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When designing experimental studies with human participants, experimenters must decide

how many trials each participant will complete, as well as how many participants to test.

Most discussion of statistical power (the ability of a study design to detect an effect) has

focussed on sample size, and assumed sufficient trials. Here we explore the influence of

both factors on statistical power, represented as a two-dimensional plot on which iso-power

contours can be visualised. We demonstrate the conditions under which the number of tri-

als is particularly important, i.e. when the within-participant variance is large relative to the

between-participants variance. We then derive power contour plots using existing data sets for

eight experimental paradigms and methodologies (including reaction times, sensory thresholds,

fMRI, MEG, and EEG), and provide example code to calculate estimates of the within- and

between-participant variance for each method. In all cases, the within-participant variance

was larger than the between-participants variance, meaning that the number of trials has a

meaningful influence on statistical power in commonly used paradigms. An online tool is pro-

vided (https://shiny.york.ac.uk/powercontours/) for generating power contours, from which the

optimal combination of trials and participants can be calculated when designing future studies.

Keywords: statistical power, sample size, neuroscience, psychophysics, fMRI, MEG, EEG

Introduction

Statistical power is the ability of a study design with a

given sample size to detect an effect of a particular magni-

tude. In recent years, the problems with low statistical power

have been increasingly highlighted (Bishop, 2019). Low

powered studies are less able to detect a true effect (and so

make more Type II errors) compared with high powered stud-

ies. Nominally significant findings from low powered studies

are less likely to reflect true effects (Button et al., 2013), and

because of publication bias (whereby significant findings are

more likely to be published than non-significant ones) pub-

lished low powered studies will also have a high Type 1 error

(false positive) rate. Furthermore, any real effects that are

detected are likely to have inflated effect sizes (Colquhoun,

2014; Ioannidis, 2008). These problems are common across

many scientific disciplines, and estimates of power across

studies in the neurosciences (Button et al., 2013) yield power

values in the range 8%-30%, far below the desired level of

≥ 80%. The prevalence of low-powered studies has filled

some areas of the literature with effects that fail to replicate

and may well be spurious (Ioannidis, 2005; Open Science

Collaboration, 2015). Most discussion of increasing statis-

tical power has focussed on recruiting larger sample sizes,

because for a given effect size, power is a function of sample

size (see Figure 1d). However there is a second degree of

freedom available to many experimenters at the study design

stage – the number of repetitions (or trials) of a given exper-

imental condition by each participant.

When the dependent variable of interest can be estimated

with high precision, repeated measurements provide little

benefit, and the main source of variance is between partic-

ipants. This is illustrated by the distribution in Figure 1a,

where participants (points) differ according to a normal dis-

tribution (curve), but the variance of each individual point is

negligible. A more realistic situation for many experimental

paradigms is shown in Figure 1b, where the variance of each

individual estimate is large, as indicated by the horizontal

standard error bars. This has the knock-on effect of increas-

ing the overall standard deviation of the sample (σs = 2 units

in Figure 1a, and σs = 3 units in Figure 1b). Such inflation

of the sample standard deviation can be ameliorated by im-



2 BAKER ET AL. (PREPRINT)

proving the accuracy of each participant’s estimated mean

by increasing the number of measurements. This is demon-

strated in Figure 1c, where each participant’s mean is esti-

mated from k = 200 trials (compared with k = 20 in Figure

1b), and the standard deviation of the sample (curve) reduces

substantially (to σs = 2.1 units).

Power is typically derived using effect size measures such

as Cohen’s d (Cohen, 1988), which depends on the sample

mean (or difference in means), and also the sample standard

deviation (formally d = M/σs). Under parametric assump-

tions, the number of trials per participant (k) influences the

sample standard deviation (Figure 1e), according to the equa-

tion:

σs =

√

σ2
b
+
σ2

w

k
(1)

where σb and σw are the between- and (average) within-

participant standard deviations, and k is the number of

trials per participant (see also Brandmaier et al., 2018).

The sample standard deviation (σs) determines the effect

size, and subsequently the power (Figure 1f). In domains

where the dependent variable is subject to high within-

participant variance (as is potentially the case in psychol-

ogy and neuroscience studies), increasing the precision of the

per-participant estimate can therefore greatly increase overall

power, perhaps reducing the number of participants required

for a study (see Cleary & Linn, 1969; Phillips & Jiang, 2016).

Although most active researchers are intuitively aware of this

fact (it is common knowledge that running lots of trials deliv-

ers ‘better’ data), and the problem has received mathematical

treatment (Kanyongo, Brook, Kyei-Blankson, & Gocmen,

2007; Phillips & Jiang, 2016; Rouder & Haaf, 2018; West-

fall, Kenny, & Judd, 2014; Williams & Zimmerman, 1989),

there is no widely used procedure for quantitatively deter-

mining the appropriate number of trials to run. Instead, stud-

ies are typically designed using rules of thumb, prior prece-

dent and guesswork.

In this paper, we advocate a useful representation, the

power contour plot – a two-dimensional representation of

power as the joint function of sample size (N) and number

of trials (k). We provide an online tool for generating power

contours in order to estimate the impact of measurement pre-

cision (the number of trials conducted) on statistical power.

We then use a subsampling method to explore the joint ef-

fects of sample size and number of trials on real data sets

using common methodologies and paradigms in psychology

and neuroscience research. These measures include reac-

tion times, psychophysical thresholds, event-related poten-

tials, steady-state evoked potentials, and fMRI BOLD sig-

nals. We make computer code available to demonstrate how

power contours were produced, and how estimates of the

within- and between-participant variance were calculated for

each example.

Power contours

Consider first the situation described above, in which the

dependent variable of interest can be estimated accurately

from a single trial, but individuals all express different true

values of the variable (formally, the within-participant vari-

ance is low, but the between-participant variance is high,

σw << σb). Examples might include variables such as age

and height, for which there is low measurement error and

minimal variation from moment to moment, or for which

tools exist (such as tape measures) to facilitate accurate mea-

surement. In these situations, statistical power is a function

of sample size and effect size (Figure 1d), where effect size

is Cohen’s d. Clearly, in such a situation, testing each par-

ticipant multiple times should confer no advantage. We can

represent the power as a function of both sample size and

number of trials using a 2D plot such as the one shown in

Figure 1g. Here the lines trace iso-power contours - combi-

nations of sample size and number of trials that result in the

same statistical power (this property is sometimes referred

to as power equivalence, see von Oertzen, 2010). For this

example the power contours are vertical, showing no benefit

of repeated testing.

Next consider a more realistic scenario – a situation where

the individual measurements are very noisy (high within-

participant variance relative to the between-participant vari-

ance, σw > σb). The sample standard deviation decreases

as a function of the number of trials (Figure 1e), as the esti-

mated mean for each participant becomes more accurate with

repeated measurements. Now power depends on both the

number of trials and the sample size, and a series of curved

iso-power contours are apparent (Figure 1h; see recent work

by Westfall et al. (2014) and Xu, Adam, Fang, and Vogel

(2018) for related plots in different scenarios).

These power contours offer a useful summary of the ef-

fect of possible experimental designs on statistical power. A

given power (e.g. 80%, indicated by the thick blue curves

on the power contour plots) can be obtained from multiple

combinations of sample size and trial number. This is a

useful insight, as study designs can then be optimised de-

pending on other constraints. If relatively few participants

are available (perhaps because of financial constraints, or

testing of a clinical population) then the number of trials

can be increased. Note, however, that beyond a particular

number of trials (around k = 50 in Figure 1h), the func-

tion asymptotes and further trials are not beneficial. Al-

ternatively, if each participant must be tested very rapidly

(e.g. for studies involving children), but many participants

are available, the number of trials could be kept relatively
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M=0.5

N=200

Figure 1. Simulations of standard deviation and statistical power. Panel (a) shows simulated data for 50 individuals, generated

using a population mean of M = 0, a within-participants standard deviation of σw = 0, a between-participants standard

deviation of σb = 2, and a sample standard deviation of σs = 2. Individual data points have a random vertical offset for

display purposes. In panel (b) the within-participant standard deviation was increased to σw = 10, and each point is the mean

of 20 trials, with horizontal error bars indicating ±1 SEM. Panel (c) shows the effect of increasing to 200 trials per participant.

Panel (d) plots traditional power curves for different effect sizes (Cohen’s d) as a function of sample size (N). The dashed

horizontal line indicates a power of 80%, which is generally considered acceptable. Panel (e) shows how the sample standard

deviation (σs) depends on the number of trials per participant (k) for a range of within-participant standard deviations (see

legend), and a between-participant standard deviation of σb = 2. Panel (f) shows the statistical power resulting from the values

in panel (e), for a sample size of N = 200 and an underlying mean of M = 0.5. Panels (g,h) show power contours for different

combinations of σw and σb, as described in the text, and a group mean of M = 1. Simulations used normally distributed

random numbers, and statistical power was calculated for a two-sided, one-sample t-test comparing to a mean of 0.
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low (here around k = 20), and a larger sample size tested.

This is of potential value for large cohort studies, in which

many participants each complete a large battery of various

tasks. A more typical situation is one in which an experi-

menter wishes to minimise both sample size and testing time

– here values around the knee-point of the power contour

permit joint optimisation of both parameters. Power contour

plots can be produced for any combination of within- and

between-participant variances and difference in means using

an R script, which can be accessed through a web interface

at: https://shiny.york.ac.uk/powercontours/

To have practical value in the design of experiments, it

is necessary to establish empirically whether power does in-

deed vary with the number of trials in typically used experi-

mental paradigms. To this end, we have reanalysed data from

8 studies, using a range of common methodologies from

psychology and cognitive neuroscience, including reaction

times, proportional choices, sensory thresholds, EEG, MEG

and fMRI. We estimate power contours by subsampling the

data, so we aimed to include data sets featuring large sam-

ple sizes, in which each participant completed many trials

(though it was not always possible to satisfy both criteria).

All of these analyses are based on one-sample or paired t-

tests, but the same principle applies to more sophisticated

statistical techniques (see the Discussion section), and can be

implemented using the subsampling technique we describe

below. All analysis scripts are available on the project repos-

itory at https://osf.io/ebhnk/ and data sets are provided ei-

ther on the project page or referenced directly throughout the

manuscript to allow others to reproduce our analyses, and

apply the methods to their own studies. We anticipate that

these resources will be most valuable as a guide for perform-

ing related subsampling analyses for specific study designs,

and suggest that readers short on time might find it most use-

ful to skip ahead to the section reporting data from whichever

paradigm they are most familiar.

Reaction times

We first analysed reaction time measures from a Posner-

style attentional cueing experiment previously reported by

Pirrone, Wen, Li, Baker, and Milne (2018). Participants (N

= 38) saw a central cue stimulus directing their attention

to either the left or the right of fixation. A sine wave grat-

ing target was then presented either in the attended location

(congruent condition) or the unattended location (incongru-

ent condition). Each participant completed k = 600 congru-

ent trials and k = 200 incongruent trials, with example RT

distributions for one participant shown in Figure 2a. At the

group level, reaction times were on average 51 ms slower

in the incongruent condition (see Figure 2b), and the stan-

dard deviation of the differences (σs) was 42 ms. For the

full data set, this yielded an effect size of d = 1.2. We also

estimated the within participants standard deviation by pool-

ing the variances for the incongruent and congruent reaction

times, and averaging across participants, for which σw = 151

ms. Finally, to estimate σb we rearranged equation 1 to give:

σb =

√

σ2
s −
σ2

w

k
, (2)

which produced a value of σb = 41 ms.

We calculated statistical power by resampling random

subsets of trials and participants from the data, and calculat-

ing the effect size and power using the mean and standard de-

viation, for a paired t-test comparing to 0 (using the pwr.t.test

function in the pwr package in R). Note that an alternative

is simply to calculate a t-test with the resampled data, and

calculate the proportion of tests that are significant, but the

direct estimation of power is computationally more efficient

so we use this where possible. The subsampling procedure

was repeated 10,000 times, and the averaged power estimates

are shown in Figure 2c. Just as predicted by our simulations

(Figure 1h), the iso-power contour for 80% power (shown

by the thick blue line) is curved (we confirmed the subsam-

pling result by using the summary statistics calculated above

in the power contour Shiny app). High power can be obtained

with either a large sample size (N > 20) and small number

of trials (k < 10) or a large number of trials (k > 50) and

small sample size (N = 8). The knee-point of the function is

around a sample size of N = 10, with each participant com-

pleting approximately k = 20 trials. Of course, this is for a

relatively large effect size with a robust and well-established

effect (attentional cueing). Other study designs with smaller

sized effects will require larger sample sizes and/or more tri-

als, but it is clear that the same basic pattern should apply for

experiments of this type.

Proportional choices in the Iowa Gambling Task

We next reanalysed a data set comprising N = 504 partici-

pants in the Iowa Gambling Task, as reported by Steingroever

et al. (2015), and made available through that publication. In

this task, participants choose cards from four decks. Two

decks have a greater overall payoff (‘good’ decks), and the

other two have a poorer payoff (‘bad’ decks). Participants

must learn these contingencies during the course of the ex-

periment, and attempt to maximise their payoff. As such per-

formance changes throughout the experiment, and we dis-

cuss the consequences of this learning below, but begin with

an analysis of the aggregated (e.g. unordered) trials. Fig-

ure 3a shows summary data for a population of participants

who each completed k = 100 trials of the task. Averaged

across all trials, the mean probability of selecting a card from
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(a) (b) (c)Example individual Population (N=38)

Figure 2. Summary of reaction time data. Panel (a) shows reaction time distributions for an example participant, with vertical

lines giving the means. Panel (b) shows the group level data for mean reaction times across the sample of 38 participants.

Panel (c) shows a power contour plot, in which colour represents statistical power (see legend). The thick blue line indi-

cates combinations of sample size and trial number with a power of 80%. The y-axis represents the number of trials in the

incongruent condition (the congruent condition contained three times as many trials)

a ‘good’ deck was 0.54 (sample SD of σs = 0.16), an effect

size of d = 0.24 when compared with the chance baseline of

0.5 (see Figure 3a). We calculated the standard deviation of

individual choices, and averaged across participants to give

σw = 0.47, implying (via equation 2) a between-subjects

standard deviation of σb = 0.15.

We again calculated power by resampling random subsets

of trials and participants from the data, and calculating the

effect size and power using the mean and standard deviation,

for a one-sample t-test comparing to 0.5 (using the pwr.t.test

function in the pwr package in R). This procedure was re-

peated 10,000 times, and the averaged power estimates are

shown in Figure 3b. Consistent with the simulations in Fig-

ure 1h, power depends on both sample size and number of

trials. With small numbers of trials (k < 40), sample size can

be dramatically reduced by increasing trial numbers. For ex-

ample, by increasing from k = 5 to k = 40 trials, the sample

size can be reduced from N = 400 to N = 200 whilst main-

taining power. Alternatively, for a sample size of N = 200,

there are few gains to be made by increasing from k = 40 to

k = 100 trials, as the function has reached asymptote.

In the Iowa Gambling Task, the trial contingencies are

learned throughout the experiment. The black trace in Fig-

ure 3a illustrates that at the start of the experiment partici-

pants are more likely to choose cards from the ‘bad’ decks

for around the first 20 trials. Their behaviour then changes

as they learn the task contingencies, and for the final 40 trials

they are more likely to choose cards from the ‘good’ decks.

This information is lost by randomly sampling trials as we

did to generate the power contour plot in Figure 3b. An al-

ternative is to retain the trial order, and resample only across

participants. Power contours are shown for this analysis in

Figure 3c. Over the first 40 trials, power is high because the

mean probability is significantly below 0.5 (see black curve

in Figure 3a). As participants start to learn the task contin-

gencies, the mean probability passes through 0.5, and power

falls to near zero around 60 trials. Then, as participants be-

gin to reliably choose the ‘good’ deck, the average proba-

bility becomes significantly above 0.5 and power increases

again, reaching 80% by around 80 trials with the full sam-

ple of participants. This alternative visualisation of the data

could be valuable when planning studies using this task, as it

shows explicitly how performance (and hence overall power)

changes over time.

Sensory thresholds

Psychophysical detection thresholds are typically mea-

sured using large numbers of binary trials across stimuli

of different intensities. The proportion of correct trials in-

creases monotonically with stimulus intensity, producing a

psychometric function (see Figure 4a). Threshold is then es-

timated at some criterion performance level (often 75% cor-

rect) by fitting a continuous ogival function such as a cu-

mulative Gaussian or Weibull distribution. We reanalysed

data from a binocular summation experiment (reported by

Baker, Lygo, Meese, & Georgeson, 2018), in which contrast

detection thresholds were measured in this way for sine wave

grating stimuli shown either monocularly or binocularly us-

ing a stereo shutter goggle system. Example psychometric

functions for a single participant are shown in Figure 4a (fit-
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(a) (b) (c)Population (N=504) Unordered Ordered

Figure 3. Summary of proportion data from the Iowa Gambling task. Panel (a) shows a density plot of the mean probability

of choosing a card from a ‘good’ deck for the population of N = 504 participants, each averaged across k = 100 trials. The

vertical orange line shows the grand mean, and the dashed vertical line is the probability expected by chance. The black curve

(with grey shading showing ±1SE) shows the mean probability across all participants on each trial (1 to 100). Panel (b) shows

power contours for one-sample t-tests comparing the mean probability to the chance baseline (0.5). For these simulations,

trials were randomly subsampled. Panel (c) shows power contours when trials were included sequentially.

ted using the quickpsy package in R, see Linares & López-

Moliner, 2016), where it is clear that equivalent performance

requires higher contrast for monocular presentation (blue)

than for binocular presentation (yellow). At the group level

(see Figure 4b), this produces a ratio of monocular to binocu-

lar thresholds between
√

2 and 2 – the well-known binocular

summation effect – which here had an effect size of d = 1.8.

The mean effect was 6.6dB, with a sample standard deviation

of σs = 3.6dB

We subsampled the data set to produce the power con-

tour plot shown in Figure 4c. Because each participant com-

pleted slightly different numbers of trials (owing to the adap-

tive staircase procedure used to determine contrast levels for

each trial), we subsampled at different percentages of trials

for each participant, refitting the psychometric function each

time. On average, each participant completed 225 trials for

the binocular condition, and for the monocular conditions

for each eye (left and right eyes were tested separately and

their data combined). Summation estimates were rejected

when they fell outside of a reasonable range (between fac-

tors of 0.12 and 32), as this indicated that something had

gone wrong with the fitting procedure. As anticipated, power

depended on both sample size and number of trials, and con-

tinued to improve over the ranges available in the data set

(i.e. the function at 80% power was quite shallow, and did

not asymptote over the ranges tested). Indeed, with all trials

included, only around six participants were required to reach

80% power (consistent with previous estimates of power for

this paradigm, see Baker et al., 2018). Conversely, when

all 38 participants were included, only around 15% of trials

were required (around 34 trials for each condition). Alterna-

tively, 80% power could be maintained with a sample size of

N = 12, with each participant completing around 30% of the

total trials.

For this paradigm, estimating the within-participant stan-

dard deviation was not straightforward because threshold

were calculated by fitting a psychometric function. So, we

generated power contour surfaces for a range of possible σw

values, and compared these numerically to the surface de-

rived by subsampling (Figure 4c). The best fitting value was

σw = 33.5dB, which implies (via equation 2) a between-

participant standard deviation of σb = 1.3dB.

EEG: event-related potentials

We next analysed event-related potentials (ERPs) from

a contrast discrimination experiment reported by Vilidaite,

Marsh, and Baker (2019), recorded using a 64-channel EEG

cap. The stimuli were sine wave gratings with a contrast of

50%, presented sequentially in pairs for 100 ms each, with an

interstimulus interval of 400-600ms. These produced a typ-

ical response (see Figure 5a) over occipital electrodes (see

inset to Figure 5a), with positive peaks at around 120 and

220 ms (marking stimulus onset and offset), and a later neg-

ative region with a trough around 600 ms. The first stimulus

of each pair (yellow curve) produced a generally more pos-

itive response than the second stimulus (blue curve), in part

as a consequence of differential overlap, though the precise

cause of the differences are unimportant for this demonstra-
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(a) (b) (c)Example individual Population (N=38)

Figure 4. Summary of threshold psychophysics data. Panel (a) shows psychometric functions for a single participant, with

symbol size proportional to the number of trials at each target contrast level. Curves are fitted cumulative Gaussian functions,

used to interpolate thresholds at 75% correct (dashed line). Data for the monocular condition (blue) were pooled across

the left and right eye conditions before fitting. Panel (b) shows distributions of monocular (blue) and binocular (yellow)

detection thresholds across a group of N = 38 participants with normal vision. Panel (c) shows the power contours derived by

subsampling the data and refitting the psychometric functions.

tion. Each trial was baselined by subtracting the mean volt-

age during the 200 ms before stimulus onset. The sample

size for this experiment (N = 22) was modest (albeit typi-

cal for ERP research), but each participant completed a large

number of trials (k = 600 stimulus pairs).

For each participant, we calculated the peak voltage and

latency within three time windows, highighted grey in Figure

5a. These were 100-150 ms, 200-300 ms and 500-700 ms,

and corresponded to the P100, P200 and N600 components.

The peak voltages and latencies were compared between the

two intervals using a repeated measures approach. The distri-

butions of peak voltages and voltage differences across par-

ticipants are shown in Figure 5b-d for the three time win-

dows, which produced effect sizes (Cohen’s d) of 1.18, 1.11

and 1.32. We performed similar calculations for the laten-

cies, however these were less convincing, with effect sizes of

d=0.21, 0.04 and 0.47 for the three time windows. We do not

consider them further here, though power contours could be

calculated for data sets with more robust latency differences.

We calculated power contours for each of the three peak

voltage differences by subsampling trials and participants,

and re-estimating the peak for each participant and condition

on each of 10,000 iterations. These are shown in Figure 5e-g,

and had the expected format in all cases. For the P100 com-

ponent, power continued to increase across all sample sizes

and trial numbers tested. For the N600 component, power

was largely determined by sample size, and only for rela-

tively few trials (k < 200) could sample size be materially

reduced by adding more trials. This suggests that the limi-

tations on statistical power in typical ERP experiments can

depend on both sample size and number of trials, and that

their relative contributions may depend on the size of the ef-

fect being studied. See also Boudewyn, Luck, Farrens, and

Kappenman (2018) and Clayson and Miller (2017) for more

detailed discussion of these issues in ERP studies. For this

data set, estimates of standard deviations ranged from 12µV

to 21µV for σw, and from 1.1µV to 5.3µV for σb.

EEG: steady-state evoked potentials

An alternative EEG paradigm is the steady-state method,

where a stimulus oscillates at a particular frequency, induc-

ing entrained neural responses at that same frequency. In an

experiment reported by Vilidaite et al. (2018), sine wave grat-

ings of different contrasts were flickered at 7Hz, and shown

to a sample of N = 100 participants. Each participant com-

pleted 8 trials of 11 seconds per contrast level, from which

the first 1s of EEG data was discarded, and the remaining

10s were divided into 10 epochs of 1s each, yielding a to-

tal of k = 80 observations per condition. Each epoch was

then Fourier transformed, and responses are evident both at

the fundamental (flicker) frequency (7Hz) and its second har-

monic (14Hz), as shown in Figure 6a. For these visual stim-

uli, the responses are strongest at the occipital pole, near

early visual cortex (see inset to Figure 6a).

Responses at the fundamental frequency increase mono-

tonically with maximum stimulus contrast (see Figure 6b) at

electrode Oz. For a stimulus contrast of 8% (marked by the
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(a)

(b) (c) (d)

(e) (f) (g)

P100 P200 N600

P100 P200 N600

Figure 5. Summary of ERP results. Panel (a) shows grand mean ERPs in response to central presentation of a 50% contrast sine

wave grating in two intervals of each trial. Shaded regions surrounding each trace show ±1SE across participants (N = 22),

and the grey rectangles illustrate the time windows used to estimate peaks. The inset shows the distribution of voltages across

the scalp at 226 ms after stimulus onset and black symbol mark the electrodes (Oz, O1, O2, POz, PO3 - PO8) over which

ERPs were averaged. Panels (b-d) show average peak voltages across a group of N = 22 participants in each time window, for

both intervals and their difference. Panels (e-g) show power contours for the peak voltage within each time window.
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blue circle), comparing absolute responses (i.e. removing

the phase component before averaging) to the baseline con-

dition (0% contrast, yellow circle) results in an effect size

of d = 0.2. However this can be substantially increased (to

d = 0.68) by using coherent averaging, in which both the am-

plitude and phase information are averaged across trials for

each individual participant (and the absolute amplitudes are

then averaged across participants). The improvement occurs

because responses to the stimuli are phase-locked, and there-

fore should have the same phase on each trial. Any noise at

the stimulus frequency has random phase, and so cancels out

over multiple repetitions. Example Fourier spectra for both

coherent (blue) and incoherent (red) averaging methods are

shown in Figure 6a, where it is clear that the coherent method

greatly reduces the noise at off-target frequencies. Note in

particular the increase in noise in the alpha band (8-12Hz) is

clear with incoherent averaging (red) but absent with coher-

ent averaging (blue). In the contrast response function (Fig-

ure 6b), coherent averaging (blue function) leads to lower

amplitudes at low stimulus contrasts, whereas with inco-

herent averaging (red function) responses must overcome a

much higher ‘noise floor’ before they can be detected. Dis-

tributions of voltages for an example participant and for the

population are shown in Figure 6c,d.

We calculated power contours via subsampling using both

coherent (Figure 6e) and incoherent (Figure 6f) averaging,

which further confirmed that coherent averaging results in

substantially greater statistical power. The 80% power con-

tour in the coherent condition (thick line in Figure 6e) is rela-

tively shallow, showing that both increasing sample size and

adding more trials will improve power over most of the range

explored here. For example, halving the sample size from

N = 100 to N = 50 requires an increase from approximately

k = 20 to k = 40 trials per participant to maintain power at

80%. We confirmed these general findings at the higher stim-

ulus contrasts (not shown). Because the coherent averaging

precludes typical calculation of within-participant standard

deviations, we again fitted the power contour surfaces for a

range of σw to the power contours derived by subsampling.

The best fitting values were σw = 3.1µV and σb = 0.19µV .

fMRI: event-related design

A widely-used fMRI paradigm is the event-related de-

sign, in which stimuli are presented briefly with a jit-

tered interstimulus interval (ISI). We obtained data from

the Cam-CAN repository (available at http://www.mrc-

cbu.cam.ac.uk/datasets/camcan/) for an event-related fMRI

experiment detailed by Shafto et al. (2014) and Taylor et

al. (2017). In brief, N = 625 participants viewed bilat-

eral checkerboard patterns, presented for 30 ms and repeated

k = 124 times. Some stimuli were accompanied by an au-

ditory beep, but this was disregarded for the purposes of our

analyses.

We implemented a minimal preprocessing pipeline using

FSL (Jenkinson, Beckmann, Behrens, Woolrich, & Smith,

2012). This involved co-registering the functional data to

an individual participant’s anatomical scan, and then to the

standard MNI152 brain. We used the inverse of these trans-

forms to project a probabilistic map of primary visual cor-

tex (V1) obtained from Wang, Mruczek, Arcaro, and Kast-

ner (2015) onto the functional data to use as a region of in-

terest (see Figure 7a). The functional data were corrected

for slice timing and participant motion, and high pass fil-

tered at 0.01Hz. Then the time-course was averaged across

the V1 ROI and exported for further analysis. Whilst this

anatomically-defined ROI will necessarily include some vox-

els that were not responsive to the stimulus, we would expect

noise from these voxels to average out and not adversely

affect the results (e.g. Boynton, Engel, Glover, & Heeger,

1996).

We then constructed general linear models (GLMs) for

each data set using the individual trial timings. To simu-

late experiments with variable numbers of trials, each GLM

split the data using random trial allocations into two arbi-

trary groups – a ‘target’ condition and a ’non-target’ con-

dition. A third condition modelled four auditory-only tri-

als which lacked any visual stimulus. A canonical double

gamma haemodynamic response function (Figure 7b) was

convolved with each condition using the fmri.stimulus func-

tion (part of the fmri package in R, see Tabelow & Polzehl,

2011), and orthogonal second order polynomial drift terms

were included in the overall model. We then fit the GLM to

determine a regression (beta) weight for the target condition

to use as our dependent variable. By varying the number

of trials allocated to the target and non-target conditions, we

were able to simulate experiments with different numbers of

trials, whilst keeping the GLM design balanced (see Figure

7c). To provide a null condition, we repeated the analysis us-

ing randomly determined events within the experiment time-

course (i.e. not using the true event timings). This generated

the sample distributions of beta weights shown in Figure 7d,

and resulted in an effect size of d = 0.9 for the full data set.

We calculated effect sizes across participants for the dif-

ference between beta values for the true and null models with

different numbers of trials (see Figure 7c), and used these to

estimate statistical power. As previously, simulations were

repeated 10,000 times with different random sampling of tri-

als and participants to generate power contours (see Figure

7e). As with several previous data sets, power continued to

increase across the full range of trial numbers, such that 80%

power could be maintained for sample sizes from N = 20

to N = 600, simply by varying the number of trials. This
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(a) (b)

(c) (d)

(e) (f)

Example individual Population (N=100)

Coherent average Incoherent average

Figure 6. Summary of SSVEP data. Panel (a) shows Fourier spectra for full 10 s long trials, using either coherent (blue) or

incoherent (red) averaging, and the scalp distribution of activity at 7Hz (inset). Panel (b) shows contrast response functions

for both types of averaging. Panel (c) shows the distribution of amplitudes for an example participant, and panel (d) shows

averages for the population. Panels (e) and (f) show power contours for coherent and incoherent averaging, respectively.
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(a) (b)

(c)

(d) (e)

V1 timecourse

Full GLM

16 trials

32 trials

Population (N=625)

Figure 7. Summary of event-related fMRI analysis and results. Panel (a) shows the V1 region of interest on the medial surface

of the standard (MNI152) brain, highlighted in blue. Panel (b) shows the canonical double gamma haemodynamic response

function used in our general linear models. Panel (c) shows an example time-course from the V1 ROI for one participant

(blue), and a general linear model constructed to predict this time-course (black) based on stimulus events (red). The green

and purple traces show example GLM components with random subsets of trials. Panel (d) shows the population distributions

of beta weights for the full GLM modelling all stimulus events (yellow) or randomly simulated times (blue). Panel (e) shows

the power contour plot for these event-related fMRI data.
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flexibility allows event-related designs to achieve high statis-

tical power even with relatively modest sample sizes, but it is

critical that sufficient trials are included for each condition.

It is also straightforward to design a severely underpowered

study by including too few trials (here k < 60). We estimated

standard deviations by fitting to the subsampled power con-

tour surface, yielding values of σw = 515 and σb = 32.2 (in

β units).

fMRI: blocked design

Another popular fMRI paradigm is the blocked design, in

which stimuli are presented for periods of several seconds,

interleaved with periods of no stimulation. Typically, events

are scheduled to coincide with the acquisition of functional

volumes (the repetition time, or TR). Blocked designs gener-

ally have greater power than event-related designs, because

the stimulus timing is more closely aligned to the sluggish

time constraints of haemodynamic activity, with the longer

duration presentations (relative to event-related designs) al-

lowing BOLD signals to sum over time (Boynton et al.,

1996).

We reanalysed a data set comprising N=83 participants,

all of whom viewed a series of images of faces, objects,

places and scrambled images as part of a functional localiser

described by Flack et al. (2015). Stimuli were presented in

blocks of 6 s, with a 9 s inter-block interval during which

the display was blank. Within each block, 5 images were

shown sequentially for 1000 ms each, with a 200 ms inter-

stimulus interval. fMRI data were acquired with a TR of 3

s, so a complete cycle (one block plus inter-block interval)

lasted for 15 s, or 5 TRs. Each participant completed k = 35

blocks. Functional data were high pass filtered, detrended

and converted to percent signal change, and aligned to the

MNI152 brain. The timeseries was then averaged across the

V1 ROI shown in Figure 7a.

A timeseries for an example participant is shown in Fig-

ure 8a, and exhibits clear stimulus-driven modulations, with

a period of 15 s matching that of the trial cycle. The BOLD

response peaked 9 s after stimulus onset, as can be seen most

clearly in Figure 8b, which averages the response across all

35 blocks for the example participant. The distributions of

BOLD responses at each time point (relative to the start of

a block) are shown in Figure 8c. Panels d-f of Figure 8

show comparable data for the population of N = 83 par-

ticipants, displaying a similar pattern. In order to generate

power contours for a range of effect sizes, we compared ac-

tivity between sequential pairs of sample points. Effect sizes

increased from d = 0.26 comparing 3 s and 0 s, to d = 1.7

comparing 6 s and 3 s. The range of standard deviations

across these comparisons for σw was 0.47 - 0.52%, and for

σb was 0.23 - 0.40%. Power contours (see Figure 8g-j) ap-

proximately asymptoted for trial numbers above k = 15. This

pattern is somewhat different from the event-related fMRI re-

sults discussed previously (Figure 7), where adding more tri-

als continued to increase power across the entire range. For

the larger effects (Figure 8h-j), power was high even with

the relatively small samples (N < 20) typical of many neu-

roimaging studies (Button et al., 2013). Of course looking

for responses to visual stimuli in V1 is guaranteed to pro-

duce large effect sizes - most fMRI studies are designed to

test subtler effects which will inevitably be smaller than in

the examples here.

MEG: evoked responses

The Cam-CAN data set also contains MEG responses

(k = 120 trials) to the same visual stimuli as described in the

section on event-related fMRI, recorded using a VectorView

system (Elekta Neuromag, Helsinki). We filtered (0.01 -

30Hz bandpass), baselined and epoched the data from each

participant, and then conducted one-sample t-tests at a sin-

gle sensor (see Figure 9a) comparing activity to zero. We

selected three time points very soon after stimulus onset (50,

54 and 58 ms) to leverage the power of this large (N = 637)

dataset, and to explore effects of a similar magnitude to those

investigated in typical experiments, where small differences

in responses to different stimuli or mental states might be

compared.

Evoked responses showed an initial polarisation begin-

ning around 50 ms, followed by a larger peak of opposite

polarity at 130 ms (see Figure 9a). Effect sizes at the three

time points increased from d = 0.17 at 50 ms to d = 0.51

at 58 ms when including all trials and participants. As for

previous examples, the within-participant variance (Figure

9b) was clearly greater than the sample variance (Figure 9c).

Across the time window from 50 − 400ms, values of σw

ranged from 8.25−11.77pT/m, and values ofσb ranged from

0.87−6.61pT/m. Subsampled power contours showed the fa-

miliar form (see Figure 9d-f), with power only reaching 80%

for the 50 ms time-point when the full data set was used. At

later time points, iso-power contours show constant power

can be maintained, for example when reducing the sample

size from N = 400 to N = 200 by increasing the number of

trials from k = 20 to k = 60 (at 54 ms).

Discussion

We advocate a representation of statistical power as the

joint function of sample size and number of trials; the

power contour plot. Example power contours were gener-

ated by subsampling data sets from a number of widely used

paradigms in experimental psychology and human neuro-

science, covering a range of different sample sizes and trial
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i) (j)

Example individual

Population (N=83)

3s vs 0s 6s vs 3s 9s vs 6s 9s vs 12s

Figure 8. Summary of blocked design fMRI data. Panel (a) shows an fMRI timecourse for an example individual, averaged

across the V1 ROI (see Figure 7a). Shaded grey regions at the foot of the panel indicate blocks when stimuli were presented.

Panel (b) shows the data from panel (a) aligned to each block onset and averaged across all k = 35 blocks (with error bars

showing ±1SD). The grey shaded regions at the foot of the panel indicate the presentations of individual stimuli within a block.

Panel (c) shows distributions of BOLD activity at each time point. Panels d-f mirror panels a-c but for the sample of N = 83

participants. Panels g-j show power contours for the fMRI data, comparing activity at successive time points.

numbers (summarised in Figure 10a). In most cases, iso-

power contours revealed situations where statistical power

could be maintained with fewer participants, provided that

each participant completed a larger number of trials. For

some paradigms, power reached asymptote at a particular

number of trials, beyond which further testing conferred no

benefit for assessing statistical significance (though as we

note below, additional trials may be informative in studies

of individual differences). In other paradigms, particularly

those where the dependent variable was derived by some

form of model fit, power continued to improve with repeated

testing, beyond the range that could be assessed with our data

sets.

A practical guide to using the power contour approach for

study design is as follows. If existing data are available on

which to base an analysis, and where these data permit direct

estimation of mean difference, σw and σb (using equation 2),

these values can be calculated (or estimated using bootstrap-

ping methods, see Luck, Stewart, Simmons, and Rhemtulla

(2019)) and entered directly into the power contour web ap-

plication. Where direct estimation of these values is not pos-

sible, power contours should be generated by subsampling,

as we have done for the examples here (and as demonstrated

in the code provided). If required, the effective values of

σw and σb can then be estimated by fitting the subsampled

power contour surface to simulated surfaces and finding the

best fitting values. These methods will be of most use when

planning replication studies, or when conducting a series of

experiments using a single technique that build upon an ini-
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(a)

(b) (c)

(d) (e) (f)50 ms 54 ms 58 ms

Example individual Population (N=637)

Figure 9. Summary of MEG results. Panel (a) shows a butterfly plot of evoked responses from 204 planar gradiometers,

averaged across all participants (N = 637). The MEG montage is depicted in the upper left inset, where planar gradiometers

of orthogonal orientations are indicated in blue and red, and magnetometer locations are shown in grey. The upper right inset

shows the distribution of field strengths across a subset of 102 gradiometers with consistent orientation at 130 ms (the peak

of the black curve), and the black dot indicates the location of the sensor used for the analysis. Coloured points highlighted

on the black curve indicate time points used for power analysis. Panel (b) shows distributions of field strengths at each of

the three target time points for an individual participant. Panel (c) shows the same but for the sample population of N = 637

participants. Panels (d-f) show power contours for different time-points.

tial finding in a well-powered sample. If no relevant data

are available, power contours can still be informative if rea-

sonable assumptions can be made about the likely effect size,

and ratio of standard deviations. Just as it is common practise

in power analysis to calculate power curves for a range of po-

tential effect sizes, it might also prove instructive to compare

power contour plots for a range of assumptions about the un-

derlying effect size and variance measures. In all cases, the

accuracy of the predictions will be limited by the extent to

which the parameters generalise to the new experiment.

In Table 1, we summarise the relevant variables from

each paradigm, including the mean effect, and within- and

between-participant and sample standard deviations. For

several paradigms, including sensory thresholds, SSVEPs,

and event-related fMRI, estimates of within-participant stan-

dard deviations were not directly available because the pro-

cess by which trials were combined did not generate one.

In these cases (as described above), we simulated power
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(a) (b)

Figure 10. Summary of sample sizes, trial numbers and Fano-factors across experimental paradigms. Each rectangle in (a)

covers the range of sample sizes and trial numbers for one of the studies analysed here, with colours defined in the legend

in panel (b). Panel (b) plots Fano-factors (variance divided by the mean) derived from the within- and between-participants

standard deviations given in Table 1. Note the log-scaled axes for both panels.

contour surfaces for a range of candidate standard devia-

tions. The estimated value is the within-participant stan-

dard deviation (σw) that produced the best fit. Although this

has no direct relationship to the measured dependent vari-

able, it can be thought of as the SD from an experimen-

tal design with identical power (a power equivalent model,

see von Oertzen, 2010) but which uses traditional averag-

ing across trials instead of more sophisticated analysis steps.

We then calculated the between-participant standard devi-

ation (σb) using equation 2. For the SSVEP and event-

related fMRI data sets, equation 2 returned an imaginary

number because the estimated within-participant SD was

very large. Here we assumed that σb = σs for the purposes

of completing Table 1. The analysis scripts used to perform

these calculations are available on the project OSF repository

(https://osf.io/ebhnk/), and we anticipate that readers might

use these resources to perform similar analyses on their own

data when planning future studies. However we advise cau-

tion in the extent to which variance estimates can be assumed

to generalise across different experimental set-ups, laborato-

ries, and participant groups. Using the values estimated here

to perform power analyses for studies using similar methods

is likely to be highly inaccurate and we do not recommend it.

A further instructive analysis is to compare the within-

and between-participant variances, as these provide insight

into the likely gains that can be obtained by conducting more

trials on each participant. A situation in which the within-

participant variance is very small compared to the between-

participants variance will result in a power contour like that

shown in Figure 1g, where repeated testing confers no bene-

fit. Figure 10b plots the variances expressed as Fano-factors

(variance scaled by the mean) to permit comparison across

paradigms with widely differing units. It is clear that for

all paradigms considered here, the within-participant vari-

ance is substantially above the between-participant variance

(all points appear above the diagonal). This property is not

a given, and we anticipate that there may exist paradigms

where within-participant variance is very low (owing to ac-

curate measurement, or consistency of responses across mul-

tiple repetitions; see Nesselroade (1991) for a discussion in

the context of developmental research). We note that where

multiple estimates were calculated for a single method (such

as ERPs at different time points), the Fano-factors appear to

cluster together, suggesting a consistent ratio of variances for

a given paradigm. However, establishing a generic Fano fac-

tor for a particular methodology would require further inves-

tigation across multiple studies, and also across different lab-

oratories and equipment (e.g. scanner models, sensor types

etc), and would not necessarily apply to individual experi-

ments.

From equation 1, the sample standard error can be ex-

pressed as:

S E s =

√

σ2
b
+
σ2

w

k

N
=

√

σ2
b

N
+
σ2

w

kN
. (3)

These expressions make explicit the dependence of measure-

ment precision (and hence power) on both N and k, regardless

of effect size. In situations where σw > σb, running many

trials will materially reduce the overall standard error. In sit-

uations where σw < σb, running many trials will confer less

benefit, as the standard error is primarily determined by σb,

and increasing N is more profitable. In Table 1 we also cal-
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Table 1

Summary of means, standard deviations and effect sizes for different paradigms. The SD ratio is defined asσw/σb. *Estimated:

to estimate a within-participant SD, we ran simulations to optimise the value of this parameter using the full power contour

surface, see text for details.

Paradigm Mean effect σw σb SD ratio σs Effect size (d)

Reaction times 51 ms 151 ms 41 ms 3.6 42 ms 1.2

Iowa Gambling Task 0.04 0.47 0.15 3.1 0.16 0.24

Sensory thresholds 6.6 dB 33.5 dB* 1.3 dB 11.9 3.6 dB 1.8

ERP P100 1.47 µV 12.0 µV* 1.14 µV 10.5 1.25 µV 1.2

ERP P200 1.93 µV 13.8 µV* 1.64 µV 8.4 1.74 µV 1.1

ERP N600 7.84 µV 21.1 µV* 5.27 µV 4.0 5.34 µV 1.5

SSVEP 8% vs 0% 0.25 µV 3.1 µV* 0.19 µV 16.3 0.19 µV 0.7

Event-related fMRI β = 28.6 β = 515* β = 32.2 16.0 β = 32.2 0.9

Blocked fMRI 3 s vs 0 s 0.09% 0.49% 0.32% 1.5 0.33% 0.26

Blocked fMRI 6 s vs 3 s 0.59% 0.50% 0.34% 1.5 0.35% 1.70

Blocked fMRI 9 s vs 6 s 0.31% 0.47% 0.23% 2.1 0.24% 1.29

Blocked fMRI 9 s vs 12 s 0.37% 0.52% 0.40% 1.3 0.41% 0.91

MEG 50 ms 0.20 pT/m 8.25 pT/m 0.87 pT/m 9.5 1.15 pT/m 0.17

MEG 54 ms 0.42 pT/m 8.32 pT/m 1.03 pT/m 8.1 1.28 pT/m 0.32

MEG 58 ms 0.72 pT/m 8.38 pT/m 1.18 pT/m 7.1 1.41 pT/m 0.51

culate the ratio of standard deviations (σw/σb) as this gives a

useful indication of the likely influence that changing k will

have on power. Paradigms with a small ratio (such as the

blocked fMRI paradigm) produce power contours with the

smallest gains from increasing numbers of trials (see Figure

8).

Up until this point, we have implicitly assumed that a fixed

value of within-participant standard deviation (σw) can be

substituted for each participant’s individual value. Is this

assumption justified, and what impact might different dis-

tributions of σw have on statistical power? To address this,

we simulated power curves assuming a fixed value of σw,

and both normal and skewed distributions of σw (see Fig-

ure 11a). The properties of these distributions were derived

from the MEG data set (at 58 ms), as described in the Fig-

ure 11 caption, and compared with power estimates from the

empirical data. For a range of sample sizes (N) and num-

bers of trials (k), the power estimates for all three artificial

distributions were very similar (Figure 11b). However the

power estimates derived from the empirical data are some-

what lower, especially with larger numbers of participants.

This happens because a small number of outlier participants

with higher standard deviations (those in the tail of the grey

distribution in Figure 11a) contribute disproportionately to

the overall variance. We think that most analysis pipelines

will reject such participants (or reject individual trials that

are contributing to a noisy participant mean), meaning that

the loss of power here is a ’worst case’ scenario (we avoided

elaborate processing pipelines in the current paper to max-

imise transparency). In general these simulations suggest

that the simplifying assumption of a single within-participant

standard deviation is reasonable. For prospective power anal-

yses, the margin of error in estimating effect sizes and vari-

ances will most likely subsume any considerations owing to

non-normally distributed variances and outliers.

A further factor that influences statistical power in re-

peated measures designs is the covariance between the two

measures. We performed simulations to quantify this, by

generating synthetic data sets with different levels of covari-

ance, and performing power calculations on the synthetic

data for repeated measures t-tests. The simulations in Figure

11c-e show that when R = 0, there is no benefit from the re-

peated measures design, and power is determined by conven-

tional factors (effect size, alpha level, sample size and num-

ber of trials). As the level of correlation increases from zero,

power also increases because the covariance between the two

measures accounts for a greater proportion of the total vari-

ance, and it is discounted by the repeated measures analy-

sis. However the overall shape of the power contours is not

affected by the change in covariance - the contours simply

shift towards the origin. For paired t-test designs, the covari-

ance can be accounted for by taking the difference between

the two measures for each participant, and using these differ-

ence scores in a one-sample t-test (which is mathematically

equivalent to a paired t-test on the original data). Estimates of

effect size and power calculated in this way will incorporate

the covariance between repeated measures. For more sophis-

ticated designs, calculating stochastic power contours using

existing data, or simulating them with a range of plausible

covariance levels, may be more appropriate.

Of course, we are far from the first to appreciate that mul-
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(a) (b)

(c) (d) (e)

R = 0 R = 0.3 R = 0.6

Figure 11. Summary of the influence on power of the distribution of within-participant standard deviations, and the corre-

lation between repeated measures. Panel (a) illustrates possible distributions of within-participant standard deviations. The

grey curve shows an empirical distribution derived from the MEG data set (N = 637 at 58 ms). The dashed line gives a fixed

value, which is the mean of the empirical distribution excluding values >15 pT/m. The blue curve shows a normal distribution,

with mean and SD derived from the empirical distribution (mean = 6.99, SD = 2.17). The yellow curve shows the gamma

distribution that best fits the empirical distribution (shape = 17.64, scale = 0.36). Panel (b) shows statistical power as a function

of the number of trials for a range of sample sizes, using the four distributions shown in (a). Panels (c-e) show simulated power

contours for repeated measures designs as a function of the correlation (R) between the two conditions. For these simulations

we assumed a group mean difference of 0.5, between participants standard deviation of 2, and within participant standard

deviation of 10. The total variance remained constant across the range of correlations.

tiple measurements can increase effect sizes and power. In

the domain of psychometric research, the Spearman-Brown

prophecy formula (Brown, 1910; Spearman, 1910) predicts

how the reliability of a test (such as a personality test, or an

IQ test) increases as more items are added. Rouder and Haaf

(2018) also consider the effects of sample size and number

of trials on statistical power, in the context of ‘stochastic

dominance’ - the tendency for all participants in an experi-

ment to have a true effect in the same direction. Under these

conditions, the distribution of effects in the sample popula-

tion is unlikely to be normal, and may instead be positively

skewed with a mean and variance that are proportional (e.g. a

gamma distribution). Simulations show that in this situation

power can remain almost constant when trading off partic-

ipants against trials. Our observation that Fano-factors for

a given method appear to cluster together (see Figure 10b)

could be taken as evidence that dominance holds for some

of the paradigms investigated here, because gamma distribu-
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tions have a variance that increases in proportion to the mean.

Strong empirical evidence to firmly establish the conditions

when dominance occurs is currently lacking, although it ap-

pears entirely plausible for many tasks in sensory and cogni-

tive research.

Whereas most of the example data sets we consider here

involve multiple repetitions of identical stimuli (6/8 used

simple patterns such as checkerboards or sine-wave grat-

ings), it is more typical in some research areas to use different

stimulus examples on each trial. For example in research on

object processing, databases of object images are often used,

with multiple examplars in each object category. This addi-

tional source of variability can also be estimated, and further

complicates the underlying mathematics of power analysis,

as described in detail by Westfall et al. (2014). The power

contour representation advocated here is also applicable to

these situations (see Figures 2-6 of Westfall et al., 2014), and

a linear mixed modelling approach can be used in which vari-

ances are explicitly represented at the participant, stimulus

item and sample level (see also Brysbaert & Stevens, 2018).

In such ‘crossed’ designs, the maximum power that can be

achieved is limited by the item-level variance and number

of stimulus examples, even for a hypothetically infinite sam-

ple size. For statistical procedures where the item-level vari-

ance is not explicitly modelled, it will be subsumed into the

within- and between-participant variances, perhaps making

power estimates less accurate.

Some studies have used cost functions to attempt to derive

a single optimal experimental design, by assuming specific

costs (usually in units of experimenter time) required for re-

cruitment and testing of each participant (e.g. Cleary & Linn,

1969; von Oertzen, 2010; von Oertzen & Brandmaier, 2013).

In principle these methods might be used to determine a point

on the power contour that specifies a particular sample size

and number of trials. We have avoided being prescriptive

about this here, as different studies will have different con-

straints and priorities, and the advantage of visualising the

entire power surface is that it permits the experimenter to

trade off these two variables against each other without loss

of power. However we have built functionality into the Shiny

web application to estimate an optimal combination of sam-

ple size and number of trials, based on the additional con-

straint of a per-participant ‘recruitment cost’, expressed as a

notional number of trials. The optimal point is calculated by

determining the smallest value of N*(k + cost) that achieves

80% power. We advise caution in the use of this feature.

Application to other statistical tests and approaches

Throughout all examples so far we have deliberately used

a basic statistical test to determine power - the t-test. How-

ever the subsampling method we develop here can very easily

be extended to more advanced statistical methods, including

nonparametric statistics, Analysis of Variance (see Smith &

Little, 2018, for a related example), correlation, regression

and so on. The method of subsampling trials has no specific

requirements about the form of the data (as with bootstrap-

ping techniques), provided the assumptions for calculating

the relevant test statistic are met. A recent study by Xu et

al. (2018) calculated the reliability of working memory mea-

sures as a function of both sample size and number of tri-

als, using a similar sub-sampling approach. This produced

similar contour plots, but for Cronbach’s alpha, Spearman-

Brown reliability and standard deviation instead of statistical

power. In all cases, these showed a dependency on both sam-

ple size and number of trials, consistent with the examples

here. Iso-power contours have also been calculated in work

on optimal study design using structural equation modelling

(e.g. Brandmaier, von Oertzen, Ghisletta, Hertzog, & Lin-

denberger, 2015; von Oertzen & Brandmaier, 2013).

In Figure 12 we show power contour plots for repeated

measures ANOVAs using two of the example data sets from

the body of the paper. We conducted a one-way repeated

measures ANOVA across the latter three TR times of the

blocked design MRI experiment (using all five TR times

produced such a large effect that the power contour anal-

ysis was uninformative). With the full data set, this pro-

duced a substantial significant effect (F(2,164) = 40.39, p

< 6 × 10−15, equivalent d = 1.4). We then subsampled the

data 10,000 times, repeating the ANOVA on each subsam-

pled data set and calculating the proportion of significant

tests (i.e. the power) to generate power contours. Figure 12a

shows the power contour plot generated from this analysis,

which closely resembles the power contour plots calculated

for paired comparisons between these three conditions (Fig-

ure 8i,j).

We next conducted a factorial repeated measures ANOVA

on data from the SSVEP experiment. As shown in Fig-

ure 6b, the experiment involved seven stimulus contrast lev-

els. Participants also repeated all contrast conditions with

an added orthogonal mask at high contrast. The two factors

were therefore stimulus contrast (0 - 64%), which produced

a highly significant effect (F(6,1287) = 171.83, p < 2 × 10−16,

equivalent d = 1.78) and mask contrast (0 and 32%) which

produced a smaller effect (F(1,1287) = 12.89, p < 0.0004,

equivalent d = 0.19). The interaction between the two fac-

tors was also signficant (F(6,1287) = 7.74, p < 4× 10−8, equiv-

alent d = 0.35). Power contours for both main effects and

the interaction are shown in Figure 12b-d. The main effect

of stimulus contrast was so substantial that high power could

be achieved with almost any combination of sample size and

number of trials. The main effect of mask and the interaction

were weaker, and again show the familiar tradeoff between

N and k. In practical settings, one should design an experi-
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(a) (b)

(c) (d)

MRI one−way ANOVA SSVEP contrast main effect

SSVEP mask main effect SSVEP contrast*mask interation

Figure 12. Example power contours for one-way and factorial ANOVAs. Panel (a) shows a power contour plot for a one-way

repeated measures ANOVA using three levels from the blocked fMRI data (summarised in Figure 8). Panels (b-d) show power

contours for the main effects of contrast (b) and mask level (c), as well as their interaction (d) in a 7x2 repeated measures

ANOVA design using the SSVEP data set (summarised in Figure 6).

ment to detect the smallest effect of interest with the desired

power. For this example, the main effect of mask has the

smallest effect, and so a replication of this experiment could

use values along the 80% contour in Figure 12c: for example,

100 participants each completing 40 trials, or 75 participants

each completing 80 trials. Alternatively, if only the interac-

tion were of theoretical interest, one could base the design on

the constraints shown in Figure 12d.

For time-varying data using EEG and MEG (see Figures 5

& 9), it is commonplace to use cluster correction algorithms

to control for multiple comparisons (e.g. Maris & Oosten-

veld, 2007). Informative power contours could in principle

be constructed for significant clusters using either the num-

ber of trials (as here), or the number of time-points included

within a cluster. Similar approaches might be applied to

fMRI data, where the number of voxels included in a spatial

cluster or a region of interest (ROI) will likely affect statisti-

cal power.

One limitation of the methods presented here is that they

assume that trials are random, and independent of each other.

In many paradigms, participants might become better at a

task with practise (for example they could become more ac-

curate, or their reaction times could speed up), or become

fatigued after long testing sessions. This will place lim-

its on the improvements gained by running additional trials,

however the likely impact will vary across paradigms (see

Figure 3c for an example). For large data sets it may be

possible to estimate the nonstationarity of σw, and the im-

pact this has on power (see e.g. von Oertzen & Brandmaier,

2013). Other work has modelled multiple sources of vari-
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ance in MRI studies explicitly using intra-class correlations

(Brandmaier et al., 2018). This method permits dissociation

of within-participant variance from various sources of mea-

surement noise such as differences in variance between time

of day, scanner model, and so on. Accurate estimates of rele-

vant sources of variance will improve the overall accuracy of

power analysis, which is particularly important given recent

meta-analytic evidence (Elliott et al., 2019) that test-retest

reliability for task-based fMRI is typically very low (mean

intra-class correlation < 0.4).

An alternative to null hypothesis significance testing is the

Bayesian approach. Bayesian alternatives to t-tests often cal-

culate a Bayes Factor (Rouder, Speckman, Sun, Morey, &

Iverson, 2009) as a test statistic, which indicates the relative

probabilities of obtaining the observed data given the experi-

mental and null hypotheses. For a given experimental design,

one could calculate ‘Bayes factor contours’ in an analogous

manner to power contours, to estimate the number of trials

and participants necessary to reach a specified level of ev-

idence in support of one or other hypothesis. As Bayesian

methods become more widespread, this may prove a useful

alternative to traditional power analysis.

Another Bayesian-inspired method is to adaptively deploy

data collection in the direction required to supply useful evi-

dence to inform the outcome (posterior). An early example is

the Quest algorithm (Watson & Pelli, 1983), used widely in

psychophysics, which chooses the optimal stimulus level on

each trial to provide the most information about the location

of the threshold. Related methods have also been used to op-

timize data collection in fMRI experiments (Lorenz, Hamp-

shire, & Leech, 2017). Typically such approaches operate at

a per-participant level, and will result in efficient use of the

time available. If the ultimate aim is to combine results sta-

tistically across participants, then power contours might still

be used to optimise the number of trials, in a similar fashion

to that shown here for the contrast detection data (Figure 4),

which also involved an adaptive (staircase) procedure. On

the other hand, if the algorithm is designed to continue un-

til particular conditions are met, traditional power analysis

based only on sample size may be more appropriate.

Most discussion of power analysis is focussed on stud-

ies which involve statistically demonstrating the presence of

some effect. However an alternative approach common in

perceptual and cognitive research is to explain and predict

patterns of response across multiple conditions using a com-

putational model. In this tradition, each participant can be

considered an independent ‘replication’ of the phenomena

under study (see e.g. Smith & Little, 2018), and the emphasis

is on improving data quality through conducting many trials

for each participant. Power contours might not be especially

helpful under such circumstances, though knowledge of the

within-participant standard deviation will inform decisions

about how many trials to conduct.

Whereas experimental studies of the type we discuss here

typically aim to reduce the sample variance (σs) in order to

increase effect size, studies using individual differences ap-

proaches aim to maximise meaningful variation between par-

ticipants. However, it is important that the observed variation

(σs) is truly a result of individual differences (high σb) and

not merely a consequence of poor measurement (highσw and

low k). Traditional psychometric instruments, such as tests

of personality and ability, typically have high test-retest reli-

ability, which implies low within-participant variance (σw),

yet this may not be so for neuroscience and experimental psy-

chology paradigms (e.g. Elliott et al., 2019; Zuo, Xu, & Mil-

ham, 2019). Estimating these values explicitly (e.g. using

equation 2) may help individual differences researchers us-

ing such methods to optimise the number of trials and sample

size to this end. We note that since σw > σb for all estimates

of these two parameters in the paradigms considered here

(Table 1 and Figure 10b), individual differences studies will

require sufficient trials to reduce the unwanted influence of

intra-individual variability (σw) on sample variance (σs).

Conclusions

Here we present the rationale for incorporating the num-

ber of measurements (trials) into calculations of statistical

power in experimental studies of psychology and human neu-

roscience. Power contour plots can be generated by subsam-

pling existing data sets or using an online tool, and permit

researchers to make informed choices about how many par-

ticipants to test, and how long to test each one for, at the

study design stage. However, as with all a priori power

calculations, the true effect sizes and variances will remain

speculative until data have been collected.
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