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Abstract 
This is a interim  report on the experimental validation of architectural solutions performed in 
WP5. The two main contributions are the description of an attack injection tool for testing the 
architectural solutions and the description of a monitor and data collector that collects and 
analyses information about the behavior of the software after it has been attacked. 

   

 

Keyword list: Attack injection, malicious behavior, monitor and data collection, honeypots,  
statistical analysis  

 

 



 

DOCUMENT HISTORY 

 

Date Version Status Comments 

29/10/2007 000 Draft First version of table of contents 

15/12/2007 001 Draft First draft with call for contribution 

21/12/2007 001 Draft Contribution received 

16/01/2008 002 Draft Pre-final version distributed 

18/01/2008 003 Submit Submitted version 



 

Table of Contents 

1 INTRODUCTION .......................................................................................................................... 1 

2 SOFTWARE VULNERABILITIES IDENTIFICATION BASED ON ATTACK INJECTION ............ 1 
2.1 IDENTIFICATION OF THE RUN-TIME COMPONENTS TO BE VALIDATED AND CONTRIBUTION OF THIS 
INTERIM REPORT ................................................................................................................................. 2 
2.2 THE ATTACK INJECTION TOOL................................................................................................ 2 

2.2.1 Using Attacks to Find Vulnerabilities ............................................................................. 3 
2.2.2 Architecture of the tool AJECT ...................................................................................... 5 
2.2.3 Implementation details of AJECT .................................................................................. 8 

2.3 EXPERIMENTAL VALIDATION ................................................................................................... 16 
2.4 SUMMARY OF RESULTS .......................................................................................................... 24 

3 HONEYPOT-BASED ARCHITECTURES................................................................................... 24 
3.1 BACKGROUND ....................................................................................................................... 25 
3.2 LEURRÉ.COM DATA COLLECTION PLATFORM............................................................................. 26 
3.3 A HIGH-INTERACTION HONEYPOT ARCHITECTURE ..................................................................... 26 

3.3.1 Objectives and design needs ...................................................................................... 27 
3.3.2 Architecture and implementation description ............................................................... 28 
3.3.3 Deployment ................................................................................................................. 31 

4 CONCLUSION............................................................................................................................ 33 

REFERENCES ................................................................................................................................... 34 
 



Experimental validation of architectural solutions  Page 1  

 

1 INTRODUCTION 
Identifying applications security related vulnerabilities and collecting real data to learn about 
the tools and strategies used by attackers to compromise target systems connected to the 
Internet is a necessary step in order to be able to build critical infrastructures and systems 
that are resilient to malicious threats. This deliverable presents two complementary types of  
experimental environments used in the context of CRUTIAL in order to fulfill these objectives. 
The first one concerns the development of a methodology and a tool (AJECT) for injecting 
attacks in order to reveal residual vulnerabilities in the applications and software components 
under study. This tool will be used in particular to locate security vulnerabilities in network 
servers and software components of the CRUTIAL reference architecture and information 
switches. The second type of experimental environment investigated in CRUTIAL and 
discussed in this deliverable concerns the development and the deployment of honeypots 
aimed at collecting data characterizing real attacks on the Internet. Such data are mainly 
used in the context of CRUTIAL to support the modeling activities carried out in WP2 and 
WP5 regarding the characterization and assessment of malicious threats. Useful feedback 
could be also provided to support design related activities, through the identification of 
common types, behaviors and scenarios of attacks observed on the Internet. 

The structure of this Deliverable is as follows. Section 2 describes the methodology and the 
AJECT tool aimed at the identification of software security-related vulnerabilities  and some 
preliminary experimental results illustrating the capabilities of the tool. Section  3 describes 
honeypot-based experimental environments investigated in CRUTIAL to collect and analyze 
real attack observed on the Internet.  Conclusions and future work are drawn in Section  4. 

2 SOFTWARE VULNERABILITIES IDENTIFICATION BASED ON 
ATTACK INJECTION 

Applications have suffered dramatic improvements in terms of the offered functionality over 
the years. These enhancements were achieved in many cases with bigger software projects, 
which cannot be carried out by a single person or a small team. As a consequence, size and 
complexity has increased, and software development frequently involves several teams that 
need to cooperate and coordinate efforts. Additionally, to speedup the programming tasks, 
most projects resort to third-party software components (e.g., a cryptographic library, a PHP 
module, a compression library), which in many cases are poorly documented and supported. 
It is also not uncommon to re-use legacy code which was developed by people no longer 
available. All these factors contribute to the presence of vulnerabilities. 

A vulnerability per se does not cause a security hazard, and in fact it can remain dormant for 
many years. An intrusion is only materialized when the right attack is discovered and applied 
to exploit a particular vulnerability. After an intrusion, the system might or might not fail, 
depending on its capabilities in dealing with the errors introduced by the adversary. 
Sometimes the intrusion can be tolerated [Veríssimo et al. 2003], but in the majority of the 
current systems, it leads almost immediately to the violation of its security properties (e.g., 
confidentiality or availability). Therefore, it is important to devise methods and means to 
remove vulnerabilities or even prevent them from appearing in the first place. 

Vulnerability removal can be performed both during the development and operational 
phases. In the last case, besides helping to identify programming flaws which can later be 
corrected, it also assists the discovery of configuration errors. Intrusion prevention, such as 
vulnerability removal, has been advocated because it reduces the power of the attacker 
[Veríssimo et al. 2003]. In fact, even if the ultimate goal of zero vulnerabilities is never 
attained, vulnerability removal effectively reduces the number of entry points into the system, 
making the life of the adversary increasingly harder (and ideally discouraging further attacks). 

In this section we describe a tool called AJECT which has been developed within the project. 
This tool uses an attack injection methodology to locate security vulnerabilities in software 
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components, e.g., network servers running in the CRUTIAL Information Switches or in other 
interconnected machines. Some preliminary results with well known email servers are 
described to validate the capabilities of the tool.  

The structure of this Section is as follows. Section  2.1 starts with the identification of the 
architectural components to be experimentally validated, Section  2.2 describes the attack 
injection tool, while Section  2.3 describes some preliminary experimental results illustrating 
the capabilities of the tool.  

2.1 Identification of the run-time components to be validated and contribution 
of this interim report 

The nature of the software and the reliance we place in it makes us even more vulnerable to 
deviations from its correct behavior. Critical infrastructures, such as the Power Grid for 
instance, have an important role in the normal functioning of the economy and general 
community, and thus they pose an even higher risk to the sustenance of the modern society 
pillars, such as the national and international security, governance, public health and safety, 
economy, and public confidence. 

In recent years these systems evolved in several aspects that greatly increased their 
exposure to cyber-attacks coming from the Internet. Firstly, the computers, networks and 
protocols in those control systems are no longer proprietary but standard PCs and networks 
(e.g., wired and wireless Ethernet), and the protocols are often encapsulated on top of 
TCP/IP. Secondly, these networks are usually connected to the Internet indirectly through the 
corporate network or to other networks using modems and data links. Thirdly, several 
infrastructures are being interconnected creating a complexity that is hard to manage [van 
Eeten et al. 2006]. 

Therefore these infrastructures have a level of vulnerability similar to other systems 
connected to the Internet, but the socio-economic impact of their failure can be tremendous. 
This scenario, reinforced by several recent incidents [Wilson 2006, Amir et al. 2006], is 
generating a great concern about the security of these infrastructures, especially at 
government level. 

The proposed reference architecture for critical infrastructures, models the whole 
infrastructure as a WAN-of-LANS, collectively protected by some special devices called 
CRUTIAL Information Switches (CIS). CIS devices collectively ensure that incoming/outgoing 
traffic satisfies the security policy of an organization in the face of accidents and attacks. 
However, they are not simple firewalls but distributed protection devices based on a 
sophisticated access control model. Likewise, they seek perpetual and unattended correct 
operation, which needs to be properly evaluated and validated. It is important that 
components, directly or indirectly, related to the correct functioning of the critical 
infrastructure are identified and validated.   

In the next year, we will focus our validation efforts on two kinds of components. First, we will 
analyse the CIS devices since they are positioned at the border of the protected networks, 
and therefore are primary targets of attacks. Second we will look into servers that provide 
fundamental services to the other components of the network, namely Domain Name System 
(DNS) servers. If these servers have vulnerabilities that can be exploited by malicious 
adversaries, attacks to their security can potentially compromise the correct behavior of the 
critical network infrastructures.  

2.2 The attack INJECTION tool 
We propose attack injection with monitoring capabilities as a method for detecting 
vulnerabilities. This methodology tries to detect software bugs as an attacker would, i.e., trial 
and error, by consecutively attacking its target. Attack injection does not depend on a 
database of known vulnerabilities, but it rather relies on a generic and exhaustive set of tests. 
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Through careful and automated monitoring, the results of the attacks can be later analyzed to 
pinpoint the detected vulnerabilities. This allows the discovery of known and unknown 
vulnerabilities in an automated fashion. 

We present and evaluate a vulnerability assessment tool called AJECT (Attack inJECtion 
Tool) that implements the attack injection methodology. AJECT can be used for vulnerability 
detection and removal by simulating the behavior of an adversary. It injects attacks against a 
live system while observing its execution to determine if the attacks have caused a failure. In 
the affirmative case, this indicates that the attack was successful, which reveals the 
existence of a vulnerability. After the identification of the flaws, traditional debugging 
techniques can be employed to examine the application code and running environment, to 
find out the origin of the vulnerabilities and allow their subsequent elimination. 

AJECT performs black box testing, so it does not require access to the source code to 
perform the attacks. However, in order to be able to generate intelligent attacks, AJECT has 
to obtain a specification of the protocol implemented by the target server (e.g., IMAP protocol 
specification for IMAP mail servers or HTTP protocol specification in case of web servers). 

2.2.1 Using Attacks to Find Vulnerabilities 
Every system’s design and implementation should comply with a set of functional and/or non-
functional properties, i.e., a service specification that describes its correct operation. The 
system is said to be correct if its service specification is not violated. But how much can one 
trust in that correctness?  A system should give some guarantees that it will not fail. This 
measure is given by the system’s dependability, which is the ability of a computing system to 
deliver service that can be justifiably trusted (Powell & Stroud 2002). Dependability aims at 
preventing the failure of the system, hence, in order to construct more dependable and 
reliable systems, one must know how the system and its components can remain correct, 
i.e., how and why do systems fail. 

 

 

Figure 1: Fault, error, and failure. 
 

The fault model presented in Figure 1 tries to explain how systems fail by following the 
sequence fault → error → failure. For instance, the purpose of a file system is to store and 
manage data records. These records, organized in computer files, are physically located in a 
storage device. The service specification of the file system defines, among other things, that 
any “read” operation will reflect the last “write” operation. Therefore, a record should always 
return the value of the last “write”. A failure occurs when this specification is violated. To 
understand how these failures happen, one must study the process that explains how they 
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appear. The cause, which is called the fault, can have an internal or external origin. For 
example, an electrical discharge (fault) can change the bits of some record, located in a 
specific disk sector. This fault can remain unnoticed, or dormant, until the record is read. The 
fault’s manifestation is called an error, which in our example is the corrupted record. The 
failure of the system is the external observable effect of the error. If the file system lacks 
some sort of detection or correction mechanism for this type of error (e.g., checksums or 
redundancy) the record will return an incorrect value. This behavior clearly violates the 
service specification of the file system, or in another words, it represents the failure of the 
system. 

However, the file system can be regarded as a component of a larger system, such as an 
operating system (OS). Therefore, from the OS point of view, the failure of the file system is 
seen as the fault of a component. So, as the figure shows, the fault–error–failure sequence is 
also a recursive model. If the affected disk record holds virtual memory data, such as a swap 
file, the file system failure (OS fault) will result in a memory page error. In turn, this error 
could freeze the entire system, leading to the failure of the OS. 

However, the presence of the fault (or even the error) will not necessarily produce a failure. 
The system’s correct operation can be maintained despite the presence of faults. If the 
system is supplied with fault detection or tolerance mechanisms, a greater dependability can 
be achieved. 

Nevertheless, the type of faults that can arise are not reduced to accidental or arbitrary 
faults, like a physical defect or an electrical discharge. Faults can be much more complex 
and appear with higher probability. Intentional malicious faults are a good example. A 
potential intruder can leverage the failure probability by conducting a series of targeted 
attacks that can lead to the violation of the service specification. This type of faults does not 
follow any probabilistic distribution, nor any behavior pattern. 

 

 

Figure 2: Composite fault model (attack, vulnerability, and intrusion). 
 

The AVI (attack, vulnerability, intrusion) composite fault model, introduced in [Powell & 
Stroud 2002, Veríssimo et al. 2000], helps us understand the mechanisms of failure due to 
several classes of malicious faults (see Figure 2). It is a specialization of the fault–error–
failure sequence applied to malicious faults – it limits the fault space of interest to the 
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composition (attack + vulnerability) → intrusion. Let us analyze these fault classes. Attacks 
are malicious external activities, originating from outside the target system boundaries, that 
intentionally attempt to violate one or more security properties of the system – we can have 
an outsider or insider user of our network (e.g., an hacker or an administrator) trying to 
access sensitive information stored in a server. Vulnerabilities are usually introduced during 
the development phase of the system (e.g., a coding bug allowing a buffer overflow), or 
during operation (e.g., files with root setuid in UNIX). These faults can be inserted 
accidentally or deliberately, and with or without malicious intent. An attack that successfully 
activates a vulnerability causes an intrusion. This further step towards failure is normally 
succeeded by the production of an erroneous state in the system (e.g., a root shell or a new 
account with root privileges), and if nothing is done to process the error, a failure will follow. 

The methodology utilized in the construction of AJECT emulates the behavior of an external 
adversary attempting to cause a failure in the target system. However, the goal of the attacks 
is not to exploit the system but rather to detect vulnerabilities that might permit that 
exploitation. The tool first generates a large number of attacks which it directs against the 
interface of the target (step 1, in Figure 2). A majority of these attacks are expected to be 
deflected by the validation mechanisms implemented in the interface, but a few of them 
might be able to succeed in exploiting a vulnerability and causing an intrusion. Some 
conditions contribute to increase the success probability of the attack. For example, a correct 
understanding of the interaction protocol used by the target eases the creation of more 
efficient attacks (e.g., it reduces the randomness of the tests); and a good knowledge about 
what type of vulnerabilities appear more frequently also helps to prioritize the attacks. 

While the attacks are being carried out, AJECT monitors how the state of the system is 
evolving, looking for errors or failures (step 2). Whenever one of these problems is observed, 
it indicates that a new vulnerability has potentially been discovered. Depending on the 
collected evidence, it can indicate, with more or less certainty, that a vulnerability exists. For 
instance, there is a high confidence if the system crashes during (or after) the attack – this 
attack at least compromises the availability of the system. On the other hand, if what is 
observed is an abnormal creation of a large file, though it might not be a vulnerability – 
possibly related to a denial of service – it still needs to be further investigated. 

After the discovery of a new vulnerability, there are several alternatives to deal with it, 
depending on the current stage of the development of the system (step 3). If the system is, 
for instance, in development, it is best to provide detailed information about the attack and 
the error/failure, so that a decision can be made about which corrective action should be 
taken (e.g., repair a software bug). On the other hand, if the tests are performed when the 
system is in live operation, then besides giving information about the problem, other actions 
might be worthwhile taking, such as automatically change the execution environment to 
remove the attack (e.g., by modifying some firewall rules) or shutdown the system until the 
administrator decides what to do. 

In order to get a higher level of confidence about the absence of vulnerabilities in the system, 
i.e., its dependability, the attacks should be exhaustive and should exercise an extensive 
number of different classes of vulnerabilities. Still, one should also know that for complex 
systems it is infeasible to experiment all possible attack patterns, and therefore it is possible 
that some vulnerabilities remain undisclosed. Nevertheless, AJECT can be an important 
contributor for the construction of more secure systems because it mimics the malicious 
activities carried out by many hackers, allowing the discovery and subsequent removal of 
vulnerabilities before a real attempt is performed to compromise the system. 

2.2.2 Architecture of the tool AJECT  
The architecture of the AJECT tool is presented in Figure 3. The overall operation of the tool 
can be divided in the attack generation and the injection campaign. 
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Figure 3: The architecture of the AJECT tool. 
 

2.2.2.1 Test case generation phase 
The attack generation is performed off-line and only once for each target communication 
protocol. The attacks can be used in the injection campaigns with any target system that 
shares the same application protocol (e.g., DNS, FTP). The format of the protocol messages, 
their fields, and data types are defined through a graphical interface application (GUI 
Protocol Specification). Additionally, the protocol states and messages that allow the 
transition between states are also identified. 

The attacks are then constructed, based on the protocol specification and on a test case 
generation algorithm (implemented in the Test Manager and Attack Generator). The 
algorithm creates variations of the protocol messages that test the target system's ability to 
cope with some erroneous attribute, such as a missing parameter or an illegal type of data. 
Each attack is composed by one or more messages, where a few of them might be state 
transition messages (i.e., the messages required to take the protocol to the state where the 
fault must be injected). All test cases, or attacks, are saved in a disk file that will be used by 
AJECT in the injection campaign. 

 

Target Protocol Specification Component 
The Target Protocol Specification component is used to create a formal specification of the 
communication protocol utilized by the Target System. This specification is essential for two 
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reasons: First, AJECT needs to be capable of bringing the server application from the initial 
state to any other state of the protocol. The reason for this is because certain protocol 
messages are exclusive to a particular state, such as specific requests that are only valid 
after successfully transiting to an authenticated state. Second, the syntax of the messages 
must be known to AJECT since many non-trivial attacks can only be created if this 
information is available. The Target Protocol Specification component eases the tool of 
having a special module for each new target protocol. One protocol specification can be used 
to generate attacks to any server implementations that use that protocol. 

Currently, the specification can be done with a graphical interface that allows the definition of 
a state and a flow graph of the protocol. For each state it is possible to identify which 
messages can be sent and their syntax. The output of this component is a file that formally 
describes the target protocol, which is later imported by the Attack Injector. The protocol 
specification file provides the Attack Generator component with the essential knowledge to 
create valid protocol messages and to correctly change to the different protocol states. 

 

Attack Generator Component 
The attacks to be injected in the Target System are generated by the Attack Generator 
component. A Test Manager module is responsible for the implementation of the test 
generation algorithm that will create message variations from the protocol specification. The 
attack injection methodology does not specify the type of test cases generated from the Test 
Manager. It is up to the Test Manager implementation to devise good test generation 
algorithms aimed at good source code and vulnerability coverage. The Attack Generator 
applies any of the Test Manager algorithms to the target protocol specification to create a 
large and exhaustive set of test cases, or attacks. Although the attacks are based on a 
particular protocol, they are not restricted to a specific Target System.  The attacks are saved 
in disk file to be used by the Attack Injector to test any Target System that uses the same 
communication protocol, e.g., attacks generated from the IMAP specification can be used 
with any IMAP server. 

2.2.2.2 Injection campaign 
This phase runs the entire universe of the generated test cases by carrying out each attack 
injection with a fresh copy of the target server. The attack injection is performed only after the 
Target System is online and ready. Therefore after the connection is established with the 
Target System, the Attack Injector sends a predefined “ping” message1 and waits for the 
reply.  Once the Target System is prepared, the Attack Injector sends the attack packets to 
the Target System, while the Monitor Component closely observes the execution of the 
Target System. AJECT processes and outputs the attack injection results in a human 
readable format, which can be used by the developers to detect any abnormal behavior and 
to assist them afterwards, in the debugging process. 

 

Attack Injector Component 
The Attack Injector is composed of three modules: the Attack Processor, the Packet Injector, 
and the Response and Execution Data Collector. 

After the Target System is restarted and ready, the Attack Processor decomposes each 
attack in its components, i.e., the state transition messages and the attack message itself. 
The Packet Injector sends the transition messages to the Target System, and once the 
                                                 
1 This message is defined by the Target Protocol Specification and should correspond to an innocuous 
protocol message that the Target System is known to respond, e.g., a failed login or a request for the 
version information. 
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protocol is in the designated state, it injects the attack message into the network interface of 
the Target System. The tests are synchronized with the Monitor, so that the latter can restart 
the Target System’s process (i.e., the server application) before each attack injection. This 
simple synchronization protocol assures that the Target System is properly monitored and 
guarantees the same test conditions throughout the experiments. The Target System 
execution data, acquired by the Monitor, and the contents of the responses are gathered by 
the Response and Execution Data Collector. 

 

Monitor Component 
The Monitor is an external application, residing alongside the Target System, equipped with 
several control and monitoring capabilities. The Monitor component is supposed not to be 
obtrusive or affect the Target System in any significant way, i.e., the Target System behavior 
should be identical in the presence or absence of the Monitor. However, it is expected that 
some additional overhead is introduced by this component. 

The Monitor is in charge of setting up the entire testing environment in the Target System: it 
needs to start up the target application, perform all configuration actions, initiate the 
monitoring activities, and in the end, free any utilized resources (e.g., processes, memory, or 
disk space). A synchronization module allows the Monitor to coordinate both the injection 
and the monitoring to determine the beginning and ending of each experiment. The Monitor 
can therefore reset the Target System environment before each experiment to ensure that 
each attack is done under identical conditions and that there are no interferences among the 
attacks. This inherent independence of the experiments simplifies the identification of the 
attack that caused the problems, and consequently, the discovery of the vulnerability. 

The Monitor closely observes the target’s flow of control (e.g., by intercepting and logging 
any software exceptions) to detect if the Target System goes to any erroneous software 
state. Therefore, there are many interesting operational characteristics desirable for 
monitoring, such as Segmentation Fault exceptions (crash) or something more subtle like an 
unusual set of OS signals. In the same way, the supervision of the allocation of the system 
resources, during the target’s execution, can also be helpful to detect abnormal behavior 
activity, which may be indicative of the presence of a resource exhaustion vulnerability. This 
task is highly dependent on the mechanisms available in the local operating system (e.g., the 
ability to catch signals, such as memory segmentation errors, in UNIX). It is expected that the 
type of vulnerabilities AJECT is able to diagnose, is related to the type and detail of the 
collected information. 

 

The architecture of the tool was defined to achieve two main purposes, the automatic 
injection of attacks and the data collection for analysis. However, its design was done in such 
a way that there is a clear separation between the implementation of these two goals. On 
one hand, in order to obtain extensive information about the execution, a proximity relation 
between AJECT and the target is required. Therefore, the Monitor needs to run in the same 
machine as the server application, where it can use low level operating system functions to 
gather, for example, statistics about the CPU or memory usage. On the other hand, the 
injection of attacks can usually be performed from a different machine. In fact, this is a 
desirable situation since it is convenient to maintain the target as independent as possible 
from the Injector, so that interference is kept to the minimum. 

2.2.3 Implementation details of AJECT 
The modular design of the architecture of AJECT provides the tool with a strong 
independence at various levels. The design is not platform specific, so it can be implemented 
in any operating system (OS) or hardware architecture. Moreover, since the Attack 
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Generator, Attack Injector, and Monitor components are inter-independent, new test classes 
or new monitoring capabilities can be added without interfering with one another. 

There is, however, one restriction with the Monitor component. The Target System operates 
in a operating system that is of the utmost importance to the Monitor. The Monitor’s 
dependence on the Target System is such that, due to the OS support, both the Monitor and 
the target application are required to run on the same machine. 

AJECT is mainly implemented in Java. However, the Monitor was written in C++, because of 
the low-level operations it provides. C++ features specific OS low-level functionality, 
essential for controlling and monitoring the target process. In spite of the fact that C++ is an 
object-oriented and a high-level programming language, it lacks an important feature that 
Java possesses – a Java program can run similarly, and unmodified, on any Java virtual 
machine. This allows AJECT, except the Monitor component, to run on virtually any platform. 
The present section will give a more thorough insight on the current implementation of 
AJECT. 

2.2.3.1 Target Protocol Specification 
All attack generation and injection is totally independent of the intrinsics of the target 
protocol. The Target Protocol Specification component is responsible for the understanding 
of the protocol utilized by the target application. Without it, AJECT would not be able to 
create the protocol messages that will constitute an attack. Moreover, it is necessary for 
changing the different protocol states, from which the attacks must be launched. 

 

 

Figure 4: IMAP protocol finite state machine. 
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Figure 5: Graphical user interface for the specification of the target protocol. 
 

The target protocol can be regarded as a formal language, produced by a formal grammar or 
by a deterministic finite state machine. For example, the IMAP protocol can be described as 
a three-state deterministic finite automaton, as displayed in Figure 4. The boxes represent 
the IMAP protocol states, with its possible message types (i.e., IMAP commands): not 
authenticated, authenticated, and selected states. Some commands, if successfully 
executed, will trigger a state transition of the protocol (as depicted by the arrows). 

A special graphical user interface application can be used to define the entire protocol 
specification, its states, message types, field data, and so on. A screenshot of the Target 
Protocol Specification is displayed in Figure 5. This particular snapshot depicts the definition 
of the IMAP messages, in the authenticated state, with two fields: a command string and a 
mailbox argument. The GUI application supports the definition of the legal type of data of 
each field, such as the valid strings in the field “command”. However, the protocol 
specification is not restricted to textual protocols. Binary field data is also supported by 
AJECT. The GUI application provides several attributes of the binary fields, such as the size, 
if it is a signed or unsigned format, and the byte ordering (i.e., little endian or big endian). 

2.2.3.2 Monitor 
AJECT resorts to third-party libraries in the implementation of the Monitor component. The 
PTRACE facility is employed to intercept signals and any system call made by any of the 
server's processes (i.e., the main process, forked children, and threads). The target 
application is interrupted and its resource consumption probed, at the signal and system calls 
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interception. This mode of operation passively traces the execution of the server, without 
much interference with its normal behavior. 

 

Execution monitoring 
A potential vulnerability is found if an abnormal behavior is detected on the Target System. 
The underlying OS offers some monitoring facilities that can be used to notice these 
irregularities. For instance, on UNIX machines there are OS functions for tracing the 
execution of a particular process, such as the PTRACE family functions used by some 
debuggers like GDB [GNU Foundation 2006]. These functions control the execution of a 
process by tracing the signals it receives. OS system calls can also be monitored the same 
way. The traced process is interrupted upon certain events, such as at the reception of a 
signal, or at the entry or exit point of a system call. Upon such an event, the Monitor (i.e., a 
dedicated execution thread2) intercepts the signal or system call and interrupts the traced 
process (i.e., target’s application). The signals are logged for posterior analysis and the 
target’s process is instructed to continue the execution. Unusual signals, such as a 
Segmentation Fault, are a very good indicator of the intolerance of a fault. 

The current implementation of the Monitor is able to detect standard POSIX signals and 
system calls present in any UNIX-based machine, or derivatives, such as Linux or BSD. In 
order to use this monitoring method in other OSes, (e.g., Microsoft Windows), one needs to 
adapt it to the specific mechanisms these OSes signalize their exceptional software states 
(e.g., signals, exceptions, etc.).  

 

Resource monitoring 
Resource usage data is obtained at a few specific resource-related systems calls (e.g., 
memory utilization is probed after a memory allocation or de-allocation call). We have tried to 
reduce the overhead to a minimum by only updating the usage data at the relevant system 
calls. In some extreme situations, however, the monitoring activities can create some delays 
because of the constant pause, probe for data, and resume cycle. 

The supervision of the system resources allocated during the target execution can be helpful 
to detect abnormal behavior which may be indicative of the presence of a vulnerability. For 
instance, if an application has suddenly allocated much more memory, it can be indicative of 
an erroneous state of memory starvation, or if the process is consuming a too great number 
of CPU cycles, it indicates a potential resource interlock. 

The monitor maintains and regularly updates a global table with the resource usage data. 
The following local resources are watched: 

• total number of processes, including forked children and threads of the target server. 
PTRACE signal interceptions are used to track new process ids (PIDs); 

• memory pages, given by the number of resident set pages minus the shared pages, 
are obtained through the LibGTop library [Baulig & Kacar 2007]; 

• file descriptors, such as those identifying opened disk files or network sockets, are 
kept in a updated list of file descriptors. LSOF [Abell 2007] calls are used to keep 
track of the open files; 

• disk usage, specified by the number of bytes written to disk. This value is obtained by 
parsing the LSOF's output for the files in use, and recording their size throughout the 
execution; 

                                                 
2A thread is also considered a lightweight process, or LWP. 



Experimental validation of architectural solutions  Page 12  

 

• CPU cycles, corresponding to the work performed by the processor for all server's 
processes, is obtained with performance hardware counters. The linux kernel had to 
be patched to associate with each process a private set of virtual hardware counters  
[Pettersson 2002]. PREDATOR controls and accesses these counters through the 
PAPI library [London et al. 2001]; 

• wall time, measured as the elapsed time from the beginning of the main process 
execution, is computed by simple gettimeofday() calls. This resource is 
monitored mainly to compare its value with the number of CPU cycles. Large CPU 
and wall time discrepancies normally indicate a non-active wait, which suggests the 
presence of some timeout or deadlock. 

3.4 Synchronization Protocol 

To successfully diagnose vulnerabilities through attack injection, the tool must not only 
generate the actual attacks, but also observe its effects.  Though it might seem a simple 
task, each attack must be carefully synchronized with its respective monitoring. Among the 
various tasks that result from this synchronization, there is:  

• the execution of the target application prior to the attack (launched from the Monitor);  

• the continuous supervision of the target (e.g., signal tracing, CPU usage, total 
number of allocated memory pages, etc.);  

• the termination of the target application after the attack.  

 

Synchronization protocol messages 
The synchronization is accomplished through a simple protocol, composed by four types of 
messages, as represented in Figure 6:  

• SYNC_START – message sent from the Injector, signalizing that a test is about to 
begin;  

• SYNC_END – message sent from the Injector, signalizing that a test has ended;  

• SYNC_ACK – message sent from the Monitor to acknowledge a received 
synchronization message and that the target application has been launched; 

• SYNC_DATA – message sent from the Monitor, similar to the previous message, but 
appended with monitoring data.  
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Figure 6: Synchronization protocol performed by the Attack Injector and the Monitor 
 

Synchronization protocol between the Injector and the Monitor 
The whole injection and monitoring of the attacks follows a three-step process attained by 
both the Injector and the Monitor (see Figure 6). 

The pre-attack injection/monitoring starts when the Attack Injector processes an attack, from 
the attacks file, and sends a SYNC_START message to the Monitor. In turn, the Monitor 
replies with a SYNC_ACK after launching the target’s process and starting the monitoring 
threads. The Attack Injector then knows that the Target System is prepared for the attack 
injection and is under the Monitor’s supervision. The second step, the actual attack 
injection/monitoring, begins with the communication initialization between the Attack Injector 
and the Target System. The Attack Injector then proceeds by transmitting the attack 
messages. First, a set of transition messages to change the protocol state, and then, the 
actual attack packet. The target’s process behavior (captured by the Monitor), and its 
responses to the attacks, are recorded for posterior analysis. 
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Finally, after receiving the attack’s reply from the Target System (or after a timeout without 
any answer), AJECT reaches the post-attack injection/monitoring step. The Attack Injector 
sends a SYNC_END synchronization message to the Monitor and terminates all 
communication with the Target System. The Monitor will then kill the target’s process, and 
terminate all monitoring and logging activity for that attack. The Monitor gathers all 
monitoring data for the attack and sends it to the Injector in a SYNC_END message. 

2.2.3.3 Attack Tests 
The tests, executed by the Injector, are performed by the injection of the attacks, generated 
by the test case generation algorithms in the Test Manager. Four different types of tests were 
implemented: a delimiter test, a syntax test, a value test, and a privileged access violation 
test. However, other different types of tests can be created, covering more classes of 
attacks, thus increasing the tool’s capability to discover more vulnerabilities. 

The current test generation algorithms are aimed at verifying if the Target System is able to 
cope with different kinds of protocol errors, namely:  

• protocol messages with invalid, or missing delimiter characters;  

• out-of-order, missing, or additional message fields;  

• protocol messages with several kinds of invalid data (e.g., large or frontier values) or 
potentially dangerous data (e.g., information disclosure requests); 

Each type of test, when applied to particular target protocol, generates a large number of 
attacks. The tool was also developed to support tests in a generic way, which means that 
more tests can easily be added to cover more kinds of attacks. 

 
Delimiter test 
Usually, applications are thoroughly tested for its normal and expected functionality, 
disregarding its robustness in dealing with malformed messages. This specific type of test 
plays with the delimiter fields of the protocol messages. These fields represent the delimiters 
of a particular field or packet. For example, the IMAP protocol messages end with a carriage 
return and line feed characters, while each field is delimited by space characters. 

The current implementation of this type of test swaps and deletes the each of the delimiter 
fields. The generated attacks will consist of malformed protocol messages (i.e., with invalid 
or missing delimiters) but with valid data. 

 
Syntax test 
This kind of test generates attacks that infringe the syntax specification of the protocol as 
provided by the Target Protocol Specification. Example syntax violations consist on the 
addition, elimination, or re-ordering of certain fields of a protocol message specification. 

This test regards a packet as a sequence of fields, each one occupying a certain number of 
bits. The type of data stored in a field is considered irrelevant, therefore, a 32-bit integer is 
deemed equivalent to any other type of data, such as 400 characters string. The main 
information required by the test is the size of every field, which is usually either predefined 
(e.g., it always occupies 4 bytes) or determined with some special control character (e.g., the 
space character serves as field terminator). 

As an example, consider a message containing three different fields, which is represented as 
[A] [B] [C]. As an example, a few of the automatically generated attack packets that could be 
produced are:  

• [A] [B];  
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• [A] [C];  

• [A] [A] [B] [C];  

• [A] [B] [A] [C];  

• [A] [B] [C] [A];  

As one can see, the fields remain unchanged, but it is their place in the message that 
changes, being removed or duplicated elsewhere. 

 
Value test 
The protocol specification also defines the type and validity of the data of the target protocol 
messages. This test class verifies if the target is able to cope with packets containing 
erroneous values. 

An attack is generated in the following manner: each original protocol message is used to 
generate several attack packet variations; also, each field of this protocol message is 
iteratively chosen to be regarded as the invalid field; all the remaining fields will hold legal 
data values, while the invalid field is filled with malicious and illegal data. Since there are 
several fields in each packet, and each invalid field can take many non-legal values, this 
procedure can produce an overwhelming number of attacks. With the objective of keeping 
this number manageable, only a subset of the invalid data, hopefully representative of the 
whole set, is experimented. 

As an example, consider a packet with two integer fields. The first field can only be set to 1, 
while the second field can take values between 0 and 1000. The first generated attacks 
would exercise different invalid values for the first field (e.g., -1, 0, and 1), while maintaining a 
legal value for the second value (e.g., 500). When all invalid data iterations are exhausted, 
the second field is chosen to be the invalid field. Then, several attacks are generated with the 
value 1 for the first field, and boundary and illegal values for the second (e.g., -1, 0, 1000, 
1001, -100000, 100000). This test experiments different types of invalid values: almost valid 
(i.e., boundary values) and very invalid (i.e., large negative/positive integers). 

However, there are several textual protocols, such as the IMAP protocol. Creating attacks for 
this type of protocols can be achieved by generating strings from different character 
combinations. The construction of these malicious strings is reasonably complex because it 
can easily lead to a combinatory explosion3. 

However, most of these character combinations are deemed equivalent with respect to the 
parsing and processing mechanisms of the target application, producing similar execution 
paths. So, a heuristic-based procedure was employed for the generation of the malicious 
data: first, a set of random tokens (fixed sized strings of random characters) is obtained; 
then, a set of specified malicious tokens (e.g., “%c”, “%x”, “"”) and of joining tokens (e.g., “\”, 
space or none) is chosen. A large number of strings is obtained from the combination of one 
or more types of these different tokens. The result are strings with most of the characteristics 
that are usually found in hacker’s exploits, such as large strings or strings with strange 
characters (e.g., format string specifiers). 

These strings are later used in the invalid fields, hence testing the target’s robustness in 
coping with this type of malicious input. 

 
Privileged access violation test 
                                                 
3Just think that a string with 10 characters can have 2610 different combinations, even if we 
limit ourselves to the a..z characters. 
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This type of test tries to induce the server in granting access to some privileged operation, 
such as getting secret (or private) data from the Target System, or even modifying it. These 
privileged operations are always associated with some form of data, such as files or 
directories. Such actions may involve reading some well-known file, or writing to a particular 
directory. The success of such protocol requests indicates the incorrect action of the server, 
and thus the presence of a vulnerability. 

The information disclosure test follows the same attack generation rationale of the previous 
class of test, but with a different configuration. In this test, the number of random tokens is 
set to a minimum, while the set of malicious tokens and of joining tokens is carefully chosen. 
Good malicious tokens are directory path names, well-known filenames, and existing 
usernames. These tokens are then automatically combined with the previously chosen 
joining tokens, such as “.”, “..”, or “/”. This combinations generate a large number of path 
names to known files, which it uses during the attack generation. If a response provides valid 
data for one of the malicious requests, then the server is probably performing some illegal 
action, such as disclosing some confidential information. 

For example, consider the file “/etc/passwd” that contains the usernames and encrypted 
passwords on a Linux machine. Some of the names that could be tried in the attacks are: 
[“./../etc/passwd”]; [“./../../etc/passwd”]; [“./../../../etc/passwd”]. 

2.3 Experimental Validation 
In this section we present the validation of the attack injection methodology by experimenting 
AJECT with several IMAP servers. First, a description of the basic foundation for the 
experiments is provided, such as the communication protocol, the hardware and software 
specifications, the different tests, etc. Then, we analyze the experimental results achieved 
with AJECT. 

2.3.1.1 Experimental Framework 
This section gives a brief overview of the IMAP communication protocol that is utilized by the 
servers under test. It also describes the classes of attacks that were tried by the injector, and 
provides some information about the testbed. 

 
IMAP Protocol 
The Internet Message Access Protocol (IMAP) is a popular method for accessing electronic 
mail and news messages maintained on a remote server [Crispin 2003]. This protocol is 
specially designed for users that need to view email messages from different computers 
since all management tasks are executed remotely without the need to transfer the 
messages back and forth between these computers and the server. A client program can 
manipulate remote message folders (mailboxes) in a way that is functionally equivalent to 
local folders. The IMAP protocol provides a extensive number of operations, which include: 
creation, deletion and renaming of mailboxes; checking for new messages; permanently 
removing messages; server-based RFC-2822 and MIME messages format parsing and 
searching; and selective fetching of message attributes and text for efficiency. 

 

 

 

 

 



Experimental validation of architectural solutions  Page 17  

 

 

 

Figure 7: IMAP state and flow diagram 
 

The client and server programs communicate through a reliable data stream (typically TCP) 
and the server listens for incoming connections on port 143. Once a connection is 
established, it goes into one of four states (see Figure 7). Normally, it starts in the not 
authenticated state, where most operations are forbidden. If the client is able to provide 
acceptable authentication credentials the connection goes to the authenticated state. Here, 
the client can choose a mailbox, hence transiting to the selected state, and execute the 
commands that will manipulate the messages. The connection goes to the logout state when 
the client indicates that it no longer wants to access the messages (by issuing a LOGOUT 
command) or when some exceptional unilateral action occurs (e.g., server shutdown). 

All interactions exchanged between the client and server are in the form of strings that end 
with a CRLF (carriage return and line feed characters). The client initiates an operation by 
sending a command, which is prefixed with a distinct tag (e.g., a string A01, A02, etc). 
Depending on the type of command, the server response contains zero or more lines with 
data and status information, and ends with one of following completion results: OK (indicating 
success), NO (indicating failure), or BAD (indicating a protocol or syntax error). To simplify 
the matching between requests and responses, the completion result line is started with the 
same distinct tag provided in the client command. 

 
Testbed and implementation issues 
The experiments used several IMAP applications that were developed for different operating 
systems. Therefore, it was necessary to utilize a flexible testbed to ensure that the distinct 
requirements about the running environment could be accommodated. The testbed consisted 
of three PCs with Intel Pentium 4 at 2.80GHz and 512 MBytes of main memory. Two of the 
PCs corresponded to target systems, and each contained the IMAP applications and a 
Monitor. One of the machines could be booted in a few Linux flavors (e.g., Ubuntu, Fedora, 
and Suse) and the other on Windows (e.g., XP and 2000). The third PC ran the Injector 
components, collected the statistics, and performed the analysis of the results. This testbed 
configuration allowed for the parallel execution of two injection experiments (if needed, more 
PCs with target systems could easily be added, increasing the concurrency of the system). 
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At this moment, two Monitor components have been developed in C++, one for Linux and 
another for Windows. The Linux version implements all functionally that has been previously 
described, namely it collects a variety of execution data about the target (e.g., UNIX signals, 
resource usage) and synchronizes with the Injector. The Windows version is in an early 
stage of development, and it only provides basic functionality. Currently the Injector is 
capable of generating a large number of attacks for different test classes (e.g., syntax test, 
value test, privileged access violation test), and performs some level of analysis on the 
acquired execution data. The Java language was used in the implementation of the Injector 
to ensure that portability issues would not arise. 

2.3.1.2 Experimental Results 
The current section presents an evaluation of the vulnerability discovery capabilities of 
AJECT. This study executed several experiments to accomplish three main objectives: One 
goal was to confirm that AJECT is capable of catching a significant number of vulnerabilities 
automatically; A second goal was to demonstrate that different classes of vulnerabilities 
could be located with the tool, by taking advantage of the implemented tests; A third goal 
was to illustrate the generic nature of the tool, by showing that it can support attack injections 
on distinct IMAP server applications. 

To achieve these objectives, we used AJECT to expose several vulnerabilities that were 
reported in the past in some IMAP products. Basically, the most well-known bug tracking 
sites were searched for IMAP vulnerabilities that were disclosed in 2005. The available 
vulnerable products were then obtained and installed in the testbed. The experiments 
consisted in using AJECT to attack these products, to determine if the tool could detect the 
flaws. 

Another possible approach was to spend all our resources testing a small group of IMAP 
servers (one or two), trying to discover a new set of vulnerabilities. The experimental strategy 
presented in this thesis did not follow this approach because it would probably not allow to 
fulfill all experimental objectives. By lowering the number of different applications, and 
consequently of different development teams, the window of different classes of 
vulnerabilities would necessarily diminish. The same developers tend to make similar 
mistakes, so a larger spectrum of applications will probably contain different types of 
vulnerabilities. 

Also, during the injection campaigns, AJECT was able to discover a new vulnerability, 
previously unknown to the security community. 

 
Applications under test 
To set up the experiments, vulnerability tracking sites – the BugTraq archive of 
www.securityfocus.com, and the Common Vulnerabilities and Exposures (CVE) 
database at www.cve.mitre.org – and several other hacker and security sites were 
searched for IMAP vulnerabilities. From this search it was possible to find 27 reports of 
security problems related to IMAP products during 2005. 7 of these reports were excluded 
because they proved themselves useless by not providing any specific information about the 
vulnerability itself.  
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Table 1: IMAP servers with vulnerabilities 

ID Application OS Date Vuln. ID 

A1 MailEnable Professional 1.54* and 
Enterprise Edition 1.04* 

Win Apr CVE-2005-1014/5, CVE-2005-
2278 

A2 GNU Mailutils 0.6* Lin May CVE-2005-1523 

A3 E-POST Inc. SPA-PRO Mail @Solomon 
4.0 4* 

Win Jun BugTraq 13838/9 

A4 Novell NetMail 3.52 B* W/L Jun CVE-2005-1756/7/8 

A5 TrueNorth eMailServer Corporate 
Edition 5.2.2* 

Win Jun BugTraq 14065 

A6 Alt-N MDaemon 8.0 3* Win Jul BugTraq 14315/7 

A7 GNU Mailutils 0.6.1* Lin Sep CVE-2005-2878 

A8 University of Washington Imap 2004f* Lin Oct CVE-2005-2933 

A9 Floosietek FTGate 4.4* Win Nov BugTraq 15449 

A10Qualcomm Eudora WorldMail Server 3.0 Win Nov CVE-2005-3189 

A11MailEnable Professional 1.6 and 
Enterprise Edition 1.1 

Win Nov BugTraq 15492/4 

A12MailEnable Professional 1.7 and 
Enterprise Edition 1.1 

Win Nov BugTraq 15556 

 

From the analysis of the remaining 20 reports, it was possible to identify 9 IMAP products 
with vulnerabilities. In a few cases, more than one version of the same application had 
problems. Table 1 provides a summary of these applications. For each product version, the 
table indicates our internal identifier (ID), the operating system where it runs (OS) and the 
date of the first report about a vulnerability (Date). Sometimes other reports appeared at a 
later time. Column Vuln. ID has the identifiers of the associated reports (i.e., CVE or BugTraq 
identifiers). For applications with multiple reports, it was used a condensed representation – 
for example, CVE-2005-1014/5 corresponds to CVE-2005-1014 and CVE-2005-1015. 

There were two more products identified in the reports – the Ipswitch Collaboration 
Suite/IMail 8.13 and the Up-IMAPProxy 1.2.4. For the two products we were able to obtain 
the allegedly vulnerable versions and the exploits that were distributed by the hacker 
community. However, for some unknown reason, neither the AJECT tool nor the public 
available exploits were capable of exploring the described vulnerabilities. Therefore, we 
decided to disregard these products for further evaluation. 

 
Vulnerability Assessment 
After the identification of the flawed products, it was necessary to obtain as many 
applications (with the right versions) as possible. However, while attempting to obtain the 
reported (i.e., vulnerable) versions we met two main difficulties. First, in some cases these 
older versions were no longer available in the application’s maintainers sites. This was 
especially true for commercial products, where whenever a new or patched version was 
produced, the older ones were removed. In most cases, where this older versions were not 
found in the official sites, a more thorough web search (e.g., using P2P networks) was found 
successful. A second problem was related to the cost of the commercial products. In these 
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cases only the trial versions of the applications were available, which occasionally did not 
provide the required functionality for the discovery of the vulnerability. 

Therefore, in order to assess AJECT, a different approach was employed for the unavailable 
applications. The Injector was used to generate and carry out the attacks against a dummy 
IMAP server. This simple server only stored the contents of the malicious packets received 
from the Injector, and returned simple responses. The packets were later analyzed to 
determine if one of the attacks could activate the reported vulnerability. 

  

Table 2: Attacks generated by AJECT to detect IMAP vulnerabilities  (<A x n> A 
repeated n times; <OTHER-USER> OTHER-USER is another existing username; * using 

CRAM-MD5 auth scheme) 

ID Vuln. Type IMAP State Potential Attack 

A3 Access Violation S2 A01 SELECT ./../../<OTHER-USER>/inbox 

A4 Buffer Overflow any <A×2596> 

a) Potentially detected vulnerabilities 

 

ID Vuln. Type IMAP State First Successful Attack 

Buffer Overflow S2 A01 AUTHENTICATE <A×1296> 
A1 

Buffer Overflow S2 A01 SELECT <A×1296> 

A2 Format String any <%s×10> 

A5 Format String S2 A01 LIST <A×10> <%s×10> 

Buffer Overflow S2 A01 CREATE <A×244> 
A6 

Buffer Overflow any* <A×1260> 

A7 Format String S3 A01 SEARCH TOPIC <%s×10> 

A8 Buffer Overflow S2 A01 SELECT "{localhost/user=\"}" 

A9 Buffer Overflow S2 A01 EXAMINE <A×300> 

A10 Access Violation S2 A01 SELECT ./../../<OTHER-USER>/inbox 

Buffer Overflow S2 A01 SELECT <A×1296> 
A11 

Access Violation S2 A01 CREATE /<A×10> 

A12 Denial of Service S2 A01 RENAME <A×10> <A×10> 

b) Detected previous known vulnerabilities 

 

Application Vuln. Type IMAP State First Successful Attack 

TrueNorth eMailServer 
Corporate Edition 5.3.4 Buffer Overflow S3 A01 SEARCH <A×560> 

c) New vulnerability discovered with AJECT 
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Table 2 presents some attacks generated by AJECT that successfully activated the software 
bugs present in the IMAP servers. Each line contains the internal application identifier (see 
Table 1), the type of bug, the IMAP state in which the attack was successful, and the attack 
itself. The attack injection campaigns were able to locate different types of bugs, including 
stack and heap buffer overflows, format strings, and information disclosure [Koziol et al. 
2004], also see the next section). Information disclosure flaws may also allow other kind of 
attacks, especially if they could be explored with different IMAP commands, combined with 
write permissions. For example, a “CREATE pathname” command would allow the creation 
of a new file named “pathname”. 

The results of the experiments against the dummy IMAP server are shown in Table 2a. 
These two rows display the generated attacks that, supposedly, would activate the reported 
vulnerabilities. 

The known vulnerabilities detected with AJECT are presented in Table 2b. Testing several 
different applications is very time consuming, because it involves performing an application 
survey. Besides the retrieving the applications, it also implicates the installation and 
configuration of the IMAP server. Moreover, each test could take a significant amount of time 
to complete. Therefore, we decided to carry out the injection campaigns only until the 
discovery of the first vulnerability of each application. The command corresponding to this 
first successful attack is presented in the last column of the table. In the few cases where 
experiments were left to run for a longer period, several distinct attacks were able to uncover 
the same problem. For example, after 24500 injections against the GNU Mailutils, there were 
already more than 200 attacks that similarly crashed the application. 

Sometimes it was difficult to determine if distinct attacks were or not equivalent in terms of 
discovering the same flaw, especially in the cases where they used different IMAP 
commands. For example, if a bug is in the implementation of a validation routine that is 
called by the various commands, then the attacks would be equivalent. On the other hand, if 
no code was shared then there should be different bugs. 

The equivalence of the attacks lies in the equivalence of the executed code instructions. If 
the attacks trigger the same vulnerability, i.e., the execution of the same piece of code, they 
are equivalent. However, different vulnerabilities are always detected by non-equivalent 
attacks, even the server’s behavior is apparently similar. Actually, in order to find out the 
equivalence of the attacks, one would need to access the source code of the applications 
(something impossible to obtain for the majority of the products) and to monitor the 
instructions in real-time. Consequently, a more simplistic approach was taken: all successful 
attacks are deemed equivalent, except in the situations where the server’s behavior or the 
attacks are obviously distinct, and therefore, correspond to different vulnerabilities. 

During the course of our experiments, AJECT was also able to discover a previously 
unknown vulnerability as shown in Table 2c. The attack sends a large string in a SEARCH 
command that causes a crash in the server. This indicates that the bug is a boundary 
condition verification error, which corresponds to a buffer overflow. Several versions of the 
eMailServer application were tested, including the most recent one, and all of them were 
vulnerable to this attack. 

 
Test Results 
In Table 3 are represented the commands that were experimented in the various IMAP 
states. Some of the commands are very simple (e.g., composed by a single field) but others 
are much more intricate. As expected, the number of malicious packets generated from each 
command specification is proportional to its complexity. 

 

 



Experimental validation of architectural solutions  Page 22  

 

Table 3: Commands tested in each IMAP state 

Any State  S1) Non Authenticated 

CAPABILITY STARTTLS 

NOOP AUTHENTICATE <auth mechanism> 

LOGOUT LOGIN <username> <password> 

  

S2) Authenticated S3) Selected 

SELECT <mbox> CHECK 

EXAMINE <mbox> CLOSE 

CREATE <mbox> EXPUNGE 

DELETE <mbox> SEARCH [charset spec] <criteria...> 

RENAME <mbox> <new name> FETCH <seq set> <msg data | macro> 

SUBSCRIBE <mbox> STORE <seq set> <msg data> <value> 

UNSUBSCRIBE <mbox> COPY <seq set> <mbox> 

LIST <reference> <mbox [wildcards]> UID <COPY | FETCH |...> <args> 

LSUB <reference> <mbox [wildcards]>  

STATUS <mbox> <status data items...>  

APPEND <mbox> [flag list] [date] <msg 
literal> 

 

 

The remainder of this section will provide some explanations for the attack injection results 
presented in Table 2. 

 
Delimiter test 
This class of test first retrieves the delimiters characters from the protocol specification. Each 
protocol field was separated by a space character, so this was the field’s final delimiter. The 
initial tag (used in every protocol message) was defined as the packet’s initial delimiter. So, 
in the Target Protocol Specification definition, “A001 ” was specified as being the initial 
delimiter. For the message’s final delimiter, the RFC-3501 [Crispin 2003] specifies the 
carriage return and line feed characters (or CRLF for short). 

Attacks directed at the packet’s initial delimiter resulted in the server assuming that the first 
field was the initial tag, when in fact was the IMAP command. Since the protocol command 
was being mistaken for the initial tag, these attacks were instantly rejected for unknown 
command reasons. 

It was interesting to observe that most IMAP servers did not require the packet’s final 
delimiter to be CRLF, but just CR or newline. When omitted, the servers concatenated the 
messages forming a larger message. This was not in conformance with the goal of the tool, 
which was to create single, independent, and easily reproducible attacks, instead of a 
strange conjunction of packets from different attacks.  

The same concatenation behavior happened with the field’s final delimiter. This time it would 
concatenate the fields, still maintaining the packet’s integrity. However, no abnormal 
behavior was detected from any of the attacks generated from this class of test. 
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Syntax test 
Another class of test that did not produce any detected abnormal behavior in the Target 
System was the syntax test. The generated attacks were very simple and were quickly 
dismissed by the parsing validation mechanisms. 

 Table 4: Syntax test attacks sample 

Att. No. Attack Packet Description 

…    

328 SELECT removed field 

329 /inbox removed field 

330 /inbox SELECT /inbox duplicated field 

331 SELECT SELECT /inbox duplicated field 

332 SELECT /inbox /inbox duplicated field 

333 SELECT /inbox SELECT duplicated field 

334 SELECT SELECT rem. and dupl. field 

335 /inbox /inbox rem. and dupl. field 

SELEC
T 

336 EXAMINE removed field 

337 /inbox removed field 

338 /inbox EXAMINE /inbox duplicated field 

…   

EXA
M

IN
E 

 

Table 4 shows a subset of the generated attacks using this test class. These example 
attacks are packet variations of the SELECT and EXAMINE commands. The field contents 
are kept unchanged, but they are removed or duplicated elsewhere. 

By infringing the syntax of the protocol in such an obvious way, the attacks were immediately 
dismissed by the validation routines, so no vulnerabilities were detected by the syntax test. 

 
Value test 
This test was very successful in detecting buffer overflow, denial of service, and format string 
vulnerabilities, because it focused on the generation of malicious data (e.g., long strings or 
strings with format string specifiers). 

The idea behind the attack generation is very simple. As explained earlier, a set of malicious 
and joining tokens was previously specified. Then, the value test will generate various 
combinations from these tokens with some random data. The resulting attacks are packets 
with some invalid fields that explore some characteristics usually found in hacker exploits. 

With this class of test, AJECT was able to detect 11 known vulnerabilities: 7 buffer overflow, 
1 denial of service, and 3 format string vulnerabilities. A new and previously unknown buffer 
overflow vulnerability was also detected with this test.  

 
Privileged access violation test 
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The goal of this test is to generate protocol requests that induce the server into performing 
some privileged action, without the necessary credentials. Three IMAP servers were found 
vulnerable to these attacks that tried to get secret (or private) data from the target system, or 
even to modify it. Such information is usually found in the server’s hard-disk or memory, and 
it can correspond, for instance, to passwords kept in a configuration file or in memory 
resident environment variables. Hence, this test resorts to some special tokens, such as well-
known file, directory, and user names. 

On the IMAP protocol there a few arguments of some commands that are used to name a 
file. For example, the mbox on the EXAMINE command refers to a mailbox, which is 
specified by its file system path. So, this is a very interesting field for information disclosure 
vulnerabilities, or more general access violations. Actually, both detected vulnerabilities were 
related to the mailbox field: an information disclosure vulnerability, and another that granted 
write access to any directory. 

2.4 Summary of results 
AJECT simulates the behavior of a malicious adversary by injecting different kinds of attacks 
against a target server. In parallel, it observes the running application in order to collect 
various information. This information is later analyzed to determine if the server executed 
incorrectly, which is a strong indication that a vulnerability exists. This methodology can be 
used to detect vulnerabilities in network services, present in critical infrastructures, such as 
the CIS devices, control and management systems, or any other network component 
essential to the correct and safe operation of the critical infrastructure. 

The attack injection methodology, and well as its implementation, accomplished a modular 
design and architecture. In fact, AJECT is relatively portable to different systems, since the 
Injector runs on a Java virtual machine. However, the build of the Monitor component 
requires to run in the target system. 

Experimental tests with IMAP servers were carried out to evaluate the usefulness of the tool. 
These experiments indicated that AJECT could be utilized to locate a significant number of 
distinct types of vulnerabilities (e.g., buffer overflows, format strings, and information 
disclosure bugs). In addition, AJECT was able to discover a new buffer overflow vulnerability. 

Besides the good results achieved with the current implementation, new classes of test and 
protocol specifications can be created and accommodated into AJECT, increasing its 
vulnerability and target coverage. 

Another important feature present in AJECT is its automatic operation. The tool performs 
automatic test-case generation (i.e., the creation of the attacks) and injection, while at the 
same time it launches, terminates, and monitors the target server. 

3 HONEYPOT-BASED ARCHITECTURES  
Besides performing controlled experiments to identify residual vulnerabilities in architectural 
and software components, we also need to collect data issued from real observations of 
attacks on the internet to improve our understanding of the behaviour of the attackers and 
their strategies to compromise the machines connected to the Internet. Also, such data is 
useful to elaborate statistical models and realistic assumptions about the occurrence of 
attacks, that are necessary for the evaluation of quantitative security measures. Some 
examples of such models are presented in deliverable D25 . 

In this section, we present honeypot-based architectures that are aimed at fulfilling this 
objective. This section is structured as follows. Section 3.1 presents basic background and 
related work about honeypots. In particular, two types of honeypots offering different levels of 
interaction to the attackers are discussed. The architectures corresponding to each of these 
types of honeypots used in the context of CRUTIAL to support data collection are described 
in sections 3.2 and 3.3 respectively. Finally, section 3.4 describes the types of data that can 
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be collected and possible exploitations of the data to characterize observed attack 
processes.  

3.1 Background  
Today, several solutions exist to monitor  malicious traffic on the Internet, including viruses, 
worms, denial of service attacks, etc. An example of  the proposed techniques consists in 
monitoring a very large number of unused IP address spaces by using the so called network 
telescopes [CAIDA, Moore et al. 2001], blackholes [Cook et al. 2004] or Internet Motion 
Sensors [Bailey et al. 2005]. Another approach used e.g., in the context of DShield [DShield] 
and the Internet Storm Center [ISC], consists in centralizing and analyzing firewall logs or 
intrusion detection systems alerts collected from different sources around the world.  Other 
popular approaches that have received increasing interest in the last decade are based on 
honeypots. We can mention e.g., Leurré.com [Pouget et al. 2005], HoneyTank [Vanderavero 
et al. 2004], and many national initiatives set up in the context of the honeynet project 
alliance [Spitzner 2002]. 

A honeypot is a machine connected to the Internet that no one is supposed to use and 
whose value lies in being probed, attacked or compromised [Spitzner 2002]. In theory, no 
connection to or from that machine should be observed. If a connection occurs, it must be, at 
best an accidental error or, more likely, an attempt to attack the machine. Thus of the 
activities recorded should correspond to malicious traffic. This is the main advantage of using 
honeypots compared to other techniques that consist in collecting and analysing the data 
logged by firewalls or routers as in DShield [DShield], where the information recorded is a 
mixture of normal and malicious traffic. 

Two types of honeypots can be distinguished depending on the level of interactivity that they 
offer to the attackers. Low-interaction honeypots do not implement real functional services. 
They emulate simple services and cannot be used to compromise the honeypot or attack 
other machines on the Internet. On the other hand, high-interaction honeypots offer real 
services to the attackers to interact with which makes them more risky than low interaction 
honeypots. As a matter a fact, they offer a more suitable environment to collect information 
on attackers activities once they manage to get the control of a target machine and try to 
progress in the intrusion process to get additional privileges. It is noteworthy that recently, 
hybrid honeypots combining the advantages of low and high interaction honeypots have 
been also proposed, (some examples are presented e.g.,  [Artail et al. 2006, Provos & Holz 
2007]). 

Most of the currently deployed honeypots on the Internet are low interaction honeypots that 
are easy to implement and do not present any risk of being used by the attackers for 
attacking other machines. As an example, the Leurré.com data collection platform set up by 
Eurécom and to which LAAS contributes is based on the deployment of identically configured 
honeypots at various locations on the Internet (see Section 3.2). 

In the context of CRUTIAL, we are interested in the analysis and the exploitation of data 
collected from both, low interaction and high interaction honeypots. The first type of 
honeypots is well suited to easily collect a large volume of data that can be used to 
characterize the time occurrence of the attacks and their distribution according to their type, 
origin, etc. In CRUTIAL, we rely on the data collected from the Leurré.com platform to carry 
out such analyses. The Leurré.com data collection platform is described in section 3.2. The 
second type of honeypots is needed to analyse the strategies and the behaviour of the 
attackers once they succeed in breaking into a target machine and try to progress in order to 
increase their privileges or carry out malicious actions. This requires the instrumentation of 
the honeypot with specific mechanisms dedicated to the capture and monitoring of attackers 
activities and to the control of their activities to prevent the use of the target machine as 
stepping stone for compromising other machines. In CRUTIAL, we have developed a specific 
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high–interaction honeypot architecture dedicated to this purpose which is presented in 
Section 3.3. 

3.2 Leurré.com data collection platform  
The data collection environment Leurré.com is based on low-interaction honeypots using the 
freely available software called honeyd [Provos 2004]. Since 2003, 80 honeypot platforms 
have been progressively deployed on the Internet at various geographical locations. As 
illustrated in Figure 8, each platform emulates three computers running Linux RedHat, 
Windows 98 and Windows NT, respectively, and various services such as ftp, web, etc. All 
traffic received by or sent from each computer is saved in tcpdump files. A firewall ensures 
that connections cannot be initiated from the computers, only replies to external solicitations 
are allowed. All the honeypot platforms are centrally managed to ensure that they have 
exactly the same configuration. Every day, the data gathered by each platform are securely 
uploaded from a trusted machine during a short period of time to a centralized database with 
the complete content, including payload of all packets sent to or from these honeypots and 
additional information to facilitate its analysis, such as the IP geographical localization of 
packets’ source addresses, the OS of the attacking machine, the local time of the source, 
etc. Integrity checks are also performed to ensure that the platform has not been 
compromised. 

 

firewall virtual machines

physical machine

Windows NT

Red Hat 7.3

Windows 98

tcpdump

honeyd

Internet

 
Figure 8- Leurré.com honeypot architecture  

3.3 A high-interaction honeypot architecture 
With low-interaction honeypots, the attackers can only scan ports and send requests to fake 
servers without ever succeeding in taking control over them. Thus, high-interaction 
honeypots are needed to allow us to learn about the behaviour of malicious attackers once 
they have managed to compromise and get access to a new host, and about their tools 
tactics and motives. We are mainly interested in observing the progress of real attack 
processes, and monitoring in a controlled environment the activities carried out by the 
attackers as they gain unauthorized access, capturing their keystrokes, recovering their 
tools, and learning about their motives.  

The most obvious approach for building a high-interaction honeypot consists in using a 
physical machine and dedicating it to record and monitor attackers activities. The installation 
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of this machine is as easy as a normal machine. Nevertheless, probes must be added to 
capture and store the activities. Operating in the kernel is by far the most frequent manner to 
do it. Sebek [Provos & Holz 2007] and Uberlogger [Alberdi et al. 2005] operate in that way by 
using Linux Kernel Module (LKM) on Linux. More precisely, they launch a customised 
module to intercept interesting system calls in order to capture the activities of attackers. 
Data collected in the kernel is stored on a server through the network. Communications with 
the server are hidden on all installed honeypots.  

Instead of deploying a physical machine that acts as a honeypot, a more cost effective and 
flexible approach would be to deploy a physical machine hosting several virtual machines 
that act as honeypots. Usually, VMware,User Mode Linux (UML) or, more recently, Qemu 
virtualisation and emulation software are used to set up such virtual honeypots. Some 
examples of virtual honeypots are presented in [Provos & Holz 2007].  

In CRUTIAL, we have decided to build our own virtual high-interaction honeypot that can be 
easily customized to our needs and experiments. The design choices and the architecture of 
our honeypot are detailed in the following sections. 

3.3.1 Objectives and design needs 
More concretely, our objective is to set up and deploy an instrumented environment that will 
offer some possibilities to attackers to break into a target system under strict control, and will 
include mechanisms to log their activities. In particular, we are interested in capturing: 1) the 
communication traffic going through the honeypot over the network, 2) the keystrokes of the 
attackers on their terminals, 3) the logins and passwords use, and 4) the programs and tools 
executed on the honeypot.   

The vulnerability to be exploited by the attacker to get access to the honeypot is not as 
crucial as the activity they carry out once they have broken into the host. That's why we 
chose for a first implementation to use a traditional vulnerability: weak passwords for ssh 
user accounts. Our honeypot should not be particularly hardened for two reasons. First, we 
are interested in analyzing the behavior of the attackers even when they exploit a buffer 
overflow and become root. So, if we use some kernel patch such as Pax [Pax 2007], our 
system will be more secure but it will be impossible to observe some behavior. Secondly, if 
the system is too hardened, the intruders may suspect something abnormal and then give 
up. 

In our setup, only ssh connections to the virtual host should be authorized so that the 
attacker can exploit this vulnerability. On the other hand, any connection from the virtual host 
to the Internet should be blocked to avoid that intruders attack remote machines from the 
honeypot. This does not prevent the intruder from downloading code, using the ssh 
connection4. Forbidding outgoing connections is needed for liability reasons. This limitation 
precludes the possibility of observing complete attack scenarios. Moreover, it might also 
have an impact on attacker behavior: attackers might stop their attack and decide to never 
use again the honeypot for future malicious activities. To address this problem, some 
implementations limit the number of outgoing connections from the honeypot through the use 
of “rate limiting” mechanisms. Although this solution allows more information about the attack 
process to be captured, it does not address the liability concerns. A possible solution that we 
have investigated is to redirect outgoing connections to a local machine, while making the 
attackers believe that they are able to bounce from the honeypot. This solution is detailed in 
[Alata et al 2007]. 

As regards the mechanisms that need to be included in the honeypot to log attackers 
activities, capturing network traces using e.g., tcpdump as usually done in the case of low 
interaction honeypots would not be enough. We also need to record the activities carried out 

                                                 
4 We have sometimes authorized http connections for a short time, by checking that the attackers were not trying to attack other remote hosts. 
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by the attackers on their terminal and the logins and passwords tried. This requires the 
modification of some OS calls as well as the ssh software. Additional mechanisms are also 
needed to regularly archive the information logged in a secured way. 

In the next section, we describe the architecture of the proposed honeypot and describe the 
mechanisms that have been implemented for logging and archiving the activities of the 
attackers.   

3.3.2 Architecture and implementation description 
To fulfill the objectives listed in Section 3.3.1, we need an open source implementation of the 
target operating system. It is also important to be familiar with, and to have a deep 
knowledge of the selected operating system in order to be able to keep the activities of the 
attackers under strict control. For these reasons, we have decided to use GNU/Linux. As 
regards the implementation of the virtual machines, our choice was for a virtualisation 
software such as VMware or Qemu. Compared to VMware, Qemu presents the advantages 
of being freely distributed and open source. Indeed, we have developed a first 
implementation based on VMware that does not include the redirection mechanism. This 
implementation was then upgraded at a second stage to include the redirection mechanism, 
using Qemu. For both implementations, the honeypot was developed using a standard 
Gnu/Linux installation with kernel 2.6 with the usual binary tools. No additional software was 
installed except the http apache server. This kernel was modified as explained in the next 
subsection.  

An overview of the general architecture of the honeypot is presented in Figure 9. The 
mechanisms implemented for capturing the attackers activities are highlighted. These 
mechanisms are described briefly in the following.   

firewall

virtual machine

Internet

Modification of the kernel

Modified SSH

New 
system call

virtual machine

Modification of the kernel

Modified SSH

New 
system call

Connection redirection

physical machine  
Figure 9- Overview of the high-interaction honeypot architecture  

3.3.2.1 Data collection mechanisms 
In order to log what the attackers do on the honeypot, we modified some drivers functions 
(tty_read and tty_write), as well as the exec system call in the Linux kernel. The 
modifications of tty_read and tty_write enable us to intercept the activity on all the 
terminals of the system. The modification of the exec system call enables us to record the 
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system calls used by the intruder. These functions are modified in such a way that the 
captured information is logged directly into a buffer of the kernel memory of the honeypot 
itself. This means that the activity of the attacker is logged on the kernel memory of the 
honeypot itself. This approach is not common: in most of the approaches we have studied, 
the information collected is directly sent to a remote host through the network. The 
advantage of our approach is that logging through the kernel is difficult to detect by the 
attacker (more difficult at least than detecting a network connection). It is noteworthy that the 
logging activity is executed on the real host not on the virtual, thus it is not easily detectable 
by the intruder (he cannot find anything suspicious in the list of processes for example). 
Furthermore, the data is compressed using the LZRW1 algorithm before being logged into 
the kernel memory. 

Moreover, in order to record all the logins and passwords tried by the attackers to break into 
the honeypot we added a new system call into the kernel of the virtual operating system and 
we modified the source code of the ssh server so that it uses this new system call. The 
logins and passwords are logged in the kernel memory, in the same buffer as the information 
related to the commands used by the attackers. As the whole buffer is regularly stored on the 
hard disk of the real host, we do not have to add other mechanisms to record these logins 
and passwords. 

The activities of the intruder logged by the honeypot are preprocessed and then stored into 
an SQL database. The raw data are automatically processed to extract relevant information 
for further analyses, mainly: i) the IP address of the attacking machine, ii) the login and the 
password tested, iii) the date of the connection, iv) the terminal associated (tty) to each 
connection, and v) each command used by the attacker. 

3.3.2.2 Connection redirection mechanism 
As indicated in Section 3.1.1, this mechanism is aimed at automatically and dynamically 
redirecting outgoing Internet connections from the honeypot to other local machines. The 
goal is to make the attacker believe he can connect from the honeypot to hosts on the 
Internet, whereas in reality, the connections are simply redirected towards another honeypot. 
The main idea is illustrated by the example presented in Figure 10. 
 

In this example, b, c and d are honeypots and a, e, f and g are machines on the Internet. An 
attacker from Internet host a breaks into honeypot b (connection 1). From this honeypot, the 
attacker then tries to break into Internet host e thanks to connection 2. This connection is 
blocked by our mechanism. The attacker then tries another connection 3 towards Internet 
host f. This connection is accepted and automatically redirected towards honeypot c. The 
attacker is under the illusion that his connection to f has succeeded, whereas it has merely 
been redirected to another honeypot. The attacker tries to establish another connection 4 
towards Internet host g. Similar to connection 3, this connection is accepted and 
automatically redirected towards honeypot d. The attacker finally initiates another connection 
(5) to Internet host g from host f (in reality, from host c). This connection is also accepted and 
is redirected towards honeypot d.  

This mechanism allows the observation of attackers activity on different hosts. In general, a 
honeypot allows the activity of the attacker to be observed at only one side of the connection. 
The other connection end is the machine that interacts with the honeypot. For all redirected 
connections, we can observe an attacker on both connection ends.  

On the other hand, it is possible for a clever attacker to see through the hoax. For example, 
in Figure 10, suppose the attacker already controls the machines a, e and f. He can then 
check, after establishing connection 3, if the machine he is connected to really is machine f. 
This limitation does exist; however we believe that many attackers will not systematically do 
such checks, in particular if the attack is carried out by non-sophisticated automatic scripts. 
Just as low-interaction honeypots provide some useful albeit limited information, more attack 
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information would be gleaned from systems that implement our redirection mechanism than 
those that do not.  

connection

Dropped connection

Redirected connection

Simulated connection

Honeypots

gateway

Internet

 
Figure 10- Connection redirection principles: example 

 

The dynamic redirection mechanism has been implemented in the Gnu/Linux operating 
system through the NETFILTER firewall of the kernel. This firewall allows the interception 
and the modification of the packets flowing through the IP stack. As illustrated in Figure 9, 
the mechanism includes three components: 

• the redirection module (inside the kernel) extracts the received packets. 

• the dialog_handler decides whether the extracted packets must be redirected or not. 
Several algorithms can be used for this purpose and for the distribution of the redirected 
connections among the local honeypots. 

• the dialog_tracker maintains the link between the redirection module and the 
dialog_handler. This way, the implementation of the dialog handler can be totally 
independent of the architecture and the operating system. In particular, the 
dialog_handler and the dialog_tracker could be run on different machines. 

 
The implementation of the three components is described in detail in [Alata et al. 2007], with 
experimental results showing that the redirection mechanism does not lead to a significant 
latency due to the interception and redirection of connections. This is important to ensure 
that the overhead is sufficiently low as to prevent detection of the redirection mechanism by 
the attacker. 
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Figure 11- Redirection mechanism implementation through NETFILTER 

 

3.3.3 Deployment 
In order to collect real data about attackers activities and to validate our set up, we have 
deployed our virtual high-interaction honeypot on the Internet. Figure 12 gives an overview of 
the most recent version of the honeypot. Three Gnu/Linux virtual machines M1, M2 and M3 
have been set up. Each machine includes usual desktop software (Compiler, Text editors, 
etc.). Only M1 and M2 are accessible from the Internet. M3 is accessible from the other 
virtual machines. The only input connections authorized by the firewall are those targeting 
the ssh service. Concerning output connections from the honeypot, two virtual machines R1 
and R2 are used by the redirection mechanism.   

The deployment was carried out in two stages. The first deployed version did not include the 
redirection mechanism and the virtual machines have been set up using VMware. This setup 
was then upgraded using Qemu and included the redirection mechanism. 
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Dropped connection
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Honeypot
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Internet

 
Figure 12- Overview of the most recently deployed version of the honeypot 
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In the beginning of the experiment (approximately one and a half month), we deployed a 
machine with a ssh server correctly configured, offering no weak account and password. We 
have taken advantage of this observation period to determine which accounts were mostly 
tried by automated scripts. Using this acquired knowledge, we have created 17 user 
accounts and we started looking for successful intrusions. Some of the created accounts 
were among the most attacked ones and others not. As we already explained in previous 
sections, we have deliberately created user accounts with weak passwords (except for the 
root account).  

As illustrated on Figure 13, we can distinguish two main steps for the activities recorded for 
each user account, identified by the durations τ1 and τ2. The first one measures the duration 
between the creation of the account and the first successful connection to this account, and 
the second one measures the duration  between the first the first successful connection and 
the first real intrusion (i.e., a successful connection with commands). Table 5 summarizes 
these durations (UAi means User Account i). 

The second column indicates that there usually is a gap of several days between the time 
when a user account is successfully found and the time when someone logs into the system 
with this account to issue some commands on the now compromised host. This is a 
somehow a surprising fact. The particular case of the UA5 account is explained as follows: an 
intruder succeeded in breaking the UA4 account. This intruder looked at the contents of the 
/etc/passwd file in order to see the list of user accounts for this machine. He immediately 
decided to try to break the UA5 account and he was successful. Thus, for this account, the 
first successful connection is also the first intrusion. 

Account
creation

1st successful
connection to
this account

1st successful
connection to this

account with commands

τ1 τ2 time
 

Figure 13: Definitions of τ1 and τ2 

Table 5: τ1 and τ2 values for the each user account  

User Account τ1  τ2 
UA1 1 day 4 days 
UA2 1.5 day 4 minutes 
UA3 15 days 1 day 
UA4 5 days 10 days 
UA5 5 days 0 
UA6 1 day 4 days 
UA7 5 days 8 days 
UA8 1 day 9 days 
UA9 1 day 12 days 
UA10 3 days 2 minutes 
UA11 7 days 4 days 
UA12 1 day 8 days 
UA13 5 days 17 days 
UA14 5 days 13 days 
UA15 9 days 7 days 
UA16 1 day 14 days 
UA17 1 day 12 days 
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As regards the data collected so far during the experiment, the number of ssh connection 
attempts to the honeypot that we have recorded is 552362 (we do not consider here the 
scans on the ssh port). This represents about 1318 connection attempts a day. Among these 
552362 connection attempts, only 299 were successful. The total number of accounts tested 
is 98347 and the number of different IP addresses observed on the honeypot was 654. This 
represents a significantly large volume of data on which statistical analyses can be carried 
out to extract relevant information about the observed attack processes.  

This analysis is currently undergoing and the results will be presented in the next year 
deliverable. 

4 CONCLUSION 
In this deliverable, we presented two complementary experimental environments that are 
aimed to support the activities carried out in CRUTIAL in order: 1) to identify security-related 
vulnerabilities in software components and servers used in the CRUTIAL architecture, and 2) 
to collect real data representative of attacks typically observed on the Internet that will be 
useful to build models characterizing malicious threats. 

The identification of security-related vulnerabilities is based on the injection of attacks using a 
new tool (AJECT). The experimental results obtained so far have confirmed that the 
methodology developed and the features offered by the tool are very relevant and well suited 
to identify residual vulnerabilities in software components and servers, such as those used in 
the information infrastructures investigated in CRUTIAL. The work that will be carried in the 
next year will be focussed on the application of the tool to selected components of the 
CRUTIAL reference architecture considering two types of components: the CIS devices that 
are positioned at the borders of the protected networks and the servers that provide 
fundamentals services to the other components of the networks (e.g., the DNS servers). 

Concerning the collection and analysis of attack data based on honeypots, the effort will be 
focussed on the processing and the analysis of the data collected during the deployment of 
our high-interaction honeypot on the Internet in order to characterize the observed scenarios 
and behaviours of the attackers. Additionally, we will work on the enhancement of the 
capabilities offered by the current implementation, by including additional vulnerabilities that 
can be used by potential attackers to compromise systems and servers connected to the 
Internet.  
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