
Testing Implementations of
Algebraic Specifications with

Design-by-Contract Tools
Isabel Nunes

Antónia Lopes
Vasco Vasconcelos

João Abreu
Lúıs S. Reis

DI–FCUL TR–05–22

December 2005

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

 1

Testing Implementations of Algebraic Specifications with
Design-by-Contract Tools

Isabel Nunes, Antónia Lopes, Vasco Vasconcelos, João Abreu, Luís S.Reis

2 Department of Informatics, Faculty of Sciences, University of Lisbon

Campo Grande, 1749-016 Lisboa, PORTUGAL
{in,mal,vv,joão.abreu,lmsar}@di.fc.ul.pt

Abstract. We present an approach for testing Java implementations of abstract
data types (ADTs) against their specifications. The key idea is to reduce this
problem to the run-time monitoring of contract annotated classes, which is
supported today by several runtime assertion-checking tools. The approach
comprises an ADT specification language that allows automatic generation of
monitorable contracts and a refinement language that supports the specification
of the details of object-oriented implementations of ADTs.

1 Introduction

The definition of a data type in a way that is independent of its concrete
representation on a specific programming language is a valuable asset in the design of
algorithms and software systems. When reasoning at an abstract level, concrete data
types that are equal up to renaming of data domains, data items and operations should
not be distinguishable: we are only interested in their properties, not in their
implementation. This leads to the notion of an abstract data type as proposed in the
early 70’s by Goguen et al [10].

Design by Contract (DBC) [21] is a software methodology based on the concept of
abstract data type, integrating specification, design, and testing, and aiming at
producing provably correct pieces of object-oriented software. In this approach, ADT
specifications are class interfaces (Java interfaces, Eiffel abstract classes, etc)
annotated with contracts expressed in a particular assertion language. Any
implementation can be tested against its specification, by means of contract
monitorization.

Property-driven algebraic approaches to ADT specification provide the conceptual
basis for using data types in software design. Data types are defined by a set of sorts,
a set of operations on those sorts and a set of axioms that support the precise
specification of the semantic aspects. These specifications define classes of algebras,
also called models. Such algebras can be regarded as possible implementations of the
data types that are defined by the specification.

2

In purely model-driven approaches, data types are specified through a very abstract
implementation based on primitive, but not necessarily basic, data types available in
the adopted specification language. The abstract mapping that has to be supplied to
describe the relation between the models and the structures that are chosen in the
given implementation, can be rather difficult to obtain.

Among these approaches to ADT specification, the property-driven algebraic
approach is the one that provides simpler and more concise specifications of ADTs
and support specification at a higher level of abstraction.

The simplicity and expressive power of property-driven specifications can
encourage more software developers to use formal specifications. Therefore, we find
it important to equip property-driven approaches with tools similar to the ones
currently available for model-driven approaches. Support for checking
implementations against algebraic specifications is, as far as we know, restricted to
the approaches proposed in [13, 1], which have some limitations.

In this paper, we propose an approach to system development that aims at bridging
the gap between algebraic specifications and class specifications in an OO
programming language, providing the means for software developers to benefit from
the advantages of both worlds. The approach is tailored to Java and JML [20] but it
could as well be defined towards other OO programming languages and assertion
languages.

The key idea of the approach is to reduce the problem of testing Java
implementations against specifications of ADTs to the run-time monitoring of
contracts, which is supported today by many runtime assertion checking tools (e.g.,
[3, 17, 18, 19]). The ADTs’ implementations we want to test become wrapped by
other automatically generated classes. These are annotated with contracts that are
generated from the corresponding ADTs specifications. The monitoring of these
contracts at run-time is equivalent to the testing of the implementations against their
specifications.

The paper is organised as follows. Section 2 motivates the use of a property-driven
algebraic approach to the specification of ADTs by comparing it with DBC and
model-driven approaches. Section 3 gives an overview of our approach, whose main
components are presented in more detail in the subsequent sections. Section 4
presents the adopted algebraic specification language and the notion of refinement
between specifications and Java classes. Section 5 describes the contracts that are
generated from specifications. Section 6 presents benchmarking results obtained from
testing our architecture on three data types. Section 7 presents some related work, and
section 8 concludes and describes some topics that need further work.

2 Motivation

In order to motivate and illustrate our approach we use the abstract data type integer
stack. Figure 1 presents a specification of this data type. We follow the usual style of
property-driven algebraic specifications [8]. In general terms, we adopt partial
specifications with conditional axioms.

 3

Fig. 1. Specification of an integer stack.

Operation symbols are classified in one of three classes:
• constructors, representing the operations with which all the values of the type

can be obtained;
• observers, representing the operations that give fundamental information about

the values of the type;
• derived, which represent all other operations.
Operation symbols declared with ⇒? can be interpreted by partial functions. The

section domains of the specification, allows to describe the conditions under which
interpretations of these operations are required to be defined.

To achieve software reliability, given a Java implementation of integer stacks – for
instance, the class ArrayStack presented in Figure 2 – it is important that this
implementation can be checked against the specification.

A well-known approach to this problem is to adopt DBC. In this case, the semantic
properties of the data type are specified through assertions – pre-conditions, post-
conditions and invariants – that can be monitored at run-time. Pre-conditions can be
used to express domain conditions of operations: if they are monitored, no client
succeeds in executing an operation in a state that does not belong to the operation
domain. Post-conditions can be used to express the other semantic properties of the
operations: they are often expressed by relating the objects as they were before
operation execution with the objects as they are after it. If assertions are monitored, an
exception is usually raised whenever a situation is found in which the implementation
does not conform to the specification.

4

Java class

public class ArrayStack implements Cloneable {

 private static final int INITIAL_CAPACITY = 10 ;

 private int [] elems = new int [INITIAL_CAPACITY] ;

 private int size = 0 ;

 public void clear () {

 size = 0; elems = new int [INITIAL_CAPACITY];

 }

 public void push(int i){

 if (elems.length() == size)

 reallocate();

 elems[size] = i;

 size++;

 }

 public void pop (){

 size--;

 }

 public int top (){

 return elems[size-1];

 }

 public int size (){

 return size;

 }

 public boolean isEmpty (){

 return size==0;

 }

 private void reallocate (){

 ;

 }

 public boolean equals (Object other){

 ;

 }

 public Object clone (){

 ;

 }

}

Fig. 2. Java implementation of an integer stack.

Let us now analyse the support given by DBC to the specification of the data type
integer stack through the integration of assertions in the class ArrayStack. Following
B.Meyer [21], this could be achieved by adding contracts as shown in Figure 3.

The conditions defined under the domains section of the ADT specification (cf.
Figure 1) are used here as pre-conditions. The post-conditions capture the
functionality of the operations specified by the axioms. Notice that there are axioms
that can not be captured by any conceivable post-condition, due to the impossibility of
expressing them in terms of monitorable post-conditions. This is the case of axiom 2
– pop(push(s,_)) = s. The inclusion of a post-condition in method push with the
flavour of pop().equals(\old clone()) would not work because pop is a void method.

 5

The example shows that, whenever a specification is implemented by a mutable
type, there are axioms that may not be expressible as monitorable contracts of the
class.

Java class

public class ArrayStack implements Cloneable{

 ...

 /*@ ensures size() == 0; */
 public void clear () {… }

/*@ ensures top() == i && size() == \old size() + 1; */
 public void push (int i) {… }

 /*@ requires !isEmpty(); */
 /*@ ensures size() == \old (size() – 1) */
 public void pop () {… }

 /*@ requires !isEmpty(); */
 public /*@ pure @*/ int top () {… }

 public /*@ pure @*/ int size() {… }

 /*@ ensures \result == (size() == 0); */
 public /*@ pure @*/ boolean isEmpty() {… }

 ...

}

Fig. 3. Adding contracts to ArrayStack.

Also notice that we have classified size as an observer operation and isEmpty as
derived. Had we done otherwise (a more natural choice) we would be left with the
axioms:

size(s)= zero(_) ⇐ isEmpty(s) \\ Ax 7

size(s)= suc(size(pop(s))) ⇐ ¬isEmpty(s) \\ Ax 8

and would not be able to express these properties as post-conditions in method size,
again because pop is a void method.

These problems disallow the expression of important properties of many methods
in common data types. Unless we have methods that allow to inspect the whole
structure of the data type elements without modifying it (for instance a method
element(i) for inspecting every i-th element of the stack), we are not capable of
writing complete monitorable post-conditions. These inspection methods are, in
general, artificial, and even against the nature of the type itself and, hence, they are
not a solution to the problem.

As a result, we cannot directly rely on DBC for monitoring property driven ADT
specifications.

Purely model-oriented approaches, like the ones followed by users of Z [24], Larch
[11], JML [20], etc, are another alternative to the specification of abstract data types
and the checking of implementations against specifications. These approaches support

6

the description of abstract implementations – defined, for example, in terms of sets or
lists – which are then used as abstract models of the types under specification.

Figure 4 presents an example of a model-based specification of stacks taken from
[22]. This specific model of stacks relies on sequences, more concretely on objects of
type JMLObjectSequence – a class belonging to the distribution of JML. The class
JMLObjectSequence defines immutable sequences, including a series of methods for
sequence manipulation from which the methods trailer(), insertFront(), first(), that
are used in this specification, are examples. The model underlying
JMLObjectSequence is a finite sequence of elements.

 Fig. 4. JML specification of UnboundedStack.

When a specific implementation of UnboundedStack is defined, it is necessary to
explicitly describe the relation between the JMLObjectSequence theStack and the
structure that is chosen to store the stack elements. This relation is known as the
abstraction function. Figure 5 partially illustrates the definition of this relation for an
implementation of stacks as ArrayLists as presented in [22].

Although we recognise the important role played by model-based approaches to
ADT specification, we think that, for a significant part of software developers, it can
be rather difficult to write this kind of specifications. We believe that the simplicity of
property-driven specifications can encourage more software developers to use formal
specifications. Therefore, we find it important to equip property-driven approaches
with tools similar to the ones currently available for model-driven approaches.

 7

Fig. 5. Partial view of an implementation of UnboundedStack.

3 Approach Overview

In this section we provide an overview of our approach for testing Java implementa-
tions of ADTs against property-driven specifications. For the purpose of this over-
view, we consider a simplified scenario in which the implementation that we want to
test against a given specification module is composed of one only class – this does not
imply that the specification refers to one only sort, but that it is mapped to one class
and, possibly, some primitive types.

The approach is depicted in Figure 6. From a user-centric point of view, the ap-
proach includes (1) a specification T – the specification of the ADT, (2) a Java class
MyT – the implementation that we want to test and (3) a refinement mapping between
T and MyT – the definition of the relationship between the operation symbols of the
specification and the method names of the implementation, among other things.

As a result, two classes are produced – a wrapper of MyT class and an immutable
MyT$Immutable class – that ensure that, during the execution of a system involving
classes that are clients of the original MyT class: a) the behaviour of the original MyT
objects will be checked against specification T, and b) the clients’ behaviour with
respect to the original MyT operations will be monitored.

8

Fig. 6. Approach overview.

The generated MyT wrapper class has exactly the same interface as, and their ob-
jects behave the same as those of, the original MyT class, as far as any client using
MyT objects can tell. This generated MyT class is what is usually called a wrapper
class because each of its instances hides an instance of the original MyT class, and
uses it when calling the methods of an immutable version of MyT – the generated
class MyT$Immutable – in response to client calls. Because the class MyT$Immutable
is annotated with contracts, the properties of the ADT are checked (and the violations
are reported), whenever the system is executed under the observation of a contract
monitoring tool. See Figures 7 and 8 for an example.

In order to avoid modifying MyT clients so as to become clients of the wrapper
class instead, the original MyT class is renamed – its name is postfixed with “$Origi-
nal”. In this way, the monitoring of MyT original class becomes transparent to client
classes. Let m be a method of the original MyT class. The corresponding method m in
the wrapper class MyT calls the immutable version of m in MyT$Immutable, using its
wrapped attribute (whose type is MyT$Original) as the first argument of the call. This
immutable version of method m calls the original m over a clone of the MyT$Original
argument, and returns its result. Due to the fact that it does not modify its
MyT$Original argument, while returning the desired object, the immutable version of
m can be invoked in contracts of its own class MyT$Immutable, allowing to test the
effects of the original m.

Concerning Figures 7 and 8, since clear() is a void method, then the corresponding
method in ArrayStack$Immutable must return the ArrayStack$Original object that
results from applying clear to a clone of the original object. The result of this call is
then stored in the stack attribute.

In the case of a non-void method, say size, the corresponding size method in Ar-
rayStack$Immutable returns a pair <value,state> where value stands for the result of
the method, and state stands for the target object state after size’s invocation. The
wrapper class – the new ArrayStack – uses the value part of this pair to return the
value to the client, and the state part of this pair to assign it to its only attribute (in
order to account for methods that, in addition to returning a value, also modify the

design time
implementation time

Specification Module
T

uses

Java Class
MyT.java

Java Class
MyT.java

Java Class
MyT$Immutable.java

Java Class
MyT$Original.java

uses

Refinement Mapping
T2MyT

Java Classes
Wrapper

Immutable Class
Generator

Java Class
Renamer

 9

current object).

Java class (i)

// Automatically generated from the original ArrayStack class,

// now renamed to ArrayStack$Original

public class ArrayStack implements Cloneable {

 protected ArrayStack$Original stack = new ArrayStack$Original ();

 public void clear() {

 stack = ArrayStack$Immutable.clear(stack);

 }

 public void push(int i) {

 stack = ArrayStack$Immutable.push(stack, i);

 }

 public void pop() {

 stack = ArrayStack$Immutable.pop(stack);

 }

 public int size() {

 int$Pair result = ArrayStack$Immutable.size(stack);

 stack = result.state();

 return result.value());

 }

 public int top() {

 int$Pair result = ArrayStack$Immutable.top(stack);

 stack = result.state();

 return result.value());

 }

 ... // this class is not complete

}

Java class (ii)

public class int$Pair {

 private final int value; ArrayStack$Original state;

 public int$Pair (int value, ArrayStack$Original state){

 this.value = value;

 this.state = sstate;

 }

 public int value() {

 return value;

 }

 public ArrayStack$Original state() {

 return state;

 }

}

Fig. 7. (i) Partial view of the wrapper class that results from applying our approach to the speci-
fication IntStackSpec and the original ArrayStack class. (ii) The auxiliary class int$Pair.

To keep things simple, we have not presented the refinement mapping (cf. Figure
6) for this example; it will be fully explained in the next section. The role of the
refinement mapping is to map each sort to a Java class or primitive type, and each
ADT operator to the Java method or primitive operation that implements it.

10

Java class

// Automatically generated from the ArrayStack class and

// the IntStackSpec specification

public class ArrayStack$Immutable {

 /*@

 @ ensures size(\result).value()== 0; //Ax3

 @*/

 static public ArrayStack$Original clear (ArrayStack$Original s) {

 ArrayStack$Original result = (ArrayStack$Original) clone(s);

 result.clear();

 return result;

 }

 /*@

 @ ensures size(\result).value() == size(s).value() + 1; //Ax4

 @ ensures top(\result).value() == i; //Ax1

 @ ensures equals(pop(\result).state(), s).value(); //Ax2

 @*/

 static public ArrayStack$Original push (ArrayStack$Original s, int i) {

 ArrayStack$Original result = (ArrayStack$Original) clone(s);

 result.push(i);

 return result;

 }

 /*@

 @ requires !isEmpty(s).value();

 @*/

 static public ArrayStack$Original pop (ArrayStack$Original s) {

 ArrayStack$Original result = (ArrayStack$Original) clone(s);

 result.pop();

 return result;

 }

 static public int$Pair size (ArrayStack$Original s) {

 ArrayStack$Original clone = (ArrayStack$Original) clone(s);

 return new int$Pair (clone.size(), clone);

 }

 /*@

 @ensures <see Section 5.2>;

 @*/

 static public boolean$Pair equals (ArrayStack$Original one, Object other){

 ArrayStack$Original clone = (ArrayStack$Original) clone(s);

 return new boolean$Pair (clone.equals(other), clone);

 }

 ... //this class is not complete

}

Fig. 8. Partial view of the Immutable class that results from applying our approach to the speci-
fication IntStackSpec and the original ArrayStack class.

 11

4 Specification Languages: ADTs and Refinements

As illustrated in the previous sections, we define abstract data types in terms of alge-
braic specifications. The language we adopt is, to some extent, similar to many exist-
ing languages, e.g. CASL [8]. It has, however, some specific features, such as the
classification of operations in different categories, and strong restrictions on the form
of the axioms.

Our teaching experience shows us that the imposition of rules to guide the task of
specifying ADTs is useful. The rules we impose are not only intuitive and easy to
understand and to apply, but they are also necessary in driving the automatic identifi-
cation of contracts for classes.

The language provides for the description of modules. The building blocks it relies
upon are specifications. A specification includes a set of symbol declarations – a sort
s, a set of operations Ω, and a set of predicates P – and a set of axioms Φ. The decla-
ration of operations and predicates includes the definition of their profile – the num-
ber and the sorts of the arguments. In the case of operations, the profile also includes
the sort of the result and whether the operation is required to be total. The first argu-
ment of every operation or predicate must be of sort s (the sort that the specification
defines); the reason for this requirement is discussed below.

Operations are classified as constructors, observers or derived, whereas predicates
can only be classified as either observers or derived. Constructors represent the opera-
tions from which all the values of type s can be obtained. Observers represent the
operations and predicates that give fundamental information about the values of type
s. The same applies to operation and predicate symbols declared as derived, but in this
case the provided information could have been obtained through the other operations
and predicates. The classification of an operation/predicate as derived rather than
observer, reflects itself on the form of the axioms, as well as on the Java method
where we place the contract generated from the axiom.

The set of axioms is divided into two parts. The first part concerns the domain of
definition of the operations – it defines conditions under which the interpretation of
each operation must be defined. For operations declared as total (featuring ⇒), the
domain condition is implicit and, hence, does not need to be specified. If, for a given
partial operation (specified with ⇒?), no condition is indicated, it means that the
operation can be interpreted by any function, including the one which is undefined
everywhere.

The second part of the axioms expresses constraints over the interpretation of op-
eration and predicate symbols. We identify four essential classes of axioms: (a) axi-
oms that relate constructors; (b) axioms that specify the result of observers on con-
structors; (c) axioms that describe the result of derived operations/predicates on ge-
neric instances of the sort; (d) axioms that pertain to sort equality.

Axioms are closed formulae of first-order logic restricted to one of the following
forms.

∀

!

r
y (φ ⇒ opC’(opC(

r
x),

r
t)=t) (a)

∀

!

r
y (φ ⇒ opO(opC(

r
x),

r
t)=t) (b)

12

∀

!

r
y (φ ⇒ predO(opC(

r
x),

r
t)) (b)

∀

!

r
y (φ ⇒ ¬predO(opC(

r
x),

r
t)) (b)

∀

!

r
y (φ ⇒ opD(

r
x)=t) (c)

∀

!

r
y (φ ⇒ predD(

r
x)) (c)

∀

!

r
y (φ ⇒ ¬predD(

r
x)) (c)

∀

!

r
y (φ ⇒ x1=x2) (d)

where

!

r
y is a list of variables, φ is a quantifier-free formula over

!

r
y ,

r
x is a list of

variables in

!

r
y , x1 and x2 are variables in

!

r
y ,

r
t is a list of terms over

!

r
y , t is a term over

!

r
y , opC and opC’, opO and opD are operation symbols in Ω (Constructors, Observers

and Derived operations, respectively), predO and predD are predicate symbols in P
(Observers and Derived predicates, respectively).

It is important to notice that, because operations may be interpreted by partial func-
tions, a term may not have a value. The equality symbol used in the axioms denotes
strong equality: either both sides are defined and are equal, or both sides are unde-
fined.

To ease the reading, the concrete syntax used in the examples allows some simpli-
fications. For instance, universal quantifiers are omitted, implications may be written
from right to left and the symbol '_' is used, as in Prolog, for variables whose identity
is irrelevant. The complete definition of the syntax of the language is the subject of a
separate publication [15].

4.1 Specifications and Modules

A specification consists of a set of references to other specifications (import-specs,
for short), a sort, a set of operations, a set of predicates and a set of axioms. The sym-
bols used in the specification that are not locally declared (sorts, operations or predi-
cates) are designated by external symbols. The specification of integer stacks pre-
sented in Figure 1 imports a specification – IntegerSpec – and uses sort Integer and
operation symbols zero and suc which are external symbols.

A module puts together specifications while assigning them a name. When a speci-
fication is embedded, as a component, in a module, components must also be embed-
ded that provide the specification’s external symbols.

Whenever the set of import-specs is empty in a specification, we call it is a closed
specification; these are essentially self-contained specifications with a single sort,
which allow the specification of basic ADTs such as integers and booleans (cf. Figure
9).

A module is a surjective function µ:Ν→Ξ from a set Ν (of specification names) to
a set Ξ of specifications s.t. (1) the import-specs of specifications in Ξ are included in
Ν and (2) every external symbol x of a specification in Ξ is declared exactly in one of
the imported specifications – we use xµ to denote the name of this specification.

In the case of our running example, in order to put together the specification of in-
tegers (Figure 9), and integer stacks (Figure 1), we have to assign names – for exam-
ple, IntegerSpec and IntStackSpec – to both specifications (Figure 10).

 13

Fig. 9. An example of a closed specification.

Fig. 10. IntegerStack: an example of a module.

4.2 Refinement Mappings

In order to check Java classes against specifications, it is necessary to provide map-
pings that bridge the gap between the two worlds. In our approach, the gap between
modules and collections of Java classes is defined in terms of what we have called
refinement mappings (cf. Figure 6). Before defining the mapping, we discuss some
key aspects of OO implementations for data types.

In the context of the OO paradigm, a data type t is usually implemented by a class
T whose objects are the values of t. Furthermore, operations and predicates of t are
usually implemented as instance methods of T. This means that, whenever a client
invokes a method of the class, it must provide the target object separately from the
method arguments. Therefore, a refinement mapping must bind every n+1-ary opera-
tion or predicate of the data type to an n-ary method of T. The first argument of the
operation is implicitly provided – it is the target object (remember that the sort of the
first argument in all operations/predicates of any specification defining sort s must
exist and be of sort s). In what concerns the return type, an operation whose result
type is t can be either bound to a procedure (void method) or to a function of either

module

IntStackSpec ⥤ Fig. 1

IntegerSpec ⥤ Fig. 9

14

type T or some T’. The former case is typical of mutable implementations, in which
an object may represent different data values during its life time. This is also the case
when the return type is T’ different from T (for example, a method int popTop that
implements operation pop and also returns the top element). Predicates have to be
bound to methods of type boolean.

Although less common, elementary data types can also be implemented by (Java)
primitive types. Our approach supports this form of implementation for closed speci-
fications. In this case, the refinement mapping has to define the way operations and
predicates of the data type are expressed in terms of built-in Java operations.

Refinement mappings: Given a module µ: Ν→Ξ and a set C of Java types, a refine-
ment mapping ρ: Ν→ C × Β is a Ν-indexed set of pairs {<Cν,βν>}ν:Ν where Cν is a
type in C (which can be a primitive type only if µ(ν) is a closed specification) and βν
is a binding between the specification µ(ν) and the class Cν.
The refinement mapping ρ is such that, if ρ(ν) = < Cν,βν>,

 and Cν is primitive, then

µ(ν) is a closed specification, and

βν(op) is a Java expression of type Cν, and βν(pred) is a Java expression of
boolean type, built for the set of variables {x1,…,xn}, where n is the arity of
op or pred.

 and Cν is a class, then

βν(opp), where opp is either a predicate pred or an operation op, is a method
signature in Cν such that,

(arity) βν maps n+1-ary operations and predicates into n-ary methods;

(return type) βν(pred) is of boolean type; where t is the return type of
op, βν(op) is of type of the class in pair ρ(tµ);

(parameter type) the i-th parameter of βν(opp) has the type of the class
in pair ρ(tµ) where t is the sort of the (i+1)-th parameter of opp.

Notice that operations with result sort s can be mapped into methods with any return
type, void included. This allows us to establish refinement mappings to classes with
methods that achieve their expected functionality by changing the state of the current
object and that additionally return some value (this is, for instance, the case of meth-
ods add and remove of the class java.util.Collection that return a boolean value indi-
cating whether the execution of the method implied a change to the collection).

To illustrate these notions, consider again the module IntegerStack presented in
Figure 10. In order to check the conformance of the Java class ArrayStack (Figure 2)
against this specification we have to define an appropriate refinement mapping. An
admissible choice is presented in Figure 11. It states that the Java primitive type int
was chosen to implement the data type IntegerSpec and defines, for each of its opera-
tion and predicate symbols, the corresponding Java expression.

 15

 refinement mapping

IntegerSpec is primitive int

 zero(x1:Integer) is 0
 suc(x1:Integer):Integer is x1 + 1
 pred(x1:Integer):Integer is x1 - 1
 <(x1:Integer, x2:Integer) is x1 < x2

IntStackSpec is class ArrayStack
 clear(s:IntStack): IntStack is void clear()
 push(s:IntStack,i:Elem): IntStack is void push(int i)
 pop(s:IntStack):IntStack is void pop()
 top(s:IntStack):Integer is int top()
 size(s:IntStack):Integer is int size()
 isEmpty(s:IntStack) is boolean isEmpty()

Fig. 11. An example of a refinement mapping.

Notice that a refinement mapping may define a mapping that maps two different
specifications into the same class or primitive type. This is extremely useful since it
promotes the writing of generic specifications that can be reused in different situa-
tions. As an example, consider the specifications presented in Figures 12a) and b).

Fig. 12. a) The specification of a generic stack; b) a closed specification of general elements

Figure 13 shows a module – GenerickStack – that includes the above specifications,
and also IntegerSpec of Figure 9.

Fig. 13. The module GenericStack

16

It is possible to bind both specifications IntegerSpec and ElemSpec to the primitive
type int as explained previously and bind the specification StackSpec to the Java class
ArrayStack of Figure 3. The example shows that our approach allows checking the
implementation of ArrayStack against either module IntegerStack or module Generic-
Stack by simply considering different refinement mappings.

5 Contract Generation

Given a module, a set of Java classes and primitive types implementing the specifica-
tions in the module, and a refinement mapping (between the specifications and the
implementations), we generate several classes, some of them annotated with contracts
(cf. Figure 6). In this section, we present the main rules that govern contract genera-
tion.

Given a module µ: Ν→Ξ, a set C of Java types that implements µ, and a refinement
mapping ρ = {<Cν,βν>}ν:Ν, we define how the axioms of specification µ(ν) translate
into assertions that constitute contracts for the methods of the class CνImmutable
where Cν is such that ρ(ν) = < Cν,βν>. Whenever a specification is implemented by a
primitive type, no contract generation is achieved – it is not possible to attach pre and
post-conditions to operations of primitive types.

Contract generation for the methods of CνImmutable can be described in two parts:
translation of explicit properties (axiom translation in Section 5.1), and translation of
implicit properties (enforcing equality properties of equational logic in Section 5.2).

The generation of contracts that capture the properties explicitly specified in a
given specification µ(ν), is such that

• a domain restriction for an operation op generates a pre-condition for the
method βν(op);

• an axiom of one of the forms
∀

!

r
y (φ ⇒ opC’(opC(

r
x),

r
t)=t)

∀

!

r
y (φ ⇒ opO(opC(

r
x),

r
t)=t)

∀

!

r
y (φ ⇒ predO(opC(

r
x),

r
t))

∀

!

r
y (φ ⇒ ¬predO(opC(

r
x),

r
t))

generates a post-condition for method βν(opC);
• an axiom of the form

∀

!

r
y (φ ⇒ opD(

r
x)=t)

generates a post-condition for method βν(opD);
• an axiom of one of the forms

∀

!

r
y (φ ⇒ predD(

r
x))

∀

!

r
y (φ ⇒ ¬predD(

r
x))

generates a post-condition for method βν(predD);

 17

• an axiom of the form
∀

!

r
y (φ ⇒ x1=x2)

generates a post-condition for method equals.
Consider, for instance, the refinement mapping defined in Figure 11. The follow-

ing figure shows the destination methods, in class ArrayStack$Immutable (Figure 8),
for the contracts that are generated from the axioms in IntStackSpec (Figure 1) speci-
fication.

specification IntStackSpec

import IntegerSpec
sort IntStack
operations and predicates

 constructors

 clear: IntStack --> IntStack
 push: IntStack Integer --> IntStack
 observers

 top: IntStack -->? Integer
 pop: IntStack -->? IntStack
 size: IntStack --> Integer
 derived

 isEmpty: IntStack

domains s: IntStack

 top(s): if ¬isEmpty(s)

 pop(s): if ¬isEmpty(s)
axioms s:IntStack, i:Integer

size(clear(_)) = zero(_) //Ax3

top(push(_,i)) = i //Ax1

pop(push(s,_)) = s //Ax2

size(push(_,s)) = suc(size(s)) //Ax4

isEmpty(s) ! size(s)= zero(_) //Ax5

¬isEmpty(s) ! ¬(size(s)= zero(_))//Ax6

end

Java class ArrayStack$Immutable

public class ArrayStack$Immutable {

 /*@
 @ requires ...;
 @*/
 static public int$Pair top
 (ArrayStack$Original s)
 {...}

 /*@
 @ requires ...;
 @*/
 static public ArrayStack$Original pop
 (ArrayStack$Original s)
 {...}

 /*@
 @ensures ...;
 @*/
 static public ArrayStack$Original clear
 (ArrayStack$Original s)
 {...}

 /*@
 @ensures ...;
 @*/
 static public ArrayStack$Original push
 (ArrayStack$Original s, int i)
 {...}

 /*@
 @ensures ...;
 @*/
 static public boolean$Pair isEmpty
 (ArrayStack$Original s)
 {...}
}

 Fig. 14. Destination methods for contracts generated from axioms

The second part of contract generation is concerned with properties of equational

logic, namely the properties of the form
∀

!

r
y ((x1= x2)⇒ op(

r
x 1)=op(

r
x 2))

∀

!

r
y ((x1= x2)⇒ pred(

r
x 1)⇔pred(

r
x 2))

These properties are captured through the generation of post-conditions for the
static method equals() of CνImmutable class, for each observer operation and predi-
cate of µ(ν).

In the rest of this section we present in more detail the main rules that govern con-
tract generation and illustrate them through pieces of the example presented in full in
appendix A.

18

5.1 From Axioms to Contracts

We illustrate the translation rules with the module GenericStack presented in Fig-
ure 13 and the refinement mapping presented in Figure 16, where StringStack is the
class presented in Figure 15.

Java class

public class StringStack implements Cloneable {

 public void clear () {… }

 public void push (String i) {… }

 public String pop () {… }

 public String top () {… }

 public int size () {… }

 public boolean isEmpty () {… }

 public boolean equals (Object other) {… }

 public Object clone () {… }

}

Fig. 15. Partial view of the class that implements StackSpec as provided by the user.

Refinement Mapping

IntegerSpec is primitive int

 zero(x1:Integer) is 0
 suc(x1:Integer):Integer is x1 + 1
 pred(x1:Integer):Integer is x1 - 1
 <(x1:Integer, x2:Integer) is x1 < x2

ElemSpec is class java.lang.String

StackSpec is class StringStack
 clear(s:Stack):Stack is void clear()
 push(s:Stack,i:Elem):Stack is void push(java.lang.String i)
 pop(s:Stack):Stack is java.lang.String pop()
 top(s:Stack):Integer is java.lang.String top()
 size(s:Stack):Integer is int size()
 isEmpty(s:Stack) is boolean isEmpty()

Fig. 16. A refinement mapping for module GenericStack in Figure 13.

 19

Translation of Terms and Formulae

A refinement mapping induces a straightforward translation of formulas and terms
into Java expressions. There are a few points of complexity, including the translation
of terms op(t1,…,tn) into method invocations whose form depends on the return type of
the method that implements op. This happens because the effect of the application of
an operation can be achieved, in Java, either through a method that modifies the cur-
rent object without returning a value, or through a method that returns a value (and
that may or may not modify the current object).

The simplest case is that in which operation op is implemented through a void
method m (of class MyT). This means that the effects of op are captured by the current
object after the invocation of m. This is precisely the object that is returned by the
immutable version of m in class MyT$Immutable. So, in this case, op(t1,…,tn) is trans-
lated into an expression of the form MyT$Immutable.m(…).

A more complex translation is required in cases where method m is not void. Let us
consider, for instance, the translation of the term size(s) from the specification Stack-
Spec in Figure 12a). According to the refinement mapping in Figure 16, the operation
size(s:Stack):Integer is implemented by the method int size() of StringStack. The fact
that int is the type chosen for implementing the sort Integer, is consistent with the
assumption that the value of term size(s) is the value returned by the invocation of the
method size and, hence, the term is translated to StringStack$Immu-
table.size(s).value() (recall from Section 3 that the immutable version of any non-void
method returns a <value, state> pair).

The translation of term top(t) is similar. In this case, the operation
top(s:Stack):Elem is implemented by the method String top() of StringStack and be-
cause String is the type chosen to implement sort Elem, the value of term top(s) is the
value returned by the invocation of the method top and, hence, the term is translated
to StringStack$Immutable.top(s).value().

The translation of term pop(t) illustrates a yet different case. The operation
pop(s:Stack):Stack is implemented by method String pop() of StringStack. The fact
that the return type of this method is neither void nor StringStack (the type that was
chosen to implement sort Stack), means that the stack denoted by pop(t) is captured
by the state component that results from the invocation of method pop and, hence, the
term will be translated into an expression of the form StringStack$Immu-
table.pop(…).state(). In this case, the value() component of the pair returned by
StringStack$Immutable.pop(…).state() invocation, is of no interest in what contracts
are concerned because there are no axioms that cover the meaning the implementer
gives to that value.

Another point of complexity in the translation of axioms into contracts is the trans-
lation of strong equality used in axioms. As mentioned in Section 4, operation sym-
bols can be interpreted by partial functions and, hence, terms may be undefined. The
meaning of an equality t1=t2 in the axioms of a specification is that the two terms are
either both defined and have the same value, or they are both undefined. As such,
equality testing within contracts must be consistent with this definition, that is, within
pre and post-conditions, the evaluation of equals(t1,t2) (for testing value equality)

20

should only be performed if it is not the case that t1 and t2 are both undefined. If t1 and
t2 are both undefined then the equality t1=t2 is considered to hold.

Due to the fact that predicates in a specification cannot be partial, and that con-
tracts of methods invoked within contracts are not monitored by JML runtime asser-
tion checker, we have to avoid invoking, in our contracts, methods that implement
ADT predicates in cases where their arguments are undefined.

A def function is defined and used in the translation process that supplies the de-
finedness conditions for both terms and formulae of our specification language. As an
example, the definedness condition for an operation call op(t1,…,tn) is the conjunction
of the definedness conditions of terms t1 to tn with the domain condition of op (if op is
partial).

The translation of terms and formulae that are relevant in our setting is formally
defined below. In order to simplify the presentation, all translation rules are defined
from the perspective of a specific specification µ(ν) in module µ. The translation of
every term or formula is accomplished within the context of a given axiom – an
axiom of specification µ(ν).

Translation of Terms (extended with constructs (C)x, \result, \result.value(), and
\result.state()): The translation – 〖t〗– of a term t is defined by induction in the struc-
ture of t:
 〖x〗 = x;
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗) if Cr is void
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗).value() if Cr is Cs
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗).state() otherwise

if op:s1,…,sn ⇒ s, and ρ(sµ)= < Cs,βs >, and ρ(opµ)= < C,β >, and β(op) is method
Cr m(…);

 〖op(t1,…,tn)〗 = exp(〖t1〗 /x1, … 〖tn〗 /xn)

if ρ(opµ) = < C,β >, and β(op) is a Java expression exp(x1,…,xn);

 〖(C) x〗 = (C) x;
 〖\result〗 = \result
 〖\result.value()〗 = \result.value();
 〖\result.state()〗 = \result.state();

Definedness Condition: The formula, def(t), that defines the condition under which a
term t can be evaluated depends on the structure of t:
 def(x) = true;
 def((C) x) = true;
 def(\result) = true;
 def(\result.value()) = true;
 def(\result.state()) = true;
 def(op(t1,…,tn)) = def(t1) ∧ … ∧ def(tn) ∧ φ [t1/x1,…,tn/xn]

 21

where op(x1,…,xn) if φ is the (only) domain condition in specification µ(opµ) for op.
When there is no domain condition for op, φ [t1/x1,…,tn/xn] is true. We chose not to
include def(φ [t1/x1,…,tn/xn]) in the definedness condition for operation calls due to the
remotely possible existence of recursive domain conditions.
The formula, def(φ), that defines the condition under which a formula φ can be evalu-
ated depends on the structure of φ:
 def(true) = true;
 def(¬φ) = def(φ);
 def(φ1 BinOp φ2) = def(φ1) ∧ def(φ2);
 def(pred(t1,…,tn)) = def(t1) ∧ … ∧ def(tn)
 def(t1=tn)) = true
where BinOp stands for any of the binary operators ∧, ∨, ⇒, and ⇔ .

According to the above considerations, we adopted the following approach: in any
contract where testing equality is required, we first check whether both terms are
defined and, if this is the case, then invoke method equals.

Translation of Formulas: The translation, 〖φ〗, of a formula φ is defined by induc-
tion in the structure of φ:
 〖true〗 = true;
 〖¬φ〗 = ! 〖φ〗;
 〖φ1∧φ2〗 = 〖φ1〗 && 〖φ2〗;
 〖φ1∨φ2〗 = 〖φ1〗 || 〖φ2〗;
 〖φ1⇒φ2〗 = 〖φ1〗 ==> 〖φ2〗;
 〖φ1⇔φ2〗 = 〖φ1〗 == 〖φ2〗;
 〖pred(t1,…,tn)〗 = C$Immutable. m(〖t1〗, …, 〖tn〗).value()

if ρ(predµ) = < C,β >, and β(pred) is method boolean m(…);

 〖t1 = t2〗 = (! 〖def(t1)〗 && !〖def(t2)〗) ||
 (〖def(t1)〗 && 〖def(t2)〗 && C$Immutable.equals(〖t1〗, 〖t2〗))

if ν is the name of the only specification where the sort of t1 (and t2) is defined,
and ρ(ν) = < C,β >, and C is a class;

 〖t1 = t2〗 = ! (〖def(t1)〗 || 〖def(t2)〗) ||
 (〖def(t1)〗 && 〖def(t2)〗 && 〖t1〗== 〖t2〗)

if ν is the name of the only specification where the sort of t1 (and t2) is defined,
and ρ(ν) = < C,β >, and C is a primitive type.

Translation of Domain Restrictions:

 〖op(

r
x) if φ〗 = requires 〖 def(φ) ⇒ φ〗

22

to be placed in the contract of method m, where ρ(opµ) = < C,β >, and β(op) is
method Cr m(

!

r
c

r
x), and C is a class; if C is a primitive type, then the translation is

not accomplished (it is not possible to attach a pre-condition to an operation of a
primitive type).

Example: Domain restriction pop(s): if ¬isEmpty(s) in specification StackSpec in
Figure 12a) produces the pre-condition

requires true ==> !isEmpty(s).value();

in method String$Pair pop (StringStack$Original s) of class StringStack$Immutable.

Translation of axioms about Constructors and Observers:

 〖 φ ⇒ opC’(opC(

r
x),

!

r
t)=t〗 = ensures 〖 def(φ) ∧ φ ⇒ opC’(r,

!

r
t)=t〗;

 〖 φ ⇒ opO(opC(
r
x),

!

r
t)=t〗 = ensures 〖 def(φ) ∧ φ ⇒ opO(r,

!

r
t)=t〗;

 〖 φ ⇒ predO(opC(

r
x),

!

r
t)〗 = ensures 〖 def(φ) ∧ φ ∧

 (def(predO(r,

!

r
t)) ⇒ predO(r,

!

r
t))〗;

 〖 φ ⇒ ¬predO(opC(
r
x),

!

r
t)〗 = ensures 〖 (def(φ) ∧ φ ∧

 def(¬predO(r,

!

r
t))) ⇒ ¬predO(r,

!

r
t)〗;

to be placed in the contract of method m, where ρ(opCµ)= < C,β >, and β(opC) is
method Cr m(

!

r
c

r
x), and C is a class, and r is i) \result if Cr is void; ii)

\result.value() if Cr is C; and iii) \result.state() otherwise; if C is a primitive type,
then the translation is not accomplished (it is not possible to attach a post-
condition to an operation of a primitive type).

Example: Let us consider the axioms about observers included in the specification
StackSpec in Figure 12a). By applying the translation rules above, and simplifying
boolean expressions, we obtain the following contracts for the static methods of class
StringStackImmutable:
− Axiom top(push(_,i)) = i produces the post-condition

ensures !isEmpty(\result).value())&&

 String$Immutable.equals(top(\result).value(), i);

in method StringStack$Original push (StringStack$Original s, String i).
− Axiom pop(push(s,_)) = s produces the post-condition

ensures !isEmpty(\result).value())&&

 equals(pop(\result).state(), s).value();

in method StringStack$Original push (StringStack$Original s, String i).
− Axiom size(clear(_)) = zero(_) produces the post-condition

ensures size(\result).value() == 0;

in method StringStack$Original clear (StringStack$Original s).
− Axiom size(push(s,i)) = suc(size(s)) produces the post-condition

ensures size(\result).value() == size(s).value() + 1;

in method StringStack$Original push (StringStack$Original s, String i).

 23

For simplicity, we omitted the StringStack$Immutable target in all calls to this
class’s methods and simplified all boolean expressions (the ones that result from
the rigorous application of the formulas are fully presented in Appendix A).

Translation of axioms about Derived operations and predicates:

 〖 φ ⇒ opD(

r
x)=t 〗 = ensures 〖 def(φ) ∧ φ ⇒ \result =t 〗; if Cr is void

 〖 φ ⇒ opD(
r
x)=t 〗 = ensures 〖 def(φ) ∧ φ ⇒ \result.value() =t 〗; if Cr is Cs

 〖 φ ⇒ opD(
r
x)=t 〗 = ensures 〖 def(φ) ∧ φ ⇒ \result.state() =t 〗; otherwise

to be placed in the contract of method m, if opD:s1,…,sn ⇒ s, and ρ(sµ)=
< Cs,βs >, and ρ(opDµ)= < C,β >, and β(opD) is method Cr m(…), and C is a
class;

 〖 φ ⇒ predD(

r
x)〗 = ensures 〖 def(φ) ∧ φ ⇒ \result.value() 〗;

 〖 φ ⇒ ¬predD(
r
x)〗 = ensures 〖 def(φ) ∧ φ ⇒ ¬\result.value() 〗;

to be placed in the contract of method m, if ρ(predDµ) = < C,β >, and β(predD) is
method boolean m(

!

r
c

r
x), and C is a class; if C is a primitive type, then the trans-

lation is not accomplished (it is not possible to attach a post-condition to an op-
eration of a primitive type).

Example: Let us now consider the axioms of StackSpec about derived operations and
predicates. By applying the rules above we obtain the following contracts for the
static methods of class StringStack$Immutable:

Axioms
 isEmpty(s) ⇐ size(s)= zero(_)
¬isEmpty(s) ⇐ ¬(size(s)= zero(_))

 translate, respectively, to the post-conditions
ensures size(s).value() == 0 ==> \result.value();
ensures !(size(s).value() == 0) ==> !\result.value();

to be placed in the method boolean$Pair isEmpty (StringStack$Original s).

Translation of axioms about equality:
Axioms of the form (φ ⇒ x1=x2) that allow us to express equivalence classes within
the ADT are translated into contracts for the equals method.

 〖 φ ⇒ x1=x2 〗 = ensures 〖 def(φ) ∧ φ ⇒ \result 〗;

to be placed in the contract of method boolean equals(C$Original x1, Object x2)
in class C$Immutable, where C is the class that implements the ADT where the
axiom is defined.

In general, the contracts generated by the rules presented so far, are not final. The last
step of the translation consists in the closure, through universal quantification of every
free variable.

24

Closure of assertions: Whenever the assertions (pre and post-conditions) contain a
variable v that does not correspond to any of the parameters of the method to which
the assertion belongs, the assertion must be preceded by a JML quantifier \forall that
quantifies over that variable (a suitable range is adopted).

5.2 Enforcing Equality Properties of Equational Logic

The contracts generated by our tool make use of cloning and equality and, hence, our
methodology for checking whether an implementation behaves in conformance with a
specification strongly relies on the execution of the clone method. It is essential that
programmers ensure correct implementation of this method. Although our tool gener-
ates contracts for these methods, the soundness of the approach can be compromised
if the implementations of these methods do not meet the following correctness crite-
ria:
− clone method is required not to have any effect whatsoever on this;
− the implementation of clone is required to go deep enough in the structure of the

object so that any shared reference with the cloned object cannot get modified
through the invocation of any of the methods that implement the ADT operations.
For example, an array based implementation of a stack, in which one of its meth-
ods changes the state of any of its elements, requires the elements of the stack to
be cloned as well as the array itself.

The contracts generated for equals and clone methods are as follows. Post-
conditions are automatically generated for the boolean$Pair equals(C$Original one,
Object other) method in class C$Immutable (where C is the class that implements the
ADT where the axiom is defined), that test the results given by every observer opera-
tion and predicate when applied to two objects considered equal. This amounts to
suppose the equational theories:

 (x1= x2)⇒ (op(
r
x 1)=op(

r
x 2))

 (x1= x2)⇒ (pred(
r
x 1)⇔pred(

r
x 2))

for each and every observer operation op and predicate pred.
A contract for the Object clone(C$Original o) method, also automatically gener-

ated, expresses that the cloned object must equal the original one (this equality is
tested using method equals).

Contracts for equals and clone

For every observer operation and predicate opp:s1,…,sn ⇒ s,

ensures \result ==> other instanceof C$Original &&
 〖 (opp(one,

r
x) = opp((C$Original) other,

r
x)) 〗

 25

is placed in the contract of method boolean$Pair equals(C$Original one, Object
other) in class C$Immutable, where C is the class that implements the ADT
where the axiom is defined, and the post-condition

 ensures equals(\result,o)

in the contract of method Object clone(C$Original o) in class C$Immutable,
where C is the class that implements the given ADT.

Example: In our example, the following contracts are generated for the equals and
clone methods of the class StringStack$Immutable:

 /*@ ensures \result.value() ==> other instanceof StringStack$Original &&
 (!!isEmpty(one).value() &&
 !!isEmpty((StringStack$Original) other).value())
 ||
 (!isEmpty(one).value() && !isEmpty((StringStack$Original) other).value()
 && String$Immutable.equals(top(one).value(),
 top((StringStack$Original) other).value()));
 @ ensures \result.value() ==> other instanceof StringStack$Original &&
 (!!isEmpty(one).value() &&
 !!isEmpty((StringStack$Original) other).value())
 ||
 (!isEmpty(one).value() && !isEmpty((StringStack$Original) other).value()
 && equals(pop(one).state(),
 pop((StringStack$Original) other).state()).value());
 @ ensures \result.value() ==> other instanceof StringStack$Original &&
 size(one).value() == size((StringStack$Original) other).value());
 @*/
 static public /*@ pure @*/ boolean equals(StringStack$Original one, Object
other)

 /*@
 @ ensures equals(\result, other).value();
 @*/
 static public Object clone(StringStack$Original other)

6 Benchmarking

We have tested our architecture on three data types, namely,
• The stack ADT described in this paper, with Stack refined into an array-based

"standard" class, and Element refined into java.lang.String.
• The stack ADT described in this paper, with Stack refined into java.util.Stack,

and Element refined into java.lang.Object.
• A data type representing rational numbers, with Rational refined into an

immutable class represented by a pair of integers.
The source code for the three test cases are presented in the Appendices. They are

also available in the url [14]. For each data type a few classes where used: the user’s
class (say, IntRational$Original.java, or java.util.Stack.java), the class responsible for
checking the contracts (say, IntRational$Immutable.java), the class that replaces the
user's class in our architecture (say, IntRational.java), and the various required Pair
classes (say, Object$Pair.java, int$pair.java, or boolean$Pair.java).

26

All tests were conducted on a PC running Linux, equipped with a 1150 MHz CPU
and 512Mb of RAM. We have used J2SE 1.4.2_09-b05 and JML.5.2. Each data type
was subjected to 1.000.000 randomly chosen operations, issued from a further class
(say, RationalRandomTest.java). For each data type we assessed the time and space
used in four different cases:

1. The user's class only, compiled with Sun's Java compiler, thus benchmarking
the original user's class only;

2. The whole architecture compiled with Sun's Java compiler, thus benchmarking
the overhead of our architecture, irrespective of the contracts;

3. The class responsible for checking the contracts, with its contracts removed,
compiled with the JML compiler; all other classes in the architecture compiled
Sun's Java compiler. We aim at understanding the overhead imposed by using
the JML compiler on the architecture without contracts.

4. As above but with all contracts in place. This is how a user would experience
our tool.

The results, average of ten runs, are as follows.

 1st case 2nd case 3rd case 4th case
Package sec KB sec KB sec KB sec KB

Total
slowdown

StringStack 2.71 600 3.26 600 11.58 604 21.21 604 7.8
java.util.Stack 2.27 600 4.35 603 10.66 606 23.07 605 10.2
IntRational 2.97 597 4.7 597 26.76 601 38.06 602 12.8

Inspecting the numbers for the first and the fourth cases one concludes that our
architecture imposes no further space requirements, and that monitoring introduces a
10-fold time penalty, which we find plainly justifiable. The numbers for the second
case indicate that conveying all calls to the data structure under testing through the
Immutable class imposes a negligible overhead, when compiled with Sun’s Java
compiler. The numbers for the third case allow to conclude roughly half of the total
overhead reported in the last column is due to contract monitoring alone, while the
other half to the fact that we are using the JML compiler.

It should also be remarked that the tests were conducted with the contracts as
generated by the rules in Section 5. A brief inspection of the contracts in, say, class
IntRational$Immutable.java, Appendix C, reveals lots of room for boolean expression
optimizations.

Finally a word on monitoring open assertions, that is assertions that contain
variables not included in the parameters of the method. As described in Section 5.2,
we use a JML \forall assertion. In this case, and since no range is generated for the
contracts, no runtime monitoring is accomplished for these assertions.

We have also conducted preliminary tests in monitoring \forall assertions, by
collecting all objects that enter or leave our tool (that is all objects passed as
parameters or returned from the methods of the client's class), and using them as the
required range. Setting up a limit of 100 elements in the collection (hence in the
range of the \forall), we have experienced a total 50-fold slowdown.

 27

7 Related Work

In this section, we examine the related work on run-time validation of
implementations against their specifications.

In [13] a tool is presented that allows checking the behavioural equivalence be-
tween a Java class and its specification, during a particular run of a client application.
This is achieved through the automatic generation of a prototype implementation for
the specification which relies on term rewriting.

The specification language that is adopted is, as in our approach, algebraic with
equational axioms. The main difference is that the language of [13] is tailored to the
specification of properties of OO implementations whereas our language supports
more abstract descriptions that are not specific to a particular programming paradigm.
Being more abstract, we believe that our specifications are easier to write and under-
stand. In order to illustrate this, we present below the specification of two properties
of linked lists as they are presented in [13] as they would be specified in our ap-
proach.

forall l: LinkedList forall o: Object forall i: int

removeLast(add(l,o).state).retval == o
if i>=0
 get(addFirst(l,o).state,intAdd(i,l).retval).retval == get(l,i).retval

axioms l:LinkedList, o: Elem, i:Integer

 removeLast(add(_,o)) = o
 get(addFirst(l,o),suc(i)) = get(l,i) ⇐ i>zero(_)

The first property states that removeLast operation provides the last element that
was added to the list. The second property defines the semantics of get operation:
get(l,i) is the ith element in the list l. The symbols .retval and .state are primitive con-
structs of the language adopted by Henkel and Diwan [13] to talk about the return
value of an operation and the state of the current object after the operation, respec-
tively.

When compared with our approach, another difference is that the language of [13]
does not support the description of properties of operations that modify other objects,
reachable from instance variables, nor does the tool. In contrast, our approach sup-
ports the monitoring of this kind of operations. Our specification language allows,
within the specification of an ADT T, the expression of the application of operations
to instances of any of T’s imported sorts; thus, whenever those operations are to be
implemented as procedures, the state of those objects – which will most certainly be
implemented as instance variables of the class that implements T – will eventually
change. The tool generates contracts that allow the monitoring of those operations
executions.

Antoy and Hamlet present [1] a testing approach for modules using an algebraic
specification as a set of executable rewrite rules. The user supplies the specification,
an implementation class, and an explicit mapping from concrete data structures of the
implementation instance variables to abstract values of the specification. A self-
checking implementation is built that is the union of the implementation given by the
implementer and an automatically generated direct implementation, together with

28

some additional code to check their agreement. The direct implementation is com-
posed of code that is generated from the specification by representing instances of
abstract data types as terms, and manipulating them according to the rewrite rules
defined in the ADT specification.

The representation mapping, or abstraction mapping, must be written by the user in
the same language as the implementation class, and asks user knowledge about inter-
nal representation details. Here lies a difference between this and our approach: our
refinement mapping needs only the interface information of implementing classes,
and it is written in a very abstract language. Moreover, there are some axioms that are
not accepted by this approach, due to the fact that they are used as rewrite rules; for
example, equations like insert(X,insert(Y,Z)) = insert(Y,insert(X,Z)) cannot be ac-
cepted as rewrite rules because they can be applied infinitely often. In what concerns
our approach, these kind of axioms are acceptable: they originate post-conditions in
the method that implements the insert operation.

We further believe that the rich structure that our specifications can present, to-
gether with the possibility to, through refinement mappings, map a same module into
many different packages all of which implement the same specification, is a positive
point in our approach that we cannot devise in the above referred approaches.

The Daistish tool [16] is a PERL script that processes an algebraic, functional,
specification of an ADT, along with the code for an object implementing the ADT, to
produce a test driver. Appropriate data points (values for the parameters to the opera-
tions that are called in the axioms) are selected, values for both sides of the axioms
are separately computed, and results are compared. Test vectors given by the user are
used to define the parameter values. An implementation testing succeeds when
equivalent values are produced for each side of the axioms. Versions exist for Eiffel
and C++.

The fundamental difference between this approach and ours is that their specifica-
tions must already contain some information concerning implementation: the types of
arguments and result in function signatures must reveal whether a mutable or immu-
table implementation is expected. Furthermore, testing values for elements of the
several sorts must be supplied by the user in order to the Daistish tool to work prop-
erly. In what concerns equality, the paper does not clarify which semantics is used; it
is only said that “if an axiom is written using the “=” symbol, Daistish will generate
code employing the algebraic operation appropriate for the types being compared”.

The belief behind the MOP (Monitoring-oriented programming) formal framework
for software development and analysis [5], is that specification and implementation
should together form a system and interact with each other. This framework is inde-
pendent from any particular specification formalism. These can be modularly added to
the MOP framework, provided that they are coded as logic plug-ins, that is, modules
whose interfaces respect some standardized conventions, and that incorporate a moni-
tor synthesis algorithm. This algorithm takes formal specifications and produces cor-
responding concrete monitoring code that analyzes program execution traces. Run-
time violations and validations of specifications may result in adding functionality to
the system by executing user-defined code at user-defined places in the program:
executing recovery code, outputting or sending messages, throwing exceptions, etc.

 29

A WWW repository exists with some downloadable logic plug-ins – future time
and past-time temporal logics, extended regular expressions and JASS – and support
for JML annotations is intended for soon. Due to the fact that our tool generates JML
annotated classes, we may envisage these classes as input data to the JAVA-MOP
framework with JML support.

Further work exists on runtime checking of specifications against implementations
adopting a model based approach to specification. As stressed in Section 2, the repre-
sentation mapping, or abstraction mapping, that the implementer must supply turns
the task of the implementer more difficult. In our approach, the contract generation
process does not need to know any details of state implementation whatsoever, be-
cause it only works with method calls. Then, this kind of abstraction func-
tion/mapping is not needed, thus lightening the burden of the implementer. The
frameworks we describe below are among those model based ones.

Barnett and Schulte present a method for specifying interfaces uses the language
ASML to write an executable specification – ASML specifications are model pro-
grams, that is, they are operational specifications of the behaviour expected of any
implementation [2]. This specification defines the behaviour of a component, as seen
through its interface, by a client. The component implementing the interface, and its
specification, are run concurrently with no need for any sort of instrumentation at all,
and in a way that is transparent to the client; this is accomplished through the use of a
component which operates as a proxy, and that forks all the calls from the client to the
implementation component, so that they are also delivered to the specification com-
ponent. If all pairs of results agree, then, for that particular trace, the component is a
behavioural subtype of the specification.

Edwards et.al.’s general strategy for automated black-box testing of software com-
ponents is presented that combines three techniques: automatic generation of compo-
nent test-drivers, automatic generation of test data, and automatic or semi-automatic
generation of wrappers that have the same interface as the base component [6,7]. The
approach to the specification of component interfaces is model-based – the language
Resolve was chosen – but semi-formal or informal behavioural descriptions are also
accepted (informal descriptions require more human interaction, however). Here again
the built-in test (BIT) wrappers are transparent to client and component code, and can
be inserted and removed without changing client code. Pre and post-conditions and
abstract invariant checks are written in terms of the component’s state abstract
mathematical model. Difficulties arise when generating code for checking assertions
containing quantifiers: it cannot be fully automated. Human intervention is one of the
three described possible solutions for these cases.

The SLAM system [12] allows the user to specify a program in a high level speci-
fication language – an object oriented formal specification language that integrates
algebraic specifications with model-based ones. Executable and readable code written
in an object-oriented programming language can be generated from the program for-
mal specification. The code contains runtime checkable assertions corresponding to
some of the pre and post-conditions of the specification (the ones that were declared
as checkable). These assertions are complex logical formulae and Prolog programs
that check them are automatically generated. A function specification is a pair pre and

30

post-condition that indicates the relationship between the result and the arguments.
Whenever possible, the specifier may also define a computable expression that de-
fines the result.

SLAM unifies algebraic and model-based languages by specifying operations
through logical pre and post-conditions, but restricting logical formulae to a comput-
able view of quantifiers as traversal operations on data.

8 Conclusions and Further Work

We described an approach for testing Java implementations of abstract data types
against their specifications. We adopted an algebraic, property-driven, approach to
ADT specifications rather than a model-driven one. Although we recognise the
important role played by model-based approaches to ADT specification, we also think
that, for a significant part of software developers, it can be rather difficult to write
model-based program specifications – the representation mapping, or abstraction
mapping, that the implementer must supply is far from trivial. We believe that the
simplicity of property-driven specifications can encourage more software developers
to use formal specifications. Therefore, we find it important to equip property-driven
approaches with tools similar to the ones currently available for model-driven
approaches.

Specific features of the language we adopted for specifying abstract data types,
such as the classification of operations in specific categories, and strong restrictions in
the form of the axioms, not only simplify the task of creating specifications, but are
also effective in driving the automatic identification of contracts for implementing
classes.

Abstract data types are specified through modules that gather the component speci-
fications that are needed to completely specify all the needed sorts and operations. A
module provides names for its component specifications, which are then mapped into
Java types in the context of refinement mappings. These are easy to build insofar as
essentially only signatures – of adt operations and of Java methods or primitive opera-
tors – are required to describe the relation between ADT specification components
and operations and corresponding Java types and methods.

The notion of module lets us represent from the most simple, basic ADT, such as
the closed specification in Figure 9, to very rich and complex structures. Moreover,
we are able to map a same module, through different refinement mappings into many
different Java packages which all implement the same specification.

Further as well as ongoing work covers extension to the methodology and to the
framework in order to cope with parametric specifications, specifications as an exten-
sion of others, and specifications with more than one intrinsic sort.

We adopted a semantics of strong equality for the equality symbol used in axioms,
that is, either both sides are defined and are equal, or both sides are undefined. In
addition to the contracts that are generated from user defined axioms, our tool also
automatically generates contracts that are consistent with the adopted notion of equal-
ity.

 31

Closure of assertions within the context of a pair assertion/method, as briefly de-
scribed in section 5, implies the insertion of the \forall JML construct that quantifies
over all variables that are free within the given context. A suitable range must be
defined for every quantified variable, that is, a set of values that is representative of
the type of the variable, as specified in the ADT. Ongoing work focuses on the auto-
matic generation of this set of values by collecting all objects that enter or leave our
tool (that is all objects passed as parameters or returned from the methods of the cli-
ent's class), and using them as the required range.

Due to its syntax directed nature, contract generation produces conditions that have
a number of redundant parts – true && true, for example. We aim at the simplifica-
tion of generated contracts through the simplification of Boolean expressions.

Acknowledgements

Thanks are due to José Luiz Fiadeiro for many fruitful discussions that have helped to
set this work up which was partially supported through the POSI/CHS/48015/2002
Project Contract Guided System Development.

References

1. S.Antoy and D.Hamlet, “Automatically Checking an Implementation against its Formal
Specification”, Software Engineering, 26(1), 55-69, 2000.

2. M.Barnett and W.Schulte, “Spying Components: A Runtime Verification Technique”,
Proc. Workshop on Specification and Verification of Component Based Systems - OOP-
SLA 2001, Tampa, Florida, USA, 2001. ACM Press.

3. D.Bartetzko, C.Fischer, M.Möller, and H.Wehrheim, “Jass – Java with Assertions“, Elec-
tronic Notes in Theoretical Compuer Science 55 (2), July 2001.

4. M.Blum and H.Wasserman, “Software Reliability via run-time result-checking”, Journal
of the ACM 44 (6), 826-849, November 1997.

5. F.Chen, M. d'Amorim, and G. Rosu, “A Formal Monitoring-based Framework for Soft-
ware Development and Analysis”, Proc. 6th International Conference on Formal Engi-
neering Methods (ICFEM'04), 357-372, 2004.

6. S.H.Edwards, “A framework for practical, automated black-box testing of component-
based software”, Software Testing, Verification and Reliability, 11(2), 97-111, June, 2001.

7. S.H.Edwards, G.Shakir, M. Sitaraman, B.W.Weide and J. Hollingsworth, “A framework
for detecting interface violations in component-based software”, Proceedings of the Inter-
national Conference on Software Reuse, 46–55, IEEE Computer Society Press, 1998.

8. M. Bidoit and P.D. Mosses, CASL User Manual, (eds), LNCS 2900, Springer, 2004
9. CoFI (The Common Framework Initiative), Casl Reference Manual, P.D.Mosses (ed),

LNCS 2960, Springer, 2004.
10. J.Goguen, J.W.Thatcher, and E.Wagner, “An initial algebra approach to the specifica-

tion, correctness, and implementation of abstract data types”, in R. T. Yeh, editor,

32

Current Trends in Programming Methodology, IV, Data Structuring , 80-149, Pren-
tice-Hall, 1978. also IBM Research Report RC 6487 (1976).

11. J.V.Guttag, J.J.Horning, S.J.Garland, K.D.Jones, A.Modet, and J.M.Wing, Larch: Lan-
guages and Tools for Formal Specification, Springer-Verlag, 1993.

12. A.Herranz-Nieva and J.Moreno-Navarro, “Generation of and Debugging with Logical pre
and pos Conditions”, Proceedings of the Fourth International Workshop on Automated
and Algorithmic Debugging, Munich, August 2000.

13. J.Henkel and A.Diwan, “A Tool for Writing and Debugging Algebraic Specifications”,
Proceedings of the International Conference on Software Engineering (ICSE) 2004, Scot-
land 2004.

14. http://labmol.di.fc.ul.pt/congu/
15. http://www.di.fc.ul.pt/~vv/projects/contracts/
16. M.Hughes and D.Stotts, “Daistish: Systematic Algebraic Testing for OO Programs in the

presence of side-effects”, Proceedings of The International Symposium on Software Test-
ing and Verification, 53-61, ACM, 1996.

17. M.Karaorman, U.Holzle and J.Bruno, ”jContractor: A reflective Java library to support
design by contract”, Proceedings of Meta-Level Architectures and Reflection, LNCS 1616,
Springer-Verlag, 1999.

18. R.Kramer, “iContract - The Java Design by Contract Tool”, Proceedings of TOOLS USA
'98 conference, IEEE Computer Society Press, 1999.

19. G.T.Leavens, K.Rustan M.Leino, Erik Poll, Clyde Ruby, and Bart Jacobs, “JML: notations
and tools supporting detailed design in Java”, OOPSLA'00 Companion, Minneapolis, Min-
nesota, 105-106, ACM Press, 2000.

20. G.T.Leavens, A.L.Baker, and C.Ruby. “Preliminary design of JML: A behavioural inter-
face specification language for Java”, Technical Report 98-06-rev27, Iowa State Univer-
sity, Department of Computer Science, April 2005.

21. B.Meyer, Object-Oriented Software Construction, 2nd edition, Prentice-Hall PTR, ISBN
0-13-629155-4, 1997.

22. The Java Modeling Language examples page: http://www.cs.iastate.edu/~leavens/JML/-
examples.shtml

23. T.Skotiniotis and D.Lorenz. “Cona: aspects for contracts and contracts for aspects”, Com-
panion to the 19th annual ACM SIGPLAN conference on Object-oriented programming
systems, languages, and applications, 196-197. ACM Press, 2004.

24. J.M.Spivey, The Z Notation: A Reference Manual, International Series in Computer Sci-
ence, Prentice-Hall, 1992.

 33

Appendix A

In this section we put together the complete example introduced in the main text and
used throughout section 5. We take the module for a stack (Figure 13) and an imple-
mentation of a stack of String objects centred on the class StringStack (Figure 15). We
propose a mutable implementation – notice the void return type of the constructors,
and the mutable implementation of the pop method that returns the top element. The
refinement mapping (Figure 16) states that the elements of the stack are
java.lang.String objects whether the primitive type int is chosen to describe the size of
the stack.

Figure 17 below shows the immutable class StringStack$Immutable that is auto-
matically created by our tool. It has a static method for each method in class String-
Stack. Contracts are added to the corresponding methods according to the rules de-
fined in the previous sections.

The class String$Immutable is also automatically generated; due to the fact that the
closed specification ElemSpec in Figure 12(b) does not define any axioms
whatsoever, this immutable class has no contracts.

/**
 *
 */
public class StringStack$Immutable {

/*@ ensures !(true && true) && !(true && true) ||
 (true && true) && (true && true) && size(\result).value() == 0;
 @*/
static public StringStack$Original clear(StringStack$Original s) {
 StringStack$Original result = (StringStack$Original) clone(s);
 result.clear();
 return result;
}

/*@ ensures !(true && !isEmpty(\result).value()) && !true ||
 (true && !isEmpty(\result).value()) && true &&
 String$Immutable.equals(top(\result).value(), i);

 @ ensures !(true && !isEmpty(\result).value()) && !true ||
 (true && !isEmpty(\result).value()) && true &&
 equals(pop(\result).state(), s).value();

 @ ensures !(true && true) && !(true && true && true) ||
 (true && true) && (true && true && true) &&
 size(\result).value() == size(s).value() + 1;
 */
static public StringStack$Original push(StringStack$Original s,String i) {
 StringStack$Original result = (StringStack$Original) clone(s);
 result.push(i);
 return result;
}

/*@ requires true ==> !isEmpty(s).value();

 @*/
static public /*@ pure @*/ String$Pair pop(StringStack$Original s) {
 StringStack$Original clone = (StringStack$Original) clone(s);
 String$Pair result = new String$Pair(clone.pop(), clone);
 return result;
}

34

/*@ requires true ==> !isEmpty(s).value();

 @*/
static public /*@ pure @*/ String$Pair top(StringStack$Original s) {
 StringStack$Original clone = (StringStack$Original) clone(s);
 return new String$Pair(clone.top(), clone);
}

/*
 */
static public /*@ pure @*/ int$Pair size(StringStack$Original s) {
 StringStack$Original clone = (StringStack$Original) clone(s);
 return new int$Pair(clone.size(), clone);
}

/*@ ensures true && (!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(s).value() == 0) ==> \result.value();
 @ ensures true && (!(!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(s).value() == 0)) ==> !\result.value();
 @*/
static public /*@ pure @*/ boolean$Pair isEmpty(StringStack$Original s) {
 StringStack$Original clone = (StringStack$Original) clone(s);
 return new boolean$Pair(clone.isEmpty(), clone);
}

/*@ ensures \result.value() ==> other instanceof StringStack$Original &&
 (!(true && !isEmpty(one).value()) &&
 !(true && !isEmpty((StringStack$Original) other).value()) ||
 (true && !isEmpty(one).value() && true) &&
 (true && !isEmpty((StringStack$Original) other).value() && true) &&
 String$Immutable.equals(top(one).value(),

 top((StringStack$Original) other).value()));
 @ ensures \result.value() ==> other instanceof StringStack$Original &&
 (!(true && !isEmpty(one).value()) &&
 !(true && !isEmpty((StringStack$Original) other).value()) ||
 (true && !isEmpty(one).value()) &&
 (true && !isEmpty((StringStack$Original) other).value()) &&
 equals(pop(one).state(),

pop((StringStack$Original) other).state()).value());
 @ ensures \result.value() ==> other instanceof StringStack$Original &&

 (!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(one).value() == size((StringStack$Original) other).value());
 @*/
 static public /*@ pure @*/ boolean$Pair equals(

StringStack$Original one, Object other){
 StringStack$Original clone = (StringStack$Original) clone(one);
 return new boolean$Pair(clone.equals(other), clone);
 }

 /*@
 @ ensures equals(\result, other).value();
 @*/
 static public Object clone(StringStack$Original other) {
 return other.clone();
 }

}

public class String$Immutable {

 public /*@ pure @*/ static boolean equals(String one, String other) {
 return one == null? other == null : one.equals(other);
 }
}

 Fig. 17. Immutable classes generated by the tool

 35

Both immutable and wrapper classes need to use pairs of elements in order to cope

with non-void methods, as already explained in section 3. These classes are automati-
cally created by the tool and there is one for each different method return type. In this
StringStack example three classes are created (Figure 18) that denote pairs in which
the state element is a stack and the value element is a primitive integer, a string, and a
boolean.

**
 *
 */
public class int$Pair {

 private int value;
 private StringStack$Original state;

 public int$Pair(int v, StringStack$Original s) {
 state = s;
 value = v;
 }

 public /*@ pure @*/ int value() {
 return value;
 }

 public StringStack$Original state() {
 return state;
 }
}

**
 *
 */
public class boolean$Pair {

 private boolean value;
 private StringStack$Original state;

 public boolean$Pair(boolean v, StringStack$Original s) {
 state = s;
 value = v;
 }

 public /*@ pure @*/ boolean value() {
 return value;
 }

 public StringStack$Original state() {
 return state;
 }
}

**
 *
 */
public class String$Pair {

 private String value;
 private StringStack$Original state;

 public String$Pair(String v, StringStack$Original s) {
 state = s;
 value = v;
 }

36

 public /*@ pure @*/ String value() {
 return value;
 }

 public /*@ pure @*/ StringStack$Original state() {
 return state;
 }
}

Fig. 18. Auxiliary classes used in immutable and wrapper classes

Figure 19 presents the wrapper class that our tool creates and that has the same

name as the concrete implementation class provided by the user – in this case,
StringStack. This wrapper class has all the methods of the original class. These
methods invoke the corresponding contract equipped methods in class
StringStack$Immutable class that, in turn, invoke the original ones. The wrapper class
comprises a private StringStack$Original attribute, used as an argument on the
invocation of every immutable corresponding method.

/**
 *
 */
public class StringStack implements Cloneable {

 protected StringStack$Original wrappedObject;

 public StringStack() {
 wrappedObject = new StringStack$Original();
 }

 public void clear() {
 wrappedObject = (StringStack$Original) StringStack$Immutable
 .clear(wrappedObject);
 }

 public void push(String item) {
 wrappedObject = (StringStack$Original)

StringStack$Immutable.push(wrappedObject, item);
 }

 public String pop() {
 String$Pair result = StringStack$Immutable.pop(wrappedObject);
 wrappedObject = result.state();
 return result.value();
 }

 public boolean isEmpty() {
 boolean$Pair result = StringStack$Immutable.isEmpty(wrappedObject);
 wrappedObject = result.state();
 return result.value();
 }

 public String top() {
 String$Pair result = StringStack$Immutable.top(wrappedObject);
 wrappedObject = result.state();
 return result.value();
 }

 public int size() {
 int$Pair result = StringStack$Immutable.size(wrappedObject);
 wrappedObject = result.state();
 return result.value();
 }

 37

 public boolean equals(Object other) {
 boolean$Pair result = StringStack$Immutable.equals(

wrappedObject,(Object) unwrapCheck(other));
 wrappedObject = result.state();
 return result.value();
 }

 public Object clone() {
 return (Object) wrapCheck(

StringStack$Immutable.clone(wrappedObject));
 }

 // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING

 static private StringStack wrap(StringStack$Original obj) {
 StringStack result = new StringStack();
 result.wrappedObject = obj;
 return result;
 }

 static private Object wrapCheck(Object obj) {
 return (obj instanceof StringStack$Original)?
 wrap((StringStack$Original) obj) : obj;
 }

 static private Object unwrapCheck(Object obj) {
 return (obj instanceof StringStack)?
 ((StringStack) obj).wrappedObject : obj;
 }

}

Fig. 19. Wrapper class generated by the tool

38

Appendix B

This appendix contains the code for the java.util.Stack benchmarks used in Section
6. It contains the refinement mapping (Figure 20) of the GenericStack module
specification (Figure 13) into classes java.lang.Object and java.util.Stack. It also
contains two classes: the class that replaces the user’s class in our architecture (Figure
21), and the classes responsible for checking the contracts (Figure 22). We have
omitted the various Pair classes (boolean$Pair.java, int$Pair.java,
Object$Pair.java).

Fig. 20. Refinement mapping

public class Stack extends java.util.Vector {

 protected java.util.Stack wrappedObject;

 public Stack() {
 wrappedObject = new java.util.Stack();
 }

 public void clear() {
 wrappedObject = Stack$Immutable.clear(wrappedObject);
 }

 public boolean empty() {
 boolean$Pair pair = Stack$Immutable.empty(wrappedObject);
 wrappedObject = pair.state();
 return pair.value();
 }

 public Object peek() {
 Object$Pair pair = Stack$Immutable.peek(wrappedObject);
 wrappedObject = pair.state();
 return (Object) wrapCheck(pair.value());
 }

 public Object pop() {
 Object$Pair pair = Stack$Immutable.pop(wrappedObject);
 wrappedObject = pair.state();
 return (Object) wrapCheck(pair.value());

 39

 }

 public Object push(Object item) {
 Object$Pair pair = Stack$Immutable.push(

wrappedObject, (Object) unwrapCheck(item));
 wrappedObject = pair.state();
 return (Object) wrapCheck(pair.value());
 }

 public int size() {
 int$Pair pair = Stack$Immutable.size(wrappedObject);
 wrappedObject = pair.state();
 return pair.value();
 }

 public int search(Object o) {
 return wrappedObject.search((Object) unwrapCheck(o));
 }

 public boolean equals(Object other) {
 boolean$Pair pair = Stack$Immutable.equals(

wrappedObject, (Object) unwrapCheck(other));
 wrappedObject = pair.state();
 return pair.value();
 }

 public Object clone() {
 return (Object) wrapCheck(Stack$Immutable.clone(wrappedObject));
 }

 // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING

 static private Stack wrap(java.util.Stack obj) {
 Stack result = new Stack();
 result.wrappedObject = obj;
 return result;
 }

 static private Object wrapCheck(Object obj) {
 return (obj instanceof java.util.Stack)?

wrap((java.util.Stack) obj) : obj;
 }

 static private Object unwrapCheck(Object obj) {
 return (obj instanceof Stack)? ((Stack) obj).wrappedObject : obj;
 }

 public String toString() {
 return wrappedObject.toString();
 }

 // All the methods of the type java.util.Stack that are not specified
 // on the ADT, inherited or not, should be replicated here

}

Fig. 21. Wrapper class

For each method implemented by java.util.Stack that does not correspond to an

abstract data type operation, there should be a method in the wrapper class with the
same signature. These methods, which we chose to omit here due to its number,
should call the original method using the wrapped java.util.Stack object as target. This
is necessary if one wants the wrapper class to be able to substitute the original class in
what client classes are concerned.

40

public class Stack$Immutable {

 /*@ ensures !(true && true) && !(true && true) ||
 (true && true) && (true && true) && size(\result).value() == 0;
 @*/
 static public java.util.Stack clear(java.util.Stack s) {
 java.util.Stack result = (java.util.Stack) clone(s);
 result.clear();
 return result;
 }

 /*@ ensures !(true && !empty(\result.state()).value()) && !true ||
 (true && !empty(\result.state()).value()) && true &&
 Object$Immutable.equals(peek(\result.state()).value(), o);
 @ ensures !(true && !empty(\result.state()).value()) && !true ||
 !(true && empty(\result.state()).value()) && true &&
 equals(pop(\result.state()).state(), s).value();
 @ ensures !(true && true) && !(true && true && true) ||
 (true && true) && (true && true && true) &&
 size(\result.state()).value() == size(s).value() + 1;
 */
 static public Object$Pair push(java.util.Stack s, Object o) {
 java.util.Stack clone = (java.util.Stack) clone(s);
 Object$Pair result = new Object$Pair(clone.push(o), clone);
 return result;
 }

 /*@
 @ requires true ==> !empty(s).value();
 @*/
 static /*@ pure @*/ public Object$Pair pop(java.util.Stack s) {
 java.util.Stack clone = (java.util.Stack) clone(s);
 Object$Pair result = new Object$Pair(clone.pop(), clone);
 return result;
 }

 /*@
 @ requires true ==> !empty(s).value();
 @*/
 static /*@ pure @*/ public Object$Pair peek(java.util.Stack s) {
 java.util.Stack clone = (java.util.Stack) clone(s);
 return new Object$Pair(clone.peek(), clone);
 }

 static /*@ pure @*/ public int$Pair size(java.util.Stack s) {
 java.util.Stack clone = (java.util.Stack) clone(s);
 return new int$Pair(clone.size(), clone);
 }

 /*@ ensures true && (!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(s).value() == 0) ==> \result.value();
 @ ensures true && (!(!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(s).value() == 0)) ==> !\result.value();
 @*/
 static /*@ pure @*/ public boolean$Pair empty(java.util.Stack s) {
 java.util.Stack clone = (java.util.Stack) clone(s);
 return new boolean$Pair(clone.empty(), clone);
 }

 /*@ ensures \result.value() ==> other instanceof java.util.Stack &&
 (!(true && !empty(one).value()) &&
 !(true && !empty((java.util.Stack) other).value()) ||
 (true && !empty(one).value() && true) &&
 (true && !empty((java.util.Stack) other).value() && true) &&

 41

 Object$Immutable.equals(peek(one).value(),
peek((java.util.Stack) other).value()));

 @ ensures \result.value() ==> other instanceof java.util.Stack &&
 (!(true && !empty(one).value()) &&
 !(true && !empty((java.util.Stack) other).value()) ||
 (true && !empty(one).value()) &&
 (true && !empty((java.util.Stack) other).value()) &&
 equals(pop(one).state(),

pop((java.util.Stack) other).state()).value());
 @ ensures \result.value() ==> other instanceof java.util.Stack &&
 (!(true && true) && !(true && true) ||
 (true && true) && (true && true) &&
 size(one).value() == size((java.util.Stack) other).value());
 @*/
 static /*@ pure @*/ public boolean$Pair equals(

java.util.Stack one, Object other) {
 java.util.Stack clone = (java.util.Stack) clone(one);
 return new boolean$Pair(clone.equals(other), clone);
 }

 /*@
 @ ensures equals(\result, o).value();
 @*/
 static public Object clone(java.util.Stack o) {
 return o.clone();
 }

}

Fig. 22. Immutable classes equipped with contracts

42

Appendix C

This appendix contains the code for the Rational benchmarks used in Section 6. It
contains the specification for the Rational datatype (Figure 23), and the refinement
mapping of this specification into class IntRational.java (Figure 24). It also contains
two classes: the class that replaces the user’s class in our architecture (Figure 25), and
the class responsible for checking the contracts (Figure 26). We have omitted the
various Pair classes (boolean$Pair.java, int$Pair.java, IntRational$Pair.java).

Fig. 23. Specification of the Rational abstract data type

 43

Fig. 24. Refinement mapping

/**
 */

public class IntRational {

 protected IntRational$Original wrappedObject;

 public IntRational() {

 wrappedObject = new IntRational$Original();

 }

 public IntRational make(int num, int den) {

 IntRational$Pair pair =

IntRational$Immutable.make(wrappedObject, num, den);

 wrappedObject = pair.state();

 return (IntRational) wrapCheck(pair.value());

 }

 public int num() {

 int$Pair pair = IntRational$Immutable.num(wrappedObject);

 wrappedObject = pair.state();

 return pair.value();

 }

 public int den() {

 int$Pair pair = IntRational$Immutable.den(wrappedObject);

 wrappedObject = pair.state();

 return pair.value();

 }

 // requires other != null; - not needed; jml does it for you.

 public IntRational mult(IntRational other) {

 IntRational$Pair pair = IntRational$Immutable.mult(

wrappedObject, (IntRational$Original) unwrapCheck(other));

 wrappedObject = pair.state();

 return (IntRational) wrapCheck(pair.value());

44

 }

 public IntRational inverse() {

 IntRational$Pair pair = IntRational$Immutable.inverse(wrappedObject);

 wrappedObject = (IntRational$Original) pair.state();

 return (IntRational) wrapCheck(pair.value());

 }

 // requires other != null; - not needed; jml does it for you.

 public IntRational div(IntRational other) {

 IntRational$Pair pair = IntRational$Immutable.div(

wrappedObject, (IntRational$Original) unwrapCheck(other));

 wrappedObject = pair.state();

 return (IntRational) wrapCheck(pair.value());

 }

 public IntRational zero() {

 IntRational$Pair pair = IntRational$Immutable.zero(wrappedObject);

 wrappedObject = pair.state();

 return (IntRational) wrapCheck(pair.value());

 }

 public boolean equals(Object other) {

 boolean$Pair pair = IntRational$Immutable.equals(

wrappedObject, (Object) unwrapCheck(other));

 wrappedObject = pair.state();

 return pair.value();

 }

 public Object clone() {

 return (Object) wrapCheck(IntRational$Immutable.clone(wrappedObject));

 }

 // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING

 static private IntRational wrap(IntRational$Original obj) {

 IntRational result = new IntRational();

 result.wrappedObject = obj;

 return result;

 }

 static private Object wrapCheck(Object obj) {

 return (obj instanceof IntRational$Original)?

 wrap((IntRational$Original) obj) : obj;

 }

 45

 static private Object unwrapCheck(Object obj) {

 return (obj instanceof IntRational)?

 ((IntRational) obj).wrappedObject : obj;

 }

}

Fig. 25. Wrapper class

/**
 */
public class IntRational$Immutable {

 /*@

@ requires true ==> !(!true && !true || true && true && den == 0);
@ ensures true && (!true && !true || true && true && num == 0) ==>

 !(true && !(den == 0) && true && true && true) && !true ||
 (true && !(den == 0) && true && true && true) && true &&
 num(\result.value()).value() == 0;

@ ensures (true && true && true) &&
!(!(true && !(den == 0) && true && true && true) && !true ||

 (true && !(den == 0) && true && true && true) && true &&
 num(\result.value()).value() == 0) &&

 !(!true && !true || true && true && den == 0) &&
 !(!true && !true || true && true && num == 0)
 ==>

 !(true && !(den == 0) && true && true && true) &&
 !(true && (true && !(den==0) && true && true && true) && true && true)
 || (true && !(den == 0) && true && true && true) &&
 (true && (true && !(den == 0) && true && true && true) && true && true)
 && den(\result.value()).value()==num(\result.value()).value()*den/num;

 @ ensures (true && true && true) &&
 //###### num(make(H, N, D)) = 0 || D = 0 || N = 0
 ((!(true && !(den == 0) && true && true && true) && !true ||
 (true && !(den == 0) && true && true && true) && true &&
 num(\result.value()).value() == 0) ||
 (!true && !true || true && true && den == 0) ||
 (!true && !true || true && true && num == 0))
 ==>

 !(true && !(den == 0) && true && true && true) && !true ||
 (true && !(den == 0) && true && true && true) && true &&
 den(\result.value()).value() == 1;
 @*/
 static public /*@ pure @*/ IntRational$Pair make(

IntRational$Original object, int num, int den) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new IntRational$Pair(clone.make(num, den), clone);
 }

 static public /*@ pure @*/ int$Pair num(IntRational$Original object) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new int$Pair(clone.num(), clone);
 }

 static public /*@ pure @*/ int$Pair den(IntRational$Original object) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new int$Pair(clone.den(), clone);
 }

 /*@
 @ ensures (\forall IntRational$Original i; i != null;

 !true &&! (true && (true && true && true && true && true) &&
 (true && true && true && true && true) &&
 !(den(object).value() * den(other).value() == 0)) ||

46

 true && (true && (true && true && true && true && true) &&
 (true && true && true && true && true) &&
 !(den(object).value() * den(other).value() == 0)) &&
 equals(\result.value(), make(i, num(object).value() *
 num(other).value(), den(object).value() *

den(other).value()).value()).value());
 @*/
 static public /*@ pure @*/ IntRational$Pair mult(

IntRational$Original object, IntRational$Original other) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new IntRational$Pair(clone.mult(other), clone);
 }

 /*@
 @ requires true ==> !(!(true && true) && !true ||
 (true && true) && true && (num(other).value() == 0));

@ ensures !true && !(true && true && !(num(other).value() == 0) && true) ||
 true && (true && true && !(num(other).value() == 0) && true) &&
 equals(\result.value(), mult(object,

inverse(other).value()).value()).value();
 @*/
 static public IntRational$Pair div(

IntRational$Original object, IntRational$Original other) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new IntRational$Pair(clone.div(other), clone);
 }

 /*@
 @ requires true ==> !(!(true && true) && ! true ||
 (true && true) && true && (num(object).value() == 0));

 @ ensures (\forall IntRational$Original i; i != null;
 !true && !(true && (true && true) && (true && true) &&

 !(num(object).value() == 0)) ||
 true && (true && (true && true) && (true && true) &&

 !(num(object).value() == 0)) &&
 equals(\result.value(), make(i, den(object).value(),

 num(object).value()).value()).value());
 @*/
 static public /*@ pure @*/ IntRational$Pair inverse(

IntRational$Original object) {
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new IntRational$Pair(clone.inverse(), clone);
 }

 /*@
 @ ensures (\forall IntRational$Original r; r != null;
 !true && !(true && true && true && !(1 == 0)) ||
 true && (true && true && true && !(1 == 0)) &&
 equals(\result.value(), make(r, 0, 1).value()).value());
 @*/
 static public /*@ pure @*/ IntRational$Pair zero(IntRational$Original object){
 IntRational$Original clone = (IntRational$Original) clone(object);
 return new IntRational$Pair(clone.zero(), clone);
 }

 /*@
 @ ensures \result.value() ==> other instanceof IntRational$Original &&
 (!(true && true) && !(true && true) ||

(true && true) && (true && true) &&
 num(one).value() == num((IntRational$Original) other).value());

 @ ensures \result.value() ==> other instanceof IntRational$Original &&
 (!(true && true) && !(true && true) ||

(true && true) && (true && true) &&
 den(one).value() == den((IntRational$Original) other).value());

 47

 @ ensures other instanceof IntRational$Original && (
 (true && (true && true) && (true && true)) ==
 (true && (true && true) && (true && true))
 &&
 ! (true && (true && true) && (true && true)) &&
 ! (true && (true && true) && (true && true)) ||
 (true && (true && true) && (true && true)) &&
 (true && (true && true) && (true && true)) &&
 num(one).value() * den ((IntRational$Original) other).value()

 == num((IntRational$Original) other).value() * den(one).value())
 ==> \result.value();
 @*/
 static public /*@ pure @*/ boolean$Pair equals (

IntRational$Original one, Object other) {
 IntRational$Original clone = (IntRational$Original) clone(one);
 return new boolean$Pair(clone.equals(other), clone);
 }

 /*@
 @ ensures equals(one, \result).value();
 @*/
 static public Object clone(IntRational$Original one) {
 return one.clone();
 }

}

Fig. 26. Immutable class equipped with contracts

