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Abstract. In this paper, a new hybrid scheme based on learning algorithm of
fuzzy neural network (FNN) is offered in order to extract the approximate solu-
tion of fully fuzzy dual polynomials (FFDPs). Our FNN in this paper fivex

layer feedback FNN with the identity activation function. The inputtput re-
lation of each unit is defined by the extension principle of Zadeh. The output
from this neural network, whicls also a fuzzy number, is numerically com-
pared with the target output. The comparison of the-Bemtt FNN method
with the feedforward FNN method shows that the less error is observed in the
feedback FNN methodAn example based on applications are given to illus-
trate theconcepts, whiclare discussed in this paper.

Keywords: Fully Fuzzy Dual PolynomiaJd-uzzy Neural NetworkApproxi-
mate Solution

1 I ntroduction

Artificial neural networks (ANNs) are mathematical or gautational models based
on biological neural networks. They make effort to imitate the informationmieese
tion, processing scheme and discrimination capability of natural neartreshuman
brain. ANNs are a prominent component of artifiérgklligence, whichemulate the
learning procedure of the human brain for extracting patterns fretarical data.
Neural networks can be categorized as fémavard and feedback ones. The primary
futileness of feedorward neural networks is that the weight updating does not em-
ploy any information on the local data structure, also the function approsimati
impressioable to the training data [1]. However, feeack neural networks have
impressive representation abilities so that can suedbsefzfercome the futileness of



feedforward neural networks. In recent years, there have been a widd spstad-
ies in the feld of neural networks {B]. Ishibuchi et al. [7] designed a FNN with tri-
angular fuzzy weights. Abbasbandy et al. [8] investigated the solutionysfqroilals

like a,x+...+a,x" =a, where Xe R and a,,a,,...,a, are fuzzy numbers by a

learning algorithm of FNN. Jafarian et al. [9] proposed a new learningithlgofor
solving fuzzy polynomials. Friedman et al. [10] represented anmegel for solving a
fuzzy NXN linear system with crisp coefficient matrixih a fuzzy vector in the
right-hand side. Also they investigated the duality of the fuzzgdli systems like
Ax=Bx+ Yy where A and B are two realnxn matrices and the unknowX and

Y are two vectors witHl fuzzy numbers components [11]. In [12] a FNN model is

utilized in order to extract the coefficients of fuzzy polynomégjression.

Up to now, however, none has beepared on applications of the FNNs to solve
FFDP. This kind of polynomial has been widely studied duestpridtmising potential

for applications in different fields such as engineering, physics, economics @&nd op
mal control theory. Thus, in this papeetRNN is a first and important step for solv-
ing these polynomials. In [13], the authors have been proposed Newton's method for
solving fuzzy nonlinear equations. Dehghan et al. [14] introducesngmcal method

to solve a system of linear fuzzy equati®he solution of fuzzy polynomial equation
based on the ranking method has been investigated by [15]. In [16] the ranking tech-
nique is implemented in order to obtain the real roots of dual fuzzy polynomial equa
tion. Muzzioli et al. [17] applied nonlinear programming method for the solution
fuzzy linear system. Amirfakhrian in [18] presented a numericaltiter method to

find the roots of an algebraic fuzzy equation of dedfewith fuzzy coefficients. In

[19] the fully fuzzy systenof linear equations with an arbitrary fuzzy coefficiest i
investigated. Ezzati [20] developed a new method for solving an arbitraryabener
fuzzy linear system by using the embedding approach. In [21] solving fully fuzzy
system of linear equations by ugimulti objective linear programming and the em-
bedding approach is discussed. Waziri et al. [22] applied a new approaziviag

dual fuzzy nonlinear equations by using Broyden's and Newton's methodsinAlso,
[23] the Adomian decomposition method for solving these polynomials is intrdduce
In [24] the exponent to production technique is illustrated in order to geraratna-
lytical and approximated solution of fully fuzzy quadragguation. Babbar et al. [25]
have applied a new approach to find the nonnegative solution of a fully fuzzy linea
system, where the elements of the coefficient matrix are dedgadbitrary triangular
fuzzy numbers. More information on fuzzy polynomials can be faufi2b, 27].

The objective of this paper is to designeavimodel based on FNNs for approximate
solution of FFDPs. In this work, a model of felealck FNN equivalent to dual fuzzy
polynomial of the formw,x + -+ a,x™ = byx + -+ b,x™ 4+ d is built, where

a;, b;,d andx are fuzzy numbers (fof = 1, ...,n ). The inputoutput relation of each
unit of the designed neural network is defined by the extension principledehZa
[28]. The proposed fedaack FNN is able to estimate the fuzzy solution related to
FFDP to any level of preciseness. In continues, by comparing oursrestht the
results obtained by using feéarward FNN, it can be observed that the fbadk
method yiéds faster convergence rate and less computational complexity in the ad-



justing the weights. This paper is started with a bristdption of FFDPs in Section
2. In this section, the feduhck FNN and feefbrward FNN are introduced. Further-
more, by usinghe learning algorithm which is derived from the cost functieawill
be capable of finding a fuzzy solution associated with the FRDRxampleis like-
wise presented in section 3. Section 4 finishes the paper withusims.

2 Fully fuzzy dual polynomials

In this part the interest is vested in finding a solutionterfollowing FFDP

Pyt oyt =gyt t gyt + @ )

wherep;, q;, ®,y € E(i = 1, ...,n) . In order to extract an estimated solution associat-
ed with the FFDP two models of febdck FNN and feefbrward FNN equialent to
Eq. (1) are presented in Figure 1 and Figure 2 respectively.

Generally, for an arbitrary fuzayumbera € E, there exists no elemehte E such
that a + b = 0. In fact, for all norcrisp fuzzy numbea € E we havea + (—a) # 0.
Hence, Eq. (8) canhobe equivalently substitutedy (p; — q)y + -+ (p, —
qn.)y™ = @, which had been investigated

¥o (€ 4+ 1) ValE) + Ayal(L) =

Hidden
units

\( )_-‘ l\l]_._c

Fig. 2. Feedforward FNN for resolving dual fuzzy polynomials



2.1  Computation of fuzzy output in feed-back FNNs

In the presented neural network training data are writtef{3%®); ®} whereP =
(p1, -, pn) @ndQ = (qy, ---,qn) - Thea-level sets associated with thezzy coeffi-
cientsp; as well ag; are nonnegative, i.e0,< p?* < p; and0 < g7 <q; for all i's.
We have

e Input unit
Yol = (. 5) )
e The firsthidden units
[2:4]% = (y&.55) [Z22) = 6. 73) (3)

e The second hidden units

Zarl* = ey (75) + Bieen75)' + Ziemsy (48 Bienn 75 +
Siecs (¥5) + Ziensy72)) (4)
Zaal = ey (75) + Biecn75)' + Ziewsy (48) - Biamn 575" +
Siec () + Ziensa (7)) (5)

WhereM,, = {i |yg > 0}, Cy = {i |y;‘ <0,iis evennumber}, Ny ={i |X§‘ <0,
i is odd number}, My, = {i[y; = 0}, C5, = {i[y; < 0,iis even number},N,, = {i|[y5 <0,
iis odd number }, M21 U C21 V) N21 = {1, ...,n} anszz V) C22 U NZZ = {1, ...,n}

e The third hidden units
. —a _, —a
[Z31]% = (ZjeM31 Z% Eza + stc31 Z3 P?;ngmgl Zy p;x + ngcgl Z P) (6)

where M, ={i|z% >0}, Cy={i|Z5 <0}, Mj={i|Z2a>0}, C={i|Zxn<0},
M, Gy, ={1...,n} and M}, UC;, ={1...,n}.

_ —a _ —a
[Z32]% = (= Xiem;, £52 ﬂza — Xjecs, Z22 q;z, - stMgz Z22 q;z - stc3’2 Z3,47) (7)

whereM,, ={i|25,20},  Cy, ={jl[Z5 <0}, M, ={j|Z%20}, Ci,={j|Z2<0},
M., UC,, ={1...n} and M}, UCL, ={L,...n} .

e Output unit



—a —a
[W]* = (Z81 + 255,231 + Z3) 8)

The triangular fuzzy weighy, is indicated considering the three parametees-
tioned ag, = (y3,v&,v3). Taking into account the fuzzy parameggr its adjust-
ment rule has been portrayed as below

yo(t+1) =y5) +Ays (), r=123

T 9 ¢ T 9
Ayg (t) = =1 a;g +ylAyg(t—1) ®)

wheret is referred as the number of adjustments taken to be the learning con-
a

stant, alsg is referred as a momentum constant. We calc%iateas follows
0

de* _ 0e“ ae”

ays ~ ays | oy}

(10

o L . L de® ae”
Hence complexities lies in the calculation of t}eelvzhtlves;? and = . So we have
0

oyg

0e%

onet$;  onetf,
2 = —a(r - yo(Bh - (11
where
onetd; _ a9Z51 7% 0%
e Zj£M31Bl oyl + Z:]£C31 p; vy 12
onet§h _ a?d —a 023
oyl - ZjSM?,z ql vy +Z]£C3z q; ayg (13)
azs, _ 0z% i—1 0¥8 c—ayiq OY0 : i—1 9%
oo = oo = Bt (O 4 e 100 5 ¥ Dy 1057 00
and
ae% omets. onets.
AN < T 31 Jnely, 1
ayg ( )( % ( 5)
where
—a
dnets; _ —a 6221 a 973,
avy Z1'81"’31 Pi Byr ay§ + ZJSC?J bi ayg 19
—a 7%
dnets, —a aZzz 0¢ 9222
vy Ljems, @i 5, ayy + Ljecs, di ayh 0
0751 _ 075, ay 2%
21 _ 0Zzp i-1 %% ‘1 yo )it =
a_yg Ty Z}stz l()’o) + leczz l(y ) L(yo) 6_315 18

Vg :
ai‘; can be summarized adlfws
0



e l1—a r=1 e 0, r=1
a_(; ={q, r=2, 0y3 =1a, r=2 (19
Yo o, r=3 % 1-q r=3

2.2 Computation of fuzzy output in feed-forward FNNs

Thea -level sets associated with the fuzzy ingutss as well asg;'s are nonnegative,
i.e,0<pf<p; and0<qf <g, foralli's. We have

e Input units

) = (p&77 ) lad“ = (¢.37), i=12,..n (20)

e Hidden units

20% = Ciew (%) 6 + Ziee (v9) B Zewr 0 7 + Bieer )2 @D

12,17 = (= Ziew (¥9) @8 = Biee (4%) T = Ziew (79 T — e (39 a9 (22

whereM ={i |(y*) 20}.C={i|(y")' <0} .M'={i|(y")' 20}.C'={i|(y") <0},
MuC={L...nt andM'UC' ={L,...,n}.

e OQutput unit
[W]* = (28 + 28,7; +Z,) 23)

Assumed to be the fuzzy target output in association with theyfizzefficient
vectors(p;, q;)- A cost function which is required to be minred 5 stated at par
with the a-level sets of the fuzzy outplt as well as the target outpdt ase® =

_ 2 _a'__a 2
e +2% wheree® = ¢ @2 ande® = « =¥ | Thee® ande® are demon-
straed as the squared errors for the lower limits as well as the upperdsadsiated
with the a-level sets of the fuzzy outptit and target outpub, respectively.

The triangular fuzzy weight is indicated considering the three parameters mentioned
asy = (y1,y2%,y?%). The weight is adjusted by the following rule [7]

y i+ =y () +4y" (6), r=123

) a
By (£) = —n g +yay" (£ —1)

(24)

wheret is referredas the number of adjustmemnss taken to be as the learning con-
a
stant, alsq is referred as a momentum constant. We calcgf;ateas follows



de® 9e*  9e”
W = T 25

oy dy oy

L . L 9e% ae”
Hence complexities lies in the calculation of tleeiatives>- and 7 . So we have

agu _ a _ a 61’1_91'511 _ 61’1_91'512

e = —a (7 - w2 2 (26

where

onetd,

Tgl = ZlSM pl l(ya)l 1 ayr + Zl,gcp l(ya)l 1 ayr (27)

onet¥,

Tgn ZlSM ql l(y“)‘ 1 ayr + Zlgcq l(ya)L 1 ayr (28)

and

ae% _ _ 6net21 _ 0@?2

= a@ -G T @9

Where

aﬁgl _ Z , —a i(_a)i_l 670‘ + Z , -all(_a)i_l ﬂ (30)
ay" iem’ Py 1Y ay” iec’ PrtlY ay”

Omety, —a . -1

Pl S TG 2+ S 451G 2 1

. Lo ay® ay
In above relations the denvauvg;s,— an ajy/ -

aya 1l—a r=1 e 0, r=1
o =% r=2, ayr =ia, r=2 (32
Y 0, r=3 g 1-a, r=3

3 Numerical examples

To show the behavior and properties of the proposed methoglkampless solved.
Example: A vertical propeller shafQ with a diameter ofl = 0.015 is connected to
the fixed base of . The propeller shaft is made of stithlG = 80 x 10° and the
resultant torques in the poiMsB, C andD areT, =y, T, = y?,T; =y andT, = y?,
respectively. The resultant torquEsandT, can cause a twisting in shaft which is
equal top degree, see Fig. 4a. The resultant torqyeandT, can cause a twisting in
shaft which is equal t@ © (5,9,14) degree, see Figh. According to the torsion
equation we will have [29]:

Lsz L4T4

= L1T1 @l L3T3 DD (59,14) (33



where
J=3d* (34
The length of the shafts are not exact, which satisfy theguiar function 1),

Ll = (7,8,11) = pl
LZ = (1)2!3) = pz

3
L3 = (1l213) = ql ( 5)
L4 = (213I4) = QZ

We use feedback FNN and feeegorward FNN shown in Figure 1 and Figure 2 to
approximate the solution y. The exact solution is termed é53,4) . The training
starts withy(0) = (3,6,7),1 =4 x 10™* as well asy = 5 x 10~*. Table1l displays
the estimated solution considey the number of iterations. The preciseness of the

computed solutiory, (t) is portrayed in Figurd, wheret is taken to be the number of
iterations.

The cost function

——
—-—

- L "
an 40 50
Mumber of iterations

Fig. 4. The cost function associated with Example 2 considering the number of iterations with
both techniques



Table 1. Theestimated solutions at par with error analysis associated to Example

yo(t) by feedforward ANN Error
(2.9685,5.8452,6.9025) 1443.3563
(2.7245,5.6413,6.6585) 999.52256
(2.4998,5.4025,6.3011) 696.92256
(2.2458,5.0255,5.9915) 509.34256
(2.0150,4.8961,5.6162) 382.84254

¥o(t) by feedback FNN Error

(2.8692,5.7905,6.8479) | 1443.3563
(2.5892,5.5812,6.4475) | 806.67385
(2.3098,5.2560,6.0313) | 517.0662
(2.0514,4.9047,5.7065) 375.04018
(1.8256,4.5973,5.3560) | 231.27915

o s w N e
o s (w N e

55 (1.0099,3.0043,4.0067) 0.32515382 35 (1.0075,3.0081,4.0097) 0.6460055
56 (1.0081,3.0036,4.0032 0.22514552 36 (1.0068,3.0062,4.0078) 0.4542216
57 (1.0075,3.0029,4.0041) 0.11254587 37 (1.0052,3.0044,4.0057) 0.3298205
58 (1.0061,3.0020,4.0030) 0.12552141 38 (1.0043,3.0029,4.0040) 0.1649085
59 (1.0048,3.0011,4.0022) 0.09254654 39 (1.0035,3.0019,4.0022) 0.0888326

4  Concluding remarks

This paper describes the design and training of a FNN which is used fargsolvi
FFDP. To obtain a solution of a FFDP, the adjustable paearoEFNN is systemati-

cally adjusted by using a learning algorithm that is thame the gradient descent
method. The effectiveness of the derived learning algorithm is demonstratethby c
puter simulation on numerical examples. We proposed two examples baggalion a
cations. The comparison of the felsgick FNN method with the feddrward FNN
method shows that the febdck FNN method is better or at least more suitable than
the feedforward FNN method. The reason behind it is that, the speed of convergence
is increased which depends on the number of computations.
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