

Experimental Validation of
Architectural Solutions

Susanna Donatelli, Eric Alata,
João Antunes, Mohamed Kaâniche,
Nuno Neves, Vincent Nicomette,

Paulo Veríssimo

 DI-FCUL TR–08–4

January 2008

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are stored
in PDF, with the report number as filename. Alternatively, reports are available by post

from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330738?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Project no.: IST-FP6-STREP - 027513
Project full title: Critical Utility InfrastructurAL Resilience
Project Acronym: CRUTIAL
Start date of the project: 01/01/2006 Duration: 36 months

Deliverable no.: D26
Title of the deliverable: Experimental validation of
architectural solutions
Project co-funded by the European Commission within the Sixth Framework
Programme (2002-2006)

Contractual Date of Delivery to the CEC: 31/12/2007
Actual Date of Delivery to the CEC: 18/01/2008
Organisation name of lead contractor for this deliverable: CNIT
Author(s): Susanna Donatelli6, Eric Alata4, João Antunes5, Mohamed Kaâniche4, Nuno
Neves5, Vincent Nicomette4, Paulo Veríssimo5
Participant(s):6CNIT, 4LAAS-CNRS, 5FCUL.
Work package contributing to the deliverable: WP5
Nature: R
Dissemination level: PU
Version: 3.0
Total number of pages:

Abstract
This is a interim report on the experimental validation of architectural solutions performed in
WP5. The two main contributions are the description of an attack injection tool for testing the
architectural solutions and the description of a monitor and data collector that collects and
analyses information about the behavior of the software after it has been attacked.

Keyword list: Attack injection, malicious behavior, monitor and data collection, honeypots,
statistical analysis

DOCUMENT HISTORY

Date Version Status Comments

29/10/2007 000 Draft First version of table of contents

15/12/2007 001 Draft First draft with call for contribution

21/12/2007 001 Draft Contribution received

16/01/2008 002 Draft Pre-final version distributed

18/01/2008 003 Submit Submitted version

Table of Contents

1 INTRODUCTION .. 1

2 SOFTWARE VULNERABILITIES IDENTIFICATION BASED ON ATTACK INJECTION 1
2.1 IDENTIFICATION OF THE RUN-TIME COMPONENTS TO BE VALIDATED AND CONTRIBUTION OF THIS
INTERIM REPORT ... 2
2.2 THE ATTACK INJECTION TOOL.. 2

2.2.1 Using Attacks to Find Vulnerabilities ... 3
2.2.2 Architecture of the tool AJECT .. 5
2.2.3 Implementation details of AJECT .. 8

2.3 EXPERIMENTAL VALIDATION ... 16
2.4 SUMMARY OF RESULTS .. 24

3 HONEYPOT-BASED ARCHITECTURES... 24
3.1 BACKGROUND ... 25
3.2 LEURRÉ.COM DATA COLLECTION PLATFORM... 26
3.3 A HIGH-INTERACTION HONEYPOT ARCHITECTURE ... 26

3.3.1 Objectives and design needs .. 27
3.3.2 Architecture and implementation description ... 28
3.3.3 Deployment ... 31

4 CONCLUSION.. 33

REFERENCES ... 34

Experimental validation of architectural solutions Page 1

1 INTRODUCTION
Identifying applications security related vulnerabilities and collecting real data to learn about
the tools and strategies used by attackers to compromise target systems connected to the
Internet is a necessary step in order to be able to build critical infrastructures and systems
that are resilient to malicious threats. This deliverable presents two complementary types of
experimental environments used in the context of CRUTIAL in order to fulfill these objectives.
The first one concerns the development of a methodology and a tool (AJECT) for injecting
attacks in order to reveal residual vulnerabilities in the applications and software components
under study. This tool will be used in particular to locate security vulnerabilities in network
servers and software components of the CRUTIAL reference architecture and information
switches. The second type of experimental environment investigated in CRUTIAL and
discussed in this deliverable concerns the development and the deployment of honeypots
aimed at collecting data characterizing real attacks on the Internet. Such data are mainly
used in the context of CRUTIAL to support the modeling activities carried out in WP2 and
WP5 regarding the characterization and assessment of malicious threats. Useful feedback
could be also provided to support design related activities, through the identification of
common types, behaviors and scenarios of attacks observed on the Internet.

The structure of this Deliverable is as follows. Section 2 describes the methodology and the
AJECT tool aimed at the identification of software security-related vulnerabilities and some
preliminary experimental results illustrating the capabilities of the tool. Section 3 describes
honeypot-based experimental environments investigated in CRUTIAL to collect and analyze
real attack observed on the Internet. Conclusions and future work are drawn in Section 4.

2 SOFTWARE VULNERABILITIES IDENTIFICATION BASED ON
ATTACK INJECTION

Applications have suffered dramatic improvements in terms of the offered functionality over
the years. These enhancements were achieved in many cases with bigger software projects,
which cannot be carried out by a single person or a small team. As a consequence, size and
complexity has increased, and software development frequently involves several teams that
need to cooperate and coordinate efforts. Additionally, to speedup the programming tasks,
most projects resort to third-party software components (e.g., a cryptographic library, a PHP
module, a compression library), which in many cases are poorly documented and supported.
It is also not uncommon to re-use legacy code which was developed by people no longer
available. All these factors contribute to the presence of vulnerabilities.

A vulnerability per se does not cause a security hazard, and in fact it can remain dormant for
many years. An intrusion is only materialized when the right attack is discovered and applied
to exploit a particular vulnerability. After an intrusion, the system might or might not fail,
depending on its capabilities in dealing with the errors introduced by the adversary.
Sometimes the intrusion can be tolerated [Veríssimo et al. 2003], but in the majority of the
current systems, it leads almost immediately to the violation of its security properties (e.g.,
confidentiality or availability). Therefore, it is important to devise methods and means to
remove vulnerabilities or even prevent them from appearing in the first place.

Vulnerability removal can be performed both during the development and operational
phases. In the last case, besides helping to identify programming flaws which can later be
corrected, it also assists the discovery of configuration errors. Intrusion prevention, such as
vulnerability removal, has been advocated because it reduces the power of the attacker
[Veríssimo et al. 2003]. In fact, even if the ultimate goal of zero vulnerabilities is never
attained, vulnerability removal effectively reduces the number of entry points into the system,
making the life of the adversary increasingly harder (and ideally discouraging further attacks).

In this section we describe a tool called AJECT which has been developed within the project.
This tool uses an attack injection methodology to locate security vulnerabilities in software

Experimental validation of architectural solutions Page 2

components, e.g., network servers running in the CRUTIAL Information Switches or in other
interconnected machines. Some preliminary results with well known email servers are
described to validate the capabilities of the tool.

The structure of this Section is as follows. Section 2.1 starts with the identification of the
architectural components to be experimentally validated, Section 2.2 describes the attack
injection tool, while Section 2.3 describes some preliminary experimental results illustrating
the capabilities of the tool.

2.1 Identification of the run-time components to be validated and contribution
of this interim report

The nature of the software and the reliance we place in it makes us even more vulnerable to
deviations from its correct behavior. Critical infrastructures, such as the Power Grid for
instance, have an important role in the normal functioning of the economy and general
community, and thus they pose an even higher risk to the sustenance of the modern society
pillars, such as the national and international security, governance, public health and safety,
economy, and public confidence.

In recent years these systems evolved in several aspects that greatly increased their
exposure to cyber-attacks coming from the Internet. Firstly, the computers, networks and
protocols in those control systems are no longer proprietary but standard PCs and networks
(e.g., wired and wireless Ethernet), and the protocols are often encapsulated on top of
TCP/IP. Secondly, these networks are usually connected to the Internet indirectly through the
corporate network or to other networks using modems and data links. Thirdly, several
infrastructures are being interconnected creating a complexity that is hard to manage [van
Eeten et al. 2006].

Therefore these infrastructures have a level of vulnerability similar to other systems
connected to the Internet, but the socio-economic impact of their failure can be tremendous.
This scenario, reinforced by several recent incidents [Wilson 2006, Amir et al. 2006], is
generating a great concern about the security of these infrastructures, especially at
government level.

The proposed reference architecture for critical infrastructures, models the whole
infrastructure as a WAN-of-LANS, collectively protected by some special devices called
CRUTIAL Information Switches (CIS). CIS devices collectively ensure that incoming/outgoing
traffic satisfies the security policy of an organization in the face of accidents and attacks.
However, they are not simple firewalls but distributed protection devices based on a
sophisticated access control model. Likewise, they seek perpetual and unattended correct
operation, which needs to be properly evaluated and validated. It is important that
components, directly or indirectly, related to the correct functioning of the critical
infrastructure are identified and validated.

In the next year, we will focus our validation efforts on two kinds of components. First, we will
analyse the CIS devices since they are positioned at the border of the protected networks,
and therefore are primary targets of attacks. Second we will look into servers that provide
fundamental services to the other components of the network, namely Domain Name System
(DNS) servers. If these servers have vulnerabilities that can be exploited by malicious
adversaries, attacks to their security can potentially compromise the correct behavior of the
critical network infrastructures.

2.2 The attack INJECTION tool
We propose attack injection with monitoring capabilities as a method for detecting
vulnerabilities. This methodology tries to detect software bugs as an attacker would, i.e., trial
and error, by consecutively attacking its target. Attack injection does not depend on a
database of known vulnerabilities, but it rather relies on a generic and exhaustive set of tests.

Experimental validation of architectural solutions Page 3

Through careful and automated monitoring, the results of the attacks can be later analyzed to
pinpoint the detected vulnerabilities. This allows the discovery of known and unknown
vulnerabilities in an automated fashion.

We present and evaluate a vulnerability assessment tool called AJECT (Attack inJECtion
Tool) that implements the attack injection methodology. AJECT can be used for vulnerability
detection and removal by simulating the behavior of an adversary. It injects attacks against a
live system while observing its execution to determine if the attacks have caused a failure. In
the affirmative case, this indicates that the attack was successful, which reveals the
existence of a vulnerability. After the identification of the flaws, traditional debugging
techniques can be employed to examine the application code and running environment, to
find out the origin of the vulnerabilities and allow their subsequent elimination.

AJECT performs black box testing, so it does not require access to the source code to
perform the attacks. However, in order to be able to generate intelligent attacks, AJECT has
to obtain a specification of the protocol implemented by the target server (e.g., IMAP protocol
specification for IMAP mail servers or HTTP protocol specification in case of web servers).

2.2.1 Using Attacks to Find Vulnerabilities
Every system’s design and implementation should comply with a set of functional and/or non-
functional properties, i.e., a service specification that describes its correct operation. The
system is said to be correct if its service specification is not violated. But how much can one
trust in that correctness? A system should give some guarantees that it will not fail. This
measure is given by the system’s dependability, which is the ability of a computing system to
deliver service that can be justifiably trusted (Powell & Stroud 2002). Dependability aims at
preventing the failure of the system, hence, in order to construct more dependable and
reliable systems, one must know how the system and its components can remain correct,
i.e., how and why do systems fail.

Figure 1: Fault, error, and failure.

The fault model presented in Figure 1 tries to explain how systems fail by following the
sequence fault → error → failure. For instance, the purpose of a file system is to store and
manage data records. These records, organized in computer files, are physically located in a
storage device. The service specification of the file system defines, among other things, that
any “read” operation will reflect the last “write” operation. Therefore, a record should always
return the value of the last “write”. A failure occurs when this specification is violated. To
understand how these failures happen, one must study the process that explains how they

Experimental validation of architectural solutions Page 4

appear. The cause, which is called the fault, can have an internal or external origin. For
example, an electrical discharge (fault) can change the bits of some record, located in a
specific disk sector. This fault can remain unnoticed, or dormant, until the record is read. The
fault’s manifestation is called an error, which in our example is the corrupted record. The
failure of the system is the external observable effect of the error. If the file system lacks
some sort of detection or correction mechanism for this type of error (e.g., checksums or
redundancy) the record will return an incorrect value. This behavior clearly violates the
service specification of the file system, or in another words, it represents the failure of the
system.

However, the file system can be regarded as a component of a larger system, such as an
operating system (OS). Therefore, from the OS point of view, the failure of the file system is
seen as the fault of a component. So, as the figure shows, the fault–error–failure sequence is
also a recursive model. If the affected disk record holds virtual memory data, such as a swap
file, the file system failure (OS fault) will result in a memory page error. In turn, this error
could freeze the entire system, leading to the failure of the OS.

However, the presence of the fault (or even the error) will not necessarily produce a failure.
The system’s correct operation can be maintained despite the presence of faults. If the
system is supplied with fault detection or tolerance mechanisms, a greater dependability can
be achieved.

Nevertheless, the type of faults that can arise are not reduced to accidental or arbitrary
faults, like a physical defect or an electrical discharge. Faults can be much more complex
and appear with higher probability. Intentional malicious faults are a good example. A
potential intruder can leverage the failure probability by conducting a series of targeted
attacks that can lead to the violation of the service specification. This type of faults does not
follow any probabilistic distribution, nor any behavior pattern.

Figure 2: Composite fault model (attack, vulnerability, and intrusion).

The AVI (attack, vulnerability, intrusion) composite fault model, introduced in [Powell &
Stroud 2002, Veríssimo et al. 2000], helps us understand the mechanisms of failure due to
several classes of malicious faults (see Figure 2). It is a specialization of the fault–error–
failure sequence applied to malicious faults – it limits the fault space of interest to the

Experimental validation of architectural solutions Page 5

composition (attack + vulnerability) → intrusion. Let us analyze these fault classes. Attacks
are malicious external activities, originating from outside the target system boundaries, that
intentionally attempt to violate one or more security properties of the system – we can have
an outsider or insider user of our network (e.g., an hacker or an administrator) trying to
access sensitive information stored in a server. Vulnerabilities are usually introduced during
the development phase of the system (e.g., a coding bug allowing a buffer overflow), or
during operation (e.g., files with root setuid in UNIX). These faults can be inserted
accidentally or deliberately, and with or without malicious intent. An attack that successfully
activates a vulnerability causes an intrusion. This further step towards failure is normally
succeeded by the production of an erroneous state in the system (e.g., a root shell or a new
account with root privileges), and if nothing is done to process the error, a failure will follow.

The methodology utilized in the construction of AJECT emulates the behavior of an external
adversary attempting to cause a failure in the target system. However, the goal of the attacks
is not to exploit the system but rather to detect vulnerabilities that might permit that
exploitation. The tool first generates a large number of attacks which it directs against the
interface of the target (step 1, in Figure 2). A majority of these attacks are expected to be
deflected by the validation mechanisms implemented in the interface, but a few of them
might be able to succeed in exploiting a vulnerability and causing an intrusion. Some
conditions contribute to increase the success probability of the attack. For example, a correct
understanding of the interaction protocol used by the target eases the creation of more
efficient attacks (e.g., it reduces the randomness of the tests); and a good knowledge about
what type of vulnerabilities appear more frequently also helps to prioritize the attacks.

While the attacks are being carried out, AJECT monitors how the state of the system is
evolving, looking for errors or failures (step 2). Whenever one of these problems is observed,
it indicates that a new vulnerability has potentially been discovered. Depending on the
collected evidence, it can indicate, with more or less certainty, that a vulnerability exists. For
instance, there is a high confidence if the system crashes during (or after) the attack – this
attack at least compromises the availability of the system. On the other hand, if what is
observed is an abnormal creation of a large file, though it might not be a vulnerability –
possibly related to a denial of service – it still needs to be further investigated.

After the discovery of a new vulnerability, there are several alternatives to deal with it,
depending on the current stage of the development of the system (step 3). If the system is,
for instance, in development, it is best to provide detailed information about the attack and
the error/failure, so that a decision can be made about which corrective action should be
taken (e.g., repair a software bug). On the other hand, if the tests are performed when the
system is in live operation, then besides giving information about the problem, other actions
might be worthwhile taking, such as automatically change the execution environment to
remove the attack (e.g., by modifying some firewall rules) or shutdown the system until the
administrator decides what to do.

In order to get a higher level of confidence about the absence of vulnerabilities in the system,
i.e., its dependability, the attacks should be exhaustive and should exercise an extensive
number of different classes of vulnerabilities. Still, one should also know that for complex
systems it is infeasible to experiment all possible attack patterns, and therefore it is possible
that some vulnerabilities remain undisclosed. Nevertheless, AJECT can be an important
contributor for the construction of more secure systems because it mimics the malicious
activities carried out by many hackers, allowing the discovery and subsequent removal of
vulnerabilities before a real attempt is performed to compromise the system.

2.2.2 Architecture of the tool AJECT
The architecture of the AJECT tool is presented in Figure 3. The overall operation of the tool
can be divided in the attack generation and the injection campaign.

Experimental validation of architectural solutions Page 6

Figure 3: The architecture of the AJECT tool.

2.2.2.1 Test case generation phase
The attack generation is performed off-line and only once for each target communication
protocol. The attacks can be used in the injection campaigns with any target system that
shares the same application protocol (e.g., DNS, FTP). The format of the protocol messages,
their fields, and data types are defined through a graphical interface application (GUI
Protocol Specification). Additionally, the protocol states and messages that allow the
transition between states are also identified.

The attacks are then constructed, based on the protocol specification and on a test case
generation algorithm (implemented in the Test Manager and Attack Generator). The
algorithm creates variations of the protocol messages that test the target system's ability to
cope with some erroneous attribute, such as a missing parameter or an illegal type of data.
Each attack is composed by one or more messages, where a few of them might be state
transition messages (i.e., the messages required to take the protocol to the state where the
fault must be injected). All test cases, or attacks, are saved in a disk file that will be used by
AJECT in the injection campaign.

Target Protocol Specification Component
The Target Protocol Specification component is used to create a formal specification of the
communication protocol utilized by the Target System. This specification is essential for two

Experimental validation of architectural solutions Page 7

reasons: First, AJECT needs to be capable of bringing the server application from the initial
state to any other state of the protocol. The reason for this is because certain protocol
messages are exclusive to a particular state, such as specific requests that are only valid
after successfully transiting to an authenticated state. Second, the syntax of the messages
must be known to AJECT since many non-trivial attacks can only be created if this
information is available. The Target Protocol Specification component eases the tool of
having a special module for each new target protocol. One protocol specification can be used
to generate attacks to any server implementations that use that protocol.

Currently, the specification can be done with a graphical interface that allows the definition of
a state and a flow graph of the protocol. For each state it is possible to identify which
messages can be sent and their syntax. The output of this component is a file that formally
describes the target protocol, which is later imported by the Attack Injector. The protocol
specification file provides the Attack Generator component with the essential knowledge to
create valid protocol messages and to correctly change to the different protocol states.

Attack Generator Component
The attacks to be injected in the Target System are generated by the Attack Generator
component. A Test Manager module is responsible for the implementation of the test
generation algorithm that will create message variations from the protocol specification. The
attack injection methodology does not specify the type of test cases generated from the Test
Manager. It is up to the Test Manager implementation to devise good test generation
algorithms aimed at good source code and vulnerability coverage. The Attack Generator
applies any of the Test Manager algorithms to the target protocol specification to create a
large and exhaustive set of test cases, or attacks. Although the attacks are based on a
particular protocol, they are not restricted to a specific Target System. The attacks are saved
in disk file to be used by the Attack Injector to test any Target System that uses the same
communication protocol, e.g., attacks generated from the IMAP specification can be used
with any IMAP server.

2.2.2.2 Injection campaign
This phase runs the entire universe of the generated test cases by carrying out each attack
injection with a fresh copy of the target server. The attack injection is performed only after the
Target System is online and ready. Therefore after the connection is established with the
Target System, the Attack Injector sends a predefined “ping” message1 and waits for the
reply. Once the Target System is prepared, the Attack Injector sends the attack packets to
the Target System, while the Monitor Component closely observes the execution of the
Target System. AJECT processes and outputs the attack injection results in a human
readable format, which can be used by the developers to detect any abnormal behavior and
to assist them afterwards, in the debugging process.

Attack Injector Component
The Attack Injector is composed of three modules: the Attack Processor, the Packet Injector,
and the Response and Execution Data Collector.

After the Target System is restarted and ready, the Attack Processor decomposes each
attack in its components, i.e., the state transition messages and the attack message itself.
The Packet Injector sends the transition messages to the Target System, and once the

1 This message is defined by the Target Protocol Specification and should correspond to an innocuous
protocol message that the Target System is known to respond, e.g., a failed login or a request for the
version information.

Experimental validation of architectural solutions Page 8

protocol is in the designated state, it injects the attack message into the network interface of
the Target System. The tests are synchronized with the Monitor, so that the latter can restart
the Target System’s process (i.e., the server application) before each attack injection. This
simple synchronization protocol assures that the Target System is properly monitored and
guarantees the same test conditions throughout the experiments. The Target System
execution data, acquired by the Monitor, and the contents of the responses are gathered by
the Response and Execution Data Collector.

Monitor Component
The Monitor is an external application, residing alongside the Target System, equipped with
several control and monitoring capabilities. The Monitor component is supposed not to be
obtrusive or affect the Target System in any significant way, i.e., the Target System behavior
should be identical in the presence or absence of the Monitor. However, it is expected that
some additional overhead is introduced by this component.

The Monitor is in charge of setting up the entire testing environment in the Target System: it
needs to start up the target application, perform all configuration actions, initiate the
monitoring activities, and in the end, free any utilized resources (e.g., processes, memory, or
disk space). A synchronization module allows the Monitor to coordinate both the injection
and the monitoring to determine the beginning and ending of each experiment. The Monitor
can therefore reset the Target System environment before each experiment to ensure that
each attack is done under identical conditions and that there are no interferences among the
attacks. This inherent independence of the experiments simplifies the identification of the
attack that caused the problems, and consequently, the discovery of the vulnerability.

The Monitor closely observes the target’s flow of control (e.g., by intercepting and logging
any software exceptions) to detect if the Target System goes to any erroneous software
state. Therefore, there are many interesting operational characteristics desirable for
monitoring, such as Segmentation Fault exceptions (crash) or something more subtle like an
unusual set of OS signals. In the same way, the supervision of the allocation of the system
resources, during the target’s execution, can also be helpful to detect abnormal behavior
activity, which may be indicative of the presence of a resource exhaustion vulnerability. This
task is highly dependent on the mechanisms available in the local operating system (e.g., the
ability to catch signals, such as memory segmentation errors, in UNIX). It is expected that the
type of vulnerabilities AJECT is able to diagnose, is related to the type and detail of the
collected information.

The architecture of the tool was defined to achieve two main purposes, the automatic
injection of attacks and the data collection for analysis. However, its design was done in such
a way that there is a clear separation between the implementation of these two goals. On
one hand, in order to obtain extensive information about the execution, a proximity relation
between AJECT and the target is required. Therefore, the Monitor needs to run in the same
machine as the server application, where it can use low level operating system functions to
gather, for example, statistics about the CPU or memory usage. On the other hand, the
injection of attacks can usually be performed from a different machine. In fact, this is a
desirable situation since it is convenient to maintain the target as independent as possible
from the Injector, so that interference is kept to the minimum.

2.2.3 Implementation details of AJECT
The modular design of the architecture of AJECT provides the tool with a strong
independence at various levels. The design is not platform specific, so it can be implemented
in any operating system (OS) or hardware architecture. Moreover, since the Attack

Experimental validation of architectural solutions Page 9

Generator, Attack Injector, and Monitor components are inter-independent, new test classes
or new monitoring capabilities can be added without interfering with one another.

There is, however, one restriction with the Monitor component. The Target System operates
in a operating system that is of the utmost importance to the Monitor. The Monitor’s
dependence on the Target System is such that, due to the OS support, both the Monitor and
the target application are required to run on the same machine.

AJECT is mainly implemented in Java. However, the Monitor was written in C++, because of
the low-level operations it provides. C++ features specific OS low-level functionality,
essential for controlling and monitoring the target process. In spite of the fact that C++ is an
object-oriented and a high-level programming language, it lacks an important feature that
Java possesses – a Java program can run similarly, and unmodified, on any Java virtual
machine. This allows AJECT, except the Monitor component, to run on virtually any platform.
The present section will give a more thorough insight on the current implementation of
AJECT.

2.2.3.1 Target Protocol Specification
All attack generation and injection is totally independent of the intrinsics of the target
protocol. The Target Protocol Specification component is responsible for the understanding
of the protocol utilized by the target application. Without it, AJECT would not be able to
create the protocol messages that will constitute an attack. Moreover, it is necessary for
changing the different protocol states, from which the attacks must be launched.

Figure 4: IMAP protocol finite state machine.

Experimental validation of architectural solutions Page 10

Figure 5: Graphical user interface for the specification of the target protocol.

The target protocol can be regarded as a formal language, produced by a formal grammar or
by a deterministic finite state machine. For example, the IMAP protocol can be described as
a three-state deterministic finite automaton, as displayed in Figure 4. The boxes represent
the IMAP protocol states, with its possible message types (i.e., IMAP commands): not
authenticated, authenticated, and selected states. Some commands, if successfully
executed, will trigger a state transition of the protocol (as depicted by the arrows).

A special graphical user interface application can be used to define the entire protocol
specification, its states, message types, field data, and so on. A screenshot of the Target
Protocol Specification is displayed in Figure 5. This particular snapshot depicts the definition
of the IMAP messages, in the authenticated state, with two fields: a command string and a
mailbox argument. The GUI application supports the definition of the legal type of data of
each field, such as the valid strings in the field “command”. However, the protocol
specification is not restricted to textual protocols. Binary field data is also supported by
AJECT. The GUI application provides several attributes of the binary fields, such as the size,
if it is a signed or unsigned format, and the byte ordering (i.e., little endian or big endian).

2.2.3.2 Monitor
AJECT resorts to third-party libraries in the implementation of the Monitor component. The
PTRACE facility is employed to intercept signals and any system call made by any of the
server's processes (i.e., the main process, forked children, and threads). The target
application is interrupted and its resource consumption probed, at the signal and system calls

Experimental validation of architectural solutions Page 11

interception. This mode of operation passively traces the execution of the server, without
much interference with its normal behavior.

Execution monitoring
A potential vulnerability is found if an abnormal behavior is detected on the Target System.
The underlying OS offers some monitoring facilities that can be used to notice these
irregularities. For instance, on UNIX machines there are OS functions for tracing the
execution of a particular process, such as the PTRACE family functions used by some
debuggers like GDB [GNU Foundation 2006]. These functions control the execution of a
process by tracing the signals it receives. OS system calls can also be monitored the same
way. The traced process is interrupted upon certain events, such as at the reception of a
signal, or at the entry or exit point of a system call. Upon such an event, the Monitor (i.e., a
dedicated execution thread2) intercepts the signal or system call and interrupts the traced
process (i.e., target’s application). The signals are logged for posterior analysis and the
target’s process is instructed to continue the execution. Unusual signals, such as a
Segmentation Fault, are a very good indicator of the intolerance of a fault.

The current implementation of the Monitor is able to detect standard POSIX signals and
system calls present in any UNIX-based machine, or derivatives, such as Linux or BSD. In
order to use this monitoring method in other OSes, (e.g., Microsoft Windows), one needs to
adapt it to the specific mechanisms these OSes signalize their exceptional software states
(e.g., signals, exceptions, etc.).

Resource monitoring
Resource usage data is obtained at a few specific resource-related systems calls (e.g.,
memory utilization is probed after a memory allocation or de-allocation call). We have tried to
reduce the overhead to a minimum by only updating the usage data at the relevant system
calls. In some extreme situations, however, the monitoring activities can create some delays
because of the constant pause, probe for data, and resume cycle.

The supervision of the system resources allocated during the target execution can be helpful
to detect abnormal behavior which may be indicative of the presence of a vulnerability. For
instance, if an application has suddenly allocated much more memory, it can be indicative of
an erroneous state of memory starvation, or if the process is consuming a too great number
of CPU cycles, it indicates a potential resource interlock.

The monitor maintains and regularly updates a global table with the resource usage data.
The following local resources are watched:

• total number of processes, including forked children and threads of the target server.
PTRACE signal interceptions are used to track new process ids (PIDs);

• memory pages, given by the number of resident set pages minus the shared pages,
are obtained through the LibGTop library [Baulig & Kacar 2007];

• file descriptors, such as those identifying opened disk files or network sockets, are
kept in a updated list of file descriptors. LSOF [Abell 2007] calls are used to keep
track of the open files;

• disk usage, specified by the number of bytes written to disk. This value is obtained by
parsing the LSOF's output for the files in use, and recording their size throughout the
execution;

2A thread is also considered a lightweight process, or LWP.

Experimental validation of architectural solutions Page 12

• CPU cycles, corresponding to the work performed by the processor for all server's
processes, is obtained with performance hardware counters. The linux kernel had to
be patched to associate with each process a private set of virtual hardware counters
[Pettersson 2002]. PREDATOR controls and accesses these counters through the
PAPI library [London et al. 2001];

• wall time, measured as the elapsed time from the beginning of the main process
execution, is computed by simple gettimeofday() calls. This resource is
monitored mainly to compare its value with the number of CPU cycles. Large CPU
and wall time discrepancies normally indicate a non-active wait, which suggests the
presence of some timeout or deadlock.

3.4 Synchronization Protocol

To successfully diagnose vulnerabilities through attack injection, the tool must not only
generate the actual attacks, but also observe its effects. Though it might seem a simple
task, each attack must be carefully synchronized with its respective monitoring. Among the
various tasks that result from this synchronization, there is:

• the execution of the target application prior to the attack (launched from the Monitor);

• the continuous supervision of the target (e.g., signal tracing, CPU usage, total
number of allocated memory pages, etc.);

• the termination of the target application after the attack.

Synchronization protocol messages
The synchronization is accomplished through a simple protocol, composed by four types of
messages, as represented in Figure 6:

• SYNC_START – message sent from the Injector, signalizing that a test is about to
begin;

• SYNC_END – message sent from the Injector, signalizing that a test has ended;

• SYNC_ACK – message sent from the Monitor to acknowledge a received
synchronization message and that the target application has been launched;

• SYNC_DATA – message sent from the Monitor, similar to the previous message, but
appended with monitoring data.

Experimental validation of architectural solutions Page 13

Figure 6: Synchronization protocol performed by the Attack Injector and the Monitor

Synchronization protocol between the Injector and the Monitor
The whole injection and monitoring of the attacks follows a three-step process attained by
both the Injector and the Monitor (see Figure 6).

The pre-attack injection/monitoring starts when the Attack Injector processes an attack, from
the attacks file, and sends a SYNC_START message to the Monitor. In turn, the Monitor
replies with a SYNC_ACK after launching the target’s process and starting the monitoring
threads. The Attack Injector then knows that the Target System is prepared for the attack
injection and is under the Monitor’s supervision. The second step, the actual attack
injection/monitoring, begins with the communication initialization between the Attack Injector
and the Target System. The Attack Injector then proceeds by transmitting the attack
messages. First, a set of transition messages to change the protocol state, and then, the
actual attack packet. The target’s process behavior (captured by the Monitor), and its
responses to the attacks, are recorded for posterior analysis.

Experimental validation of architectural solutions Page 14

Finally, after receiving the attack’s reply from the Target System (or after a timeout without
any answer), AJECT reaches the post-attack injection/monitoring step. The Attack Injector
sends a SYNC_END synchronization message to the Monitor and terminates all
communication with the Target System. The Monitor will then kill the target’s process, and
terminate all monitoring and logging activity for that attack. The Monitor gathers all
monitoring data for the attack and sends it to the Injector in a SYNC_END message.

2.2.3.3 Attack Tests
The tests, executed by the Injector, are performed by the injection of the attacks, generated
by the test case generation algorithms in the Test Manager. Four different types of tests were
implemented: a delimiter test, a syntax test, a value test, and a privileged access violation
test. However, other different types of tests can be created, covering more classes of
attacks, thus increasing the tool’s capability to discover more vulnerabilities.

The current test generation algorithms are aimed at verifying if the Target System is able to
cope with different kinds of protocol errors, namely:

• protocol messages with invalid, or missing delimiter characters;

• out-of-order, missing, or additional message fields;

• protocol messages with several kinds of invalid data (e.g., large or frontier values) or
potentially dangerous data (e.g., information disclosure requests);

Each type of test, when applied to particular target protocol, generates a large number of
attacks. The tool was also developed to support tests in a generic way, which means that
more tests can easily be added to cover more kinds of attacks.

Delimiter test
Usually, applications are thoroughly tested for its normal and expected functionality,
disregarding its robustness in dealing with malformed messages. This specific type of test
plays with the delimiter fields of the protocol messages. These fields represent the delimiters
of a particular field or packet. For example, the IMAP protocol messages end with a carriage
return and line feed characters, while each field is delimited by space characters.

The current implementation of this type of test swaps and deletes the each of the delimiter
fields. The generated attacks will consist of malformed protocol messages (i.e., with invalid
or missing delimiters) but with valid data.

Syntax test
This kind of test generates attacks that infringe the syntax specification of the protocol as
provided by the Target Protocol Specification. Example syntax violations consist on the
addition, elimination, or re-ordering of certain fields of a protocol message specification.

This test regards a packet as a sequence of fields, each one occupying a certain number of
bits. The type of data stored in a field is considered irrelevant, therefore, a 32-bit integer is
deemed equivalent to any other type of data, such as 400 characters string. The main
information required by the test is the size of every field, which is usually either predefined
(e.g., it always occupies 4 bytes) or determined with some special control character (e.g., the
space character serves as field terminator).

As an example, consider a message containing three different fields, which is represented as
[A] [B] [C]. As an example, a few of the automatically generated attack packets that could be
produced are:

• [A] [B];

Experimental validation of architectural solutions Page 15

• [A] [C];

• [A] [A] [B] [C];

• [A] [B] [A] [C];

• [A] [B] [C] [A];

As one can see, the fields remain unchanged, but it is their place in the message that
changes, being removed or duplicated elsewhere.

Value test
The protocol specification also defines the type and validity of the data of the target protocol
messages. This test class verifies if the target is able to cope with packets containing
erroneous values.

An attack is generated in the following manner: each original protocol message is used to
generate several attack packet variations; also, each field of this protocol message is
iteratively chosen to be regarded as the invalid field; all the remaining fields will hold legal
data values, while the invalid field is filled with malicious and illegal data. Since there are
several fields in each packet, and each invalid field can take many non-legal values, this
procedure can produce an overwhelming number of attacks. With the objective of keeping
this number manageable, only a subset of the invalid data, hopefully representative of the
whole set, is experimented.

As an example, consider a packet with two integer fields. The first field can only be set to 1,
while the second field can take values between 0 and 1000. The first generated attacks
would exercise different invalid values for the first field (e.g., -1, 0, and 1), while maintaining a
legal value for the second value (e.g., 500). When all invalid data iterations are exhausted,
the second field is chosen to be the invalid field. Then, several attacks are generated with the
value 1 for the first field, and boundary and illegal values for the second (e.g., -1, 0, 1000,
1001, -100000, 100000). This test experiments different types of invalid values: almost valid
(i.e., boundary values) and very invalid (i.e., large negative/positive integers).

However, there are several textual protocols, such as the IMAP protocol. Creating attacks for
this type of protocols can be achieved by generating strings from different character
combinations. The construction of these malicious strings is reasonably complex because it
can easily lead to a combinatory explosion3.

However, most of these character combinations are deemed equivalent with respect to the
parsing and processing mechanisms of the target application, producing similar execution
paths. So, a heuristic-based procedure was employed for the generation of the malicious
data: first, a set of random tokens (fixed sized strings of random characters) is obtained;
then, a set of specified malicious tokens (e.g., “%c”, “%x”, “"”) and of joining tokens (e.g., “\”,
space or none) is chosen. A large number of strings is obtained from the combination of one
or more types of these different tokens. The result are strings with most of the characteristics
that are usually found in hacker’s exploits, such as large strings or strings with strange
characters (e.g., format string specifiers).

These strings are later used in the invalid fields, hence testing the target’s robustness in
coping with this type of malicious input.

Privileged access violation test

3Just think that a string with 10 characters can have 2610 different combinations, even if we
limit ourselves to the a..z characters.

Experimental validation of architectural solutions Page 16

This type of test tries to induce the server in granting access to some privileged operation,
such as getting secret (or private) data from the Target System, or even modifying it. These
privileged operations are always associated with some form of data, such as files or
directories. Such actions may involve reading some well-known file, or writing to a particular
directory. The success of such protocol requests indicates the incorrect action of the server,
and thus the presence of a vulnerability.

The information disclosure test follows the same attack generation rationale of the previous
class of test, but with a different configuration. In this test, the number of random tokens is
set to a minimum, while the set of malicious tokens and of joining tokens is carefully chosen.
Good malicious tokens are directory path names, well-known filenames, and existing
usernames. These tokens are then automatically combined with the previously chosen
joining tokens, such as “.”, “..”, or “/”. This combinations generate a large number of path
names to known files, which it uses during the attack generation. If a response provides valid
data for one of the malicious requests, then the server is probably performing some illegal
action, such as disclosing some confidential information.

For example, consider the file “/etc/passwd” that contains the usernames and encrypted
passwords on a Linux machine. Some of the names that could be tried in the attacks are:
[“./../etc/passwd”]; [“./../../etc/passwd”]; [“./../../../etc/passwd”].

2.3 Experimental Validation
In this section we present the validation of the attack injection methodology by experimenting
AJECT with several IMAP servers. First, a description of the basic foundation for the
experiments is provided, such as the communication protocol, the hardware and software
specifications, the different tests, etc. Then, we analyze the experimental results achieved
with AJECT.

2.3.1.1 Experimental Framework
This section gives a brief overview of the IMAP communication protocol that is utilized by the
servers under test. It also describes the classes of attacks that were tried by the injector, and
provides some information about the testbed.

IMAP Protocol
The Internet Message Access Protocol (IMAP) is a popular method for accessing electronic
mail and news messages maintained on a remote server [Crispin 2003]. This protocol is
specially designed for users that need to view email messages from different computers
since all management tasks are executed remotely without the need to transfer the
messages back and forth between these computers and the server. A client program can
manipulate remote message folders (mailboxes) in a way that is functionally equivalent to
local folders. The IMAP protocol provides a extensive number of operations, which include:
creation, deletion and renaming of mailboxes; checking for new messages; permanently
removing messages; server-based RFC-2822 and MIME messages format parsing and
searching; and selective fetching of message attributes and text for efficiency.

Experimental validation of architectural solutions Page 17

Figure 7: IMAP state and flow diagram

The client and server programs communicate through a reliable data stream (typically TCP)
and the server listens for incoming connections on port 143. Once a connection is
established, it goes into one of four states (see Figure 7). Normally, it starts in the not
authenticated state, where most operations are forbidden. If the client is able to provide
acceptable authentication credentials the connection goes to the authenticated state. Here,
the client can choose a mailbox, hence transiting to the selected state, and execute the
commands that will manipulate the messages. The connection goes to the logout state when
the client indicates that it no longer wants to access the messages (by issuing a LOGOUT
command) or when some exceptional unilateral action occurs (e.g., server shutdown).

All interactions exchanged between the client and server are in the form of strings that end
with a CRLF (carriage return and line feed characters). The client initiates an operation by
sending a command, which is prefixed with a distinct tag (e.g., a string A01, A02, etc).
Depending on the type of command, the server response contains zero or more lines with
data and status information, and ends with one of following completion results: OK (indicating
success), NO (indicating failure), or BAD (indicating a protocol or syntax error). To simplify
the matching between requests and responses, the completion result line is started with the
same distinct tag provided in the client command.

Testbed and implementation issues
The experiments used several IMAP applications that were developed for different operating
systems. Therefore, it was necessary to utilize a flexible testbed to ensure that the distinct
requirements about the running environment could be accommodated. The testbed consisted
of three PCs with Intel Pentium 4 at 2.80GHz and 512 MBytes of main memory. Two of the
PCs corresponded to target systems, and each contained the IMAP applications and a
Monitor. One of the machines could be booted in a few Linux flavors (e.g., Ubuntu, Fedora,
and Suse) and the other on Windows (e.g., XP and 2000). The third PC ran the Injector
components, collected the statistics, and performed the analysis of the results. This testbed
configuration allowed for the parallel execution of two injection experiments (if needed, more
PCs with target systems could easily be added, increasing the concurrency of the system).

Experimental validation of architectural solutions Page 18

At this moment, two Monitor components have been developed in C++, one for Linux and
another for Windows. The Linux version implements all functionally that has been previously
described, namely it collects a variety of execution data about the target (e.g., UNIX signals,
resource usage) and synchronizes with the Injector. The Windows version is in an early
stage of development, and it only provides basic functionality. Currently the Injector is
capable of generating a large number of attacks for different test classes (e.g., syntax test,
value test, privileged access violation test), and performs some level of analysis on the
acquired execution data. The Java language was used in the implementation of the Injector
to ensure that portability issues would not arise.

2.3.1.2 Experimental Results
The current section presents an evaluation of the vulnerability discovery capabilities of
AJECT. This study executed several experiments to accomplish three main objectives: One
goal was to confirm that AJECT is capable of catching a significant number of vulnerabilities
automatically; A second goal was to demonstrate that different classes of vulnerabilities
could be located with the tool, by taking advantage of the implemented tests; A third goal
was to illustrate the generic nature of the tool, by showing that it can support attack injections
on distinct IMAP server applications.

To achieve these objectives, we used AJECT to expose several vulnerabilities that were
reported in the past in some IMAP products. Basically, the most well-known bug tracking
sites were searched for IMAP vulnerabilities that were disclosed in 2005. The available
vulnerable products were then obtained and installed in the testbed. The experiments
consisted in using AJECT to attack these products, to determine if the tool could detect the
flaws.

Another possible approach was to spend all our resources testing a small group of IMAP
servers (one or two), trying to discover a new set of vulnerabilities. The experimental strategy
presented in this thesis did not follow this approach because it would probably not allow to
fulfill all experimental objectives. By lowering the number of different applications, and
consequently of different development teams, the window of different classes of
vulnerabilities would necessarily diminish. The same developers tend to make similar
mistakes, so a larger spectrum of applications will probably contain different types of
vulnerabilities.

Also, during the injection campaigns, AJECT was able to discover a new vulnerability,
previously unknown to the security community.

Applications under test
To set up the experiments, vulnerability tracking sites – the BugTraq archive of
www.securityfocus.com, and the Common Vulnerabilities and Exposures (CVE)
database at www.cve.mitre.org – and several other hacker and security sites were
searched for IMAP vulnerabilities. From this search it was possible to find 27 reports of
security problems related to IMAP products during 2005. 7 of these reports were excluded
because they proved themselves useless by not providing any specific information about the
vulnerability itself.

Experimental validation of architectural solutions Page 19

Table 1: IMAP servers with vulnerabilities

ID Application OS Date Vuln. ID

A1 MailEnable Professional 1.54* and
Enterprise Edition 1.04*

Win Apr CVE-2005-1014/5, CVE-2005-
2278

A2 GNU Mailutils 0.6* Lin May CVE-2005-1523

A3 E-POST Inc. SPA-PRO Mail @Solomon
4.0 4*

Win Jun BugTraq 13838/9

A4 Novell NetMail 3.52 B* W/L Jun CVE-2005-1756/7/8

A5 TrueNorth eMailServer Corporate
Edition 5.2.2*

Win Jun BugTraq 14065

A6 Alt-N MDaemon 8.0 3* Win Jul BugTraq 14315/7

A7 GNU Mailutils 0.6.1* Lin Sep CVE-2005-2878

A8 University of Washington Imap 2004f* Lin Oct CVE-2005-2933

A9 Floosietek FTGate 4.4* Win Nov BugTraq 15449

A10Qualcomm Eudora WorldMail Server 3.0 Win Nov CVE-2005-3189

A11MailEnable Professional 1.6 and
Enterprise Edition 1.1

Win Nov BugTraq 15492/4

A12MailEnable Professional 1.7 and
Enterprise Edition 1.1

Win Nov BugTraq 15556

From the analysis of the remaining 20 reports, it was possible to identify 9 IMAP products
with vulnerabilities. In a few cases, more than one version of the same application had
problems. Table 1 provides a summary of these applications. For each product version, the
table indicates our internal identifier (ID), the operating system where it runs (OS) and the
date of the first report about a vulnerability (Date). Sometimes other reports appeared at a
later time. Column Vuln. ID has the identifiers of the associated reports (i.e., CVE or BugTraq
identifiers). For applications with multiple reports, it was used a condensed representation –
for example, CVE-2005-1014/5 corresponds to CVE-2005-1014 and CVE-2005-1015.

There were two more products identified in the reports – the Ipswitch Collaboration
Suite/IMail 8.13 and the Up-IMAPProxy 1.2.4. For the two products we were able to obtain
the allegedly vulnerable versions and the exploits that were distributed by the hacker
community. However, for some unknown reason, neither the AJECT tool nor the public
available exploits were capable of exploring the described vulnerabilities. Therefore, we
decided to disregard these products for further evaluation.

Vulnerability Assessment
After the identification of the flawed products, it was necessary to obtain as many
applications (with the right versions) as possible. However, while attempting to obtain the
reported (i.e., vulnerable) versions we met two main difficulties. First, in some cases these
older versions were no longer available in the application’s maintainers sites. This was
especially true for commercial products, where whenever a new or patched version was
produced, the older ones were removed. In most cases, where this older versions were not
found in the official sites, a more thorough web search (e.g., using P2P networks) was found
successful. A second problem was related to the cost of the commercial products. In these

Experimental validation of architectural solutions Page 20

cases only the trial versions of the applications were available, which occasionally did not
provide the required functionality for the discovery of the vulnerability.

Therefore, in order to assess AJECT, a different approach was employed for the unavailable
applications. The Injector was used to generate and carry out the attacks against a dummy
IMAP server. This simple server only stored the contents of the malicious packets received
from the Injector, and returned simple responses. The packets were later analyzed to
determine if one of the attacks could activate the reported vulnerability.

Table 2: Attacks generated by AJECT to detect IMAP vulnerabilities (<A x n> A
repeated n times; <OTHER-USER> OTHER-USER is another existing username; * using

CRAM-MD5 auth scheme)

ID Vuln. Type IMAP State Potential Attack

A3 Access Violation S2 A01 SELECT ./../../<OTHER-USER>/inbox

A4 Buffer Overflow any <A×2596>

a) Potentially detected vulnerabilities

ID Vuln. Type IMAP State First Successful Attack

Buffer Overflow S2 A01 AUTHENTICATE <A×1296>
A1

Buffer Overflow S2 A01 SELECT <A×1296>

A2 Format String any <%s×10>

A5 Format String S2 A01 LIST <A×10> <%s×10>

Buffer Overflow S2 A01 CREATE <A×244>
A6

Buffer Overflow any* <A×1260>

A7 Format String S3 A01 SEARCH TOPIC <%s×10>

A8 Buffer Overflow S2 A01 SELECT "{localhost/user=\"}"

A9 Buffer Overflow S2 A01 EXAMINE <A×300>

A10 Access Violation S2 A01 SELECT ./../../<OTHER-USER>/inbox

Buffer Overflow S2 A01 SELECT <A×1296>
A11

Access Violation S2 A01 CREATE /<A×10>

A12 Denial of Service S2 A01 RENAME <A×10> <A×10>

b) Detected previous known vulnerabilities

Application Vuln. Type IMAP State First Successful Attack

TrueNorth eMailServer
Corporate Edition 5.3.4 Buffer Overflow S3 A01 SEARCH <A×560>

c) New vulnerability discovered with AJECT

Experimental validation of architectural solutions Page 21

Table 2 presents some attacks generated by AJECT that successfully activated the software
bugs present in the IMAP servers. Each line contains the internal application identifier (see
Table 1), the type of bug, the IMAP state in which the attack was successful, and the attack
itself. The attack injection campaigns were able to locate different types of bugs, including
stack and heap buffer overflows, format strings, and information disclosure [Koziol et al.
2004], also see the next section). Information disclosure flaws may also allow other kind of
attacks, especially if they could be explored with different IMAP commands, combined with
write permissions. For example, a “CREATE pathname” command would allow the creation
of a new file named “pathname”.

The results of the experiments against the dummy IMAP server are shown in Table 2a.
These two rows display the generated attacks that, supposedly, would activate the reported
vulnerabilities.

The known vulnerabilities detected with AJECT are presented in Table 2b. Testing several
different applications is very time consuming, because it involves performing an application
survey. Besides the retrieving the applications, it also implicates the installation and
configuration of the IMAP server. Moreover, each test could take a significant amount of time
to complete. Therefore, we decided to carry out the injection campaigns only until the
discovery of the first vulnerability of each application. The command corresponding to this
first successful attack is presented in the last column of the table. In the few cases where
experiments were left to run for a longer period, several distinct attacks were able to uncover
the same problem. For example, after 24500 injections against the GNU Mailutils, there were
already more than 200 attacks that similarly crashed the application.

Sometimes it was difficult to determine if distinct attacks were or not equivalent in terms of
discovering the same flaw, especially in the cases where they used different IMAP
commands. For example, if a bug is in the implementation of a validation routine that is
called by the various commands, then the attacks would be equivalent. On the other hand, if
no code was shared then there should be different bugs.

The equivalence of the attacks lies in the equivalence of the executed code instructions. If
the attacks trigger the same vulnerability, i.e., the execution of the same piece of code, they
are equivalent. However, different vulnerabilities are always detected by non-equivalent
attacks, even the server’s behavior is apparently similar. Actually, in order to find out the
equivalence of the attacks, one would need to access the source code of the applications
(something impossible to obtain for the majority of the products) and to monitor the
instructions in real-time. Consequently, a more simplistic approach was taken: all successful
attacks are deemed equivalent, except in the situations where the server’s behavior or the
attacks are obviously distinct, and therefore, correspond to different vulnerabilities.

During the course of our experiments, AJECT was also able to discover a previously
unknown vulnerability as shown in Table 2c. The attack sends a large string in a SEARCH
command that causes a crash in the server. This indicates that the bug is a boundary
condition verification error, which corresponds to a buffer overflow. Several versions of the
eMailServer application were tested, including the most recent one, and all of them were
vulnerable to this attack.

Test Results
In Table 3 are represented the commands that were experimented in the various IMAP
states. Some of the commands are very simple (e.g., composed by a single field) but others
are much more intricate. As expected, the number of malicious packets generated from each
command specification is proportional to its complexity.

Experimental validation of architectural solutions Page 22

Table 3: Commands tested in each IMAP state

Any State S1) Non Authenticated

CAPABILITY STARTTLS

NOOP AUTHENTICATE <auth mechanism>

LOGOUT LOGIN <username> <password>

S2) Authenticated S3) Selected

SELECT <mbox> CHECK

EXAMINE <mbox> CLOSE

CREATE <mbox> EXPUNGE

DELETE <mbox> SEARCH [charset spec] <criteria...>

RENAME <mbox> <new name> FETCH <seq set> <msg data | macro>

SUBSCRIBE <mbox> STORE <seq set> <msg data> <value>

UNSUBSCRIBE <mbox> COPY <seq set> <mbox>

LIST <reference> <mbox [wildcards]> UID <COPY | FETCH |...> <args>

LSUB <reference> <mbox [wildcards]>

STATUS <mbox> <status data items...>

APPEND <mbox> [flag list] [date] <msg
literal>

The remainder of this section will provide some explanations for the attack injection results
presented in Table 2.

Delimiter test
This class of test first retrieves the delimiters characters from the protocol specification. Each
protocol field was separated by a space character, so this was the field’s final delimiter. The
initial tag (used in every protocol message) was defined as the packet’s initial delimiter. So,
in the Target Protocol Specification definition, “A001 ” was specified as being the initial
delimiter. For the message’s final delimiter, the RFC-3501 [Crispin 2003] specifies the
carriage return and line feed characters (or CRLF for short).

Attacks directed at the packet’s initial delimiter resulted in the server assuming that the first
field was the initial tag, when in fact was the IMAP command. Since the protocol command
was being mistaken for the initial tag, these attacks were instantly rejected for unknown
command reasons.

It was interesting to observe that most IMAP servers did not require the packet’s final
delimiter to be CRLF, but just CR or newline. When omitted, the servers concatenated the
messages forming a larger message. This was not in conformance with the goal of the tool,
which was to create single, independent, and easily reproducible attacks, instead of a
strange conjunction of packets from different attacks.

The same concatenation behavior happened with the field’s final delimiter. This time it would
concatenate the fields, still maintaining the packet’s integrity. However, no abnormal
behavior was detected from any of the attacks generated from this class of test.

Experimental validation of architectural solutions Page 23

Syntax test
Another class of test that did not produce any detected abnormal behavior in the Target
System was the syntax test. The generated attacks were very simple and were quickly
dismissed by the parsing validation mechanisms.

 Table 4: Syntax test attacks sample

Att. No. Attack Packet Description

…

328 SELECT removed field

329 /inbox removed field

330 /inbox SELECT /inbox duplicated field

331 SELECT SELECT /inbox duplicated field

332 SELECT /inbox /inbox duplicated field

333 SELECT /inbox SELECT duplicated field

334 SELECT SELECT rem. and dupl. field

335 /inbox /inbox rem. and dupl. field

SELEC
T

336 EXAMINE removed field

337 /inbox removed field

338 /inbox EXAMINE /inbox duplicated field

…

EXA
M

IN
E

Table 4 shows a subset of the generated attacks using this test class. These example
attacks are packet variations of the SELECT and EXAMINE commands. The field contents
are kept unchanged, but they are removed or duplicated elsewhere.

By infringing the syntax of the protocol in such an obvious way, the attacks were immediately
dismissed by the validation routines, so no vulnerabilities were detected by the syntax test.

Value test
This test was very successful in detecting buffer overflow, denial of service, and format string
vulnerabilities, because it focused on the generation of malicious data (e.g., long strings or
strings with format string specifiers).

The idea behind the attack generation is very simple. As explained earlier, a set of malicious
and joining tokens was previously specified. Then, the value test will generate various
combinations from these tokens with some random data. The resulting attacks are packets
with some invalid fields that explore some characteristics usually found in hacker exploits.

With this class of test, AJECT was able to detect 11 known vulnerabilities: 7 buffer overflow,
1 denial of service, and 3 format string vulnerabilities. A new and previously unknown buffer
overflow vulnerability was also detected with this test.

Privileged access violation test

Experimental validation of architectural solutions Page 24

The goal of this test is to generate protocol requests that induce the server into performing
some privileged action, without the necessary credentials. Three IMAP servers were found
vulnerable to these attacks that tried to get secret (or private) data from the target system, or
even to modify it. Such information is usually found in the server’s hard-disk or memory, and
it can correspond, for instance, to passwords kept in a configuration file or in memory
resident environment variables. Hence, this test resorts to some special tokens, such as well-
known file, directory, and user names.

On the IMAP protocol there a few arguments of some commands that are used to name a
file. For example, the mbox on the EXAMINE command refers to a mailbox, which is
specified by its file system path. So, this is a very interesting field for information disclosure
vulnerabilities, or more general access violations. Actually, both detected vulnerabilities were
related to the mailbox field: an information disclosure vulnerability, and another that granted
write access to any directory.

2.4 Summary of results
AJECT simulates the behavior of a malicious adversary by injecting different kinds of attacks
against a target server. In parallel, it observes the running application in order to collect
various information. This information is later analyzed to determine if the server executed
incorrectly, which is a strong indication that a vulnerability exists. This methodology can be
used to detect vulnerabilities in network services, present in critical infrastructures, such as
the CIS devices, control and management systems, or any other network component
essential to the correct and safe operation of the critical infrastructure.

The attack injection methodology, and well as its implementation, accomplished a modular
design and architecture. In fact, AJECT is relatively portable to different systems, since the
Injector runs on a Java virtual machine. However, the build of the Monitor component
requires to run in the target system.

Experimental tests with IMAP servers were carried out to evaluate the usefulness of the tool.
These experiments indicated that AJECT could be utilized to locate a significant number of
distinct types of vulnerabilities (e.g., buffer overflows, format strings, and information
disclosure bugs). In addition, AJECT was able to discover a new buffer overflow vulnerability.

Besides the good results achieved with the current implementation, new classes of test and
protocol specifications can be created and accommodated into AJECT, increasing its
vulnerability and target coverage.

Another important feature present in AJECT is its automatic operation. The tool performs
automatic test-case generation (i.e., the creation of the attacks) and injection, while at the
same time it launches, terminates, and monitors the target server.

3 HONEYPOT-BASED ARCHITECTURES
Besides performing controlled experiments to identify residual vulnerabilities in architectural
and software components, we also need to collect data issued from real observations of
attacks on the internet to improve our understanding of the behaviour of the attackers and
their strategies to compromise the machines connected to the Internet. Also, such data is
useful to elaborate statistical models and realistic assumptions about the occurrence of
attacks, that are necessary for the evaluation of quantitative security measures. Some
examples of such models are presented in deliverable D25 .

In this section, we present honeypot-based architectures that are aimed at fulfilling this
objective. This section is structured as follows. Section 3.1 presents basic background and
related work about honeypots. In particular, two types of honeypots offering different levels of
interaction to the attackers are discussed. The architectures corresponding to each of these
types of honeypots used in the context of CRUTIAL to support data collection are described
in sections 3.2 and 3.3 respectively. Finally, section 3.4 describes the types of data that can

Experimental validation of architectural solutions Page 25

be collected and possible exploitations of the data to characterize observed attack
processes.

3.1 Background
Today, several solutions exist to monitor malicious traffic on the Internet, including viruses,
worms, denial of service attacks, etc. An example of the proposed techniques consists in
monitoring a very large number of unused IP address spaces by using the so called network
telescopes [CAIDA, Moore et al. 2001], blackholes [Cook et al. 2004] or Internet Motion
Sensors [Bailey et al. 2005]. Another approach used e.g., in the context of DShield [DShield]
and the Internet Storm Center [ISC], consists in centralizing and analyzing firewall logs or
intrusion detection systems alerts collected from different sources around the world. Other
popular approaches that have received increasing interest in the last decade are based on
honeypots. We can mention e.g., Leurré.com [Pouget et al. 2005], HoneyTank [Vanderavero
et al. 2004], and many national initiatives set up in the context of the honeynet project
alliance [Spitzner 2002].

A honeypot is a machine connected to the Internet that no one is supposed to use and
whose value lies in being probed, attacked or compromised [Spitzner 2002]. In theory, no
connection to or from that machine should be observed. If a connection occurs, it must be, at
best an accidental error or, more likely, an attempt to attack the machine. Thus of the
activities recorded should correspond to malicious traffic. This is the main advantage of using
honeypots compared to other techniques that consist in collecting and analysing the data
logged by firewalls or routers as in DShield [DShield], where the information recorded is a
mixture of normal and malicious traffic.

Two types of honeypots can be distinguished depending on the level of interactivity that they
offer to the attackers. Low-interaction honeypots do not implement real functional services.
They emulate simple services and cannot be used to compromise the honeypot or attack
other machines on the Internet. On the other hand, high-interaction honeypots offer real
services to the attackers to interact with which makes them more risky than low interaction
honeypots. As a matter a fact, they offer a more suitable environment to collect information
on attackers activities once they manage to get the control of a target machine and try to
progress in the intrusion process to get additional privileges. It is noteworthy that recently,
hybrid honeypots combining the advantages of low and high interaction honeypots have
been also proposed, (some examples are presented e.g., [Artail et al. 2006, Provos & Holz
2007]).

Most of the currently deployed honeypots on the Internet are low interaction honeypots that
are easy to implement and do not present any risk of being used by the attackers for
attacking other machines. As an example, the Leurré.com data collection platform set up by
Eurécom and to which LAAS contributes is based on the deployment of identically configured
honeypots at various locations on the Internet (see Section 3.2).

In the context of CRUTIAL, we are interested in the analysis and the exploitation of data
collected from both, low interaction and high interaction honeypots. The first type of
honeypots is well suited to easily collect a large volume of data that can be used to
characterize the time occurrence of the attacks and their distribution according to their type,
origin, etc. In CRUTIAL, we rely on the data collected from the Leurré.com platform to carry
out such analyses. The Leurré.com data collection platform is described in section 3.2. The
second type of honeypots is needed to analyse the strategies and the behaviour of the
attackers once they succeed in breaking into a target machine and try to progress in order to
increase their privileges or carry out malicious actions. This requires the instrumentation of
the honeypot with specific mechanisms dedicated to the capture and monitoring of attackers
activities and to the control of their activities to prevent the use of the target machine as
stepping stone for compromising other machines. In CRUTIAL, we have developed a specific

Experimental validation of architectural solutions Page 26

high–interaction honeypot architecture dedicated to this purpose which is presented in
Section 3.3.

3.2 Leurré.com data collection platform
The data collection environment Leurré.com is based on low-interaction honeypots using the
freely available software called honeyd [Provos 2004]. Since 2003, 80 honeypot platforms
have been progressively deployed on the Internet at various geographical locations. As
illustrated in Figure 8, each platform emulates three computers running Linux RedHat,
Windows 98 and Windows NT, respectively, and various services such as ftp, web, etc. All
traffic received by or sent from each computer is saved in tcpdump files. A firewall ensures
that connections cannot be initiated from the computers, only replies to external solicitations
are allowed. All the honeypot platforms are centrally managed to ensure that they have
exactly the same configuration. Every day, the data gathered by each platform are securely
uploaded from a trusted machine during a short period of time to a centralized database with
the complete content, including payload of all packets sent to or from these honeypots and
additional information to facilitate its analysis, such as the IP geographical localization of
packets’ source addresses, the OS of the attacking machine, the local time of the source,
etc. Integrity checks are also performed to ensure that the platform has not been
compromised.

firewall virtual machines

physical machine

Windows NT

Red Hat 7.3

Windows 98

tcpdump

honeyd

Internet

Figure 8- Leurré.com honeypot architecture

3.3 A high-interaction honeypot architecture
With low-interaction honeypots, the attackers can only scan ports and send requests to fake
servers without ever succeeding in taking control over them. Thus, high-interaction
honeypots are needed to allow us to learn about the behaviour of malicious attackers once
they have managed to compromise and get access to a new host, and about their tools
tactics and motives. We are mainly interested in observing the progress of real attack
processes, and monitoring in a controlled environment the activities carried out by the
attackers as they gain unauthorized access, capturing their keystrokes, recovering their
tools, and learning about their motives.

The most obvious approach for building a high-interaction honeypot consists in using a
physical machine and dedicating it to record and monitor attackers activities. The installation

Experimental validation of architectural solutions Page 27

of this machine is as easy as a normal machine. Nevertheless, probes must be added to
capture and store the activities. Operating in the kernel is by far the most frequent manner to
do it. Sebek [Provos & Holz 2007] and Uberlogger [Alberdi et al. 2005] operate in that way by
using Linux Kernel Module (LKM) on Linux. More precisely, they launch a customised
module to intercept interesting system calls in order to capture the activities of attackers.
Data collected in the kernel is stored on a server through the network. Communications with
the server are hidden on all installed honeypots.

Instead of deploying a physical machine that acts as a honeypot, a more cost effective and
flexible approach would be to deploy a physical machine hosting several virtual machines
that act as honeypots. Usually, VMware,User Mode Linux (UML) or, more recently, Qemu
virtualisation and emulation software are used to set up such virtual honeypots. Some
examples of virtual honeypots are presented in [Provos & Holz 2007].

In CRUTIAL, we have decided to build our own virtual high-interaction honeypot that can be
easily customized to our needs and experiments. The design choices and the architecture of
our honeypot are detailed in the following sections.

3.3.1 Objectives and design needs
More concretely, our objective is to set up and deploy an instrumented environment that will
offer some possibilities to attackers to break into a target system under strict control, and will
include mechanisms to log their activities. In particular, we are interested in capturing: 1) the
communication traffic going through the honeypot over the network, 2) the keystrokes of the
attackers on their terminals, 3) the logins and passwords use, and 4) the programs and tools
executed on the honeypot.

The vulnerability to be exploited by the attacker to get access to the honeypot is not as
crucial as the activity they carry out once they have broken into the host. That's why we
chose for a first implementation to use a traditional vulnerability: weak passwords for ssh
user accounts. Our honeypot should not be particularly hardened for two reasons. First, we
are interested in analyzing the behavior of the attackers even when they exploit a buffer
overflow and become root. So, if we use some kernel patch such as Pax [Pax 2007], our
system will be more secure but it will be impossible to observe some behavior. Secondly, if
the system is too hardened, the intruders may suspect something abnormal and then give
up.

In our setup, only ssh connections to the virtual host should be authorized so that the
attacker can exploit this vulnerability. On the other hand, any connection from the virtual host
to the Internet should be blocked to avoid that intruders attack remote machines from the
honeypot. This does not prevent the intruder from downloading code, using the ssh
connection4. Forbidding outgoing connections is needed for liability reasons. This limitation
precludes the possibility of observing complete attack scenarios. Moreover, it might also
have an impact on attacker behavior: attackers might stop their attack and decide to never
use again the honeypot for future malicious activities. To address this problem, some
implementations limit the number of outgoing connections from the honeypot through the use
of “rate limiting” mechanisms. Although this solution allows more information about the attack
process to be captured, it does not address the liability concerns. A possible solution that we
have investigated is to redirect outgoing connections to a local machine, while making the
attackers believe that they are able to bounce from the honeypot. This solution is detailed in
[Alata et al 2007].

As regards the mechanisms that need to be included in the honeypot to log attackers
activities, capturing network traces using e.g., tcpdump as usually done in the case of low
interaction honeypots would not be enough. We also need to record the activities carried out

4 We have sometimes authorized http connections for a short time, by checking that the attackers were not trying to attack other remote hosts.

Experimental validation of architectural solutions Page 28

by the attackers on their terminal and the logins and passwords tried. This requires the
modification of some OS calls as well as the ssh software. Additional mechanisms are also
needed to regularly archive the information logged in a secured way.

In the next section, we describe the architecture of the proposed honeypot and describe the
mechanisms that have been implemented for logging and archiving the activities of the
attackers.

3.3.2 Architecture and implementation description
To fulfill the objectives listed in Section 3.3.1, we need an open source implementation of the
target operating system. It is also important to be familiar with, and to have a deep
knowledge of the selected operating system in order to be able to keep the activities of the
attackers under strict control. For these reasons, we have decided to use GNU/Linux. As
regards the implementation of the virtual machines, our choice was for a virtualisation
software such as VMware or Qemu. Compared to VMware, Qemu presents the advantages
of being freely distributed and open source. Indeed, we have developed a first
implementation based on VMware that does not include the redirection mechanism. This
implementation was then upgraded at a second stage to include the redirection mechanism,
using Qemu. For both implementations, the honeypot was developed using a standard
Gnu/Linux installation with kernel 2.6 with the usual binary tools. No additional software was
installed except the http apache server. This kernel was modified as explained in the next
subsection.

An overview of the general architecture of the honeypot is presented in Figure 9. The
mechanisms implemented for capturing the attackers activities are highlighted. These
mechanisms are described briefly in the following.

firewall

virtual machine

Internet

Modification of the kernel

Modified SSH

New
system call

virtual machine

Modification of the kernel

Modified SSH

New
system call

Connection redirection

physical machine
Figure 9- Overview of the high-interaction honeypot architecture

3.3.2.1 Data collection mechanisms
In order to log what the attackers do on the honeypot, we modified some drivers functions
(tty_read and tty_write), as well as the exec system call in the Linux kernel. The
modifications of tty_read and tty_write enable us to intercept the activity on all the
terminals of the system. The modification of the exec system call enables us to record the

Experimental validation of architectural solutions Page 29

system calls used by the intruder. These functions are modified in such a way that the
captured information is logged directly into a buffer of the kernel memory of the honeypot
itself. This means that the activity of the attacker is logged on the kernel memory of the
honeypot itself. This approach is not common: in most of the approaches we have studied,
the information collected is directly sent to a remote host through the network. The
advantage of our approach is that logging through the kernel is difficult to detect by the
attacker (more difficult at least than detecting a network connection). It is noteworthy that the
logging activity is executed on the real host not on the virtual, thus it is not easily detectable
by the intruder (he cannot find anything suspicious in the list of processes for example).
Furthermore, the data is compressed using the LZRW1 algorithm before being logged into
the kernel memory.

Moreover, in order to record all the logins and passwords tried by the attackers to break into
the honeypot we added a new system call into the kernel of the virtual operating system and
we modified the source code of the ssh server so that it uses this new system call. The
logins and passwords are logged in the kernel memory, in the same buffer as the information
related to the commands used by the attackers. As the whole buffer is regularly stored on the
hard disk of the real host, we do not have to add other mechanisms to record these logins
and passwords.

The activities of the intruder logged by the honeypot are preprocessed and then stored into
an SQL database. The raw data are automatically processed to extract relevant information
for further analyses, mainly: i) the IP address of the attacking machine, ii) the login and the
password tested, iii) the date of the connection, iv) the terminal associated (tty) to each
connection, and v) each command used by the attacker.

3.3.2.2 Connection redirection mechanism
As indicated in Section 3.1.1, this mechanism is aimed at automatically and dynamically
redirecting outgoing Internet connections from the honeypot to other local machines. The
goal is to make the attacker believe he can connect from the honeypot to hosts on the
Internet, whereas in reality, the connections are simply redirected towards another honeypot.
The main idea is illustrated by the example presented in Figure 10.

In this example, b, c and d are honeypots and a, e, f and g are machines on the Internet. An
attacker from Internet host a breaks into honeypot b (connection 1). From this honeypot, the
attacker then tries to break into Internet host e thanks to connection 2. This connection is
blocked by our mechanism. The attacker then tries another connection 3 towards Internet
host f. This connection is accepted and automatically redirected towards honeypot c. The
attacker is under the illusion that his connection to f has succeeded, whereas it has merely
been redirected to another honeypot. The attacker tries to establish another connection 4
towards Internet host g. Similar to connection 3, this connection is accepted and
automatically redirected towards honeypot d. The attacker finally initiates another connection
(5) to Internet host g from host f (in reality, from host c). This connection is also accepted and
is redirected towards honeypot d.

This mechanism allows the observation of attackers activity on different hosts. In general, a
honeypot allows the activity of the attacker to be observed at only one side of the connection.
The other connection end is the machine that interacts with the honeypot. For all redirected
connections, we can observe an attacker on both connection ends.

On the other hand, it is possible for a clever attacker to see through the hoax. For example,
in Figure 10, suppose the attacker already controls the machines a, e and f. He can then
check, after establishing connection 3, if the machine he is connected to really is machine f.
This limitation does exist; however we believe that many attackers will not systematically do
such checks, in particular if the attack is carried out by non-sophisticated automatic scripts.
Just as low-interaction honeypots provide some useful albeit limited information, more attack

Experimental validation of architectural solutions Page 30

information would be gleaned from systems that implement our redirection mechanism than
those that do not.

connection

Dropped connection

Redirected connection

Simulated connection

Honeypots

gateway

Internet

Figure 10- Connection redirection principles: example

The dynamic redirection mechanism has been implemented in the Gnu/Linux operating
system through the NETFILTER firewall of the kernel. This firewall allows the interception
and the modification of the packets flowing through the IP stack. As illustrated in Figure 9,
the mechanism includes three components:

• the redirection module (inside the kernel) extracts the received packets.

• the dialog_handler decides whether the extracted packets must be redirected or not.
Several algorithms can be used for this purpose and for the distribution of the redirected
connections among the local honeypots.

• the dialog_tracker maintains the link between the redirection module and the
dialog_handler. This way, the implementation of the dialog handler can be totally
independent of the architecture and the operating system. In particular, the
dialog_handler and the dialog_tracker could be run on different machines.

The implementation of the three components is described in detail in [Alata et al. 2007], with
experimental results showing that the redirection mechanism does not lead to a significant
latency due to the interception and redirection of connections. This is important to ensure
that the overhead is sufficiently low as to prevent detection of the redirection mechanism by
the attacker.

Experimental validation of architectural solutions Page 31

User space

Kernel space

memory
Figure 11- Redirection mechanism implementation through NETFILTER

3.3.3 Deployment
In order to collect real data about attackers activities and to validate our set up, we have
deployed our virtual high-interaction honeypot on the Internet. Figure 12 gives an overview of
the most recent version of the honeypot. Three Gnu/Linux virtual machines M1, M2 and M3
have been set up. Each machine includes usual desktop software (Compiler, Text editors,
etc.). Only M1 and M2 are accessible from the Internet. M3 is accessible from the other
virtual machines. The only input connections authorized by the firewall are those targeting
the ssh service. Concerning output connections from the honeypot, two virtual machines R1
and R2 are used by the redirection mechanism.

The deployment was carried out in two stages. The first deployed version did not include the
redirection mechanism and the virtual machines have been set up using VMware. This setup
was then upgraded using Qemu and included the redirection mechanism.

connection

Dropped connection

Data collection mechanism

Connection redirection mechanism

Virtual
High-interaction

Honeypot

gateway

Internet

Figure 12- Overview of the most recently deployed version of the honeypot

Experimental validation of architectural solutions Page 32

In the beginning of the experiment (approximately one and a half month), we deployed a
machine with a ssh server correctly configured, offering no weak account and password. We
have taken advantage of this observation period to determine which accounts were mostly
tried by automated scripts. Using this acquired knowledge, we have created 17 user
accounts and we started looking for successful intrusions. Some of the created accounts
were among the most attacked ones and others not. As we already explained in previous
sections, we have deliberately created user accounts with weak passwords (except for the
root account).

As illustrated on Figure 13, we can distinguish two main steps for the activities recorded for
each user account, identified by the durations τ1 and τ2. The first one measures the duration
between the creation of the account and the first successful connection to this account, and
the second one measures the duration between the first the first successful connection and
the first real intrusion (i.e., a successful connection with commands). Table 5 summarizes
these durations (UAi means User Account i).

The second column indicates that there usually is a gap of several days between the time
when a user account is successfully found and the time when someone logs into the system
with this account to issue some commands on the now compromised host. This is a
somehow a surprising fact. The particular case of the UA5 account is explained as follows: an
intruder succeeded in breaking the UA4 account. This intruder looked at the contents of the
/etc/passwd file in order to see the list of user accounts for this machine. He immediately
decided to try to break the UA5 account and he was successful. Thus, for this account, the
first successful connection is also the first intrusion.

Account
creation

1st successful
connection to
this account

1st successful
connection to this

account with commands

τ1 τ2 time

Figure 13: Definitions of τ1 and τ2

Table 5: τ1 and τ2 values for the each user account

User Account τ1 τ2
UA1 1 day 4 days
UA2 1.5 day 4 minutes
UA3 15 days 1 day
UA4 5 days 10 days
UA5 5 days 0
UA6 1 day 4 days
UA7 5 days 8 days
UA8 1 day 9 days
UA9 1 day 12 days
UA10 3 days 2 minutes
UA11 7 days 4 days
UA12 1 day 8 days
UA13 5 days 17 days
UA14 5 days 13 days
UA15 9 days 7 days
UA16 1 day 14 days
UA17 1 day 12 days

Experimental validation of architectural solutions Page 33

As regards the data collected so far during the experiment, the number of ssh connection
attempts to the honeypot that we have recorded is 552362 (we do not consider here the
scans on the ssh port). This represents about 1318 connection attempts a day. Among these
552362 connection attempts, only 299 were successful. The total number of accounts tested
is 98347 and the number of different IP addresses observed on the honeypot was 654. This
represents a significantly large volume of data on which statistical analyses can be carried
out to extract relevant information about the observed attack processes.

This analysis is currently undergoing and the results will be presented in the next year
deliverable.

4 CONCLUSION
In this deliverable, we presented two complementary experimental environments that are
aimed to support the activities carried out in CRUTIAL in order: 1) to identify security-related
vulnerabilities in software components and servers used in the CRUTIAL architecture, and 2)
to collect real data representative of attacks typically observed on the Internet that will be
useful to build models characterizing malicious threats.

The identification of security-related vulnerabilities is based on the injection of attacks using a
new tool (AJECT). The experimental results obtained so far have confirmed that the
methodology developed and the features offered by the tool are very relevant and well suited
to identify residual vulnerabilities in software components and servers, such as those used in
the information infrastructures investigated in CRUTIAL. The work that will be carried in the
next year will be focussed on the application of the tool to selected components of the
CRUTIAL reference architecture considering two types of components: the CIS devices that
are positioned at the borders of the protected networks and the servers that provide
fundamentals services to the other components of the networks (e.g., the DNS servers).

Concerning the collection and analysis of attack data based on honeypots, the effort will be
focussed on the processing and the analysis of the data collected during the deployment of
our high-interaction honeypot on the Internet in order to characterize the observed scenarios
and behaviours of the attackers. Additionally, we will work on the enhancement of the
capabilities offered by the current implementation, by including additional vulnerabilities that
can be used by potential attackers to compromise systems and servers connected to the
Internet.

Experimental validation of architectural solutions Page 34

REFERENCES
[Abell 2007] V. A. Abell, “lsof – LiSt Open Files”, http://people.freebsd.org/~abe/, 2007.

[Alata et al. 2007] E. Alata, I. Alberdi, V. Nicomette, P. Owezarski and M. Kaâniche, “Internet
Attacks Monitoring with Dynamic Connection Redirection Mechanisms”, Journal in Computer
Virology 2007.

[Alberdi et al. 2005] I. Alberdi, J. Gabès and E. L. Jamtel, “Uberlogger : Un observatoire
niveau noyau pour la lutte informatique défensive”, Symposium sur la Sécurité des
Technologies de l'Information et des Communications (SSTIC-2005), Rennes, France, 2005.

[Amir et al. 2006] Y. Amir, C. Danilov, D. Dolev, J. Kirsch, J. Lane, C. Nita-Rotaru, J. Olsen,
and D. Zage, “Scaling byzantine fault-tolerant replication to wide area networks” in: Proc. Int.
Conf. on Dependable Systems and Networks, pp.105-114, June 2006.

[Artail et al. 2006] H. Artail, H. Safa, M. Sraj, I. Kuwatly and Z. Al Masri, “A Hybrid honeypot
framework for improving Intrusion detection Systems in protecting organizational networks”,
Computers & Security, 25 (4), pp.274-288, 2006.

[Bailey et al. 2005] M. Bailey, E. Cooke, F. Jahanian and J. Nazario, “The Internet Motion
Sensor - A Distributed Blackhole Monitoring System”, in Network and Distributed Systems
Security Symposium (NDSS-2005), (San Diego, CA, USA), 2005.

[Baulig & Kacar 2007] M. Baulig and D. Kacar, “LibGTop -- Library that provides system
information”, http://directory.fsf.org/libs/LibGTop.html, 2007.

[CAIDA] CAIDA, “CAIDA, The Cooperative Association for Internet Data Analysis,
http://www.caida.org”.

[Crispin 2003] M. Crispin, 2003, Internet Message Access Protocol - Version 4rev1. Internet
Engineering Task Force, RFC 3501.

[Cook et al. 2004] E. Cook, M. Bailey, Z. Morley Mao, D. Watson, F. Jahanian and D.
McPherson, “Toward Understanding Distributed Blackhole placement”, in The 2004 ACM
Workshop on Rapid Malcode (WORM'04), (New York), pp.54-64, ACM Press, 2004.

[DShield] DShield, “The SANS Institute. Distributed Intrusion Detection System,
http://www.dshield.org.”

[van Eeten et al. 2006] M. van Eeten, E. Roe, P. Schulman, and M. de Bruijne, “The enemy
within: System complexity and organizational surprises”, M. Dunn and V. Mauer, editors, Int.
CIIP Handbook 2006, 2, pp.89-110, CSS, ETH Zurich, 2006.

[GNU Foundation 2006] GNU Fountation, 2006. GDB. Http://www.gnu.org/software/gdb/.

[ISC] ISC, “The SANS Institute. Internet Storm Center. http://isc.sans.org/”.

[Koziol et al. 2004] J. Koziol, D. Litchfield, D. Aitel, C. Anley, S. Eren, N. Mehta, and R.
Hassell, “The Shellcoder’s Handbook: Discovering and Exploiting Security Holes”, John
Wiley & Sons, 2004.

[London et al. 2001] K. London, S. Moore, P. Mucci, K. Seymour, and R. Luczak, “The PAPI
Cross-Platform Interface to Hardware Performance Counters”, in Department of Defense
Users' Group Conference Proceedings, 2001.

[Moore et al. 2001] D. Moore, G. M. Voelker and S. Savage, “Inferring Internet Denial of
Service Activity”, in 10th USENIX Security Symposium, 2001.

Experimental validation of architectural solutions Page 35

[Pax 2007] Pax, “The Pax Team”, (6 December 2007), 2007, http://pax.grsecurity.net.

[Pettersson 2002] M. Pettersson, “Linux Performance-Monitoring Counters Driver”,
http://www.csd.uu.se/~mikpe/linux/perfctr, 2002.

[Pouget et al. 2005] F. Pouget, M. Dacier and V.-H. Pham, “Leurré.com: On the Advantages
of Deploying a Large Scale Distributed Honeypot Platform”, E-Crime and Computer
Conference (ECCE '05), Monaco, 2005.

 [Powell & Stroud 2002] D. Powell, & R. Stroud, editors, “Conceptual Model and Architecture
of MAFTIA. Project MAFTIA deliverable D21”,
http://www.research.ec.org/maftia/deliverables/D21.pdf, 2002.

[Provos 2004] N. Provos, “A virtual honeypot framework”, in 12th USENIX Security
Symposium, pp.1-14, 2004.

[Provos & Holz 2007] N. Provos and T. Holz, Virtual Honeypots — From Botnet Tracking to
Intrusion Detection, Addison-Wesley, Boston, MA, USA, 2007.

[Spitzner 2002] L. Spitzner, Honeypots: Tracking Hackers, Addison-Wesley, Boston, 2002.

[Vanderavero et al. 2004] N. Vanderavero, X. Brouckaert, O. Bonaventure and B. Le
Charlier, “ The HoneyTank: a scalable approach to collect Malicious Internet traffic,” in
International Infrastructure Survivability Workshop (IISW'04), (Lisbon, Portugal), 2004.

[Veríssimo et al. 2000] P. Veríssimo, N. F. Neves, and M. Correia, “The Middleware
Architecture of MAFTIA: A Blueprint”, in: Proceedings of the Third IEEE Information
Survivability Workshop, 2000.

 [Veríssimo et al. 2003] P. Veríssimo, N. F. Neves, and M. Correia, “Intrusion-Tolerant
Architectures: Concepts and Design”, in: R. Lemos, C. Gacek, & A. Romanovsky, editors,
Architecting Dependable Systems, vol. 2677 of Lecture Notes in Computer Science, pp.3-36,
2003.

[Wilson 2006] C. Wilson, “Terrorist capabilities for cyber-attack”, M. Dunn and V. Mauer,
editors, International CIIP Handbook 2006, 2, pp.69-88. CSS, ETH Zurich, 2006.

