
Minimal Byzantine Fault Tolerance:
Algorithms and Evaluation

Giuliana Santos Veronese, Miguel Correia,
Alysson Neves Bessani, Lau Cheuk Lung,

Paulo Verissimo

DI–FCUL TR–2009–15

June 2009

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are
stored in PDF, with the report number as filename. Alternatively, reports are available by
post from the above address.

Minimal Byzantine Fault Tolerance: Algorithms and Evaluation

Giuliana Santos Veronese1, Miguel Correia1, Alysson Neves Bessani1,
Lau Cheuk Lung2 , Paulo Verissimo1

1Universidade de Lisboa, Faculdade de Ciências, LASIGE, Portugal
2Universidade Federal de Santa Catarina, Departamento de Informática e Estatística, Brazil

June 2009

Abstract
This paper presents two asynchronous Byzantine fault-
tolerant state machine replication (BFT) algorithms that are
minimal in several senses. First, they require only 2 f + 1
replicas, instead of the usual 3 f + 1. Second, the trusted
service in which this reduction of replicas is based is ar-
guably minimal, so it is simple to verify and implement
(which is possible even using commercial trusted hard-
ware). Third, in nice executions the two algorithms run
in the minimum number of communication steps for non-
speculative and speculative algorithms, respectively 4 and
3 steps. Besides the obvious benefits in terms of cost, re-
silience and management complexity of having less repli-
cas to tolerate a certain number of faults, our algorithms
are simpler than previous ones (being closer to crash fault-
tolerant replication algorithms). The performance evalu-
ation shows that, even with the trusted component access
overhead, they can have better throughput than Castro and
Liskov’s PBFT, and better latency in networks with non-
negligible communication delays.

Comparing with the previous paper DI-TR-08-29 [49],
this version presents a slight modifications of the algo-
rithms, the full proof of their correctness and a new per-
formance evaluation.

1 Introduction
The complexity and extensibility of current computer sys-
tems have been causing a plague of exploitable software
bugs and configuration mistakes. Accordingly, the num-
ber of cyber-attacks has been growing making computer
security as a whole an important research challenge. To
meet this challenge several asynchronous Byzantine fault-
tolerant algorithms have been proposed. The main idea of
these algorithms is to allow a system to continue to operate
correctly even if some of its components exhibit arbitrary,
possibly malicious, behavior [5, 12, 13, 14, 16, 18, 24, 26,
29, 39, 51]. These algorithms have already been used to
design intrusion-tolerant services such as network file sys-
tems [12, 51], cooperative backup [4], large scale storage

[3], secure DNS [10], coordination services [7], certifica-
tion authorities [52] and key management systems [40].

Byzantine fault-tolerant systems are usually built us-
ing replication techniques. The state machine approach is
a generic replication technique to implement determinis-
tic fault-tolerant services. It was first defined as a means
to tolerate crash faults [42] and later extended for Byzan-
tine/arbitrary faults [39, 12]. The algorithms of the latter
category are usually called simply BFT. There are, how-
ever, other algorithms in the literature that are Byzantine
fault-tolerant but that provide weaker semantics, e.g., reg-
isters implemented with quorum systems [30]. When we
speak about BFT in the paper, we do not include these.

Minimal number of replicas. BFT algorithms typically
require 3 f +1 servers (or replicas1) to tolerate f Byzantine
(or faulty) servers [12, 16, 24, 39]. Clearly a majority of
the servers must be non-faulty because the idea is to do
voting on the output of the servers and faulty servers can
not be reliably identified, but these algorithms require f
additional servers.

Reducing the number of replicas has an important im-
pact in the cost of intrusion-tolerant systems as one replica
is far more costly than its hardware. For tolerating attacks
and intrusions, the replicas can not be identical and share
the same vulnerabilities, otherwise causing intrusions in all
the replicas would be almost the same as in a single one.
Therefore, there has to be diversity among the replicas, i.e.,
replicas shall have different operating systems, different
application software, etc. [27, 33] This involves additional
considerable costs per-replica, in terms not only of hard-
ware but especially of software development, acquisition
and management.

The paper presents two novel BFT algorithms that are
minimal in several senses. The first, is that they require
only 2 f + 1 replicas, which is clearly the minimum for
BFT algorithms, since a majority of the replicas must be
non-faulty. It was previously shown that a Byzantine fault-
tolerant service can be executed in only 2 f + 1 replicas,

1We use the two words interchangeably, since servers are used exclu-
sively as replicas of the service they run.

1

while the agreement part of BFT algorithms requires 3 f +1
replicas [51]. However, the algorithms presented in this pa-
per require only 2 f + 1 replicas both for execution of the
service and agreement.

Minimal trusted service. A few years ago, an algorithm
that needs only 2 f +1 replicas was published [14]. This al-
gorithm requires that the system is enhanced with a tamper-
proof distributed component called Trusted Timely Com-
puting Base (TTCB). The TTCB provides an ordering ser-
vice used to implement an atomic multicast protocol with
only 2 f + 1 replicas, which is the core of the replication
scheme. Recently, another BFT algorithm with only 2 f +1
replicas was presented, A2M-PBFT-EA [13]. It is based
on an Attested Append-Only Memory (A2M) abstraction,
which like the TTCB has to be tamperproof, but that is
local to the computers, not distributed. Replicas utilizing
A2M are forced to commit to a single, monotonically in-
creasing sequence of operations. Since the sequence is ex-
ternally verifiable, faulty replicas can not present different
sequences to different replicas.

These two works have shown that in order to reduce
the number of replicas from 3 f + 1 to 2 f + 1 the replicas
have to be extended with tamperproof components. While
3 f +1 BFT algorithms tolerated any failure in up to f repli-
cas, 2 f + 1 BFT algorithms also tolerate up to f faulty
replicas, but these special components can not be com-
promised. Therefore, an important aspect of the design of
2 f + 1 BFT algorithms is the design of these components
so that they can be trusted to be tamperproof. This problem
is not novel for it is similar to the problem of designing a
Trusted Computing Base or a reference monitor. A funda-
mental goal is to design the component in such a way that
it is verifiable, which requires simplicity (see for example
[20]). However, the TTCB is a distributed component that
provides several services and A2M provides a log that can
grow considerably and an interface with functions to ap-
pend, lookup and truncate messages in the log.

The second sense in which the algorithms pre-
sented in this paper are said to be minimal is that the
trusted/tamperproof service in which they are based is sim-
pler that the two previous in the literature and arguably
minimal. Looking to the proof of why it is not possible
to design a BFT agreement algorithm with less than 3 f +1
servers [25, 8], it can be seen that the problem is that the
malicious server can lie to the correct ones.

In case of state machine replication, the main agree-
ment problem is to make all correct replicas execute the
same sequence of operations. In this sense, the minimal
functionality that a trusted service must provide is some-
thing that gives to replicas the notion of a sequence of op-
erations, in such a way that a malicious replica would not
be able to make different correct replicas execute differ-
ent operations as their i-th operation. It is not difficult
to see that nothing is simpler than a trusted monotonic

counter, used to associate sequence numbers to each op-
eration. On the other hand, the values generated by this
counter should be unforgeable, so some kind of authenti-
cation must be employed. The trusted service presented
in this paper (USIG) provides an interface with operations
to increment a counter and to verify if other counter values
(incremented by other replicas) are correctly authenticated.

A side effect of the simplicity of our trusted component
is that it can be implemented even on COTS trusted hard-
ware, such as the Trusted Platform Module (TPM) [35].
This secure co-processor is currently available in the main-
board of many commodity PCs. The TPM provides ser-
vices like secure random number generation, secure stor-
age and digital signatures [36]. Using COTS trusted hard-
ware is an obvious benefit in relation to previous algo-
rithms, but also a challenge: we can not define the tam-
perproof abstraction that better suites our needs, but are
restricted to those provided by the TPM. Our performance
evaluation shows that the versions of our algorithms that
use the TPM have very poor performance (unlike versions
that use other implementations of the service). We discuss
how the TPM design and implementations can evolve to
become usable for practical BFT algorithms.

Minimal number of steps. The number of communica-
tion steps is an important metric for distributed algorithms,
for the delay of the communication tends to have a major
impact in the latency of the algorithm. This is specially im-
portant in WANs, where the communication delay can be
as much as a thousand times higher than in LANs and, in
fact to tolerate disasters and large-scale attacks like DDoS
replicas have to be deployed in different sites, which in-
creases the message communication delays.

The first algorithm we propose – MinBFT – fol-
lows a message exchange pattern similar to PBFT’s [12].
The replicas move through a succession of configurations
called views. Each view has a primary replica and the oth-
ers are backups. When a quorum of replicas suspects that
the primary replica is faulty, a new primary is chosen, al-
lowing the system to make progress. The fundamental idea
of MinBFT is that the primary uses the trusted counters
to assign sequence numbers to client requests. However,
more than assigning a number, the tamperproof component
produces a signed certificate that proves unequivocally that
the number is assigned to that message (and not other) and
that the counter was incremented (so the same number can
not be used twice). This is used to guarantee that all non-
faulty replicas take into account the same messages and,
ultimately, agree on the same order for the execution of the
requests.

The second algorithm we propose – MinZyzzyva– is
based on speculation, i.e., on the tentative execution of the
clients’ requests without previous agreement on the order
of their execution. MinZyzzyva is a modified version of
Zyzzyva, the first speculative BFT algorithm [24].

2

PBFT Zyzzyva A2M-PBFT-EA MinBFT MinZyzzyva
[11, 12] (+[51]) [24] [13] this paper this paper

Model Tamperproof component no no A2M USIG USIG
Speculative no yes no no yes
Cost Total replicas 3 f +1 3 f +1 2 f +1 2 f +1 2 f +1

Replicas with application state 2 f +1 [51] 2 f +1 2 f +1 2 f +1 2 f +1
Throughput MAC ops at bottleneck server 2+(8 f +1)/b 2+3 f /b 2+(2 f +4)/b 2+(f +3)/b 2+Sign/b (*)
Latency Communication steps 5 / 4 3 5 4 3

Table 1: Comparison of BFT algorithms, expanding Table 1 in [24]. The throughput and latency metrics are for each request. f is
the maximum number of faulty servers and b the size of the batch of requests used. The line “cost” considers the result by Yin et
al. that the execution of the application can be done in only 2 f + 1 [51]. In the algorithms that use a tamperproof component, some
MACs are done inside this component. (*) MinZyzzyva does 2 batches and one signature.

For BFT algorithms, the metric considered for latency
is usually the number of communication steps in nice exe-
cutions, i.e., when there are no failures and the system is
synchronous enough for the primary not to be changed.
MinBFT and MinZyzzyva are minimal in terms of this
metric for in nice executions the two algorithms run in the
minimum known number of communication steps of non-
speculative and speculative algorithms, respectively 4 and
3 steps [29, 24]. Notice that the gain of one step in spec-
ulative algorithms comes at a price: in certain situations
Zyzzyva and MinZyzzyva may have to rollback some exe-
cutions, which makes the programming model more com-
plicated.

Table 1 presents a summary of the characteristics of the
algorithms presented in the paper and the state-of-the-art
algorithms in the literature with which they are compared.

At this stage it is important to comment that there are no
free lunches and that these improvements have their draw-
backs also. In relation to BFT algorithms that do not use a
trusted component, our algorithms (and the other two in the
literature [13, 14]) have the disadvantage of having one ad-
ditional point of failure: the tamperproofness of the com-
ponent. In practice, this prevents these algorithms from
being used in settings in which the potential attacker has
physical access to a replica, as protecting even hardware
components from physical attacks is at best complicated.

Contributions. The contributions of the paper can be
summarized as follows:

• is presents the USIG service and shows that it al-
lows the implementation of BFT algorithms with only
2 f + 1 replicas, being arguably the simplest service
that allows the implementation of BFT replication;

• it presents two BFT algorithms that are minimal in
terms of number of replicas (only 2 f +1), complexity
of the trusted service used, and number of communi-
cation steps (4 and 3 respectively without/with specu-
lation); it also shows that, even with the trusted com-
ponent access overhead, these algorithms can have
better throughput than Castro and Liskov’s PBFT, and
better latency in networks with non-negligible com-
munication delays;

• it presents the first implementations with some level
of isolation for a trusted component used to improve
BFT algorithms. We implemented several versions of
the USIG service with different cryptography mech-
anisms that are isolated both in separate virtual ma-
chines and trusted hardware.

The minimality of the presented BFT algorithms in terms
of number of replicas, trusted service and number of steps,
leads to a simplicity that we believe makes them practical
to a level only comparable with crash fault-tolerant algo-
rithms.

2 USIG Service
The Unique Sequential Identifier Generator (USIG) as-
signs to messages (i.e., arrays of bytes) identifiers that are
unique, increasing and sequential. These three properties
imply that the USIG (1) will never assign the same identi-
fier to two different messages (uniqueness), (2) will never
assign an identifier that is lower than a previous one (in-
creasing), and (3) will never assign an identifier that is not
the successor of the previous one (sequentiality). The main
components of the service are a counter and cryptographic
mechanisms (details below). The interface of the service
has two functions:

createUI(m) – returns a USIG certificate that certi-
fies that the unique identifier UI contained in the certificate
was created by this tamperproof component for message
m. The unique identifier includes a reading of the mono-
tonic counter, which is incremented whenever createUI
is called.

verifyUI(PK,UI,m) – verifies if the unique identi-
fier UI is valid for message m, i.e., if the USIG certificate
matches the message and the rest of the data in UI.

There are two basic options to implement the service,
in terms of the certificate scheme used:

USIG-Hmac: a certificate contains a HMAC obtained
using the message and a secret key owned by this USIG
but known by all the others, for them to be able to verify
the certificates generated.

USIG-Sign: the certificate contains a signature obtained
using the message and the private key of this USIG.

3

Notice that in USIG-Hmac the properties of the ser-
vice (e.g., uniqueness) are based on the secretness of the
shared keys, while in USIG-Sign the properties are based
on the secretness of the private keys. Therefore, while
for USIG-Hmac both functions createUI and verifyUI
must be implemented inside the tamperproof component,
for USIG-Sign the verification requires only the public-key
of the USIG that created the certificate, so this operation
can be done outside of component.

The implementation of the service is based on an iso-
lated, tamperproof, component that we assume can not be
corrupted. This component contains essentially a counter
and either a HMAC primitive (for USIG-Hmac) or a digital
signature primitive (for USIG-Sign).

Implementing the tamperproof component. In this
section we briefly survey a set of solutions that can be used
to make the USIG service tamperproof. Several options
have been discussed in papers about the TTCB [15] and
A2M [13].

The main difficulty is to isolate the service from the
rest of the system. Therefore a solution is to use virtual-
ization, i.e., a hypervisor that provides isolation between
a set of virtual machines with their own operating system.
Examples include Xen [6] and other more security-related
technologies like Terra [19], Nizza [43] and Proxos [45].

AMD’s Secure Virtual Machine (SVM) architecture [2]
and Intel’s Trusted Execution Technology (TXT) [21] are
recent technologies that provide a hardware-based solution
to launch software in a controlled way, allowing the en-
forcement of certain security properties. Flicker explores
these technologies to provide a minimal trusted execution
environment, i.e., to run a small software component in an
isolated way [32]. Flicker and similar mechanisms can be
used to implement the USIG service.

Implementing USIG-Sign with the TPM. As men-
tioned before, the simplicity of the USIG service per-
mits that it is implemented with the TPM. The service re-
quires TPMs compliant with the Trusted Computing Group
(TCG) 1.2 specifications [36, 37]. TPMs have the ability
to sign data using the private key of the attestation identity
key pair (private AIK for simplicity) that never exits the
TPM. The corresponding public keys have to be distributed
by all servers.

The TPM (1.2) provides a 32-bit monotonic
counter in which only two commands can be exe-
cuted: TPM_ReadCounter (returns counter value),
TPM_IncrementCounter (increments the counter and
returns the new value). The TCG imposes that the counters
are not increasable arbitrarily often to prevent that they
burn out in less than 7 years. In the TPMs we used in
the experiments, counters could not be increased more
than once every 3.5 seconds approximately (and the same
is verified in other TPMs [41]). This feature seriously

constrains the performance of our algorithms, so later we
discuss how this might be improved.

The implementation of the USIG service is based on
the transport command suite. The idea is to create a ses-
sion that is used to do a sequence of TPM commands, to
log the executed commands, and to obtain a hash of this
log along with a digital signature of this hash (with the
private AIK). The main idea is that in this version of the
USIG, the USIG certificate not only contains a signature
but also the hash of the log, and the log must contains a
call to TPM_IncrementCounter to be considered valid.

More details can be found in the Appendix C.

3 System Model
The system is composed by a set of n servers P =
{s0, ...,sn−1} that provide a Byzantine fault-tolerant service
to a set of clients. Clients and servers are interconnected by
a network and communicate only by message-passing.

The network can drop, reorder and duplicate messages,
but these faults are masked using common techniques like
packet retransmissions. Messages are kept in a message
log for being retransmitted. An attacker may have access to
the network and be able to modify messages, so messages
contain digital signatures or message authentication codes
(MACs). Servers and clients know the keys they need to
check these signatures/MACs. We make the standard as-
sumptions about cryptography, i.e., that hash functions are
collision-resistant and that signatures can not be forged.

Servers and clients are said to be either correct or
faulty. Correct servers/clients always follow their algo-
rithm. On the contrary, faulty servers/clients can deviate
arbitrarily from their algorithm, even by colluding with
some malicious purpose. This class of unconstrained faults
is usually called Byzantine or arbitrary. We assume that at
most f out of n servers can be faulty for n = 2 f + 1. In
practice this requires that the servers are diverse [27, 33].
Notice that we are not considering the generic case (n ≥
2 f + 1) but the tight case in which the number of servers
n is the minimum for a value of f , i.e., n = 2 f + 1. This
restriction is well-known to greatly simplify the presenta-
tion of the algorithms, which are simple to modify to the
generic case.

Each server contains a local trusted/tamperproof com-
ponent that provides the USIG service (see next section).
Therefore, the fault model we consider is hybrid [48]. The
Byzantine model states that any number of clients and any
f servers can be faulty. However, the USIG service is tam-
perproof, i.e., always satisfies its specification, even if it
is in a faulty server. For instance, a faulty server may de-
cide not to send a message or send it corrupted, but it can
not send two different messages with the same value of the
USIG’s counter and a correct certificate.

We do not make assumptions about processing or com-
munication delays, except that these delays do not grow

4

indefinitely (like PBFT [12]). This rather weak assump-
tion has to be satisfied only to ensure the liveness of the
system, not its safety.

4 MinBFT
This section presents MinBFT, the non-speculative 2 f + 1
BFT algorithm. The state machine approach consists of
replicating a service in a group of servers. Each server
maintains a set of state variables, which are modified by a
set of operations. These operations have to be atomic (they
can not interfere with other operations) and deterministic
(the same operation executed in the same initial state gen-
erates the same final state), and the initial state must be the
same in all servers. The properties that the algorithm has
to enforce are: safety – all correct servers execute the same
requests in the same order; liveness – all correct clients’
requests are eventually executed.

MinBFT follows a message exchange pattern similar to
PBFT (see Figure 1). The servers move through succes-
sive configurations called views. Each view has a primary
replica and the rest are backups. The primary is the server
sp ! v mod n, where v is the current view number. Clients
issue requests with operations.

In normal case operation the sequence of events is the
following: (1) a client sends a request to all servers; (2)
the primary assigns a sequence number (execution order
number) to the request and sends it to all servers in a PRE-
PARE message; (3) each server multicasts a COMMIT mes-
sage to other services when it receives a valid PREPARE
from the primary; (4) when a server accepts a request, it
executes the corresponding operation and returns a reply to
the client; (5) the client waits for f +1 matching replies for
the request and completes the operation.

When f +1 backups suspect that the primary is faulty,
a view change operation is executed, and a new server
s′p ! v′ mod n becomes the primary (v′ > v is the new view
number). This mechanism provides liveness by allowing
the system to make progress when the primary is faulty.

Clients. A client c requests the execution of an opera-
tion op by sending a message 〈REQUEST,c,seq,op〉σc to all
servers. seq is the request identifier that is used to ensure
exactly-once semantics: (1) the servers store in a vector
Vreq the seq of the last request they executed for each client;
(2) the servers discard requests with seq lower than the last
executed (to avoid executing the same request twice), and
any requests received while the previous one is being pro-
cessed. Requests are signed with the private key of the
client. Requests with an invalid signature σc are simply
discarded. After sending a request, the client waits for
f + 1 replies 〈REPLY,s,seq,res〉 from different servers s
with matching results res, which ensures that at least one
reply comes from a correct server. If the client does not re-
ceive enough replies during a time interval read in its local

clock, it resends the request. In case the request has already
been processed, the servers resend the cached reply.

Servers: normal case operation. The core of the algo-
rithm executed by the servers is the PREPARE and COMMIT
message processing (see Figure 1). MinBFT has only two
steps, not three like PBFT [12] or A2M-PBFT-EA [13].
When the primary receives a client request, it uses a PRE-
PARE message to multicast the request to all servers. The
main role of the primary is to assign a sequence number to
each request. This number is the counter value returned by
the USIG service in the unique identifier UI. These num-
bers are sequential while the primary does not change, but
not when there is a view change, an issue that we discuss
later.

The basic idea is that a request m is sent by the pri-
mary si to all servers in a message 〈PREPARE,v,si,m,UIi〉,
and each server s j resends it to all others in a message
〈COMMIT,v,s j,si,m,UIi,UIj〉, where UIj is obtained by
calling createUI. Each message sent, either a PREPARE
or a COMMIT, has a unique identifier UI obtained by call-
ing the createUI function, so no two messages can have
the same identifier. Servers check if the identifier of the
messages they receive are valid for these messages using
the verifyUI function.

If a server sk did not receive a PREPARE message but re-
ceived a COMMIT message with a valid identifier generated
by the sender, then it sends its COMMIT message. This can
happen if the sender is faulty and does not send the PRE-
PARE message to server sk (but sends it to other servers),
or if the PREPARE message is simply late and is received
after the COMMIT messages. A request m is accepted by a
server following the algorithm if the server receives f + 1
valid COMMIT messages from different servers for m.

This core algorithm has to be enhanced to deal with
certain cases. A correct server s j multicasts a COMMIT
message in response to a message 〈PREPARE,v,si,m,UIi〉
only if three additional conditions are satisfied: (1) v is the
current view number on s j and the sender of the PREPARE
message is the primary of v (only the primary can send
PREPARE messages); (2) the request m contains a valid
signature produced by that client (to prevent a faulty pri-
mary from forging requests); and (3) s j already received a
message with counter value cv′ = cv− 1, where cv is the
counter value in UIi (to prevent a faulty primary from cre-
ating “holes” in the sequence of messages). This last con-
dition ensures that not only the requests are executed in the
order defined by the counter of the primary, but also that
they are accepted in that same order. Therefore, when a
request is accepted it can be executed immediately (there
is never the necessity of waiting for requests with lower
numbers). The only exception is that if the server is faulty
it can “order” the same request twice. So, when a server
accepts a request, it first checks in Vreq if the request was
already executed and executes it only if not.

5

Client

Server 0
(primary)

Server 1

Server 2

Server 3

request
pre-
prepare prepare commit reply

(a) PBFT

request commit replyprepare

(b) MinBFT

Server 0
(primary v)

Server 1
(primary v+1)

Server 2

req-view-
change view-change new-view

X

(c) MinBFT view change

Figure 1: Normal case operation of PBFT (a) and MinBFT (b). View change operation of MinBFT (c)

This message ordering mechanism imposes a FIFO or-
der that is also enforced to other messages (in the view
change operation) that also take a unique identifier UI: no
correct server processes a message 〈...,si, ...,UIi, ...〉 sent
by any server si with counter value cv in UIi before it
has processed message 〈...,si, ...UIi

′, ...〉 sent by si with
counter value cv−1. To enforce this property, each server
keeps a vector Vacc with the highest counter value cv it re-
ceived from each of the other servers in PREPARE, COM-
MIT, CHECKPOINT, NEW-VIEW or VIEW-CHANGE mes-
sages. The FIFO order does not impose that the algorithm
works in lockstep, i.e, the primary can send many PRE-
PARE messages but all servers will accept the correspond-
ing requests following the sequence order assigned by the
primary.

Servers: garbage collection and checkpoints. Mes-
sages sent by a server are kept in a message log in case
they have to be resent. To discard messages from this log,
MinBFT uses a garbage collection mechanism based on
checkpoints, very similar to PBFT’s.

Replicas generate checkpoints periodically when a re-
quest sequence number (the counter value of the UI as-
signed by the primary) is divisible by the constant cp
(checkpoint period). After the replica j produces the
checkpoint it multicasts 〈CHECKPOINT, j,UIlast ,d,UI j〉
where UIlast is the unique identifier of the last executed
request, d is the hash of the replica’s state and UIj is ob-
tained by calling createUI for the checkpoint message it-
self. A replica considers that a checkpoint is stable when
it receives f + 1 CHECKPOINT messages signed by dif-
ferent replicas with the same UIlast and d. We call this
set of messages a checkpoint certificate, which proves that
the replica’s state was correct until that request execution.
Therefore, the replica can discard all entries in its log with
sequence number less than the counter value of UIlast .

The checkpoint is used to limit what messages are
added to the log. We use two limiters: the low water mark
(h) and the high water mark (H). The low water mark is
the sequence number of the last stable checkpoint. Repli-
cas discard received messages with the counter value less
than h. The high water mark is H = h + L where L is the
maximum size of the log. Replicas discard received mes-

sages with the counter value greater than H.

Servers: view change operation. In normal case opera-
tion, the primary assigns sequence numbers to the requests
it receives and multicasts these numbers to the backups us-
ing PREPARE messages. This algorithm strongly constrains
what a faulty primary can do: it can not repeat or assign ar-
bitrarily higher sequence numbers. However, a faulty pri-
mary can still prevent progress by not assigning sequence
numbers to some requests (or even to any requests at all).

When the primary is faulty a view change has to be ex-
ecuted and a new primary chosen. View changes are trig-
gered by timeout. When a backup receives a request from a
client, it starts a timer that expires after Texec. When the re-
quest is accepted, the timer is stopped. If the timer expires,
the backup suspects that the primary is faulty and starts a
view change.

The view change operation is represented in Figure 1.
When a timer in backup si times-out, si sends a message
〈REQ-VIEW-CHANGE,si,v,v′〉 to all servers, where v is the
current view number and v′ = v+1 the new view number2.

When a server si receives f + 1 REQ-VIEW-CHANGE
messages, it moves to view v + 1 and multicasts 〈VIEW-
CHANGE,si,v′,Clast ,O,UIi〉, where Clast is the latest stable
checkpoint certificate and O is a set of COMMIT messages
sent by the replica since the last checkpoint was generated.
At this point, a replica stops accepting messages for v.

The VIEW-CHANGE message takes a unique identifier
UIi obtained by calling createUI. The objective is to pre-
vent faulty servers from sending different VIEW-CHANGE
messages with different Clast and O to different subsets of
the servers, leading to different decisions on which was the
last request of the previous view. Faulty servers still can do
it, but they have to assign different UI identifiers to these
different messages, which will be processed in order by the
correct servers, so all will take the same decision on the last
request of the previous view. Correct servers only consider
〈VIEW-CHANGE,si,v′,Clast ,O,UIi〉 messages that are con-
sistent with the system state: (1) the checkpoint certificate
Clast contains f + 1 valid UI identifiers; (2) the counter
value (cvi) in UIi is cvi = cv + 1, where cv is the highest

2It seems superfluous to send v and v′ = v + 1 but in some cases the
next view can be for instance v′ = v+2.

6

counter value of the UIs signed by the replica in O; if O
is empty the highest counter value will be the UI in Clast
signed by the replica when it generated the checkpoint; and
(3) there are no holes in the sequence number of COMMIT
messages in O.

When the new primary for view v′ receives f +1 VIEW-
CHANGE messages from different servers, it stores them in
a set Vvc, which is the new-view certificate. Vvc must con-
tain all requests accepted since the previous checkpoint,
and can also include requests that only were prepared.
The primary of v′ uses the information in the Clast and O
fields in the VIEW-CHANGE messages to define S, which
is the set of requests that were prepared/accepted since the
checkpoint, in order to define the initial state for v′. To
compute S, the primary starts by selecting the most recent
(valid) checkpoint certificate received in VIEW-CHANGE
messages. Next, it picks in VIEW-CHANGE messages the
requests in O sets with UI counter values greater than the
UI counter value in the checkpoint certificate.

After this computation, the primary multicasts a mes-
sage 〈NEW-VIEW,si,v′,Vvc,S,UIi〉. When a replica re-
ceives a NEW-VIEW message it verifies if the new-view cer-
tificate is valid. All replicas also verify if S was computed
properly doing the same computation as the primary. A
replica begins the new view v′ after all requests in S that
have not been executed before are executed. If a replica de-
tects that there is a hole in the sequence number of the last
request that it executed and the first request in S, it requests
to other replicas the commit certificates of the missing re-
quests to update its state. If due to the garbage collection
the other replicas have deleted these messages, there is a
state transfer (using the same protocol of PBFT [12]).

In previous BFT algorithms, requests are assigned with
sequential execution order numbers even when there are
view changes. This is not the case in MinBFT as the se-
quence numbers are provided by a different tamperproof
component (or USIG service) for each view. Therefore,
when there is a view change the first sequence number for
the new view has to be defined. This value is the counter
value in the unique identifier UIi in the NEW-VIEW mes-
sage plus one. The next PREPARE message sent by the new
primary must follow the UIi in the NEW-VIEW message.

When a server sends a VIEW-CHANGE message, it
starts a timer that expires after Tvc units of time. If the
timer expires before the server receives a valid NEW-VIEW
message, it starts another view change for view v + 2 3. If
additional view changes are needed, the timer is multiplied
by two each time, increasing exponentially until a new pri-
mary server respond. The objective is to avoid timer expi-
rations forever due to long communication delays.

The complete proof of correctness of the algorithm can
be found in Appendix A.

3But the previous view is still v. Recall the previous footnote about
REQ-VIEW-CHANGE messages.

5 MinZyzzyva
This section presents the second BFT algorithm of the
paper, MinZyzzyva. This algorithm has characteristics
similar to the previous one, but needs one communica-
tion step less in nice executions because it is speculative.
MinZyzzyva is a modified version of Zyzzyva, the first
speculative BFT algorithm [24].

The idea of speculation is that servers respond to
clients’ requests without first agreeing on the order in
which the requests are executed. They optimistically adopt
the order proposed by the primary server, execute the re-
quest, and respond immediately to the client. This execu-
tion is speculative because that may not be the real order
in which the request should be executed. If some servers
become inconsistent with the others, clients detect these
inconsistencies and help (correct) servers converge on a
single total order of requests, possibly having to rollback
some of the executions. Clients only rely on responses that
are consistent with this total order.

MinZyzzyva uses the USIG service to constrain the be-
havior of the primary, allowing a reduction of the number
of replicas of Zyzzyva from 3 f + 1 to 2 f + 1, preserving
the same safety and liveness properties.

Gracious execution. This is the optimistic mode of the
algorithm. It works essentially as follows: (1) A client
sends a request in a REQUEST message to the primary sp.
(2) The primary receives the request, calls createUI to
assign it a unique identifier UIp containing the sequence
number (just like in MinBFT), and forwards the request
and UIp to other servers. (3) Servers receive the request,
verify if UIp is valid and if it comes in FIFO order, assign
another unique identifier UIs to the request, speculatively
execute it, and send the response in a RESPONSE message
to the client (with the two UI identifiers). (4) The client
gathers the replies and only accepts messages with valid
UIp and UIs. (5) If the client receives 2 f +1 matching re-
sponses, the request completes and the client delivers the
response to the application.

Notice that 2 f +1 are all the servers. This is a require-
ment for MinZyzzyva to do gracious execution, just like
it was for Zyzzyva. Clients and servers use request iden-
tifiers (seq) to ensure exactly-once semantics, just like in
MinBFT (seq of the last request executed of each client is
stored in vector Vreq). The client only accepts replies that
satisfy the following conditions: (1) contain UIp and UIs
that were generated for the client request; and (2) contain a
UIp that is valid and that is the same in all replies. Clients
do not need to keep information about the servers’ counter
values. Notice also that the COMMIT messages does not
contains the message history (as in Zyzzyva [24]), since
the UIp keeps the sequence of operations.

A replica may only accept and speculatively execute
requests following the primary sequence number order
(FIFO order), but a faulty primary can introduce holes in

7

2f+1
Client

Server 0
(primary)

Server 1

Server 2

(a) Gracious execution

X

f+1 f+1

commit

(b) Faulty replica case

Figure 2: MinZyzzyva basic operation.

the sequence number space. A replica detects a hole when
it receives a request with the counter value cv in the pri-
mary’s UI, where cv > maxcv +1 and maxcv is the counter
value of the last request received. In this situation, it sends
to the primary a 〈FILL-HOLE,si,v′,maxcv +1,cv〉 message
and starts a timer. Upon receiving a FILL-HOLE message
the primary sends all requests in the interval reported by
the replica. The primary ignores FILL-HOLE messages of
previous views. If the replica’s timer expires without it
having received a reply from the primary, it multicasts the
FILL-HOLE message to the other replicas and also requests
a view change by sending REQ-VIEW-CHANGE message
(just like Zyzzyva).

Non-gracious execution. If the network is slow or one or
more servers are faulty, the client may never receive match-
ing responses from all 2 f +1 servers. When a client sends
a request it sets a timer. If this timer expires and it has re-
ceived between f + 1 and 2 f matching responses, then it
sends a COMMIT message containing a commit certificate
with these responses (with the UIp and UIs identifiers) to
all servers. When a correct server receives a valid commit
certificate from a client, it acknowledges with a LOCAL-
COMMIT message. Servers store in a vector Vacc the high-
est received counter value of the other servers (that come
in the UI identifiers). With the UIp and UIs in the COMMIT
message, the servers update their vector values. The client
resends the COMMIT message until it receives the corre-
sponding LOCAL-COMMIT messages from f + 1 servers.
After that, the client considers the request completed and
delivers the reply to the application. The system guaran-
tees that even if there is a view change, all correct servers
execute the request at this point.

If the client receives less than f +1 matching responses
then it sets a second timer and resends the request to all
servers. If a correct server receives a request that it has ex-
ecuted, it resends the cached response to the client. Other-
wise, it sends the request to the primary and starts a timer.
If the primary replies before the timeout, the server exe-
cutes the request. If the timer expires before the primary
sends a reply, the server initiates a view change.

Using the USIG service, it is not possible to generate
the same identifier for two different messages. A faulty
primary can try to cause the re-execution of some requests

by assigning it two different UI identifiers. However the
servers detect this misbehavior using the clients’ seq iden-
tifier in the request and do not do the second execution, just
like in MinBFT4.

Garbage collection and checkpoints. Like in Zyzzyva,
the properties ensured by MinZyzzyva are defined in terms
of histories. Each server in MinZyzzyva maintains an or-
dered history of the requests it has executed. Part of that
history, up to some request, is said to be committed, while
the rest is speculative. A prefix of the history is commit-
ted if the server has a commit certificate to prove that a
certain request was executed with a certain sequence num-
ber. A commit certificate is composed by f + 1 matching
responses from f + 1 different servers. These certificates
can be (1) sent by a client in the non-gracious execution
detailed above, (2) obtained when a view change occurs or
(3) obtained from a set of f +1 matching checkpoints.

Like in MinBFT, replicas generate checkpoints pe-
riodically when the counter value in a UI generated
by the primary is divisible by the constant cp. Af-
ter the replica j produces the checkpoint it multicasts
〈CHECKPOINT,s j,UIi,d,UIj〉 where UIi is the unique
identifier of the last executed request, d is the digest of
the current replica’s state and UIj is obtained by calling
createUI for the checkpoint message itself. A replica
considers that a checkpoint is stable when it receives f +1
CHECKPOINT messages with valid UI identifiers from dif-
ferent replicas with the same UIi and d. Then all messages
executed before UIi are removed from the log.

View change. The view change operation works essen-
tially as MinBFT’s but MinZyzzyva weakens the condition
under which a request appears in the new view message.
When a server si suspects that the primary is faulty it sends
a 〈REQ-VIEW-CHANGE,si,v,v′〉 message. When a server
receives f + 1 REQ-VIEW-CHANGE messages, it multi-
casts a 〈VIEW-CHANGE,si,v′,Clast ,O,UIi〉, where Clast is
the latest commit certificate collected by the replica and O
is a set of ordered requests since Clast that were executed
by the replica. Each ordered request has UIp signed by the
primary and UIi signed by the replica during the request ex-

4Therefore Zyzzyva’s proof of misbehavior [24] is not needed in
MinZyzzyva.

8

ecution. At this point, the replica stops accepting messages
other than CHECKPOINT, VIEW-CHANGE and NEW-VIEW.

Like in MinBFT, correct servers only consider 〈VIEW-
CHANGE,si,v′,Clast ,O,UIi〉 messages that are consistent
with the system state: (1) the checkpoint certificate Clast
contains f + 1 valid UI identifiers; (2) the counter value
cvi in UIi is cvi = cv + 1, where cv is the highest counter
value of the UIs signed by the replica in O; if O is empty
the highest counter value will be the UI in Clast signed by
the replica when it generated the checkpoint; and (3) there
are no holes in the sequence number of COMMIT messages
in O.

When the new primary receives f + 1 VIEW-CHANGE
messages it multicasts 〈NEW-VIEW,si,v′,Vvc,S,UIi〉 mes-
sage to define the initial state to v′. When a replica receives
a NEW-VIEW message it verifies if the new-view certificate
is valid and if S was computed properly. A replica begins
in the new view v′ when all requests in S that have not been
executed before, are executed. Replicas consider a valid
NEW-VIEW message equivalent to a commit certificate.

This algorithm strongly constrains what a faulty pri-
mary can do since it can not repeat or assign arbitrarily
high sequence numbers. However, due to the speculative
nature of MinZyzzyva, in some cases servers may have to
rollback some executions. This can happen after a view
change when the new primary does not include in the NEW-
VIEW message some operations that were executed by less
than f servers. This can only happen for operations that
do not have a commit certificate, therefore the client also
did not receive neither 2 f + 1 RESPONSE messages, nor
f + 1 LOCAL-COMMIT messages, thus the operations did
not complete. Rollback is a internal server operation and
does not involve the USIG service (there is no rollback of
the counter). As mentioned before the NEW-VIEW mes-
sage is equivalent to a commit certificate, so operations that
were rollback by a replica will not appear in the next view
changes or checkpoint messages.

The complete proof of correctness of the algorithm can
be found in Appendix B.

6 Optimizations
The basic algorithm presented multicasts each request in a
PREPARE message. Like PBFT and other BFT algorithms
in the literature, the cost of this operation can be greatly
reduced by batching several requests in a single message.
There can be several policies for how to batch requests. In
a LAN the execution of createUI can be the bottleneck of
the algorithm, so while the primary is executing this func-
tion it can go on batching requests that will be sent together
in the next PREPARE message.

Another optimization that can have a considerable im-
pact in the performance of the algorithm is not sending the
complete requests in the PREPARE and COMMIT messages,
but sending only their hash. This requires that no correct

server sends a COMMIT message before receiving the client
request (the client and/or the primary can be faulty and not
send the request to a backup). When a replica receives
PREPARE/COMMIT messages without having received the
corresponding request, it has to get the request from one of
the servers.

The communication between clients and servers is
signed with digital signatures. The replies from servers to
the clients can be signed in a faster way with MACs gen-
erated with a secret key shared between the server and the
client.

7 Implementation
We implemented the prototypes for both MinBFT and
MinZyzzyva in Java5 We chose Java for three reasons.
First, we expect that avoiding bugs and vulnerabilities will
be more important than performance in most BFT deploy-
ments, and Java offers features like memory protection,
strong typing and access control that can make a BFT im-
plementation more dependable. The second reason is to
improve the system portability making it easier to deploy
in different environments. Finally, we want to show that an
optimized BFT Java prototype can have performance that
is competitive with C implementations such as PBFT.

The prototypes were implemented for scalability, i.e.,
for delivering a throughput as high as possible when re-
ceiving requests from a large number of clients. To achieve
this goal, we built a scalable event-driven I/O architecture
(which can be seen as a simpler version of SEDA [50]) and
implemented an adaptive batching algorithm and window
congestion control similar to the one used in PBFT (the
algorithm can run a pre-configured maximum number of
parallel agreements; messages received when there are no
slots for running agreements are batched in the next agree-
ment possible). Other common BFT optimizations [12]
such as making agreements over the request hashes instead
of the entire requests, and using authenticators were also
employed in our prototypes. Additionally, we used recent
Java features such as non-blocking I/O and the concurrent
API (from packages java.nio and java.util.concurrent). Fi-
nally, we used TCP sockets.

Our algorithm implementations access the USIG ser-
vice through a small abstract Java class that was extended
to implement the several versions of USIG. In all these ver-
sions the fundamental idea was to isolate the service from
the rest of the system but the levels of isolation obtained
are different as presented in Figure 3.

• Non-secure USIG: The non-secure version of USIG is a
simple class that provides methods to increment a counter
and return its value together with a signature. This version
of the USIG service is not isolated and thus can be tam-
pered by a malicious adversary that controls the machine.

5Code available at http://sites.google.com/site/minibft/

9

HW

VMM

HW

OS

OS

HW TPM

USIG

BFT algorithm

(b) VM-based (c) With TPM

BFT
algorithm

(a) Non-Secure

OS

BFT algorithm
USIG lib

USIG

Figure 3: Different versions of the USIG service: NS (Non-
secure) - the service is inside the process; VM (Virtual Machine)
- the service is in an isolated virtual machine; TPM - the service
is supported by trusted hardware.

The practical interest of this version is to allow us to under-
stand what would be the performance of our algorithms if
the time of accessing the USIG service was 0.

• VM-based USIG: This version runs the USIG service as a
process in a virtual machine (VM) different from the one
in which the normal system (operating system, algorithm
code) runs. In each system replica we use the Xen hypervi-
sor [6] to isolate the replica process and the USIG service.
The replica with the algorithm code runs on domain1, which
is connected to the network and contains all untrusted soft-
ware. The USIG service (a hundred lines of Java code plus
the crypto lib) runs on domain0, which is not connected to
the network and contains as little services as possible. The
communication between the replica process and the USIG
service is done using sockets. To ensure that the counter
value is kept when a replica reboots, its value should be
stored in a flash memory or other high speed secondary stor-
age (but this feature was not implemented in our prototype).

• TPM USIG: The TPM-based version of USIG is the most
secure version of the service we have deployed so far since
the service is implemented by trusted hardware, providing
stronger isolation. In this version the USIG service is im-
plemented by a thin layer of software (a function in a li-
brary) and by the TPM itself (see Section 2). The identifier
generated by the service is signed using the TPM’s private
AIK, a RSA key with 2048-bits. We used TPM/J, an object-
oriented API written in Java, to access the TPM [41].

To explore the costs associated with the authentication
operations, versions NS and VM of the USIG service were
implemented using several methods of authenticating an
UI: NTT ESIGN with 2048-bit keys (Crypto++ lib ac-
cessed through the Java Native Interface), RSA with 1024-
bit keys and SHA1 to produce HMACs (both from the Java
6 JCA default provider). Using HMAC, the servers have
a shared key therefore the UI signature verification has to
be carried out inside of the trusted service. For this reason,
only MinBFT can use the USIG service implemented with
HMAC (USIG-Hmac). In MinZyzzyva the client verifies
if the UI is the same in all server replies, which turns im-
possible the use of HMACs in this algorithm in our system
model (only the servers have a trusted module).

Considering the two possible implementations of
the USIG service (Section 2) and the kinds of iso-
lation that can be seen in Figure 3, we have im-

plemented seven version of the USIG service: NS-
Hmac, NS-Sign(ESIGN), NS-Sign(RSA), VM-Hmac,
VM-Sign(ESIGN), VM-Sign(RSA) and TPM.

The counter used in the NS and VM versions of the
USIG has 64 bits (a Java long variable), which is enough
to prevent it from burning out in less than 233 years if it is
incremented twice per millisecond.

We assume that it is not possible to tamper with the
service, e.g., decrementing the counter, but privileged soft-
ware like the operating system might call the function
createUI. This is a case of faulty replica as the replica
deviates from the expected behavior (does not use sequen-
tial values for UI) but the service remains correct. A sim-
ple authentication mechanism is used to prevent processes
other than the replica processes from accessing the service.
Both, the TPM and VM-based version are able to continue
to work correctly even under attacks coming from the net-
work against the server software. However, only the ver-
sion with the TPM is tolerant to a malicious administrator
that manipulates the services hosted by f servers, and even
this version is not tolerant against physical attacks.

8 Performance Evaluation
This section presents performance results of our algorithms
using micro-benchmarks. We measured the latency and
throughput of the MinBFT and MinZyzzyva implementa-
tions using null operations.

We also present performance results for a macro-
benchmark that was used to understand the impact of us-
ing our algorithms in a real application: we integrated
MinBFT and MinZyzzyva with the Java Network File Sys-
tem (JNFS) [38].

PBFT [12] is often considered to be the baseline for
BFT algorithms, so we were interested in comparing our
algorithms with the implementation available on the web6.
To compare this implementation with our MinBFT and
MinZyzzyva algorithms, we made our own implementa-
tion of PBFT’s normal case operation in Java (JPBFT).
We did not compare with the TTCB-based algorithm and
A2M-PBFT-EA because their code was not available.

Unless where noted, we considered a setup that can tol-
erate one faulty server (f = 1), requiring n = 4 servers
for PBFT and JPBFT and n = 3 servers for MinBFT and
MinZyzzyva. We executed from 0 to 120 logical clients
distributed through 6 machines. The servers and clients
machines were 2.8 GHz Pentium-4 PCs with 2 GBs RAM
running Sun JDK 1.6 on top of Linux 2.6.18 connected
through a Dell gigabit switch. The PCs had a Atmel TPM
1.2 chip. In all experiments in which Java implementations
were used, we enabled the Just-In-Time (JIT) compiler and
run a warm-up phase to load and verify all classes, trans-
forming the bytecodes into native code. All experiments

6http://www.pmg.lcs.mit.edu/bft/.

10

run only in normal case operation, without faults or asyn-
chrony, which is usually considered to be the normal case.

8.1 Micro-Benchmarks
For the first part of the performance evaluation we chose
the versions of MinBFT and MinZyzzyva that presented
best performance and we compare them with PBFT.
We evaluated the performance of four algorithms PBFT,
JPBFT, MinBFT-Hmac and MinZyzzyva-Sig(ESIGN) on
a LAN. We measured the latency of the algorithms using
a simple service with no state that executes null opera-
tions, with arguments and results varying between 0 and
4K bytes. The latency was measured at the client by read-
ing the local clock immediately before the request was sent,
then immediately after a response was consolidated (i.e.,
the same response was received by a quorum of servers),
and subtracting the former from the latter. Each request
was executed synchronously, i.e., it waited for a reply be-
fore invoking a new operation. The results were obtained
by timing 100,000 requests in two executions. The ob-
tained latencies are averages of these two executions. The
results are show in Table 2.

Req/Res PBFT JPBFT MinBFT-Hmac MinZyzzyva-Sig
0/0 0.4 1.8 2.3 2.9

4K/0 0.6 2.2 2.9 3.1
0/4K 0.8 2.5 3.0 3.2

Table 2: Latency results varying request and response size for the
best versions of MinBFT and MinZyzzyva, together with PBFT
and a similar Java implementation.

In this experiment, PBFT has shown the best per-
formance of all algorithms/implementations, followed by
JPBFT, MinBFT-Hmac and MinZyzzyva-Sig, which was
the worse. This experiment shows clearly that our Java im-
plementation runs an agreement much slower than PBFT.
One of the possible reasons for this can be the overhead of
our event-driven socket management layer that maintains
several queues and event listeners to deal smoothly with a
high number of connections. When compared with JPBFT,
MinBFT-Hmac has a small extra cost because of the over-
head to access the USIG service to create and to verify the
UI. Zyzzyva is known to be faster than PBFT in most cases
[24, 44], but Zyzzyva (like PBFT) uses only MACs, while
MinZyzzyva uses signatures, so MinZyzzyva ends up be-
ing slower than PBFT, JPBFT and MinBFT-Hmac.

The second part of the micro-benchmark had the ob-
jective of measuring the peak throughput of the algorithms
with different loads. We ran experiments using requests
and responses with 0 bytes. We varied the number of logi-
cal clients between 1 and 120 in each experiment, where
each client sent operations periodically (without waiting
for replies), in order to obtain the maximum possible
throughput. Each experiment ran for 100,000 client oper-
ations to allow performance to stabilize, before recording
data for the following 100,000 operations.

 0

 3000

 6000

 9000

 12000

 15000

 18000

 21000

 24000

 27000

 30000

 33000

 36000

 0 10 20 30 40 50 60 70 80 90 100 110 120

Th
ro

ug
hp

ut
 (o

pe
ra

tio
ns

/s
ec

)

Number of Clients

PBFT
JPBFT

MinBFT−Hmac
MinZyzzyva−Sign

Figure 4: Peak throughput for 0/0 operations for the best ver-
sions of MinBFT and MinZyzzyva, together with PBFT and a
similar Java implementation.

Figure 4 shows that the fewer communication steps and
number of replicas in MinZyzzyva is reflected in higher
throughput by achieving around 30,000 operations per sec-
ond. For the same reason, the MinBFT-Hmac throughput
is 10% higher than the one observed for PBFT. It is inter-
esting to notice that the minimal number of communica-
tion steps and replicas (which reduces the quorum sizes
used by the algorithms) makes the replicas process less
messages (less I/O, less MAC verification, etc.), which in-
creases the throughput. Due to the optimizations for scal-
ability discussed in Section 7, JPBFT presented only 5%
lower throughput when compared with the original PBFT
implementation.

The throughput values in the figure together with the
latency values of Table 2 show the effect of adaptive batch-
ing. The similarity on the peak throughput values is ex-
plained by the fact that, in our experiments under heavy
load (e.g., 120 clients accessing the system), PBFT runs
more agreements with batches of up to 70 messages while
our algorithms use batches of up to 200 messages.

8.2 Effects of Communication Latency
In the third experiment we emulated WAN network delays
on all links and run latency experiments to better under-
stand how these algorithms would behave if the replicas
and clients were deployed on different sites. Despite the
fact that this scenario is not what is expected when one
consider the data centers used today (in which all replicas
are inside a data center), it is very important if one consid-
ers the deployment of a fault independent replicated sys-
tem: it can tolerate malicious attacks (such as DDoS), link
failures, site misconfigurations, natural disasters and many
other problems that can affect whole sites. We used netem7

to inject delays in each machine by varying the delays be-
tween 1 and 50 ms and use a standard deviation of 10% of
the injected delay. The latency was measured in the same
way as in previous section. Figure 5 presents the results.

7http://www.linuxfoundation.org/en/Net:Netem.

11

 0

 20

 40

 60

 80

 100

 120

 140

 160

 180

 200

 220

 240

 260

 0 10 20 30 40 50

La
te

nc
y

(m
illi

se
co

nd
s)

Network Latency (milliseconds)

PBFT
JPBFT

MinBFT−Hmac
MinZyzzyva−Sign

Figure 5: Latency for 0/0 operations with several link latency
values.

As expected, the measurements show that the latency
becomes higher with larger delays. Due to the tentative
execution optimization (described in Section 6.1 of [12]),
PBFT reduces the number of communication steps from
5 to 4 communication steps, and it is reflected in the re-
sults obtained. We did not implement this optimization in
JPBFT, therefore it presents the worse latency in our ex-
periments. MinBFT and MinZyzzyva presented the best
latency results when the latency is greater than 2 ms, due
to their smaller number of communication steps. Surpris-
ingly, MinBFT executes requests with almost the same
latency as MinZyzzyva, which contradicts the theoretical
number of communication steps of these algorithms: 4 and
3 respectively. The explanation for this fact highlights one
interesting advantage of MinBFT when tolerating a sin-
gle fault. In a setup with f = 1 in which the network la-
tency is stable, replicas receive the PREPARE and COMMIT
messages from the primary almost together (the primary
“sends” the PREPARE to itself and sends its COMMIT im-
mediately). Since, the MinBFT algorithm needs only f +1
COMMIT messages to accept a request, with f = 1 only
two COMMITs are required. These two COMMITs would be
received just after the PREPARE: one from the leader and
another from the server itself. Therefore, the client request
is executed soon after the PREPARE message from the pri-
mary server arrives, making MinBFT reach the latency of
MinZyzzyva. In setups with f > 1 this nice feature will not
appear since the quorum for COMMIT acceptance should
contains at least 3 replicas. However, the use of smaller
quoruns can make our algorithms more efficient in real net-
works due to their large variance in link latency [22].

8.3 Comparing Different USIG Versions
To explore the different implementations of the USIG ser-
vice and the computational overhead added by different
cryptographic mechanisms we measured the latency and
throughput of MinBFT and MinZyzzyva with all our differ-
ent USIG implementations in a LAN, excluding the TPM-
based USIG that will be discussed in the next section.

Figure 6 shows the results for our latency experiments.
The signature-based versions of the algorithms add signifi-
cant computational overheads when compared with MAC-
based authenticators.

 0

 5

 10

 15

 20

 25

Hmac (NS) Hmac Esign (NS) Esign RSA (NS) RSA

La
te

nc
y

(m
illi

se
co

nd
s)

MinZyzzyva
MinBFT

Figure 6: Latency of 0/0 operations for MinBFT and
MinZyzzyva using several USIG implementations.

Algorithm createUI verifyUI

Hmac (SHA1) 0.008 0.007
ESIGN (2048 bits) 1.035 0.548
RSA (1024 bits) 10.683 0.580

Table 3: Overhead (in milliseconds) of UI creation and verifica-
tion for messages with 20 bytes (the size of request hash).

Since the algorithms require two createUI calls and
one (in MinZyzzyva) or f +1 (in MinBFT) verifyUI call
in their critical path, the algorithms latencies are very de-
pendent of the USIG implementation. To better understand
the nature of that relation, it is worth understanding the
costs of the cryptography employed in these versions. Ta-
ble 3 presents the latency of createUI and verifyUI on
several implementations of NS-USIG (with has no access
cost). The data in this table explains the results observed
on Figure 6: roughly, the use of ESIGN adds 2.5 ms to
the latency of MinBFT when compared with Hmac, while
RSA adds 17.5 ms when compared with ESIGN. As a side
note, the same RSA implementation when run on a 64-bit
2.3GHz quadcore Xeon machine, with a 64-bit JVM, exe-
cute createUI and verifyUI in 2.496 and 0.128 ms, re-
spectively, a gain of 80% when compared with the results
of the table. This allow us to conclude that asymmetric
crypto can be used successfully in high-end servers, spe-
cially if one can make separate threads run the tasks of sig-
nature generation.

Figure 7 shows the throughput of the algorithms with
the different USIG implementations. The VM-based ver-
sions have throughput lower than the non-secure versions
due to the overhead to access the trusted service. This dif-
ference is especially relevant when comparing the values
for the VM-based MinBFT using Hmac and its correspond-
ing Non-Secure version because the UI verification is exe-
cuted inside of the trusted component.

12

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

Hmac (NS) Hmac Esign (NS) Esign RSA (NS) RSA

Pe
ak

 T
hr

ou
gh

pu
t (

op
er

at
io

ns
/s

ec
on

d)

MinZyzzyva
MinBFT

Figure 7: Peak throughput for 0/0 operations in for MinBFT and
MinZyzzyva using several USIG implementations.

This graph shows that the costs of accessing the VM-
based USIG lowers the peak throughput by a factor from
6% (MinZyzzyva-Sign(ESIGN)) to 16% (MinBFT-Hmac).
It shows that the VM-based isolation is a cost-effective so-
lution in the sense that a moderate level of isolation can be
obtained without losing too much performance.

8.4 Hardware-based USIG Performance
Table 4 presents the latency and peak throughput of the
USIG service implemented on a Atmel TPM 1.2 chip inte-
grated to the mainboard of machines.

Algorithm Latency Peak Throughput
MinBFT 1617 23404
MinZyzzyva 1552 24179

Table 4: Latency and peak throughput of MinBFT and
MinZyzzyva using the TPM USIG.

The time taken by the TPM-based USIG service to run
createUI is 797 ms, almost all of which is taken by the
TPM to increment the counter and produce an RSA sig-
nature. In this sense, the latency values can be explained
by the execution of two createUI executed in the criti-
cal path of the algorithm. The verification of a UI takes
approximately 0.07 ms, since it is executed outside of the
TPM, so, its effect in the latency is minimal.

The peak throughput shows that the values are not
so bad if compared with the values presented in Figure
7. However, to obtain these values with TPM USIG we
needed to batch a large number of requests in the PRE-
PARE messages because the restriction of one increment
by 3.5 seconds. The throughput is strictly dependent of the
number of messages batched during this time, in our ex-
periments we found that the peak throughput was achieved
with batches with more than 20000 messages. So, the be-
havior of the execution of our system is: 3.5 seconds with-
out accepting any message followed by one second accept-
ing with more than 20000 messages, which may be unac-
ceptable in many practical services.

There are at least two important reasons for the poor

performance of the TPM USIG. The first is the maxi-
mum increment rate of the TPM monotonic counter, which
makes the system able to execute one agreement (to order a
batch of messages) every 3.5 seconds. The TPM specifica-
tion version 1.2 defines that the monotonic counter “must
allow for 7 years of increments every 5 seconds” and “must
support an increment rate of once every 5 seconds” [36].
The text is not particularly clear so the implementers of
the TPM seem to have concluded that the counter must
not be implemented faster than once every 5 seconds ap-
proximately, while the objective was to prevent the counter
from burning out in less than 7 years. The counter value
has 32 bits, so it might be incremented once every 52 ms
still attaining this 7-year target. Furthermore, if in a fu-
ture TPM version the counter size is increased to 64 bits
(as it is in our VM-based USIG), it becomes possible to in-
crement a counter every 12 picoseconds, which will make
this limitation disappear. The second reason for the poor
performance we observed is the time the TPM takes to do
a signature (approximately 700 ms). A first comment is
that normally cryptographic algorithms are implemented in
hardware to be faster, not slower, but our experiments have
shown that with the TPM the opposite is true. This sug-
gests that the performance of the TPM signatures might be
much improved. We believe that it will be indeed improved
with the development of new applications for the TPM.
Moreover, at least Intel is much interested in developing
the TPM hardware. For instance, it recently announced
that it will integrate the TPM directly into its next genera-
tion chipset [9]. Others have also been pushing for faster
TPM cryptography [31].

8.5 Macro-Benchmark
To explore the costs of the algorithms in a real application,
we integrated them with JNFS, an open source implemen-
tation of NFS that runs on top of a native file system [38].
We compare the latencies obtained with a single server run-
ning plain JNFS and with three different replication sce-
narios integrating JNFS with JPBFT, MinBFT-Hmac and
MinZyzzyva-Sig.

The macro-benchmark workload consists of five
phases: (1) create/delete 6 subdirectories recursively; (2)
copy/remove a source tree containing 7 files with up 4Kb;
(3) examine the status of all files in the tree without exam-
ining their data (returning information as owner, size, date
of creation); (4) examine every byte of data in a file with
4Kb size; (5) create a 4Kb file.

Table 5 shows the results of the macro-benchmark ex-
ecution. The values are the mean of the latencies of 200
runs for each phase of the workload in two independent
executions. The standard deviations for the total time to
run the benchmark with MinBFT and MinZyzzyva were
always below 0.4% of the value reported. Note that the
overhead caused by the replication algorithms is uniform
across the benchmark phases in all algorithms. The total

13

time of an operation in a replication scenario is defined by
the operation time observed in JNFS in a single server plus
the algorithm latency. The main conclusion of the macro-
benchmark was that the overhead introduced by the repli-
cation is not too high (no more than 3%).

Phase JNFS JPBFT MinBFT-Hmac MinZyzzyva-Sig
1 26 28 29 29
2 681 685 687 688
3 20 22 23 23
4 5 7 8 8
5 108 111 113 114

Total 840 852 860 862
Table 5: Macro-benchmark: latencies of JNFS alone and repli-
cated with BFT algorithms (milliseconds)

9 Related Work
The idea of tolerating intrusions (or arbitrary/Byzantine
faults) in a subset of servers appeared in seminal works by
Pease et al. [34] and Fraga and Powell [18]. However, the
concept started raising more interest much later with works
such as Rampart [39] and PBFT [12].

Most work in the area uses a homogeneous fault model,
in which all components can fail in the same way, although
bounds on the number of faulty components are established
(e.g., less than a third of the replicas). With this fault model
and an asynchronous time model it has been shown that it
is not possible to do Byzantine fault-tolerant state machine
replication with less than 3 f +1 replicas [46].

The idea of exploring a hybrid fault model in the con-
text of intrusion tolerance or Byzantine fault tolerance, was
first explored in the TTCB work [15]. The idea was to ex-
tend the “normal” replicas that might be faulty with a tam-
perproof subsystem. This concept was later generalized
with the notion of wormholes [48].

It was in this context that the first 2 f +1 state machine
replication solution appeared [14]. The TTCB had the job
of ordering the clients’ requests. The atomic multicast al-
gorithm did not follow a Paxos-like message pattern, but
made destination agreement, i.e., consensus on the order
of execution [17].

Recently Chun et al. presented another 2 f + 1 BFT
algorithm based on similar ideas, A2M-PBFT-EA [13].
This algorithm requires only local tamperproof compo-
nents (to implement the A2M abstraction). MinBFT and
MinZyzzyva are also 2 f + 1 BFT algorithms but that, on
the contrary the previous two, are minimal in the several
senses discussed above. Furthermore, A2M-PBFT-EA is a
modification of PBFT, while MinBFT is a novel algorithm
that is simpler and more efficient in terms of number of
communication steps and MACs at the bottleneck server.

The quest for reducing the number of replicas of BFT
algorithms had other interesting developments. Yin et
al. presented a BFT algorithm for an architecture that sep-
arates agreement (made by 3 f + 1 servers) from service

execution (made by 2 f + 1 servers) [51]. This was an im-
portant contribution to the area because service execution
is expected to require much more computational resources
than agreement. However agreement still needs 3 f + 1
machines, while in the present work we need only 2 f + 1
replicas also for agreement. Li and Mazieres proposed an
algorithm, BFT2F, that needs 3 f + 1 replicas but if more
than f but at most 2 f replicas are faulty, the system still
behaves correctly, albeit sacrificing either liveness or pro-
viding only weaker consistency guarantees [26].

Quorum systems are a way to reason about subsets of
servers (quorums) from a group. Quorums can be used to
implement data storage in which data can be written and
read. These systems are less powerful than state machine
replication that is a generic solution to implement (Byzan-
tine) fault-tolerant systems. Martin et al. have shown that
it is possible to implement quorum-based data storage with
only 2 f +1 replicas [30].

The main quest in BFT algorithms has been for speed.
PBFT has shown that these algorithms “can be fast” [12]
but others appeared that tried to do even better. HQ com-
bined quorum algorithms with PBFT with very good per-
formance when the operations being done do not “inter-
fere” [16]. Another similar algorithm, Q/U, uses lighter,
quorum-based algorithms, but does not ensure the termi-
nation of the requests in case there is contention [1]. Very
recently Zyzzyva exploits speculative execution to reduce
the number of communication steps and cryptographic op-
erations establishing a new watermark for the performance
of these algorithms [24]. An instructive comparison of
these algorithms based on simulations was recently pub-
lished [44].

Monotonic counters are a service of the TPM that ap-
peared only in version 1.2 [36, 37]. Two papers have shown
the use of these counters in very different ways than we
way we use them. Dijk et al. addressed the problem of us-
ing an untrusted server with a TPM to provide trusted stor-
age to a large number of clients [47]. Each client may own
and use several different devices that may be offline at dif-
ferent times and may not be able to communicate with each
other except through the untrusted server. The challenge of
this work is not to guarantee the privacy or integrity of the
clients’ data, but in guaranteeing the data freshness. It in-
troduces freshness schemes based on a monotonic counter,
and shows that they can be used to implement tamper-
evident trusted storage for a large number of users.

The TCG specifications mandate the implementation of
four monotonic counters in the TPM, but also that only one
of them can be used between reboots [36]. Sarmenta et
al. override this limitation by implementing virtual mono-
tonic counters on an untrusted machine with a TPM [41].
These counters are based on a hash-tree-based scheme and
the single usable TPM monotonic counter. These virtual
counters are shown to allow the implementation of count-
limited objects, e.g., encrypted keys, arbitrary data, and

14

other objects that can only be used when the associated
counter is within a certain range.

10 Conclusion
BFT algorithms typically require 3 f + 1 servers to toler-
ate f Byzantine servers, which involves considerable costs
in hardware, software and administration. Therefore re-
ducing the number of replicas has a very important impact
in the cost of the system. We show that using a minimal
trusted service (only a counter plus a signing function) it
is possible to reduce the number of replicas to 2 f + 1 pre-
serving the same properties of safety and liveness of tradi-
tional BFT algorithms. Furthermore, we present two BFT
algorithms that are minimal, not only in terms of number
of replicas and trusted service used, but also of commu-
nication steps in nice executions: 4 and 3 steps, respec-
tively without and with speculation. This is an important
aspect in terms of latency, especially in networks with non-
negligible communication delays. In contrast with the two
previous 2 f + 1 BFT algorithms, we were able to use the
TPM as the trusted component due to the simplicity of our
USIG service.

References
[1] M. Abd-El-Malek, G. Ganger, G. Goodson, M. Reiter, and J. Wylie.

Fault-scalable Byzantine fault-tolerant services. In Proceedings of
the 20th ACM Symposium on Operating Systems Principles, pages
59–74, Oct. 2005.

[2] Advanced Micro Devices. Amd64 virtualization: Secure virtual ma-
chine architecture reference manual. Technical report, May 2005.

[3] A. Adya, W. J. Bolosky, M. Castro, G. Cermak, R. Chaiken, J. R.
Douceur, J. Howell, J. R. Lorch, M. Theimer, and R. P. Watten-
hofer. Farsite: federated, available, and reliable storage for an in-
completely trusted environment. In Proceedings of the 5th Sym-
posium on Operating Systems Design and Implementation, pages
1–14, 2002.

[4] A. S. Aiyer, L. Alvisi, A. Clement, M. Dahlin, J. Martin, and
C. Porth. BAR fault tolerance for cooperative services. In Proceed-
ings of the 20th ACM Symposium on Operating Systems Principles,
Oct. 2005.

[5] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru,
J. Olsen, and D. Zage. Scaling Byzantine fault-tolerant replication
to wide area networks. In Proceedings of the IEEE International
Conference on Dependable Systems and Networks, pages 105–114,
June 2006.

[6] P. Barham, B. Dragovic, K. Fraiser, S. Hand, T. Harris, A. Ho,
R. Neugebaurer, I. Pratt, and A. Warfield. Xen and the art of virtual-
ization. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 164–177, Oct. 2003.

[7] A. N. Bessani, E. P. Alchieri, M. Correia, and J. S. Fraga. DepSpace:
a Byzantine fault-tolerant coordination service. In Proceedings of
the 3rd ACM SIGOPS/EuroSys European Systems Conference, Apr.
2008.

[8] G. Bracha. An asynchronous &(n− 1)/3'-resilient consensus pro-
tocol. In Proceedings of the 3rd ACM Symposium on Principles of
Distributed Computing, pages 154–162, Aug. 1984.

[9] M. Branscombe. How hardware-based security protects
PCs. Tom’s Hardware, http://www.tomshardware.com/reviews/
hardware-based-security-protects-pcs,1771.html, Feb. 2008.

[10] C. Cachin and A. Samar. Secure distributed DNS. In Proceedings of
the International Conference on Dependable Systems and Networks,
pages 423–432, 2004.

[11] M. Castro and B. Liskov. Practical Byzantine fault tolerance. In
Proceedings of the 3rd Symposium on Operating Systems Design
and Implementation, pages 173–186, Feb. 1999.

[12] M. Castro and B. Liskov. Practical Byzantine fault tolerance
and proactive recovery. ACM Transactions on Computer Systems,
20(4):398–461, Nov. 2002.

[13] B.-G. Chun, P. Maniatis, S. Shenker, and J. Kubiatowicz. Attested
append-only memory: making adversaries stick to their word. In
Proceedings of the 21st ACM Symposium on Operating systems
principles, Oct. 2007.

[14] M. Correia, N. F. Neves, and P. Verissimo. How to tolerate half less
one Byzantine nodes in practical distributed systems. In Proceed-
ings of the 23rd IEEE Symposium on Reliable Distributed Systems,
pages 174–183, Oct. 2004.

[15] M. Correia, P. Verissimo, and N. F. Neves. The design of a COTS
real-time distributed security kernel. In Proceedings of the 4th Eu-
ropean Dependable Computing Conference, pages 234–252, Oct.
2002.

[16] J. Cowling, D. Myers, B. Liskov, R. Rodrigues, and L. Shrira. HQ-
Replication: A hybrid quorum protocol for Byzantine fault toler-
ance. In Proceedings of 7th Symposium on Operating Systems De-
sign and Implementations, pages 177–190, Nov. 2006.

[17] X. Défago, A. Schiper, and P. Urbán. Total order broadcast and mul-
ticast algorithms: Taxonomy and survey. ACM Computing Surveys,
36(4):372–421, Dec. 2004.

[18] J. S. Fraga and D. Powell. A fault- and intrusion-tolerant file system.
In Proceedings of the 3rd International Conference on Computer
Security, pages 203–218, Aug. 1985.

[19] T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh. Terra:
a virtual machine-based platform for trusted computing. In Proceed-
ings of the 19th ACM Symposium on Operating Systems Principles,
pages 193–206, 2003.

[20] M. Gasser. Building a Secure Computer System. Van Nostrand
Reinhold, 1988.

[21] Intel Corporation. LaGrande technology preliminary architecture
specification. Intel Publication D52212, May 2006.

[22] F. Junqueira, Y. Mao, and K. Marzullo. Classic paxos vs. fast paxos:
Caveat emptor. In Proceedings of 3rd Workshop on Hot Topics on
System Dependability - HotDep’07, 2007.

[23] S. Kinney. Trusted Platform Module Basics. Elsevier, 2006.

[24] R. Kotla, L. Alvisi, M. Dahlin, A. Clement, and E. Wong. Zyzzyva:
speculative Byzantine fault tolerance. In Proceedings of the 21st
Symposium on Operating Systems Principles, Oct. 2007.

[25] L. Lamport, R. Shostak, and M. Pease. The Byzantine generals
problem. ACM Transactions on Programming Languages and Sys-
tems, 4(3):382–401, July 1982.

[26] J. Li and D. Mazieres. Beyond one-third faulty replicas in Byzantine
faul tolerant systems. In Proceedings of the 4th USENIX Symposium
on Networked Systems Design & Implementation, pages 131–144,
Apr. 2007.

[27] B. Littlewood and L. Strigini. Redundancy and diversity in security.
In P. Samarati, P. Rian, D. Gollmann, and R. Molva, editors, Com-
puter Security – ESORICS 2004, 9th European Symposium on Re-
search Computer Security, LNCS 3193, pages 423–438. Springer,
2004.

[28] J. Marchesini, S. Smith, O. Wild, and R. MacDonald. Experiment-
ing with TCPA/TCG hardware, or: How I learned to stop worrying
and love the bear. Computer Science Technical Report TR2003-476,
Dartmouth College, Dec. 2003.

15

[29] J. P. Martin and L. Alvisi. Fast Byzantine consensus. IEEE Transac-
tions on Dependable and Secure Computing, 3(3):202–215, 2006.

[30] J. P. Martin, L. Alvisi, and M. Dahlin. Minimal Byzantine stor-
age. In Proceedings of the 16th International Conference on
Distributed Computing, volume 2508 of LNCS, pages 311–325.
Springer-Verlag, Oct. 2002.

[31] J. M. McCune, B. Parno, A. Perrig, M. K. Reiter, and A. Seshadri.
How low can you go? recommendations for hardware-supported
minimal TCB code execution. In Proceedings of the 13th Interna-
tional Conference on Architectural Support for Programming Lan-
guages and Operating Systems, pages 14–25, Mar. 2008.

[32] J. M. McCune, B. J. Parno, A. P., M. K. Reiter, and H. Isozaki.
Flicker: an execution infrastructure for TCB minimization. In Pro-
ceedings of the 3rd ACM SIGOPS/EuroSys European Systems Con-
ference, Apr. 2008.

[33] R. R. Obelheiro, A. N. Bessani, L. C. Lung, and M. Correia. How
practical are intrusion-tolerant distributed systems? DI-FCUL TR
06–15, Dep. of Informatics, Univ. of Lisbon, Sept. 2006.

[34] M. Pease, R. Shostak, and L. Lamport. Reaching agreement in the
presence of faults. Journal of the ACM, 27(2):228–234, Apr. 1980.

[35] Trusted Computing Group. TPM Main, Part 1 Design Principles.
Specification Version 1.2, Revision 62.

[36] Trusted Computing Group. TPM Main, Part 1 Design Principles.
Specification Version 1.2, Revision 103. July 2007.

[37] Trusted Computing Group. TPM Main, Part 3 Commands. Specifi-
cation Version 1.2, Revision 103. July 2007.

[38] M. J. Radwin. Java network file system. http://www.radwin.org
/michael/projects/jnfs/paper/jnfs.html.

[39] M. K. Reiter. The Rampart toolkit for building high-integrity ser-
vices. In Theory and Practice in Distributed Systems, volume 938 of
Lecture Notes in Computer Science, pages 99–110. Springer-Verlag,
1995.

[40] M. K. Reiter, M. K. Franklin, J. B. Lacy, and R. N. Wright. The
Ω key management service. In Proceedings of the 3rd ACM Con-
ference on Computer and Communications Security, pages 38–47,
1996.

[41] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes, and
S. Devadas. Virtual monotonic counters and count-limited objects
using a TPM without a trusted OS. In Proceedings of the 1st ACM
Workshop on Scalable Trusted Computing, pages 27–42, Nov. 2006.

[42] F. B. Schneider. Implementing faul-tolerant services using the
state machine approach: A tutorial. ACM Computing Surveys,
22(4):299–319, Dec. 1990.

[43] L. Singaravelu, C. Pu, H. Härtig, and C. Helmuth. Reducing TCB
complexity for security-sensitive applications: three case studies.
SIGOPS Operating Systems Review, 40(4):161–174, 2006.

[44] A. Singh, P. Maniatis, P. Druschel, and T. Roscoe. BFT protocols
under fire. In Proceedings of the 4th Symposium on Networked Sys-
tems Design and Implementation, Apr. 2008.

[45] R. Ta-Min, L. Litty, and D. Lie. Splitting interfaces: making trust
between applications and operating systems configurable. In Pro-
ceedings of the 7th Symposium on Operating Systems Design and
Implementation, pages 279–292, 2006.

[46] S. Toueg. Randomized Byzantine agreements. In Proceedings of
the 3rd ACM Symposium on Principles of Distributed Computing,
pages 163–178, Aug. 1984.

[47] M. van Dijk, J. Rhodes, L. F. G. Sarmenta, and S. Devadas. Of-
fline untrusted storage with immediate detection of forking and re-
play attacks. In Proceedings of the 2nd ACM Workshop on Scalable
Trusted Computing, pages 41–48, Nov. 2007.

[48] P. Verissimo. Travelling through wormholes: A new look at dis-
tributed systems models. SIGACT News, 37(1):66–81, 2006.

[49] G. S. Veronese, M. Correia, A. Bessani, L. Chung, and P. Verissimo.
Minimal Byzantine fault tolerance. Technical report, Mar. 2008.
http://sites.google.com/site/minibft/.

[50] M. Welsh, D. Culler, and E. Brewer. Seda: an architecture for well-
conditioned, scalable internet services. In Proceedings of the 18th
ACM symposium on Operating systems principles - SOSP ’01, pages
230–243, 2001.

[51] J. Yin, J. Martin, A. Venkataramani, L. Alvisi, and M. Dahlin. Sep-
arating agreement from execution for Byzantine fault tolerant ser-
vices. In Proceedings of the 19th ACM Symposium on Operating
Systems Principles, pages 253–267, Oct. 2003.

[52] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure dis-
tributed on-line certification authority. ACM Transactions on Com-
puter Systems, 20(4):329–368, Nov. 2002.

A MinBFT Correctness
This section sketches proofs of the correctness of MinBFT.
We have to prove that the safety property is always satis-
fied (i.e., that all servers execute the same requests in the
same order) and the same for liveness (i.e., that all clients’
requests are eventually executed).

Safety The proof that MinBFT satisfies the safety prop-
erties is the following.

Lemma 1 In a view v, if a correct server executes an op-
eration o with sequence number i, no correct server will
execute o with sequence number i′ (= i.

Proof: If a correct server s executes o with sequence num-
ber i, it must have received f +1 valid COMMIT messages
for 〈o, i〉 from a quorum Q of servers. The proof is by con-
tradiction. Suppose there is another correct server s′ that
executes o with sequence number i′ > i. By the MinBFT
algorithm, this can only happen if it receives f + 1 valid
COMMIT messages for 〈o, i′〉, from a quorum Q′ of f + 1
servers. Since n = 2 f +1 and |Q|+ |Q′|= 2 f +2≥ 2 f +1,
there must be at least one server r (called intersection
server) that sends COMMIT messages both for 〈o, i〉 and
〈o, i′〉. Assuming that the primary on view v is the server
p, we have to consider four cases:

1. the primary and the intersection server are correct:
in this case it is trivial to see that the primary will
not generate two UIs for the same request operation
o, so the intersection server will never send two valid
COMMIT messages for 〈o, i〉 and 〈o, i′〉.

2. the primary is correct and the intersection server is
faulty: The (faulty) intersection server would only be
able to send valid COMMIT messages for 〈o, i〉 and
〈o, i′〉 if these messages contained UIp = 〈i,H(o)〉p
and UI′p = 〈i′,H(o)〉p, respectively. Since the primary
is correct, it will never invoke createUI for the same
operation o twice and consequently it will never pro-
duce these two UIs.

16

3. the primary is faulty and the intersection server is cor-
rect: Now the primary will create PREPARE messages
containing UIp = 〈i,H(o)〉p and UI′p = 〈i′,H(o)〉p
and send them to the intersection server in order to try
to make it send COMMIT messages both for 〈o, i〉 and
〈o, i′〉. However, due to the verification of the seq field
of the request operations, which is part of o, the inter-
section replica will not accept the second PREPARE
for the same operation o, issued by client c, because
o.seq = Vreq[c], and the servers only accept operations
from clients if their sequence number is greater than
their previous number (i.e., if o.seq > Vreq[c]).

4. the primary and the intersection server are faulty:
Now both the primary and the intersection server are
in collusion to make two servers execute the same
operation with different numbers. Suppose that the
intersection server r sends 〈COMMIT,v,r,s,UIp,UIr〉
message to s for 〈o, i〉 and 〈COMMIT,v,r,s′,UI′p,UI′r〉
message to s′ for 〈o, i′〉. Suppose UIp = 〈i,H(o)〉p and
UI′p = 〈i′,H(o)〉p such that i < i′. In this case, there
are two cases to consider:

(a) s′ executed some operation with sequence num-
ber i. In this case its sequence of operations
does not contain a “hole”, but since the USIG
service does not allow the primary p to gener-
ate two UIs for different message with the same
sequence number, the operation with sequence
number i must be o (the same executed by s),
and thus s′ will not execute o again with i′ be-
cause o.seq ≤Vreq[c];

(b) s′ did not execute some operation with sequence
number i. In this case the server will only exe-
cute o with sequence number i′ if it executed all
operations with sequence number < i′, and since
it did not execute any operation with sequence
number i, it will halt waiting for this operation
to be executed.

Consequently, it is not possible for two clients to exe-
cutes the same operation with different sequence number
in view v. "Lemma 1

Lemma 2 If a correct server executes an operation o with
sequence number i in a view v, no correct server will exe-
cute o with sequence number i′ (= i in any view v′ > v.

Proof: If a correct server s executes o with sequence num-
ber i in a view v, it must have received f + 1 valid COM-
MIT messages for 〈o, i,v〉 from a quorum Q of servers. The
proof is again by contradiction. Suppose there is another
correct server s′ that executes o with sequence number i′ > i
in a view v′ > v. By the MinBFT algorithm, this can only
happen if it receives f + 1 valid COMMIT messages for
〈o, i′,v′〉, from a quorum Q′ of servers. Since n = 2 f + 1

and |Q|+ |Q′| = 2 f + 2 ≥ 2 f + 1, there must be at least
one server r (called again intersection server) that sends
COMMIT messages both for 〈o, i,v〉 and 〈o, i′,v′〉.

Now let us prove that this leads to a contradiction. For
simplicity we start by considering that v′ = v + 1, then we
expand the proof for arbitrary values of v′.

First we show that the primary of the new view (p)
must assert that o was accepted/executed before v′, i.e.,
that it can not deny this fact. This assertion is done
explicitly or implicitly in the new-view certificate Vvc
that it sends in the NEW-VIEW message that starts view
v′: 〈NEW-VIEW, p,v′,Vvc,S,UIi〉. This certificate is com-
posed by f + 1 VIEW-CHANGE messages that p received
from a quorum Q′′ with that many servers, one of which
must be correct. Consider a server r ∈ Q′′ for which
the VIEW-CHANGE message included in Vvc is 〈VIEW-
CHANGE,r,v′,Clast ,O,UIs〉. We have to consider four
cases:

1. the primary p is correct and there is a correct server
r ∈ Q′′ that executed o: if p is correct it inserts in Vvc
f +1 VIEW-CHANGE messages, including the one that
comes from r. There are two possibilities:

(a) o was executed after the last stable checkpoint:
r is correct so O contains the COMMIT message
that r sent for o, therefore Vvc and S assert ex-
plicitly that o was executed.

(b) o was executed before the last stable checkpoint:
the execution of o is implicit in Clast so Vvc as-
serts implicitly that o was executed.

2. the primary p is correct but there is no correct server
in Q′′ that executed o: In this situation at least one
faulty server r ∈ Q′′ accepted o because |Q|+ |Q′′| =
2 f +2 ≥ 2 f +1. Again there are two possibilities:

(a) o was executed after the last stable checkpoint:
r might be tempted to not include the COMMIT
message for o in O but if it did it p would not
put the VIEW-CHANGE message from r in Vvc.
The reason is that for not putting o in O r would
have to do one of two things that would be de-
tected by p: (1) if r executed a request o′ after
o, r might put the COMMIT message for o′ in O
but not the message for o, which would leave a
“hole” in O that would be detected by p; (2) if r
sent the COMMIT message for o with a UI with
counter value cv, it might not put in O any COM-
MIT with cv′ ≥ cv, but that would be detected
by p because r would have to sign the VIEW-
CHANGE message with a UI with counter value
cv′′ > cv+1. Therefore, for the VIEW-CHANGE
message from r to be inserted in Vvc by p, r must
include the COMMIT message for o in O, falling
in case 1a above.

17

(b) o was executed before the last stable checkpoint:
in this situation the execution of o is implicit in
the certificate of the last stable checkpoint (see
case 1b above). The faulty server r may attempt
to put an older checkpoint in the VIEW-CHANGE
message but p will never insert this message in
Vvc because r would have to do one of the two
detectable things pointed out in case 2a. There-
fore, we fall in case 1b.

3. the primary p is faulty but there is a correct server
r ∈ Q′′ that executed o: in this case the faulty primary
may attempt to modify the content of O that it inserts
in Vvc. If it simply removes o from O it leaves a hole,
which is detectable. If it removes o and all later mes-
sages this is also detectable because p can not forge
a UI from r with the following counter value. If p
tries to substitute the checkpoint certificate Clast for
an older one it also can not forge the UI. Even if it
substitutes the checkpoint for an older checkpoint sent
by r, this is detectable (servers known that r sent mes-
sages afterwards). This shows that these attacks are
detectable so we have only to show that they are in-
deed detected. This is the case because when a correct
server receives a NEW-VIEW message it checks the va-
lidity of Vvc. Therefore, a faulty primary can not tam-
per the content of the correct server VIEW-CHANGE
message so we fall in case 1.

4. the primary p is faulty and there is no correct server
that executed o in Q′′: even if there is no correct server
that executed o in Q′′, there must be one faulty server
r ∈ Q′′ that executed o because |Q|+ |Q′′| = 2 f +2 ≥
2 f + 1. For case 2 we already showed that r can
not make the primary believe that it did not execute
o. However, in this case the primary p is faulty so p
can insert the VIEW-CHANGE message sent by r in Vvc
anyway. However, this falls in case 3 because correct
servers will validate Vvc when they receive the NEW-
VIEW message from p. Therefore we end up falling
in case 1.

This shows that the primary p of the new view v′ must
assert that o was accepted/executed before v′ in the new-
view certificate Vvc. Now we prove that no correct server
will execute o with sequence number i′ (= i in view v′. We
have to consider two cases:

1. the primary is correct: as already shown, the primary
must know that o was executed so it will never gen-
erate a second UI for the same request and correct
servers will not send a COMMIT message for o in view
v′.

2. the primary is faulty: in this case the primary can
create a new PREPARE message containing UI′p =

〈i′,H(o)〉p and send it to the servers, say, to r. How-
ever, r will verify the request number in the seq field
of o and discover that o.seq≤Vreq[c] meaning that the
request was already executed, so it will not execute it
again.

This proves the lemma for v′ = v +1. Now we have to
expand for arbitrary values of v′. There are two cases:

1. v′ = v+k but no requests were accepted in any view v′′
such that v′ < v′′ < v+ k: this situation can be caused
but an instability in the network that leads to several
consecutive executions of the view change algorithm.
It is trivial to understand that this case falls into the
case of v′ = v+1 because nothing relevant happens in
the views v′′.

2. the generic case where there are “real” views between
v and v′: an analysis of the proof for the case of v′ =
v + 1 shows that the information that is propagated
from view v to v+1 about requests that were executed
is also propagated to later views, either explicitly in
the O sets while there are no checkpoints, or implicitly
in the checkpoints. This is the information used to
prevent requests from being re-executed so this case
falls into the case of v′ = v+1 .

"Lemma 2

Theorem 1 Let s be the correct server that executed more
operations of all correct servers up to a certain instant. If
s executed the sequence of operations S = 〈o1, ...oi〉, then
all other correct servers executed this same sequence of
operations or a prefix of it.

Proof: Let prefix(S,k) be a function that gets the pre-
fix of sequence S containing the first k operations, with
prefix(S,0) being the empty sequence. Let ‘.’ be an op-
erator that concatenates sequences.

Assume that the theorem is false, i.e., that there is a
correct server s′ that executed some sequence of opera-
tions S′ that is not a prefix of S. More formally, assume
that prefix(S′, j) = prefix(S, j − 1).〈o′j〉 and prefix(S′, j −
1).〈o j〉 = prefix(S, j), with o′j (= o j. In this case o′j is the
j-th operation executed in s′ and o j is the j-th operation
executed in s. Assume that o j was executed in view v by
s and o′j was executed in view v′ by s′. If v = v′, this con-
tradicts Lemma 1, and if v (= v′ it contradicts Lemma 2.
Consequently, the theorem holds. "Theorem 1

Liveness In the following we present the proof of live-
ness for the MinBFT algorithm. We say that an operation
request issued by a client c completes when c receives the
same response for the operation from at least f + 1 differ-
ent servers. We define a stable view as a view in which the
primary is correct and no timeouts expire at correct repli-
cas.

18

Lemma 3 During a stable view, an operation requested by
a correct client completes.

Proof: If the client c is correct it will send its operation
o with a sequence number greater than any of its previous
requests to all servers. Since, in a stable view the primary
p is correct, it will generate an UI = 〈i,H(o)〉p and send it
to all servers in a PREPARE message. A correct server will
receive this message, verify the validity of UI by calling
verifyUI, and send a COMMIT message for 〈o, i〉. Since
there are at most f faulty servers on the system, there are at
least f +1 correct servers (the primary plus other f servers)
that will produce these COMMIT messages and send them
to all servers. When a correct server receives f + 1 COM-
MIT messages, it executes o8) and send a reply to the client
c. When c receives f + 1 equal replies the operation com-
pletes, which must happen since there are f + 1 correct
servers and all of them will produce the same result when
executing o as their i-th operation. "Lemma 3

Lemma 4 A view v eventually will be changed to a new
view v′ > v if at least f + 1 correct servers request its
change.

Proof: To request a view change, a correct server s sends a
〈REQ-VIEW-CHANGE,s,v,v′〉 to all servers, where v is the
current view number and v′ = v +1 the new view number.
Consider that a quorum of f +1 correct servers Q requests
this view change from view v to view v + 1. The primary
for the view is by definition p ! (v + 1) mod n. There are
two cases:

1. the view is stable: this means that all servers in Q
receive the REQ-VIEW-CHANGE messages from each
another. When one of these servers (s) receives the
f +1th of these messages, it sends to all other servers
a message 〈VIEW-CHANGE,s,v′,Clast ,O,UIs〉. All
the VIEW-CHANGE messages sent by servers in Q
are received by all servers. The primary p for
view v + 1 is correct so it sends a message 〈NEW-
VIEW, p,v′,Vvc,S,UIp〉 to all servers. No timeouts ex-
pire (the view is stable) so all servers receive this mes-
sage and the view changes to v+1.

2. the view is not stable: this case can be divided in two
cases:

(a) p is faulty and does not send the NEW-VIEW
message, or p is faulty and sends an invalid
NEW-VIEW message that is discarded by all cor-
rect servers, or p is not faulty but the commu-
nication is slow and the timeout expires in all

8Since the primary p is correct, when it was elected it disseminated
any pending requests of the previous view, and thus this server will not
have holes in its sequence of operations and will be able to execute the
request immediately.

correct servers: when the servers send a VIEW-
CHANGE message they start a timer that expires
after Tvc units of time. In this case this timeout
expires at all correct servers, which start another
view change.

(b) p is faulty and sends the NEW-VIEW message
but only to a quorum Q′ with at least f + 1
servers but less than f + 1 correct, or p is cor-
rect and the same effect happens due to com-
munication delays: in this case faulty servers in
Q′ can follow the algorithm making the correct
servers in Q′ believe that the algorithm is run-
ning normally. More precisely, the servers in Q′

can exchange PREPARE and COMMIT messages
following the algorithm. At the correct servers
that are not in Q′, a timer will expire after Tvc
units of time and these servers will send REQ-
VIEW-CHANGE messages, but there will not be
f +1 one of them so a view change will not hap-
pen. When faulty servers start to deviate from
the algorithm, requests will stop being accepted,
the correct servers in Q′ will send REQ-VIEW-
CHANGE messages and a view change will start.

In these last two cases (2a and 2b), when another view
change starts the system can fall again in one of the cases
1 or 2. However, eventually the view will become stable,
the system will fall in case 1 and the view will be changed
to a new view v′ > v. "Lemma 4

Theorem 2 An operation requested by a correct client
eventually completes.

Proof: The proof comes from the previous lemmas. In sta-
ble views, operations requested by correct clients eventu-
ally complete (Lemma 3). If the view v is not stable, there
are two possibilities:

1. timers expire and at least f +1 correct servers request
a view change: in this case the view will be changed
to a new view v′ > v (Lemma 4).

2. timers expire but less than f + 1 correct servers re-
quest a view change: this case is similar to case 2b
of Lemma 4. If there is a quorum Q of at least f + 1
servers that do not request the view change and that
go on following the algorithm in view v, exchang-
ing PREPARE and COMMIT messages, then the system
will stay in view v and requests from correct clients
will be executed. When there is no such a quorum
or requests are not executed within Texec, all correct
servers request a view change and we fall in the pre-
vious case.

"Theorem 2

19

B MinZyzzyva Correctness
The two properties that we have to prove about
MinZyzzyva are the same that were proved for Zyzzyva
[24]. These properties are defined from the point of view
of what is observed by a client. Informally, a request is said
to have complete if the client can use the reply to that re-
quest, i.e., if the client can be certain that the (speculative)
execution of that request will not be rolled back. Formally,
a request is said to have complete at a client if the client
received 2 f + 1 matching RESPONSE messages or f + 1
matching LOCAL-COMMIT messages for the request. The
properties that MinZyzzyva has to satisfy are:
Safety: If a request with sequence number seq and his-
tory hseq completes, then any request that completes with a
higher sequence number seq′ > seq has a history hseq′ that
includes hseq as a prefix.
Liveness: Any request issued by a correct client eventually
completes.

Safety The proof that MinBFT satisfies the safety prop-
erties is the following.

Lemma 5 In a view v, if a correct server executes an op-
eration o with sequence number i, no correct server will
execute o with sequence number i′ (= i.

Proof: Despite the differences of MinZyzzyva and
MinBFT, the proof of this lemma is similar to the proof
of Lemma 1. The basic idea is that replicas process the
primary messages by order of counter value in UI and the
primary can not associate the same UI to two different re-
quests due to the properties of the USIG service. "Lemma 5

Theorem 3 If a request with sequence number seq and
history hseq completes, then any request that completes
with a higher sequence number seq′ > seq has a history
hseq′ that includes hseq as a prefix.

Proof: Consider that the request o with sequence number
seq completes in view v and o′ with sequence number seq′
in view v′. We have to consider two cases:

1. v = v′: the proof is by contradiction. Assume that hseq′

does not include hseq as a prefix. This is in contradic-
tion with Lemma 5.

2. v (= v′: suppose that v′ = v+1 (the expansion for an ar-
bitrary relation v′ > v is simple and similar to the one
done in the proof of Lemma 2). First we have to show
that the primary of the new view (p) must assert that o
was completed before v′, i.e., that it can not deny this
fact. This assertion is done explicitly or implicitly in
the new-view certificate Vvc that it sends in the NEW-
VIEW message that starts view v′. However, the view
change operation of MinZyzzyva is almost identical

to the same operation of MinBFT so the proof is the
same as the one made in the proof of Lemma 2 and
we skip it here. Then, we have to consider two cases:

(a) o′ is the first request executed in view v′: when
the new view is installed the NEW-VIEW mes-
sage serves as a commit certificate to the re-
quests completed in view v′ − 1. Therefore,
hseq′−1 is committed and is a prefix of hseq′ (the
theorem states that o′ completes).

(b) o′ is not the first request executed in view v′: this
is trivially proved by induction considering case
2a as the base case and using Lemma 5 to prove
the induction step.

"Theorem 3

Liveness Now we prove the liveness of MinZyzzyva.

Lemma 6 During a stable view, an operation requested by
a correct client completes.

Proof: If the client c is correct it will send its operation o
with a sequence number greater than any of its previous re-
quests to all servers. Since, in a stable view the primary p is
correct, it will generate an UI = 〈i,H(o)〉p and send it to all
servers and to the client. A correct server will receive this
message, verify the validity of UI by calling verifyUI,
and send a RESPONSE message for 〈o, i〉 to the client. Since
there are at most f faulty servers on the system, there are at
least f +1 correct servers (the primary plus other f servers)
that will produce these RESPONSE messages and send them
to the client. There are two cases:

1. no faulty servers: the client receives 2 f + 1 RE-
SPONSE messages and the operation completes.

2. there are faulty servers: the client receives between
f + 1 (stable view) and 2 f RESPONSE messages.
When the timer expires the client sends a COMMIT
message to the servers, all correct servers reply with
a LOCAL-COMMIT message, and the operation com-
pletes.

"Lemma 6

Lemma 7 A view v eventually will be changed to a new
view v′ > v if at least f + 1 correct servers request its
change.

Proof: The view change operation of both algorithms is
similar so this proof is similar to the proof of Lemma 4.
"Lemma 7

Theorem 4 An operation requested by a correct client
eventually completes.

20

Proof: The proof comes from the previous lemmas simi-
larly to the proof of Theorem 2. In stable views, operations
requested by correct clients eventually complete (Lemma
6). If the view v is not stable, there are two possibilities:

1. at least f + 1 correct servers suspect of the primary
and request a view change: in this case the view will
be changed to a new view v′ > v (Lemma 7).

2. less than f +1 correct servers suspect of the primary
and request a view change: this case is similar to case
2b of Lemma 4. If there is a quorum Q of at least f +1
servers that do not request the view change and that go
on following the algorithm in view v, then the system
will stay in view v and requests from correct clients
will be executed. When there is no such a quorum
or requests are not executed within the timeout, all
correct servers request a view change and we fall in
the previous case.

"Theorem 4

C Implementing USIG-Sign with the
TPM

The simplicity of the USIG service allows it to be im-
plemented with the TPM. The implementation of the ser-
vice requires TPMs compliant with the Trusted Computing
Group (TCG) 1.2 specifications [36, 37]. We assume that
the TPMs are tamperproof, i.e., resistant to any attacks. In
reality TPMs are not secure against physical attacks [28]
so we assume an attacker never has physical access to the
servers and their TPMs (attacks come through the network,
e.g., from the Internet).

The kind of the USIG service that can be implemented
using the TPM is USIG-Sign, i.e., the kind of USIG service
that is based on public-key cryptography. TPMs have the
ability to sign data using the private key of the attestation
identity key pair (AIK), which we call private AIK for sim-
plicity and that can never leave the TPM (there is no API
that allows extracting it from the TPM). We assume that
servers know the other TPMs’ AIK public keys so they can
verify the signatures produced.

We explore mainly two features defined in the TPM
1.2 specification [36]. The first are the monotonic coun-
ters. The TPM provides two commands on counters:
TPM_ReadCounter that returns the counter value, and
TPM_IncrementCounter that increments the counter and
returns its new value [37]. No command is provided to set
or decrement counters. The TCG imposes that the counters
have 32 bits and can not be increased arbitrarily often to
prevent that they burn out in 7 years [36]. In the TPMs we
used in the experiments, counters could not be increased
more than once every 3.5 seconds approximately (and the
same is verified in other TPMs [41]). This feature seriously

constrains the performance of algorithms that use this im-
plementation of the USIG service.

The second feature is the transport command suite
[36]. This set of commands protects the communica-
tion with the TPM as a process that wants to use the
TPM services may not trust software that may interpose
between the two. More precisely, using the commands
TPM_EstablishTransport, TPM_ExecuteTransport
and TPM_ReleaseTransportSigned, it is possible to
create a session that is used to do a sequence of TPM
commands, to log all executed commands, and to obtain a
hash of this log along with a digital signature of this same
hash obtained with the private AIK [37, 23]. The com-
munication between the process and the TPM is protected
using common mechanisms like message authentication
codes (MACs) produced with hash functions and nonces.
From the point of view of our algorithms, the important
is that the TPM_ReleaseTransportSigned command
returns a proof that a set of commands was executed by the
TPM. This proof can be verified by holders of the public
AIK.

The interface of the USIG service (functions createUI
and verifyUI) does not change in the TPM-based imple-
mentation. However, the service is not completely imple-
mented inside the TPM, which can not be modified, but by
the TPM plus a thin software layer on top of it. This layer
does not have to be trusted.

The implementation of the USIG service on top of the
TPM is straightforward. The function createUI(m) is im-
plemented the following way:

1. calculate a hash of m;

2. start a session in the TPM by calling TPM_Establish
Transport and TPM_ExecuteTransport;

3. ask the TPM to increment the counter by calling
TPM_IncrementCounter, assuring that all messages are
assigned a sequential number (concurrency is not an issue
as no two sessions can be open simultaneously in the same
TPM);

4. end the session by calling TPM_ReleaseTransport
Signed, which takes as parameter the hash of the mes-
sage (antiReplay parameter), and produces a signature of
a data structure that includes the monotonic counter value,
the hash of m and the hash of the transport session log;

5. return a data structure with all those items plus the signature
that is what we call the unique identifier UI.

Notice that the USIG certificate we mentioned when
first describing the createUI is now composed by the sig-
nature and the hash of the transport session log. The latter
is used to prove that the TPM increased the counter. There-
fore, we do not have a tamperproof service that always in-
crement the counter, but a non-tamperproof layer of soft-
ware that requests the tamperproof hardware to increment
the counter and give a proof that it did it.

21

The function verifyUI(PK,UI,m) is implemented en-
tirely in software, i.e., outside the TPM. It is implemented
the following way:

1. calculate the hash of m and check if this hash is equal to the
hash in UI;

2. use the TPM’s public AIK (PK) to check if the signature
was produced from the hash of m together with the hash
of the transport log and the hash of the monotonic counter
(both part of UI);

3. check if the log contains the call to the
TPM_IncrementCounter command;

4. if some of the checks fail, return false, otherwise return true.

22

