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ABSTRACT

A method was developed and validated for the detection of colistin-resistant Escherichia coli containing mcr-1 in the feces of feral swine. Following optimization of an
enrichment method using EC broth supplemented with colistin (1 pg/mL) and vancomycin (8 pug/mL), aliquots derived from 100 feral swine fecal samples were
spiked with of one of five different mcr-1 positive E. coli strains (between 10° and 10* CFU/g), for a total of 1110 samples tested. Enrichments were then screened
using a simple boil-prep and a previously developed real-time PCR assay for mcr-1 detection. The sensitivity of the method was determined in swine feces, with mcr-1
E. coli inocula of 0.1-9.99 CFU/g (n = 340), 10-49.99 CFU/g (n = 170), 50-99 CFU/g (n = 255), 100-149 CFU/g (n = 60), and 200-2200 CFU/g (n = 175), which

were detected with 32%, 72%, 88%, 95%, and 98% accuracy, respectively. Uninoculated controls (n = 100) were negative for mcr-1 following enrichment.

1. Introduction

The antibiotic colistin has been used for growth promotion in live-
stock since the 1960s (Apostolakos and Piccirillo, 2018; Rhouma et al.,
2016). Coincident with colistin use in animal agriculture was an ap-
parent increase in colistin resistance in the microbial communities as-
sociated with these systems (Apostolakos and Piccirillo, 2018). This is
problematic given that colistin is considered as a drug of last resort for
the treatment of extensively drug-resistant and carbapenem-resistant
bacterial infections in humans (Biswas et al., 2012; Lim et al., 2010;
Watkins et al., 2016). Historically, colistin resistance was considered to
be mediated by point mutations of chromosomally-encoded genes (Liu
et al., 2016). However, in 2015, a plasmid-encoded colistin resistance
gene, mobilized colistin resistance gene 1 (mcr-1), was described in
China (Liu et al., 2016). It is accepted that mcr-1 is exchanged between
bacteria through horizontal gene transfer, increasing the likelihood of
colistin resistance being acquired by human and veterinary pathogens.
Nine mcr homologs (mcr-1 to mcr-9, note mcr-2 may be considered as a
variant of mcr-1) have currently been described, with multiple variants
and types of mcr genes detected in the United States (U.S.) (Carroll
et al., 2019; Wang et al., 2018; Xavier et al., 2016). Further, molecular
epidemiological analyses suggest that some Chinese mcr-1 positive
bacterial isolates found in association with human disease can be linked
to animal agriculture (Wang et al., 2017).

Livestock production systems have multiple pathways that allow for
the introduction and dissemination of microorganisms. Among these
pathways, wildlife can directly interact with livestock, serve as re-
servoirs of antimicrobial resistant bacteria and genes, serve as hosts for
the development and exchange of the genetic determinants of antibiotic
resistance, and act as mechanical vectors for disseminating anti-
microbial resistant bacteria into the food chain and across the land-
scape (Greig et al., 2015; Radhouani et al., 2014). Globally, bacteria
encoding mcr have been found within the gastrointestinal tracts of
wildlife, suggesting that wildlife could have an important role in the
development and dissemination of colistin resistance through fecal-
mediated contamination (Bachiri et al., 2018; Carroll et al., 2019;
Liakopoulos et al., 2016; Ruzauskas and Vaskeviciute, 2016). Of par-
ticular concern are feral swine, given their expanding population and
geographic distribution globally (Bevins et al., 2014; Snow et al., 2017)
and the association of mcr-1 with domestic swine in China (Liu et al.,
2016). In addition to the extensive ecological and agriculture damage
they cause, feral swine interactions with livestock and people may
potentiate the spread of infectious disease (Bevins et al., 2014). Re-
cently, mcr-9 was detected in an Escherichia coli isolate from a wild boar
in South Dakota (NCBI BioSample SAMN04902855), and was also
identified in Salmonella enterica isolates collected from domestic swine
in Minnesota and Texas (Carroll et al., 2019). Similarly, mcr-1 E.coli was
found in association with domestic swine in 2016 in Illinois and South
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Carolina (NCBI BioSamples SAMNO05346848 and SAMNO05177221)
(Meinersmann et al., 2017). Numerous other studies suggest that swine
are an important reservoir of mcr throughout the world (Alba et al.,
2018; Clemente et al., 2019; Yang et al., 2019). These data suggest that
both domestic and feral swine could contribute to the maintenance and
dissemination of mcr-containing bacteria in the U.S.

E. coli are recognized as a main host of mcr-1, and these bacteria are
found in humans, animals, and the environment making them ideal
indicator organisms for mcr-1 monitoring and surveillance (Fernandes
et al., 2017). While methods for the screening of colistin-resistant E. coli
have been reported, methods to detect colistin resistance in swine may
have sub-optimal sensitivity (Mourand et al., 2018; Osei Sekyere,
2019), and no method has been specifically optimized or validated for
the screening of feral swine feces for E. coli containing mcr-1. Therefore,
the objective of this study was to develop and validate a method for
detecting mcr-1 E. coli in the feces of feral swine. This procedure cou-
pled selective enrichment with real-time PCR-based detection of mcr-1.
The method was designed to be simple and cost-effective, limiting the
need for multi-step enrichments and extensive nucleic acid preparation
steps, to facilitate national-level monitoring of this target. The opti-
mized method was validated using feral swine fecal samples spiked
with various concentrations of one of five mcr-1 E. coli strains of wildlife
origin.

2. Methods
2.1. Bacteria

E. coli strains SP 237, M 175, SP 167, POR 1303, and SP 278 con-
taining mcr-1 were collected from wild birds (Larus spp.) and geneti-
cally characterized in previous studies (Ahlstrom et al., 2019). These
bacteria were maintained as glycerol stocks and stored at —80 °C until
use. To prepare the inocula for fecal spikes, approximately 1 pL of the
glycerol stock was added to 10 mL of tryptic soy broth (Becton Dick-
inson, Franklin Lakes, NJ, U.S.) and incubated statically for 18-24 h at
37 °C. The bacterial concentrations of inocula were then determined by
surface plating using CHROMAgar COL-APSE (CHROMagar, Paris, FRA)
in accordance with the manufacturer's instructions.

2.2. Swine fecal samples

Feral swine fecal samples were opportunistically collected in
Alabama, U.S., from May to July 2019 as part of ongoing studies sup-
ported by the U.S. Department of Agriculture's National Feral Swine
Damage Management Program. Upon collection, the samples were
immediately placed on ice and shipped overnight to our laboratory.
Once in the laboratory, samples were aliquoted and preserved at
—80 °C until use.

2.3. Enrichments

Multiple strategies were tested in pilot studies to determine the best
method for enrichment, and subsequent real-time PCR-based detection
of mcr-1 E. coli in feral swine feces. These enrichments utilized either
Brain Heart Infusion (BHI) or EC broth (Becton Dickinson) with or
without colistin and/or vancomycin (Millipore Sigma, Saint Louis, MO,
U.S.) supplementation to allow for effective selection of the target
bacteria. Briefly, 100 mg aliquots of swine feces diluted 1:10 (w/v) in
phosphate buffered saline (PBS) were inoculated with one of five mcr-1
E. coli strains at concentrations ranging between 10° and 10* CFU/g. An
aliquot of PBS was used to spike negative controls. Following inocula-
tion, 9 mL of either BHI or EC broth, or broths supplemented with 1 pug/
mL colistin and/or 8 pg/mL vancomycin were added to each sample
and incubated for 18 h at 37 °C. The outcome of mcr-1 detection was
evaluated for each media formulation prior to conducting the valida-
tion study (see below).
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2.4. Real-time PCR assay for the detection of mcr-1

To facilitate mcr-1 detection from selective enrichments by real-time
PCR, 100 pL aliquots of enrichments were heated to 100 °C for 10 min.
Unlysed cells and debris were removed from each sample by cen-
trifugation at 20,000 Xxg for 1 min. The resulting supernatant was
transferred to a clean 1.5 mL conical tube, and 1 pL was used for real-
time PCR analyses in accordance with the method described by Irrgang
et al. using a CFX96 Touch Real-Time PCR Detection System (Bio-Rad,
Hercules, CA, U.S.) (Irrgang et al., 2016). A relatively small volume of
template was used to limit the amount of real-time PCR inhibitors ex-
pected across diverse samples. Amplification of mcr-1 was possible for
all five E. coli strains used in this study. Samples were considered po-
sitive if the quantification cycle (Cq) of amplification was =<40.

2.5. Method validation for the detection of mcr-1 E. coli in feral swine feces

To validate the method for mcr-1 E. coli detection, aliquots of 100
unique feral swine fecal samples were inoculated with one of five ge-
netically distinct strains of mcr-1 E. coli at concentrations ranging be-
tween 0.13 and 2200 CFU/g and enriched using the optimized for-
mulation of EC broth supplemented with 1 pg/mL of colistin and 8 pg/
mL of vancomycin (n = 1000). Real-time PCR of sample enrichments
for mcr-1 detection was performed as described above. An uninoculated
control was also screened for each feral swine fecal sample (n = 100).

2.6. Statistical analyses

Simple linear regression models were developed to evaluate whe-
ther Cgs varied as a function of 1) the colistin-resistant strain present in
the samples and 2) the original inoculum concentration used to spike
the sample. Two models were tested — one which included the actual
concentration of the inoculum and one which included the log;o
transformed concentration to account for the likelihood that the data
were not normally distributed. The two versions of the model were
compared to determine which fit the data better based on lower RSS
(Residual Sum of Squares) and AIC (Akaike's Information Criterion)
values (Burnham et al., 2002). The model based on the log;o of bac-
terial concentration (CFU) per gram was determined to be a better fit to
the data as compared to the model using the concentration of the
inoculum, and was used for the subsequent analyses. The data were
subset to exclude the negative control data. Samples that did not
amplify by real-time PCR were set to a Cq of 45. The regression models
we examined were Cq ~ Strain + gConc and Cq ~ Strain + log gConc,
where Cq was the real-time PCR cycle when a sample amplified at or
above a set threshold, Strain was the colistin-resistant isolate associated
with a sample, gConc was the spiked concentration of the inoculum per
gram, and log gConc was the log;o of the spiked concentration. All
analyses were conducted using R version 3.4.3 (R Core Team, 2017).

3. Results

3.1. Validation of the method for detection of mcr-1 E. coli in feral swine
feces

A series of small-scale studies were first performed to determine an
effective strategy for enrichment of mcr-1 E. coli from feral swine feces.
These experiments evaluated the effects of BHI or EC broth with or
without colistin and/or vancomycin supplementation on real-time PCR
detection of mcr-1 in spiked and enriched fecal homogenates. Two E.
coli strains were used in these assessments because of their different
genetic backgrounds, where mcr-1 was plasmid-encoded on E. coli M
175 and chromosomally-encoded on E. coli POR 1303 (Ahlstrom et al.,
2019). EC broth supplemented with both colistin (1 pg/mL) and van-
comycin (8 pg/mL) improved mcr-1 detection compared to the other
media formulations tested (data not shown). Thus, EC broth
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supplemented with both colistin (1 pg/mL) and vancomycin (8 pg/mL)
was selected as the enrichment media for the validation study. In these
small-scale experiments, mcr-1 was reliably detected when the initial
inoculum was =10% CFU/ g feces (data not shown). However, our
previous data suggests that fecal shedding of these mcr-1 E. coli occurs
at levels of <102 CFU/g feces, supporting the need to validate upstream
enrichment strategies (Franklin et al., 2020).

To validate the enrichment and PCR method, extensive biological
replication was used to assess the ability of the method to facilitate the
detection of mcr-1 associated with E. coli in feral swine feces. In total,
1000 fecal samples were inoculated with one of the five target bacteria
at concentrations ranging between 0.1 and 9.99 CFU/g (n = 340),
10-49.99 CFU/g (n = 170), 50-99 CFU/g (n = 255), 100-149 CFU/g
(n = 60), and 200-2200 CFU/g (n = 175). Each of the five mcr-1 E. coli
strains was represented 200 times in the dataset, with 25 biological
replicates tested for each strain at eight different target inoculum
concentrations, with a primary focus on samples with inoculum con-
centrations <10> CFU/g feces. This allowed for the mcr-1 detection
response to be assessed across a gradient of target concentrations re-
levant for surveillance and monitoring activities. At the above inoculum
ranges, mcr-1 was detected in an average of 32%, 72%, 88%, 95%, and
98% of the samples, respectively (Table 1 and Fig. 1). Negative controls
for all samples (n = 100) were mcr-1 negative by real-time PCR.

3.2. Evaluation of strain-specific differences in detection outcomes

Five different mcr-1 strains were used in this study to provide a
better approximation of the vast physiological diversity that exists
within E. coli, and the corresponding differential survival and growth
parameters which may impact enrichment-based detection (Ahlstrom
et al., 2019; Rasko et al., 2008). Thus, analyses to compare strain-
specific differences in real-time PCR-based detection using the new
method were conducted. Based on analysis of variance, both the strain
and the inoculation dose were highly significant (p < .0001) in-
dicating that Cqs varied by strains and by the inoculum concentration
(Table 2). Parameter estimates for the different strains (E. coli isolate SP
167 was randomly selected as the reference) demonstrated that the Cq
of detection for each of the E. coli strains was significantly different
from the reference strain. On average, E. coli strains M 175, POR 1303,
and SP 278 were all detected at significantly lower Cqs compared with
the reference strain, while strain SP 237 was detected on average at a
significantly higher Cq compared to the reference strain.

Table 1
Real-time PCR-based detection of mcr-1 containing E. coli isolates spiked into
fecal samples at different inocula concentrations.

Inoculum Strain Total # # real-time  # real-time % detected
dose (CFU) samples PCR PCR
positive negative
0 to 9.99 M 175 75 39 36 52
Por 1303 40 21 19 52.5
SP 167 100 5 95 5
SP 237 75 26 49 34.67
SP 278 75 37 38 49.33
10 to 49.99 M 175 15 9 6 60
Por 1303 75 57 18 76
SP 167 25 19 6 76
SP 237 15 5 10 33.33
SP 278 15 15 0 100
50 to 99 M 175 85 75 10 88.24
SP 237 85 69 16 81.18
SP 278 85 80 5 94.1
100 to 149 Por 1303 60 57 3 95
200 to 2200 M 175 25 25 0 100
Por 1303 25 25 0 100
SP 167 75 72 3 96
SP 237 25 24 1 96
SP 278 25 25 0 100
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Fig. 1. Boxplot of Cq (quantification cycle) values obtained by real-time PCR
for each of the enrichments for five mcr-1 positive E. coli strains within each of
the five inocula dosage groups. Bars represent the median Cq across each strain
within a group, the box represents the spread of the data within the 25th and
75th percentiles (first and third quartiles), the whiskers show 1.5* Interquartile
Range, and the black dots represent outliers. The dashed line is the threshold
we defined for a positive sample (Cq < 40, negatives were set to a Cq = 45).

Table 2

Linear regression model results evaluating the impact of strain and the log
transformed inocula concentration on the real-time PCR Cq (quantification
cycle) indicate that both strain and inocula concentrations affected Cgs.

Variable Parameter Standard t value  p-value
estimate error
log Concentration 43.804 0.517 84.708 < 0.001
Strain M 175 —1.349 0.645 —2.093 0.037
Por 1303 —1.956 0.650 —3.010 0.003
SP 237 1.637 0.651 2.515 0.012
SP 278 —2.864 0.646 —4.431 < 0.001

4. Discussion

The important contribution of mcr-1 in the transfer of polymyxin
resistance is well-established, with its occurrence documented in over
40 countries since its discovery in 2015 (Liu et al., 2016; Sun et al.,
2018). The emergence of mcr-1 in Enterobacteriaceae is linked to the
use of colistin in animal agriculture as an in-feed growth promoter, and
the low prevalence of colistin resistance recorded in the U.S. and
Europe is likely due to neither region having approved colistin as an
antibiotic for growth promotion (Irrgang et al., 2016; Meinersmann
et al., 2017). This has prompted immediate measures to control the
spread of resistance, including the ban of colistin for animal growth
promotion in China since 2017 (Walsh and Wu, 2016). Interestingly,
evidence has been mounting on wildlife's role in disseminating mcr-1
mediated colistin resistance, as best exemplified by mcr detection
within the microbiota of migratory birds in Asia, Europe, and South
America, as well as in other wildlife species (Mohsin et al., 2016;
Ruzauskas and Vaskeviciute, 2016). As colistin resistance has morphed
into a global phenomenon, this has prompted the need for rapid diag-
nostic and characterization tools, including methods which can discern
relevant differences in heteroresistant isolates (Caniaux et al., 2017;
Falagas et al., 2008; Lo-Ten-Foe et al., 2007; Tan and Ng, 2007). Phe-
notypic methods (including susceptibility testing) have been widely
utilized for this purpose, although it is recognized that some mcr-1-
containing isolates have colistin susceptibility that is less than the
epidemiological breakpoint of 2 pug/mL (Chew et al., 2017). These is-
sues have been summarized by a CLSI-EUCAST subcommittee with a
warning regarding currently recognized poor performance of colistin
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susceptibility testing (EUCAST, 2016). Consequently, methods ranging
from matrix-assisted laser desorption/ionization mass spectrometry
(MALDI-TOF MS) to real-time PCR have been adopted for this purpose
and applied to a variety of matrices (Bontron et al., 2016; Dona et al.,
2017; Dortet et al., 2018; Li et al., 2017; Nijhuis et al., 2016).

In this study, a simple method was developed and validated for
screening of mcr-1 E. coli in the feces of feral swine, a host which may be
important for the maintenance and dissemination of this AMR de-
terminant. The method involves a one-step selective enrichment pro-
cedure followed by detection of mcr-1 via real-time PCR. We optimized
an enrichment strategy to improve the sensitivity of real-time PCR
detection, with a combination of subinhibitory levels of colistin and
vancomycin (Dona et al., 2017). These results compared equally or
favorably to those using more complex methods to detect specific types
of E. coli in feces (LeJeune et al., 2006). Matrix-specific validation for
these diagnostic assays is highly recommended to account for the fitness
and applicability of the method (Broeders et al., 2014). We determined
that the utilization of the more selective enrichment protocol (supple-
mented EC broth) improved the sensitivity of the method, and this
finding is corroborated by other studies (Chalmers et al., 2018).

Each of the wildlife-specific E. coli strains tested here belonged to a
different multilocus sequence type, and mcr-1 was associated with at
least three different genetic backgrounds (Ahlstrom et al., 2019). The
MCR-1 gene in POR 1303 was chromosomally encoded, whereas SP
278, SP 237, and M 175 harbored mcr-1 in IncB/O/K/Z or IncHI2
plasmids. The genomic background of mcr-1 in SP 167 was unable to be
determined. Therefore, physiological parameters such as plasmid copy
numbers, differential growth rates, and differential nutrient require-
ments could have influenced detection outcomes. Nonetheless, the
method was capable of detecting the five strains used here. Strain-
specific differences in detection outcomes may have been observed;
however, we cannot discount that this effect may be an artifact of the
actual inoculum concentration used for each strain in each trial, par-
ticularly at the lower inoculum concentrations. For example, inocula of
0.1 CFU and 9.99 CFU were considered to be the same within the
analyses conducted, although this difference likely has an important
effect on detection outcomes. The applicability of this method to detect
other mcr variants and homologs requires additional investigation, but
the selective pressures used for enrichment in this study are expected to
be broadly applicable to other types of colistin-resistant E. coli. There-
fore, we expect that additional real-time PCR assays designed to detect
other mcr variants and homologs can be used in conjunction with the
enrichment strategy developed here with minimal optimization.
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