
This is a repository copy of Translating optical coherence tomography technologies from 
clinical studies to botany : real time imaging of long-distance signaling in plants.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/161288/

Version: Accepted Version

Proceedings Paper:
Williams, J., Lin, W.C., Li, W. et al. (3 more authors) (2020) Translating optical coherence 
tomography technologies from clinical studies to botany : real time imaging of long-
distance signaling in plants. In: Proceedings, Biophotonics Congress: Biomedical Optics 
2020 (Translational, Microscopy, OCT, OTS, BRAIN). Optical Coherence Tomography, 20-
23 Apr 2020, Washington, DC, USA. OSA Publishing . ISBN 9781943580743 

https://doi.org/10.1364/oct.2020.om4e.6

© 2020 The Authors. One print or electronic copy may be made for personal use only. 
Systematic reproduction and distribution, duplication of any material in this paper for a fee 
or for commercial purposes, or modifications of the content of this paper are prohibited.

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 
Items deposited in White Rose Research Online are protected by copyright, with all rights reserved unless 
indicated otherwise. They may be downloaded and/or printed for private study, or other acts as permitted by 
national copyright laws. The publisher or other rights holders may allow further reproduction and re-use of 
the full text version. This is indicated by the licence information on the White Rose Research Online record 
for the item. 

Takedown 
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 



Translating Optical Coherence Tomography Technologies 

from Clinical Studies to Botany: Real Time Imaging of 

Long-Distance Signaling in Plants 
 

Joseph Williams1, Wai Ching Lin2, Wei Li2, Shuangyu Wang1, Stephen J. Matcher2, Adrien A. P. Chauvet*1 
1Departement of Chemistry, The University of Sheffield, Dainton Building, Sheffield, S3 7HF (UK) 

1Departement of Electronic and Electrical Engineering, The University of Sheffield, 3 Solly Street, Sheffield, S1 4DE (UK) 

*Corresponding author: a.chauvet@sheffield.ac.uk 

 

Abstract: The time has now come to expand the use of optical coherence tomography and apply it 

in botany where the technology’s key advantages enable visualization of plant’s communication as 

it was never done before. © 2020 The Author(s) 

 

1. Introduction 

Optical coherence tomography (OCT) has evolved to become a standard for medical diagnosis such as in 

ophthalmology, oncology and dermatology. Indeed, because of its non-ionizing scanning probe and high-speed data 

acquisition, it allows for real time, non-destructive, non-invasive in vivo studies of living tissues. Given the success 

of OCT in clinical studies, the goal is to exploit the technique’s key advantages and apply it to another field of 

natural science: botany. Accordingly, in this study, we demonstrate how OCT can be used to study long-distance 

communication in plants. 

Given the fact that plants cannot escape environmental changes, nor pathogen or herbivore attacks, they require 

efficient mechanisms to recognize the type of stressor, convey the information and respond in a targeted manner. 

Plants are thus able to activate hydraulic, chemical and/or chemo-electrical long-distance signals to initiate systemic 

responses to the aggression [1]. Following the “squeeze cell hypothesis” [2], an inflicted wound induces fast 

changes in water pressure along the xylem (i.e. one of the plant’s main vein), which, in turn, lead to significant 

changes in turgor pressure in adjacent cells. The rapid pressure changes in these adjacent cells are expected to 

activate ion and water fluxes, which directly or indirectly controls the synthesis of jasmonates. Jasmonates are 

critical for the plant defense system as they regulate gene expression of various chemicals that either limit the spread 

of pathogens or debilitates herbivores. The production of jasmonates is thus linked to variation in cell-pressure and 

ion concentration. However, our knowledge about the mechanism that triggers the production and liberation of 

jasmonates is hindered by practical constraints: ideally, we require a non-invasive tool to monitor these mechanisms 

in-vivo and live.  

In order to verify this hypothesis and to further investigate the plant’s communication and defense mechanisms, we 

use OCT to monitor the morphological changes of the plants that are induced by an external stimulus. As mentioned, 

OCT ideally allows for non-invasive and live imaging of the plant’s inner structure. Furthermore, the technique is fit 

to operate at room temperature, in normal atmosphere and under normal lighting conditions. It is thus appropriate to 

the natural environment of the plant.  

2.  Material and Methods 

The OCT equipment is set to acquire ~50 A-scans/min across the central vein (xylem and phloem) of a young 

tomato leaf (see Fig. 1. a-d). The stimulus is a 30 seconds-long, 800 nm, 6 W laser pulse focused on the central vein 

of an adjacent leaf (see Fig. 1. c). The motion of the leaf is tracked by monitoring the A-scans difference images, 

which are obtained by subtracting each A-scan with a reference A-scan (as illustrated in Fig 1. f). In such difference 

image, the motion of the leaf is represented by changes in grey tones: the cells move from darker region to lighter 

regions. The grey tones being coded (i.e. black = -0.5, white = +0.5), the overall motion to the leaf is computed by 

integrating the pixel value of each A-scans difference images. Following this procedure, a simple translation and 

rotation of a cell results in positive and negative region of similar amplitude, which will cancel each other while 

computing a normal integral (i.e. straight-forward summation of all pixel values, as seen in Fig. 1. e, red curve). 

Such integral thus track any cell motions that results in non-symmetric changes such as expansion and shrinkage. To 

monitor the overall motion of the cells, including simple translations and rotations, a second integral is performed, 

where the pixel values of the difference images are first squared, and the sum is subsequently square-rooted (as seen 



in Fig. 1. e, black curve). Consequently, any features present in the black curve that are not correlated to features in 

the red curve correspond to whole leaf displacements. Note that the light scattering of the wounding laser is also 

picked up by the OCT probe and results in an increased value in both integrals (illustrated by the artifact in Fig. 1 e, 

between 0 and 0.5 min).  

 

Fig. 1. (a-b) Experimental setup with (c) an example of laser burn used as stimuli while (d) A-scanning the cross-

section of an adjacent tomato leaf with OCT. (e) Overall motion of the leaf represented as the time-dependent 

integral of the A-scans difference image. Red curve is the sign-dependent integral (normalized). Black curve is the 

root-integral-squared signal magnitude (normalized and vertically shifted for clarity). The feature at 0-0.5 min is 

partially due to light-scattering from the 30 second-long wounding laser pulse. The purple shaded area is the 

expected slow response of the adjacent leaf. (f) A-scan difference image obtained by subtracting A-scans taken at 

times indicated by the black arrows in panel (e). The grey background signifies no motions. Darker and lighter 

colors correspond to negative and positive pixel values, respectively. Thus, the plant’s cells moved from a 

darker region toward a lighter region.  

3.  Results and Discussion 

Upon wounding, the leaf undergoes an immediate jerk, which relaxes when the wounding laser switches off. Similar 

to a reaction coordinate in quantum mechanics, the integrals presented in Fig. 1. e, shows the overall leaf changes. 

This spasm-like reaction is illustrated by the initial signal (shown in Fig. 1. e, black curve) in the region from 0 to 

1.0 min. This instantaneous reaction is certainly due to a fast hydraulic signal in response to the local increase in 

temperature caused by the wounding laser. Once perforated, the leaf is expected to generate a type of self-sustained 

action-potential that travels through the whole plants [3]. Following the squeeze-cell hypothesis [2], the action 

potential-like signal is characterized by fast changes in water pressure along the xylem, which, in turn, lead to 

significant changes in turgor pressure in adjacent cells. It is these slower changes in water pressure that are expected 

to affect the morphology of the near-by cells and overall leaf shape. The data suggest that the leaf did react ~2 min 

after wounding with a displacement (Fig. 1. e, black curve) as well as with changes in density (Fig. 1. e, red curve). 

In order to pin-point the exact type and location of morphological changes that is taking place, more specific image 

processing tools are currently being investigated, such as registration algorithms.  

In conclusion, it is important to mention that the present data is the first in-vivo, label-free and non-invasive 

monitoring of a plant’s inner cellular structure! Enabled by the use of OCT technology, this initial study is thus the 

first of its kind in the promising field of plant signaling. 
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