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Abstract. We present an approach for testing Java implementations of abstract 
data types (ADTs) against their specifications. The key idea is to reduce this 
problem to the run-time monitoring of contract annotated classes, which is 
supported today by several runtime assertion-checking tools.  The approach 
comprises an ADT specification language that allows automatic generation of 
monitorable contracts and a refinement language that supports the specification 
of the details of object-oriented implementations of ADTs.  

1 Introduction 

The definition of a data type in a way that is independent of its concrete 
representation on a specific programming language is a valuable asset in the design of 
algorithms and software systems. When reasoning at an abstract level, concrete data 
types that are equal up to renaming of data domains, data items and operations should 
not be distinguishable: we are only interested in their properties, not in their 
implementation. This leads to the notion of an abstract data type as proposed in the 
early 70’s by Goguen et al [10]. 

Design by Contract (DBC) [21] is a software methodology based on the concept of 
abstract data type, integrating specification, design, and testing, and aiming at 
producing provably correct pieces of object-oriented software. In this approach, ADT 
specifications are class interfaces (Java interfaces, Eiffel abstract classes, etc) 
annotated with contracts expressed in a particular assertion language. Any 
implementation can be tested against its specification, by means of contract 
monitorization. 

Property-driven algebraic approaches to ADT specification provide the conceptual 
basis for using data types in software design. Data types are defined by a set of sorts, 
a set of operations on those sorts and a set of axioms that support the precise 
specification of the semantic aspects. These specifications define classes of algebras, 
also called models. Such algebras can be regarded as possible implementations of the 
data types that are defined by the specification. 
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In purely model-driven approaches, data types are specified through a very abstract 
implementation based on primitive, but not necessarily basic, data types available in 
the adopted specification language. The abstract mapping that has to be supplied to 
describe the relation between the models and the structures that are chosen in the 
given implementation, can be rather difficult to obtain. 

Among these approaches to ADT specification, the property-driven algebraic 
approach is the one that provides simpler and more concise specifications of ADTs 
and support specification at a higher level of abstraction.  

The simplicity and expressive power of property-driven specifications can 
encourage more software developers to use formal specifications. Therefore, we find 
it important to equip property-driven approaches with tools similar to the ones 
currently available for model-driven approaches. Support for checking 
implementations against algebraic specifications is, as far as we know, restricted to 
the approaches proposed in [13, 1], which have some limitations.  

In this paper, we propose an approach to system development that aims at bridging 
the gap between algebraic specifications and class specifications in an OO 
programming language, providing the means for software developers to benefit from 
the advantages of both worlds. The approach is tailored to Java and JML [20] but it 
could as well be defined towards other OO programming languages and assertion 
languages.  

The key idea of the approach is to reduce the problem of testing Java 
implementations against specifications of ADTs to the run-time monitoring of 
contracts, which is supported today by many runtime assertion checking tools (e.g., 
[3, 17, 18, 19]). The ADTs’ implementations we want to test become wrapped by 
other automatically generated classes. These are annotated with contracts that are 
generated from the corresponding ADTs specifications. The monitoring of these 
contracts at run-time is equivalent to the testing of the implementations against their 
specifications. 

The paper is organised as follows. Section 2 motivates the use of a property-driven 
algebraic approach to the specification of ADTs by comparing it with DBC and 
model-driven approaches. Section 3 gives an overview of our approach, whose main 
components are presented in more detail in the subsequent sections. Section 4 
presents the adopted algebraic specification language and the notion of refinement 
between specifications and Java classes. Section 5 describes the contracts that are 
generated from specifications. Section 6 presents benchmarking results obtained from 
testing our architecture on three data types. Section 7 presents some related work, and 
section 8 concludes and describes some topics that need further work. 

2 Motivation 

In order to motivate and illustrate our approach we use the abstract data type integer 
stack. Figure 1 presents a specification of this data type. We follow the usual style of 
property-driven algebraic specifications [8]. In general terms, we adopt partial 
specifications with conditional axioms. 
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Fig. 1. Specification of an integer stack. 

Operation symbols are classified in one of three classes: 
• constructors, representing the operations with which all the values of the type 

can be obtained; 
• observers, representing the operations that give fundamental information about 

the values of the type;  
• derived, which represent all other operations. 
Operation symbols declared with ⇒? can be interpreted by partial functions. The 

section domains of the specification, allows to describe the conditions under which 
interpretations of these operations are required to be defined. 

To achieve software reliability, given a Java implementation of integer stacks – for 
instance, the class ArrayStack presented in Figure 2 – it is important that this 
implementation can be checked against the specification.  

A well-known approach to this problem is to adopt DBC. In this case, the semantic 
properties of the data type are specified through assertions – pre-conditions, post-
conditions and invariants – that can be monitored at run-time. Pre-conditions can be 
used to express domain conditions of operations: if they are monitored, no client 
succeeds in executing an operation in a state that does not belong to the operation 
domain. Post-conditions can be used to express the other semantic properties of the 
operations: they are often expressed by relating the objects as they were before 
operation execution with the objects as they are after it. If assertions are monitored, an 
exception is usually raised whenever a situation is found in which the implementation 
does not conform to the specification. 
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Java class 
 
 

public class ArrayStack implements Cloneable { 
 
 private static final int INITIAL_CAPACITY = 10 ; 
 
 private int [] elems = new int [INITIAL_CAPACITY] ; 

 private int size = 0 ; 
 
 
 public void clear () { 

  size = 0; elems = new int [INITIAL_CAPACITY]; 

 } 
 
 public void push(int i){ 

  if (elems.length() == size) 

    reallocate(); 

  elems[size] = i; 

  size++; 

 }  
 
 public void pop (){ 

  size--; 

 } 
 
 public int top (){ 

  return elems[size-1]; 

 }  
  
 public int size (){ 

  return size; 

 }  
 
 public boolean isEmpty (){ 

  return size==0; 

 } 
 
 private void reallocate (){ 

  ....; 

 } 
 
 public boolean equals (Object other){ 

  ....; 

 } 
 
 public Object clone (){ 

  ....; 

 } 

} 

  
 

Fig. 2. Java implementation of an integer stack. 

Let us now analyse the support given by DBC to the specification of the data type 
integer stack through the integration of assertions in the class ArrayStack. Following 
B.Meyer [21], this could be achieved by adding contracts as shown in Figure 3. 

The conditions defined under the domains section of the ADT specification (cf. 
Figure 1) are used here as pre-conditions. The post-conditions capture the 
functionality of the operations specified by the axioms. Notice that there are axioms 
that can not be captured by any conceivable post-condition, due to the impossibility of 
expressing them in terms of monitorable post-conditions. This is the case of axiom 2 
– pop(push(s,_)) = s. The inclusion of a post-condition in method push with the 
flavour of pop().equals(\old clone( )) would not work because pop is a void method.  
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The example shows that, whenever a specification is implemented by a mutable 
type, there are axioms that may not be expressible as monitorable contracts of the 
class.  

 
  

Java class 
 
 

public class ArrayStack implements Cloneable{ 
 
  ... 
 
 /*@ ensures  size() == 0; */ 
 public void clear () {… } 

 

/*@ ensures top() == i && size() == \old size() + 1; */ 
 public void push (int i) {… } 

 

 /*@ requires !isEmpty(); */ 
 /*@ ensures  size() == \old (size() – 1) */ 
 public void pop () {… } 

 

 /*@ requires !isEmpty(); */ 
 public /*@ pure @*/ int top () {… } 

 

 public /*@ pure @*/ int size() {… } 

 

 /*@ ensures  \result == (size() == 0); */ 
 public /*@ pure @*/ boolean isEmpty() {… } 

  ... 

} 

  
 

Fig. 3. Adding contracts to ArrayStack. 

Also notice that we have classified size as an observer operation and isEmpty as 
derived. Had we done otherwise (a more natural choice) we would be left with the 
axioms:  

 
size(s)= zero(_)   ⇐  isEmpty(s) \\ Ax 7 

size(s)= suc(size(pop(s))) ⇐  ¬isEmpty(s)  \\ Ax 8 
 

and would not be able to express these properties as post-conditions in method size, 
again because pop is a void method. 

These problems disallow the expression of important properties of many methods 
in common data types. Unless we have methods that allow to inspect the whole 
structure of the data type elements without modifying it (for instance a method 
element(i) for inspecting every i-th element of the stack), we are not capable of 
writing complete monitorable post-conditions. These inspection methods are, in 
general, artificial, and even against the nature of the type itself and, hence, they are 
not a solution to the problem.   

As a result, we cannot directly rely on DBC for monitoring property driven ADT 
specifications.   

Purely model-oriented approaches, like the ones followed by users of Z [24], Larch 
[11], JML [20], etc, are another alternative to the specification of abstract data types 
and the checking of implementations against specifications. These approaches support 
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the description of abstract implementations – defined, for example, in terms of sets or 
lists – which are then used as abstract models of the types under specification.  

Figure 4 presents an example of a model-based specification of stacks taken from 
[22]. This specific model of stacks relies on sequences, more concretely on objects of 
type JMLObjectSequence – a class belonging to the distribution of JML. The class 
JMLObjectSequence defines immutable sequences, including a series of methods for 
sequence manipulation from which the methods trailer(), insertFront(), first(), that 
are used in this specification, are examples. The model underlying 
JMLObjectSequence is a finite sequence of elements.  

 

 
  Fig. 4. JML specification of UnboundedStack. 

When a specific implementation of UnboundedStack is defined, it is necessary to 
explicitly describe the relation between the JMLObjectSequence theStack and the 
structure that is chosen to store the stack elements. This relation is known as the 
abstraction function. Figure 5 partially illustrates the definition of this relation for an 
implementation of stacks as ArrayLists as presented in [22]. 

Although we recognise the important role played by model-based approaches to 
ADT specification, we think that, for a significant part of software developers, it can 
be rather difficult to write this kind of specifications. We believe that the simplicity of 
property-driven specifications can encourage more software developers to use formal 
specifications. Therefore, we find it important to equip property-driven approaches 
with tools similar to the ones currently available for model-driven approaches.  
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Fig. 5. Partial view of an implementation of UnboundedStack. 

3 Approach Overview 

In this section we provide an overview of our approach for testing Java implementa-
tions of ADTs against property-driven specifications. For the purpose of this over-
view, we consider a simplified scenario in which the implementation that we want to 
test against a given specification module is composed of one only class – this does not 
imply that the specification refers to one only sort, but that it is mapped to one class 
and, possibly, some primitive types.  

The approach is depicted in Figure 6. From a user-centric point of view, the ap-
proach includes (1) a specification T – the specification of the ADT, (2) a Java class 
MyT – the implementation that we want to test and (3) a refinement mapping between 
T and MyT – the definition of the relationship between the operation symbols of the 
specification and the method names of the implementation, among other things.  

As a result, two classes are produced – a wrapper of MyT class and an immutable 
MyT$Immutable class – that ensure that, during the execution of a system involving 
classes that are clients of the original MyT class: a) the behaviour of the original MyT 
objects will be checked against specification T, and b) the clients’ behaviour with 
respect to the original MyT operations will be monitored.  
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Fig. 6. Approach overview. 

The generated MyT wrapper class has exactly the same interface as, and their ob-
jects behave the same as those of, the original MyT class, as far as any client using 
MyT objects can tell. This generated MyT class is what is usually called a wrapper 
class because each of its instances hides an instance of the original MyT class, and 
uses it when calling the methods of an immutable version of MyT – the generated 
class MyT$Immutable – in response to client calls. Because the class MyT$Immutable 
is annotated with contracts, the properties of the ADT are checked (and the violations 
are reported), whenever the system is executed under the observation of a contract 
monitoring tool. See Figures 7 and 8 for an example. 

In order to avoid modifying MyT clients so as to become clients of the wrapper 
class instead, the original MyT class is renamed – its name is postfixed with “$Origi-
nal”.  In this way, the monitoring of MyT original class becomes transparent to client 
classes. Let m be a method of the original MyT class. The corresponding method m in 
the wrapper class MyT calls the immutable version of m in MyT$Immutable, using its 
wrapped attribute (whose type is MyT$Original) as the first argument of the call. This 
immutable version of method m calls the original m over a clone of the MyT$Original 
argument, and returns its result. Due to the fact that it does not modify its 
MyT$Original argument, while returning the desired object, the immutable version of 
m can be invoked in contracts of its own class MyT$Immutable, allowing to test the 
effects of the original m. 

Concerning Figures 7 and 8, since clear() is a void method, then the corresponding 
method in ArrayStack$Immutable must return the ArrayStack$Original object that 
results from applying clear to a clone of the original object. The result of this call is 
then stored in the stack attribute.  

In the case of a non-void method, say size, the corresponding size method in Ar-
rayStack$Immutable returns a pair <value,state> where value stands for the result of 
the method, and state stands for the target object state after size’s invocation. The 
wrapper class – the new ArrayStack – uses the value part of this pair to return the 
value to the client, and the state part of this pair to assign it to its only attribute (in 
order to account for methods that, in addition to returning a value, also modify the 

design time 
implementation time 

Specification Module 
T 

uses 

Java Class 
MyT.java 

Java Class 
MyT.java 

Java Class 
MyT$Immutable.java 

Java Class 
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current object).  
 

  
Java class (i) 
 
 

// Automatically generated from the original ArrayStack class, 

// now renamed to ArrayStack$Original 

public class ArrayStack implements Cloneable { 
 
 protected ArrayStack$Original stack = new ArrayStack$Original (); 
 
 public void clear() { 

  stack = ArrayStack$Immutable.clear(stack); 

 } 
 
 public void push(int i) { 

  stack = ArrayStack$Immutable.push(stack, i); 

 } 
 
 public void pop() { 

  stack = ArrayStack$Immutable.pop(stack); 

 } 
 
 public int size() { 

  int$Pair result = ArrayStack$Immutable.size(stack); 

  stack = result.state(); 

  return result.value()); 

 } 
 
 public int top() { 

  int$Pair result = ArrayStack$Immutable.top(stack); 

  stack = result.state(); 

  return result.value()); 

 } 
 
 ... // this class is not complete 
 
} 

 
 
Java class (ii) 

 
 
public class int$Pair { 

 private final int value; ArrayStack$Original state; 
 
 public int$Pair (int value, ArrayStack$Original state){ 

  this.value = value;  

  this.state = sstate; 

 } 
 
 public int value() { 

  return value; 

 } 
 
 public ArrayStack$Original state() { 

  return state; 

 } 

} 

  
 

Fig. 7. (i) Partial view of the wrapper class that results from applying our approach to the speci-
fication IntStackSpec and the original ArrayStack class. (ii) The auxiliary class int$Pair.  

To keep things simple, we have not presented the refinement mapping (cf. Figure 
6) for this example; it will be fully explained in the next section. The role of the 
refinement mapping is to map each sort to a Java class or primitive type, and each 
ADT operator to the Java method or primitive operation that implements it. 
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Java class  

 

 

// Automatically generated from the ArrayStack class and  

// the IntStackSpec specification 

public class ArrayStack$Immutable { 
 
 /*@ 

   @ ensures size(\result).value()== 0;                   //Ax3 

   @*/ 

  static public ArrayStack$Original clear (ArrayStack$Original s) { 

  ArrayStack$Original result = (ArrayStack$Original) clone(s); 

  result.clear(); 

  return result; 

  } 
 
    /*@ 

  @ ensures size(\result).value() == size(s).value() + 1; //Ax4 

  @ ensures top(\result).value() == i;                    //Ax1 

  @ ensures equals(pop(\result).state(), s).value();      //Ax2 

  @*/ 

  static public ArrayStack$Original push (ArrayStack$Original s, int i) { 

  ArrayStack$Original result = (ArrayStack$Original) clone(s); 

  result.push(i); 

  return result; 

  } 
 
 
    /*@ 

  @ requires !isEmpty(s).value(); 

  @*/ 

  static public ArrayStack$Original pop (ArrayStack$Original s) { 

  ArrayStack$Original result = (ArrayStack$Original) clone(s); 

  result.pop(); 

  return result; 

  } 

 

 static public int$Pair size (ArrayStack$Original s) { 

  ArrayStack$Original clone = (ArrayStack$Original) clone(s); 

  return new int$Pair (clone.size(), clone); 

 } 

  

  /*@ 

   @ensures <see Section 5.2>; 

 @*/ 

 static public boolean$Pair equals (ArrayStack$Original one, Object other){ 

  ArrayStack$Original clone = (ArrayStack$Original) clone(s); 

  return new boolean$Pair (clone.equals(other), clone); 

 

 } 

 

 ... //this class is not complete 
 

} 

 

 

Fig. 8. Partial view of the Immutable class that results from applying our approach to the speci-
fication IntStackSpec and the original ArrayStack class.  
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4 Specification Languages: ADTs and Refinements 

As illustrated in the previous sections, we define abstract data types in terms of alge-
braic specifications. The language we adopt is, to some extent, similar to many exist-
ing languages, e.g. CASL [8]. It has, however, some specific features, such as the 
classification of operations in different categories, and strong restrictions on the form 
of the axioms.  

Our teaching experience shows us that the imposition of rules to guide the task of 
specifying ADTs is useful. The rules we impose are not only intuitive and easy to 
understand and to apply, but they are also necessary in driving the automatic identifi-
cation of contracts for classes.  

The language provides for the description of modules. The building blocks it relies 
upon are specifications. A specification includes a set of symbol declarations – a sort 
s, a set of operations Ω, and a set of predicates P  – and a set of axioms Φ. The decla-
ration of operations and predicates includes the definition of their profile – the num-
ber and the sorts of the arguments. In the case of operations, the profile also includes 
the sort of the result and whether the operation is required to be total. The first argu-
ment of every operation or predicate must be of sort s (the sort that the specification 
defines); the reason for this requirement is discussed below.  

Operations are classified as constructors, observers or derived, whereas predicates 
can only be classified as either observers or derived. Constructors represent the opera-
tions from which all the values of type s can be obtained. Observers represent the 
operations and predicates that give fundamental information about the values of type 
s. The same applies to operation and predicate symbols declared as derived, but in this 
case the provided information could have been obtained through the other operations 
and predicates. The classification of an operation/predicate as derived rather than 
observer, reflects itself on the form of the axioms, as well as on the Java method 
where we place the contract generated from the axiom. 

The set of axioms is divided into two parts. The first part concerns the domain of 
definition of the operations – it defines conditions under which the interpretation of 
each operation must be defined. For operations declared as total (featuring ⇒), the 
domain condition is implicit and, hence, does not need to be specified. If, for a given 
partial operation (specified with ⇒?), no condition is indicated, it means that the 
operation can be interpreted by any function, including the one which is undefined 
everywhere.  

The second part of the axioms expresses constraints over the interpretation of op-
eration and predicate symbols. We identify four essential classes of axioms: (a) axi-
oms that relate constructors; (b) axioms that specify the result of observers on con-
structors; (c) axioms that describe the result of derived operations/predicates on ge-
neric instances of the sort; (d) axioms that pertain to sort equality. 

Axioms are closed formulae of first-order logic restricted to one of the following 
forms. 

∀  

! 

r 
y  ( φ ⇒ opC’(opC(  

r 
x ),  

r 
t )=t )  (a) 

∀  

! 

r 
y ( φ ⇒ opO(opC(  

r 
x ),  

r 
t )=t )   (b) 
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∀  

! 

r 
y ( φ ⇒ predO(opC(  

r 
x ),  

r 
t ) )  (b) 

∀  

! 

r 
y ( φ ⇒ ¬predO(opC(  

r 
x ),  

r 
t ) )  (b) 

∀  

! 

r 
y ( φ ⇒ opD(  

r 
x )=t )  (c) 

∀  

! 

r 
y ( φ ⇒ predD(  

r 
x ) )  (c) 

∀  

! 

r 
y ( φ ⇒ ¬predD(  

r 
x ) )  (c) 

∀  

! 

r 
y ( φ ⇒ x1=x2 )  (d) 

where   

! 

r 
y  is a list of variables, φ  is a quantifier-free formula over   

! 

r 
y ,   

r 
x  is a list of 

variables in   

! 

r 
y , x1 and x2 are variables in   

! 

r 
y ,   

r 
t  is a list of terms over   

! 

r 
y , t is a term over 

  

! 

r 
y , opC and opC’, opO and opD are operation symbols in Ω (Constructors, Observers 

and Derived operations, respectively),  predO and predD are predicate symbols in P 
(Observers and Derived predicates, respectively).  

It is important to notice that, because operations may be interpreted by partial func-
tions, a term may not have a value. The equality symbol used in the axioms denotes 
strong equality: either both sides are defined and are equal, or both sides are unde-
fined.    

To ease the reading, the concrete syntax used in the examples allows some simpli-
fications. For instance, universal quantifiers are omitted, implications may be written 
from right to left and the symbol '_' is used, as in Prolog, for variables whose identity 
is irrelevant. The complete definition of the syntax of the language is the subject of a 
separate publication [15].  

4.1  Specifications and Modules 

A specification consists of a set of references to other specifications (import-specs, 
for short), a sort, a set of operations, a set of predicates and a set of axioms. The sym-
bols used in the specification that are not locally declared (sorts, operations or predi-
cates) are designated by external symbols. The specification of integer stacks pre-
sented in Figure 1 imports a specification – IntegerSpec – and uses sort Integer and 
operation symbols zero and suc which are external symbols.  

A module puts together specifications while assigning them a name. When a speci-
fication is embedded, as a component, in a module, components must also be embed-
ded that provide the specification’s external symbols. 

Whenever the set of import-specs is empty in a specification, we call it is a closed 
specification; these are essentially self-contained specifications with a single sort, 
which allow the specification of basic ADTs such as integers and booleans (cf. Figure 
9).  

A module is a surjective function µ:Ν→Ξ from a set Ν (of specification names) to 
a set Ξ of specifications s.t. (1) the import-specs of specifications in Ξ  are included in 
Ν and (2) every external symbol x  of a specification in Ξ is declared exactly in one of 
the imported specifications – we use xµ to denote the name of this specification. 

In the case of our running example, in order to put together the specification of in-
tegers (Figure 9), and integer stacks (Figure 1), we have to assign names – for exam-
ple, IntegerSpec and IntStackSpec – to both specifications (Figure 10). 
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Fig. 9. An example of a closed specification.  

 
 
 
 

 
 
 
 

Fig. 10. IntegerStack: an example of a module.  

4.2  Refinement Mappings 

In order to check Java classes against specifications, it is necessary to provide map-
pings that bridge the gap between the two worlds. In our approach, the gap between 
modules and collections of Java classes is defined in terms of what we have called 
refinement mappings (cf. Figure 6). Before defining the mapping, we discuss some 
key aspects of OO implementations for data types.   

In the context of the OO paradigm, a data type t is usually implemented by a class 
T whose objects are the values of t. Furthermore, operations and predicates of t are 
usually implemented as instance methods of T. This means that, whenever a client 
invokes a method of the class, it must provide the target object separately from the 
method arguments.  Therefore, a refinement mapping must bind every n+1-ary opera-
tion or predicate of the data type to an n-ary method of T.  The first argument of the 
operation is implicitly provided – it is the target object (remember that the sort of the 
first argument in all operations/predicates of any specification defining sort s must 
exist and be of sort s).  In what concerns the return type, an operation whose result 
type is t can be either bound to a procedure (void method) or to a function of either 

module     
     
IntStackSpec  ⥤  Fig. 1 
 
IntegerSpec  ⥤  Fig. 9 
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type T or some T’. The former case is typical of mutable implementations, in which 
an object may represent different data values during its life time.  This is also the case 
when the return type is T’ different from T (for example, a method int popTop that 
implements operation pop and also returns the top element). Predicates have to be 
bound to methods of type boolean. 

Although less common, elementary data types can also be implemented by (Java) 
primitive types. Our approach supports this form of implementation for closed speci-
fications.  In this case, the refinement mapping has to define the way operations and 
predicates of the data type are expressed in terms of built-in Java operations. 

 
Refinement mappings: Given a module µ: Ν→Ξ and a set C of Java types, a refine-
ment mapping ρ: Ν→ C × Β is a Ν-indexed set of pairs {<Cν,βν>}ν:Ν where Cν is a 
type in C  (which can be a primitive type only if µ(ν) is a closed specification) and βν 
is a binding between the specification µ(ν) and the class Cν.  
The refinement mapping ρ is such that, if ρ(ν) = < Cν,βν>, 

 and Cν is primitive, then 

µ(ν) is a closed specification, and 

βν(op) is a Java expression of type Cν, and βν(pred) is a Java expression of 
boolean type, built for the set of variables {x1,…,xn}, where n is the arity of 
op or pred. 

 and Cν is a class, then 

βν(opp), where opp is either a predicate pred or an operation op, is a method 
signature in Cν such that, 

(arity) βν maps n+1-ary operations and predicates into n-ary methods; 

(return type) βν(pred) is of boolean type; where t is the return type of 
op, βν(op) is of type of the class in pair ρ(tµ);  

(parameter type) the i-th parameter of βν(opp) has the type of the class 
in pair ρ(tµ) where t is the sort of the (i+1)-th parameter of opp. 

 
Notice that operations with result sort s can be mapped into methods with any return 
type, void included.  This allows us to establish refinement mappings to classes with 
methods that achieve their expected functionality by changing the state of the current 
object and that additionally return some value (this is, for instance, the case of meth-
ods add and remove of the class java.util.Collection that return a boolean value indi-
cating whether the execution of the method implied a change to the collection).  

To illustrate these notions, consider again the module IntegerStack presented in 
Figure 10. In order to check the conformance of the Java class ArrayStack (Figure 2) 
against this specification we have to define an appropriate refinement mapping.  An 
admissible choice is presented in Figure 11. It states that the Java primitive type int 
was chosen to implement the data type IntegerSpec and defines, for each of its opera-
tion and predicate symbols, the corresponding Java expression.  
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 refinement mapping 
 

IntegerSpec is primitive int  

 zero(x1:Integer)    is 0 
 suc(x1:Integer):Integer    is x1 + 1 
 pred(x1:Integer):Integer    is x1 - 1 
 _<_(x1:Integer, x2:Integer)    is x1 < x2 

IntStackSpec is class ArrayStack 
 clear(s:IntStack): IntStack   is void clear()  
 push(s:IntStack,i:Elem): IntStack   is void push(int i)  
 pop(s:IntStack):IntStack   is void pop()  
 top(s:IntStack):Integer      is int top()  
 size(s:IntStack):Integer       is int size()  
 isEmpty(s:IntStack)      is boolean isEmpty()  

  
Fig. 11. An example of a refinement mapping.  

Notice that a refinement mapping may define a mapping that maps two different 
specifications into the same class or primitive type. This is extremely useful since it 
promotes the writing of generic specifications that can be reused in different situa-
tions. As an example, consider the specifications presented in Figures 12a) and b). 
 

     
Fig. 12. a) The specification of a generic stack; b) a closed specification of general elements 

Figure 13 shows a module – GenerickStack – that includes the above specifications, 
and also IntegerSpec of Figure 9. 

 

 
Fig. 13. The module GenericStack  
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It is possible to bind both specifications IntegerSpec and ElemSpec to the primitive 
type int as explained previously and bind the specification StackSpec to the Java class 
ArrayStack of Figure 3.  The example shows that our approach allows checking the 
implementation of ArrayStack against either module IntegerStack or module Generic-
Stack by simply considering different refinement mappings.  

5 Contract Generation 

Given a module, a set of Java classes and primitive types implementing the specifica-
tions in the module, and a refinement mapping (between the specifications and the 
implementations), we generate several classes, some of them annotated with contracts 
(cf. Figure 6). In this section, we present the main rules that govern contract genera-
tion.  

Given a module µ: Ν→Ξ, a set C of Java types that implements µ, and a refinement 
mapping ρ = {<Cν,βν>}ν:Ν, we define how the axioms of specification µ(ν) translate 
into assertions that constitute contracts for the methods of the class CνImmutable 
where Cν is such that ρ(ν) = < Cν,βν>. Whenever a specification is implemented by a 
primitive type, no contract generation is achieved – it is not possible to attach pre and 
post-conditions to operations of primitive types. 

Contract generation for the methods of CνImmutable can be described in two parts: 
translation of explicit properties (axiom translation in Section 5.1), and translation of 
implicit properties (enforcing equality properties of equational logic in Section 5.2).  

The generation of contracts that capture the properties explicitly specified in a 
given specification µ(ν), is such that  

• a domain restriction for an operation op generates a pre-condition for the 
method βν(op); 

• an axiom of one of the forms 
∀  

! 

r 
y  ( φ ⇒ opC’(opC(  

r 
x ),  

r 
t )=t )  

∀  

! 

r 
y  ( φ ⇒ opO(opC(  

r 
x ),  

r 
t )=t ) 

∀  

! 

r 
y  ( φ ⇒ predO(opC(  

r 
x ),  

r 
t ) ) 

∀  

! 

r 
y  ( φ ⇒ ¬predO(opC(  

r 
x ),  

r 
t ) ) 

generates a post-condition for method βν(opC); 
• an axiom of the form  

∀  

! 

r 
y  ( φ ⇒ opD(  

r 
x )=t ) 

generates a post-condition for method βν(opD); 
• an axiom of one of the forms  

∀  

! 

r 
y  ( φ ⇒ predD(  

r 
x ) )  

∀  

! 

r 
y  ( φ ⇒ ¬predD(  

r 
x ) ) 

generates a post-condition for method βν(predD); 
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• an axiom of the form  
∀  

! 

r 
y  ( φ ⇒ x1=x2 ) 

generates a post-condition for method equals. 
Consider, for instance, the refinement mapping defined in Figure 11.  The follow-

ing figure shows the destination methods, in class ArrayStack$Immutable (Figure 8), 
for the contracts that are generated from the axioms in IntStackSpec (Figure 1) speci-
fication. 

 
  

specification  IntStackSpec 
 

import  IntegerSpec 
sort  IntStack 
operations and predicates 

 constructors 

  clear: IntStack --> IntStack 
  push: IntStack Integer --> IntStack 
 observers 

  top: IntStack -->? Integer 
  pop: IntStack -->? IntStack 
  size: IntStack --> Integer 
 derived 

  isEmpty: IntStack  
      
domains  s: IntStack 
 

 top(s): if ¬isEmpty(s) 

 pop(s): if ¬isEmpty(s) 
axioms s:IntStack, i:Integer 

size(clear(_)) = zero(_) //Ax3 
 
top(push(_,i)) = i //Ax1 
 
pop(push(s,_)) = s //Ax2 
 
size(push(_,s)) = suc(size(s))  //Ax4 
 

isEmpty(s) ! size(s)= zero(_) //Ax5 
 

¬isEmpty(s) ! ¬(size(s)= zero(_))//Ax6 
 

 
end   
 

 

 

Java class  ArrayStack$Immutable 
 

 

public class ArrayStack$Immutable { 
 
  

   /*@ 
 @ requires ...; 
 @*/ 
 static public int$Pair top  
     (ArrayStack$Original s) 
 {...} 

 
   /*@ 
 @ requires ...; 
 @*/ 
 static public ArrayStack$Original pop  
      (ArrayStack$Original s) 
  {...} 

    /*@ 
  @ensures ...; 
  @*/ 
  static public ArrayStack$Original clear  
     (ArrayStack$Original s) 
  {...} 
 

    /*@ 
  @ensures ...; 
  @*/ 
  static public ArrayStack$Original push  
    (ArrayStack$Original s, int i) 
  {...} 

 
    /*@ 
  @ensures ...; 
  @*/ 
 static public boolean$Pair isEmpty  
      (ArrayStack$Original s)  
 {...} 
} 

 

 Fig. 14. Destination methods for contracts generated from axioms 
 
The second part of contract generation is concerned with properties of equational 

logic, namely the properties of the form  
∀  

! 

r 
y  ( (x1= x2)⇒ op(  

r 
x 1)=op(  

r 
x 2) ) 

∀  

! 

r 
y  ( (x1= x2)⇒ pred(  

r 
x 1)⇔pred(  

r 
x 2) ) 

These properties are captured through the generation of post-conditions for the 
static method equals() of CνImmutable class, for each observer operation and predi-
cate of µ(ν).  

In the rest of this section we present in more detail the main rules that govern con-
tract generation and illustrate them through pieces of the example presented in full in 
appendix A. 
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5.1 From Axioms to Contracts 

We illustrate the translation rules with the module GenericStack presented in Fig-
ure 13 and the refinement mapping presented in Figure 16, where StringStack is the 
class presented in Figure 15. 

 
  

Java class 

 

 

public class StringStack implements Cloneable { 
 

 public void clear () {… }  
 

 public void push (String i) {… }  

  

 public String pop () {… }  

  

 public String top () {… }  

  

 public int size () {… }  

  

 public boolean isEmpty () {… }  

 

 public boolean equals (Object other) {… } 

 

 public Object clone () {… } 

} 

  
 

Fig. 15. Partial view of the class that implements StackSpec as provided by the user. 
 
 
  

Refinement Mapping 
 
 

IntegerSpec is primitive int  

 zero(x1:Integer)  is 0 
 suc(x1:Integer):Integer  is x1 + 1 
 pred(x1:Integer):Integer  is x1 - 1 
 _<_(x1:Integer, x2:Integer)  is x1 < x2 
 

ElemSpec is class java.lang.String  

 

StackSpec is class StringStack 
 clear(s:Stack):Stack   is void clear()  
 push(s:Stack,i:Elem):Stack is void push(java.lang.String i)  
 pop(s:Stack):Stack   is java.lang.String pop()  
 top(s:Stack):Integer   is java.lang.String top() 
 size(s:Stack):Integer  is int size()  
 isEmpty(s:Stack)   is boolean isEmpty()  

  
Fig. 16. A refinement mapping for module GenericStack in Figure 13. 
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Translation of Terms and Formulae  

A refinement mapping induces a straightforward translation of formulas and terms 
into Java expressions. There are a few points of complexity, including the translation 
of terms op(t1,…,tn) into method invocations whose form depends on the return type of 
the method that implements op. This happens because the effect of the application of 
an operation can be achieved, in Java, either through a method that modifies the cur-
rent object without returning a value, or through a method that returns a value (and 
that may or may not modify the current object). 

The simplest case is that in which operation op is implemented through a void 
method m (of class MyT). This means that the effects of op are captured by the current 
object after the invocation of m. This is precisely the object that is returned by the 
immutable version of m in class MyT$Immutable. So, in this case, op(t1,…,tn)  is trans-
lated into an expression of the form MyT$Immutable.m(…). 

A more complex translation is required in cases where method m is not void. Let us 
consider, for instance, the translation of the term size(s) from the specification Stack-
Spec in Figure 12a). According to the refinement mapping in Figure 16, the operation 
size(s:Stack):Integer is implemented by the method int size() of StringStack. The fact 
that int is the type chosen for implementing the sort Integer, is consistent with the 
assumption that the value of term size(s) is the value returned by the invocation of the 
method size and, hence, the term is translated to StringStack$Immu-
table.size(s).value() (recall from Section 3 that the immutable version of any non-void 
method returns a <value, state> pair).  

The translation of term top(t) is similar. In this case, the operation 
top(s:Stack):Elem is implemented by the method String top() of StringStack and be-
cause String is the type chosen to implement sort Elem, the value of term top(s) is the 
value returned by the invocation of the method top and, hence, the term is translated 
to StringStack$Immutable.top(s).value(). 

The translation of term pop(t) illustrates a yet different case. The operation 
pop(s:Stack):Stack is implemented by method String pop() of StringStack. The fact 
that the return type of this method is neither void nor StringStack (the type that was 
chosen to implement sort Stack), means that the stack denoted by pop(t) is captured 
by the state component that results from the invocation of method pop and, hence, the 
term will be translated into an expression of the form StringStack$Immu-
table.pop(…).state(). In this case, the value() component of the pair returned by 
StringStack$Immutable.pop(…).state() invocation, is of no interest in what contracts 
are concerned because there are no axioms that cover the meaning the implementer 
gives to that value. 

Another point of complexity in the translation of axioms into contracts is the trans-
lation of strong equality used in axioms. As mentioned in Section 4, operation sym-
bols can be interpreted by partial functions and, hence, terms may be undefined. The 
meaning of an equality t1=t2 in the axioms of a specification is that the two terms are 
either both defined and have the same value, or they are both undefined. As such, 
equality testing within contracts must be consistent with this definition, that is, within 
pre and post-conditions, the evaluation of equals(t1,t2) (for testing value equality) 
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should only be performed if it is not the case that t1 and t2 are both undefined. If t1 and 
t2 are both undefined then the equality t1=t2 is considered to hold. 

Due to the fact that predicates in a specification cannot be partial, and that con-
tracts of methods invoked within contracts are not monitored by JML runtime asser-
tion checker, we have to avoid invoking, in our contracts, methods that implement 
ADT predicates in cases where their arguments are undefined.  

A def function is defined and used in the translation process that supplies the de-
finedness conditions for both terms and formulae of our specification language. As an 
example, the definedness condition for an operation call op(t1,…,tn) is the conjunction 
of the definedness conditions of terms t1 to tn with the domain condition of op (if op is 
partial).  

The translation of terms and formulae that are relevant in our setting is formally 
defined below.  In order to simplify the presentation, all translation rules are defined 
from the perspective of a specific specification µ(ν) in module µ. The translation of 
every term or formula is accomplished within the context of a given axiom – an 
axiom of specification µ(ν). 
 

Translation of Terms (extended with constructs (C)x, \result, \result.value(), and 
\result.state()): The translation – 〖t〗– of a term t is defined by induction in the struc-
ture of t:  
 〖x〗 = x; 
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗) if Cr is void 
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗).value() if Cr is Cs  
 〖op(t1,…,tn)〗 = C$Immutable. m(〖t1〗,…, 〖tn〗).state() otherwise 
 

if op:s1,…,sn ⇒ s, and ρ(sµ)= < Cs,βs >, and ρ(opµ)= < C,β >, and β(op) is method  
Cr m(…); 
 

 〖op(t1,…,tn)〗 = exp(〖t1〗 /x1, … 〖tn〗 /xn) 
 

if ρ(opµ) = < C,β >, and β(op) is a Java expression exp(x1,…,xn); 
 

 〖(C) x〗 = (C) x; 
 〖\result〗 = \result 
 〖\result.value()〗 = \result.value(); 
 〖\result.state()〗 = \result.state(); 
 
Definedness Condition: The formula, def(t), that defines the condition under which a 
term t can be evaluated depends on the structure of t:  
 def(x) = true; 
 def((C) x) = true; 
 def(\result) = true; 
 def(\result.value()) = true; 
 def(\result.state()) = true; 
 def(op(t1,…,tn)) = def(t1) ∧ … ∧ def(tn) ∧  φ [t1/x1,…,tn/xn]  
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where op(x1,…,xn) if φ is the (only) domain condition in specification µ(opµ) for op. 
When there is no domain condition for op, φ [t1/x1,…,tn/xn] is true. We chose not to 
include def(φ [t1/x1,…,tn/xn]) in the definedness condition for operation calls due to the 
remotely possible existence of recursive domain conditions. 
The formula, def(φ), that defines the condition under which a formula φ can be evalu-
ated depends on the structure of φ: 
 def(true) = true; 
 def(¬φ) = def(φ); 
 def(φ1 BinOp φ2) = def(φ1) ∧ def(φ2); 
 def(pred(t1,…,tn) ) = def(t1) ∧ … ∧ def(tn) 
 def(t1=tn) ) = true 
where BinOp stands for any of the binary operators ∧, ∨, ⇒, and ⇔ . 
 
According to the above considerations, we adopted the following approach: in any 
contract where testing equality is required, we first check whether both terms are 
defined and, if this is the case, then invoke method equals.  
 
Translation of Formulas: The translation, 〖φ〗, of a formula φ is defined by induc-
tion in the structure of φ:  
 〖true〗 = true; 
 〖¬φ〗 = ! 〖φ〗; 
 〖φ1∧φ2〗 = 〖φ1〗 && 〖φ2〗; 
 〖φ1∨φ2〗 = 〖φ1〗  || 〖φ2〗; 
 〖φ1⇒φ2〗 = 〖φ1〗 ==> 〖φ2〗; 
 〖φ1⇔φ2〗 = 〖φ1〗 == 〖φ2〗; 
 〖pred(t1,…,tn)〗 = C$Immutable. m(〖t1〗, …, 〖tn〗).value() 
 

if ρ(predµ) = < C,β >, and β(pred) is method  boolean m(…); 
 

 〖t1 = t2〗 = (! 〖def(t1)〗 && !〖def(t2)〗) ||  
   (〖def(t1)〗 && 〖def(t2)〗 && C$Immutable.equals(〖t1〗, 〖t2〗)) 
 

if ν is the name of the only specification where the sort of t1 (and t2) is defined, 
and ρ(ν) = < C,β >, and C is a class; 
 

 〖t1 = t2〗 = ! (〖def(t1)〗 || 〖def(t2)〗) ||  
   (〖def(t1)〗 && 〖def(t2)〗 && 〖t1〗== 〖t2〗) 
 

if ν is the name of the only specification where the sort of t1 (and t2) is defined, 
and ρ(ν) = < C,β >, and C is a primitive type. 

 
Translation of Domain Restrictions:  
 
 〖op(  

r 
x ) if φ〗 = requires 〖 def(φ) ⇒ φ〗 
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to be placed in the contract of method m, where ρ(opµ) = < C,β >, and β(op) is 
method Cr m(  

! 

r 
c   

r 
x ), and C is a class; if C is a primitive type, then the translation is 

not accomplished (it is not possible to attach a pre-condition to an operation of a 
primitive type). 
 

Example: Domain restriction pop(s): if ¬isEmpty(s) in specification StackSpec in 
Figure 12a) produces the pre-condition  

requires true ==> !isEmpty(s).value(); 

in method String$Pair pop (StringStack$Original s) of class StringStack$Immutable. 
 
 
Translation of axioms about Constructors and Observers:  
 
 〖 φ ⇒ opC’(opC(  

r 
x ),  

! 

r 
t )=t〗 = ensures 〖  def(φ) ∧ φ ⇒ opC’(r,  

! 

r 
t )=t〗;  

 〖 φ ⇒ opO(opC(  
r 
x ),  

! 

r 
t )=t〗 = ensures 〖  def(φ) ∧ φ ⇒ opO(r,  

! 

r 
t )=t〗;  

 
 〖 φ ⇒ predO(opC(  

r 
x ),  

! 

r 
t )〗 = ensures 〖 def(φ) ∧  φ ∧ 

     (def(predO(r,  

! 

r 
t )) ⇒  predO(r,  

! 

r 
t ))〗; 

 〖 φ ⇒ ¬predO(opC(  
r 
x ),  

! 

r 
t )〗 = ensures 〖 (def(φ) ∧  φ ∧ 

     def(¬predO(r,  

! 

r 
t ))) ⇒ ¬predO(r,  

! 

r 
t )〗; 

 
to be placed in the contract of method m, where ρ(opCµ)= < C,β >, and β(opC) is 
method Cr m(  

! 

r 
c   

r 
x ), and C is a class, and r is i) \result if Cr is void; ii) 

\result.value() if Cr is C; and iii) \result.state() otherwise; if C is a primitive type, 
then the translation is not accomplished (it is not possible to attach a post-
condition to an operation of a primitive type). 

 
Example: Let us consider the axioms about observers included in the specification 
StackSpec in Figure 12a). By applying the translation rules above, and simplifying 
boolean expressions, we obtain the following contracts for the static methods of class 
StringStackImmutable: 
− Axiom top(push(_,i)) = i produces the post-condition  

ensures !isEmpty(\result).value())&& 

  String$Immutable.equals(top(\result).value(), i); 

in method StringStack$Original push (StringStack$Original s, String i). 
− Axiom pop(push(s,_)) = s produces the post-condition  

ensures !isEmpty(\result).value())&& 

 equals(pop(\result).state(), s).value(); 

in method StringStack$Original push (StringStack$Original s, String i). 
− Axiom size(clear(_)) = zero(_) produces the post-condition  

ensures size(\result).value() == 0;  

in method StringStack$Original clear (StringStack$Original s). 
− Axiom size(push(s,i)) = suc(size(s)) produces the post-condition  

ensures size(\result).value() == size(s).value() + 1; 

in method StringStack$Original push (StringStack$Original s, String i). 
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For simplicity, we omitted the StringStack$Immutable target in all calls to this 
class’s methods and simplified all boolean expressions (the ones that result from 
the rigorous application of the formulas are fully presented in Appendix A). 

 
Translation of axioms about Derived operations and predicates: 
 
 〖 φ ⇒ opD(  

r 
x )=t 〗  = ensures 〖  def(φ) ∧ φ ⇒ \result =t 〗;  if Cr is void 

 〖 φ ⇒ opD(  
r 
x )=t 〗  = ensures 〖  def(φ) ∧ φ ⇒ \result.value() =t 〗;  if Cr is Cs 

 〖 φ ⇒ opD(  
r 
x )=t 〗  = ensures 〖 def(φ) ∧  φ ⇒ \result.state() =t 〗;  otherwise 

 
to be placed in the contract of method m, if opD:s1,…,sn  ⇒ s, and ρ(sµ)= 
< Cs,βs >, and ρ(opDµ)= < C,β >, and β(opD) is method  Cr m(…), and C is a 
class; 

 
 〖 φ ⇒ predD(  

r 
x )〗 = ensures 〖  def(φ) ∧ φ ⇒ \result.value() 〗; 

 〖 φ ⇒ ¬predD(  
r 
x )〗 = ensures 〖 def(φ) ∧  φ ⇒ ¬\result.value() 〗; 

 
to be placed in the contract of method m, if ρ(predDµ) = < C,β >, and β(predD) is 
method boolean m(  

! 

r 
c   

r 
x ), and C is a class; if C is a primitive type, then the trans-

lation is not accomplished (it is not possible to attach a post-condition to an op-
eration of a primitive type). 

 
Example: Let us now consider the axioms of StackSpec about derived operations and 
predicates. By applying the rules above we obtain the following contracts for the 
static methods of class StringStack$Immutable: 

Axioms 
 isEmpty(s) ⇐ size(s)= zero(_) 
¬isEmpty(s) ⇐ ¬(size(s)= zero(_)) 

 translate, respectively, to the post-conditions  
ensures size(s).value() == 0  ==> \result.value(); 
ensures !(size(s).value() == 0) ==> !\result.value(); 

to be placed in the method boolean$Pair isEmpty (StringStack$Original s). 
 
Translation of axioms about equality: 
Axioms of the form ( φ ⇒ x1=x2 ) that allow us to express equivalence classes within 
the ADT are translated into contracts for the equals method. 
 
 〖 φ ⇒ x1=x2 〗 = ensures 〖  def(φ) ∧ φ ⇒ \result 〗;  
 

to be placed in the contract of method boolean equals(C$Original x1, Object x2) 
in class C$Immutable, where C is the class that implements the ADT where the 
axiom is defined. 

 
In general, the contracts generated by the rules presented so far, are not final. The last 
step of the translation consists in the closure, through universal quantification of every 
free variable.  
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Closure of assertions: Whenever the assertions (pre and post-conditions) contain a 
variable v that does not correspond to any of the parameters of the method to which 
the assertion belongs, the assertion must be preceded by a JML quantifier \forall that 
quantifies over that variable (a suitable range is adopted). 

5.2 Enforcing Equality Properties of Equational Logic 

The contracts generated by our tool make use of cloning and equality and, hence, our 
methodology for checking whether an implementation behaves in conformance with a 
specification strongly relies on the execution of the clone method. It is essential that 
programmers ensure correct implementation of this method. Although our tool gener-
ates contracts for these methods, the soundness of the approach can be compromised 
if the implementations of these methods do not meet the following correctness crite-
ria: 
− clone method is required not to have any effect whatsoever on this;  
− the implementation of clone is required to go deep enough in the structure of the 

object so that any shared reference with the cloned object cannot get modified 
through the invocation of any of the methods that implement the ADT operations. 
For example, an array based implementation of a stack, in which one of its meth-
ods changes the state of any of its elements, requires the elements of the stack to 
be cloned as well as the array itself.  

The contracts generated for equals and clone methods are as follows. Post-
conditions are automatically generated for the boolean$Pair equals(C$Original one, 
Object other) method in class C$Immutable (where C is the class that implements the 
ADT where the axiom is defined), that test the results given by every observer opera-
tion and predicate when applied to two objects considered equal. This amounts to 
suppose the equational theories:  

 ( x1= x2 )⇒ ( op(  
r 
x 1)=op(  

r 
x 2) ) 

 ( x1= x2 )⇒ ( pred(  
r 
x 1)⇔pred(  

r 
x 2) ) 

for each and every observer operation op and predicate pred.   
A contract for the Object clone(C$Original o) method, also automatically gener-

ated, expresses that the cloned object must equal the original one (this equality is 
tested using method equals).   

 
Contracts for equals and clone 
 
For every observer operation and predicate opp:s1,…,sn  ⇒ s,  
 

ensures  \result ==> other instanceof C$Original &&  
 〖 (opp(one,  

r 
x ) = opp((C$Original) other,  

r 
x )) 〗 

 



  25 

 

is placed in the contract of method boolean$Pair equals(C$Original one, Object 
other) in class C$Immutable, where C is the class that implements the ADT 
where the axiom is defined, and the post-condition 

 
 ensures  equals( \result,o) 
 

in the contract of method Object clone(C$Original o) in class C$Immutable, 
where C is the class that implements the given ADT. 

 
Example: In our example, the following contracts are generated for the equals and 
clone methods of the class StringStack$Immutable:  
 

 /*@ ensures \result.value() ==> other instanceof StringStack$Original &&  
    (!!isEmpty(one).value() &&  
     !!isEmpty((StringStack$Original) other).value()) 
   || 
   (!isEmpty(one).value() && !isEmpty((StringStack$Original) other).value()  
  && String$Immutable.equals(top(one).value(),  
     top((StringStack$Original) other).value())); 
   @ ensures \result.value() ==> other instanceof StringStack$Original &&  
      (!!isEmpty(one).value() &&  
     !!isEmpty((StringStack$Original) other).value()) 
   || 
   (!isEmpty(one).value() && !isEmpty((StringStack$Original) other).value()  
   && equals(pop(one).state(),  
    pop((StringStack$Original) other).state()).value()); 
   @ ensures \result.value() ==> other instanceof StringStack$Original &&  
     size(one).value() == size((StringStack$Original) other).value()); 
      @*/ 
 static public /*@ pure @*/ boolean equals(StringStack$Original one, Object 
other) 
 
 
 /*@ 
   @ ensures equals(\result, other).value(); 
   @*/ 
 static public Object clone(StringStack$Original other) 

6 Benchmarking  

We have tested our architecture on three data types, namely,  
• The stack ADT described in this paper, with Stack refined into an array-based 

"standard" class, and Element refined into java.lang.String.  
• The stack ADT described in this paper, with Stack refined into java.util.Stack, 

and Element refined into java.lang.Object.  
• A data type representing rational numbers, with Rational refined into an 

immutable class represented by a pair of integers.  
The source code for the three test cases are presented in the Appendices. They are 

also available in the url [14]. For each data type a few classes where used: the user’s 
class (say, IntRational$Original.java, or java.util.Stack.java), the class responsible for 
checking the contracts (say, IntRational$Immutable.java), the class that replaces the 
user's class in our architecture (say, IntRational.java), and the various required Pair 
classes (say, Object$Pair.java, int$pair.java, or boolean$Pair.java).  
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All tests were conducted on a PC running Linux, equipped with a 1150 MHz CPU 
and 512Mb of RAM.  We have used J2SE 1.4.2_09-b05 and JML.5.2. Each data type 
was subjected to 1.000.000 randomly chosen operations, issued from a further class 
(say, RationalRandomTest.java).  For each data type we assessed the time and space 
used in four different cases:  

1. The user's class only, compiled with Sun's Java compiler, thus benchmarking 
the original user's class only;  

2. The whole architecture compiled with Sun's Java compiler, thus benchmarking 
the overhead of our architecture, irrespective of the contracts;  

3. The class responsible for checking the contracts, with its contracts removed, 
compiled with the JML compiler; all other classes in the architecture compiled 
Sun's Java compiler.  We aim at understanding the overhead imposed by using 
the JML compiler on the architecture without contracts.  

4. As above but with all contracts in place.  This is how a user would experience 
our tool.  

The results, average of ten runs, are as follows.  
 
 1st case 2nd case 3rd case 4th case 
Package sec KB sec KB sec KB sec KB 

Total 
slowdown 

StringStack 2.71 600 3.26 600 11.58 604 21.21 604 7.8 
java.util.Stack 2.27 600 4.35 603 10.66 606 23.07 605 10.2 
IntRational 2.97 597 4.7 597 26.76 601 38.06 602 12.8 
 

Inspecting the numbers for the first and the fourth cases one concludes that our 
architecture imposes no further space requirements, and that monitoring introduces a 
10-fold time penalty, which we find plainly justifiable. The numbers for the second 
case indicate that conveying all calls to the data structure under testing through the 
Immutable class imposes a negligible overhead, when compiled with Sun’s Java 
compiler.  The numbers for the third case allow to conclude roughly half of the total 
overhead reported in the last column is due to contract monitoring alone, while the 
other half to the fact that we are using the JML compiler.  

It should also be remarked that the tests were conducted with the contracts as 
generated by the rules in Section 5.  A brief inspection of the contracts in, say, class 
IntRational$Immutable.java, Appendix C, reveals lots of room for boolean expression 
optimizations.  

Finally a word on monitoring open assertions, that is assertions that contain 
variables not included in the parameters of the method.  As described in Section 5.2, 
we use a JML \forall assertion.  In this case, and since no range is generated for the 
contracts, no runtime monitoring is accomplished for these assertions.  

We have also conducted preliminary tests in monitoring \forall assertions, by 
collecting all objects that enter or leave our tool (that is all objects passed as 
parameters or returned from the methods of the client's class), and using them as the 
required range.  Setting up a limit of 100 elements in the collection (hence in the 
range of the \forall), we have experienced a total 50-fold slowdown.  
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7 Related Work  

In this section, we examine the related work on run-time validation of 
implementations against their specifications. 

In [13] a tool is presented that allows checking the behavioural equivalence be-
tween a Java class and its specification, during a particular run of a client application. 
This is achieved through the automatic generation of a prototype implementation for 
the specification which relies on term rewriting. 

The specification language that is adopted is, as in our approach, algebraic with 
equational axioms. The main difference is that the language of [13] is tailored to the 
specification of properties of OO implementations whereas our language supports 
more abstract descriptions that are not specific to a particular programming paradigm. 
Being more abstract, we believe that our specifications are easier to write and under-
stand. In order to illustrate this, we present below the specification of two properties 
of linked lists as they are presented in [13] as they would be specified in our ap-
proach. 

 
forall l: LinkedList forall o: Object forall i: int 

removeLast(add(l,o).state).retval == o  
if i>=0  
   get(addFirst(l,o).state,intAdd(i,l).retval).retval == get(l,i).retval 

 
axioms l:LinkedList, o: Elem, i:Integer 

 removeLast(add(_,o)) = o  
 get(addFirst(l,o),suc(i)) = get(l,i) ⇐ i>zero(_) 
 

The first property states that removeLast operation provides the last element that 
was added to the list. The second property defines the semantics of get operation: 
get(l,i) is the ith element in the list l.  The symbols .retval and .state are primitive con-
structs of the language adopted by Henkel and Diwan [13] to talk about the return 
value of an operation and the state of the current object after the operation, respec-
tively.   

When compared with our approach, another difference is that the language of [13] 
does not support the description of properties of operations that modify other objects, 
reachable from instance variables, nor does the tool. In contrast, our approach sup-
ports the monitoring of this kind of operations. Our specification language allows, 
within the specification of an ADT T, the expression of the application of operations 
to instances of any of T’s imported sorts; thus, whenever those operations are to be 
implemented as procedures, the state of those objects – which will most certainly be 
implemented as instance variables of the class that implements T – will eventually 
change. The tool generates contracts that allow the monitoring of those operations 
executions. 

Antoy and Hamlet present [1] a testing approach for modules using an algebraic 
specification as a set of executable rewrite rules. The user supplies the specification, 
an implementation class, and an explicit mapping from concrete data structures of the 
implementation instance variables to abstract values of the specification. A self-
checking implementation is built that is the union of the implementation given by the 
implementer and an automatically generated direct implementation, together with 
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some additional code to check their agreement. The direct implementation is com-
posed of code that is generated from the specification by representing instances of 
abstract data types as terms, and manipulating them according to the rewrite rules 
defined in the ADT specification.  

The representation mapping, or abstraction mapping, must be written by the user in 
the same language as the implementation class, and asks user knowledge about inter-
nal representation details. Here lies a difference between this and our approach: our 
refinement mapping needs only the interface information of implementing classes, 
and it is written in a very abstract language. Moreover, there are some axioms that are 
not accepted by this approach, due to the fact that they are used as rewrite rules; for 
example, equations like insert(X,insert(Y,Z)) = insert(Y,insert(X,Z)) cannot be ac-
cepted as rewrite rules because they can be applied infinitely often. In what concerns 
our approach, these kind of axioms are acceptable: they originate post-conditions in 
the method that implements the insert operation. 

We further believe that the rich structure that our specifications can present, to-
gether with the possibility to, through refinement mappings, map a same module into 
many different packages all of which implement the same specification, is a positive 
point in our approach that we cannot devise in the above referred approaches.  

The Daistish tool [16] is a PERL script that processes an algebraic, functional, 
specification of an ADT, along with the code for an object implementing the ADT, to 
produce a test driver. Appropriate data points (values for the parameters to the opera-
tions that are called in the axioms) are selected, values for both sides of the axioms 
are separately computed, and results are compared. Test vectors given by the user are 
used to define the parameter values. An implementation testing succeeds when 
equivalent values are produced for each side of the axioms. Versions exist for Eiffel 
and C++.  

The fundamental difference between this approach and ours is that their specifica-
tions must already contain some information concerning implementation: the types of 
arguments and result in function signatures must reveal whether a mutable or immu-
table implementation is expected. Furthermore, testing values for elements of the 
several sorts must be supplied by the user in order to the Daistish tool to work prop-
erly. In what concerns equality, the paper does not clarify which semantics is used; it 
is only said that “if an axiom is written using the “=” symbol, Daistish will generate 
code employing the algebraic operation appropriate for the types being compared”. 

The belief behind the MOP (Monitoring-oriented programming) formal framework 
for software development and analysis [5], is that specification and implementation 
should together form a system and interact with each other. This framework is inde-
pendent from any particular specification formalism. These can be modularly added to 
the MOP framework, provided that they are coded as logic plug-ins, that is, modules 
whose interfaces respect some standardized conventions, and that incorporate a moni-
tor synthesis algorithm. This algorithm takes formal specifications and produces cor-
responding concrete monitoring code that analyzes program execution traces. Run-
time violations and validations of specifications may result in adding functionality to 
the system by executing user-defined code at user-defined places in the program: 
executing recovery code, outputting or sending messages, throwing exceptions, etc. 
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A WWW repository exists with some downloadable logic plug-ins – future time 
and past-time temporal logics, extended regular expressions and JASS – and support 
for JML annotations is intended for soon. Due to the fact that our tool generates JML 
annotated classes, we may envisage these classes as input data to the JAVA-MOP 
framework with JML support. 

Further work exists on runtime checking of specifications against implementations 
adopting a model based approach to specification. As stressed in Section 2, the repre-
sentation mapping, or abstraction mapping, that the implementer must supply turns 
the task of the implementer more difficult. In our approach, the contract generation 
process does not need to know any details of state implementation whatsoever, be-
cause it only works with method calls. Then, this kind of abstraction func-
tion/mapping is not needed, thus lightening the burden of the implementer. The 
frameworks we describe below are among those model based ones.  

Barnett and Schulte present a method for specifying interfaces uses the language 
ASML to write an executable specification – ASML specifications are model pro-
grams, that is, they are operational specifications of the behaviour expected of any 
implementation [2]. This specification defines the behaviour of a component, as seen 
through its interface, by a client. The component implementing the interface, and its 
specification, are run concurrently with no need for any sort of instrumentation at all, 
and in a way that is transparent to the client; this is accomplished through the use of a 
component which operates as a proxy, and that forks all the calls from the client to the 
implementation component, so that they are also delivered to the specification com-
ponent. If all pairs of results agree, then, for that particular trace, the component is a 
behavioural subtype of the specification. 

Edwards et.al.’s general strategy for automated black-box testing of software com-
ponents is presented that combines three techniques: automatic generation of compo-
nent test-drivers, automatic generation of test data, and automatic or semi-automatic 
generation of wrappers that have the same interface as the base component [6,7]. The 
approach to the specification of component interfaces is model-based – the language 
Resolve was chosen – but semi-formal or informal behavioural descriptions are also 
accepted (informal descriptions require more human interaction, however). Here again 
the built-in test (BIT) wrappers are transparent to client and component code, and can 
be inserted and removed without changing client code. Pre and post-conditions and 
abstract invariant checks are written in terms of the component’s state abstract 
mathematical model. Difficulties arise when generating code for checking assertions 
containing quantifiers: it cannot be fully automated. Human intervention is one of the 
three described possible solutions for these cases. 

The SLAM system [12] allows the user to specify a program in a high level speci-
fication language – an object oriented formal specification language that integrates 
algebraic specifications with model-based ones. Executable and readable code written 
in an object-oriented programming language can be generated from the program for-
mal specification. The code contains runtime checkable assertions corresponding to 
some of the pre and post-conditions of the specification (the ones that were declared 
as checkable). These assertions are complex logical formulae and Prolog programs 
that check them are automatically generated. A function specification is a pair pre and 
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post-condition that indicates the relationship between the result and the arguments. 
Whenever possible, the specifier may also define a computable expression that de-
fines the result. 

SLAM unifies algebraic and model-based languages by specifying operations 
through logical pre and post-conditions, but restricting logical formulae to a comput-
able view of quantifiers as traversal operations on data.  

8 Conclusions and Further Work 

We described an approach for testing Java implementations of abstract data types 
against their specifications. We adopted an algebraic, property-driven, approach to 
ADT specifications rather than a model-driven one. Although we recognise the 
important role played by model-based approaches to ADT specification, we also think 
that, for a significant part of software developers, it can be rather difficult to write 
model-based program specifications – the representation mapping, or abstraction 
mapping, that the implementer must supply is far from trivial. We believe that the 
simplicity of property-driven specifications can encourage more software developers 
to use formal specifications. Therefore, we find it important to equip property-driven 
approaches with tools similar to the ones currently available for model-driven 
approaches. 

Specific features of the language we adopted for specifying abstract data types, 
such as the classification of operations in specific categories, and strong restrictions in 
the form of the axioms, not only simplify the task of creating specifications, but are 
also effective in driving the automatic identification of contracts for implementing 
classes. 

Abstract data types are specified through modules that gather the component speci-
fications that are needed to completely specify all the needed sorts and operations. A 
module provides names for its component specifications, which are then mapped into 
Java types in the context of refinement mappings. These are easy to build insofar as 
essentially only signatures – of adt operations and of Java methods or primitive opera-
tors – are required to describe the relation between ADT specification components 
and operations and corresponding Java types and methods. 

The notion of module lets us represent from the most simple, basic ADT, such as 
the closed specification in Figure 9, to very rich and complex structures. Moreover, 
we are able to map a same module, through different refinement mappings into many 
different Java packages which all implement the same specification. 

Further as well as ongoing work covers extension to the methodology and to the 
framework in order to cope with parametric specifications, specifications as an exten-
sion of others, and specifications with more than one intrinsic sort. 

We adopted a semantics of strong equality for the equality symbol used in axioms, 
that is, either both sides are defined and are equal, or both sides are undefined. In 
addition to the contracts that are generated from user defined axioms, our tool also 
automatically generates contracts that are consistent with the adopted notion of equal-
ity. 
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Closure of assertions within the context of a pair assertion/method, as briefly de-
scribed in section 5, implies the insertion of the \forall JML construct that quantifies 
over all variables that are free within the given context. A suitable range must be 
defined for every quantified variable, that is, a set of values that is representative of 
the type of the variable, as specified in the ADT. Ongoing work focuses on the auto-
matic generation of this set of values by collecting all objects that enter or leave our 
tool (that is all objects passed as parameters or returned from the methods of the cli-
ent's class), and using them as the required range. 

Due to its syntax directed nature, contract generation produces conditions that have 
a number of redundant parts – true && true, for example. We aim at the simplifica-
tion of generated contracts through the simplification of Boolean expressions. 
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Appendix A 

In this section we put together the complete example introduced in the main text and 
used throughout section 5. We take the module for a stack (Figure 13) and an imple-
mentation of a stack of String objects centred on the class StringStack (Figure 15). We 
propose a mutable implementation – notice the void return type of the constructors, 
and the mutable implementation of the pop method that returns the top element.  The 
refinement mapping (Figure 16) states that the elements of the stack are 
java.lang.String objects whether the primitive type int is chosen to describe the size of 
the stack.  

Figure 17 below shows the immutable class StringStack$Immutable that is auto-
matically created by our tool. It has a static method for each method in class String-
Stack. Contracts are added to the corresponding methods according to the rules de-
fined in the previous sections.  

The class String$Immutable is also automatically generated; due to the fact that the 
closed specification ElemSpec in Figure 12(b) does not define any axioms 
whatsoever, this immutable class has no contracts. 

 
/** 
 *  
 */ 
public class StringStack$Immutable { 

 
/*@ ensures !(true && true) && !(true && true) || 
     (true && true) && (true && true) && size(\result).value() == 0; 
  @*/ 
static public StringStack$Original clear(StringStack$Original s) { 
 StringStack$Original result = (StringStack$Original) clone(s); 
 result.clear(); 
 return result; 
} 
 
/*@ ensures !(true && !isEmpty(\result).value()) && !true || 
   (true && !isEmpty(\result).value()) && true &&  
   String$Immutable.equals(top(\result).value(), i); 
 
  @ ensures !(true && !isEmpty(\result).value()) && !true || 
       (true && !isEmpty(\result).value()) && true && 
       equals(pop(\result).state(), s).value(); 
 
  @ ensures !(true && true) && !(true && true && true) ||  
       (true && true) && (true && true && true) &&  
       size(\result).value() == size(s).value() + 1; 
 */ 
static public StringStack$Original push(StringStack$Original s,String i) { 
 StringStack$Original result = (StringStack$Original) clone(s); 
 result.push(i); 
 return result; 
} 
 
/*@ requires true ==> !isEmpty(s).value(); 

     @*/ 
static public /*@ pure @*/ String$Pair pop(StringStack$Original s) { 
 StringStack$Original clone = (StringStack$Original) clone(s); 
 String$Pair result = new String$Pair(clone.pop(), clone); 
 return result; 
} 
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/*@ requires true ==> !isEmpty(s).value(); 

     @*/ 
static public /*@ pure @*/ String$Pair top(StringStack$Original s) { 
 StringStack$Original clone = (StringStack$Original) clone(s); 
 return new String$Pair(clone.top(), clone); 
} 
 
/* 
 */ 
static public /*@ pure @*/ int$Pair size(StringStack$Original s) { 
 StringStack$Original clone = (StringStack$Original) clone(s); 
 return new int$Pair(clone.size(), clone); 
} 
 
/*@ ensures true && (!(true && true) && !(true && true) ||  
   (true && true) && (true && true) &&  
   size(s).value() == 0)  ==> \result.value(); 
  @ ensures true && (!(!(true && true) && !(true && true) || 
    (true && true) && (true && true) &&  
    size(s).value() == 0)) ==> !\result.value();  
  @*/ 
static public /*@ pure @*/ boolean$Pair isEmpty(StringStack$Original s) { 
 StringStack$Original clone = (StringStack$Original) clone(s); 
 return new boolean$Pair(clone.isEmpty(), clone); 
} 
 
/*@ ensures \result.value() ==> other instanceof StringStack$Original &&  
    (!(true && !isEmpty(one).value()) &&  
    !(true && !isEmpty((StringStack$Original) other).value()) || 
   (true && !isEmpty(one).value() && true) &&  
  (true && !isEmpty((StringStack$Original) other).value() && true) && 
  String$Immutable.equals(top(one).value(), 

 top((StringStack$Original) other).value())); 
  @ ensures \result.value() ==> other instanceof StringStack$Original &&  
    (!(true && !isEmpty(one).value()) &&  
    !(true && !isEmpty((StringStack$Original) other).value()) || 
   (true && !isEmpty(one).value()) &&  
   (true && !isEmpty((StringStack$Original) other).value()) && 
   equals(pop(one).state(),   

pop((StringStack$Original) other).state()).value()); 
    @ ensures \result.value() ==> other instanceof StringStack$Original && 

    (!(true && true) && !(true && true) || 
    (true && true) && (true && true) &&  
   size(one).value() == size((StringStack$Original) other).value()); 
      @*/ 
 static public /*@ pure @*/ boolean$Pair equals( 

StringStack$Original one, Object other){ 
  StringStack$Original clone = (StringStack$Original) clone(one); 
  return new boolean$Pair(clone.equals(other), clone); 
 } 
 
 /*@ 
   @ ensures equals(\result, other).value(); 
   @*/ 
 static public Object clone(StringStack$Original other) { 
  return other.clone(); 
 } 
 
} 
 

public class String$Immutable { 
 
    public /*@ pure @*/ static boolean equals(String one, String other) { 
        return one == null? other == null : one.equals(other); 
    } 
} 

 Fig. 17. Immutable classes generated by the tool 
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Both immutable and wrapper classes need to use pairs of elements in order to cope 

with non-void methods, as already explained in section 3. These classes are automati-
cally created by the tool and there is one for each different method return type. In this 
StringStack example three classes are created (Figure 18) that denote pairs in which 
the state element is a stack and the value element is a primitive integer, a string, and a 
boolean.  

 
** 
 *  
 */ 
public class int$Pair { 
 
 private int value; 
 private StringStack$Original state; 
 
 public int$Pair(int v, StringStack$Original s) { 
  state = s; 
  value = v; 
 } 
 
 public /*@ pure @*/ int value() { 
  return value; 
 } 
 
 public StringStack$Original state() { 
  return state; 
 } 
} 
 
** 
 *  
 */ 
public class boolean$Pair { 
 
 private boolean value; 
 private StringStack$Original state; 
 
 public boolean$Pair(boolean v, StringStack$Original s) { 
  state = s; 
  value = v; 
 } 
 
 public /*@ pure @*/ boolean value() { 
  return value; 
 } 
 
 public StringStack$Original state() { 
  return state; 
 } 
} 
 
** 
 *  
 */ 
public class String$Pair { 
 
 private String value; 
 private StringStack$Original state; 
 
 public String$Pair(String v, StringStack$Original s) { 
  state = s; 
  value = v; 
 } 
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 public /*@ pure @*/ String value() { 
  return value; 
 } 
 
 public /*@ pure @*/ StringStack$Original state() { 
  return state; 
 } 
} 

Fig. 18. Auxiliary classes used in immutable and wrapper classes 
 
Figure 19 presents the wrapper class that our tool creates and that has the same 

name as the concrete implementation class provided by the user – in this case, 
StringStack. This wrapper class has all the methods of the original class. These 
methods invoke the corresponding contract equipped methods in class 
StringStack$Immutable class that, in turn, invoke the original ones. The wrapper class 
comprises a private StringStack$Original attribute, used as an argument on the 
invocation of every immutable corresponding method. 
 
/** 
 *   
 */ 
public class StringStack implements Cloneable { 
 
    protected StringStack$Original wrappedObject; 
     
    public StringStack() { 
        wrappedObject = new StringStack$Original(); 
    } 
 
    public void clear() { 
 wrappedObject = (StringStack$Original) StringStack$Immutable 
    .clear(wrappedObject); 
    } 
 
    public void push(String item) { 
 wrappedObject = (StringStack$Original)  

StringStack$Immutable.push(wrappedObject, item); 
    } 
 
    public String pop() { 
        String$Pair result = StringStack$Immutable.pop(wrappedObject); 
        wrappedObject = result.state(); 
        return result.value(); 
    } 
 
    public boolean isEmpty() { 
        boolean$Pair result = StringStack$Immutable.isEmpty(wrappedObject); 
        wrappedObject = result.state(); 
        return result.value(); 
    } 
 
    public String top() { 
        String$Pair result = StringStack$Immutable.top(wrappedObject); 
        wrappedObject = result.state(); 
        return result.value(); 
    } 
 
    public int size() { 
        int$Pair result = StringStack$Immutable.size(wrappedObject); 
        wrappedObject = result.state(); 
        return result.value(); 
    } 
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 public boolean equals(Object other) { 
     boolean$Pair result = StringStack$Immutable.equals( 

wrappedObject,(Object) unwrapCheck(other)); 
     wrappedObject = result.state(); 
     return result.value(); 
 } 
 
        public Object clone() { 
             return (Object) wrapCheck( 

StringStack$Immutable.clone(wrappedObject)); 
        } 
     
 // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING 
 
 static private StringStack wrap(StringStack$Original obj) { 
  StringStack result = new StringStack(); 
  result.wrappedObject = obj; 
  return result; 
 } 
  
 static private Object wrapCheck(Object obj) { 
  return (obj instanceof StringStack$Original)?  
    wrap((StringStack$Original) obj) : obj; 
 } 
  
 static private Object unwrapCheck(Object obj) { 
  return (obj instanceof StringStack)?  
    ((StringStack) obj).wrappedObject : obj; 
 } 

} 

Fig. 19. Wrapper class generated by the tool 
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Appendix B 

This appendix contains the code for the java.util.Stack benchmarks used in Section 
6. It contains the refinement mapping (Figure 20) of the GenericStack module 
specification (Figure 13) into classes java.lang.Object and java.util.Stack. It also 
contains two classes: the class that replaces the user’s class in our architecture (Figure 
21), and the classes responsible for checking the contracts (Figure 22). We have 
omitted the various Pair classes (boolean$Pair.java, int$Pair.java, 
Object$Pair.java).  
 

Fig. 20. Refinement mapping 
 

public class Stack extends java.util.Vector { 
  
 protected java.util.Stack wrappedObject; 
  
 public Stack() { 
  wrappedObject = new java.util.Stack(); 
 } 
  
 public void clear() { 
  wrappedObject = Stack$Immutable.clear(wrappedObject); 
 } 
  
 public boolean empty() { 
  boolean$Pair pair = Stack$Immutable.empty(wrappedObject); 
  wrappedObject = pair.state(); 
  return pair.value(); 
 } 
  
 public Object peek() {  
  Object$Pair pair = Stack$Immutable.peek(wrappedObject); 
  wrappedObject = pair.state(); 
  return (Object) wrapCheck(pair.value()); 
 } 
  
 public Object pop() { 
  Object$Pair pair = Stack$Immutable.pop(wrappedObject); 
  wrappedObject = pair.state(); 
  return (Object) wrapCheck(pair.value()); 
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 } 
  
 public Object push(Object item) { 
  Object$Pair pair = Stack$Immutable.push( 

wrappedObject, (Object) unwrapCheck(item)); 
  wrappedObject = pair.state(); 
  return (Object) wrapCheck(pair.value()); 
 } 
  
 public int size() { 
  int$Pair pair = Stack$Immutable.size(wrappedObject); 
  wrappedObject = pair.state(); 
  return pair.value(); 
 } 
  
 public int search(Object o) { 
  return wrappedObject.search((Object) unwrapCheck(o)); 
 } 
  
 public boolean equals(Object other) { 
  boolean$Pair pair = Stack$Immutable.equals( 

wrappedObject, (Object) unwrapCheck(other)); 
  wrappedObject = pair.state(); 
  return pair.value(); 
 } 
  
 public Object clone() { 
  return (Object) wrapCheck(Stack$Immutable.clone(wrappedObject)); 
 } 
  
 // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING 
  
 static private Stack wrap(java.util.Stack obj) { 
  Stack result = new Stack(); 
  result.wrappedObject = obj; 
  return result; 
 } 
  
 static private Object wrapCheck(Object obj) { 
  return (obj instanceof java.util.Stack)?  

wrap((java.util.Stack) obj) : obj; 
 } 
  
 static private Object unwrapCheck(Object obj) { 
  return (obj instanceof Stack)? ((Stack) obj).wrappedObject : obj; 
 } 
 
 public String toString() { 
  return wrappedObject.toString(); 
 } 
  
 // All the methods of the type java.util.Stack that are not specified 
 // on the ADT, inherited or not, should be replicated here 
  

} 

Fig. 21. Wrapper class 
 
For each method implemented by java.util.Stack that does not correspond to an 

abstract data type operation, there should be a method in the wrapper class with the 
same signature. These methods, which we chose to omit here due to its number, 
should call the original method using the wrapped java.util.Stack object as target. This 
is necessary if one wants the wrapper class to be able to substitute the original class in 
what client classes are concerned.  
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public class Stack$Immutable { 
 
 /*@ ensures !(true && true) && !(true && true) || 
    (true && true) && (true && true) && size(\result).value() == 0; 
   @*/ 
    static public java.util.Stack clear(java.util.Stack s) { 
        java.util.Stack result = (java.util.Stack) clone(s); 
        result.clear(); 
        return result; 
    } 
 
    /*@ ensures !(true && !empty(\result.state()).value()) && !true || 
       (true && !empty(\result.state()).value()) && true &&  
       Object$Immutable.equals(peek(\result.state()).value(), o); 
   @ ensures !(true && !empty(\result.state()).value()) && !true || 
      !(true && empty(\result.state()).value()) && true && 
      equals(pop(\result.state()).state(), s).value(); 
   @ ensures !(true && true) && !(true && true && true) ||  
      (true && true) && (true && true && true) &&  
      size(\result.state()).value() == size(s).value() + 1; 
      */ 
    static public Object$Pair push(java.util.Stack s, Object o) { 
        java.util.Stack clone = (java.util.Stack) clone(s); 
        Object$Pair result = new Object$Pair(clone.push(o), clone); 
        return result; 
    } 
 
    /*@ 
      @ requires true ==> !empty(s).value(); 
      @*/ 
    static /*@ pure @*/ public Object$Pair pop(java.util.Stack s) { 
        java.util.Stack clone = (java.util.Stack) clone(s); 
        Object$Pair result = new Object$Pair(clone.pop(), clone); 
        return result; 
    } 
 
    /*@ 
      @ requires true ==> !empty(s).value(); 
      @*/ 
    static /*@ pure @*/ public Object$Pair peek(java.util.Stack s) { 
        java.util.Stack clone = (java.util.Stack) clone(s); 
        return new Object$Pair(clone.peek(), clone); 
    } 
 
    static  /*@ pure @*/ public int$Pair size(java.util.Stack s) { 
        java.util.Stack clone = (java.util.Stack) clone(s); 
        return new int$Pair(clone.size(), clone); 
    } 
 
    /*@ ensures true && (!(true && true) && !(true && true) ||  
        (true && true) && (true && true) &&  
        size(s).value() == 0)  ==> \result.value(); 
      @ ensures true && (!(!(true && true) && !(true && true) || 
        (true && true) && (true && true) &&  
        size(s).value() == 0)) ==> !\result.value();  
      @*/ 
    static /*@ pure @*/ public boolean$Pair empty(java.util.Stack s) { 
        java.util.Stack clone = (java.util.Stack) clone(s); 
        return new boolean$Pair(clone.empty(), clone); 
    } 
 
    /*@ ensures \result.value() ==> other instanceof java.util.Stack &&  
       (!(true && !empty(one).value()) &&  
       !(true && !empty((java.util.Stack) other).value()) || 
       (true && !empty(one).value() && true) &&  
       (true && !empty((java.util.Stack) other).value() && true) && 
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       Object$Immutable.equals(peek(one).value(),  
peek((java.util.Stack) other).value())); 

   @ ensures \result.value() ==> other instanceof java.util.Stack &&  
  (!(true && !empty(one).value()) &&  
  !(true && !empty((java.util.Stack) other).value()) || 
  (true && !empty(one).value()) &&  
  (true && !empty((java.util.Stack) other).value()) && 
  equals(pop(one).state(),  

pop((java.util.Stack) other).state()).value()); 
      @ ensures \result.value() ==> other instanceof java.util.Stack && 
  (!(true && true) && !(true && true) || 
  (true && true) && (true && true) &&  
  size(one).value() == size((java.util.Stack) other).value()); 
      @*/ 
    static /*@ pure @*/ public boolean$Pair equals( 

java.util.Stack one, Object other) { 
        java.util.Stack clone = (java.util.Stack) clone(one); 
        return new boolean$Pair(clone.equals(other), clone); 
    } 
 
    /*@ 
      @ ensures equals(\result, o).value(); 
      @*/ 
    static public Object clone(java.util.Stack o) { 
        return o.clone(); 
    } 

} 

Fig. 22. Immutable classes equipped with contracts 
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Appendix C 

This appendix contains the code for the Rational benchmarks used in Section 6.  It 
contains the specification for the Rational datatype (Figure 23), and the refinement 
mapping of this specification into class IntRational.java (Figure 24). It also contains 
two classes: the class that replaces the user’s class in our architecture (Figure 25), and 
the class responsible for checking the contracts (Figure 26). We have omitted the 
various Pair classes (boolean$Pair.java, int$Pair.java, IntRational$Pair.java).  
 

 
Fig. 23. Specification of the Rational abstract data type 
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Fig. 24. Refinement mapping 

 
/** 
 */ 

public class IntRational { 

 

    protected IntRational$Original wrappedObject; 

 

    public IntRational() { 

        wrappedObject = new IntRational$Original(); 

    } 

 

    public IntRational make(int num, int den) { 

        IntRational$Pair pair = 

IntRational$Immutable.make(wrappedObject, num, den); 

        wrappedObject = pair.state(); 

        return (IntRational) wrapCheck(pair.value()); 

    } 

 

    public int num() { 

        int$Pair pair = IntRational$Immutable.num(wrappedObject); 

        wrappedObject = pair.state(); 

        return pair.value(); 

    } 

 

    public int den() { 

        int$Pair pair = IntRational$Immutable.den(wrappedObject); 

        wrappedObject = pair.state(); 

        return pair.value(); 

    } 

 

    // requires other != null; - not needed; jml does it for you. 

    public IntRational mult(IntRational other) { 

        IntRational$Pair pair = IntRational$Immutable.mult( 

wrappedObject, (IntRational$Original) unwrapCheck(other)); 

        wrappedObject = pair.state(); 

        return (IntRational) wrapCheck(pair.value()); 
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    } 

 

    public IntRational inverse() { 

        IntRational$Pair pair = IntRational$Immutable.inverse(wrappedObject); 

        wrappedObject = (IntRational$Original) pair.state(); 

        return (IntRational) wrapCheck(pair.value()); 

    } 

 

    // requires other != null; - not needed; jml does it for you. 

    public IntRational div(IntRational other) { 

        IntRational$Pair pair = IntRational$Immutable.div( 

wrappedObject, (IntRational$Original) unwrapCheck(other)); 

        wrappedObject = pair.state(); 

        return (IntRational) wrapCheck(pair.value()); 

    } 

 

    public IntRational zero() { 

        IntRational$Pair pair = IntRational$Immutable.zero(wrappedObject); 

        wrappedObject = pair.state(); 

        return (IntRational) wrapCheck(pair.value()); 

    } 

 

    public boolean equals(Object other) { 

        boolean$Pair pair = IntRational$Immutable.equals( 

wrappedObject, (Object) unwrapCheck(other)); 

        wrappedObject = pair.state(); 

        return pair.value(); 

    } 

 

    public Object clone() { 

        return (Object) wrapCheck(IntRational$Immutable.clone(wrappedObject)); 

    } 

 

    // AUXILIARY METHODS FOR WRAPPING AND UNWRAPPING 

 

    static private IntRational wrap(IntRational$Original obj) { 

        IntRational result = new IntRational(); 

        result.wrappedObject = obj; 

        return result; 

    } 

 

    static private Object wrapCheck(Object obj) { 

        return (obj instanceof IntRational$Original)? 

            wrap((IntRational$Original) obj) : obj; 

    } 
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    static private Object unwrapCheck(Object obj) { 

        return (obj instanceof IntRational)? 

            ((IntRational) obj).wrappedObject : obj; 

    } 

}  

Fig. 25. Wrapper class 
 

/** 
 */ 
public class IntRational$Immutable { 
 
   /*@ 

@ requires true ==> !(!true && !true || true && true && den == 0); 
@ ensures true && (!true && !true || true && true && num == 0) ==> 

            !(true && !(den == 0) && true && true && true) && !true || 
            (true && !(den == 0) && true && true && true) && true && 
            num(\result.value()).value() == 0; 

@ ensures (true && true && true) && 
!(!(true && !(den == 0) && true && true && true) && !true || 

           (true && !(den == 0) && true && true && true) && true && 
           num(\result.value()).value() == 0) && 

   !(!true && !true || true && true && den == 0) && 
           !(!true && !true || true && true && num == 0) 
           ==> 

   !(true && !(den == 0) && true && true && true) && 
           !(true && (true && !(den==0) && true && true && true) && true && true)  
           || (true && !(den == 0) && true && true && true) && 
           (true && (true && !(den == 0) && true && true && true) && true && true)  
           && den(\result.value()).value()==num(\result.value()).value()*den/num; 
 
  @ ensures (true && true && true) && 
            //###### num(make(H, N, D)) = 0 || D = 0 || N = 0 
            ((!(true && !(den == 0) && true && true && true) && !true || 
            (true && !(den == 0) && true && true && true) && true && 
            num(\result.value()).value() == 0) || 
            (!true && !true || true && true && den == 0) || 
            (!true && !true || true && true && num == 0)) 
                ==> 

    !(true && !(den == 0) && true && true && true) && !true || 
            (true && !(den == 0) && true && true && true) && true && 
            den(\result.value()).value() == 1; 
   @*/ 
    static public /*@ pure @*/ IntRational$Pair make( 

IntRational$Original object, int num, int den) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new IntRational$Pair(clone.make(num, den), clone); 
    } 
 
    static public /*@ pure @*/ int$Pair num(IntRational$Original object) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new int$Pair(clone.num(), clone); 
    } 
 
    static public /*@ pure @*/ int$Pair den(IntRational$Original object) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new int$Pair(clone.den(), clone); 
    } 
 
  /*@ 
    @ ensures (\forall IntRational$Original i; i != null; 

      !true &&! (true && (true && true && true && true && true) && 
               (true && true && true && true && true) && 
               !(den(object).value() * den(other).value() == 0)) || 
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      true && (true && (true && true && true && true && true) && 
              (true && true && true && true && true) && 
               !(den(object).value() * den(other).value() == 0)) && 
               equals(\result.value(), make(i, num(object).value() * 
               num(other).value(), den(object).value() *  

den(other).value()).value()).value()); 
      @*/ 
    static public /*@ pure @*/ IntRational$Pair mult( 

IntRational$Original object, IntRational$Original other) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new IntRational$Pair(clone.mult(other), clone); 
    } 
 
    /*@  
      @ requires true ==> !(!(true && true) && !true || 
                          (true && true) && true && (num(other).value() == 0)); 
 
@ ensures !true && !(true && true && !(num(other).value() == 0) && true) || 
                true && (true && true && !(num(other).value() == 0) && true) && 
                equals(\result.value(), mult(object,  

inverse(other).value()).value()).value(); 
      @*/ 
    static public IntRational$Pair div( 

IntRational$Original object, IntRational$Original other) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new IntRational$Pair(clone.div(other), clone); 
    } 
 
    /*@  
      @ requires true ==> !(!(true && true) && ! true || 
                          (true && true) && true && (num(object).value() == 0)); 
 
      @ ensures (\forall IntRational$Original i; i != null; 
                !true && !(true && (true && true) && (true && true) && 

 !(num(object).value() == 0)) || 
                true && (true && (true && true) && (true && true) && 

 !(num(object).value() == 0)) && 
                equals(\result.value(), make(i, den(object).value(), 

 num(object).value()).value()).value()); 
      @*/ 
    static public /*@ pure @*/ IntRational$Pair inverse( 

IntRational$Original object) { 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new IntRational$Pair(clone.inverse(), clone); 
    } 
 
    /*@ 
      @ ensures (\forall IntRational$Original r; r != null; 
                !true && !(true && true && true && !(1 == 0)) || 
                true && (true && true && true && !(1 == 0)) && 
                equals(\result.value(), make(r, 0, 1).value()).value()); 
      @*/ 
    static public /*@ pure @*/ IntRational$Pair zero(IntRational$Original object){ 
        IntRational$Original clone = (IntRational$Original) clone(object); 
        return new IntRational$Pair(clone.zero(), clone); 
    } 
 
    /*@ 
      @ ensures \result.value() ==> other instanceof IntRational$Original && 
                (!(true && true) && !(true && true) ||  

(true && true) && (true && true) && 
                num(one).value() == num((IntRational$Original) other).value()); 
 
      @ ensures \result.value() ==> other instanceof IntRational$Original && 
                (!(true && true) && !(true && true) ||  

(true && true) && (true && true) && 
                den(one).value() == den((IntRational$Original) other).value()); 
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      @ ensures other instanceof IntRational$Original && ( 
      (true && (true && true) && (true && true)) == 
      (true && (true && true) && (true && true)) 
      && 
  ! (true && (true && true) && (true && true)) && 
      ! (true && (true && true) && (true && true)) || 
   (true && (true && true) && (true && true)) && 
       (true && (true && true) && (true && true)) && 
    num(one).value() * den ((IntRational$Original) other).value() 

 == num((IntRational$Original) other).value() * den(one).value()) 
  ==> \result.value(); 
      @*/ 
    static public /*@ pure @*/ boolean$Pair equals ( 

IntRational$Original one, Object other) { 
        IntRational$Original clone = (IntRational$Original) clone(one); 
        return new boolean$Pair(clone.equals(other), clone); 
    } 
 
    /*@ 
      @ ensures equals(one, \result).value(); 
      @*/ 
    static public Object clone(IntRational$Original one) { 
        return one.clone(); 
    } 
 
} 

Fig. 26. Immutable class equipped with contracts 


