between 0 and 6 m. Figure 3.4 describes five qualitative 

legends ‘‘very low’’, ‘‘low’’, ‘‘medium’’, ‘‘high’’ and ‘‘very high’’. ‘‘Low’’ is allocated a 

membership grade of 1.0 when the thickness of the seam is between 0.8 and 1 m 

and 0.0 when the seam thickness is ≥1.4 m or ≤0.4 m. Other qualitative legends 

are defined as shown in Figure 3.4.  

For seam uniformity three qualitative legends (low, medium and high) are defined 

as shown in Figure 3.5. For roof and floor conditions, qualitative legends are 

defined as shown in Figures 3.6 and 3.7 respectively. There are three qualitative 

legends (low, medium and high) for seam strength also, as shown in Figure 3.8. 

For seam reservoir, qualitative legends are defined as Figure 3.9. Seam 
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membership grades of hydraulic fracturing potential are defined by five qualitative 

legends (very low, low, medium, high, very high) are shown in Figure 3.10. 

 
 

 
 

Figure 3.4: Membership function diagram for seam thickness 

 

 
 

Figure 3.5: Membership function diagram for seam uniformity 
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Figure 3.6: Membership function diagram for seam roof conditions 

 

 
Figure 3.7: Membership function diagram for seam floor conditions 
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Figure 3.8: Membership function diagram for seam strength 

 

 
Figure 3.9: Membership function diagram for seam reserve 
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Figure 3.10: Membership function diagram for HF 

 

Figure 3.10 shows the potential of hydraulic fracturing in the coal seam of 

Parvadeh 4 Tabas coal mine in percent and describes five qualitative legends 

‘‘very low’’, ‘‘low’’, ‘‘medium’’, ‘‘high’’ and ‘‘very high’’. The horizontal axis shows 

the variation of hydraulic fracturing potential and the vertical axis shows the 

variation of membership grade. The classifications presented in Figures 3.3-3.10 

are based on engineering judgment and current literature. The work of Ataee 

(2009) is a good example of coal mine mechanization using fuzzy logic. 

 

3.8 Fuzzy rule-base 
 
The main way to control a fuzzy logic system is to define the fuzzy rule–base in 

order to set up rules, which can combine different cases related to effective 

parameters in HF and the interaction of parameters with one another and 

eventually the overall effect on HF potential. At this stage, all input, intermediate 

and output variables and their interactions in a fuzzy logic system are determined. 

In order to predict the potential of hydraulic fracturing based on available inputs, a 
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number of simple rules in the form of IF-THEN statements are needed to relate 

inputs to suitable results.  

In this study 7 input variables, 5 intermediate variables, 6 rule bases and 104 fuzzy 

rules are used. Seam dip and uniformity variables which are the most effective 

physical parameters in the structure of coal seam in one side and roof, floor and 

coal quality which are mechanical (strength) parameters in the other side and the 

coal reserve which is an economical parameter, are classified separately (Figure 

3.11). The intermediate variables are used in fuzzy logic system in order to simplify 

the analysis of fuzzy rules and eventually predict the impact of effective parameters 

on HF potential. The rule base of seam structure is divided into two parts. The first 

part is related to seam dip and thickness as seam structure1 and the second part 

by considering seam structure1 and seam uniformity as seam structure2 was 

investigated. The rule base of strength parameters is also studied in two parts. The 

first part considers the quality of seam roof and floor as coal seam surrounding 

layers and second part considers the coal strength parameter and coal seam 

surrounding layers as strength factor. Fuzzy rule bases of the developed fuzzy 

model in this study were shown in tables 3.7-3.12. 
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Figure 3.11: Fuzzy rule bases for determining the HF potential 

 

Table 3.7: Fuzzy rule base of seam structure1 

IF THEN 

Dip Thickness Seam 
structure1 

Very low Very low Low 

Very low Low Medium 

Very low Medium Very high 

Very low High Very high 

Very low Very high Medium 

Low Very low Low 

Low Low Medium 

Low Medium Very high 

Low High Very high 

Low Very high Medium 

Medium Very low Low 

Medium Low Medium 

Medium Medium Very high 

Medium High Very high 

Medium Very high Medium 

High Very low Very low 

High Low Medium 

High Medium Medium 

High High Medium 

High Very high Very low 

Very high Very low Very low 

Very high Low Very low 
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Very high Medium Low 

Very high High Low 

Very high Very high Low 
 

Table 3.8: Fuzzy rule base of floor-roof 

IF THEN 

Floor Roof Floor-Roof 

Low Low Very low 

Low Medium Very low 

Low High Very low 

Medium Low Low 

Medium Medium Medium 

Medium High Low 

High Low  Low 

High Medium Very high 

High High  Low 
 

Table 3.9: Fuzzy rule base of seam structure2 

IF THEN 

Seam 
structure1 

Uniformity Seam 
structure2 

Very low Low Very low 

Very low Medium Very low 

Very low High Very low 

Low Low Very low 

Low Medium Low 

Low High Low 

Medium Low Very low 

Medium Medium Low 

Medium High Medium 

High Low Very low 

High Medium Low 

High High High 

Very high Low Very high 

Very high Medium Medium 

Very high High Medium 

 

Table 3.10: Fuzzy rule base of strength factor 

IF THEN 

Roof-Floor Strength Strength 
factor 

Very low Low Very low 

Very low Medium Very low 

Very low High Very low 
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Low Low Low 

Low Medium Low 

Low High Low 

Medium Low Medium 

Medium Medium Medium 

Medium High Low 

High Low  Very high 

High Medium High 

High High  Medium 

Very high Low Very high 

Very high Medium High 

Very high High Medium 

 

Table 3.11: Fuzzy rule base of technical factors 
 

IF THEN 

Seam 
structure 2 

Strength 
factor 

Technical 
factor 

Very low Very low Very low 

Very low Low Very low 

Very low Medium Very low 

Very low High Very low 

Very low Very high Very low 

Low Very low Very low 

Low Low Low 

Low Medium Low 

Low High Low 

Low Very high Low 

Medium Very low Very low 

Medium Low Low 

Medium Medium Medium 

Medium High Medium 

Medium Very high Medium 

High Very low Very low 

High Low Low 

High Medium Medium 

High High High 

High Very high High 

Very high Very low Very high 

Very high Low Medium 

Very high Medium Medium 

Very high High High 

Very high Very high Very high 
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Table 3.12: Fuzzy rule base of hydraulic fracturing potential 
 

IF THEN 

Technical 
factor 

Reserve HF 

Very low Low Very low 

Very low Medium Very low 

Very low High Very low 

Low Low Low 

Low Medium Low 

Low High Low 

Medium Low Very low 

Medium Medium Medium 

Medium High Medium 

High Low  Low 

High Medium Medium 

High High  High 

Very high Low Very low 

Very high Medium Medium 

Very high High Very high 

 
Fuzzy rule-based systems are one of the most significant areas of implimentation 

of fuzzy sets and fuzzy logic. Constituting an extension of classical rule-based 

systems, these have been successfully used in a wide range of issues in various 

domains for which uncertainty and vagueness emerge in several ways. A fuzzy 

rule is described as a conditional statement in the form: IF x is A. THEN y is B. 

where x and y are linguistic variables; A and B are linguistic values determined by 

fuzzy sets on the universe of discourse X and Y, respectively. The seam structure 

and the strength can be considered as technical factors of a coal layer, which have 

a very important role in determining the potential of HF in a coal seam. The 

classifications presented in Tables 3.11 and 3.12 are based on engineering 

judgement and fuzzy logic.   

3.9 Defuzzification 
 
After determination of fuzzy output, a certain level of defuzzification of the potential 

of hydraulic fracturing must be executed (Figure 3.12). During this phase, a choice 
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of various techniques, such as the center of maximum (COM) and the mean of 

maximum (MOM) is available. The COM method was selected in this study. 

 

 
Figure 3.12: A Fuzzy Logic System 

  
 
 
3.10 Results and Discussion 
 
Due to productivity of the HF method, this technique is used as a process of gas 

drainage in this study in order to calculate the possibility of gas drainage in Tabas 

coal seams. The numerical value of HF potential is calculated by considering the 

technical restrictions. The main restrictions are, seam gradient, thickness, 

uniformity, roof and floor conditions, quantity of the reserve and coal strength. 

According to the fuzzy logic, the membership functions and then rule bases were 

established and eventually the numerical value of HF potential in coal seam of 

PARVADEH 4 Tabas coal seam was calculated. 

The dominant natural conditions in coal seams are the most effective parameters 

in the determination of the potential of HF. According to the table 3.13 seam 

thickness and dip has great impact on the potential of hydraulic fracturing in each 

individual coal seam. Moreover, coal seams with higher uniformity have higher 
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potential of hydraulic fracturing. In this study, a fuzzy logic system was designed 

using the Fuzzy Tech 5.54 software. FuzzyTECH is the world leading family of 

software development tools for fuzzy logic and neural-fuzzy solutions (user’s 

manual of the fuzzyTECH). All fuzzyTECH Editions contain all editors, analysers 

and tools to design a complete fuzzy logic system. Table 3.13 shows the result of 

the potential of HF in PARVADEH 4 Tabas coal seams. 

Table 3.13: Potential of hydraulic fracturing in PARVADEH 4 Tabas Coal Mine 
 

Seam Dip 
(degree) 

Thickness 
(m) 

Uniformity Roof 
(t/m) 

Floor 
(MPa) 

Strength 
(MPa) 

Reserve 
(Mt) 

Potential of HF 
(%) 

B1 9 0.65 0.3 10.2 83.4 4.7 29.875 31.83           Medium 

B2 8 0.75 0.6 7.6 112.5 4.5 72.877 81.27                 High 

C1 7 0.95 0.58 11.2 273 4.4 64.936 94.6                   High 

C2 9 0.6 0.15 6.2 83.4 4.4 30.862 7.5             Very Low 

D 11 0.55 0.15 7.08 83.4 4.4 7.753 7.5             Very Low 

 

In order to construct a fuzzy system for calculating the potential of HF in coal seam, 

7 input parameters, 5 intermediate parameters, 6 rule bases (diagram 3.11) and 

104 fuzzy rules (Tables 3.7-3.12) were used. After constructing the fuzzy system, 

the potential of HF in PARVADEH 4 Tabas coal seam was calculated. The most 

significant parameter, which reduced the potential of using HF in this coalmine was 

low thickness of D and C2 seams and apart from thickness, seam uniformity is also 

very effective. 

If a single coal layer is thin and does not consist sufficient gas to be a feasible 

objective for production by itself, hydraulic fracturing can be utilized to fracture 

stimulate a medley of seams with one treatment. Successful fracturing of a number 

of seams depends on the layer thickness, the thickness of the interburden seam 

between them and the stress acting in the layers and in the interburden seams.  
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3.11 Conclusion 
 
The PARVADEH 4 Tabas coalmine is one of the largest coal reserves in the Tabas 

coal basin. Hydraulic fracturing can be utilized to create high conductivity channels 

in the coal layer. The conductive channels stimulate gas and water drainage rates 

by bypassing near borehole damage and forming a low pressure drain in the coal. 

Therefore, gas drainage increases at an increasing rate. Coal has always been a 

crucial source of energy and it’s long-term total demand in the world has not been 

adversely affected and always shows an upward trend despite temporary 

fluctuations. Minimising costs, attaining higher production rates per shift and 

improving safety levels are the most essential issues to tackle in Iranian coalmines. 

Coal gas drainage plays an important role in exploitation of coal seam reserves. 

Coal seam gas drainage requires significant investment and detailed studies 

before making a final decision on the execution of HF.  

The findings of this chapter can be summarized as below: 

 The most important parameters (seam gradient and thickness, geological 

disturbances, seam floor conditions and seam roof conditions) that affect 

the viability of HF in coal seams were studied. 

 Using the fuzzy logic theory, membership functions and fuzzy rule-bases 

were created and used to assess the potential for HF.  

 7 input variables, 5 intermediate variables, 6 rule bases and 104 fuzzy rules 

were used.  

 Seam dip, thickness and uniformity variables (which are the most effective 

structural parameters of coal seam), and roof conditions, floor conditions 
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and coal quality (which are strength parameters), were classified 

separately.  

 The coal reserve was also classified separately as an economical 

parameter.  

 The results show a high potential for HF in B2 and C1 seams and low 

potential of HF for B1, C2 and D of the PARVADEH 4 Tabas coalmine. 

The fuzzy modelling framework developed in this research is applicable in any 

unconventional gas reservoir, as it includes geological formation that has 

inclination, thickness, strength, roof, floor, and reserve. However, in each case, 

special considerations should be given to the geology, rock type and 

application. 
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Chapter 4. Coupled Hydro-Mechanical Modelling of Hydraulic Fracturing 
 
4.1 Introduction 
 
In this chapter, the development of a coupled approach to evaluate the hydraulic 

fracturing in a shale reservoir is investigated. A numerical model is developed to 

simulate the hydro-mechanical evolution of the fracture and of the surrounding rock 

in the finite element analysis framework. 

 

4.2 Computational Fluid Dynamics 
 
The Computational Fluid Dynamics (CFD) code, FLUENT, was used for numerical 

analysis of fluid flow. The code uses a finite volume-based technique to convert 

the governing mathematical equations to algebraic equations that can be solved 

numerically. The code is supplemented by a proprietary ANSYS based geometry 

construction and meshing engine, which allows users to build and mesh complex 

flow models to be used by the solver (Versteeg and Malalasekara, 1995). 

Like most CFD programs, Fluent is based on the finite volume method (FVM). The 

finite volume method is a generalization of the finite difference method to 

unstructured meshes. Unlike the finite element method, FVM yields values across 

the entire volume contained within a cell. This has a particular advantage in 

preserving the flux of state variables across intercellular surfaces (Wilkes, 1999). 

We are interested in using CFD to solve the Navier–Stokes equations or some 

coherent simplified subset of these. These are the set of equations which, taken 

together, completely describe continuum hydrodynamics. The momentum 

conservation equations are (Wilkes, 1999): 
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𝜌 (
𝜕𝑢

𝜕𝑡
+ 𝑢

𝜕𝑢

𝜕𝑥
+ 𝑣

𝜕𝑢

𝜕𝑦
+ 𝑤

𝜕𝑢

𝜕𝑧
) =

𝜕𝑝
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+ 𝜇 (

𝜕2𝑢

𝜕𝑥2
+

𝜕2𝑢

𝜕𝑦2
+

𝜕2𝑢

𝜕𝑧2
) 

            𝜌 (
𝜕𝑣

𝜕𝑡
+ 𝑢
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+ 𝑣

𝜕𝑣

𝜕𝑦
+ 𝑤

𝜕𝑣

𝜕𝑧
) =

𝜕𝑝

𝜕𝑦
+ 𝜇 (

𝜕2𝑣

𝜕𝑥2 +
𝜕2𝑣
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𝜌 (
𝜕𝑤

𝜕𝑡
+ 𝑢

𝜕𝑤

𝜕𝑥
+ 𝑣

𝜕𝑤
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+ 𝑤

𝜕𝑤
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𝜕𝑝
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𝜕2𝑤

𝜕𝑥2
+

𝜕2𝑤

𝜕𝑦2
+

𝜕2𝑤

𝜕𝑧2
) 

 
 

The the associated continuity equation is 
 

𝜕𝑢

𝜕𝑥
+

𝜕𝑣

𝜕𝑦
+

𝜕𝑤

𝜕𝑧
= 0                                                                (4.2) 

where, u, v, w are x, y, z components of velocity respectively. The continuity 

equation (equation 4.2), and the Navier-Stokes equations (equation 4.1) 

completely describe the motion of an incompressible fluid in a continuous medium 

in 3D (Wilkes, 1999). Fracture permeability can be defined by Darcy’s Law for a 

limited range of low velocity and low flow rate. Typically, the motion of 

incompressible free fluid is described by the Navier-Stokes equations while 

Darcy’s equation is used to model the filtration process. Darcy's law is 

a linear flow law, but Navier-stokes equations are nonlinear equations (Discacciati 

and Quarteroni, 2009).  

Broadly, the strategy of CFD is to replace the continuous problem domain with a 

discrete domain using a grid. In the continuous domain, each flow variable is 

defined at every point in the domain. Appropriate initial and boundary conditions 

need to be applied in order to solve the Navier-Stokes and continuity equations 

(Kriesi, 2018). The boundary conditions in a 2D crack on the wall of a production 

well, which are used in this study, are as follows: 
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- No-slip boundary condition is used to bound fluid and solid regions. 

- Velocity inlet boundary conditions are used to define the velocity and scalar 

properties of the flow at inlet boundaries.  

- Pressure inlet boundary conditions are used to define the total pressure and 

other scalar quantities at flow inlets.  

- Pressure outlet boundary conditions are used to define the static pressure 

at flow outlets.  

In addition, material properties including density and viscosity for each zone are 

specified. It is important to accurately represent a boundary layer or fully developed 

turbulent flow at the inlet but in this study laminar flow is used. Multiple upstream 

meshes can be used in Fluent, giving users the flexibility to select the most efficient 

mesh combinations for different applications but tetrahedral mesh, is used in this 

study. The advantage of using tetrahedral mesh is that it gives an indication of how 

the mesh is likely to respond to the deformations experienced during simulation. 

This is in contrast to many traditional methods that may produce an initial mesh 

with good quality measures, but also with hidden deficiencies that can be revealed 

during simulation leading to poor accuracy or element collapse (Kriesi, 2018). 

 
4.3 Coupled Hydro-Mechanical Modelling  

Multi-physics problems are very difficult to solve by analytical methods and using 

numerical or experimental methods is the best way to solve them. Advanced 

techniques and the availability of powerful commercial software tools in both fluid 

and solid parts have made this numerical simulation possible (Benra et al, 2011). 

There are three different coupling approaches for solving coupled problems: full 
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coupling, two-way coupling and one-way coupling (Benra et al, 2011). 

4.3.1 One-way Coupling 

In one-way coupling, two separate sets of equations are solved independently over 

the same total time interval. Periodically, output from one simulator is passed as 

input to the other; however, information is passed in only one direction. For 

example, pore pressures might be sent from the flow code to the mechanical 

simulation code as input load to calculate the mechanical responses such as 

stresses, strains, and displacements. No information would be passed back from 

the mechanical model to the flow model, however. In most practical applications, 

the two simulators are in fact run independently. One can often gain valuable 

insight into the physical situation from one-way coupling, and it is clearly preferable 

to fluid flow alone (Fredrich et al., 1996, 1998). 

4.3.2 Two-way coupling   

This type of coupling is applied to problems where the motion of a fluid influences 

a solid structure and at the same time the flow of fluid is influenced by reaction of 

the solid structure. During the first time step, converged solutions of the fluid 

calculation provide the forces acting on the solid body. Then the forces are 

interpolated to the structural mesh like in one-way coupling and the solution from 

the structural solver is obtained with those fluid forces as boundary conditions. As 

a consequence, the mesh is deformed according to the response of structure. 

These displacement values are interpolated to the fluid mesh, which results in 

deformation of the fluid domain. This process is repeated until both force and 

displacement values are converged below the pre-determined limit (Benra et al, 
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2011). 

4.3.3 Full Coupling  

To develop a fully coupled simulator, a single set of equations incorporating all of 

the relevant physics must be solved simultaneously. As an example, the traditional 

porous flow equations for a rigid matrix would be modified to include terms for 

mechanical deformation. Full coupling is often the preferred method for simulating 

multi-physics problems since it would theoretically produce the most realistic 

results. Unfortunately, deriving a fully coupled multiphase flow simulator that 

models nonlinear, inelastic mechanical deformations is extremely difficult. Thus 

with fully coupled models, often the mechanical part is simplified by the assumption 

of linear elasticity (Lewis and Sukirman, 1993a,b; Lewis and Ghafouri, 1997; 

Osorio et al., 1999). 

The present study describes a two-way coupling approach, which is somewhere 

between full and one-way coupling. In two-way (loose) coupling, there are two sets 

of equations, which are solved independently, but information is passed at 

designated time intervals in both directions between the two simulators. Laminar 

flow was used in this study. The flow model is coupled with the geomechanics 

model to simulate the interaction between fluid flow inside the fracture with rock 

deformations. For any time step, the pore pressures from the flow model are 

utilized as input for the geomechanics model for the calculation of stresses, strains, 

and displacements. The strains obtained from the gomechanics model are in turn 

employed to determine changes to the reservoir vaiables that are fed as input to 

the flow model. This iterative process continues until both (fluid and solid) models 
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are converged. The existing crack length and width were 200 mm. The borehole 

diameter and length were 30 cm and 200 cm respectively and it was drilled in a 

shale formation. The modelled domain was a cylinder with diameter of 150 cm. 

Velocity inlet (5 m/s), pressure inlet (9 MPa), pressure outlet (0 MPa) were used 

as boundary conditions in this model. Density of shale was considered 2.5 t/m3 

and laminar flow and tetrahedral mesh were used in this study. Two fixed supports 

were applied to the model, one on the input and another one on the output of the 

model. Figure 4.1 shows the horizontal borehole and the fracture inside a shale 

reservoir. The curve shows the fracture tip and x,y and z are the dedicated 

coordinate system for crack position. 

 

Figure 4.1: Semi-elliptical fracture and horizntal borehole inside a shale reservoire 

The Ansys Workbench can be used to perform coupled simulations using two or 

more systems (ANSYS Mechanical and ANSYS Fluent in this case) using a 

System Coupling component. One-way or two-way fluid-structure interaction 

analysis can be set up in the Workbench by connecting a System Coupling 

component to the Mechanical system and to the ANSYS Fluent fluid flow analysis 

system. Figure 4.2 shows the hydromechanical coupling procedure in the Ansys 
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Workbench. 

 

Figure 4.2: System coupling in Workbench 

The fluid pressure at the start of pumping was 9 MPa and fluid velocity was 5 m/s. 

Young’s modulus, Poisson’s ratio and fluid viscosity were respectively 25 GPa, 0.2 

and 0.0003 Pa.s. Figure 4.3 shows the hydraulic fracture after pumping high-

pressure fluid and coupling of the two solvers. 

 
 

Figure 4.3: Fracture inside borehole after coupling 
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4.4 Model Validation  

The results of the numerical simulations show that the numerical plan is well 

conducted and keeps a high rate of convergence. During simulation, the data were 

transferred successfully between the transient structural analysis and fluid flow 

analysis after the chosen coupling iterations. All simulations were performed by 

using minimum iteration=1, maximum iteration=5, time step size= 0.01s and total 

time=10s. The iterative procedure was continued until the convergence was 

achieved. Figure 4.4 shows the convergence between the fluid flow and static 

structural analysis in Ansys.  

Figure 4.4: Convergence between fluid flow and static structural  
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In this part, the results for different cases are presented in order to show the validity 

of the model. There is no accurate solution to verify the model’s accuracy beyond 

easy examples due to the complexity of the hydraulic fracturing problem. Geertsma 

and de Klerk (1969) presented an estimated solution for a two dimensional fracture 

with a Newtonian fluid.  In this solution, the fracture length, fracture opening at the 

wellbore, and net pressure can be obtained as: 

𝐿(𝑡) = 2 [
16𝐸𝑞0
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21𝜋3𝜇
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where E′ is plane-strain modulus of elasticity (E′=2G/(1-𝜈)), G is the shear 

modulus (1.6˟106) and q
0 is the injection rate per unit height of the fracture hf (q

0 

=Q
0 /h

f ). Geertsma’s solution assumes the smooth closing surfaces as the 

boundary condition at the fracture tip (∂w(L,t)/∂x = 0), which is equivalent to 

Barenblatt’s model for cohesive cracks. Hence, the results are not necessarily 

similar to the results of the model with the zero pressure boundary condition at the 

tips. The fluid storage in the fracture as the width changes with time is neglected 

and the flow rate is equal to the injection rate in Geertsma’s model. No in situ stress 

was presumed in this solution to make differentiation simpler as pressure in 

Geertsma’s model is net pressure.  

The results of the FEM model are in agreement with those of the analytical solution 
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(Figures 4.5, 4.6 and 4.7) for a 10 minute constant rate injection of a Newtonian 

fluid. The fracture length and net pressure results are in close agreement, while 

the FE model predicts a slightly higher width at later time than the Geertsma’s 

model. This could probably be due to the fact that the storage effect is neglected 

by the simplifying assumption in Geertsma’s model. This inconsistency has also 

been reported by Yew et al. (1988) and Dahi (2009). The input data for this 

example is presented in Table 4.1. 

Table 4.1: Details of input data 

Young’s 

Modulus (E) 

Porosity (Φ) Poisson’s 

Ratio (v) 

Injection 

Rate (Q) 

Fluid 

Viscosity (μ) 

Fracture 

Height (h) 

35 GPa 20 % 0.3 5 bbl/min 100 cp 1000 mm 

 

The bottom borehole pressure, plotted in Figure 4.6, deserves further attention. It 

indicates that the bottom borehole pressure decreases with time while the fracture 

width grows. This is due to the assumption of infinite height for the fracture (KGD 

geometry), which implies that longer fractures need less pressure to keep the 

same opening. Although, the pressure is rarely decreasing because the length of 

the induced fracture is usually greater than the fracture height, so the fracture 

height limits the fracture opening. In the KGD model, the net pressure gradient 

drops quickly with fracture length and reaches nearly a constant value.  

The model has been examined with initial assumptions for the pressure 

distribution, but the solution converged quickly to the accepted range. The model 
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was able to achieve the results with less than 5% percent error in less than 10 

iterations. The model was examined for different initial lengths for the hydraulic 

fracture to ensure that the results were not sensitive to the initial length of the 

hydraulic fracture in the model or the location of the initial fracture with respect to 

the finite element mesh. 

Figure 4.5: Variation of crack length with pressure 

Figure 4.6: Variation of crack length with crack width  
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Figure 4.7: Variation of crack length with time 

The fracture mechanics solution of Rummel and Winter was used to calculate the 

stress intensity factor. In this approach, the peak pressure (PC) is expressed as 

(Rummel and Winter, 1982): 

𝑃𝐶 =
1

ℎ0+ℎ𝑎
(
𝐾𝐼𝐶

√𝑅
+ 𝑆𝐻𝑓 + 𝑆ℎ𝑔)                                         (4.6) 

where Sh and SH are minimum and maximum in-situ pressures, respectively. PC is 

the critical hydraulic pressure, R is the radius of the borehole, and f, g and h, are 

dimensionless functions of stress intensity factors that are calculated from 

normalized crack length of a/r, r being diameter of the borehole and a crack length.  

𝑓(𝑏) = −2 [
(𝑏2−1)

𝜋𝑏7 ]
0.5

                                                               (4.7) 
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𝑏
)                                    (4.10) 
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where b is equal to 1+a/R.  

In addition to the confining pressure, the injected fluid pressure is applied on 

borehole wall and fracture plane. Despite such complex stress conditions, stress 

intensity factor around the crack tip can be easily formulated using the 

superposition principle of stress intensity factors. 

𝐾𝐼(𝑃𝑚, 𝑃, 𝑃𝑎) = 𝐾𝐼(𝑃𝑚) + 𝐾𝐼(𝑃) + 𝐾𝐼(𝑃𝑎)    (4.11) 

 

In the above equation, KI specifies the stress intensity factor for mode I. P is the 

applied pressure and Pa, which is expressed by Pa= P(x,0), determines the 

pressure distribution in fracture direction from x=(R,-R) to x=(R+a, R-a) (Dos 

Santos, et al. 2011).  

Figure 4.8: Variation of stress intensity factor with crack length 

The variations of stress intensity factor as a function of the crack length in the 

reservoir domain are shown in Figure 4.8. The results show a reasonably good 
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agreement between the analytical and FEM results. Despite the complex loading 

conditions and various loads in hydraulic fracturing, stress intensity field in the 

crack tips, created from any source of loading, can be formulated using the 

principle of superposition of stress intensity factors. 

4.5 Sensitivity Analysis: 

In this section the sensitivity analysis of fracturing fluid viscosity is presented. 

Hydraulic fracturing is a process that is surrounded by uncertainty. The classical 

KGD model of hydraulic fracturing which is widely used in the Oil and Gas industry 

to assist in the design of the hydraulic fracturing treatment is considered. The 

variation of the viscosity in the ranges of 0.1 Pa.s and 0.15 Pa.s was considered. 

The viscosity values are standard values which are being used in hydraulic 

fracturing studies. 

The viscosity should have a high value to induce a wider crack, and hence a better 

proppant transport during the hydraulic fracturing process. For this purpose, cross 

linkers of the polymer chains have been used in industry to increase the viscosity 

significantly (Taleghani, 2009). Furthermore, for same volume of injected fluid, 

increasing the fluid viscosity increases the fracture width and decreases the 

fracture length. Figure 4.9 shows the effects of increasing the viscosity of the 

injection fluid on the pressure profile. 
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Figure 4.9: Variations of pressure and crack profile with different viscosities 

4.6 Results:  
 
The mechanical properties of the rock such as Young’s modulus, and Poisson’s 

ratio have significant influences on hydraulic fracturing operation. It is important to 

note that, these parameters are uncontrollable and are totally dependent to the 

rock formation properties, which arise from geological conditions. In the meantime, 

other parameters such as fluid viscosity and leak-off coefficients play important 

roles in designing a hydraulic fracturing fluid, which can simply change the 

hydraulic fracture opening.  

Figure 4.10 shows the variation of stress intensity factor as a function of the crack 

length along the cohesive elements in the reservoir domain. The results indicate 

that increasing stress intensity factor would increase crack propagation. There is 

a slight deviation from linear relationship beyond crack length of 800 mm. This is 

likely to be due to sudden change of mesh quality and large deflection in the model. 

In the cohesive zone model (CZM), the fracture formation is regarded as a gradual 

phenomenon in which separation of the surfaces involved in the crack, takes place 



Chapter 4                            Coupled Hydro-Mechanical Modelling of Hydraulic Fracturing  

 

100 
 

across an extended crack tip, or cohesive zone, and is resisted by cohesive 

tractions (Barenblatt, 1962). The trend indicates that the stress intensity factor 

which is the magnitude of stress singularity at the crack tip increases by the growth 

of fracture length. Despite complex loading conditions and various loads in 

hydraulic fracturing, stress intensity field in the crack tips, created from any source 

of loading, can be formulated using the principle of superimposition of stress 

intensity factors. The numerical results of stress intensity factor and crack length 

were compared with the results of Asadi et al. (2013) and Dahi (2009) and showed 

good agreement. 

Figure 4.10: Stress intensity factor vs crack length 

J-integral is a parameter that can be used for crack propagation analysis. Figure 

4.11 shows the variation of J-Integral with crack length. It is seen that J-Integral 

increases with increasing the crack length. This can be attributed to the concept 

that with a growth in crack length, the released elastic energy in J-Integral ascends. 

The figure shows that in the first stage, the rate of variation of J-integral has a 

descending trend and after reaching a minimum value, the trend changes the 
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course and adopts an ascending approach. The results of the current study are in 

good agreement with the results published by Asadi et.al (2013). 

The reason for this phenomenon can be explained by the fact that in the initial 

stages, the released energy is consumed to propagate and develop the cracks and 

to overcome the surface crack energy. Minimum value of J-integral in this figure 

shows that the crack has reached its final propagation phase after which, by 

increasing fluid injection, the crack does not propagate and causes an increase in 

elastic strain energy in the rock that makes the potential energy to grow up.  

 

Figure 4.11: J-Integral vs crack length 

Figure 4.12 shows the variation of critical pressure of crack propagation with 

changes in crack length at different pressures. As can be seen, by increasing the 

crack length, the critical crack propagation pressure decreases. It is shown that 

the bottom hole pressure drops with time while the fracture length increases. This 

result is a consequence of assuming an infinite height for the fracture (KGD 

geometry), which indicates that longer fractures require less pressure to maintain 

the same opening. The results were compared with the results of Dahi (2009) and 
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indicated good agreement. 

Figure 4.12: Critical crack propagation pressure vs crack length 

Figure 4.13 shows the effect of Young’s modulus on crack propagation. The results 

show that, by increasing elastic modulus from 25 to 55 GPa, the stress intensity 

factor has steeply increased from 0.25 to 0.7 MPa.mm^(0.5). It can be concluded 

that rocks with higher elastic modulus can be fractured easier. There is a slight no-

linearity beyond Young’s modulus of 40000 MPa. This is likely to be due to sudden 

change of mesh quality and large deflection in the model. 

Figure 4.13: Young modulus vs stress intensity factor 
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Poisson’s ratio indicates how much a rock that is shortened in one direction 

expands in the other two directions. The results show that increasing Poisson’s 

ratio from 0.2 to 0.5, increases the stress intensity factor from 0.5 to 0.75 

MPa.mm^(0.5) (Figure 4.14). So, based on the definition of Poisson’s ratio, it can 

be concluded that any increase in this parameter would affect the local stresses 

as well as the extent of strain level and deformation near the crack tip, which can 

significantly increase the crack propagation.  

 

Figure 4.14: Poisson’s ratio vs stress intensity factor  

Figure 4.15 shows the variations of rock permeability versus confining pressure. 

As expected, the permeability decreases with the increase of confining pressure 

at the beginning and curves become less steep when confining pressure exceeds 

20∼25 MPa. The results of confining pressure versus permeability showed good 

agreement with the results of Liu et al. (2014). 
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Figure 4.15: Confining pressure vs permeability 

The numerical simulation results including stress intensity factor against crack 

length, J-Integral versus crack length, critical crack propagation pressure against 

crack length, Young’s modulus versus stress intensity factor, Poisson ratio against 

stress intensity factor and confining pressure versus permeability compared with 

the current literature and showed good agreement. 

4.7 Case study: 
 
4.7.1 Introduction 

 
The Second White Specks formation (SWS) in the Canadian eastern portion of the 

Western Interior Seaway has been studied in great detail in the outcrops of the 

Manitoba escarpment by many researchers since Dawson assigned to it a 

Cretaceous age in 1859 (McNeil and Caldwell, 1981). Other notable papers 

relevant to the Saskatchewan portion of the escarpment include those by 

Wickenden (1945) on the Mesozoic of the Eastern Plains and Beck (1974) on the 

surface economic geology of the Pasquia Hills area, particularly the oil shale and 

silica sand reservoirs. The report by McNeil and Caldwell (1981) on the Cretaceous 

of the Manitoba escarpment is the most comprehensive to date; it refines the 
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stratigraphy utilizing foraminiferal assemblages, detailed outcrop descriptions, and 

geophysical logs.  

The Second White Specks formation has been included in many biostratigraphic 

studies of the Colorado Group. North and Caldwell’s (1975) classic paper on the 

foraminiferal assemblages of Saskatchewan addresses the entire Cretaceous and 

refers to a thinning of the Second White Specks in the south-central portion of the 

province (near Saskatoon), as well as to discontinuities associated with the First 

and Second White Speckled Shale. Bloch et al. (1999) examined the 

sedimentology, micropaleontology, and geochemistry of the Colorado Group in 

context of the Western Canadian sedimentary basin from the foothills of Alberta to 

the Manitoba escarpment. Their study contains numerous hydro-geochemical 

analyses.  
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Figure 4.16: Map of eastern Saskatchewan showing the northern limit of the Second White 
Specks formation; subcrop edge is indicated by a black dashed line, and outcrop edge by 
a solid line. (modified from Beck, 1974). 

 

4.7.2 Structural and lithological description: 

In the study area, the Second White Specks formation crops out in the Pasquia 
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Hills and subcrops against Quaternary sediments in a west-northwest–striking belt 

that dips to the south-southwest (Figure 4.16). A structure map on the formation 

(Figure 4.17) reveals the layout of a tri-partite southwesterly to south-southwesterly 

dipping monocline, sloping from 367 m (msl) in the northeast to -416 m (msl) at the 

international border (Manitoba border crossing). Between Tps (Total petroleum 

system)18 and 36 , the monocline is shaped by the multi-component Punnichy 

Arch. The latter is made up of the Watrous and Wynyard domes, the graben-like 

Tabbernor lineament belt and the Yorkton salient protruding west into the Wynyard 

Dome from the western front of the Moosomin-Hudson Bay structural trend 

(Christopher, 2003). The monocline east of Rge (canadian mapping unite) 20W2 

dips more steeply southward into the central part of the Williston Basin. West of 

Rge 20W2, the surface of the Second White Specks is more flat lying and may in 

places be structurally influenced by the escarpment along the Middle Devonian 

Prairie Evaporate salt edge (Figure 4.17). These major structural forms have 

antecedents that exerted influence in the depositional basin of the Second White 

Specks formation. Different colours in Figure 4.16 highlight different topographies 

of the area. 

Commonly referred to as shale or limestone, the Second White Specks formation 

is a combination of bituminous, bioclastic, and calcarenitic limestone and 

marlstone, and calcareous grey and black shale (Christopher, 2003). The Keld and 

Assiniboine members, recognizable in outcrops and in eastern Saskatchewan, 

lose their differences westward because of depositional thinning, facies change, 

and truncation under the Morden Member of the Carlile Formation. Even in the 
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eastern region, the characteristic contact between the two members may be 

lacking, so picking the member boundary on geophysical logs tends to be based 

on an arbitrary interpretation of the resistivity signature, the Keld being the more 

resistive lower unit (Christopher, 2003). 
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Figure 4.17: The Second White Specks formation in eastern Saskatchewan (Christopher, 

2003) 
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Figure 4.18: Cross section of Upper Cretaceous units in the SWS area (Wagoner et al., 

1987) 
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The composition of the calcarenite was exhaustively investigated by Bloch et al. 

(1999) and Schröder-Adams et al. (2001). These researchers found that, at 

Bainbridge Creek in the northern front of the Pasquia Hills, the calcarenite is 

dominated by comminuted pelecypod shell material and foraminiferal tests, and 

that some 54 nannofossil species make up the coccolithic white specks. The upper 

contact of the Second White Specks formation with the Morden Member of the 

Carlile Formation, where intersected in the cores of this study, is seen to be 

erosional at all sites except IMC Yarbo No. 17S, where the material representing 

the contact zone is apparently lost. The lower contact of the formation is on the so-

called “X Bentonite”, which is the defined top of the Belle Fourche Shale, though it 

should be noted that the bentonite intersects the transition from noncalcareous 

black shales typifying the Belle Fourche to calcareous speckled shales 

characteristic of the Second White Specks. 

The descriptions of the stratigraphic sections of the seven wells identified on Figure 

4.18 are therein generalized, largely on the basis of their bedding cycle sequences, 

which generally are thin, and number as many as 17. Bedding is generally cyclic, 

from deeper water, greyish black shale upward to shallower water calcarenite and 

bioclastic limestone, or the reverse. Bedding cycles of the Assiniboine Member 

represent a deeper water phase of the Keld. The bedding cycles apparently 

represent far-ranging clinoforms. Those of the Keld Member in the study area 

belong to three southwesterly down lapping sequence sets (Wagoner et al., 1987), 

here named units A, B, and C. The sequences of the Assiniboine, apparently 

represent distal tongues of submarine banks in the adjacent region of Manitoba; 
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thus they attenuate and increase in number westward. Toward the northwest near 

longitude 106οW in south-central Saskatchewan, the Assiniboine is truncated 

under the sub-Morden disconformity. Samples from SWS formation have been 

used by several researchers to carry out a laboratory-scale investigation of 

hydraulic fracturing in the following sections (Wagoner et al., 1987).  

4.7.3 Experimental Verification 

A triaxial system was employed by Mohamadighanatghestani (2015)  to simulate 

the hydraulic fracturing process in the laboratory. In order to minimize leak-off rate 

a viscos fracturing fluid was chosen. The internal pressure distribution was 

assumed constant.  

It should be noted that laboratory tests may not attain the research aims due of the 

following reasons: the uncertainties of specimen properties caused by 

environment temperature during sample drying, the complexity to estimate the 

accuracy of the fracture toughness under confining pressure [Zhao and Roegiers, 

1993], uncemented interface between simulated borehole and specimen, 

complexities in sample preparation and conducting hydraulic fracturing 

experiments [Haimson, 1981]. The results from the triaxial tests were chosen to 

compare with the numerical values. 

The permeability of an intact rock sample is usually computed using the Darcy 

equation:
 

𝑘 =
2𝑄𝑝0𝜇𝐿

𝐴(𝑝𝑖
2 − 𝑝0

2)
          (4.12)
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where Q is the flow rate, μ is the viscosity of the injection fluid, po is the downstream 

pressure, pi is the upstream pressure, A is the cross-sectional area of the 

specimen, L is the mean specimen length and k is the permeability of the specimen 

(Wanniarachchi, et al, 2017). 

4.7.4 Experimented material  
 
The specimens used in this work were acquired from the SWS area, which is one 

of the three important oil-sand deposits situated in Alberta, Canada (Fig. 4.19).  

 

 
 

Figure 4.19: Location and stratigraphy of the SWS area (Malcolm Lamb Shale Petroleum 
Ltd, Americas Denver, CO - October 2013) 

 
 

Conventional double-barrel coring was carried out by Mohamadighanatghestani 

(2015) in the vertical direction, direction of material deposition, to recover cores 

from the Second White Specks formation.  
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Table 4.2: Physical properties of the tested shale according to ASTM standard 
(Mohamadighanatghestani, 2015) 

Formation Tube No Depth (m) Natural 

Water 

Content 

(%) 

Specific 

Gravity 

(kg/m3) 

Plastic 

Limit (%) 

Liquid 

Limit 

(%) 

SWS 75 245.1-246.6 16.9 2.735 32 64 

SWS 77 248.1-249.6 17.7 2.742 43 88 

 

The range of bulk density and porosity of core specimens as acquired from 

borehole logs were 2150 − 2230 kg/m3 and 0.32 − 0.34, respectively. At least two 

specimens were selected by Mohamadighanatghestani (2015) from each tube for 

calculation of index properties (average natural water content, specific gravity, 

plastic limit and liquid limit), the results of which are presented in Table 4.2.  

 
4.7.5 Testing apparatus and results 
 
A high-pressure triaxial apparatus (as shown schematically in Fig. 4.20) was used 

to test all the specimens (Mohamadighanatghestani, 2015). The cell’s internal 

diameter and height were respectively, 203 mm and 406 mm, which renders it 

plausible to test cylindrical specimens of 3.5” (88.9 mm) in diameter and 7” 

(177.8mm) in height. Table 4.3 shows the initial conditions of the tested shale. 
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Table 4.3: Testing program and initial conditions of the tested shale 
(Mohamadighanatghestani, 2015) 

 

Sample ID Test ID Sample 

Height (mm) 

Sample 

Diameter 

(mm) 

Dry Density 

(kg/m3) 

Initial 

Porosity 

T75 S1 TC-3-25 180.2 86 1861.2 0.319 

T75S2 TC-1-25 179.2 86.2 1834.8 0.329 

T75 S3 CMS-3-25 180.8 86.6 1819 0.335 

T75 S4 CMS-5-25 180.2 86.2 1841.5 0.327 

T75 S5 TC-1-85 180.2 86.3 1844.4 0.326 

T77 S1 TC-3-135 181.1 84.8 1879.5 0.315 

T77 S2 TC-3-85 179.8 84.1 1856.5 0.323 

T77 S4 TC-1-135 180.7 86.2 1891.9 0.310 

T77 S8 TC-5-85 180.7 86.1 1888 0.311 

T114 S3 TC-5-25 179.4 86.9 1885.4 0.312 

 

Axial load was measured using a 100,000 lbf (444.8 kN) load cell. Also a 

displacement-measuring device was used to allow both conventional triaxial 

compression and extension experiments in either load-controlled or displacement-

controlled modes. The cell and backpressures from pressure intensifier systems 

could attain values as high as 3000 psi (20.7 MPa) (Mohamadighanatghestani, 

2015). For greater accuracy in the range of lower pressures, the device was also 

equipped with a segment that only permitted applications of pressures up to 1 MPa 

(Mohamadighanatghestani, 2015). To attain near-incompressibility conditions, two 

pressure transducers were set up as close as possible to the bottom and top of the 
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cell employing thick-walled stainless steel tubing’s (Mohamadighanatghestani, 

2015).  

 
Figure 4.20: Triaxial apparatus (Mohamadighanatghestani, 2015). 

 
 

 
Tables 4.4 and 4.5 show physical properties and mechanical properties and 
experimental data of the shale samples. 
 

Table 4.4: Physical and Mechanical Properties of the Samples (Jin, Shah,  Roegiers,  2013) 

Parameter Value 

Young’s Modulus (GPa) 15-35 

Poisson Ration  0.23 

Uniaxial Compressive Strength (MPa) 48.5 

Permeability (md) 0.05 

Borehole Diameter (m) 0.2 
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Table 4.5: Experimental data (Jin, Shah, Roegiers,  2013) 

Number 1 2 3 4 5 6 7 

Min In-situ Stress 
(MPa) 

1 1 1 1 1 1 1 

Max In-situ Stress 
(MPa) 

4 4 4 4 6 6 6 

Breakdown Pressure 
(MPa) 

7.4 8.5 9.3 9.8 10.4 10.5 15.6 

 
The resulting breakdown pressure values of SWS shale are plotted in Figure 4.21 

versus the confining pressure. The results show that as the confining pressure 

increases, the fracture initiation pressure also increases (Wanniarachchi, et al, 

2017). 

 

Figure 4.21: Variation of breakdown pressure with confining pressure (Wanniarachchi, et 

al, 2017) 

Figure 4.22 shows the stress-strain behaviour of vertically aligned core specimens. 

The figure shows loading and unloading curve in the tests. All the specimens show 

higher stiffness during the stress reversal (unloading) than during loading.  
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Figure 4.22: Stress-strain behaviour in SWS shale (Gatum and Wong, 2006) 
 

 
 

Figure 4.23: Young’s Modulus vs Axial Strain in SWS shale (Gatum and Wong, 2006) 

 
 

Figure 4.23 shows the variation of Young’s modulus with axial strain at constant 

effective radial stress for Wavertically oriented SWS core specimens. 
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Figure 4.24: Variations of Permeability with Pore Pressure ( Liu, et al. 2014;  Guo, et al. 

2017) 

Figure 4.24 shows, variation of rock permeability with pore pressure at a fixed 

effective confining pressure (Pc-PP=3 MPa, Pc is the confining pressure and Pp is 

the pore pressure). The rock permeability increases with the increase of pore 

pressure and the curve becomes relatively flatter when the pore pressure exceeds 

4 MPa. Deformation occurs under the pore pressure at weak zone, which finally 

leads to the increase of rock permeability.  
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Figure 4.25: Variation of permeability with confining pressure (Wanniarachchi, et al, 2017 
and Liu, et al., 2014) 

Permeability tests were conducted by Wanniarachchi (2017) on intact and 

fractured samples to determine the variations of flow characteristic upon fracturing 

of the reservoir. Permeability was tested under a series of confining pressures (5, 

10, 15, 20 and 25 MPa) and injection pressures (2–8 MPa). The effect of confining 

pressure on fractured SWS shale permeability was studied and the results are 

shown in Figure 4.25. The results show that the permeability decreases with 

increasing the confining pressure and this variation is independent of the injection 

pressure. Under higher confining pressures such as 20 MPa, the fracture opening 

can be smaller and this can greatly influence the permeability of the rock specimen 

regardless of the propagated fracture. The use of proppants is necessary to keep 

open the cracks after releasing the fluid pressure otherwise, the confining stress 

will close or decrease the fracture opening which will also result in a decrease in 

permeability. The crack will grow until the maximum stress level is reached in the 

specific area.  
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Figure 4.26: Variation of fracture length with time (Gorjian and Hawkes, 2014) 

Figure 4.26 shows the predicted progress of fractured zone as a function of time 

during stimulation. Once such predictions have been calibrated, these outputs can 

be utilized to calculate when to stop injection to avoid vertical propagation into the 

water-bearing layer overlying the SWS formation. 

4.8 Discussion and Conclusions 

Hydro-mechanical coupling is crucial in order to account for the effect of fluid 

injection on hydraulic fracture propagation. A two-way coupling of hydraulic and 

mechanical processes was presented in this study.  Two-way coupling is somehow 

simple to implement like one-way coupling, but it holds promise for capturing much 

more of the complex nonlinear physics, thus is closer to a fully coupled method. 

The hydraulic fracturing has been investigated numerically through a FEM-based 

model in different stress intensity factors, J-Integral, considering the effects of 

elastic modulus, Poisson’s ratio, fluid pressure and fluid viscosity. The model 

couples the fluid flow with fracture propagation while damage initiation and 
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evaluation criteria are also presented. The results show that increasing stress 

intensity factor and J-Integral would increase crack propagation.  

The variation of critical pressure of crack propagation with crack length growth in 

different pressures was studied. By increasing crack length, the critical crack 

propagation pressure decreases. This shows that the bottom hole pressure drops 

with time while the fracture length increases. The mechanical properties of 

reservoir including elastic modulus and Poisson’s ratio, would affect hydraulic 

fracturing directly. The results from the model suggest that increasing elastic 

modulus and Poisson’s ratio of rock increases the crack propagation as the stress 

intensity factor also increases. In general, increasing the fracturing fluid viscosity 

in injection operation can considerably increase the fracture stress intensity factor. 

A higher fluid viscosity leads to increase in net wellbore pressure that acts on the 

fracture surface area, which results in further opening of the fracture. The results 

from this work can be applied in the analysis and optimization of hydraulic 

fracturing especially where formation modulus contrast is a challenge such as 

fracturing in multi-layer reservoirs or shale formations. 

Numerical simulations were carried out and the results were compared with 

analytical solutions. A good degree of agreementis observed which indicates the 

validity of the model. In the KGD model, the net pressure gradient drops rapidly 

with fracture length and reaches almost a constant value. The fracture mechanics 

solution of Rummel and Winter (1982) was used to calculate the stress intensity 

factor. The variation of stress intensity factor as a function of the crack length in 

the reservoir domain showed a good agreement between the analytical and FEM 
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results. 

A laboratory-scale study of hydraulic fracturing in SWS shale was presented. The 

numerical model was used to simulate the triaxial laboratory experiments. The 

comparison of numerical with experimental results showed the followings:  

 As the confining pressure increases, the fracture initiation pressure also 

increases.  

 The stress-strain behaviour of vertically aligned core specimens indicated 

higher stiffness during the stress reversal (unloading) than during loading.  

 Increasing pore pressure will increase permeability.  

 Increasing Young’s modulus of vertically oriented core samples decreases 

the axial strain.  

 The results can be used in practice to prevent over-injection of fluid in order 

to avoid extra propagation of the fracture into the water-bearing layer in the 

SWS formation. 
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Chapter 5. Conclusion and Recommendations 

5.1. Review of the Completed Work  

The parameters affecting hydraulic fracturing in unconventional reservoirs were 

studied in this work. In general, the process of hydraulic fracturing can be defined 

as initiation and propagation of fractures due to the pressurization of fluid flow 

within existing fractures. The difference between a conventional and 

unconventional reservoir is migration. The unconventional reservoir has 

hydrocarbons that were formed within the rock and never migrated. The 

conventional reservoir is a porous rock formation that contains hydrocarbons that 

have migrated from a source rock. 

The main scope of this work is the investigation of geological parameters in 

modelling of hydraulic fracturing. 

During hydraulic fracturing in unconventional reservoirs, high conductivity 

channels are created. Gas and water drainage is stimulated by the conductive 

channel by bypassing near borehole damage and creating a low-pressure drain in 

the reservoir, hence increasing the gas drainage rate. In the present study, the 

effects of the most crucial parameters on the viability of HF of coal seams were 

presented in terms of seam gradient and thickness, geological disturbances, seam 

floor conditions and seam roof conditions. The PARVADEH 4 Tabas coalmine, one 

of the largest coal reserves in the Tabas coal basin, was used as a case study. 

The Tabas coal mine consists of C1, C2, B1, B2 and D seams (see Figure 3.2). 

By using the fuzzy logic, membership functions and fuzzy rule-bases were 
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generated and finally, the potential for HF was studied. Seam dip, thickness and 

uniformity variables, which are the most effective structural parameters of coal 

seam in one side and roof, floor and coal quality, which are strength parameters in 

the other side, were classified separately. The coal reserve was also classified 

separately as an economical parameter. The potential for HF of the PARVADEH 

4 Tabas coalmine in Iran was investigated. The results of the fuzzy model are as 

follow:  

 There is a high potential for HF in B2 and C1 seams and low potential of HF 

for B1, C2 and D seams of the PARVADEH 4 Tabas coalmine.  

 The developed fuzzy model can be used as a pre-production model in 

hydraulic fracturing.  

 The  fuzzy model predicts efficiency of hydraulic fracturing by considering 

seam gradient, seam thickness, seam geological disturbance, seam floor 

conditions, seam roof conditions, seam strength and seam reserve.  

Moreover in this study, a three-phase hydro-mechanical model was developed for 

simulating hydraulic fracturing. The three phases include: porous solid, fracturing 

fluid and reservoir fluid. Two numerical simulators (ANSYS Fluent for fluid flow and 

ANSYS Mechanical for geomechanical analysis) were coupled together to model 

multiphase fluid flow in hydraulically fractured rock undergoing deformations. The 

two solvers were coupled, using system coupling in ANSYS Workbench.  

The finite element and finite volume methods were used to solve the governing 

equations of fluid flow and geomechanical deformation in an unconventional 

reservoir intercepted by a horizontal wellbore. The effects of fluid pressure, 
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viscosity and rock permeability, Young’s modulus, Poisson ratio and stress 

intensity factor in unconventional reservoirs caused by a non-compressible fluid 

were investigated. 

Developing a fully coupled model for a multi-phase flow and large nonlinear 

inelastic mechanical deformation is expensive and time-consuming. An alternative 

is to use the two-way coupling method to simulate flow and mechanical responses 

in the hydraulic fracturing problem. Staggered-in-time coupling, and two-way 

passage of information allow accurate modelling of a range of reservoir conditions. 

The staggered-in-time two-way coupling scheme alternates between flow and 

mechanical models. The mechanical simulator generates updated reservoir 

parameters, which are employed by the flow simulator in the next time step. The 

advantage of this approach is that the simulation domains for flow and mechanics 

can be significantly different.  

Results from a set of triaxial experiments and also an analytical model were used 

for validation of the two-way coupling scheme. Good agreement was achieved 

between the developed numerical model, the KGD model and the triaxial test 

results. The KGD analytical solution was presented by Geertsma and de Klerk 

(1969) for a two-dimensional fracture with a Newtonian fluid. In this solution, the 

fracture length, fracture opening at the wellbore, and net pressure can be 

predicted.This study revealed little difference between the coupled solution, the 

analytical solution and the experimental results. The following conclusions can be 

drawn from the results of the coupled model: 
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• The results show that increasing stress intensity factor and J-Integral would 

increase crack propagation.  

• By increasing crack length, critical crack propagation pressure decreases.  

• Increasing elastic modulus and Poisson’s ratio of rock increases the crack 

propagation as the stress intensity factor also increases.  

• Generally, increasing the fracturing fluid viscosity in injection operation can 

considerably increase the fracture stress intensity factor.  

• A higher fluid viscosity leads to increasing net wellbore pressure that acts 

on the fracture surface area, which results in further opening of the fracture.  

• Minimum value of J-integral indicates that the crack has reached its final 

propagation phase and after that, by increasing fluid injection, the crack 

does not propagate and causes an increase in elastic strain energy in the 

rock that increases the potential energy. 

• The variation of stress intensity factor as a function of the crack length in 

the reservoir domain shows a good agreement between the analytical and 

FEM results.  

• The results show that as the confining pressure increases, the fracture 

initiation pressure also increases.  

• Increasing pore pressure will increase permeability.  
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• Increasing Young’s modulus of vertically oriented core samples decreases 

the axial strain.  

• The results can be used in practice to prevent over-injection of fluid in order 

to avoid extra propagation of the fracture into the water-bearing layer in the 

SWS formation.  

The outcome of this research can be useful in describing various aspects of 

behaviour of hydraulic fracturing in unconventional reservoirs. The fuzzy model 

gives the ability to estimate the potential and efficiency of hydraulic fracturing in 

unconventional reservoirs. The finite element and finite volume models can be 

used to determine appropriate fluid and solid parameters and associated design. 

5.2 Recommendations for Future Research  

The current fuzzy model does not include the effect of fluid on the hydraulic 

fracturing process. Hence, it only represents the solid part. To complete this study 

the fluid parameters can be added into the developed fuzzy model. Since in most 

cases, fracturing treatments are done in multi-layered systems, a more practical 

model requires to include multiple layers. Therefore, one of the major feasible lines 

for future study is to develop the present model to make the above achievable.  

Multi-phase fluid flow for the coupling analysis is strongly recommended in order 

to model the injectivity of a realistic fracturing fluid and proppant transport along 

the fracture rather than just water, since proppant transport is an important 

parameter to prevent fracture closure and facilitate successful production.  

The two-way coupling scheme was implemented in the FEM model in this thesis. 
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A fully coupled model would require further study and may be able to deliver more 

accurate simulation results.  

The current FEM model does not include the effect of fracturing fluid leak-off to the 

reservoir’s surrounding rock masses. Integrating this information into the coupled 

FEM model would improve the numerical analysis results.  
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