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Abstract. In this paper, a new hybrid scheme based on learning algorithm of 
fuzzy neural network (FNN) is offered in order to extract the approximate solu-
tion of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper is a five-
layer feed-back FNN with the identity activation function. The input-output re-
lation of each unit is defined by the extension principle of Zadeh. The output 
from this neural network, which is also a fuzzy number, is numerically com-
pared with the target output. The comparison of the feed-back FNN method 
with the feed-forward FNN method shows that the less error is observed in the 
feed-back FNN method. An example based on applications are given to illus-
trate the concepts, which are discussed in this paper. 
  

Keywords: Fully Fuzzy Dual Polynomials, Fuzzy Neural Network, Approxi-
mate Solution. 

1 Introduction 

Artificial neural networks (ANNs) are mathematical or computational models based 
on biological neural networks. They make effort to imitate the information presenta-
tion, processing scheme and discrimination capability of natural neurons in the human 
brain. ANNs are a prominent component of artificial intelligence, which emulate the 
learning procedure of the human brain for extracting patterns from historical data. 
Neural networks can be categorized as feed-forward and feed-back ones. The primary 
futileness of feed-forward neural networks is that the weight updating does not em-
ploy any information on the local data structure, also the function approximation is 
impressionable to the training data [1]. However, feed-back neural networks have 
impressive representation abilities so that can successfully overcome the futileness of 
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feed-forward neural networks. In recent years, there have been a wide spread of stud-
ies in the field of neural networks [2-6]. Ishibuchi et al. [7] designed a FNN with tri-
angular fuzzy weights. Abbasbandy et al. [8] investigated the solution of polynomials 

like 01 ... axaxa n
n =++  where ℜ∈x  and naaa ,,, 10   are fuzzy numbers by a 

learning algorithm of FNN. Jafarian et al. [9] proposed a new learning algorithm for 
solving fuzzy polynomials. Friedman et al. [10] represented a new model for solving a 
fuzzy nn×  linear system with crisp coefficient matrix and a fuzzy vector in the 
right-hand side. Also they investigated the duality of the fuzzy linear systems like 

yBxAx +=  where A  and B  are two real nn×  matrices and the unknown x  and 

y  are two vectors with n  fuzzy numbers components [11]. In [12] a FNN model is 

utilized in order to extract the coefficients of fuzzy polynomial regression. 
Up to now, however, none has been reported on applications of the FNNs to solve 
FFDP. This kind of polynomial has been widely studied due to its promising potential 
for applications in different fields such as engineering, physics, economics and opti-
mal control theory. Thus, in this paper the FNN is a first and important step for solv-
ing these polynomials. In [13], the authors have been proposed Newton's method for 
solving fuzzy nonlinear equations. Dehghan et al. [14] introduced a numerical method 
to solve a system of linear fuzzy equation. The solution of fuzzy polynomial equation 
based on the ranking method has been investigated by [15]. In [16] the ranking tech-
nique is implemented in order to obtain the real roots of dual fuzzy polynomial equa-
tion. Muzzioli et al. [17] applied nonlinear programming method for the solution of 
fuzzy linear system. Amirfakhrian in [18] presented a numerical iterative method to 
find the roots of an algebraic fuzzy equation of degree n  with fuzzy coefficients. In 
[19] the fully fuzzy system of linear equations with an arbitrary fuzzy coefficient is 
investigated. Ezzati [20] developed a new method for solving an arbitrary general 
fuzzy linear system by using the embedding approach. In [21] solving fully fuzzy 
system of linear equations by using multi objective linear programming and the em-
bedding approach is discussed. Waziri et al. [22] applied a new approach for solving 
dual fuzzy nonlinear equations by using Broyden's and Newton's methods. Also, in 
[23] the Adomian decomposition method for solving these polynomials is introduced. 
In [24] the exponent to production technique is illustrated in order to generate an ana-
lytical and approximated solution of fully fuzzy quadratic equation. Babbar et al. [25] 
have applied a new approach to find the nonnegative solution of a fully fuzzy linear 
system, where the elements of the coefficient matrix are defined as arbitrary triangular 
fuzzy numbers. More information on fuzzy polynomials can be found in [26, 27]. 
The objective of this paper is to design a new model based on FNNs for approximate 
solution of FFDPs. In this work, a model of feed-back FNN equivalent to dual fuzzy 
polynomial of the form ܽଵݔ +ڮ+ ܽ௡ݔ௡ =  ܾଵݔ + +ڮ ܾ௡ݔ௡ + ݀ is built, where  ௝ܽ , ௝ܾ ,݀  and ݔ are fuzzy numbers (for  ݆ = 1, � ,݊ ). The input-output relation of each 
unit of the designed neural network is defined by the extension principle of Zadeh 
[28]. The proposed feed-back FNN is able to estimate the fuzzy solution related to 
FFDP to any level of preciseness. In continues, by comparing our results with the 
results obtained by using feed-forward FNN, it can be observed that the feed-back 
method yields faster convergence rate and less computational complexity in the ad-
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justing the weights. This paper is started with a brief description of FFDPs in Section 
2. In this section, the feed-back FNN and feed-forward FNN are introduced. Further-
more, by using the learning algorithm which is derived from the cost function, we will 
be capable of finding a fuzzy solution associated with the FFDP. An example is like-
wise presented in section 3. Section 4 finishes the paper with conclusions. 

2 Fully fuzzy dual polynomials  

In this part the interest is vested in finding a solution for the following FFDP  

ݕଵ݌  +ڮ+ ௡ݕ௡݌ = ݕଵݍ +ڮ+ ௡ݕ௡ݍ +Ȱ (1) 

 where ݌௜ , ௜ݍ ,Ȱ, y א E(i = 1, � , n) . In order to extract an estimated solution associat-
ed with the FFDP two models of feed-back FNN and feed-forward FNN equivalent to 
Eq. (1) are presented in Figure 1 and Figure 2 respectively. 

Generally, for an arbitrary fuzzy number ܽ א ܾ there exists no element ,ܧ א  such  ܧ
that, ܽ + ܾ = 0. In fact, for all non-crisp fuzzy number ܽא ܽ we have ܧ + (െܽ) ് 0. 
Hence, Eq. (8) cannot be equivalently substituted by (݌ଵ െ ݕ(ଵݍ +ڮ+ ௡݌) െݍ௡)ݕ௡ = Ȱ, which had been investigated. 

 

Fig. 1. Feed-back FNN for resolving dual fuzzy polynomials 

 

Fig. 2. Feed-forward FNN for resolving dual fuzzy polynomials 



4 

2.1 Computation of fuzzy output in feed-back FNNs 

In the presented neural network training data are written as {(ܲ,ܳ);Ȱ}  where ܲ =

,ଵ݌) � ܳ ௡) and݌, = ,ଵݍ) � , -level sets associated with the fuzzy coeffi-ߙ ௡) . Theݍ
cients ݌௜ as well as ݍ௜  are nonnegative, i.e., 0 ൑ ௜ఈ݌ ൑ ௜ఈ and 0݌ ൑ ௜ఈݍ ൑  .௜ఈ for all i'sݍ

We have 

• Input unit  

ఈ[଴ݕ]  = ଴ఈݕ)  ଴ఈ) (2)ݕ,

• The first hidden units  

 [ܼଵଵ]ఈ = ቀݕ଴ఈ ଴ఈቁݕ, , [ܼଵଶ]ఈ = ଴ఈݕ)  ଴ఈ) (3)ݕ,

• The second hidden units 
 
 

[ܼଶଵ]ఈ = (σ ቀݕ଴ఈቁ௜௜ఌெమభ + σ ൫ݕ଴ఈ൯௜௜ఌ஼మభ + σ ቀݕ଴ఈቁ௜௜ఌேమభ ,σ ൫ݕ଴ఈ൯௜௜ఌெమమ +σ ቀݕ଴ఈቁ௜௜ఌ஼మమ + σ ൫ݕ଴ఈ൯௜௜ఌேమమ )   (4) 

[ܼଶଶ]ఈ = (σ ቀݕ଴ఈቁ௜௜ఌெమభ + σ ൫ݕ଴ఈ൯௜௜ఌ஼మభ + σ ቀݕ଴ఈቁ௜௜ఌேమభ ,σ ൫ݕ଴ఈ൯௜௜ఌெమమ +σ ቀݕ଴ఈቁ௜௜ఌ஼మమ + σ ൫ݕ଴ఈ൯௜௜ఌேమమ )   (5) 

Where 21ܯ = ቄ݅ ቚݕ
0

ߙ ൒ 0ቅ 21ܥ    , = ቄ݅ ቚݕ
0

ߙ < 0 , ቅ, ଶܰଵݎܾ݁݉ݑ݊ ݊݁ݒ݁ ݏ݅  ݅ = {݅ ቚݕ଴ఈ < 0 ଶଶܯ ,{ݎܾ݁݉ݑ݊ ݀݀݋ ݏ݅ ݅, = ൛݅หݕ଴ఈ ൒ 0ൟ, ଶଶܥ = ൛݅หݕ଴ఈ < 0, ,ൟݎܾ݁݉ݑ݊ ݊݁ݒ݁ ݏ݅ ݅ ଶܰଶ = {݅หݕ଴ఈ < ଶଵܯ ,{ ݎܾ݁݉ݑ݊ ݀݀݋  ݏ݅ ݅,0 ׫ ଶଵܥ ׫ ଶܰଵ = {1, � ,݊} and ܯଶଶ ׫ ଶଶܥ ׫ ଶܰଶ = {1, � ,݊} 

• The third hidden units  

[ܼଷଵ]ఈ = (σ ܼଶଵఈ௝ఌெయభ ௜ఈ݌ + σ ܼଶଵఈ௝ఌ஼యభ ௜ఈ݌ ,σ ܼଶଵఈ௝ఌெయభᇲ ௜ఈ݌ + σ ܼଶଵఈ௝ఌ஼యభᇲ ௜ܲఈ)  (6) 

 where }0|{ 2131 ≥= αZiM , }0|{ 2131 <= αZiC , }0|{ 2131 ≥=′
α

ZiM , }0|{ 2131 <=′
α

ZiC , 

},...,1{3131 nCM =∪  and }.,...,1{3131 nCM =′∪′   

[ܼଷଶ]ఈ = (െσ ܼଶଶఈ௜ఌெయమ ௜ఈݍ െ σ ܼଶଶఈ௝ఌ஼యమ ௜ఈݍ ,െσ ܼଶଶఈ௝ఌெయమᇲ ௜ఈݍ െ σ ܼଶଶఈ௝ఌ஼యమᇲ q௜ఈ)  (7) 

 where }0|{ 2232 ≥= αZiM , }0[|{ 2232 <= αZjC , }0|{ 2232 ≥=′
α

ZjM , }0|{ 2232 <=′
α

ZjC , 

},...,1{3232 nCM =∪  and },...,1{3232 nCM =′∪′  . 

• Output unit  
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 [Ȳ]ఈ = (ܼଷଵఈ + ܼଷଶఈ ,ܼଷଵఈ + ܼଷଶఈ )  (8) 

The triangular fuzzy weight ݕ଴  is indicated considering the three parameters men-
tioned as ݕ଴ = -଴, its adjustݕ Taking into account the fuzzy parameter .(଴ଷݕ,଴ଶݕ,଴ଵݕ)
ment rule has been portrayed as below  

 
ݐ)଴௥ݕ + 1) = (ݐ)଴௥ݕ + οݕ଴௥(ݐ),     ݎ = 1,2,3οݕ଴௥(ݐ) = െߟ డ௘ഀడ௬బೝ + ݐ)଴௥ݕοߛ െ 1)

 (9) 

where ݐ is referred as the number of adjustments, ߟ is taken to be the learning con-

stant, also ߛ  is referred as a momentum constant. We calculate 
డ௘ഀడ௬బೝ  as follows  

 
డ௘ഀడ௬బೝ =

డ௘ഀడ௬బೝ +
డ௘ഀడ௬బೝ (10) 

 Hence complexities lies in the calculation of the derivatives 
డ௘ഀడ௬బೝ and  

డ௘ഀడ௬బೝ . So we have  

 

 
డ௘ഀడ௬బೝ = െߙ(Ȱఈ െȲఈ)(

డ௡௘௧యభഀడ௬బೝ െ డ௡௘௧యమഀడ௬బೝ ) (11) 

 where డ௡௘௧యభഀడ௬బೝ = σ ௜ܲఈ௝ఌெయభ డ௓మభഀడ௬బೝ + σ ௜ఈ௝ఌ஼యభ݌ డ௓మభഀడ௬బೝ   (12) 

డ௡௘௧యమഀడ௬బೝ = σ ௜ఈ௝ఌெయమݍ డ௓మమഀడ௬బೝ + σ ௜ఈ௝ఌ஼యమݍ డ௓మమഀడ௬బೝ    (13) 

డ௓మభഀడ௬బೝ =
డ௓మమഀడ௬బೝ = σ ௜ିଵ௝ఌெమభ(଴ఈݕ)݅ డ௬బഀడ௬బೝ + σ ௜ିଵ௝ఌ஼మభ(଴ఈݕ)݅ డ௬బഀడ௬బೝ + σ ௜ିଵ௝ఌேమభ(଴ఈݕ)݅ డ௬బഀడ௬బೝ  (14) 

and డ௘ഀడ௬బೝ = െߙ(Ȱఈ െȲఈ
)(
డ௡௘௧యభഀడ௬బೝ െ డ௡௘௧యమഀడ௬బೝ )  (15) 

where 

డ௡௘௧యభഀడ௬బೝ = σ ௜ఈ௝ఌெయభᇲ݌ డ௓మభഀడ௬బೝ + σ ௜ఈ௝ఌ஼యభᇲ݌ డ௓మభഀడ௬బೝ   (16) 

డ௡௘௧యమഀడ௬బೝ = σ ௜ఈ௝ఌெయమᇲݍ డ௓మమഀడ௬బೝ + σ ௜ఈ௝ఌ஼యమᇲݍ డ௓మమഀడ௬బೝ   (17) 

డ௓మభഀడ௬బೝ =
డ௓మమഀడ௬బೝ = σ ௜ିଵ௝ఌெమమ(଴ఈݕ)݅ డ௬బഀడ௬బೝ + σ ௜ିଵ௝ఌ஼మమ(଴ఈݕ)݅ డ௬బഀడ௬బೝ + σ ௜ିଵ௝ఌேమమ(଴ఈݕ)݅ డ௬బഀడ௬బೝ  (18) 

In above relations the derivatives 
డ௬బഀడ௬బೝ  and 

డ௬బഀడ௬బೝ can be summarized as follows  
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డ௬బഀడ௬బೝ = ൝1 െ ݎ     ,ߙ = ݎ             ,ߙ1 = 2

ݎ              ,0 = 3
,       

డ௬బഀడ௬బೝ = ൝0,                  ݎ = ݎ                  ,ߙ1 = 2

1െ ݎ          ,ߙ = 3
 (19) 

2.2 Computation of fuzzy output in feed-forward FNNs 

The ߙ -level sets associated with the fuzzy inputs ݌௜ 's as well as  ݍ௜ 's are nonnegative, 
i.e., 0 ൑ ௜ఈ݌ ൑ ௜ఈ  and 0݌ ൑ ௜ఈݍ ൑ ݅ ௜ఈ  for allݍ  's. We have 

• Input units  

ఈ[௜݌] = ቀ݌௜ఈ ௜ఈቁ݌, , ఈ[௜ݍ] = ቀݍ௜ఈ ௜ఈቁݍ, ,      ݅ = 1,2, � ,݊ (20) 

• Hidden units  

[ܼଵ]ఈ = (σ ቀݕఈቁ௜ ௜ఈ௜ఌெ݌ + σ ቀݕఈቁ௜ ௜ఈ௜ఌ஼݌ ,σ ൫ݕఈ൯௜݌௜ఈ௜ఌெᇲ + σ ൫ݕఈ൯௜݌௜ఈ௜ఌ஼ᇲ )  (21) 

 
 

[ܼଶ]ఈ = (െσ ቀݕఈቁ௜ ௜ఈ௜ఌெݍ െ σ ቀݕఈቁ௜ ௜ఈ௜ఌ஼ݍ ,െσ ൫ݕఈ൯௜ݍ௜ఈ௜ఌெᇲ െσ ൫ݕఈ൯௜ݍ௜ఈ௜ఌ஼ᇲ ) (22) 

where }0)(|{ ≥= iyiM α , }0)(|{ <= iyiC α , }0)(|{ ≥=′ iyiM
α

, }0)(|{ <=′ iyiC
α

, 

},...,1{ nCM =∪  and },...,1{ nCM =′∪′ . 

• Output unit  

 [Ȳ]ఈ = (ܼଵఈ + ܼଶఈ ,ܼଵఈ + ܼଶఈ) (23) 

Assume Ȱ  to be the fuzzy target output in association with the fuzzy coefficient 
vectors (݌௜ ,  ௜). A cost function which is required to be minimized is stated at parݍ
with the Į-level sets of the fuzzy output Ȳ as well as the target output Ȱ as ݁ఈ =݁ఈ + ݁ఈ, where ݁ఈ = ߙ (஍ഀିஏഀ)మଶ  and ݁ఈ = ߙ (஍ഀିஏഀ

)మଶ  . The ݁ఈ and ݁ఈ are demon-

strated as the squared errors for the lower limits as well as the upper limits associated 
with the Į-level sets of the fuzzy output Ȳ and target output Ȱ, respectively.  

The triangular fuzzy weight ݕ is indicated considering the three parameters mentioned 
as ݕ = ௥ݕ  The weight is adjusted by the following rule [7] .(ଷݕ,ଶݕ,ଵݕ) ݐ) + 1) = ௥ݕ (ݐ) + οݕ௥ ݎ     ,(ݐ) = 1,2,3οݕ௥ (ݐ) = െߟ డ௘ഀడ௬ೝ + ௥ݕοߛ ݐ) െ 1)

 (24) 

where ݐ is referred as the number of adjustments, ߟ is taken to be as the learning con-

stant, also ߛ is referred as a momentum constant. We calculate 
డ௘ഀడ௬ೝ   as follows  
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డ௘ഀడ௬ೝ =
డ௘ഀడ௬ೝ +

డ௘ഀడ௬ೝ   (25) 

Hence complexities lies in the calculation of the derivatives 
డ௘ഀడ௬ೝ  and  

డ௘ഀడ௬ೝ  . So we have  

డ௘ഀడ௬ೝ = െߙ(Ȱఈ െȲఈ)(
డ௡௘௧మభഀడ௬ೝ െ డ௡௘௧మమഀడ௬ೝ )  (26) 

where డ௡௘௧మభഀడ௬బೝ = σ ௜ିଵ(ఈݕ)௜ఈ݅݌ డ௬ഀడ௬ೝ௜ఌ୑ + σ ௜ିଵ(ఈݕ)௜ఈ݅݌ డ௬ഀడ௬ೝ௜ఌେ   (27) 

డ௡௘௧మమഀడ௬బೝ = σ ௜ିଵ(ఈݕ)௜ఈ݅ݍ డ௬ഀడ௬ೝ௜ఌ୑ + σ ௜ିଵ(ఈݕ)௜ఈ݅ݍ డ௬ഀడ௬ೝ௜ఌେ  (28) 

and 

డ௘ഀడ௬ೝ = െߙ(Ȱఈ െȲఈ
)(
డ௡௘௧మభഀడ௬ೝ െ డ௡௘௧మమഀడ௬ೝ )  (29) 

Where 

డ௡௘௧మభഀడ௬ೝ = σ ௜ఈ௜ఌெᇲ݌ ௜ିଵ(ఈݕ)݅ డ௬ഀడ௬ೝ + σ ௜ିଵ(ఈݕ)௜ఈ݅݌ డ௬ഀడ௬ೝ௜ఌ஼ᇲ   (30) 

డ௡௘௧మమഀడ௬ೝ = σ ௜ఈ௜ఌெᇲݍ ௜ିଵ(ఈݕ)݅ డ௬ഀడ௬ೝ + σ ௜ିଵ(ఈݕ)௜ఈ݅ݍ డ௬ഀడ௬ೝ௜ఌ஼ᇲ   (31) 

In above relations the derivatives 
డ௬ഀడ௬ೝ  and 

డ௬ഀడ௬ೝ  can be summarized as follows 

 
డ௬ഀడ௬ೝ = ൝1െ ݎ     ,ߙ = ݎ             ,ߙ1 = 2

ݎ              ,0 = 3
,       

డ௬ഀడ௬ೝ = ൝0,                  ݎ = ݎ                  ,ߙ1 = 2

1െ ݎ          ,ߙ = 3
 (32) 

3 Numerical examples 

To show the behavior and properties of the proposed method, an examples is solved. 
Example: A vertical propeller shaft ܳܣ with a diameter of ݀ = 0.015  is connected to 
the fixed base of  . The propeller shaft is made of steel with ܩ = 80 × 10ଽ  and the 
resultant torques in the points ܥ,ܤ,ܣ and ܦ are ଵܶ = ,ݕ ଶܶ = ,ଶݕ ଷܶ = ܶ and  ݕ ସ =  ,ଶݕ
respectively. The resultant torques ଵܶ and ଶܶ can cause a twisting in shaft which is 
equal to ߮  degree, see Fig. 4a. The resultant torques ଷܶ and ܶ ସ can cause a twisting in 
shaft which is equal to ߮ٓ (5,9,14) degree, see Fig. 3b. According to the torsion 
equation we will have [29]:  ߮ =

௅భ భ்௃ீ ْ ௅మ మ்௃ீ =
௅య య்௃ீ ْ ௅ర ర்௃ீ ْ (5,9,14) (33) 
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where  

ܬ  =
ஈଶ ݀ସ. (34) 

The length of the shafts are not exact, which satisfy the triangular function (1), 

 

ଵܮ = (7,8,11) = ଶܮଵ݌ = (1,2,3) = ଷܮଶ݌ = (1,2,3) = ସܮଵݍ = (2,3,4) = ଶݍ  (35) 

We use feed-back FNN and feed-forward FNN shown in Figure 1 and Figure 2 to 
approximate the solution y. The exact solution is termed as = (1,3,4) . The training 
starts with (0)ݕ = (3,6,7), ߟ = 4 × 10ିସ  as well as ߛ = 5 × 10ିସ. Table 1 displays 
the estimated solution considering the number of iterations. The preciseness of the 
computed solution ݕ଴(ݐ) is portrayed in Figure 4, where ݐ is taken to be the number of 
iterations.  

 

Fig. 3. The cylindrical force 

 

Fig. 4. The cost function associated with Example 2 considering the number of iterations with 
both techniques 
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Table 1. The estimated solutions at par with error analysis associated to Example  

t ݕ଴(ݐ) by feed-forward FNN Error t ݕ଴(ݐ) by feed-back FNN Error 

1 (2.9685,5.8452,6.9025) 1443.3563 1 (2.8692,5.7905,6.8479) 1443.3563 

2 (2.7245,5.6413,6.6585) 999.52256 2 (2.5892,5.5812,6.4475) 806.67385 

3 (2.4998,5.4025,6.3011) 696.92256 3 (2.3098,5.2560,6.0313) 517.06672 

4 (2.2458,5.0255,5.9915) 509.34256 4 (2.0514,4.9047,5.7065) 375.04018 

 ڭ ڭ ڭ ڭ ڭ ڭ 231.27915 (1.8256,4.5973,5.3560) 5 382.84254 (2.0150,4.8961,5.6162) 5
55 (1.0099,3.0043,4.0067) 0.32515382 35 (1.0075,3.0081,4.0097) 0.6460055 

56 (1.0081,3.0036,4.0052) 0.22514552 36 (1.0068,3.0062,4.0078) 0.4542216 

57 (1.0075,3.0029,4.0041) 0.11254587 37 (1.0052,3.0044,4.0057) 0.3298205 

58 (1.0061,3.0020,4.0030) 0.12552141 38 (1.0043,3.0029,4.0040) 0.1649085 

59 (1.0048,3.0011,4.0022) 0.09254654 39 (1.0035,3.0019,4.0022) 0.0888326 
 

4 Concluding remarks 

This paper describes the design and training of a FNN which is used for solving 
FFDP. To obtain a solution of a FFDP, the adjustable parameter of FNN is systemati-
cally adjusted by using a learning algorithm that is based on the gradient descent 
method. The effectiveness of the derived learning algorithm is demonstrated by com-
puter simulation on numerical examples. We proposed two examples based on appli-
cations. The comparison of the feed-back FNN method with the feed-forward FNN 
method shows that the feed-back FNN method is better or at least more suitable than 
the feed-forward FNN method. The reason behind it is that, the speed of convergence 
is increased which depends on the number of computations. 
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