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Abstract

Research in Software Architectures has put forward the concept of connector
to express complex relationships between system components, thus facilitating the
separation of coordination from computation. A system can then be understood,
at a given level of abstraction, in terms of its components and the connectors that
establish how they interact. However, for systems in which many interconnections
exist between their components, the architectures themselves may become very
complex due to the high number of connectors in place. This is especially true in
the context of mobile systems in which the interconnections are, by nature, tran-
sient in the sense that, at a given instant of time, only a subset of the potential
connectors are actually effective. In this paper, we formalise a notion of transient
connector that allows, at any given moment, for the architecture to depict only the
connectors that are active and, in this way, capture the dynamics of architectures
themselves. Our approach is based on the use ofCOMMUNITY , a UNITY-like pro-
gram design language that has a semantics in Category Theory, and rewriting logic
as a means of capturing the dynamic aspects of connectors.

Keywords: connectors, transient interactions, rewriting logic

1 Introduction

In a previous paper [19] we have argued in favour of a disciplined approach to mo-
bility through the use of connectors (in the sense of software architectures). The idea
is that mobility within a system can be characterised by the transient nature of the in-
terconnections that exist between the components of the system. Because, from an
architectural point of view, such interconnections are best captured through the use of
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connectors [18], changes in the interconnections should be also captured at the level of
the connectors that are in place.

For that purpose, we defined connectors which, through guarded actions, were able
to set or reset interconnections between components according to given conditions of
applicability (coded in the guards of the actions). However, because the dynamic be-
haviour of the system may require a considerable number of different situations in
which such interconnections should apply, the architecture of the system may get clut-
tered by a high number of connectors, even if, at each given time, only a few of the
applicability conditions hold.

To circumvent this problem, we suggested in [20] the concept of a transient connec-
tor in the sense of a connector with an associated condition on the state of its roles that
determines the situations in which it applies. The idea is that a connector does not need
to be permanently part of an architecture, but is added and removed according to its
applicability condition. This can be seen as a restricted form of dynamic architectures
in which the evolution of the architecture is determined by well defined operations of
addition and removal of connectors that are to be performed in well determined states
of the underlying system.

Our purpose in this paper is to expand the original motivation and further develop
the notion of transient connector in the context of dynamic architectures, namely by
providing a well-defined mathematical semantics through which the evolution of the
architecture can be inferred and reasoned about. Capitalising on previous work on
the formalisation of architectural connectors in general [6], and connectors for mobile
systems in particular [19], we use Category Theory to represent software architectures.
For modelling the dynamic aspects of architectures, we use Rewriting Logic [11], a
formalism that has already been applied to the formalisation of several architectural
aspects of systems, e.g. [12, 13]. We illustrate the approach with a connector for
partial synchronisation of actions written inCOMMUNITY [7].

2 Preliminaries

In this section we present the basic notions of Category Theory andCOMMUNITY. Due
to space limitations, we focus only on those aspects essential to understand the rest
of the paper and omit all technical details. This section also introduces the example
application.

2.1 The Example

Our example is inspired in the luggage distribution system also used to illustrate Mobile
UNITY [17]. One or more carts move on aN units long track with the shape

!

??
??

??

��
��

��
"

A cart advances one unit at each step in the direction shown by the arrows. Thei-th cart
starts from a unit determined by an injective functionstart of i. Carts are continuously
moving around the circuit. Their movement must be synchronised in such a way that
no collisions occur at the crossing.
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2.2 Category Theory

Category Theory [15] is the mathematical discipline that studies, in a general and ab-
stract way, relationships between arbitrary entities. A category is a collection of objects
together with a collection of morphisms between pairs of objects. A morphismf with
source objecta and target objectb is written f : a! b. Morphisms come equipped
with a composition operator “;” such that iff : a! b andg : b! c thenf ;g : a! c.
Composition is associative and has identitiesida for every objecta.

Diagrams are directed graphs—where nodes denote objects and arcs represent mor-
phisms—and can be used to represent “complex” objects as configurations of smaller
ones. For categories that are well behaved, each configuration denotes an object that
can be retrieved through an operation on the diagram called colimit. Informally, the
colimit of a diagram is the “minimal” object such that there is a morphism from every
object in the diagram to it (i.e., that contains the objects in the diagram as compo-
nents) and the addition of these morphisms to the original configuration results in a
commutative diagram (i.e., interconnections, as established by the morphisms of the
configuration diagram, are enforced).

2.3 Community

COMMUNITY [7] is a program design language based onUNITY [2] andIP [8]. In this
paper we only consider a subset of the full language. For our purposes, aCOMMUNITY

program consists of a set of typed attributes, a boolean expression to be satisfied by the
initial values of the attributes, and a set of actions, each of the formname: [guard!
assignment(s)]. The empty set of assignments is denoted byskip . Action names act
asrendez-vouspoints for program synchronisation. At each step, one of the actions is
selected and, if its guard is true, its assignments are executed simultaneously. To be
more precise, syntactically a program has the form

program P is
var V
read R
init I
do a1: [g1! v11 := exp11 k v21 := exp21 k . . . ]
[] a2: [g2! v12 := exp12 k . . . ]
[] . . .

whereR are external attributes (i.e., the program may not change their values),V are
the local attributes,I is the initialisation condition onV, ai are the actions with boolean
expressionsgi overV [R, vi j 2V, andexpi j expressions overV [R.

The following program describes the behaviour of thei-th cart, as introduced in
section 2.1.

program Carti is
var l : int
init l = start(i)
do move: [true! l := (l + 1) modN]

A morphism from a programP to a programP0 states thatP is a component of the
systemP0 and, as shown in [7], captures the notion of program superposition [2, 8].
Mathematically speaking, the morphism maps each attribute ofP into a attribute ofP0

of the same type, and it maps each action nameg of P into a (possible empty) set of
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action namesfg01; : : : ;g
0
ng of P0 [19]. Those actions correspond to the different possible

behaviours ofg within the systemP0. These different behaviours usually result from
synchronisations betweeng and other actions of other components ofP0. Thus each
actiong0i must preserve the functionality ofg, possibly adding more things specific to
other components ofP0. In particular, the guard ofg0i must not be weaker than the guard
of g, and the assignments ofg must be contained ing0i .

Putting it in a succinct way, a morphismf : P! P0 maps the vocabulary ofP
into the vocabulary ofP0, and thus any expressione over the variables ofP can be
automatically translated into an expressionf (e) over the variables ofP0. Thus if action
a: [g! v := exp] of P is mapped into actiona0 of P0 (possibly among others), then it
must be the case thata0: [g0! f (v) := f (exp) k . . . ] with g0 implying f (g).

Continuing the example, the following diagram shows in which way program “Carti”
is a component of a program that also counts how many laps have been completed by
checking how often the cart passes by a position (e.g., the crossing) given by the envi-
ronment.

program Carti is
var l : int
init l = start(i)
do move: [true! l := (l + 1) modN]

l 7!locationmove7!fmove;passg
��

program CartWithLapsi is
var location, laps : int
read position : int
init location =start(i) ^ laps = 0
do pass: [location = position

! location := (location + 1) modN k laps := laps + 1]
[] move: [location6= position! location := (location + 1) modN]

Notice how the second program strengthens the initialization condition and it di-
vides action “move” in two sub-cases, each satisfying the condition given above. We
henceforth omit the “modN” operation and the action guards whenever they are “true”.

It can be proved thatCOMMUNITY programs and their morphisms form a category
in which every finite diagram has a colimit, which, by definition, is the minimal pro-
gram that contains all programs in the diagram. Thus the diagram specifies the archi-
tecture and the colimit represents the resulting system. Since the proof of the existence
of a colimit is constructive, the architecture can be “compiled” into a single program
that simulates the execution of the overall system.

3 Permanent Connectors

We first briefly recapitulate our approach to connectors for mobile programs [19] be-
cause they form the semantic basis of transient connectors, to be presented in the next
section.

A n-ary connector consists ofn roles Ri and one glueG stating the interaction
between the roles. These act as “formal parameters”, restricting which components
may be linked together through the connector. Thus, the roles may contain attributes
and actions which are not used for the interaction specification.

In Category Theory, all relationships between objects must be made explicit through
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morphisms. In the particular case ofCOMMUNITY programs, it means for example that
two attributes (or actions) of two unrelated programs are different, even if they have the
same name. To state that attribute (or action)a1 of programP1 is the same as attribute
(resp. action)a2 of P2, even if a1 anda2 have the same names, one needs a third,
“mediating” programC—the channel—containing just an attribute (resp. action)a and
two morphismsσi : C! Pi that mapa to ai . Stating that two actions are the same
means synchronising them. In general, a channel contains the features that are shared
between the two programs it is linked to, thus establishing a symmetrical and partial
relationship between the vocabularies of those programs.

Applying these ideas to connectors [6], for each roleRi there must be a channel
Ci together with morphismsγi : Ci ! G andρi : Ci ! Ri stating which attributes and
actions ofRi are used in the interaction specification, i.e., the glue. As channels just
establish the required relationships between action names, their actions are always of
the forma: [true! skip ], and thus in this paper we use the abbreviated notation

channel C is
read v1 : T1; . . .
do a1;a2; : : :

The categorical framework also allows one to make precise when ann-ary con-
nector can be applied to componentsP1; : : : ;Pn, namely when morphismsιi : Ri ! Pi

exist. This corresponds to the intuition that the “actual arguments” (i.e., the compo-
nents) must instantiate the “formal parameters” (i.e., the roles). As an illustration, an
instantiated binary connector has the diagram

P1 R1
ι1oo C1

ρ1oo
γ1 //G C2

ρ2 //
γ2oo R2

ι2 //P2

Returning to our example, assume that two carts are approaching the crossing and
one of them is nearer to it. To avoid a collision it is sufficient to force the nearest cart
to move whenever the most distant one does. That can be achieved using an action
subsumption connector. Actiona subsumes actionb if b executes whenevera does.
This can be seen as a partial synchronisation mechanism:a is synchronised withb, but
b can still execute freely. The connector that establishes this form of interaction is

channel F is
read fl : int
do a

a7!movef l 7!l

��

a7!fab;ag

f l 7! f l
//

program G is
var fl, nl : int
do ab: [I ! skip ]
[] a: [:I ! skip ]
[] b: [skip ]

channel N is
read nl : int
do b

b7!fab;bg

nl 7!nl
oo

b7!move nl7!l

��

program Far is
var l : int
do move: [l:=l+1]

program Nearis
var l : int
do move: [l:=l+1]

whereI is the interaction condition. Notice that although the two roles are isomorphic,
the binary connector is not symmetric because the glue treats the two actions differ-
ently. This is clearly indicated in the glue: “b” may be executed alone at any time,
while “a” must co-occur with “b” if the interaction is taking place. Hence, action “a”
is the one that we want to connect to the “move” action of the cart that is further away
from the crossing, while action “b” is associated to the movement of the nearest cart
(the one that will instantiate role “Near”).
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To complete the example, it remains to show what the interaction condition is, and
what system is obtained through role instantiation. Assuming that track units 7 and 28
cross and that movement coordination should start when both carts are at most 3 units
away from the crossing, one has

I = 0� 7�nl < 28� f l � 3_0� 28�nl < 7� f l � 3

The first disjunct treats the case when the nearest cart is moving towards track unit 7
and the other cart is approaching unit 28. The other disjunct handles the opposite case.

The roles omit the initialisation condition of the location attribute, so that they can
be instantiated with any particular cart. The next diagram shows the application of
the connector to carts 3 and 5, assuming the latter is nearer to the crossing, and the
resulting colimit.

channel F is . . .

a7!movef l 7!l

��

a7!fab;ag

f l 7! f l
//

program G is
var fl, nl : int
do ab: [I ! skip ]
[] a: [:I ! skip ]
[] b: [skip ]

channel N is . . .
b7!fab;bg

nl 7!nl
oo

b7!move nl 7!l

��

program Far is . . .

move7!movel 7!l

��

program Nearis . . .

move7!move l 7!l

��

program Cart3 is . . .
l 7! f l

move7!fab;ag
//

program Cartsis
var fl, nl : int
init fl = f(3) ^ nl = f(5)
do ab: [I ! fl:=fl+1

k nl:=nl+1]
[] a: [:I ! fl:=fl+1]
[] b: [nl:=nl+1]

program Cart5 is . . .
l 7!nl

move7!fab;bg
oo

4 Transient Connectors

The previous approach has two drawbacks. First, the specification may grow quite
large, because the architecture of the system is given by a fixed diagram showingall
possible connections between the existing components, even if due to the actual com-
putations some components will never interact. In our example the diagram for an
architecture withc carts hasc2� c copies of the action subsumption connector, one
for each pairhCarti ;Cartji with i 6= j. Altogether, the specification is a graph withc2

nodes and 2� (c2� c) arcs. The second disadvantage is that because the interaction
condition is coded into the guards of the actions of the glue in order to show explicitly
when they can be executed, it can only be changed if one has access to the implemen-
tation of the glue. In other words, it is not possible to provide libraries of pre-compiled
connectors to be (re)used for many applications or in different situations.

To obviate these problems we proposed in [20] the use of transient connectors as
consisting of a pairhI ;Ti whereT is a connector andI is a boolean expression, called
interaction condition, over the attributes of its roles. Returning to our example, the
transient action subsumption connector is composed of the connector
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channel F is
do a

a7!move

��

a7!a //

program G is
do ab: [skip ]
[] b: [skip ]

channel N is
do b

b7!fab;bg
oo

b7!move

��

program Far is
var fl : int
do move: [fl:=fl+1]

program Nearis
var nl : int
do move: [nl:=nl+1]

and the same interaction condition as in the previous section.
It is important to compare the two solutions to appreciate what is being gained. The

most obvious difference is that the interaction condition was moved outside the con-
nector, more precisely, outside the glue of the connector. This move triggers some sim-
plifications. With permanent connectors, the glue, the channels, and their morphisms
had to contain all the relevant attributes from the roles because the interaction condi-
tion was inside the glue. This is no longer necessary with transient connectors because
the condition is stated directly in terms of the attributes of the roles. This means that,
apart from making sure that attributes in different roles have different names, writing
connectors becomes simpler (and thus less error-prone).

However, whereas with permanent connectors the configuration of a system could
be represented in a mathematically simple way as a (complex) diagram whose colimit
returns the behaviour of the system, with transient connectors we avoid the explosion
of connectors that clutters the configuration diagram, but we need to provide a new
mathematical semantics for the notion of architecture. More precisely, we need a new
semantics for the notion of connector and a new representation for the systems that are
built from them.

The semantics that we outlined in [20] identifies the configuration of a system with
two sets, one of transient connectors, the other of components. At any point in time,
the diagram is constructed as follows. For everyn-ary transient connectorhI ;Ti and
for everyn componentsPi , if there are morphisms fromT ’s roles to the components
such that the values of the attributes of thePi corresponding to the attributes of the roles
makeI true, then the componentsPi are connected by a new copy ofT.

The semantics that we wish to present instead captures the dynamic flavour of the
configurations in a more explicit way by formalising transient connectors as conditional
rewrite rules over extended diagrams that represent anchored configurations. By an
anchored configuration we mean a diagram in the category ofCOMMUNITY programs
enriched, for each node, with a valuation for the attributes of the program that labels
the node. Such valuations have to be compatible with the morphisms in the sense that,
if we have an edge between nodeshP;vi andhP0;v0i labelled by a morphismf between
P andP0, then every attributea of P must be such thatv(a) = v0( f (a)).

This approach has several advantages over the set-based representation. From a
mathematical point of view, it identifies the configuration of a system with a diagram
as was the case with permanent connectors; the difference now is that this diagram
evolves as the system evolves. The advantage here is that we can perform the same kind
of mathematical reasoning over configurations as before, like computing the colimit to
obtain the global program that rules the current execution of the system. Again, the
difference now is that this program may change as it executes.

Another advantage of this representation is that we can resort to well established
approaches for rewriting diagrams in order to formalise transient connectors. The use
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of graph rewriting in Software Architectures is not new, see for instance [14] for the use
of graph grammars in the formalisation of architectural styles. However, we have cho-
sen instead rewriting logic [11], a framework that still allows us to rewrite diagrams,
but which has the advantage of accommodating other forms of rewriting structures.
In particular, it will allow us to provide a more integrated semantics of the dynamics
of configurations by combining both the evolution of the architecture and of the cur-
rent state of the system. Rewriting Logic also has the advantage of making available
an interpreter—Maude [3]—for the execution of the rewrite rules, thus providing us
with an operational semantics for both the architectural connectors and the system ac-
tions. Moreover, several formal techniques are being defined for reasoning about the
behavioural properties of rewriting theories that will enable us to analyse the evolution
of the architectures themselves.

In the next section, we detail this semantics.

5 Transient connectors as rewrite rules

Rewriting logic [9, 10] expresses an essential equivalence between logic and computa-
tion in a particularly simple way. Namely, systemstatesare in bijective correspondence
with formulas(modulo whatever structural axioms are satisfied by such formulas: for
example, modulo the associativity and commutativity of a certain connective) and con-
currentcomputationsin a system are in bijective correspondence withproofs(modulo
appropriate notions of equivalence between computations and between proofs). Given
this equivalence between computation and logic, a rewriting logic axiom of the form

t �! t 0 if C

has two readings. Computationally, it means that a fragment of a system’s state that is
an instance of the patternt canchangeto the corresponding instance oft 0 concurrently
with any other state changes when conditionC holds; that is, the computational reading
is that of alocal concurrent transition. Logically, it just means that we can derive the
formula t 0 from the formulat whenC holds; that is, the logical reading is that of an
inference rule.

Rewriting logic is entirely neutral about the structure and properties of the formu-
las/statest. They are entirelyuser-definableas an algebraic data type satisfying certain
equational axioms, so that rewriting deduction takes placemodulosuch axioms. More
precisely, asignaturein rewriting logic is an equational theory(Σ;E), whereΣ is an
equational signature andE is a set ofΣ-equations. Rewriting will operate on equiva-
lence classes of terms moduloE. In this way, rewriting is made free from the syntactic
constraints of a term representation and gain a much greater flexibility in deciding what
counts as adata structure; for example, string rewriting is obtained by imposing an as-
sociativity axiom, and multiset rewriting by imposing associativity and commutativity.
Of course, standard term rewriting is obtained as the particular case in which the set
of equationsE is empty. Techniques for rewriting modulo equations have been stud-
ied extensively [5] and can be used to implement rewriting modulo many equational
theories of interest.

Given a signature(Σ;E), sentencesof rewriting logic are sequents of the form

r : [t]E �! [t 0]E if C;

wherer is a label,t andt 0 areΣ-terms possibly involving some variables,[t]E denotes
the equivalence class of the termt modulo the equationsE, andC is a condition ex-
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pressed as a conjunction of equations or sequents of the form[ui ] �! [vi ]. A rewrite
theoryR is a 4-tupleR =(Σ;E;L;R) whereΣ is a ranked alphabet of function symbols,
E is a set ofΣ-equations,L is a set oflabels, andR is a set of sentences as described
above, calledrewrite rules.

Because of its neutrality with regard to the structure and properties of states and
formulas, rewriting logic has good properties as asemantic framework[11], in which
many different system styles and models of concurrent computation and many different
languages can be naturally expressed without any distorting encodings.

For instance, the computational model of the parallel program design language
UNITY [2] is easily expressed in rewriting logic. The details are given in [10], but
the basic idea is straightforward. In essence, aUNITY program, and aCOMMUNITY

program for that matter, is a set of multiple assignment statements of the form

a1; : : : ;an := exp1(a1; : : : ;an); : : : ;expn(a1; : : : ;an)

where theai are declared attributes, and theexpi(a1; : : : ;an) areΣ-terms forΣ a fixed
many-sorted signature defined on the types of the declared attributes. ACOMMUNITY

program can be represented as a rewrite theory whose signature defines state configu-
rations as sets of pairsha : T j val : vi with a a program attribute,T a type, andv a value
of typeT, and every actiona as a rewrite rule:

a :
ha1 : T1 j val : x1i : : : han : Tn j val : xni

�! ha1 : T1 j val : exp1(x1; : : : ;xn)i : : : han : Tn j val : expn(x1; : : : ;xn)i
if g

whereg, the guard of the action, is a condition on thexi . In this case, the equational ax-
iomsE modulo which we rewrite are the associativity and commutativity of set union,
which is expressed in such rule by empty syntax (juxtaposition).

As an example, consider the program Carti . The actionmovecan be represented by

move: hl : int j val : xi �! hl : int j val : x+1i

Graph rewriting has also been represented in rewriting logic [11]. Labelled graphs
are axiomatised equationally as an algebraic data type in such a way that graph rewrit-
ing becomes rewriting modulo the equations axiomatising the type. Axiomatisations
in this spirit include those of Bauderon and Courcelle [1], Corradini and Montanari
[4], and Raoult and Voisin [16]. We adopt the axiomatisation given in [11], in which a
(labelled) graph is viewed as a set of nodes, and thus graph rewriting is viewed modulo
the associativity and commutativity of set union, expressed again with empty syntax.
Each node is an object of the form

hidentifierj label : L; links : Ki

containing label information and a list of edges, each of which consists of a pair

hidentifierj target: N; label : Li

identifying the target node and the label of the edge. For instance, the graph

C1
γ1

����! G
γ2

 ���� C2
?
?
yδ1

?
?
yδ2

P1 P2
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can be represented by the term

ha1 j label : C1; links : h f1 j target: c1; label : δ1i;hg1 j target: b; label : γ1ii

ha2 j label : C2; links : h f2 j target: c2; label : δ2i;hg2 j target: b; label : γ2ii

hb j label : G; links : nili
hc1 j label : P1; links : nili
hc2 j label : P2; links : nili.

The labels that interest us for the semantics of transient connectors are pairs(P;s)
with P a COMMUNITY program ands a state configuration forP. Edges between
nodes labelled(P0;s0) are labelled with morphismsf : P! P0 such that, for every
ha : T j val : vi in s, h f (a) : T j val : f (v)i is in s0 (modulo the equational axiomsE),
i.e., morphisms have to respect the state configurations. We shall call such graphs
anchored configurations.

The idea is to represent ann-ary transient connector defined byγi : Ci ! G and
ρi : Ci ! Ri as a conditional graph rewrite rule of the form

(P1;s1) � � � (Pn;sn)�!

C1
γ1

����! (G;s)
γn

 ���� Cn
?
?
yρ1;Xι1 � � �

?
?
yρn;Xιn

(XP1;s1) (XPn;sn)
if I ^Xι1 2morph(R1;XP1)^ �� �^Xιn 2morph(Rn;XPn)

where theXPi are “variables” that can be instantiated with any programs subject to
the conditions imposed by the rule, which are, for each instancePi, that it admits the
corresponding instance ofsi as a valid configuration, and that an instance ofXιi be
found that is a morphism from the connector’s roleRi to the instancePi (thus making
Pi a true instance of the role in the categorical sense as discussed in section 3). Notice
that each instancePi will be connected to the glue via the channelCi and the morphism
that results from the composition of the morphisms that connect the channel to the
role, as given by the connector, and the instance ofXιi that establishesPi as an instance
of Ri . The instances of the state configuration must, of course, satisfy the interaction
conditionI . Finally,s is the state given by the initialisation condition of the glueG.

The corresponding rule in rewriting logic is obtained by taking the representation
of the graphs:

hXN1 j label : (XP1;s1); links : XL1i � � � hXNn j label : (XPn;sn); links : XLni

�!

ha1 j label : (C1;nil); links : h f1 j target: XN1; label : ρ1;Xι1ihg1 j target: b; label : γ1ii

� � �

han j label : (Cn;nil); links : h fn j target: XNn; label : ρn;Xιnihgn j target: b; label : γnii

hb j label : (G;s); links : nili
hXN1 j label : (XP1;s1); links : XL1i � � � hXNn j label : (XPn;sn); links : XLni

if
I ^Xι1 2morph(R1;XP1)^ �� �^Xιn 2morph(Rn;XPn)

whereXN1; : : : ;XNn are variables ranging over node identifiers,XP1; : : : ;XPn are vari-
ables ranging over programs,Xι1; : : : ;Xιn are variables ranging over morphisms, and
XL1; : : : ;XLn are variables ranging over lists of edges, and the identifiersa1, . . . , an,
f1, . . . , fn, andb are ”new”.
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For instance, in the case of the cart synchronisation, we would have for the connec-
tor defined in section 4 the rewrite rule corresponding to:

(XP1;hX f : int j val : f i;XL)(XP2;hXn : int j val : ni;XM)
�!

F
a7!a //

a7!move;Xι1
��

(G;nil) N
b7!fab;bg

oo

b7!move;Xι2
��

(XP1;hX f : int j val : f i;XL) (XP2;hXn : int j val : ni;XM)

if
0 � 7� n < 28� f � 3_ 0 � 28� n < 7� f � 3^Xι1 2 morph(Far;P1)^Xι2 2

morph(Near;P2)

The expression of the rule in rewriting logic, through the use of variables ranging
over nodes, programs, morphisms and lists of edges, makes clear that the left hand-
side of the rules can be instantiated by any nodes labelled by any programs matching
the given state configuration, and with any connectivity to other nodes, subject to the
applicability conditions. These include the interaction condition of the programs and
the identification of the morphisms that are being used to instantiate the roles. These
conditions on the instantiation morphisms are essential to narrow down the scope of
the applicability of the rule to programs that actually fit the roles.

Because the left-hand side of the rule is copied to the right hand side, the effect of
the application of the rule is to superpose the glue and its connections to the compo-
nents identified through the left-hand side. The fact that the identifiers of the super-
posed nodes and edges are new means that the interconnections are, indeed, new and
do not interfere with other interconnections that may exist.

As an example of applying the rule, assume there are three carts freely moving
around (i.e., there are no connectors) and their current positions are 30, 26 and 4. The
corresponding configuration is given by

(Cart1, hl : int j val : 30i) (Cart2, hl : int j val : 26i) (Cart3, hl : int j val : 4i)

which is represented by the term

hc1 j label : (Cart1;hl : int j val : 30i); links : nili
hc2 j label : (Cart2;hl : int j val : 26i); links : nili
hc3 j label : (Cart3;hl : int j val : 4i); links : nili.

The interaction is true ifXP1 is instantiated with Cart3 (and X f with l and f
with 4) andXP2 with Cart2 (and thusXn with l and n with 26). Since both the
roles “Near” and “Far” (as well as the carts) have a single attribute and a single ac-
tion, the only possible instantiation morphisms are:ι1 = f f l 7! l ;move7! moveg
andι2 = fnl 7! l ;move7!moveg. Composingρ1 = fa 7!moveg with ι1 one obtains
a 7! move, and similarly forρ2 andι2. The applicability conditions are thus met and
the new configuration is
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(Cart1, hl : int j val : 30i) F

a7!move

��

a7!a // (G;nil) N
b7!fab;bg

oo

b7!move

��

(Cart3;hl : int j val : 4i) (Cart2;hl : int j val : 26i)

whose representation is given by the term

hc1 j label : (Cart1;hl : int j val : 30i); links : nili
hc2 j label : (Cart2;hl : int j val : 26i); links : nili
hc3 j label : (Cart3;hl : int j val : 4i); links : nili
ha1 j label : F; links : h f1 j target: c1; label : a 7!movei;hg1 j target: b; label : a 7! aii
ha2 j label : N; links : h f2 j target : c2; label : b 7! movei;hg2 j target : b; label : b 7!
fab;bgii
hb j label : G; links : nili.

Notice that the reverse rewrite rules, removing the application of the connectors,
are also necessary when the interaction condition becomes false.

Summarising, the architecture of the system consists of a rewrite theory presenta-
tion over the signature that we have outlined above in terms of anchored configurations.
The axioms of this rewrite theory presentation are the conditional rewrite rules defined
by the connectors. Given an initial anchored configuration of the system, such a rewrite
theory presentation provides us with the space of possible evolutions of the system con-
figuration from that state.

The representation forCOMMUNITY actions given above can be extended to an-
chored configurations by having the rewrite rules that represent actions to change only
the state component, leaving the configuration unchanged. For instance, the represen-
tation of themoveaction used above for illustration, would be given by

move:
hXN j label : (Cart;hl : int j val : xi); links : XLi
�! hXN j label : (Cart;hl : int j val : x+1i); links : XLi

When we combine the rewriting of the system configuration in terms of connectors
with the rewriting of its states in terms of its actions, it is important to define a disci-
pline of execution that makes sure that the configuration is rewritten before the actions
are given a chance of rewriting the state. This is because rewriting the structural config-
uration may change the way components are interconnected, and in particular the way
actions are synchronised and, hence, it is necessary to compute which synchronisation
sets of actions can occur only after the topology of the system has stabilised. This
principle can be given an operational semantics in languages such as Maude [3]—that
supports rewriting strategies through its reflective mechanisms—by assigning an eager
evaluation discipline to the rewrite rules defined by the architectural connectors.

Because the rewrite rules defined by the connectors do not change the state of the
components, their execution can be defined in a single transaction. That is to say, the
applicability conditions of the connectors can all be evaluated on the same state and,
hence, the set of applicable connectors can be determined over that same state and
executed in any order, or concurrently if that is possible.

Finally, it is important to point out that, with the proposed semantics, it is fairly
easy to change the architecture of a system just by changing the connectors that define
the theory presentation. For instance, one can replace the subsumption connector by
an action inhibition connector—making the cart that is further away to stop while the
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one that is nearer crosses the intersection—just by changing the glue of the connector.

6 Concluding Remarks

Transient connectors state explicitly the condition that programs must obey in order to
interact according to the way prescribed by the connector. Externalising the interaction
condition makes the connectors simpler and allows their reuse under different circum-
stances. The architectural diagram also becomes simpler (and more intuitive) since it
reflects at each point in time just the connections that are in place.

In this paper we have given an operational semantics for transient connectors in
rewriting logic. For each connector there are two rules, one to introduce it into the
architecture, the other one to remove it. In both cases, the left and right hand sides of
the rules are anchored configurations showing the current state of each program, thus
allowing the evaluation of the interaction condition of the connector. Programs are
written in a UNITY-like language, which also has a semantics in rewriting logic. This
allows a uniform representation of both the computational and the architectural levels,
showing how they interact, and of their dynamics, showing how they jointly evolve.

There is also an added expressive power in the proposed semantics of architecture
that we intend to explore in future work: the ability of actions to be constrained by
conditions on the structure of the configuration. Further work that we intend to pursue
includes the definition of rewriting strategies for execution in Maude, and the use of
logical mechanisms available for reasoning about rewrite theories for reasoning about
the evolution of the systems that are subject to transient connectors.
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