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Abstract

Distributed protocols executing in uncertain environments, like the Inter-
net, had better adapt dynamically to environment changes in order to preserve
QoS. In earlier work, it was shown that QoS adaptation should be depend-
able, if correctness of protocol properties is to be maintained. More recently,
some ideas concerning specific strategies and methodologies for improving
QoS adaptation have been proposed. In this paper we describe a complete
framework for dependable QoS adaptation. We assume that during its life-
time, a system alternates periods where its temporal behavior is well charac-
terized, with transition periods during which a variation of the environment
conditions occurs. Our method is based on the following: if the environ-
ment is generically characterized in analytical terms, and we can detect the
alternation of these stable and transient phases, we can improve the effec-
tiveness and dependability of QoS adaptation. To prove our point we provide
detailed evaluation results of the proposed solutions. Our evaluation is based
on synthetic data flows generated from probabilistic distributions, as well
as on real data traces collected in various Internet-based environments. Our
results show that the proposed strategies can indeed be effective, allowing
protocols to adapt to the available QoS in a dependable way.

1 Introduction

Computer systems and applications are becoming increasingly distributed and we
assist to the pervasiveness and ubiquity of computing devices. This openness and
complexity means that the environment (including network and computational plat-
forms) tends to be unpredictable, essentially asynchronous, making it impractical,
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or even incorrect, to rely on time-related bounds. On the other hand, in several ap-
plication domains (e.g. home and factory automation, interactive services over the
internet, vehicular applications) there are strong requirements for timely operation
and increased concerns with dependability assurance. Although strict real-time
guarantees cannot be given in such settings, one possible way to cope with the
uncertain timeliness of the environment while meeting dependability constraints,
consists in ensuring that applications adapt to the available resources, and do that
in a dependable way, that is, based on some exact measure of the state of the en-
vironment. Dependability will no longer be about securing some fixed temporal
bounds, but about using the correct bounds at any given time.

In this paper we build on earlier work that introduced the necessary archi-
tectural and functional principles for dependable adaptation [6]. In essence, the
idea behind dependable adaptation is to ensure that assumed bounds for funda-
mental variables are adapted throughout the execution and always secured with a
known and constant probability. For instance, consider an application that defines
a timeout value based on the assumed message round-trip delay. This application
will adapt the timeout during the execution with the objective of ensuring that the
probability of receiving timely messages will stay close to some predefined value.
Therefore, when message delays increase or decrease, the timeout will also in-
crease or decrease in the exact measure of what is needed to ensure the desired
stability of the probability value. In other words, this application will secure a
coverage stability property.

Clearly, this is only possible if some limits are assumed on how the environ-
ment behaves. For instance, if message delays can vary in some arbitrary fashion,
then any observation or characterization of the environment will be useless, in the
sense that nothing can be inferred with respect to the future behavior. Fortunately,
this is not the usual case. There may be instantaneous or short-term variations that
are unpredictable and impossible to characterize, but medium to long-term varia-
tions typically follow some pattern, allowing to probabilistically characterize the
current operational state and derive the bounds that must be used for achieving
coverage stability.

A baseline approach, which was introduced in [6], is to make very weak as-
sumptions about the environment— just that it behaves stochastically, but with
unknown distributions. This weak model was nevertheless sufficient to illustrate
the concept of dependable adaptation.

More recently, in [5], we introduced a new approach based on different assump-
tions about the environment behavior and we conducted some initial experiments
to observe the potential improvements with respect to the original, and pessimistic,
approach.

In this paper we provide a complete and detailed description of our work, in-
cluding an extensive set of experimental results that we use to thoroughly evaluate
and quantify the benefits of the proposed approach and of the implemented mech-
anisms.

We assume that during its lifetime a system alternates periods where its stochas-
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tic behavior is well characterized, with transition periods where a variation of the
environment conditions occurs. Because of that, we are able to move away from
conservative (and pessimistic) solutions, with possibly little relevance in practice,
to more reasonable ones, which have interesting practical reach. We introduce a
framework that is based on the use of statistical formulations for the recognition
and characterization of the “state” of the environment. The framework includes
phase detection mechanisms, based on statistical goodness-of-fit tests, to perceive
the stability of the environment behavior. Additional mechanisms to derive the ac-
tual parameters of the distributions are also employed. The paper explains how the
chosen methods were implemented, which is relevant to show how dependability
constraints are handled in practice.

A fundamental aspect of our work is that we are concerned with dependability
objectives. Therefore, our main contribution is the provision of a framework that
takes as input dependability-related criteria (the required coverage of an assump-
tion) and supports adaptation processes by providing information on how adapta-
tion should be done (the concrete bounds that must be assumed).

In particular, we use these criteria to compare the above-mentioned methods,
by performing a number of simulation experiments based on synthetic data flows
generated from well-known probabilistic distributions and on real round-trip time
(RTT) traces collected in different environments. Based on these results we are
able to conclude that the proposed framework allows to achieve dependable adap-
tation and improved time bounds, provided that adequate environment recognition
methods are used for a given environment behavior.

The paper is organized as follows. In the next section we provide a motivation
for this work and we discuss related work. Then, Section 3 describes the proposed
framework for dependable adaptation in probabilistic environments. Implementa-
tion details are presented in Section 4, while the framework evaluation is discussed
in Section 5. Some conclusions and future perspectives are finally presented in
Section 6.

2 Motivation and Related Work

Current research in the field of adaptive real-time systems uses classical fault tol-
erance for dependability, and QoS management as the workhorse for adaptation.
In fault tolerance, the approach is normally based on fairly static assumptions on
system structure and possible faults. The assumed system model is typically ho-
mogeneous and synchronous [4, 17, 19] with a crash-stop fault model. However,
this is not appropriate for the distributed and dynamic environments considered in
this work.

Providing QoS guarantees for the communication in spite of the uncertain or
probabilistic nature of networks is a problem with a wide scope, which can be
addressed from many different perspectives. We are fundamentally concerned with
timeliness issues and with securing or improving the dependability of adaptive
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applications.
In [6], the fundamental architectural and functional principles for dependable

QoS adaptation were introduced, providing relevant background for the work pre-
sented here. In this earlier work we also followed a dependability perspective,
analyzing why systems would fail as a result of timing assumptions being violated,
as it may happen in environments with weak synchrony. A relevant effect is de-
creased coverage of some time bound [34], when the number of timing failures
goes beyond an assumed limit. One can address this undesired effect by making
the protocols and programs use adaptive time-related bounds, instead of fixed val-
ues as usual (communication timeouts, scheduling periods and deadlines, etc.). If
done properly, this satisfies a so-called coverage stability property.

In more practical terms, this means that QoS is no longer expressed as a single
value, a time bound to be satisfied, but as a 〈bound, coverage〉 pair, in which the
coverage should remain constant while the bound may vary as a result of adapta-
tion, to meet the conditions of the environment. On the other hand, deciding when
and how to adapt depends on what is assumed about the environment. In [6] a con-
servative approach was followed, just assuming a probabilistic environment but not
a specific probabilistic distribution for delays. Therefore, this led to a pessimistic
solution (based on the one-sided inequality of probability theory) with respect to
the bounds required to guarantee some coverage.

Similar assumptions are used in [7]. The authors assume that message de-
lays have a probabilistic behavior and apply the one-sided inequality to define the
probability of having a given delay, whenever the distribution of message delays is
unknown. In their work, this probability value is used to derive the frequency of
failure detectors’ heartbeats in order to achieve a set of QoS requirements.

Interestingly, in the last few years a number of works have addressed the prob-
lem of probabilistically characterizing the delays in IP-based networks using real
measured data, allowing to conclude that empirically observed delay distributions
may be characterized by well-known distributions, such as the Weibull distribu-
tion [22, 15], the shifted gamma distribution [24, 8], the exponential distribu-
tion [20] or the truncated normal distribution [10]. Based on this, we realized that it
would be interesting and appropriate to consider less conservative approaches, by
assuming that specific distributions may be identified and thus allowing to achieve
better (tighter) time bounds for the same required coverage.

However, some of these works also recognize that probabilistic distributions
may change over time (e.g. [24]), depending on the load or other sporadic oc-
currences, like failures or route changes. Therefore, in order to secure the re-
quired dependability attributes, it becomes necessary to detect changes in the dis-
tribution and hence use mechanisms for being able to do that. Fortunately, there
is also considerable work addressing this problem and well-known approaches
and mechanisms (see [35] for a nice overview). Among others, we can find ap-
proaches based on time-exponentially weighted moving histograms [21], on the
Kolmogorov-Smirnov test [10] or the Mann-Kendall test. For instance, in [10] the
authors apply the Kolmogorov-Smirnov test on RTT data (round-trip time, which

4



is defined by the time required for a message to be sent from a specific source to
a specific destination and back again) to detect state changes in a delay process.
Between these state changes, the process can be assumed to be stationary with
constant delay distribution. The stationary assumption was confirmed by the trend
analysis test.

Given all these possibilities, we understood that the design of a framework for
dependable adaptation could be made general by accommodating various mecha-
nisms and dealing with several different probabilistic distributions, and automati-
cally determining the most suitable methods and the best fitting probabilistic dis-
tributions to allow the achievement of more accurate characterizations of the envi-
ronment state.

A fundamental distinguishing factor of our work is that we are concerned with
dependability requirements. Therefore, while other works addressing adaptive sys-
tems are mainly concerned with performance improvements, our objective is to
achieve dependable adaptive designs by ensuring coverage stability whenever pos-
sible. Our work definitely contributes to support automatic adaptation of time-
sensitive applications whilst safeguarding correctness, despite variations of aprior-
istic assumptions about time.

3 The Adaptation Framework

3.1 Assumptions

As mentioned in the previous section, in this work we advance on previous results
by making more optimistic but not less realistic assumptions, in order to achieve
improved and still dependable 〈bound, coverage〉 pairs. Instead of making the
weak but restrictive assumption that the environment behaves stochastically but
with unknown probabilistic distributions (as done in [6]), we now make the fol-
lowing assumptions about how the environment behaves:

• Interleaved stochastic behavior: We assume that the environment alter-
nates stable periods, during which it follows some specific probabilistic dis-
tribution, with unstable periods, during which the distribution is unknown
or cannot be characterized. As discussed in Section 2, this assumption is
supported by the results of many recent works (e.g., [15, 22, 24]).

• Sufficient stability: We assume that the dynamics of environment changes
is not arbitrarily fast, i.e., there is a minimum duration for stable periods
before an unstable period occurs. This is a mandatory assumption for any
application that needs to recognize the state of a dynamic environment.

Additionally, we also need to make assumptions concerning application-level
behavior and the availability of resources to perform the needed computations
(within the framework operation) in support of adaptation decisions.
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• Sufficient activity: We assume that there is sufficient system activity, al-
lowing enough samples of the stochastic variable under observation to be
obtained, as required to feed the phase detection and probabilistic recogni-
tion mechanisms. For instance, if message round-trip durations are being
observed, then there will be statistically sufficient and independent message
transmissions to allow characterizing the state of the environment. Obvi-
ously, system activity depends on the application. We believe that this is an
acceptable assumption in most practical interactive and reactive systems.

• Resource availability: The system has sufficient computational resources
(processor, memory, etc), which are needed to execute all the detection and
recognition mechanisms implemented in the dependable adaptation frame-
work in a sufficiently fast manner.

Interestingly, it is easy to see that all these assumptions are somehow inter-
dependent. As with any control framework, for a good quality of control it is
necessary to ensure that the controller system is sufficiently fast with respect to the
dynamics of the controlled system. In our case, the required resources and applica-
tion activity (sample points) depend on the effective dynamics of the environment.
A balance between these three aspects must exist so that it becomes possible to
dependably adapt the application.

Note that these assumptions could be stated as requirements for the correct
and useful operation of the proposed framework. In fact, the evaluation provided
in Section 5 is aimed at raising evidence that these requirements indeed hold in
practical settings. Using traces of real systems’ executions we implicitly test the
satisfaction of sufficient activity, sufficient stability and interleaved stochastic be-
havior assumptions. To reason about resource availability, we provide execution
measurements in specific computational platforms and conduct a complexity anal-
ysis of the frameworks’ algorithms.

3.2 Dependability goals

One fundamental objective of this work is to provide the means for adaptive ap-
plications to behave dependably despite temporal uncertainties in the operating
environment. In these settings, assuming fixed upper bounds for temporal vari-
ables, such as processing speed or communication delay, is typically not a good
idea. Either these bounds are very high to ensure that they are not violated during
execution, but then this may have a negative impact on the system performance, or
they are made smaller, but then temporal faults will occur with potential negative
impacts on the system correctness.

We argue that in these environments, dependability must be equated through
the ability of the system to secure some bounds while adapting to changing condi-
tions. As explained in [34], for dependable adaptation to be achieved it is sufficient
to secure a coverage stability property. In concrete terms, this means that given a
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system property, during the system execution the effective coverage of this property
will stay close to some assumed coverage, and the difference is bounded.

For example, a system property could be “The round-trip delay is bounded by
TRT ”. There is a probability that this property will hold during some observation
interval (coverage of the assumed property). The coverage of this property will
vary due to changes in the environment conditions (e.g., due to load variations
over time). On the other hand, the application can adapt the bound TRT to increase
or decrease the coverage. The objective of dependable adaptation is to select the
adequate bound TRT , so that the effective coverage of the property will be close
to some specified value. A practical approach, which is the one we adopt in this
work, is to ensure that the observed coverage is always higher than the specified
one, while the bounds for the random variables are as small as possible.

3.3 Environment recognition and adaptation

The proposed framework for dependable (QoS) adaptation can be seen as a service
composed by two activities: identification of the current environment conditions
and consequently QoS adaptation.

• Environment recognition: The environment conditions can be inferred by
analyzing a real-time data flow representing, for example, the end-to-end
message delays in a network. When the analytical description of the data
is not known, we need to determine the model that best describes the data.
Using statistics the data may be represented by a cumulative distribution
function (CDF), which is a function that defines the probability distribution
of a real random variable X . We note that the data models can be so complex
that they cannot be described in terms of simple well-know probabilistic
distributions. In the case in which the model that describes the data is known,
the problem is reduced to estimating unknown parameters of a known model
from the available data.

• QoS adaptation: Once the best fitting distribution (together with its param-
eters) has been identified, its statistics properties can be exploited to find
a pair 〈bound, coverage〉 that will satisfy the objective of keeping a con-
stant coverage of the assumed bound throughout the execution. Compared
to the pair 〈bound, coverage〉 that could be obtained with the method de-
fined in [6], the new pair is better, since the coverage stability objective can
be reached using a lower time bound.

3.4 The adaptive approach

As detailed in Section 3.1 we are assuming an interleaved stochastic behavior of
the environment, i.e., we can consider that the system alternates periods during
which the conditions of the environment remain fixed (stable phases), with peri-
ods during which the environment conditions change (transient phases). During
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Figure 1: The framework operation.

stable phases, the statistical process that generates the data flow (e.g., the end-to-
end message delays) is under control and then we can compute the corresponding
distribution using an appropriate number of samples. On the contrary, if the envi-
ronment conditions are changing, then the associated statistical process is actually
varying, so no fixed distribution can describe its real behavior.

Therefore, the system lifetime can be seen as a sequence of alternated phases:
a stable phase, during which the distribution is computable, and a transient phase,
during which the distribution is changing and cannot be computed. A transient
phase corresponds to the period during which the original distribution is changing
and is moving towards the distribution of the next stable phase.

During the transient phases we adopt a conservative approach and we set the
pair 〈bound, coverage〉 using the one-sided inequality as in [6]. It is a pessimistic
bound, but it holds for all the distributions. As soon as the presence of a sta-
ble phase is detected, a proper probabilistic distribution is identified and then an
improved (lower) bound can be computed according to the new distribution (opti-
mistic approach), still ensuring the coverage stability property. The bound adapta-
tion is then triggered by the detection of a new stable/transient phase.

In order to do this, it appears evident that we need a mathematical method
that verifies whether the system is in a stable phase or in a transient one. In other
words, we need a phase detection mechanism capable of identifying the beginning
of a new transient phase as soon as the environment conditions start changing, and
the beginning of a new stable phase as soon as the environment conditions stabilize.

Figure 1 demonstrates how the proposed framework operates when applied to
a typical scenario, such as the one identified by the following temporal events:

• Before time T0 the environment conditions are fixed.

• At time T1 the phase detection mechanism detects that the environment is
changing, then the bound is set to the secure but pessimistic level as in [6].

• At time T2 the environment reaches a new stable configuration.

• At time T3 the phase detection mechanism identifies the stable phase and a
new less pessimistic bound (tailored for the corresponding distribution) can
be computed.
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• At time T4 the environment conditions start changing again.

• At time T5 the phase detection mechanism detects that the environment is
changing and the bound is set to a new secure but pessimistic level, and so
on.

We note that there is an alternation of periods during which the bound is less
pessimistic and secure (e.g. [T3;T4]), non secure (e.g.[T0;T1]) and secure but
pessimistic ([T1;T3]). The effectiveness of our approach mainly depends on two
factors: (i)“changing environment” detection time, which is the time that it takes to
detect that the environment is changing; and (ii) the “stable environment” detection
time, which is the time that it takes to detect that the environment has reached a
new stable configuration.

The “changing environment” detection time is of particular importance in this
context, since it directly affects the quality (or the accuracy) of the adaptation
mechanism. During such critical periods, the environment is changing but the
bound is tailored for a particular set of environment conditions that do not hold
anymore. In other words, the time that the system takes to detect that the environ-
ment is changing has direct impact on the dependability of our approach. More
specifically, what is important is that the relation between the maximum detection
time and the stability time (which is lower bounded, as per the sufficient stability
assumption) be sufficiently large, so that the former becomes negligible. Provided
that the duration of such critical periods is small enough in comparison to the du-
ration of stable phases, the long term assurance of the coverage stability property
can be guaranteed. In summary, by assumption there is a baseline stability of the
environment, and by construction the detection of phase changes can be made fast
enough so that critical periods are comparably negligible, not affecting dependabil-
ity objectives.

Developing fast mechanisms in order to guarantee the maximum possible de-
pendability, as well as analyzing their impact on the overall system dependability,
are thus important challenges. Therefore, our research also focuses on these as-
pects, as discussed in Section 5.

3.5 Framework architecture

The scheme depicted in Figure 2 shows the architecture of the proposed QoS adap-
tation framework. It was modeled as a service that:

• accepts the history size (i.e., the number of collected samples of the ran-
dom variable under observation) and the required coverage, as dependability
related parameters;

• reads samples (measured delays) as input, using them to fill up the history
buffer that is used by the phase detection mechanisms and for the estimation
of distribution parameters;
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Figure 2: Schematic view of the framework for dependable adaptation.

• provides, as output, a bound that should be used in order to achieve the
specified coverage.

4 Implementation

4.1 Phase detection mechanisms

We implemented two goodness-of-fit (GoF) tests as phase detection mechanisms:
the Kolmogorov-Smirnov (KS) test and the Anderson-Darling (AD) test. GoF tests
are formal statistical procedures used to assess the underlying distribution of a
data set. A stable period with distribution D̂ is detected when some GoF tests
establish the goodness of fit between the postulated distribution D̂ and the evidence
contained in the experimental observations [32]. Both AD and KS are distance
tests based on the comparison of the cumulative distribution function (CDF) of
the assumed distribution D̂ and the empirical distribution function (EDF), which
is a CDF built from the input samples. If the assumed distribution is correct, the
assumed CDF closely follows the empirical CDF.

The phase detection mechanism based on the KS test [32] performs the follow-
ing steps:

1. Order the sample points to satisfy x1 ≤ x2 ≤ ... ≤ xn;

2. Build the empirical distribution function F̂n(x), for each x ∈ {x1 ≤ x2 ≤
... ≤ xn}:

F̂n(x) = number of values in the history that are≤x
n ;
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3. Assume a distribution F with CDF F0(x), and estimate its parameters (see
Section 4.2);

4. Compute the KS statistic Dn:

Dn = maxx |F̂n(x)− F0(x)|;

5. If Dn ≤ dn;α, the KS test accepts that the sample points follow the assumed
distribution F with significance level α, and a stable phase is detected. Oth-
erwise, a transient phase is detected. The significance level defines the prob-
ability that a stable phase is wrongly recognized as a transient one. The value
of dn;α is obtained from a published table of KS critical values.

The algorithm of the phase detection mechanism that implements the AD test
[29] executes the following steps:

1. Order the sample points to satisfy x1 ≤ x2 ≤ ... ≤ xn;

2. Assume a distribution F with CDF F0(x), and estimate its parameters (see
Section 4.2);

3. Compute the AD statistic A2:

A2 = −n− S

where:

S =
n∑

i=1

(2i− 1)
n

[lnF0(xi) + ln(1− F0(xn+1−i))]

4. If A2 ≤ an,α, the sample points follow the assumed distribution F with
significance level α, and a stable phase is detected. Otherwise, a transient
phase is detected. The value of an,α is obtained from tables of AD critical
values.

Both algorithms described above assume a probabilistic distribution F and ver-
ify if the given sample points come from this distribution. We are considering five
distributions to be tested: exponential, shifted exponential, Pareto, Weibull and uni-
form distributions. The set of distributions was defined based on other works that
address the statistical characterization of network delays, e.g. [22, 15, 20, 3, 9, 31].
However, it is important to note that the framework can be extended with more
distributions, depending on the characteristics of the random variable which will
be analyzed. If the phase detection mechanisms do not identify a stable phase with
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any of the tested distributions, they assume that the environment is changing, i.e.,
a transient phase is detected.

The main advantage of the KS test in comparison to the AD test is that the
critical values for the KS statistic are independent of specific distributions: there
is a single table of critical values, which is valid for all distributions. However,
the test has some limitations: it tends to be more sensitive near the center of the
distribution than at the tails, and if the distribution parameters must be estimated
from the data to be tested (which is what we do in our implementation), the results
can be compromised [16]. Due to this limitation, there are some works that pro-
pose different KS critical values to specific distributions with unknown parameters,
which are estimated from the sample. In our experiments with the KS test we are
using these modified tables for the exponential and shifted exponential [32], Pareto
[25] and Weibull [11] distributions. Regarding the Pareto distribution, the table of
critical values presented in [25] is limited to a set of shape parameters: 0.5, 1.0,
1.5, 2.0, 2.5, 3.0, 3.5, and 4.0. Thus, if the estimated shape parameter is not in
the interval [0.5, 4.0], the standard KS table [32] is used. Otherwise, the estimated
parameter is rounded for the closest defined value and modified table is applied.
The test for uniformity is also performed using the standard KS table, since we did
not find a modified table for this distribution in the current literature.

The major limitation of the KS test is solved when using the AD test: distribu-
tion parameters estimated from the sample points do not compromise the results.
However, the AD test is only available for a few specific distributions, since the
critical values depend on the assumed distribution and there are published tables
for only a limited number of distributions. AD critical values for the Weibull distri-
bution can be found in [30]. For the exponential and shifted exponential distribu-
tions, we implemented the modified statistic and used the critical values proposed
in [29]. Like in the KS test, AD critical values for the Pareto distribution are limited
to shape parameters in the interval [0.5, 4.0]. Considering that there is no general
table of AD critical values (independent of the tested distribution), if the estimated
shape parameter is not in this interval, the AD phase detection mechanism does
not test the Pareto distribution. Finally, critical values of AD test for the uniform
distribution are presented in [26].

For a given input sample, it is possible that a phase detection mechanism identi-
fies more than one distribution, due to similarities between distributions, and uncer-
tainty of the statistical methods and parameters estimation. However, each mech-
anism must return only one distribution when a stable phase is detected. Thus,
in those cases both mechanisms return the detected distribution with the lowest
statistic value, which means that the sample data are closer to that distribution.

4.2 Parameters estimation

Both KS and AD tests need to estimate distributions parameters in order to execute
their statistical tests. There are various methods, both numerical and graphical, for
estimating the parameters of a probability distribution. From a statistical point of
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Table 1: Equations for parameters estimation

Distribution Parameters estimators

Exponential λ̂ = 1
t̄

Pareto
k̂ = tmin

α̂ = n∑n
i=1 ln

ti
k̂

Shifted Exponential
λ̂ = n (t̄−tmin)

n−1

γ̂ = tmin − γ̂
n

Weibull
γ̂ =

∑n
i=1 xiyi−

∑n
i=1 xi

∑n
i=1 yi

n∑n
i=1 x2

i−
(
∑n

i=1 xi)
2

n

α̂ = e−
ȳ−γ̂t̄

γ̂

Uniform
â = tmin

b̂ = tmax

view, the method of maximum likelihood estimation (MLE) is considered to be one
of the most robust techniques for parameter estimation.

The principle of the MLE method is to select as an estimation of a parameter θ
the value for which the observed sample is most “likely” to occur [32, 2]. We ap-
plied this method to estimate exponential, shifted exponential, Pareto and uniform
parameters. For the Weibull distribution, the MLE method produces equations that
are impossible to solve in closed form: they must be simultaneously solved using
iterative algorithms, which have the disadvantage of being very time-consuming.
Since that execution time is an important factor in our framework, we decided to
estimate Weibull parameters through linear regression, instead of using MLE. We
implemented the method of least squares, which requires that a straight line be
fit to a set of data points, minimizing the sum of the squares of the y-coordinate
deviations from it [32].

Table 1 presents the equations of parameters estimation, where {t1, t2, ..., tn}
is the ordered sample history. Regarding the linear regression to estimate Weibull
parameters, consider that xi = ln(ti), yi = ln(− ln(1 − F (ti))), and F (xi) =
(i − 0.3)/(n + 0.4) (approximation of the median rankings). These equations
are derived from the Weibull CDF, using the method of regression on Y. Due to
its complexity, we will not present the derivation process in this document, but a
complete explanation can be found in [27].
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4.3 Bound estimators

Depending on the output of the phase detection mechanisms, which consists both
in stability indicators and in estimated parameters that characterize a detected dis-
tribution, one of the bounds computed by the implemented bound estimators will
be selected as the output of the framework. The current implementation has six
bound estimators: the conservative one, which is based on the one-sided inequality
of probability theory, providing a pessimistic bound which holds for all probabilis-
tic distributions; and estimators for the exponential, shifted exponential, Pareto,
Weibull and uniform distributions.

The bound estimators are derived from the distributions CDF. We recall that
the CDF represents the probability that the random variable X takes on a value
less than or equal to x (for every real number x):

FX(x) = P (X ≤ x)

Our objective is to ensure that a given bound is secure, i.e., that the real delay
will be less than or equal to the assumed bound, with a certain probability (the
expected coverage). Thus, in the CDF function:

• X is the observed delay;

• x is the assumed bound, provided by the framework;

• FX(x) = C , the expected coverage.

For example, the exponential CDF is:

FX(x) = 1− e−λx = C

For a given coverage C, the framework can derivate a secure bound by isolating
x:

x = 1
λ ln 1

1−C

The same logic was applied to define bound estimators for the other four dis-
tributions. The six estimators are presented in Table 2.

4.4 Selection Logic

As explained in Section 4.1, the phase detection mechanisms are individually exe-
cuted and each one indicates the environment condition (transient or stable period)
and returns one distribution which best characterizes the analyzed history trace
whenever a stable phase is detected. The selection logic receives the mechanisms
results and is responsible for selecting one of them as the output of the QoS adap-
tation framework (see Figure 2). Since our objective is to produce improved secure
bounds, the lowest bound is selected and returned to the client application.
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Table 2: Bound estimators for a required coverage C

Estimator Minimum time bound t

Conservative t = E(D) +
√

V (D)
1−C − V (D)

Exponential t = 1
λ ln 1

1−C

Shifted Exponential t = γ + λ ln 1
1−C

Pareto t = k
λ√1−C

Weibull t = λ γ

√
ln 1

1−C

Uniform t = C(b− a) + b

5 Results and Evaluation

The main objective of our work is to show the possibility of having a component
which is able to characterize the current state of the environment and, based on
dependability objectives of the application, infer how dependability-related bounds
should be adapted.

We have introduced the QoS adaptation framework in the previous sections,
describing its objectives, functionalities, implemented methods, and algorithms.
This section presents a set of results obtained with this framework, and a systematic
evaluation focusing on the following main points:

• Validation of our implementation and demonstration of its correctness by
comparing the ability of both mechanisms to characterize the current condi-
tions of the environment using controlled traces, synthetically produced;

• Quantification of the framework’s achievements by determining the real ef-
fectiveness and improvements obtained, using real RTT (round-trip time)
traces;

• Quantification of the overhead and demonstration of the practical applica-
bility of the framework through a complexity analysis of the implemented
algorithms and effective latencies using typical computing platforms.

5.1 Analysis of the phase detection mechanisms

In this first part of our evaluation, we tested the QoS adaptation framework using
synthetic data traces in order to analyze the functioning of the AD and KS phase
detection mechanisms. We generated 10 traces of 3000 samples for each one of the
five considered distributions (exponential, shifted exponential, Weibull, Pareto and
uniform). The distributions parameters were configured according to Table 3.
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Table 3: Parameters used to generate synthetic data traces

Traces Exponential Shifted Exp Pareto Weibull Uniform
(λ) (λ, γ) (λ, k) (λ, γ) (a, b)

1 0.8 0.8, 100 1.0, 1.0 1.0, 2.0 10, 20
2 1.6 1.6, 200 1.4, 2.0 1.4, 2.5 20, 40
3 2.4 2.4, 300 1.8, 3.0 1.8, 3.0 30, 60
4 3.2 3.2, 400 2.2, 4.0 2.2, 3.5 50, 100
5 4.0 4.0, 500 2.5, 5.0 2.5, 4.0 70, 140
6 4.8 4.8, 600 2.8, 6.0 2.8, 4.5 80, 160
7 5.6 5.6, 700 3.1, 7.0 3.1, 5.0 100, 200
8 6.4 6.4, 800 3.4, 8.0 3.4, 5.5 200, 400
9 7.2 7.2, 900 3.7, 9.0 3.7, 6.0 300, 600
10 8.0 8.0, 1000 4.0, 10.0 4.0, 6.5 500, 1000

The framework was executed for each trace using the phase detection mech-
anisms individually. For these executions we defined h = 30 (history size) and
C = 98% (minimum required coverage). Both mechanisms have a parameter
called significance level (α), which defines the probability of not detecting a stable
phase. In our experiments we set α = 0.05. We specified four metrics to compare
AD and KS goodness-of-fit tests:

• Stability detection: percentage of the sample points that were detected as
stable phases.

• Correct detection: percentage of the sample points characterized as sta-
ble phases in which the framework detected the correct distribution. Given
that in this phase of the evaluation we used synthetic traces generated from
known distributions, we are able to quantify the correctness of the mecha-
nisms.

• Improvement of bounds: improvement obtained with the adaptive approach
in comparison with the conservative one. The improvement is calculated
based on the difference between adaptive and pessimistic bounds.

• Coverage: achieved coverage.

Table 4 presents the average results, which show that there is not a single best
goodness-of-fit test for all distributions. Actually, the performance of each mech-
anism depends on its intrinsic features and on the distribution characteristics. Be-
sides, the definition of the best mechanism is related to the evaluation criteria to be
verified.

The most important result to be observed in these values is that the two main
objectives of the proposed framework were achieved for all distributions by both
mechanisms: the bounds were improved (up to 35%) and the minimum required
coverage (98%) was secured. In order to fully understand the values presented in
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Table 4: Comparing phase detection mechanisms using synthetic data traces

Distribution Stability det. Correct dist. Improvement Coverage
AD KS AD KS AD KS AD KS

Exponential 94.53 93.53 98.64 99.19 20.16 19.90 99.58 99.59
Shifted exp. 98.98 99.07 99.18 63.04 1.98 2.12 99.10 98.96

Pareto 76.26 81.75 72.96 78.41 23.62 27.20 98.33 98.25
Weibull 98.43 97.86 79.88 92.63 32.57 35.35 99.41 99.34
Uniform 55.57 48.39 94.82 70.58 9.60 7.50 100.00 100.00

Table 4 and verify the correctness of the mechanisms to characterize the environ-
ment, it is necessary to perform a more detailed analysis, separated by distribution.

In the experiments with exponential traces, both mechanisms reached excellent
and very similar results: they detected stability in more than 90% of the sample
points, and correctly characterized almost all of these stable points as exponentially
distributed. This significant rate of exponential detection allowed a reduction of
approximately 20% in the bounds computed by the framework (comparing to the
conservative bounds).

Regarding the shifted exponential distribution, almost all points were detected
as belonging to stable phases by the two mechanisms. However, the KS mecha-
nism made incorrect characterizations (recognizing other distributions instead of
the shifted exponential) in more than 35% of these points. There are at least two
factors that can lead to these mistakes: the inherent uncertainty associated with pa-
rameters estimation and the probabilistic mechanisms, and the similarities between
the tested distributions (e.g. the shifted exponential distribution is an exponential
distribution with an extra location parameter, and every exponential distribution
is also a Weibull distribution with λ = 1), which is interesting in order to verify
the precision of the implemented mechanisms, but also increases the possibility of
inaccurate detection. Despite of all these uncertainties, the characterization was
correct in the majority of the sample points. Another important observation in the
shifted exponential results is that while there was a high rate of stability detection,
the improvement of bounds was not significant (2%), showing that the bounds pro-
duced by the framework to the shifted exponential distribution are very close to the
conservative bounds.

The tests with Pareto traces presented the lowest rate of correct detection among
all distributions. This is due to the technical limitation explained in Section 4.1:
both mechanisms have Pareto critical values only for a small set of shape param-
eters. Thus, besides the uncertainty already present in the parameter estimation,
this estimator is rounded to one of these pre-defined values, compromising the ac-
curacy of the characterization. However, even with this limitation, the obtained
improvement of bounds for the Pareto traces was very significant (about 25% in
average).

Both mechanisms presented very good results in the experiments with Weibull
traces. Excellent rate of stability detection (more than 95%), good distribution
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characterization (80% - 90%) and the best rate of improvement of bounds (up to
35%). These are the best overall results among the tested distributions.

Finally, the results of the tests using uniform traces show that the stability de-
tection for this distribution is the more conservative: around 50%. The AD test
correctly characterized these sample points as uniformly distributed. We did not
obtained the same results with the KS test, which is a good example of the KS
limitation: estimating parameters from the sample is not adequated when applying
the standard test. As described in Section 4.1, we did not find a modified table of
KS critical values for testing uniformity, so we decided to use the general KS table.
Consequently, this test failed in detecting the uniform distribution in approximately
30% of the stable points. Nevertheless, both mechanisms obtained almost 10% of
improvement in the produced bounds.

From these results, we conclude that it is possible to define effective mech-
anisms to detect stable and transient phases and, for the stable ones, correctly
characterize the observed probabilistic distribution.

5.2 Validation using real RTT measurements

This section presents a set of experiments based on real data, in order to prove that
our assumption about the interleaved stochastic behavior is realistic for network
delays in different environments and demonstrate that our framework is able to
characterize these behaviors and provide applications with improved and depend-
able time bounds. We selected data traces freely available in the Internet, composed
by measurements collected in different wired and wireless networks, and extracted
RTT traces from them using the tcptrace tool. These RTT traces have been pro-
vided as input to our framework (they constitute the “input samples” of Figure 2).
Data traces were gathered from the following sources:

• Inmotion: Traceset of TCP transfers between a car traveling at speeds from
5 mph to 75 mph, and an 802.11b access point. The experiments were per-
formed on a traffic free road in the California desert. For our tests, we se-
lected traces from experiments simulating FTP file transfers. A complete
description of the environment, hardware and software used to generate this
traceset can be found in [13]. We downloaded the tcpdump files from [12].

• Umass: A collection of wireless traces from the University of Puerto Rico.
Contains wireless signal strength measurements for Dell and Thinkpad lap-
tops. Tests were performed over distances of 500 feet and one mile. For
more information, see [33].

• Dartmouth: Dataset including tcpdump data for 5 years or more, for over
450 access points and several thousand users at Dartmouth College. We
downloaded for our tests a traceset composed by packet headers from wire-
less packets sniffed in 18 buildings on Dartmouth campus [18]. Experiments
details are discussed in [14].
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Figure 3: Stability detection using different history sizes

• LBNL: Packet traces from two internal network locations at the Lawrence
Berkeley National Laboratory (LBNL) in the USA, giving an overview of
internal enterprise traffic recorded at a medium-sized site. The packet traces
span more than 100 hours, over which activity from a total of several thou-
sand internal hosts appears. These traces are available to download in [23].

• RON: Traces containing thousands of latency and loss samples taken on the
RON testbed. A RON (Resilient Overlay Network) is an application-layer
overlay on top of the existing Internet routing substrate, which has the the
ability to take advantage of network paths to improve the loss rate, latency,
or throughput perceived by data transfers. More information can be found in
[1]. The dataset is available in [28].

For the tests with real traces, the phase detection mechanisms were executed
in parallel, as illustrated in Figure 2. The most important parameter that must be
defined by the framework’s clients is the history size. This parameter states the
number of recently collected sample points that are analyzed in the environment
characterization, exhibiting a high impact on the results. For this reason, we con-
duced a set of experiments with different history sizes for all traces. For these
experiments we set the required coverage to C = 0.98, and selected four traces
from each data source, with different sizes (10000 to 50000 sample points). The
average results for each data source are presented in Figures 3, 4, and 5.

The effects of increasing the history size are perceptible on the obtained val-
ues: Figure 3 shows that the higher the history size is, the lower is the rate of stable
phases detection. The capacity of correctly identifying stable phases is dependent
on the correlation between the sample points, i.e., they need to be collected in a
sufficiently recent and small interval of time. Assuming that this correlation is
good enough to our purposes (see “sufficient activity” assumption), the inability of
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Figure 4: Improvement of bounds using different history sizes
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Figure 5: Achieved coverage using different history sizes

detecting stable phases when using higher history sizes is explained by the diffi-
culty of fitting a large set of samples into one specific distribution. In other words,
more sample points increases the possibility that this sample covers environment
changes, representing two or more different conditions. Furthermore, detecting
less stable phases compromises the average improvement of bounds (Figure 4),
because in transient periods there is no improvement at all - the framework com-
putes the conservative bound.

On the other hand, if a too small history sample is analyzed, possibly the lack
of information leads to serious errors: the mechanisms incorrectly identify stable
periods that do not correspond to the real environment conditions. This kind of
error compromises the dependability of our approach, because the framework will
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input : coverage, history size, measured samples
output: New computed bound

1 foreach phase detection mechanism M do
2 Get distribution from M
3 end
4 Select one distribution according to the selection logic
5 Compute new bound based on the required coverage
6 Return new bound

Figure 6: Framework’s algorithm

produce lowest bounds to the identified distribution, generating timing faults and
decreasing the overall coverage. This effect can be observed in our experiments
with h = 10: in the majority of the traces, they have the highest rate of stability
detection (Figure 3) and consequently the best improvement of bounds (Figure 4),
but the coverage is not secured (Figure 5).

For all performed experiments, the best results were obtained with history size
h = 30: highest improvement of bounds, securing the minimum required coverage.

These results suggest that there are real environments in which our assumptions
hold. In these environments, the QoS adaptation framework can be successfully
applied in order to make estimations through a probabilistic analysis of historical
data and provide applications with better information related to the environment
behavior (e.g., network delays), while ensuring the same level of dependability.

5.3 Complexity analysis

One essential factor to be considered in our work is the complexity of the imple-
mented algorithms. Although we are assuming that there are enough resources to
perform the necessary computations (see Section 3.1), it is important to demon-
strate that the framework has an acceptable complexity in order to reach its objec-
tives. This section presents an informal analysis of the QoS adaptation framework
complexity and some measures of its execution time.

We show that our current framework implementation presents a complexity
O(m×d×h log(h)), where m is the number of phase detection mechanisms based
on GoF tests, d is the number of considered distributions, and h is the history size.
The general framework algorithm is described in Figure 6. Assuming that line 2 is
a single operation, the complexity of the entire algorithm would be O(m).

However, the execution of a phase detection mechanism (line 2) is not com-
posed by one single operation, as shown in Figure 7. This simple algorithm has
one for loop, and two conditional tests. The conditional test in line 3 includes the
GoF test, which is performed for each distribution to verify if a given sample fits
in some assumed distribution (complexity O(d)).
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input : measured samples
output: detected distribution

1 detected distribution = none
2 foreach distribution D do
3 if samples fit in D then
4 Update detected distribution according to the mechanism’s logic
5 end
6 end
7 if detected distribution = none then
8 return transient phase
9 else
10 return detected distribution
11 end

Figure 7: Phase detection mechanism’s algorithm

input : assumed distribution, measured samples
output: if the measures samples fit in the assumed distribution

1 Sort measured samples
2 Calculate GoF statistic S for assumed distribution D̂
3 Get critical value ch,α

4 if S ≤ ch,α then
5 return true
6 else
7 return false
8 end

Figure 8: GoF test’s algorithm

A general algorithm of GoF tests is presented in Figure 8 (the specific algo-
rithms of the two GoF tests implemented in our framework were described in Sec-
tion 4.1). For both mechanisms, in order to calculate the GoF statistic (line 2), it is
necessary to sort the input sample and estimate the distributions parameters. Our
implementation uses a modified mergesort with complexity O(h log(h)) to sort the
measured data (line 1), where h is the history size.

Regarding parameters estimation, the exponential distribution has only one pa-
rameter (λ), which is estimated as the inverse of the sample mean. This estimation
has a complexity that is linear with the history size (O(h)). The shifted exponen-
tial parameters (λ and γ) and the Weibull parameters (α and γ) are estimated using
linear regression, which also has linear complexity with the history size O(h). The
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Figure 9: Achieved coverage using different history sizes

k parameter of the Pareto distribution is estimated as the smallest sample value
and the α parameter is computed using a MLE formula. Both estimations are
performed with complexity O(h). Finally, the uniform parameters a and b are esti-
mated as the minimum and maximum sample values, leading to a O(h) complexity.
Moreover, the formulas presented in Section 4.1 to compute the GoF statistics are
also calculated in linear time (O(h)). Thus, performing a Gof test takes h log(h)+h
operations, which is reduced to an asymptotic complexity of O(h log(h)).

Since the GoF test’s algorithm is executed for each distribution D and for each
detection mechanism M , we conclude that the complexity of the current imple-
mentation of the QoS adaptation framework is O(m × d × h log(h)), as previ-
ously mentioned. Considering a fixed number of mechanisms and distributions
(in the current implementation, m = 2 and d = 5), the actual complexity of the
framework execution is O(h log(h)). It is important to note that this complexity is
imposed by the sort operation required by both mechanisms.

We also measured the time that the framework takes to compute a new bound,
for different history sizes. The measurements were performed in two different plat-
forms: (i) a Dell Optiplex GX520 PC, with 2GB of RAM and one 2.8GHz Pentium
4 processor, and (ii) a 64-bit 2.3GHz quadcore Xeon machine. The initial point
(time 0) is the one where the framework has the sample trace available in a list, and
the final point is defined immediately after a new bound is produced. To execute
these tests we variated the history size from 10 to 200 and used an Inmotion trace
composed by 8200 points, generating approximately 8000 new bounds. Figure 9
presents the average execution times for each history size, using both platforms.

The analysis of the execution time can be helpful in order to determine how
a certain application should use our framework. Ideally, a new bound would be
computed whenever a new measured sample is added to the history. However, if
new data is added to the history too frequently (a new bound is measured before
the framework finishes the previous calculation), then the service requests should
be adapted to this scenario. For example, a new bound could be produced in fixed
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intervals, or when n new values were added to the history.

6 Conclusions

In this paper we addressed the problem of supporting adaptive systems and appli-
cations in stochastic environments, from a dependability perspective: maintaining
correctness of system properties after adaptation. We started from the observation
that the scene in open distributed applications such as those running in IP-based
and/or complex embedded systems, is under important factors of change: (i) those
under traditionally weak models, such as asynchronous, are under increasing per-
formance demands, which lead to sometimes hidden timing/synchrony assump-
tions; (ii) those under traditionally strong models, such as hard real-time or syn-
chronous, are under increasing demands for dynamic behaviour or configuration.

This is leading to increased threats to system correctness, such as failures due
to impossibility results in asynchronous systems, or failures due to missed dead-
lines and bounds in synchronous ones, respectively. Clearly, the key issue in these
problems is the lack, or loss thereof, of coverage of time-related assumptions.

We proposed to overcome these problems by securing coverage stability. With
this, we aim at ensuring automatic adaptation of time-sensitive applications whilst
safeguarding correctness, despite variations of aprioristic assumptions about time.
Therefore, while other works addressing adaptive systems are mainly concerned
with performance, our main concern is dependability.

We advanced on previous work by leveraging on the assumption that i) a system
alternates stable periods, during which the environment characteristics are fixed,
and unstable periods, in which a variation of the environment conditions occurs,
and ii) that the mode changes can be detected. Based on that, we proposed and
evaluated a general framework for adaptation, which allows to dynamically set op-
timistic time bounds when a stable phase is detected, while it provides conservative
but still dependable bounds during transient phases.

We believe that the fundamental conclusion to derive from the full set of exper-
iments reported in this paper, is that it is possible to define effective mechanisms
to detect stable and transient phases and, for the stable ones, correctly characterize
the observed probabilistic distribution. Because of that, the proposed framework
constitutes a promising approach to achieve dependable adaptation and, at the same
time, obtain improved (tighter) time bounds than those previously obtained with a
more conservative approach. This improvement is relevant in the implementation
of practical systems, for instance in the configuration of timeouts in failure detec-
tors, where the objective is to use the smallest possible time bound (to improve the
detection time) without compromising the failure detector accuracy (mistakes due
to timing faults).

Furthermore, the experiments performed using real data collected in different
environments demonstrate that: a) the assumptions stated in this paper are met
in real systems; and b) the framework is actually configurable for specific envi-
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ronments. We also presented an informal complexity analysis which is sufficient
to show that our solution presents a good performance and satisfactory execution
times.
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