
Core-TyCO

Appendix to the Language
Definition,

yielding Version 0.2

Vasco T. Vasconcelos

DI–FCUL TR–01–5

July 2001

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/biblioteca/tech-reports.
The files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330739?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Core-TyCO

Appendix to the Language Definition,

yielding Version 0.2

Vasco T. Vasconcelos

July 2001

This is the third report on TyCO [2], a (still) experimental strongly and
implicitly typed concurrent object based programming language based on a
predicative polymorphic calculus of objects [1, 3], featuring asynchronous mes-
sages, objects, and procedures, together with a predicative polymorphic typing
assignment system, assigning monomorphic types to variables and polymorphic
types to procedures.

With respect to version 0.2, version 0.3 introduces

1. slight changes to the concrete syntax,

2. new derived constructors,

3. floating point numbers,

4. nested comments,

5. a means to split a program amongst different files, and

6. a clarification on the ambiguous nature of the syntax for processes.

Static and dynamic semantics of the language are not changed.

1 Syntax

1.1 Reserved words

Keywords case, of, and /= replace switch, into, and <>, respectively. New
reserved words are: tofloat, hd, tl, ;, and :.

1.2 Literals

An integer constant is given by the regular expression 0|[1-9]{digit}*, were
{digit} is the regular expression [0-9].

Floating point constants are given by the regular expression
({integer} _{digit}+)([eE][+-]?{digit}+)?.

String constants are sequences of character enclosed between quotes ("). The
following escape sequences are now supported: \\, \’, \\\, \\n, \\t, \\a, \\b,
\\f, \\r, \\v.

1

1.3 Grammar

Different binds are now longer separated by reserved word and. Comma does
not separate methods. Syntactic categories for bind and method are now as
follows.

multbind ::= bind 〈multbind〉 multiple binding

methrow ::= method 〈methrow〉 method row

1.4 Comments

TyCO now also permits nested comments, which start with {- and extend until
the next unmatched -}.

1.5 Derived forms

The following syntactic category helps in defining the newly introduced derived
constructors.

C ::= a!〈l〉 | X application

Below variables z, z1, . . . , zn are taken freshly, and (n ≥ 1).

app[〈expseq〉] ; proc =⇒ new zapp[〈expseq〉z] | procnew z
(〈varseq〉) : proc =⇒ (〈varseq〉z) : z! [] | proc
let varseq1 = app1[〈expseq1〉] =⇒ new z1, app1[〈expseq1, 〉z1] | · · ·
· · · varseqn = appn[〈expseqn〉] new zn appn[〈expseqn, 〉zn] |
in proc zn?(〈varseqn〉) = · · ·

z1?(〈varseq1〉) = proc

The underscore may be used in any varseq , including, for example, let
processes.

1.6 Syntactic restrictions for derived forms

1. In let varseq1 = app1〈expseq1〉 · · · varseqn = appn〈expseqn〉 in proc, the
sequence of bindings varseq1 . . . varseqn may not contain the same variable
twice.

1.7 File inclusion

The two tokens include "aFile" are replaced, at parsing time, by the contents
of file aFile.

2

2 Static semantics

2.1 Types for primitive operations and objects

+ : float float → float
- : float float → float
* : float float → float
/ : float float → float
- : float → float

hd : string → string
tl : string → string

tofloat : int → float

Equality/inequality — =, /= — are defined on all types. Relational operators
— <, <=, >, >= — available also for floating point numbers.

The basic stream based I/O primitive object gets a six new methods; three
of them change type.

io : {getb : () → bool
putb : bool → ()
printb : bool
geti : () → int
puti : int → ()
printi : int
gets : () → string
puts : string → ()
prints : string
getf : () → float
putf : float → ()
printf : float}

References

[1] Vasco T. Vasconcelos. A predicative polymorphic type for a calculus of
objects. In Type Theory and its Applications to Computer Systems, number
851 in RIMS Lecture Notes, pages 78–87. Kyoto University, July 1993.

[2] Vasco T. Vasconcelos and Rui Bastos. Core-TyCO, the language definition,
version 0.1. DI/FCUL TR 98–3, Department of Informatics, Faculty of
Sciences, University of Lisbon, March 1998.

[3] Vasco T. Vasconcelos and Mario Tokoro. A typing system for a calculus of ob-
jects. In 1st International Symposium on Object Technologies for Advanced
Software, volume 472 of LNCS, pages 460–474. Springer-Verlag, November
1993.

3

