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Abstract 

The increasing prevalence of vehicle automation and, in the future, fully 

autonomous vehicles, creates a need for research into the likely effects of this 

significant change to the way we drive. This thesis examines the likely impacts of 

increasing automation on driver attention and situation awareness.  Chapter 1 

provides a general overview of the topic and the research questions. Chapter 2 

presents the first experiment, which measures hazard detection performance under 

different levels of load in a secondary task.  Chapter 3 presents a second similar 

experiment using an older (70+ years) population.  Chapter 4 presents a third 

experiment which again repeated the first study but this time in a young, 

inexperienced driving population (18-20 years).  Chapter 5 then presents a direct 

comparison of the results of the three previous studies.  Chapter 6 describes a large 

simulator-based study to examine the visual attention and situation awareness of 

drivers after they take over driving following a period of autonomous driving.  

Driver performance is assessed using a range of eye tracking and behavioural 

measures.  Chapter 7 is the final empirical chapter, presenting the results of an 

online survey aimed at understanding people’s trust and acceptance of vehicle 

automation.  Chapter 8 constitutes a general discussion in which all study results 

are reviewed and their implications discussed.  Overall, this thesis uses a range of 

different experimental methods to demonstrate that drivers' attention and 

situation awareness is likely to be significantly affected by differing types and levels 

of vehicle automation.  This will be an important consideration for the designers of 

automated systems and vehicles in the future. 
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Background 

Through movies, literature and sci-fi the idea of a self-driving car has been 

dreamt of and imagined.  From Blade Runner in 1982 through to the Fifth Element 

in the late 90’s the fantasy and allure of the self-driving car has grown with each 

passing year.  Yet it is only in the last decade that the reality of the self-driving car 

has come closer to fruition.  The invention of adaptive cruise control and active 

steering systems in the 90’s led the way for the early acceptance of automated 

systems in vehicles.  Latterly, in the last decade there has been a rapid race by the 

automotive industry to introduce new partially automated vehicle systems, such as 

vehicles that can park themselves, vehicles that speed up and slow down 

automatically in stop-and-go traffic and vehicles that can change lanes on 

motorways.  These partially automated vehicle systems are paving the way forward 

for the mass production and introduction of fully automated cars on the roads of 

the world in the not too distant future. 

The introduction of vehicle automation could be as transformational to our 

daily living as the internet was.  Driverless and semi-autonomous vehicles could 

change the landscape of cities, drive revenue and jobs in British industry, and 

improve the safety of road travel for both drivers and pedestrians (CCAV, 2016).  

The average UK driver spends 235 hours per year driving and drives just over 8500 

miles per year. The UK government reports that in 2014 there was on average one 

fatality every 178 million miles driven on UK roads. Driverless and semi-

autonomous vehicles are predicted to have an important effect on the reduction of 

road traffic collisions and fatalities.  Government and independent research has 

shown that more than 90% of road traffic collisions have human error as a 

contributory factor, implying that driverless vehicles could help to reduce death and 

injuries on our roads. Specifically, collision avoidance technologies such as 

Electronic Stability Control (ESC) and Autonomous Emergency Braking Systems 

(AEBS) have shown a more than 20% benefit in collision reduction. Observations 

such as this have led to claims that the adoption of semi-autonomous and driverless 

technology could save over 2,500 lives and prevent more than 25,000 serious 

accidents in the UK by 2030. This increased safety may reduce many common 
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accident risks and therefore crash costs and reduce insurance premiums (CCAV, 

2016; KPMG, 2015) 

As driverless technology becomes more widespread, information concerning 

the real-world performance of driverless vehicles becomes more available.  For 

example, Google reports that collectively their driverless cars have driven more 

than 500,000 miles without crashing, and in total over 1.5 million miles driverless 

(Waymo, 2017).  The first reported causality in a semi-autonomous vehicle was 

recently reported by Tesla, following over 130 million miles of driving.  However, 

this compares favourably to the fatality rate of manual driving, both in the US, 

where one driving-related fatality is reported on average every 94 million miles 

driven, and worldwide, where there is one fatality approximately every 60 million 

miles (Department for Transport, 2016).  

The wider impact on society from driverless technology is predicted to be 

extensive. Driverless vehicles could enable better use of road space, for example 

through platooning of vehicles (vehicle groups traveling close together), the use of 

narrower lanes, and reduced junction stops. This would lead to improved traffic 

flow, reduced congestion and increased road capacity, which would in turn improve 

fuel economy and costs. Autonomous vehicles may also increase fuel efficiency and 

reduce pollution emissions, due to efficiency savings made through improved 

engine design and more efficient use of the road.  On a more social level, driverless 

technology could improve the lives of disabled or older people by enhancing their 

mobility, giving transport access to those who currently cannot drive. This could 

provide independent mobility for non-drivers, and therefore reduce the need for 

motorists to chauffeur non-drivers, and to use subsidised public transport. The 

costs of driving may also be reduced, through lower insurance premiums and a 

more widespread use of car sharing (vehicle rental services that substitute for 

personal vehicle ownership). Finally, driverless technology could reduce driver 

stress, allowing motorists to relax, socialise and work while traveling. 

The impact of driverless technology on the UK economy and UK businesses 

is predicted to be substantial. It is estimated that driverless technology could 

increase GDP by 1% by 2030, and that the economic and social benefit of connected 
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and driverless vehicles (i.e. fewer accidents, improved productivity and increased 

trade) could be in the region of £51 billion per year by 2030. The UK government 

predicts that driverless vehicle technologies could lead to improved productivity 

and increased trade as UK industries capture part of a wider global market for 

Intelligent Mobility estimated to be worth £900bn worldwide by 2025. This influx of 

new business and industry for driverless vehicles could potentially create an 

additional 320,000 jobs in the UK by 2030, of which 25,000 would be in automotive 

manufacturing.  Longer-term estimates predict that by 2040 the economic benefit 

to the UK economy could be more than double those in 2030 (£51 billion) at £121 

billion (KPMG, 2015). 

The spread of vehicle automation in the car industry has grown rapidly over 

the last 5-10 years with many newer cars having some level of automation as a 

standard feature, such as adaptive cruise control, collision avoidance and assisted 

parking.  This pattern of increasing automation is likely to continue at pace over the 

next few decades, resulting in full automation becoming the norm well within this 

century.  For example, both Ford and Tesla are aiming to have vehicles in 

production by 2020-21 in which the automated driving system monitors the driving 

environment with limited or no driver input (Naughton, 2017; NHTSA, 2013). 

In summary, the introduction of autonomous vehicles will constitute 

perhaps the largest change to everyday transportation in living memory and is 

predicted to deliver a wide range of environmental, social and economic benefits.   

The technological and engineering issues of automated vehicles have been well 

researched, yet the psychological impacts and problems have yet to be fully 

addressed.  As such, many important research questions remain, such as: How 

might overall driving performance in a semi-autonomous vehicle compare to 

entirely manual driving?  How will visual behaviour change in comparison to driving 

a manual vehicle?  Will automation have an impact on situation awareness and, if 

so, how?  How will the interaction of the user and the automated vehicle differ 

from that of the user and a manual vehicle?  What are the processes involved in 

resuming manual control when a highly automated vehicle needs to hand back to a 

human driver?   
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 Key questions  

The key questions in this thesis will centre around the effects of different 

levels of vehicle automation on situation awareness measured through the 

detection and perception of driving hazards (Chapters 2 and 5), and how these 

issues affect high risk driving groups, namely older drivers (Chapters 3 and 5) and 

novice drivers (Chapters 4 and 5).  Additionally, this thesis will examine visual 

attention and situation awareness during the process of handover from an 

automated system back to a manual driver (Chapter 6).  Finally, this thesis will 

examine some of the factors that influence the trust and acceptance of vehicle 

automation in the driving population (Chapter 7).  

The detailed literature relating to each topic will be covered at the start of 

the relevant chapter. In this introductory chapter, I cover the issues that have 

broader relevance for the thesis as a whole, namely: levels of automation, 

measures of task workload, and the interaction between vehicle automation and 

situation awareness. 

Levels of Vehicle Automation  

An automated vehicle (often called a self-driving car, an automated car or 

an autonomous vehicle) is a robotic vehicle designed to travel between destinations 

with limited or no human input.  The industry standard for describing the different 

levels of vehicle automation is the SAE J3016. The definitions are as follows: 

• “Level 0 – no automation: the full-time performance by the human 

driver of all aspects of the dynamic driving task (includes the 

operational steering, braking, accelerating, monitoring the vehicle 

and roadway, and tactical responding to events, determining when 

to change lanes, turn, use signals, aspects of the driving task, but not 

the strategic determining destinations and waypoints aspect of the 

driving task), even when enhanced by warning or intervention 

systems 

• Level 1 – driver assistance: the driving mode-specific (type of driving 

scenario with characteristic dynamic driving task requirements e.g., 
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motorway merging, high speed cruising, low speed traffic jam, etc.), 

execution by a driver assistance system of either steering or 

acceleration/deceleration using information about the driving 

environment and with the expectation that the human driver 

performs all remaining aspects of the dynamic driving task   

• Level 2 – partial automation: the driving mode-specific execution by 

one or more driver assistance systems of both steering and 

acceleration/deceleration using information about the driving 

environment and with the expectation that the human driver 

performs all remaining aspects of the dynamic driving task 

• Level 3 – conditional automation: the driving mode-specific 

performance by an automated driving system of all aspects of the 

dynamic driving task with the expectation that the human driver will 

respond appropriately to a request to intervene 

• Level 4 – high automation: the driving mode-specific performance by 

an automated driving system of all aspects of the dynamic driving 

task, even if a human driver does not respond appropriately to a 

request to intervene 

• Level 5 – full automation: the full-time performance by an 

automated driving system of all aspects of the dynamic driving task 

under all roadway and environmental conditions that can be 

managed by a human driver” 

(SAE, 2014) 

The experiments in this thesis relate to different levels of automation. 

Chapters 2-5 report results from a laboratory-based experimental paradigm 

involving hazard perception under differing levels of load. This paradigm relates 

most closely to situations of level 2 automation, in which the driver is expected to 

remain fully engaged with the driving environment. Chapter 6 reports a simulator 

experiment examining the process of handover between an autonomous system 

and a human driver and thus relates most closely to situations of level 3 

automation. 
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Measures of Task Workload  

An important facet of the effect of vehicle automation on behaviour is its 

specific effect on task workload.  This will constitute a major topic of investigation 

in Chapters 2-5 of this thesis.  Indeed, workload and situation awareness 

(considered in the following section) have been argued to be the two most 

important factors in predicting driver performance and safety  (Parasuraman, 

Sheridan, & Wickens, 2000; Young & Stanton, 2002b).  Workload can be defined as 

the physiological and mental demands that occur while performing a task or a 

combination of tasks.  Hart and Staveland (1988, p.140) specifically define that 

"Workload is not an inherent property, but rather it emerges from the interaction 

between the requirements of a task, the circumstances under which it is 

performed, and the skills, behaviours, and perceptions of the operator".   

In the human factors literature, workload is often assessed using a variety of 

a unidimensional instrument to measure subjective mental workload.  The RSME 

consists of a line with a length of 150 mm marked with nine anchor points, each 

accompanied by a descriptive label indicating a degree of effort (e.g. 0 = absolutely 

no effort, 40 = some effort, 80 = great effort, 120 = extreme effort).  The NASA task 

load index (NASA-TLX) (Hart & Staveland, 1988) is a six-dimension measure of 

mental workload: mental demand, physical demand, temporal demand, 

performance, effort, and frustration.  The Subjective Workload Assessment 

Technique (SWAT) (Reid & Nygren, 1988) is a subjective rating technique to assess 

workload that uses three levels: low, medium, and high, for each of three 

dimensions of load time: mental effort load, and psychological stress load.  Finally, 

the workload profile (WP) (Tsang & Velazquez, 1996) asks the participants to report 

the proportion of attentional resources used after they have experienced all of the 

tasks to be rated.  These measures of workload are all subjective, relying heavily on 

the recall of task workload by participants, which can be influenced by cognitive 

biases and memory recall (for a detailed review of the use of subjective rating 

scales in the applied workload literature see Annett, 2002; Young, Brookhuis, 

Wickens, & Hancock, 2015). 
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In contrast, there is a large and influential body of theoretical research into 

selective attention that has examined task load and its effect on information 

processing in fine-grained detail.  One of the most influential is the load theory of 

selective attention and cognitive control (Lavie & Tsal, 1994; Lavie, 2005; Lavie, 

Hirst, de Fockert, & Viding, 2004).  There are two aspects to the theory, perceptual 

load and cognitive (executive) control load.  According to perceptual load theory, 

perceptual processing has a system capacity limit but processing proceeds 

automatically and in parallel on all the information within the system’s capacity 

until capacity runs out.  According to the theory, the perceptual workload in the 

relevant task dictates whether or not a task-irrelevant stimulus is processed.  More 

specifically, under low perceptual load in the relevant task, additional processing 

capacity ‘spills over’ to the processing of task-irrelevant stimuli.  In contrast, under 

high load conditions the demands of the relevant task exceed the system capacity 

limits, and information processing is inexorably selective as a result.  Therefore, 

there is little to no interference by task irrelevant stimuli under high perceptual 

load, as there is no spare capacity to process the irrelevant information.  It is 

important to note that the distinction between a low and high task workload is 

relative, rather than absolute.  For example, Rees Frith and Lavie specified that 

increasing perceptual load entails “increasing the number of items in a display or 

increasing the processing requirement for the same number of items” (Rees, Frith, 

& Lavie, 1997, pg. 1618). Thus, unfortunately, there is currently no way of 

quantifying the extent of the perceptual load imposed by a particular task in order 

to allow comparison with other tasks. 

Load theory also specifies that executive control functions (e.g. working 

memory) act to maintain stimulus processing and response goals during the course 

of a task being performed.  The process is an active means of control, which allows 

the maintenance of stimulus processing goals in order to minimise the distraction 

effect of task irrelevant stimuli even after they have been perceived (e.g. in a task 

involving low perceptual load, which leads to spare processing capacity, resulting in 

a distractor effect).  Evidence for this proposal typically comes from studies using a 

dual task design in which participants are asked to hold information in mind whilst 
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also completing a selective attention task.  A commonly used task is the Eriksen 

flanker task, in which participants are tasked with identifying a single target letter 

whilst ignoring a concurrently presented distractor letter (Eriksen & Eriksen, 1974; 

Eriksen & Spencer, 1969).  The distractor letter is either congruent or incongruent 

with the target letter.  In the secondary task, participants perform either a low 

working memory load task (e.g. memorise one digit) or a high working memory load 

task (e.g. memorise six random digits).  The results of this type of study typically 

show that distractor congruency effects are greater under conditions of high 

working memory load compared to low working memory load (e.g. Lavie & Dalton, 

2014).  According to the theory, when working memory load is high in this 

paradigm, reduced executive capacity is available for maintenance of current goals 

and task priorities, leading to increased interference effects by task irrelevant 

distractors (Lavie, 2005). 

In conclusion, load theory predicts that increasing executive control load in 

a secondary task increases the effect of distractor interference in the primary task, 

whereas increasing perceptual load in the primary task decreases the effect of 

distractor interference within that task.  The executive control aspect of load theory 

is likely to be highly relevant to the current work.  However, the definition of task-

relevant or -irrelevant stimuli in the context of a visual driving scene is challenging.  

In a typical driving scene, there are large numbers of task-relevant and -irrelevant 

stimuli, which are not easily distinguishable from one another, in addition to a 

number of secondary tasks (e.g. speed control).  In most instances, a large number 

of elements in a typical driving scene could be a classified as potential hazards or 

useful information, making them potentially task-relevant depending on how the 

scene develops.  In contrast, in a typical executive control load experiment there is 

usually a small number of clearly distinguishable task-relevant and -irrelevant 

stimuli, and a single secondary task (e.g. digit span recall).  Nonetheless, this is an 

important endeavour, because the findings of load theory have demonstrated that 

differing types of load can have vastly differing effects on performance – a finding 

that has largely been overlooked within the human factors literature.   
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Automation and Situation Awareness  

Situation awareness in the context of vehicle driving involves the perception 

of environmental elements (e.g. traffic speed), the knowledge of the elements’ 

meaning, and the projection of their status after some variable has changed (either 

unpredictable, such as traffic braking, or predetermined, like traffic lights changing; 

Endsley, 1988).  In simpler terms situation awareness is ‘‘knowing what’s going on 

so you can figure out what to do” (Adam, 1993, p.319).  Understanding the 

interaction between vehicle automation and situation awareness is critically 

important, as there are two clear predictions that can be made.  On the one hand, 

automation could positively influence situation awareness by freeing up cognitive 

resources, thereby increasing awareness and speeding response times to hazardous 

or potentially hazardous situations.  Indeed, there is an overwhelming consensus 

from the cognitive psychology literature that reducing the number of concurrent 

tasks to be carried out should improve performance on the remaining tasks (e.g. 

Darling & Helton, 2014; Ettwig & Bronkhorst, 2015; Pashler, Johnston, & Ruthruff, 

2001; Pashler, 1994; Watanabe & Funahashi, 2014).  From this perspective, the 

clear prediction is that increasing vehicle automation should improve situation 

awareness.  On the other hand, increasing automation could negatively affect 

situation awareness through cognitive under-load, as drivers become disengaged 

with the task and are unable to respond as quickly or effectively to driving hazards. 

Research in this area is still at a relatively early stage and at present there is no 

clear consensus as to whether increasing automation improves or reduces situation 

awareness.   

On the one hand, there is evidence showing that high levels of automation 

can reduce situation awareness.  For example, in a meta-analysis of the effects of 

adaptive cruise control (ACC) and highly automated driving (HAD) systems on 

situation awareness, de Winter, Happee, Martens and Stanton (2014), found that 

HAD systems increase drivers’ susceptibility to drowsiness and mind wandering, 

such that response times to hazards are slower than during manual driving.  

Specifically, in HAD situations drivers were less likely to spot the sudden 

appearance of hazards (e.g. sheep, police cars) at the side of the road, as compared 
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to manual driving (63% vs. 77%).  Importantly, HAD systems and ACC also induced 

long response times and an elevated rate of near-collisions in critical events when 

compared to manual driving. 

In line with these findings, there is some evidence of a detrimental effect of 

task under-load on situation awareness.  Endsley and Kaber (1999) examined the 

effect of different levels of automation on situation awareness in a simulated 

system-monitoring task.  Participants had to monitor information using a complex, 

computer-based dynamic control task, under varying levels of automation and in 

which several automation failures occurred.  Examples of the tasks undertaken 

include object collision avoidance, and location and selection of objects.  There 

were ten levels of automation, ranging from manual control to full automation.  

Situation awareness was measured using the Situation Awareness Global 

Assessment Technique (SAGAT) developed by Endsley, 1988, a measure where the 

driving simulation is temporarily frozen and the screen(s) are blanked.  During the 

simulation freeze, drivers fill out a brief question sheet probing them about their 

awareness of the driving environment.  Task workload was measured using the 

NASA-TLX (Hart & Staveland, 1988).  The results showed that lower levels of 

automation benefited situation awareness performance the most, whilst under 

high levels of automation situation awareness performance was poorest, 

particularly if there was a system failure.  However, the results of this study are 

difficult to generalise to the driving domain, as none of the tasks were driving-

based.  The task of driving is one that is highly dynamic, from controlling the vehicle 

to the constantly changing environment outside the vehicle, whereas the task of 

monitoring readouts and information from a dynamic display is arguably more 

static and predictable in nature than driving.  Nonetheless, the results do 

demonstrate the general principle that cognitive under-load can be detrimental to 

performance, despite freeing up cognitive resources.  Furthermore, Parasuraman 

and Riley (1997) also demonstrated that under-load as a result of high levels of 

automation can cause system users to become disengaged with a task and thus 

slower to respond to critical events.   
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In line with these findings, there is also evidence that high levels of 

automation can negatively impact patterns of visual attention to the driving scene.  

Using a driving simulator and eye tracking, Merat, Jamson, Lai, and Carsten (2012) 

found that levels of automation (none, ACC and HAD) and a secondary task (e.g. 

reading, watching a DVD, changing the radio) affected the allocation of attention to 

the roadway.  Specifically, drivers in HAD vehicles were less likely to look at the 

centre of the roadway, where the important driving information is, compared to 

manual drivers (53% vs. 72% of the time).  HAD drivers were also likely to spend a 

larger proportion of the time in the vehicle engaged in secondary tasks compared 

to manual driving (43% vs. 22% of journey time engaged in watching a DVD).  This 

shift in attention away from the centre of the roadway under HAD conditions is 

likely to negatively impact on situation awareness.   

Overall, the research described above suggests that increased automation 

can decrease drivers’ situation awareness.  However, there are a growing number 

of studies finding the opposite result: that increased automation can in fact be 

beneficial to situation awareness compared to manual driving.  For example, in a 

recent simulator study that used non-driving related stimuli (pointed arrows) to 

assess situation awareness, drivers responded faster to the arrows during HAD than 

during manual driving (1800 ms vs. 1940 ms; De Winter, De Winter, Stanton, Price, 

& Mistry, 2016).  This does suggest that vehicle automation can benefit visual 

performance.  However, the use of non-driving related stimuli for the assessment of 

situation awareness makes these findings hard to generalise.  For example, the non-

driving related stimuli were abruptly-presented and incongruent with the scene and 

are thus likely to have been much more salient than driving related stimuli, which 

typically have a gradual onset and little saliency enhancement compared to the 

surround (McCarley, Steelman, & Horrey, 2014).    

However, similar effects have been found using more ecologically valid 

tasks. For example, in a driving simulator study Ma and Kaber (2005) observed that 

drivers had better situation awareness for ACC driving than for manual driving. 

Mean SAGAT scores were 77% for ACC vs. 52% for manual driving, meaning that 

when probed ACC drivers had better recall of the driving situation on average 
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compared to manual drivers.  In a subsequent follow up study, Ma (2006) replicated 

the same pattern of results with a larger sample than in the original study.  

However, one of the main drawbacks of the SAGAT is that it measures people’s 

memory for driving scenes, rather than their online awareness of the scene.  Any 

inaccuracies in responding could therefore be explained in terms of memory 

failures, rather than reductions in real time situation awareness.  For this reason, it 

is also important to develop measures of online awareness failure, and this is one of 

the aims of the current work (see Chapters 2-5). 

This approach was taken in a real-vehicle study by Davis, Animashaun, 

Schoenherr and McDowell (2008).  Twelve civilian drivers in semi-

autonomous military vehicles were tasked with spotting targets (e.g. oil barrels, 

cones and rubbish bins) placed in the driving environment.  The control of the 

vehicle was varied between semi-autonomous and manual control at different 

speeds.  Drivers responded to the detection of a target by pressing a button on the 

steering wheel of the vehicle, in addition to verbally reporting the location and type 

of target detected.  The drivers’ detection of environmental objects was 

significantly better in the semi-automated compared to the manual driving 

condition (47% vs. 39% of objects).  The semi-autonomous driving system was also 

associated with significantly better performance compared to the manual driving 

task in several other aspects of situation awareness, such as enhanced target 

identification and improved performance for unanticipated stops (e.g. emergency 

braking).   

There are also a small number of studies advancing the idea that vehicle 

automation compared to manual driving has no effect on situation awareness.  In a 

driving simulator based study that examined the effect of manual driving and two 

levels of automation (ACC and HAD) on drivers’ responses to a critical event (a car 

pulling out from a parking space), no significant difference in response time to the 

critical event were found between manual or automated driving.  Specifically, 

response times to the critical event were 3000ms, 2800ms and 2200ms for manual, 

ACC, and HAD, respectively (Martens, Wilschut, & Pauwelussen, 2008).  However, 

the 800ms difference between the manual and the HAD condition might suggest 
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that there could be an effect which might be masked by a lack of statistical power 

in this study.  Nevertheless, there are several other studies reporting null effects of 

automation on situation awareness. For example, when lorry drivers experienced a 

HAD system and manual driving scenario in a driving simulator, there was no 

difference in response time to an unexpected deceleration of a vehicle in front 

without brake lights when the HAD system failed compared to manual driving 

(Lank, Haberstroh, & Wille, 2011).  Similarly, in a driving simulator study Young 

(2000) found no differences between ACC and a HAD system regarding the number 

of drivers who responded to automation failure occurring without a warning signal 

at the same time as the critical situation, which was a car in front braking suddenly 

(27 vs. 25 out of 44 per condition responded to the failure).  

In summary, it seems that the evidence for vehicle automation improving 

situation awareness is mixed.  Some studies demonstrate a clear benefit of 

automation on situation awareness in the form of detecting more hazards and 

responding to them faster, whereas there are a number of studies finding that 

automation has negligible or even negative impacts on situation awareness 

compared to manual driving, particularly in HAD system vehicles.  This mixed 

pattern of existing results highlights a critical need for ongoing research in this area, 

with the aim of clarifying the links between automation and situation awareness. 

This is a central aim of this thesis, starting with the new experimental paradigm that 

I will describe in Chapter 2. 
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Chapter 2 – The Effects of Workload on the Perception of Driving Hazards 
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Introduction 

 Until recently, driving a vehicle has been a complex activity, involving 

coordination of a range of simultaneous tasks.  However, the experience of driving 

is set to change dramatically over the next decade, with significant increases in the 

prevalence of automated driving assistance systems (NHTSA, 2013).  Indeed, many 

drivers are already using adaptive cruise control and/or active steering, reducing 

the need to monitor and respond to speed and lane positioning.  Given the rapid 

pace of technological change in this area, it is likely that further substantial 

reductions in the demands associated with driving will arise in coming years.  It is 

therefore essential to understand how these changes in demand will impact on 

those critical aspects of driving performance that are likely (at least in the near 

future) to be left to the driver.  In Chapters 2-5, I focused on the anticipation and 

perception of driving hazards.   

 As described in Chapter 1, there is an overwhelming consensus from the 

cognitive psychology literature that reducing the number of concurrent tasks to be 

carried out should improve performance on the remaining tasks (e.g. Darling & 

Helton, 2014; Ettwig & Bronkhorst, 2015; Pashler, Johnston, & Ruthruff, 2001; 

Pashler, 1994; Watanabe & Funahashi, 2014).  From this perspective, the clear 

prediction is that increasing vehicle automation should improve hazard perception.  

However, research in the driving literature does not reflect this consensus.  Instead, 

the question of whether automation (vs. manual driving) can benefit hazard 

perception has produced a very mixed pattern of results (described in full in 

Chapter 1).  It is difficult to resolve this pattern of findings with the overwhelming 

level of consensus that is found in the cognitive psychology literature.  The purpose 

of the present study was to bring these literatures together, using a controlled 

cognitive psychology methodology to investigate the influence of task demand on 

hazard perception. The underlying assumption of this approach is that increasing 

the level of automation of the driving task will result in reduced overall task 

demands. Thus, this study uses a secondary task as a workload demand 

manipulation as a proxy for variations in automation levels.  
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Observers viewed videos of driving scenes and reported the location and 

nature of a potential hazard in each scene, while also completing a concurrent 

number probe task, which varied in its demand.  There were three levels of demand 

in the probe task: a no load condition in which only the hazard perception task was 

completed; a low load condition in which a simple response to the number probe 

was required, along with the hazard response; and a high load condition in which a 

two-alternative forced-choice (2AFC) response was made to the number probe, 

along with the hazard response.  The clear prediction from the existing cognitive 

research is that increasing the demand of the probe task should reduce 

performance in the hazard detection task. 

As described in Chapter 1, there is a large literature examining the impact of 

variations in task load on performance (e.g. Lavie, 2005).  This research has recently 

been extended to the specific context of driving.  Murphy and Greene (2017) used a 

driving simulator to assess the effect of perceptual and cognitive load on drivers' 

visual search.  In line with load theory, they found that high perceptual load 

significantly increased inattentional blindness and deafness for stimuli that were 

both relevant and irrelevant to driving (e.g. pedestrians or the sound of a car horn).  

High perceptual load also increased RTs to driving hazards (1129 ms under high load 

vs. 993 ms under low load) and reduced response accuracy to the hazard (97.8% 

under high load vs 98.6% under low load).  Finally, drivers also had more collisions 

with parked vehicles under high load (1.36 crashes) than low load (0.14 crashes).  

Additionally, Murphy and Greene compared the effects of cognitive control load on 

driver attention in more detail, comparing verbal and visuo-spatial working memory 

load.  Interestingly, but consistent with load theory, increasing cognitive load 

actually reduced levels of inattentional blindness for an unexpected object in the 

driving environment. 

In the light of these findings, it was important to ensure that any impacts of 

the task demand manipulation in the current study could not be attributed to 

differences in perceptual load between the different task demand conditions. For 

this reason, I chose only hazard perception videos that contained the most salient 

hazards, in an attempt to control for the number of task-relevant stimuli contained 
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in each video.  Although this of course did not ensure that the perceptual demands 

were accurately matched across the videos, I also allocated videos into task 

conditions at random, with different allocations for each participant. Thus, there 

should have been no systematic differences between the perceptual demands of 

the hazards video in each condition, because these varied from participant to 

participant. I also controlled the secondary number probe task as far as possible, 

matching precisely the manual and visual demands across the high and low load 

conditions in order to allow a pure manipulation of executive control load.  This is in 

contrast with the studies reported in the applied literature in which the task 

workload is often weakly defined and poorly controlled, potentially confounding 

measures with other factors, such as additional tasks. 

Method 

Participants 

 Thirty students were recruited for the study from the Royal Holloway 

university population (mean age = 20.7, SD = 2.3, 5 males).  The sample size was 

derived from prior research, constituting a typical size for studies in this area (e.g. 

Galpin, Underwood, & Crundall, 2009).  28 participants were right-handed.  All had 

a full driving licence (24 UK, 5 E.U and 1 Indian driving licence) and a minimum of 

two but no more than five years driving experience (mean experience in years = 2.7, 

SD =.8).  The average miles driven per year was 3215 (SD = 3093).  Participants were 

naïve to the purpose of the experiment, and none had previously taken part in 

driving experiments.  All UK-based drivers had taken the hazard perception test as 

part of their driving theory test.  All participants had normal or corrected-to- 

normal visual acuity, gave informed consent before participating, and were 

compensated with £10 for participation in the study.  All procedures were reviewed 

and approved by the Departmental Ethics Committee. 

Apparatus 

Visual stimuli were presented on a 19 inch LCD monitor (Samsung 

SyncMaster 940N) with a resolution of 1280 x 1024 pixels, a refresh rate of 60 Hz 

and an unrestrained viewing distance of approximately 65 cm.  Responses were 
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recorded using a computer keyboard and two individual foot pedals (Treadlite II, 

Linemaster Switch Corp). 

Stimuli 

Stimulus presentation was controlled through E-Prime 2.0 (Psychology 

Software Tools, Pittsburgh, PA).  Visual stimuli were supplied by a2om and are 

direct examples of hazard perception videos as used by the UK Driver & Vehicle 

Standards Agency (DVSA) in their training material.  All videos contained naturally-

occurring traffic situations, recorded in the first person and showing the roadway 

ahead but no driving mirrors.  116 videos were evaluated for suitability.  Any that 

had more than one potential hazard and/or had a potential hazard occur in the first 

10 seconds were excluded.  The remaining 103 videos were then reviewed by two 

evaluators (one was the author, the other was not associated with the project, 

mean age = 29 years, mean driving experience = 8 years) who judged the first 

hazard onset, the nature of the hazard and the spatial location in each video.  Of 

the remaining 77 clips for which the two evaluators agreed on all these criteria, 69 

were chosen at random for use in the study.  The mean video duration was 33s (S.D 

= 6s) and the mean hazard onset was 16s (S.D = 4s).  An intraclass correlation (ICC = 

.85, 95% CI = .77 - .90) indicated a high level of agreement between the evaluators 

concerning the first hazard onset.  The videos depicted four different types of 

driving environment (Motorway = 5, Rural = 28, Urban = 19, Suburban = 17).   

 The number probe in the low load condition was a white number 30 

presented (0.6° x 0.6° of visual angle) on a black background and positioned in the 

bottom right hand corner of the screen.  The number probe in the high load 

condition changed in identity from trial to trial but was presented with the same 

specifications as the number in the low load condition. 

Design and Procedure 

The main task for participants was to detect and respond to the 

presentation of the driving hazard that occurred in each video.  A driving hazard 

was defined as any event that may result in the driver having to take some action, 

such as changing speed or direction (DVSA, 2014).  For example, children running 
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out from between parked cars or playing at the side of the road, blind and 

unmarked junctions or vehicles emerging from junctions would all constitute a 

hazard, as they would necessitate changing speed or direction.  The hazards in the 

study were either static (e.g. junctions, roundabouts, parked vehicles, obstructions 

in the road, different types of crossings and traffic lights) or moving (e.g. 

pedestrians, cyclists, car drivers, motorcyclists, horse riders, large and hazardous 

vehicles, and disabled assistance vehicles).  Participants were informed that a 

hazard was always present and that it did not occur in the first 10 seconds of each 

trial.  Before the practice trials, participants were presented with information on 

what constitutes a driving hazard, including an example video.  The two hazard 

responses were a keyboard press for the detection of the hazard and then a brief 

typed description of what the hazard was and its spatial location in the video.  The 

videos were randomly allocated into any of the conditions including practice trials.  

At the start of each trial a white fixation cross (0.6° x 0.6°) on a black 

background was presented for 1000 ms, followed by the video.  Participants 

pressed the spacebar when they detected the hazard.  This ended the trial and 

prompted presentation of the hazard response screen.  If a participant did not 

make a keyboard response the trial ran for the duration of the video, followed by 

the hazard response screen. 

In the no load condition participants only responded to the presentation of 

the hazard.  In the low- and high load conditions, there was a concurrently-

presented secondary task.  In the low load condition, participants made a right foot 

pedal response to the presentation of the number 30 in the bottom right hand 

corner of the screen.  In the high load condition participants made a 2AFC response 

according to whether the number was higher than 30 (31 through 40; left pedal) or 

lower (20 through 29; right pedal).  The presentation of the number probe occurred 

on a random jitter (with a 1000, 2000 or 3000 ms inter-stimulus interval) from the 

start of the video until the participant responded to the hazard.  Each number 

probe was presented for 3000 ms or until the participant made a response. 

Load condition (no load, low load, high load) was blocked, with 20 trials in 

each block.  The testing session also began with nine practice trials (with three 
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practice trials of each condition), so participants completed a total of 69 trials.  The 

presentation order of the three blocks was counterbalanced across participants.  At 

the end of each block participants completed the Rating Scale Mental Effort (RSME; 

de Waard, 1996) to measure their subjective workload.  As described in Chapter 1, 

the RSME is a unidimensional instrument to measure subjective mental workload, 

consisting of a 150 mm line marked with nine anchor points, each accompanied by 

a descriptive label and a corresponding number indicating a degree of effort (e.g. 0 

= absolutely no effort, 120 = extreme effort).  At the start of each block participants 

read a brief reminder of the task they were to complete.  At the end of each block, 

as well as between trials, participants were given the opportunity to take a break.  

The entire experiment took 60 minutes to complete, including the practice trials. 

Results 

 In all subsequent F-tests, the Greenhouse-Geisser correction was applied if 

Mauchly’s test of Sphericity was significant, and I used the Benjamini-Hochberg 

false discovery rate procedure for all post-hoc tests.  The false discovery rate was 

set at 0.1 for all multiple comparisons (Benjamini & Hochberg, 1995). 

Data preparation 

 Workload measures. 

 Number probe responses were calculated from the first four responses per 

trial for each participant.  The first four responses occurred on average before the 

mean hazard onset and were therefore unlikely to be influenced by responses to 

the hazard.  This approach ensures that the mean responses are based on 

approximately the same number of trials for all participants across the low- and 

high load conditions.  All responses with empty cells were removed (5.9%).  Empty 

cells occurred when a trial was prematurely ended before the forth response (e.g. 

participants making a hazard detection response).  Finally, all incorrect responses 

were removed (2.3%) for the RT analyses.  The final dataset consisted of 4413 

correct number probe responses (low load = 2258; high load = 2155), and overall 

8.1% of the data were removed for the RT analyses. 
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Hazard detection measures. 

 In order to ensure that the hazards were clearly detectable across all the 

videos, data from videos with overall hazard response accuracies of less than 70% 

were removed from the analysis (17 videos, 21.72% of the data).  Subsequently, 

response accuracy across all load conditions was high (M = 91%, SD =.29).  All 

inaccurate responses were removed for the RT analyses (9.3%).  In order to identify 

the earliest point at which a hazard could be detected, the fastest correct response 

was identified for each video and this time point was made the baseline against 

which all other hazard responses were measured (in 30 videos, the fastest response 

came from the participants; in the remaining videos, the fastest response came 

from an evaluator).  The final dataset consisted of 1278 correct hazard responses, 

and overall 31.0% of the data were removed for the RT analysis. 

Data Analysis 

Workload Measures. 

 In order to examine the effectiveness of our load manipulation, a repeated 

measures ANOVA was conducted on the number probe RTs, using the within-

subjects factor of load condition (low vs. high).  There was a significant effect, F(1, 

29) = 348.26, p <.001,  =.92, indicating that RTs under low load (M = 570 ms, 95% 

CI = 530 – 608) were significantly faster than under high load (M = 978 ms, 95% CI = 

922 – 1033), which confirms that the load manipulation was successful.  This 

conclusion is supported by the accuracy analysis, which revealed significantly better 

performance under low load (M = 99.6%, 95% CI = 99.2 - 99.9) than under high load 

(M = 96.0%, 95% CI = 94.8 – 97.2), F(1, 29) = 34.21, p <.001,  =.54.   

 The RSME subjective measure of workload was also tested using a repeated 

measures ANOVA with the within-subjects factor of load condition (no load, low 

load and high load).  There was a significant effect of load condition, F(2, 58) = 

57.01, p <.001,  =.66 and post-hoc tests confirmed that each condition was 
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different from the others (all p<.001; see Figure 2.1).  These results indicate that the 

workload manipulation also worked as predicted from a subjective point of view. 

Figure 2.1. Mean RSME scores ( 95%CI) as a function of load condition. 

Hazard Detection Measures 

 Repeated measures ANOVAs were conducted on hazard detection RTs and 

accuracy using the within-subjects factor of load condition (no load, low load and 

high load).  There was a significant effect of load condition in the RTs, F(2, 58) = 

3.45, p =.038,  =.11.  Post-hoc tests identified a significant difference between no 

load and high load (p =.025), and a near-significant difference between no load and 

low load (p =.052), but not between low load and high load (p =.69; see Figure 2.2).  

These results indicate that the main effect was driven by the longer response times 

to the hazard in the no load condition than in the low- and high load conditions.  

Accuracy across the three load conditions was high (no load - M = 91%, 95% CI = 

87.2 – 93.8; low load - M = 90%, 95% CI = 86.3 – 94.2; high load - M = 88%, 95% CI = 
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82.2 – 94.2), and did not vary significantly across load conditions, F(1.53, 44.49) = 

.426, p >.250,  =.01.  

Figure 2.2. Mean correct response times ( 95%CI) in milliseconds as a function of 

load condition.  

Discussion 

 The present study demonstrated better hazard detection performance 

under dual (vs. single) task conditions.  Response times for detecting driving 

hazards in realistic video stimuli were 560-680 ms faster when participants also 

responded to a numerical probe than when they completed the hazard detection 

task alone.  This finding is extremely surprising given the wealth of studies 

demonstrating significant costs in dual (vs. single) task conditions. 

However, the results may be argued to be in line with load theory, if one 

defines the hazards as ‘task-irrelevant’ stimuli. For example, according to the 

findings of Murphy and Greene (2017), increasing the executive control load (with 

the addition of the number task) should have increased attention to ‘task 

irrelevant’ items, perhaps explaining why the hazard was more effectively noticed 

in the presence (vs. absence) of the number task. However, given that the detection 

of the hazard was an explicit task requirement, this interpretation seems 
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questionable. In addition, this explanation would predict better hazard detection 

under high load (vs. low load), but this pattern of results was not found. 

The findings might instead relate to recent research examining the  

‘attentional boost’ effect (Swallow & Jiang, 2010, 2012), which has demonstrated 

that detection of a target in one task can temporarily enhance processing of 

concurrently-presented (yet task-irrelevant) information.  From this perspective, it 

is possible that superimposing a sequence of target stimuli onto a dynamic video 

stimulus could ‘boost’ processing of the dynamic stimulus, and this could explain 

the current findings.  However, this possibility has never been tested.  In fact, a key 

finding of the research has been that the attentional boost is temporally precise, 

with a duration of 100 ms before or after the target presentation (Swallow & Jiang, 

2011, 2014).  Thus, these findings may not relate directly to the attentional boost as 

it is currently defined but may instead raise the possibility of a similar but longer-

lasting effect. 

Interestingly, there was no difference in hazard perception RT between the 

low- and high load conditions.  This non-difference could be because the high 

workload condition did not push the workload demands high enough.  This could be 

an avenue for further research. However, recall that all three of the workload 

measures demonstrated significantly worse number task performance under high 

(vs. low) load, clearly indicating a reasonable level of difference in the demands 

imposed by the two different versions of the task.  It is also possible that the 

presence of the number task simply increased participants’ overall motivation, 

leading to improved performance on the hazard task whenever the number task 

was present (whether it had a high load or a low load).  This seems unlikely, 

however, because hazard detection accuracy did not differ significantly across load 

conditions, as would be predicted by a motivation-based account. 

A final plausible interpretation of the results of this study could relate to the 

Yerkes-Dodson law (Yerkes & Dodson, 1908) which describes a relation between 

arousal and performance.  The key claim, which led to what later became known as 

the ‘inverted-U hypothesis’, is that performance is hindered at arousal levels that 

are either too low or too high (depending on the specifics of the task) with best 
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performance seen at intermediate levels of arousal.   In the context of task demand, 

this suggests that both underload and overload can negatively affect task 

performance.  In the light of this research a more parsimonious explanation of the 

study results might suggest that the longer hazard response times in the no load 

condition are indicative of cognitive underload whereby the drivers’ attentional 

resources were under engaged.  By contrast, in the low and the high load 

conditions, attentional engagement may have approached an ‘optimal’ level, with 

no observed drop off as secondary task difficulty increased in primary task 

performance.  This then raises the question as to whether the high load condition 

pushed the drivers to the edge of their attentional capacity limits, and therefore a 

future study with a very high load condition in the secondary task might show an 

increase in primary task RTs. 

With respect to the driving literature, our findings are in line with the small 

number of previous studies showing decrements in hazard perception under 

automated (vs. manual) driving conditions (e.g. de Winter et al., 2014).  Although 

our load manipulation was not designed in an attempt to mimic different levels of 

automation directly, the no load condition is somewhat analogous to a fully-

automated vehicle, whereas the low- and high load conditions are approximately 

analogous to driving tasks that involve some degree of engagement.  Thus, 

although fuller simulations are required before making firm conclusions, the results 

of this study suggest that keeping drivers engaged in some element of driving (e.g. 

lane control) is likely to improve hazard response performance by comparison with 

full automation. 

The level of engagement that may be useful in this context is likely to vary 

from person to person according to their cognitive capacity. This raises the 

interesting question of whether a group of drivers with reduced cognitive capacity 

would show similar performance on this task as the young experienced drivers who 

took part in the current study. In Chapter 3, I examined this issue by applying the 

same paradigm used here to a driving population aged 65 years and over. 
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Chapter 3 – The Effects of Workload on the Perception of Driving Hazards in Older 

Drivers 
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Introduction 

Older drivers, people typically aged 65+, are becoming an increasing 

discussion focus in the context of the effects of aging on driving safety.  As the 

percentage of the general population aged over 65 increases, so do the number of 

older drivers.  At present, there are approximately 4.1 million older drivers (65+ 

years) on UK roads (RAC, 2013), and by 2035 this number is predicted to increase to 

21 million (AA, 2017).  Furthermore, drivers aged 80+ involved in a traffic collision 

are six times more likely to be killed than drivers in their 40’s (Clarke, Ward, & 

Truman, 2005; Clarke, Ward, Truman, & Bartle, 2009).  The increase in older drivers, 

combined with an increasingly complex traffic and driving environment (e.g. high 

traffic volume, multiple lane junctions), could therefore increase the overall risk to 

the older driver, other road users and pedestrians. In fact, per mile driven, older 

drivers do have a higher crash risk but their overall crash risk per year is lower 

because they self-limit their driving exposure  i.e. older drivers “compensate” by 

driving less (Department for Transport, 2016). 

 Numerous factors, such as age-related changes to visual attention, 

information processing, working memory (WM), eye movements, physical ability 

and eyesight can influence an older driver’s competence to drive safely.  However, 

the most frequent failures in older drivers involve visual search errors when turning 

right onto A-roads, and cognitive failures such as task fatigue and ‘unintended 

acceleration’ (Clarke et al., 2009).  The caveat is that there is no specific age at 

which all drivers become unable to drive safely (RoSPA, 2010) because aging affects 

people differently.  

 With increasing levels of vehicle automation, the task of driving will become 

more focused on monitoring and responding to changes or failures in an 

autonomous system rather than the manual control of the car.  What is currently 

unclear in the literature is how this change in driving will affect older drivers’ 

behaviour, as they move from a highly practised skill (driving) to a relatively novel 

skill (system monitoring).  Removing the driver partially or fully from being in the 

‘driving loop’ (being involved in the complete task of driving) is likely to have 

different effects on cognitive function and information processing in older drivers 
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than in younger experienced drivers (Endsley & Kaber, 1999; Gold, Dambock, 

Lorenz, & Bengler, 2013; Louw & Merat, 2017; Merat & Jamson, 2009). Drivers of 

autonomous vehicles spend significant amounts of time ‘out of the loop’, such that 

they are not involved in the task of driving except under certain conditions (e.g. 

inclement weather affecting systems or when there is a system failure).  This makes 

it important to investigate their ability to make safe and appropriate responses 

when the autonomous system requires them to re-enter ‘the loop’ and regain 

control of the vehicle.  The ability to re-enter ‘the loop’ and respond safely and 

appropriately could potentially be poorer in older drivers because of age related 

changes in cognitive and information processing.  Therefore, it is crucial to quantify 

the effects of aging and reduction of task workload afforded by vehicular 

automation on safe driving performance.  This will permit better assessment of 

whether the possible benefits of remaining engaged in some aspect of driving 

(staying in ‘the loop’) which were identified in younger experienced drivers in 

Chapter 2 might also apply to older drivers. 

 The key question this chapter will cover is: what are the specific effects of 

varied levels of task workload, used as a proxy for vehicle automation, on older 

drivers’ situation awareness measured through the detection and perception of 

driving hazards? The chapter begins with a detailed literature review covering 

research from the cognitive and human factors domains, with particular focus on 

the way in which aging affects cognitive ability and information processing and how 

this in turn might affect older drivers’ behaviour.   

Visual Perception and Aging 

 For driving, two of the most basic and crucial aspects of visual perception 

are luminance (the amount of light cast on the retina) and motion perception. 

There is a wealth of research that shows that sensitivity to luminance, and to 

variations in luminance or contrast, declines with age, and that these changes can 

impact higher-level perceptual processing such as object detection (Seichepine et 

al., 2012).  Crucially, older drivers’ ability to perceive spatial changes in luminance 

or contrast seems likely to hinder their hazard perception ability, particularly under 

conditions of poor illuminance. 
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 Motion perception also appears to decline with age.  In a simple laboratory 

based study using moving dots, Trick and Silverman (1991) examined motion 

sensitivity in individuals between the ages of 25 to 80.  They found a steady 

increase in motion thresholds with increasing age.  In particular, the motion 

sensitivity thresholds for subjects aged 70+ were twice those of the 30-year-old 

subjects.  Consequently, the ability of older drivers to detect motion may be 

compromised and, in a driving environment, this may affect their ability to 

accurately detect potential hazardous situations.  Interestingly, it has been 

suggested by Bennett, Sekuler and Sekuler (2007), that age-related changes in 

motion perception may be due to reduced motion selectivity. They found that older 

participants (>70 yrs.) were significantly less sensitive to motion and were 

significantly less accurate at identifying the direction of movement compared to 

younger participants (23-50 yrs), and that the effect in older participants was not 

due to poorer WM or ability to use a computer.  Their proposal was that increased 

internal visual noise in the visual systems of older participants leads the system to 

respond to a broad range of motion directions.  These results suggest that changes 

in the tuning and firing rates of motion sensitive cells might partially account for the 

age-related declines in visual performance in older drivers.  In sum, the decline in 

visual perception in older drivers is in part determined by changes to their motion 

perception ability.  Given that the perception and response to motion is a 

significant part of the driving environment, the introduction of vehicle automation 

should reduce the impact of these age-related declines. However, automation is 

unlikely to negate the entire decline in motion perception in older drivers.  

 Another key aspect of changes in mid- to high-level visual processing in 

older drivers concerns optic flow – the perceived visual motion of objects as the 

observer moves relative to them.  This is essential for detecting and avoiding 

collisions with surrounding objects.  Studies have shown a small but significant 

decline in older participants’ ability to determine an object’s direction of 

locomotion (Warren, Blackwell, & Morris, 1989).  This reduction in ability is 

suggestive of a decline in the use of optic flow information in high level visual 

processing of direction.  The detection of an impending collision is an essential skill 
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for any safe driver.  If older participants are impaired at processing the direction of 

moving objects, then they are also likely to be impaired at detecting impending 

collisions.  Andersen and Enriquez (2006) presented young and older participants 

with displays simulating approaching objects that would either collide or pass by 

the participant.  The results showed that older participants had less sensitivity than 

younger observers in detecting collisions at increased speeds and shorter display 

durations.  It is important to highlight that at low speeds young and old 

participants’ ability to detect collisions on a linear path was not significantly 

different.  It was only when the speed increased that the differences emerged.  It 

has been found that at speeds of approximately 60 mph older drivers require on 

average an extra 2.5 secs of viewing the trajectory in order to have performance 

comparable to younger drivers (Andersen, Cisneros, Saidpour, & Atchley, 2000).  

This additional viewing time suggests that older drivers could have less time to 

initiate and complete a controlled response in order to avoid a potential collision.  

When they are moving, older drivers potentially find it more difficult to extract 

critical information from sources, such as the point of expansion and spatial 

location for approaching objects.  It is highly probable that the impaired detection 

of an impending collision is a factor in the higher crash risk in older drivers.   

 In more recent research,  Poulter and Wann (2013) examined why older 

drivers are more frequently involved in right of way collisions than younger drivers 

at road junctions, and their self-perceived competence of completing the junction 

manoeuvres. They used a task to measure drivers’ ability to discriminate between 

different rates of looming presented by vehicles (car or motorbike) approaching at 

different speeds.  Three age groups were used: 21–40 years; 50–70 years; 75+ 

years. The results showed a decrease in looming sensitivity to approach speed by 

between 2.8 mph for cars and 3.4 mph for motorbikes, for every decade that age 

increases.  This result may reflect a decremental change in the central and 

peripheral visual fields as a result of age-related perceptual decline in older drivers.  

Additionally, the confidence ratings for all three age groups clearly showed 

evidence of an optimistic bias, with drivers in all age groups rating themselves as 

average or above average in regard to their ability to complete the task.  Taken in 
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total the results of this study show that older drivers make more right of way errors 

than younger drivers, were unaware they were making the errors and expressed 

confidence they were completing the manoeuvres safely.  

In conclusion, it is clear from the perceptual evidence presented that there 

is no single underlying factor that influences the age-related changes in perceptual 

processing.  Instead, the changes are driven by individual factors specific to the 

types of processing needed for a particular visual task.  With all the studies 

presented the results should be interpreted with an element of caution.  First, the 

studies are all laboratory-based and the validity of the results may not be as true if 

they were conducted in real life driving scenarios.  Although laboratory-based 

studies can examine fundamental visual changes that will inevitably affect real-

world vision, the data cannot always explain the changes seen in perception 

because of the complexity of the real-world visual environment compared with 

laboratory based studies.  Second, the plasticity of the older participant’s brain has 

not been examined in these studies.  Therefore, if specific training was used it 

might improve the performance in these studies (see training section later for a 

more in-depth discussion). 

Cognitive Changes and Aging 

 There are several cognitive changes that occur in older individuals, which 

affect their visual selective attention, information processing, working memory and 

eye movements.  In this next section, I will briefly discuss these changes and their 

importance for safe driving. 

Due to our limited processing capacity, we are unable to attend to all 

information available in the complex environments we live in (indeed, the driving 

environment could be argued to be one of the more complex of the environments 

that we encounter) (Broadbent, 1952, 1957; Deutsch & Deutsch, 1963).  Using 

selective attention, our cognitive system can focus our limited cognitive resources 

on specific objects or locations of interest, and filter out any irrelevant information 

(Driver, 2001; Treisman, 1969; Treisman, 1964).  This mechanism is essential in 

allowing us to respond effectively in the face of many competing stimuli, and any 



44 
 

age-related impairments in selective attention are therefore likely to have 

significant impacts on the driving performance of older people. 

Typically, older people are slower and less accurate than younger people 

when performing visual search tasks, suggesting an age-related decline in 

attentional functioning (Madden, 2007).  However, this age-related decline in visual 

search performance appears to be influenced differently by top-down and bottom-

up attentional factors.  Specifically, top-down factors such as a person’s 

expectations of a scene are relatively well-preserved as a function of aging (Madden 

& Langley, 2003; Wolfe, Butcher, Lee, & Hyle, 2003).  Madden and Langley tested 

younger (19–27 yrs) and older (60–82 yrs) participants’ performance during a letter 

search task in which a colour singleton was either noninformative regarding target 

location (baseline condition) or highly informative (guided condition). In the guided 

condition, both age groups exhibited a substantial decrease in RT to singleton 

targets, relative to the baseline condition, as well as an increase in RT to 

nonsingleton targets, indicating a similar pattern of top-down attentional effects in 

both age groups.  However, in other studies aging has been found to impact top-

down attention to some degree.  For example, older people appear to be less 

successful than younger people at using a top-down attentional set (i.e., 

maintaining mental preparation) for avoiding attentional capture by a salient but 

task-irrelevant display item (Colcombe et al., 2003).  Findings of this type indicate 

that some forms of top-down control exhibit an age-related decline, but older 

peoples’ top-down attention exhibits some degree of preservation. In summary, 

research on age-related change in visual attention suggests that the decline seen in 

visual search performance with age is likely to be driven more by differences in 

bottom-up visual sensory processes than by differences in top-down processes, 

although aging effects are also seen in some aspects of executive processing related 

to attentional control. 

 In line with these claims, aging has also been argued to reduce perceptual 

capacity (which might be argued to reflect more of a bottom-up than a top-down 

influence). In a study that examined selective attention in older individuals, Maylor 

and Lavie (1998) asked twenty older participants (65+) to complete a two-choice 
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visual search task in which perceptual load was manipulated by varying the number 

of letters in a circular display (set sizes of one, two, four, or six letters were used).  

Participants were instructed to ignore a distractor letter presented outside the 

circular display, which was either incompatible with the target or neutral.  The 

results showed that the effect of perceptual load was greater in the older 

participants than in a younger (19-30 yrs.) comparison group.  At low perceptual 

loads (smaller set size), the response- incongruent letters were a greater distraction 

than the congruent letters for older people, but these effects were reduced by 

comparison with the younger participants.  This distractor effect also diminished 

quicker for older adults with increasing perceptual load.  This means that lower 

levels of perceptual load were needed to reduce distractor interference in the older 

group compared with younger individuals.  This is suggestive of lower perceptual 

load exhausting already reduced perceptual capacity for processing relevant targets 

in older individuals.  This in turn leads to greater improvement in attentional 

selectivity, as a function of increasing perceptual load for older, not younger, 

individuals.  In line with the claims of load theory, Madden and Langley (2003), 

suggest that when cognitive resources are limited the distraction from irrelevant 

display items generally decreases as perceptual load (display set size) increases.  

However, contrastingly, they observed that this perceptual load effect was not 

significantly different between young (18-24 yrs.) and older (60+) participants.  

They did find some evidence to suggest that there was an age-related decline in 

selective attention but that the decline was not due to reduced perceptual capacity 

in older participants but may be because of generalised cognitive slowing.   

 In sum, although there is not clear agreement from these studies on the 

question of whether aging reduces perceptual capacity.  One interpretation of 

these results could be that the reduced workload associated with vehicle 

automation may negatively affect older drivers’ selective attention because their 

distractibility has been shown to increase more than that of younger people in 

situations of reduced perceptual load.  However, the outcomes of these studies 

need to be interpreted with care, as the results of laboratory-based studies with 

simple stimuli can be hard to generalise to real world driving environments. 
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Eye Movements During Driving and Aging 

 A highly important aspect of safe driving is the allocation of attention to 

those aspects of the driving environment that are appropriate for extracting 

information.  This allocation of attention is observable through using eye 

movement data.  The two basic eye movements are saccades (the movement of the 

eye) and fixations (the duration of time when the eyes remain fairly still and new 

information is acquired from the visual environment) (Rayner, 2009).  The 

measurement of saccade amplitudes and velocities can be used to make inferences 

about cognitive processes.  In laboratory based studies it has been consistently 

shown that older individuals exhibit longer saccade latencies (e.g. Klein, Fischer, 

Hartnegg, Heiss, & Roth, 2000) and decreased smooth-pursuit eye movements, 

older individuals make more saccades (rapid, ballistic movements of the eyes that 

abruptly change the point of fixation) rather than allowing the eyes to make slower 

tracking movements programmed to keep a moving stimulus on the fovea (e.g. 

Dowiasch, Marx, Einhäuser, & Bremmer, 2015), perhaps indicating less visual 

exploration of the environment than that which is shown by younger participants. 

For example, in a laboratory-based eye tracking study, Maltz and Shinar (1999), 

examined the eye movement performance of 10 younger (20-30 yrs.) and 10 older 

(62-80 yrs.) drivers whilst they viewed traffic scenes and responded to items in the 

scenes. Their results showed that older drivers spent significantly longer than the 

younger drivers searching the scenes, made more fixations on average (mean = 87 

vs. 56 fixations) during the task and had shorter saccade amplitudes than the 

younger drivers.  However, the average fixation durations were not significantly 

different between the groups. Fixation durations are argued to indicate the breadth 

and depth of cognitive processing, with longer fixation duration indicative of 

increased cognitive processing (but this can vary as a function of the task and the 

characteristics of the environment) (Torralba, Oliva, Castelhano, & Henderson, 

2006). They also found that older drivers allocated a higher percentage of their time 

to searching smaller areas of the images, whereas younger participants searched 

the images more holistically.  Taken as a whole, the results of this study suggest 

that older drivers need longer visual search times than younger drivers to extract 
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the same information, even if they respond similarly on the task and have similar 

fixation durations.   

 However, not all research has identified significant differences between 

younger and older drivers’ eye movement behaviour. Underwood, Phelps, Wright, 

van Loon and Galpin (2005), recorded the eye movements of older (60-75 years) 

and younger (30-45 years) drivers whilst they watched hazard perception driving 

videos.  Participants were tasked with detecting other road users appearing on 

intersecting trajectories.  Their results indicated that both groups were sensitive to 

attentional capture by the appearance of the hazard. Specifically, both driving 

groups detected the hazards presented in the study with a similar speed and 

accuracy, and also had similar scan paths towards the areas of the scene were the 

hazards occurred. However, the older drivers self-reported perceiving all the videos 

to be more hazardous in general than the younger drivers.  In contrast to the 

studies already discussed, the results of this research suggest that there is no 

evidence of an age-related decline in hazard detection and visual search 

performance. 

 Another study that failed to find significant differences between younger 

and older drivers’ hazard and scene perception was carried out by Borowsky, Shinar 

and Oron-Gilad (2010). 21 young, 19 experienced and 16 older drivers watched a 

number of hazard perception videos and were requested to identify hazardous 

situations.  75% of the videos contained a driving hazard, such as pedestrians 

crossing the road and approaching busy intersections.  The remaining 25% of the 

videos contained no hazards and were used as control videos.  There was no 

significant difference between experienced and older drivers’ hazard perception 

detection rates, though older drivers had slightly slower RTs at busy junctions.  The 

eye movement data showed that experienced and older drivers allocated attention 

to areas of the visual scene that contained information essential for the safe 

negotiation of busy junctions.  In contrast, younger drivers typically fixated straight 

ahead; they neglected the valuable information that the experienced and older 

drivers fixated on in the scene.  This study suggests that driving experience can 

improve a driver’s situation awareness and guide attention towards potential 



48 
 

hazards in the environment.  Furthermore, age related factors under these 

circumstances have little effect on older drivers’ ability to detect hazards. 

 However, research suggests that laboratory-based findings may differ from 

those elicited during real-world eye tracking. For example in a real world eye 

tracking study, 34 participants aged between 25 and 85 completed two real world 

tasks (walking down a hallway and visual tracking of an object) whilst having their 

eyes tracked.  The older participants (60+) showed reduced saccade frequency and 

amplitude compared to younger participants (25-35 yrs.) similar to the findings of 

the laboratory-based studies.  However, there was no difference in smooth pursuit 

eye movements between the older and younger individuals, which contrasts with 

the laboratory based results (Dowiasch et al., 2015).  These results show that age-

related eye movement changes as measured in the laboratory only partly resemble 

those that are seen in the real world. 

There is evidence that training can improve the ability of older drivers to 

detect vital driving information.  Rogé, Ndiaye, and Vienne (2014), used a simulated 

car driving task to examine the ability of 31 older drivers (65-75 years) to detect and 

respond to vulnerable road users, such as pedestrians and riders of two-wheeled 

vehicles.  There were two groups: one group was given specific training to increase 

their useful field of vision, the other group were asked to just follow another 

vehicle.  The useful field of view or perceptual span is the area around the point of 

fixation in which information is available for processing and interpretation by the 

visual system (Rayner, Castelhano, & Yang, 2009).  It has been argued that the 

perceptual span deteriorates with age and may account for declining ability in older 

drivers to detect perceptual signals in a driving environment.  This is particularly 

observed when conditions require the division of attention between central and 

peripheral tasks (Sekuler, Bennett, & Mamelak, 2000).  The results showed that the 

trained group were able to detect pedestrians at a greater distance than the 

untrained drivers.  The perceptual span training intervention used in this study was 

partially able to counter the reduction in elderly drivers’ perceptual span, improving 

the visibility of pedestrians to older drivers.  I would draw two particularly 

important points from this study: this form of training does have a lasting effect 



49 
 

after 3 and 12 months, and secondly, regular training of this kind may delay or 

mitigate some of the cognitive decline in aging. 

 In conclusion, the results of the eye movement studies presented indicate 

that the process of aging can influence older drivers’ allocation of visual attention 

to areas of interest in a scene.  When specifically compared with younger drivers, 

older drivers make more saccades and have longer saccade latencies, and show 

decreased smooth-pursuit eye movements. In some studies, older drivers’ 

attentional capture by hazards was no different to that of younger drivers, though 

their search of a visual scene may be less holistic.  In addition, there is also evidence 

that the perceptual span of older drivers may decline, which could affect the 

processing of information in the periphery.  Training interventions, however, may 

mitigate this decline.  Overall, it seems that the effect of driving experience may 

mitigate some of the age related declines in cognition that were observed in hazard 

perception performance.  However, it is important to bear in mind that the findings 

of real-world eye tracking studies have not always mirrored those of laboratory-

based research (which makes up the bulk of the studies outlined here). 

Dual Task Performance and Aging 

 The ability to process visual information concurrently from two or more 

competing sources of information is a highly important skill, especially in the 

context of driving, and changes due to aging are likely to have an impact on task 

performance (Ross, Dodson, Edwards, Ackerman, & Ball, 2012).  For example, being 

able to process information about a vehicle’s locomotion relative to yours, at the 

same time as monitoring the driving environment for other hazards involves the 

performance of two simultaneous tasks.  Traditional dual task paradigms with 

young to middle-aged individuals typically show that reducing the number of 

concurrent tasks to be carried out tends to improve performance on the remaining 

tasks (Pashler, Johnston, & Ruthruff, 2001; Pashler, 1994; Watanabe & Funahashi, 

2014).  However, as highlighted in Chapter 2, I found the opposite pattern of results 

in a sample of the young experienced adult driving population.  It is therefore 

difficult to predict how older drivers will perform on the same task. However, 

changes in cognition due to aging are likely to affect dual task performance more 
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broadly (and therefore also related aspects of driving) as reviewed in the following 

paragraphs. 

 In a laboratory study by Glass et al. (2000), the effect of dual task 

performance in older individuals (60-70 yr.) was compared with younger individuals 

(18-26 yr.) using the psychological refractory period (PRP) paradigm.  In a typical 

PRP study, two tasks are completed with longer or shorter stimulus onset 

asynchronies (SOAs) between the tasks.  Typically, the shorter the SOA between 

tasks one and two, the longer the RT time in task two.  The longer RT in the second 

task indicates that while the first stimulus is being processed, any other stimuli 

cannot be processed; the processing of the second stimulus is delayed, which slows 

down RT.  Glass et al. found that participants' ability to coordinate the processing of 

two tasks did not decline with age.  Longer RTs were found for all ages on the 

secondary task but this was not significantly different between the young and old 

individuals.  Similar findings were presented by Hartley and Little (1999) who found 

no significant differences in dual task performance between young (M = 20 yrs.) 

and older (M = 73 yrs.) individuals.  Specifically, they found that dual task inference 

increased with short SOAs, but did not vary between the age groups.   

However, other research has observed larger dual task costs in older (vs. 

younger) participants. For example, in a study by Maquestiaux, Laguë-Beauvais, 

Ruthruff, Hartley, and Bherer (2010), 12 older individuals (65+) and 20 young 

individuals (18-25 yr.) were asked to learn to perform an auditory-vocal task, 

discriminate between the pitch of a tone presented for 150 ms (low vs. high pitch) 

and then at testing an additional concurrent unpractised visual task.  The results 

showed that, compared to the younger individuals, older individuals were 

significantly poorer at performing two concurrent tasks rather than one single task.  

This was indicated by longer RTs and poorer accuracy to the low vs. high pitch task.  

In another study, Maquestiaux, Didierjean, Ruthruff, Chauvel and Hartley (2013) 

examined the effects of training older individuals to complete a simple novel dual 

task.  Ten older (65+) individuals were asked to complete a dual task using the PRP 

paradigm over 12 separate sessions.  The results showed that on the secondary task 

older individuals’ RTs were not significantly different to younger individuals (results 
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from a separate study) (Maquestiaux, Hartley, & Bertsch, 2004).  However, on the 

highly practiced primary task, RTs slowed on average on the secondary task 

compared to the first task by 485 ms for older individuals and only by 210 ms for 

younger individuals, indicating larger dual task interference in older (vs. younger) 

individuals.  Potentially, the ability to automatise a task after practice is what could 

be driving changes in dual task performance in older individuals, rather than 

generalised cognitive slowing. 

 In conclusion, the results of dual task performance studies in older 

individuals are rather mixed despite well-controlled methods.  It seems that under 

some conditions there is dual task interference to a greater degree for older drivers 

(vs. younger) and in other studies there are no age related differences.  However, 

the effect of training on dual task performance is negligible, which would suggest 

that dual task deficits are likely to persist in older drivers, despite the additional 

experience that they are likely to have acquired.   

Hazard Perception and Aging 

 Studies into hazard perception and aging have shown that age-related 

changes in perceptual and cognitive ability can increase RTs to detect a driving 

hazard and reduce hazard detection accuracy.  There is evidence to suggest that 

drivers aged 65+ have poorer detection response rates and longer RTs than younger 

or middle aged drivers to hazardous situations on the roadway (Horswill et al., 

2008; Horswill, Falconer, Pachana, Wetton, & Hill, 2015).  This poor performance is 

often correlated with an increased risk of vehicular accidents (Wells, Tong, Sexton, 

Grayson, & Jones, 2008). 

 In general, drivers’ abilities to detect driving hazards, and their RTs to these 

hazards, improve from the initial stages of driving up until 55 years of age.  After 55, 

drivers’ RTs to hazards begin to slow down (Quimby & Watts, 1981).  The slowing of 

RTs after age 55 has been suggested to be driven by a number of different factors.  

Horswill et al. (2010) suggest that the increases in hazard perception RTs are driven 

by a combination of cognitive, sensory, and motor-response changes.  These 

changes include a reduction in available cognitive resources, such as working 
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memory deficits, which reduce the implementation of resource intensive hazard 

response strategies.  In addition, impairments to the primary sense organs, such as 

vision and hearing, would affect the ability to rapidly identify hazards.  A limitation 

to these studies is that the presence of neurodegenerative diseases in individuals 

was not controlled for at all.  Rather than representing normal age-related changes 

in all older adults, the results could be influenced by the impact of these types of 

diseases. 

 In a video-based hazard perception study, Horswill et al. (2008), tested 118 

drivers aged 65+ on their hazard perception abilities. A number of tests of cognitive 

ability, vision, and simple RTs were carried out as well.  Their hypothesis was that 

factors other than cognitive ability could account for the increase in RT to detect 

driving hazards.  The results suggest that hazard perception RTs do significantly 

increase with age.  Specifically, it can be surmised that a decrease in contrast 

sensitivity, a narrower perceptual span and slowing in simple RTs can account for 

the variance in hazard perception, independent of individual differences in age.  

However, it is unclear from this conclusion which of the three changes accounts for 

the largest proportion of the variance in RT in this study.  A clearer way to address 

the question of older driver’s hazard perception ability would be to in a series of 

studies control contrast sensitivity using appropriate visual filters, to have a control 

group of regular adult drivers to compare the results to, and to use a variable size 

visual mask to understand the changes to their perceptual span. 

 Change detection is a central part of hazard detection.  Change blindness is 

a cognitive phenomenon where people are surprisingly poor at spotting major 

changes between two images, when the original and altered image are quickly 

alternated (Simons & Rensink, 2005).  Although hazard detection and change 

blindness are similar in that they are both perceptual errors by the visual system 

e.g. failing to look and looking but failing to see, the former can be explained in 

regard to poor visual scene scanning, for example failing to check the blind spot. 

The latter is harder to understand – how can a driver actively search a visual scene, 

yet not process visible and vital changes in the visual information?  The use of 

Simons-type methodologies may help elucidate this latter question.  In a simple 
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laboratory based study using a change blindness paradigm, Caird, Edwards, Creaser 

and Horrey (2005), presented young (18-25 years), middle-aged (26-64 years), old 

(65-73 years), and older (74+ years) drivers with 36 pictures of junctions with one 

object manipulated in the scene.  The object in the picture could be a pedestrian, 

vehicle, sign, or traffic control system and, using a flicker paradigm, the scene 

would change every 5 or 8 seconds.  Participants were asked to make a decision 

about whether or not it would be safe to proceed through a junction, turn left, or 

turn right.  The results showed that young and middle-aged drivers made 

significantly more correct decisions than did old and older drivers.  In particular, 

both groups of older drivers were less likely to detect a hazard, and were 

particularly less likely to detect the presence of pedestrians.  Overall, it seems that 

older drivers are more susceptible to missing changes in a busy driving environment 

and, in this example, missing at risk potential targets such as pedestrians.  It could 

be argued that partial vehicle automation (e.g. level 3) could improve older drivers’ 

hazard perception by allowing them to attend more to the driving environment and 

requiring less switching of focus between the roadway ahead and behind, as well as 

the internal monitoring of systems.  Reducing the number of tasks older drivers 

complete during autonomous driving (vs. non-autonomous driving) should free up 

attentional resources, which are already reduced in old age, thus allowing them to 

use this resource capacity to better carry out hazard monitoring and readying for 

resumption of control. 

Road signs and signals are important tools to convey critical information to 

drivers for safe driving and efficient navigation.  Both the physical and cognitive 

changes associated with aging will affect the acquisition and processing of the 

information present on these road signs.  For 85 American road signs, Dewar, Kline, 

Scheiber and Swanson (1997) measured the legibility distance under night and 

night-with-glare conditions, as well as RT to correctly identify the sign and 

conspicuity (how easy it is to see the sign).  They observed that increasing driver 

age was associated with lower comprehension levels and legibility distances for the 

road signs, under all test conditions, compared to younger drivers.  In addition, 

compared to younger drivers, older drivers had longer RTs in order to make the 
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appropriate response to a sign.  Their search times were also greater when the 

conspicuity of the sign was reduced, compared to the younger drivers.  

 In conclusion, ageing affects one of the key aspects of situation awareness, 

hazard perception, but it is not clear-cut as to which factors (sensory, cognitive, 

perceptual or motor) have the biggest effect.  In general, older drivers have fast RTs 

to hazards up until around the age of 55.  After this, point RTs and accuracy in 

hazard detection drop off.  Whilst it is not entirely clear, these longer RTs and poor 

accuracy may in part be due changes in cognitive process and changes in vision.  

Compared to younger drivers, older drivers seem to miss certain types of hazards 

more than others (e.g. pedestrians).  However, the effect of experience in 

responding to and perceiving hazards may partially mitigate some of the negative 

effects of aging.   

Perceptual and Visual Training  

 The most effective way to reduce the crash risk among older drivers is to 

encourage individuals to limit their driving exposure or even cease driving 

altogether.  However, this should be seen as a strategy of last resort, as the 

negative impact of reducing or stopping driving has been demonstrated to increase 

isolation, loneliness and increase the risk of depression in older drivers (Marottoli et 

al., 1997).  A more nuanced approach is to encourage older drivers to find 

alternative strategies or partake in additional training to counteract their driving 

deficiencies.  However, it is a point of contention as to whether a training 

intervention for older drivers is likely to be effective.  Older drivers are likely to 

have many years of driving experience across a large variety of roadways and traffic 

scenarios.  Consequently, it could be argued that any specific hazard perception 

intervention is unlikely to alter significantly their driving behaviour and driving 

habits built up over time.  A combination of hazard perception, visual search and 

driving behaviour interventions may have more of an effect on older drivers’ 

behaviour than hazard perception training on its own. 

 There is some evidence to suggest that driving training interventions can 

improve hazard perception and reduce RT, even in highly experienced drivers.  
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McKenna and Crick (1994) found that experienced police drivers who had received 

hazard perception training (e.g. in understanding how hazards develop, where 

hazards commonly appear and how to respond to hazards) were significantly faster 

at responding to hazards than drivers with equivalently high levels of experience, 

but no specific training.  Importantly, they found that when experienced drivers 

were given hazard training they could improve their RTs in video simulations.  This 

means that, even after years of driving experience and hundreds of thousands of 

miles driven, drivers can benefit from training interventions.  

 There are a number of studies on hazard perception training interventions in 

older drivers showing that the training can improve hazard perception ability.  

These findings highlight the importance of careful counterbalancing of video and 

trial order in research in this area (including the present study), in order to ensure 

that these types of training-related improvements do not confound the central 

experimental manipulations.  Horswill et al. (2010) used a video-based hazard 

perception training intervention on 28 older drivers (65-94 yrs.).  These 28 drivers 

were split into two groups: one group received hazard perception training; the 

other group did not and acted as the control group.  Hazard perception RTs were 

obtained for both groups before and after the training intervention was 

implemented.  The results show that the group that received training had 

significantly shorter RTs than the untrained group, with RTs in the order of 500-

1000 ms quicker from both groups’ pre-training baseline RT.  There was no 

significant interaction between the group and their pre-training baseline RTs.  This 

500-1000 ms speeding up of RTs due to the intervention could make a significant 

difference in the likelihood of experiencing a crash, by providing 8-9 metres more 

road to make a response if travelling at 35-40 mph.  However, it should be noted 

that these results may not translate to real world driving scenarios and that the 

effects of the training may not have any long lasting effects on hazard perception 

ability. 

 Nevertheless, the question of whether a lasting effect can be achieved was 

addressed in a recent study by Horswill et al. (2015). 75 drivers aged 65 and over 

received either a 35 minute video-based hazard perception training intervention or 
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no intervention at all.  The results showed that this brief training period led to 

improvements in hazard detection accuracy and RT, and that these benefits 

persisted for approximately 1 month and 3 months after the intervention, without a 

significant decay in the training effect over this period. 

 In recent years, heads-up displays (HUDs) are increasingly used to display 

useful driving data within the car. With this in mind, studies have been conducted 

to assess the effectiveness of augmented reality (AR) technology to mitigate 

accident risk by directing older drivers’ attention to potential hazards in the driving 

environment.  One such study by Schall et al. (2012), investigated whether AR 

cueing improved or interfered with hazard perception in older drivers.  Using a 

sample of 20 older drivers (65+) they used a number of AR cues to direct attention 

to potential roadside hazards (e.g. pedestrians) in a driving simulator.  The results 

showed that older drivers’ detection of low visibility driving hazards was improved 

compared to a baseline measure.  AR cueing did not interfere with the detection of 

non-hazardous objects in the driving environment and, importantly, did not impair 

the ability to maintain a safe headway to the vehicles in front in older drivers.  

However, a younger experienced driving comparison group was not utilised in this 

study, therefore it is hard to determine whether the pattern of results observed 

relates specifically to older drivers or could in fact apply to drivers of all ages. 

 Eye scanning training is designed to teach drivers to scan the environment 

more effectively and efficiently, in part by observing the eye movements of very 

experienced people, and is similar to perceptual span training which aims to widen 

the focal point of visual attention.  Pollatsek, Romoser and Fisher (2012) observed 

that for crashes at road junctions older drivers are at greater risk of accident and 

this may, in part, be due to insufficient scanning of the driving environment, rather 

than deteriorating physical or cognitive capabilities.  They observed that older 

drivers seem to develop a search strategy that focuses attention towards regions 

immediately ahead of their vehicle at the cost of scanning peripheral junction 

locations likely to contain potential hazards.  Two groups of older drivers (65+) were 

allocated to either an active eye scanning training intervention or a passive 

intervention.  The eye scanning training group saw a video replay of their behaviour 
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at junctions and most of the older drivers recognised their failures without 

prompting.  They were also evaluated in a driving simulator, shown feedback of 

their behaviour at the virtual junctions, and then allowed to practice appropriate 

scanning behaviours on the simulator.  In the passive group the participants were 

given 30 to 40 minutes of instruction, which included coaching about where to look 

at junctions and why less careful scanning of areas from which potential hazards 

might emerge was an important cause of many crashes for older drivers.  The 

results showed that both groups’ eye scanning improved but importantly the active 

intervention group’s performance increased dramatically, to a level that was 

indistinguishable from the performance of younger experienced drivers (from a 

previous study).  The effectiveness of the eye scanning training was shown to have 

endured at both 3 and 12 months.  However, what is not known is if these training 

interventions actually reduced the older driver’s crash risk in practice. 

 Further research has also bolstered the claims of training interventions to 

improve visual search performance.  Lavallière, Simoneau, Tremblay, Laurendeau 

and Teasdale (2012), evaluated the effectiveness of video-based feedback training 

in 22 older drivers.  Ten older drivers (65+) received training on a number of driving 

performance measures (e.g. hazard perception, headway distance) and driver-

specific feedback on their search behaviour (e.g. how they were performing).  The 

control group of 12 older drivers (65+) received similar training but received no 

feedback.  The results showed that after training the control group showed no 

increase in the frequency of the visual inspection of three regions of interests (rear 

view and left side mirrors, and blind spot).  However, importantly, the feedback 

group significantly increased the frequency of visual inspection of the three interest 

regions compared to the control group.  In sum, the results of these studies suggest 

that eye scanning training with specific driver feedback helped older drivers to 

improve their visual inspection strategies.  Furthermore, the beneficial effects of 

this training can endure for up to a year. 

 In conclusion, the effectiveness of training programmes to improve older 

drivers’ performance on important driving tasks seems to be generally positive.  

Numerous types of training with elderly drivers have been shown to reduce their 



58 
 

RTs to hazards and improve their hazard detection, and crucially, the effects have 

been shown to endure.  The results of studies like these show that driving training 

can be effective for older drivers but it remains to be seen if training interventions 

can actually reduce the risk of road collisions. 

Overall Conclusions 

 The key point to take from the research into older individuals and their 

driving behaviour is that there are numerous factors that can influence an older 

driver’s competence to drive safely but there is no one predominant single factor.  

The perceptual processing changes due to aging are varied and well-established in 

the literature.  Cognitive accounts of changes in older individuals would suggest 

that at very low loads older individuals are more distractible, but with small 

increases in load their capacity is exhausted, leaving them less susceptible than 

younger individuals to distraction at intermediate and higher levels of load.  In 

addition, older people are more likely to miss changes in the environment from 

moment to moment.  From an eye movement perspective, the findings are not 

entirely clear-cut, with some weak evidence suggesting that age can influence the 

patterns and types of eye movements made.  Some evidence does suggest that 

older individuals do have changes to their spatial attention as the product of age, 

but this is not always the case.  There is also a mixed pattern of evidence from dual 

task paradigms investigating information processing in the elderly.  However, there 

does seem to be some effect of dual task workload on the ability of older 

individuals to complete laboratory-based studies with similar RTs in the primary 

task, as younger individuals.  Older individuals’ hazard perception abilities (longer 

RTs, poorer accuracy) seem to be compromised compared to experienced younger 

drivers, but this drop off may only start to occur after the age 55.  Finally, training 

interventions to improve older drivers’ hazard perception, perceptual span and 

visual search performance do on the whole seem to improve their performance on 

key measures (e.g. visual search strategies, hazard perception RTs). 

 In the present study, a group of older drivers completed the same task as 

had been used with younger experienced drivers in Chapter 2. Given the mixed 

pattern of findings concerning whether older drivers are more susceptible to dual 
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task effects, along with the fact that the younger experienced drivers in Chapter 2 

exhibited an unexpected improvement in performance under dual (vs. single) task 

conditions, it is hard make clear predictions. Nevertheless, based on the 

assumption that cognitive capacity does on the whole decline with age, I predicted 

that the older driving cohort would show an increase in hazard detection RTs as the 

dual task workload increased.   

Method 

Participants 

 Thirty older drivers were recruited for the study through TRL (mean age = 

75.2, SD = 4.3, 20 males).  The sample size was derived from prior research, 

constituting a typical size for studies in this area (e.g. Galpin, Underwood, & 

Crundall, 2009).  26 participants were right-handed.  All had a full UK driving licence 

and a mean driving experience of 53 years (SD = 6.5).  The average miles driven per 

year was 6542 (SD = 3150).  Participants were naïve to the purpose of the 

experiment, and all had previously taken part in driving experiments at TRL.  None 

of the older drivers had taken the hazard perception test as part of their driving 

theory test.  All participants had normal or corrected-to-normal visual acuity, gave 

informed consent before participating, and were compensated with £20 for 

participation in the study.  All procedures were reviewed and approved by the 

Departmental Ethics Committee. 

Stimuli and Design 

The apparatus, stimuli, design and procedure were all exactly as described in 

Chapter 2. 

Results 

 As in Chapter 2, in all subsequent F-tests, the Greenhouse-Geisser 

correction was applied if Mauchly’s test of Sphericity was significant, and the 

Benjamini-Hochberg false discovery rate procedure was used for all post-hoc tests, 

with the false discovery rate set at 0.1 for all multiple comparisons (Benjamini & 

Hochberg, 1995). 
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Data Preparation 

 Workload measures. 

 As in Chapter 2, number probe responses were calculated from the first four 

responses per trial for each participant. All responses with empty cells were 

removed (4.5%).  Empty cells occurred when a trial was prematurely ended before 

the forth response.  Finally, all incorrect responses were removed (8.2%) for the RT 

analyses.  The final dataset consisted of 4188 correct number probe responses (low 

load = 2077; high load = 2111), and overall 12.7% of the data were removed for the 

RT analyses. 

 Hazard detection measures. 

 As in Chapter 2, in order to ensure that the hazards were clearly detectable 

across all the videos, data from videos with overall hazard response accuracies of 

less than 70% were removed from the analysis (23 videos, 33.1% of the data).  Note 

that this procedure was carried out separately for this data set (rather than basing 

these video eliminations on the data from Chapter 2) in order to ensure that all 

hazard videos used contained hazards that were clearly detectable for all 

participants tested. Interestingly, slightly more videos needed removal for this older 

population than had been the case for the younger experienced drivers in Chapter 2 

(where only 17 videos were removed). Following the removal of the low accuracy 

videos, response accuracy across all load conditions was high (M = 81%, SD =.40).  

All inaccurate responses were removed for the RT analyses (18.6%).  Once again, as 

in Chapter 2, in order to identify the earliest point at which a hazard could be 

detected, the fastest correct response was identified for each video and this time 

point was made the baseline against which all other hazard responses were 

measured (in seven videos the fastest response came from the participants; in the 

remaining videos, the fastest response came from an evaluator or previous 

experiment benchmark).  The final dataset consisted of 980 correct hazard 

responses, and overall 45.6% of the data were removed for the RT analysis. 
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Data Analysis 

Workload Measures. 

 In order to examine the effectiveness of the load manipulation, a repeated 

measures ANOVA was conducted on the number probe RTs, using the within-

subjects factor of load condition (low vs. high).  There was a significant effect, F(1, 

29) = 387.23, p <.001,  =.93, indicating that RTs under low load (M 700 ms, 95% 

CI = 648 – 751) were significantly faster than under high load (M = 1076 ms, 95% CI 

= 1034 – 1118), which confirms that the load manipulation was successful.  This 

conclusion is supported by the accuracy analysis, which revealed significantly better 

performance under low load (M = 86.7%, 95% CI = 82.5 – 90.9) than under high load 

(M = 82.1%, 95% CI = 76.4 – 87.8), F(1, 29) = 5.72, p =.023,  =.17.   

 The RSME measure of workload was also tested using a repeated measures 

ANOVA with the within-subjects factor of load condition (no load, low load and high 

load).  There was a significant effect of load condition, F(1.2, 36.1) = 15.22, p <.001, 

 =.34 and post-hoc tests confirmed that each condition was different from the 

others (all p<.001; see Figure 3.1).  These results indicate that the workload 

manipulation also worked as predicted from a subjective point of view. 
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Figure 3.1. Mean RSME scores ( 95% CI) as a function of load condition. 

Hazard Detection Measures. 

 Two repeated measures ANOVAs were conducted on hazard detection RTs 

and accuracy using the within-subjects factor of load condition (no load, low load 

and high load).  There was a significant effect of load condition on the RTs, F(1.62, 

46.56) = 3.48, p =.049,  =.11.  Post-hoc tests identified a significant difference 

between no load and high load (p =.001), but no significant difference between no 

load and low load (p =.25) or between low load and high load (p =.23; see Figure 

3.2).  There was also a significant effect of load condition in the accuracy data, F(2, 

58) = 3.93, p =.025,  =.12.  Post-hoc tests identified a significant difference 

between low load (M = 77.6%, 95% CI = 69.7 – 85.5) and high load (M = 85.7%, 95% 

CI = 79.9 – 91.4, p =.017). Note that this effect is in the opposite direction to that 

seen in the RTs, with worse performance under low (vs. high) load. There was no 

significant difference between the no load (M = 82.2%, 95% CI = 76.2 – 88.1) and 

low load conditions (p =.11), or between no load and high load (p =.19). 
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Figure 3.2. Mean correct response times ( 95% CI) in milliseconds as a function of 

load condition.  

 Because the accuracy data revealed a pattern that was opposite to that of 

the RT data, participants’ hazard detection RTs and accuracy data were converted 

to inverse efficiency (IE) scores in order to account for any potential speed–

accuracy trade-offs that might have been present.  An IE score is calculated by 

dividing each participant’s mean RT for each condition by the proportion of correct 

responses for that condition, so lower IE scores indicate better task performance.  A 

repeated measures ANOVA was conducted on IE scores using the within-subjects 

factor of load condition (no load, low load and high load).  The analysis revealed no 

significant main effect of load condition. Participants’ hazard detection 

performance was not significantly different between the no load (M = 4842, 95% CI 

= 3557 - 6127), low load (M = 8557, 95% CI = 1640 - 15474) and high load conditions 

(M = 6347, 95% CI = 4200 - 8495), F(1.1, 30.9) = .96, p =.34,  =.03. 

Discussion 

The results of the present study demonstrate that older drivers’ RTs for 

detecting driving hazards in realistic video stimuli were on average 1100ms longer 

when they also completed a high load number probe task than when they 
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completed the hazard detection task alone.  This finding is in line with previous 

research on dual task interference, which typically finds significant costs in dual (vs. 

single) task conditions (Ettwig & Bronkhorst, 2015; Watanabe & Funahashi, 2014).  

Interestingly, however, hazard response accuracy was significantly higher, by 8%, in 

the high load condition (vs. low load), and not significantly different between the 

no- and high load or no- and low load conditions, as might be predicted from a dual 

task interference account.  This raises the potential of a possible trade-off between 

the accuracy and RTs in the hazard detection task for older drivers.  The results of 

the IE analysis (in which no differences were found between conditions) indicate 

that there might indeed have been a speed accuracy trade-off.  The longer overall 

RTs as task difficulty increased were accompanied by an increase in accuracy. This 

could be suggestive of a strategy change by older drivers, such that they sacrifice 

speed as task load increases, in order to achieve good accuracy. Chapter 5 will 

return to this question, through the use of direct statistical comparisons between 

the results of Chapters 2 and 3, as well as a more detailed analysis of the accuracy 

data. 

In the meantime, what can be drawn from the results of this study is that 

older drivers’ hazard perception follows a pattern that shows that as task workload 

increases their hazard detection RT performance slows but their hazard detection 

accuracy increases. This could have implications for older drivers when operating an 

autonomous car.  Specifically, the reduction in task demand as a result of increasing 

levels of automation could benefit older people’s driving performance by allowing 

the driver to detect and respond to driving hazards quicker, however these 

improvements in response speed may be accompanied by reductions in the 

accuracy of hazard identification. 
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Chapter 4 – The Effects of Workload on Hazard Perception in Novice Drivers 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



66 
 

Introduction 

Having examined the impact of a dual task load on hazard perception in 

younger experienced drivers (Chapter 2) as well as older drivers (Chapter 3), the 

present chapter investigates performance on the same task by young novice 

drivers. It is particularly important to consider performance in this group because in 

the UK young novice drivers (17-21 years old) make up only 1.5% of all licence 

holders (DVLA, 2015) yet they are involved in 9% of all fatal or serious road 

accidents (Department for Transport, 2015).  On average a driver aged 16-19 years 

old is three times more likely to crash than a young experienced driver (40-49 yrs. 

old) (Department for Transport, 2015), with almost a quarter (23%) of 18-24 year 

olds involved in a crash within the two year probationary period after passing their 

driving test (Butcher, 2016).  A key contributing factor in 55 fatal accidents in 2015 

and 4,483 personal injury accidents was cited as learner or inexperienced 

driver/rider (Butcher, 2016; Department for Transport, 2015).  In the US the leading 

cause of death in teenagers is vehicular accidents (Centers for Disease Control and 

Prevention, 2017).  Specifically, figures from 2014 in the US show that 2,333 drivers 

aged 16-19 years old were killed and more than 221,313 were treated in hospital 

for motor vehicles crashes (Centers for Disease Control and Prevention, 2015).  

In this section, I will discuss evidence to suggest that young novice drivers 

differ from younger experienced drivers in patterns of visual attention, ability to 

manage task workload, executive function, and hazard perception. These 

differences may explain the young novice drivers’ higher crash rates and higher 

driving risk.  They also inform the predictions concerning the outcome of the 

present study, as I will discuss at the end of the introduction section. 

Young Novice Drivers’ Visual Attention 

 As explained in previous chapters, attending to task relevant information in 

a timely manner is an important component of safe driving (Sivak, 1996).  However, 

it seems that for young novice drivers there can often be deficiencies in the 

patterns of visual attention and information processing that increases their driving 

risk.  In a literature review, Underwood (2007) found that novice drivers show 
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different visual search behaviour to experienced drivers.  Underwood found that 

when drivers scan the road around them, differences are observed as function of 

driving experience and training, with experienced drivers increasing their visual 

scanning on roadways of increasing complexity.  However, young novice drivers do 

not show this sensitivity to road complexity, suggesting that they fail to attend to 

potential dangers involving the behaviour of other road users.  Underwood 

suggests that that the driver’s understanding of the task develops with experience, 

such that roadways that demand increased monitoring (e.g. interweaving traffic on 

a multi- lane roadway) receive more extensive scanning than simpler roads (e.g. 

light traffic on a straight rural road). 

 The most predominant visual strategy used by both novice and experienced 

drivers is to fixate straight ahead at the position in the roadway where their 

vehicles will be in the next few seconds.  This focus of expansion (FOE) is generally 

equal to the direction of the vehicle, particularly on straight roads, and this is the 

fixation location preferred by experienced and novice drivers (Mourant & Rockwell, 

1972; Underwood, 2007; Underwood, Chapman, Brocklehurst, Underwood, & 

Crundall, 2003).  Outside of this central fixation point, most other fixations are 

observed to fall on the horizontal axis to the left and the right of the FOE, as this is 

the area where task relevant information will appear (e.g. road signs, pedestrians, 

parked cars and other potential hazards).  Thus during driving almost all fixations 

fall in an observed elliptical window with very few fixations falling in the vertical 

axis in an experienced driver (Chapman & Underwood, 1998; Crundall, Underwood, 

& Chapman, 1999).  However, young novice drivers show a more varied distribution 

of fixations particularly in the vertical axis (Crundall & Underwood, 1998; Mourant 

& Rockwell, 1972), which indicates that scanning of the horizontal visual axis is a 

skill developed through experience, particularly of where to expect hazards or task 

relevant information. 

Using a driving simulator and eye tracking methodology to examine the 

navigation techniques and eye movement behaviour changes due to age, Scott, 

Hall, Litchfield, and Westwood (2013) compared the fixation patterns, including the 

number of fixations, gaze frequency (the frequency of making return fixations to 
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areas of interest) and gaze duration, of three driver groups (young novice, young 

experienced and older experienced) during simulated driving through a series of 

complex junction manoeuvres. The study was motivated by the finding from 

accident statistics that older drivers and young novice drivers have problems 

negotiating certain road junctions. The fixation patterns of the three driver groups 

were compared during gap selection at a right turn junction (left turn in countries 

driving on the right), which is where higher levels of crashes are typically seen, 

particularly in older and novice drivers (McGwin, Jr & Brown, 1999). 14 novice 

drivers (mean age 20), 14 younger experienced drivers (mean age 23) and 14 older 

experienced drivers (mean age 66) took part in the study.  Drivers were instructed 

to make a right turn manoeuvre in their own time, then stop at a predefined point 

on a straight section of road.  The results showed that when scanning the junction, 

younger experienced drivers distributed their gaze more evenly across all areas, 

whereas older and novice drivers made more sweeping transitions (fixating in a less 

uniform and more chaotic manner).  Additionally, during the scanning or 

preparation to move phase all drivers adopted a preview strategy in which they 

predominately searched between the middle and far areas to the left and the right 

of the junction.  However, both younger driver groups (young novice, young 

experienced) also showed gaze transitions from middle right to near right and near 

left to middle left, whereas older drivers did not adopt this strategy.  It is possible 

that this strategy difference between young and old drivers is driven by a decrease 

in cognitive capacity due to aging.  In the decision phase (i.e. deciding to make the 

manoeuvre) the use of a preview strategy was less evident in the older experienced 

group compared to the younger groups. It is possible that response preparation 

requirements of the decision phase impact on older drivers’ ability to maintain a 

preview strategy to complete the manoeuvre. 

The results of this study indicate that young novice drivers share some 

commonalities in visual sampling behaviour with younger experienced drivers.  

However, they are still over represented in the crash and driver fatality statistics.  

This in part is likely to be due to factors beyond visual scanning behaviour such as 

poor hazard perception, low executive function or cognitive underload (i.e. 
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situations that involve very low task demands, which can negatively impact the 

performance of the person carrying out the task by increasing RTs and decreasing 

accuracy to the task).  A note of caution should be taken with these results as they 

indicate visual scanning behaviour during a very specific scenario and the pattern of 

results may not extrapolate out into more general driving behaviour. 

 In a seminal study on the effect of driving experience on visual attention and 

search, Mourant and Rockwell (1972) showed some key differences in the visual 

search and information acquisition strategies of novice and experienced drivers.  

They tested six novice drivers (all male, aged 16-17) and four experienced drivers 

(all male aged 21-43, with an average mileage of 8000/year).  Participants drove a 

suburban and motorway route while their driving behaviour (vehicle velocity, 

acceleration, brake and accelerator usage) and eye movements (fixation points, 

pursuit eye movements and blinks) were recorded.  Novice drivers were found to 

fixate in a smaller central area in the visual scene than experienced drivers, looking 

close to the front of the vehicle and sampling their mirrors less frequently. These 

patterns are suggestive of a less well-developed process of visual acquisition in the 

novice drivers. They also showed a right side horizontal axis bias compared with the 

experienced drivers.  This is indicative of searching for the edge of the road, which 

is then used to guide lane positioning.  This suggests that the novice drivers were 

not automatized in their driving behaviour and were potentially using more 

cognitive resources to maintain a safe lane position than the experienced drivers 

(for whom the lane alignment is likely to have been a more automatic cognitive 

process).  Additionally, the novice drivers made more pursuit eye movements (i.e. 

fixated on tracking elements of the visual scene) than the experienced drivers. This 

appears to be indicative of a strategy that fixates the eyes closer to the front of the 

vehicle and its relative lane position, with the eyes following the road markings as 

the vehicle moves. By contrast, the experienced drivers exhibited fewer pursuit eye 

movements as their driving style is likely better developed, such that they can 

sample areas of the scene on the horizontal axis that contain task relevant 

information, allowing them safely to navigate different roadway environments.  
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 In sum, the results of Mourant and Rockwell's (1972) study show that the 

search and fixation strategies of novice drivers might impair their ability to detect 

hazardous road situations.  However, the novice drivers whilst taking part in this 

study were all entered in to a driver training program between each route they 

drove.  It is possible therefore that the driver training element was influencing their 

driving behaviour because they were driving cognitively demanding routes whilst 

also learning the demanding task of driving a vehicle.  Therefore, it is difficult to 

untangle the effects of task workload in this study, because the driving and learning 

to drive elements are conflated together. 

However, some research has examined the effect of task load more directly 

and using larger participant numbers.  In a key paper in this field, Crundall and 

Underwood (1998) examined the visual search and information acquisition 

strategies of novice and experienced drivers under different levels of cognitive load 

imposed by different types of road. Sixteen experienced drivers (with mean 

experience of 9 years) and 16 novice drivers (with mean experience of 2 months), 

all of whom held full licences, were asked to drive a pre-specified route for 20 

minutes. During this route they drove through three distinct areas: first a rural, 

single-lane carriageway; second, a suburban road through a small village which 

contained some shops, parked cars and zebra crossings; and third, a dual 

carriageway with two lanes of forward-moving traffic and traffic merging from the 

left.  The latter two were selected for inclusion in the test route because they 

placed the driver under a higher level of visual cognitive load than the rural road. 

During the 20 minutes’ drive the participants had their eyes tracked and were 

instructed to drive in their normal style. 

Novice drivers had on average shorter fixation durations, except on the 

suburban drive, and made fewer fixations than experienced drivers.  Additionally, 

the results of the fixation position analysis showed that experienced drivers 

increased their search in the horizontal axis relative to the rural route on the dual 

carriageway, and to a lesser extent on the suburban route. The novice drivers 

tended to maintain the same level of horizontal search throughout all the road 

types, at a similar level of horizontal search produced by experienced drivers on the 
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suburban route.  Finally, experienced drivers exhibited less vertical spread of 

fixations on the dual-carriageway and the rural route compared to the novice 

drivers. 

These results taken together suggest that experienced drivers select visual 

search strategies according to the complexity of the roadway, whereas the visual 

search strategies of novice drivers change little from roadway to roadway, 

indicating that the strategies of novice drivers are inflexible to changing visual and 

cognitive demands.  Specifically, longer fixation durations are often taken to 

indicate increased processing time due to amongst other things the complexity of 

the visual scene (Rayner, 2009).  The novice drivers’ longer fixation durations on the 

more demanding dual-carriageway reflect the increased cognitive demand; whilst 

the experienced drivers’ shorter fixation durations and increased number of 

fixations show that they are using a strategy, likely developed though experience, 

to sample more of the scene in order to fixate on areas where they can get more 

task relevant information.  In addition, on the more demanding roadway the 

experienced drivers expanded their search strategy along the horizontal axis and to 

a smaller extent the vertical, whilst the novice drivers did not vary the size of their 

visual searches along either the horizontal or vertical axis across the three routes, 

even as the cognitive load of the task increased.  This can be interpreted as the 

adoption of an inflexible visual search strategy.  Finally, the increased fixation 

durations of the novice drivers could be a result of perceptual narrowing, which has 

been shown to affect visual attention (Henderson, Pollatsek, & Rayner, 1989; 

Henderson, 2003), such that because the dual carriageway is highly demanding 

then the effective peripheral field of vision may shrink. 

Overall, the implications of this study are that, in line with the earlier 

research, novice drivers show poorer visual attention and visual search strategies 

than experienced drivers.  There is an increased inflexibility to a novice driver’s 

search strategy across road type and as cognitive load increases. However, a simple 

note of caution should be exercised when interpreting the results because the 

cognitive load in this task was not clearly controlled so there could have been other 

factors that influenced the load of the task.  For example, it is not known if drivers 
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were familiar with the route, had similar weather conditions or traffic at the time of 

day when the study took place, and if they were matched across groups.  These are 

all factors that could influence how demanding the task would be to complete.  

Additionally, there is no objective or subjective measure of the actual task 

demands, as this was not recorded or reported in the study methodology. It is 

possible that the task demand was perceived to be similar by the two groups and 

that another factor not measured here influenced the results of this study. 

Indeed, interestingly, somewhat contrasting results emerged from a driving 

simulator-based study which allowed more careful control of many of these factors. 

Konstantopoulos, Chapman, and Crundall (2010) examined the visual search 

behaviour and search strategies of novice and experienced driving instructors to 

determine the specific strategies each group uses when they drive.  In this study, 

they recorded the eye movements of driving instructors and learner drivers while 

they drove three virtual routes that included day, night and rain routes.  Ten driving 

instructors (mean driving experience: 34 years) and 11 novice drivers (mean 

number of driving lesson hours: 24 hours) drove three predetermined routes in a 

driving simulator whilst having their eyes tracked.  The key eye tracking measures 

were number of fixations, mean fixation duration, standard deviations of the 

horizontal and vertical fixation locations, and area of interest (AOI) fixations (rear, 

side mirrors and speedometer).  The driving routes were geographically the same 

and the only difference between routes was visibility with the engagement of three 

conditions: day, night and rain.  Auditory directions were presented to guide 

participants along the route, as well as arrows at the bottom of the screen.  The 

results showed that driving instructors made more fixations than novice drivers on 

average (mean = 634 vs. 519 fixations), and this did not vary between the three 

road conditions.  The fixation duration of driving instructors was shorter than 

novice drivers (431 vs. 567 ms) and this did not vary between the three road 

conditions.  Next the horizontal spread of fixations was broader for the driving 

instructors than the novice drivers (10.6 o vs. 6.2o) and again there was no effect of 

road condition.  This result contrasts with the previously discussed findings (e.g. 

Crundall & Underwood, 1998) showing adaptation of experienced drivers’ scan 
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patterns according to the conditions.  This result potentially highlights one of the 

difficulties in comparing the results from simulated and real world driving studies.  

Next, the vertical spread of fixations did not vary between group or road condition.  

The AOI analysis showed that driving instructors made more fixations to the right 

mirror (11.9 vs 2.1) but not the left than novice drivers.  There was no difference in 

rear mirror fixations between the groups, except in rain and night conditions, 

where driving instructors made more fixations to the rear-view mirror than novices.  

Finally, the driving instructors made fewer fixations on the speedometer than 

novice drivers (3.3 vs 13.7).   

Taken together these results indicate a similar pattern of results to the 

studies discussed above.  Experienced drivers tend to make more fixations, have 

shorter fixation durations and exhibit a wider horizontal spread of fixations than 

novice drivers, which suggests that experienced drivers are better equipped to 

search for and process task relevant driving information than novice drivers.  

Novice drivers – likely due to their lack of driving experience and knowledge – are 

inefficient in their search patterns and take longer to process the same visual 

information as experienced drivers.   

Young Novice Drivers and Dual Task Behaviour 

In this next section I will discuss some of the influence that dual task 

workload can have on driving performance in young novice drivers.  In a simulator 

study, Cantin, Lavallière, Simoneau, and Teasdale (2009) examined if the mental 

workload of young and experienced drivers varies with the difficulty of the driving 

scenario. Ten younger drivers (mean age: 24 years) and 10 experienced drivers 

(mean age: 65 years) drove through a simulated driving environment continuously 

for 26 km, which included rural and urban scenes.  A probe reaction time (RT) 

technique was used to measure the workload while driving.  Participants were 

instructed that the primary task was driving and the secondary task was to verbally 

respond every time a sound was heard.  The secondary task RT probes were given 

in a baseline static condition and in three different driving scenarios: driving on 

straight roads at a constant speed; approaching intersections for which the driver 

had to stop the car; and overtaking a slower vehicle.  RTs in the baseline condition 
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were not significantly different between the groups (roughly 400ms for both).  Both 

groups exhibited longer RTs as the complexity of the driving scenario increased (i.e. 

RTs in the region of 600-1000ms).  Interestingly though, the experienced driver 

group exhibited longer RTs than the younger drivers for probes occurring during the 

overtaking manoeuvre (700 vs 1100ms).  This suggests that the overtaking 

manoeuvres led to a greater mental workload for experienced drivers than for 

younger drivers and that more complex driving contexts required more of the 

available cognitive resources for experienced than younger drivers.  However, the 

results of this study should be interpreted with caution as the relatively aged 

experienced drivers used in Cantin et al.’s study (mean age: 65 years) may not be 

representative of the experienced driving population and it is likely that a 

diminishing cognitive capacity in these experienced drivers could account for the 

findings.  This illustrates the importance of comparing young novice drivers with 

experienced drivers who are also relatively young, and this is one of the aims of the 

current work.  

Young Drivers’ Executive Function 

 Executive control functions (such as response inhibition, working memory, 

and mental set shifting) are key to most everyday tasks (Diamond, 2013; Monsell, 

Stephen and Driver, 2000; Verhaeghen & Cerella, 2002).  Executive control is 

therefore an important factor in the many tasks that are required for safe driving 

(e.g. navigation, speed control, lane changing, hazard perception).  Given the 

elevated crash risk posed by novice drivers, research has examined whether young 

drivers might have executive control deficits relative to older drivers, which could 

impact on their driving ability. For example, Mäntylä, Karlsson, and Marklund 

(2009) examined whether individual differences in executive function (EF) might 

have selective effects on driving performance, such that particular aspects of EF 

might contribute more to novices’ driving errors than other aspects of EF.  Fifty 

participants (mean age: 17 yrs. old) completed six EF tasks (e.g. Stroop and flanker 

tasks) whilst also driving a simulated vehicle on a computer screen. The driving task, 

lane control task (LCT, involved staying in a lane as accurately as possible and 

occasionally changing lane as indicated by the traffic signs appearing on the 
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computer screen.  The speed of the vehicle was automatically controlled and each 

trial took 10 minutes.  The LCT score was not correlated with the inhibition and set 

shifting components of EF. However, the LCT score did correlate with the updating 

component of EF (which reflects the ability to update mental representations of a 

task), such that participants with low performance in the updating component 

made greater errors in the simulated driving task.  In summary, these results show 

that young drivers with low EF, specifically in mental updating, could be at greater 

risk for driving accidents than young drivers with better mental updating abilities.  

However, because this study did not include comparison groups of older and/or 

young experienced drivers, it is unclear whether people of any age who score low 

on the updating component of EF make more driving errors, or whether this 

pattern only occurs in young novice drivers.  In addition, once again, the results of 

this study should be interpreted with caution as the driving task was not very 

similar to any of the tasks that would be required to drive a vehicle on the road or 

even in a high fidelity driving simulator. 

Young Novice Drivers’ Hazard Perception 

 It seems likely that the differences in patterns of visual attention exhibited 

by novice drivers compared to more experienced drivers described above might 

result in different levels of awareness of the driving context and its ongoing 

development. Indeed, there is substantial evidence to suggest that novice drivers 

are worse at hazard perception than more experienced drivers.  Novice drivers are 

more likely than older drivers to underestimate dangerous situations or not be able 

to recognize hazardous situations (Jonah & Dawson, 1987).  Additionally, novice 

drivers are also more likely than adults to make critical decision errors that lead to 

serious crashes (McDonald, Curry, Kandadai, Sommers, & Winston, 2014).   

 To examine what specific factors influence hazard perception in young 

novice drivers Scialfa et al. (2011, 2012) conducted two studies.  In the 2011 study, 

Scialfa and colleagues showed novice and experienced drivers a series of short 

video scenes and asked them to indicate the presence of a traffic conflict that 

would lead to a collision between the “camera” vehicle and another road user.  29 

novice drivers (less than 6 months driving experience) and 146 experienced drivers 
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(more than 2 years driving experience) viewed 95 driving scenes through several 

different environments (e.g. urban, suburban, motorway etc.) of which 64 had a 

driving hazard, and were asked to respond as soon as they detected the hazard.  

Novice (N) drivers missed more hazards (8.6%) than experienced (E) drivers (5.2%), 

and importantly had slower hazard perception RTs (3160ms) than experienced 

drivers (2760ms).  The groups did not differ in their false alarm rate (N = 3.6% v. E = 

4.5%). These effects of driving experience were independent of age and the group 

differences in hazard perception RT occurred in addition to differences in general 

speed of responding.  In summary, the results of this study support earlier research 

in demonstrating that novice drivers are slower to recognise hazards but do not 

differ in their false alarm rates. 

In their 2012 study, Scialfa and colleagues used picture images of potentially 

hazardous driving scenes to examine the effect of driving experience on hazard 

perception. 29 novice drivers (less than 6 months driving experience) and 27 

experienced drivers (more than 2 years driving experience) viewed 120 images in 

which 100 had potential traffic conflicts (defined as situations in which a collision 

(or near collision) between the driver and another road user would occur, or had 

the potential to occur, unless the driver took evasive action such as slowing, 

stopping, or steering).  Participants were asked to rate on a 5 point Likert scale 

‘How critical is the hazard to safe driving?’ where 1 represented ‘no hazard’ and 5 

represented an ‘extremely critical hazard’.  Participants were asked to make these 

ratings as quickly as possible so that the researchers could compute a hazard 

perception RT.  The results showed that novice drivers were significantly slower 

than experienced drivers in categorising an image as hazardous (2060 ms vs 1750 

ms), novice drivers missed more hazards than experienced drivers (89.9% vs. 95.8% 

correctly detected), and categorised the 100 hazardous scenes on average as less 

hazardous than experienced drivers (2.6 vs. 2.9 Likert score).  In summary, these 

results show three important factors that affect novice drivers’ hazard perception 

ability.  One, novice drivers are slower to respond to driving hazards than 

experienced drivers, likely because of a lack of experience of driving hazards.  Two, 

they are more prone to missing a driving hazard than experienced drivers, again, 
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likely because of a lack of exposure to a variety of driving hazards. Three, novice 

drivers categorise driving hazards as being less serious than experienced drivers do, 

which may place them in riskier situations than experienced drivers. 

Similar results emerged from a hazard perception study that included eye 

tracking.  Borowsky and Oron-Gilad (2013) examined the effects of driving 

experience on hazard awareness and risk perception skills in novice, experienced 

and very experienced drivers whilst they had their eyes tracked.  27 novice drivers 

(M = 1.5 months’ driving experience), 30 experienced drivers (M = 7.6 years’ 

experience) and 25 very experienced drivers (M = 23.5 years’ driving experience) 

performed three consecutive tasks.  First, they observed 10 short movies of real-

world driving situations and responded with a button press each time they 

identified a hazardous situation.  Second, they observed one of three possible sub-

sets of 8 movies (out of the 10 they had seen earlier) and were asked to categorise 

them according to the similarity of the hazardous situation (whether the hazards 

were of a similar severity).  Third, they observed the same sub-set for a third time 

and following each movie were asked to rate its level of hazardousness and the 

likelihood of there being a crash.  The results showed that very experienced drivers 

were more likely than young novice drivers to report an intersection as hazardous, 

whereas experienced drivers were somewhere in between and did not differ with 

the other two groups.  The very experienced drivers were also better at responding 

and fixating on the hazard in the more hazardous scenarios (e.g. busy junctions) 

than the novice drivers.  Finally, the results showed that novice drivers 

underestimated the likelihood of a crash and the severity of its outcome more than 

both the experienced and very experienced driver groups.  Specifically, they judged 

the severity of a crash’s outcome as less risky than the likelihood of the outcome, 

which contrasts with the experienced and very experienced drivers who prioritised 

the severity of the outcome as being of higher risk than the likelihood of a crash.  In 

summary, novice drivers exhibit a less developed understanding of crash severity 

and likelihood than experienced and very experienced drivers.  Additionally, they 

were also poorer at identifying the areas of a scene upon which they needed to 

fixate in order to gather the information needed to make a safe manoeuvre. 
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One of the key questions about young novice drivers’ hazard perception is 

how it might improve over time.  Sagberg and Bjørnskau (2006) conducted a study 

to investigate driving risk decreases in relation to improved hazard perception skills 

and gender differences.  They used a video based hazard perception test to 

measure reaction times to hazards appearing in 31 traffic scenes in three young 

novice driving groups (who had held a licence for 1, 5, and 9 months) and a group of 

drivers who had held their licences for several years.  The participants were asked 

to respond to whenever a hazard occurred.  A hazard was defined “as any motion 

by some other road user, which could possibly develop into a hazard, and for which 

the driver had to be especially prepared for taking some evasive action in terms of 

braking or steering” ( Sagberg & Bjørnskau, 2006, pg 2).  The results showed that 

the least experienced drivers (1 month) took the longest to respond to the driving 

hazards, compared with the 5 and 9 month groups.  In further analysis, it was found 

that more experienced drivers (5 and 9 month) did not differ significantly in mean 

reaction times for all driving situations.  However, female drivers had significantly 

shorter RTs to just under 50% of the individual situations (more complex driving 

scenarios), and the shorter RT difference was found in female novice drivers in 

comparison to male novice drivers.  A clear reason for the lack of difference as a 

result of experience is that the 5 and 9 month group were not significantly more 

experienced and that the differences between the groups was not large because of 

this fact.  A better contrast would be to compare between driver groups with a 

wider range of experience, as I did in this study and in the next chapter (Chapter 5).  

The results of the studies cited above indicate three issues. First, hazard perception 

RT performance may differ between novice and experienced drivers.  Second, a 

small gender difference can be observed in certain more complex driving situations. 

Third, hazard perception is potentially a minor factor in explaining the risk decrease 

among novice drivers due to experience and other factors which may play a more 

important part in young driver crash risk.  These results taken together may indicate 

only that more complex driving hazards cause poorer hazard perception in novice 

drivers and that sex differences may exist in the novice driving population, placing 

male drivers at higher risk of crashing than females.  In fact, data shows that male 
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young drivers have more crashes than female young drivers (Department for 

Transport, 2015, 2016). 

The use of hazard perception training interventions with young 

inexperienced drivers can improve hazard perception (e.g. Chapman, Underwood, 

& Roberts, 2002; Pollatsek, Narayanaan, Pradhan, & Fisher, 2006).  For example, 

McKenna, Horswill and Alexander (2006), found across 3 studies that a brief 20-

minute hazard perception skill-based training program using video-based driving 

simulations could improve hazard perception skill in inexperienced drivers and 

reduce their risk taking.  Using a video based simulator the hazard perception ability 

of young novice drivers was measured before and after a skill-based training 

intervention.  91 novice drivers (mean age = 19), with less than 3 years of driving 

experience after passing their test (M = 1.5 yrs.) were randomly assigned to one of 

two groups (trained and un-trained) and completed a number of driving behaviour 

questionnaires and video based hazard perception tests.  The trained group 

watched several video-based hazard perception training videos, with commentary 

referring to potential hazards throughout the video.  The un-trained group did not 

see these videos.  The results showed that the trained group reported being 

significantly less likely to speed or take risks (measured through questionnaire 

responses and responses to videos seen by both groups) than the un-trained group.  

Additionally, the mean self-perceived skill (0-10) for the trained group (6.52) was 

not significantly different from the mean rating of the untrained group (6.76) 

indicating that although the trained group did not perceive themselves to have 

improved their hazard perception skill, the training intervention had improved their 

abilities.  In the final part of the study, to examine if the same pattern of results 

emerge when using a more naturalistic training regime, the hazard perception 

abilities of experienced police drivers was studied.  Police driver training operates 

at three levels: basic, standard, and advanced.  The police drivers completed a 

similar task as the novice drivers had above.  The results showed a similar pattern 

as in the novice driver study, such that police drivers with advanced training 

performed better in hazard perception tests than those with basic or standard level 

training.  In summary, these results show that training interventions for both novice 
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and experienced drivers can improve hazard perception ability.  However, what is 

not clear is the longevity of the effect of these training interventions, although the 

results of the advanced police drivers hint towards a long-term effect of training 

interventions.  

Similar effects were observed in a more recent study by Isler, Starkey and 

Sheppard (2011).  36 young drivers (16-18 years) were allocated to one of three 

groups for five days of training.  One group received higher-order driving training, 

to improve perceptual, motivational, risk taking and insight skills.  The second group 

received basic driving handling training, and a third control group received no 

training.  All participants had their driving skill measured by a battery of tests, such 

as hazard perception and risk taking, before and after training.  The group that 

received higher-order training improved across all aspects measured.  In particular, 

a statistically significant improvement in relation to visual search and hazard 

perception was identified.  The group that received vehicle training only showed 

improvements in vehicle and speed control but not hazard perception, compared to 

the control group.  A note of caution should be taken, in that although the novice 

drivers in this study exhibited overall an improvement in hazard perception, the 

lack of comparison with another driving group makes it difficult to know if these 

effects are group or population specific. In sum, hazard perception training for 

young and inexperienced drivers can improve their overall hazard perception 

abilities.    

Predictions 

The evidence presented above paints a clear picture of the type of 

behaviour novice drivers exhibit whilst completing real world, simulated or lab 

based driving tasks.  Specifically, novice drivers exhibit longer RTs to detect hazards, 

miss more hazards and miscategorise the severity of driving hazard for a variety of 

factors (e.g. lack of experience of driving hazards, poor dual task performance 

compared to young experienced but not older drivers, and poor hazard perception 

strategies).  In the present study, I examined young novice drivers’ identification of 

driving hazards under different levels of cognitive load.  Based on the research 
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described above, I predict that as the cognitive load increases, RTs to driving 

hazards will increase. 

Method 

Participants 

 Thirty young novice drivers were recruited for the study through Royal 

Holloway (mean age = 19, SD = .9, 27 females).  The sample size was derived from 

prior research, constituting a typical size for studies in this area (e.g. Galpin, 

Underwood, & Crundall, 2009).  28 participants were right-handed.  All had a full UK 

driving licence and a mean driving experience in months of 6.9 (SD = 3.6).  The 

average miles driven per year was 2008.3 (SD = 2094).  Participants were naïve to 

the purpose of the experiment, and had not previously taken part in driving 

experiments at RHUL.  All participants had normal or corrected-to- normal visual 

acuity, gave informed consent before participating, and were compensated with 

£10 for participation in the study.  All procedures were reviewed and approved by 

the Departmental Ethics Committee. 

Stimuli and Design 

The apparatus, stimuli, design and procedure were all exactly as described in 

Chapter 2. 

Results 

 In all subsequent F-tests, the Greenhouse-Geisser correction was applied if 

Mauchly’s test of Sphericity was significant, and the Benjamini-Hochberg false 

discovery rate procedure was used for all post-hoc tests.  The false discovery rate 

was set at 0.1 for all multiple comparisons (Benjamini & Hochberg, 1995). 

Data Preparation 

 Workload measures. 

 As in previous chapters, number probe responses were calculated from the 

first four responses per trial for each participant.  All responses with empty cells 

were removed (3.2%), and all incorrect responses were removed (6.4%) for the RT 
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analyses.  The final dataset consisted of 4569 correct number probe responses (low 

load = 2290; high load = 2279), and overall 9.6% of the data were removed for the 

RT analyses. 

 Hazard detection measures. 

 Also as in previous chapters, in order to ensure that the hazards were clearly 

detectable across all the videos for all the participants who took part in this study, 

data from videos with overall hazard response accuracies of less than 70% were 

removed from the analysis (14 videos, 20.7% of the data).  Subsequently, response 

accuracy across all load conditions was high (M = 82%, SD =.39).  All inaccurate 

responses were removed for the RT analyses (14.6%).  In order to identify the 

earliest point at which a hazard could be detected, the fastest correct response was 

identified for each video and this time point was made the baseline against which 

all other hazard responses were measured (in 9 videos, the fastest response came 

from the participants; in the remaining videos, the fastest response came from an 

evaluator or previous experiment benchmark).  The final dataset consisted of 1164 

correct hazard responses, and overall 35.3% of the data were removed for the RT 

analysis. 

Data Analysis 

Workload measures. 

 In order to examine the effectiveness of the load manipulation, a repeated 

measures ANOVA was conducted on the number probe RTs, using the within-

subjects factor of load condition (low vs. high).  There was a significant effect, F(1, 

29) = 315.4, p <.001,  =.92, indicating that RTs under low load (M = 571 ms, 95% 

CI = 538 – 605) were significantly faster than under high load (M = 959 ms, 95% CI = 

907 – 1010), which confirms that the load manipulation was successful.  However, 

the accuracy analysis revealed no significant performance difference under low load 

(M = 95.5%, 95% CI = 94 – 97) versus high load (M = 93.2%, 95% CI = 91 – 95.5), F(1, 

29) = 3.6, p =.067,  =.11.   
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 The RSME subjective measure of workload was also tested using a repeated 

measures ANOVA with the within-subjects factor of load condition (no load, low 

load and high load).  There was a significant effect of load condition, F(2, 58) = 26.9, 

p <.001,  =.48 and post-hoc tests confirmed that each condition was different 

from the others (all p<.001; see figure 4.1).  These results indicate that the 

workload manipulation also worked as predicted from a subjective point of view. 

 

Figure 4.1. Mean RSME scores ( 95% CI) as a function of load condition. 

Hazard detection measures. 

 Two repeated measures ANOVAs were conducted on hazard detection RTs 

and accuracy using the within-subjects factor of load condition (no load, low load 

and high load).  There was no significant effect of load condition on mean hazard 

detection RTs, F(2, 58) = 3.48, p =.45,  =.03 (see Figure 4.2).  Accuracy across the 

three load conditions was high (no load - M = 83.6%, 95% CI = 76.8 - 90.3; low load - 

M 79.1%, 95% CI = 72.3 - 85.8; high load - M = 81.1%, 95% CI = 74.7 – 87.6), and did 

not vary significantly across load conditions, F(2, 58) = 1.5, p =.28,  =.05. 
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 Figure 4.2. Mean correct response times ( 95% CI) in milliseconds as a function of 

load condition.  

In the final analysis participants’ RT and accuracy data for hazard detection 

were then converted to inverse efficiency (IE) scores in order to correct for any 

potential speed–accuracy trade-offs that might have been present. A repeated 

measures ANOVA was conducted on IE scores using the within-subjects factor of 

load condition (no load, low load and high load).  The analysis revealed no 

significant main effect of load condition. Participants’ hazard detection 

performance was not significantly different between no load (M = 8210, 95% CI = 

4280 - 12140), low load (M = 7385, 95% CI = 4878 - 9892) and high load conditions 

(M = 7044, 95% CI = 4592 - 9496), F(1.3, 38.8) = 1.32, p =.27,  =.04. 

Discussion 

The results of the present study demonstrate that novice drivers’ RTs for 

detecting driving hazards in realistic video stimuli did not change significantly as 

dual task workload increased.  Additionally, there was no significant change in 

hazard detection accuracy as workload increased.  These finding are in not in line 

with previous research on dual task interference which typically find significant 

costs in dual (vs. single) task conditions.  Taken in total the results of this study 

show that even as secondary task workload increases there is no detrimental 
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impact to primary task performance.  This indicates that young novice drivers might 

be partially better protected from dual task interference because of their younger 

age and they might be able to switch between secondary task of varying workload 

with little drop in their primary task performance.  These questions will be 

considered in more detail in Chapter 5, which compares performance between the 

different driver groups tested in Chapters 2, 3 and 4. 

It is possible that the lack of dual task effects seen here might stem from the 

participants having relatively high working memory capacity (WMC).   For example, 

Wood, Hartley, Furley and Wilson (2016), examined the influence of individual 

differences in WMC on hazard perception performance in a simulated driving task.  

They found that WMC scores significantly predicted hazard perception performance 

in the dual task condition (R2 =.11) even when controlling for hazard perception 

performance.  Participants with High-WMC performed considerably better than the 

Low-WMC group in the dual task condition, such that, while the high-WMC group 

maintained their performance across both conditions, the low-WMC group 

performed worse under dual task compared to control conditions.   Thus, one 

possible explanation for the lack of dual task effects in the present study is that the 

participants sampled may all have had reasonably high WMC (this seems plausible, 

for example, given that they were all recruited from a university student sample). 
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Chapter 5 – Differences Between Younger Experienced, Older and Novice Drivers 

in the Effects of Workload on Hazard Detection Performance 
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Introduction 

 Because experiments in Chapters 1-3 were run and analysed one after 

another, the data analysis was slightly different for each group tested. For example, 

RTs were calculated with respect to the earliest point at which any participant 

correctly identified the hazard, and this point could change across the experiments.  

For this reason, in order to make meaningful comparisons between the different 

groups of drivers, it is important to process all the data in exactly the same way.  

This is the purpose of the current chapter: by pooling the data from across all three 

experiments reported so far, I will be able to examine the differences in hazard 

response as a function of secondary task load between the different driver groups 

(younger experienced, novice and older drivers).  The main hypotheses for this 

chapter are that there will be significant differences in primary task RT and task 

accuracy between the younger experienced, novice and older drivers as the task 

workload increases.  Specifically, it is predicted that the younger experienced 

drivers will exhibit shorter RTs and better accuracy in the primary and secondary 

task than both novice and older drivers.  Additionally, separate comparisons 

between younger experienced and novice drivers, and younger experienced and 

older drivers, might show shorter RTs and better accuracy in the primary task as 

secondary task load increases for the younger experienced drivers. 

Method 

 The methods were identical for all three groups, as described in Chapter 2.  

The data processing also proceeded in the same way as for the previous 

experiments, but the raw data from all participants, trials and experiments were 

now pooled together (5400 trials).  Any videos with 70% or less accuracy were 

removed (21 videos, 34% of the data), as previously described in Chapter 2.  The 

RTs were benchmarked so that the fastest correct hazard detection across all three 

groups for each video was used for the analysis.  For the RT analysis all inaccurate 

responses were removed (7.9%), leaving 3138 trials.  Therefore, in total 41.9% of 

the data was removed. 
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Results and Preliminary Discussion 

In all subsequent F-tests, the Greenhouse-Geisser correction was applied if 

Mauchly’s test of Sphericity was significant, and I used the Benjamini-Hochberg 

false discovery rate procedure for all post-hoc tests.  The false discovery rate was 

set at 0.1 for all multiple comparisons (Benjamini & Hochberg, 1995).   

Workload Measures 

Rating scale mental effort (RSME). 

 To confirm the effectiveness of the load manipulation, and compare how 

this was experienced between the different driver groups, a mixed ANOVA was 

conducted on the RSME data, using the within-subjects factor of load condition (no 

load, low load, high load) and experimental group as the between-subjects factor 

(young experienced, novice and older population).  As expected, given the 

significant effects of load seen throughout this thesis so far, there was a significant 

main effect of load condition, F(1.6, 139.4) = 91.3, p< .001, =.51.  All post-hoc 

comparisons between the different load conditions were significant (all p<.001), 

indicating that perceived workload increased reliably from the no load condition to 

the low load condition and again to the high load condition (figure 5.1). There was 

no significant effect of experimental group, F(2, 87) = 2.07, p =.13,  =.04, 

indicating that the groups experienced a similar overall level of subjective workload.  

However, there was a significant interaction between load condition and 

experimental group, F(3.2, 139.4) = 5.04, p =.002,  =.10.  Post-hoc comparisons 

showed a significant difference in RSME score in the no load condition between 

young experienced (score = 42.8) and older (score = 56.5) drivers (p =.01), all other 

comparisons were non-significant (p>.05).  Thus, whereas the dual task conditions 

(low load and high load) were rated as similarly demanding by all groups, older 

drivers rated the single task condition (no load) as significantly more demanding 

than did the younger experienced drivers. This might reflect an overall reduced 

capacity in the older drivers, such that the single task is already experienced as 

relatively demanding. 
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Figure 5.1. Mean RSME scores ( 95% CI) as a function of load condition and driver 

group. 

Number probe accuracy. 

To compare responding on the number probe task across the different 

driver groups, a mixed ANOVA was conducted on the number probe accuracy, using 

the within-subjects factor of load condition (low vs. high) and experimental group 

as the between-subjects factor (young experienced, novice and older population).  

As would be expected given the results of the previous chapters, the effect of load 

condition was significant, F(1, 87) = 19.7, p< .001, =.18, with higher accuracy 

under low load (93.9%) than under high load (90.5%).  The main effect of group was 

also significant, F(2, 87) = 25.5, p <.001, =.37, with significant differences 

between young experienced (97.8%) vs. older drivers (84.4%) and novice (94.4%) 

vs. older drivers (84.4%) (both p<.001).  There was no difference between young 

experienced and novice drivers’ performance, p>.05 (figure 5.2).  Thus, perhaps 

unsurprisingly, older drivers were less accurate at responding to the number probe 

than both young experienced and novice drivers. It will be important to bear this in 

mind when considering performance on the hazard detection task, as it is possible 

that older drivers sacrificed performance on the number probe task in order to 

achieve good performance on the hazard detection task.  The interaction between 
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load condition and experimental group was not significant, F(2, 87) = .75, p =.48,
 

 

=.02.  

Figure 5.2. Mean number probe accuracy ( 95% CI) as a function of load condition 

and driver group. 

Number probe response time. 

To compare the speed of responding to the number probe between the 

different groups, a mixed ANOVA was conducted on the probe RTs, using the 

within-subjects factor of load condition (low vs. high) and experimental group as 

the between-subjects factor (young experienced, novice and older population).  In 

line with the accuracy results and with the results from the previous chapters, the 

main effect of load condition was significant, F(1, 87) = 1040.4, p< .001, =.92, 

with faster responding under low load (613 ms) than under high load (1004 ms).  

The main effect of group was also significant, F(2, 87) = 11.8, p <.001, =.21.  In 

line with the number probe accuracy results, there were significant differences 

between young experienced (773 ms) and older drivers (888 ms) and between 

novice (765ms) and older drivers (888ms, all p<.001) but not between the young 

experienced and novice driver groups p>.05. Thus, once again, when comparing the 

older group’s hazard detection performance with that of the two other groups, it 

will be important to note that the older group displayed significantly slower 

2

p

2

p

2

p



91 
 

responses on the number probe task, as well as reduced accuracy, and thus may 

have been sacrificing performance on this task in order to maintain hazard 

detection performance. The interaction between load condition and group was not 

significant, F(2, 87) = .60, p =.55,
 

=.01 (figure 5.3). 

Figure 5.3. Mean number probe RT ( 95% CI) as a function of load condition and 

driver group. 

Hazard Detection Measures 

For the hazard detection analyses, identical mixed ANOVAs were conducted 

on the RTs, accuracy and inverse efficiency data using the within-subjects factor of 

load condition (no load, low load and high load), and experimental group as the 

between-subjects factor (young experienced, novice and older population).   

Hazard detection RT. 

There were no significant main effects of load condition, F(2, 174) = .94, p 

=.39,  =.01 or of  group , F(2, 87) = 2.19, p =.12, =.05.  However, the 

interaction between load condition and group was significant, F(4, 174) = 3.19, p 

=.015, =.07.  Post hoc comparisons identified a significant difference in RT in the 

no load condition between novice (4893 ms) and older (3583 ms) drivers (p =.04). 

No other comparisons were significant (p>.05) (figure 5.4).  Planned comparisons 

between young experienced and novice drivers at each load condition showed that 
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there was a significant difference in RT between the driver groups during the low 

load condition (p =.03) but not during the no or high load conditions (ps >.07).  

Additional planned comparisons between young experienced and older drivers at 

each load condition found no significant differences in RT at any of the load 

conditions (ps >.06). 

Figure 5.4. Mean hazard detection RT ( 95% CI) as a function of load condition and 

driver group. 

Hazard detection accuracy. 

The main effect of group was significant, F(2, 87) = 5.62, p =.005, =.11.  

Post hoc comparisons identified significant differences between young experienced 

(93.5%) and older (82.6%) drivers and between young experienced (93.5%) and 

novice drivers (84.8%, all p<.05). Thus, interestingly, both the novice drivers and the 

older drivers were significantly less accurate at hazard detection than the young 

experienced drivers, regardless of the level of load. There was also a significant 

effect of load condition, F(2, 174) = 3.9, p =.02, =.04. Post hoc comparisons 

identified significantly higher accuracy in the no load condition (87.9%) than in the 

low load condition (84.3%, p =.02). This is in line with the wealth of literature that 

has demonstrated performance costs under dual (vs. single) task conditions.  
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However, in contrast to this literature, accuracy was worse with a low load in the 

number probe task (84.3%) than it was with a high load in that task (88.7%, p =.02). 

This improved hazard detection accuracy under a high load in the additional 

number probe task mirrors the result from Chapter 2 and perhaps suggests that the 

added engagement provided by the high load number probe task also boosts 

responding in the concurrent hazard detection task. The interaction was not 

significant, F(4, 174) = 1.7, p =.15,  =.04 (figure 5.5).  Planned comparisons 

between young experienced and novice drivers at each load condition showed that 

there was a significant difference in accuracy between the driver groups during the 

low load condition (p =.004) but not during the no or high load conditions (ps >.06).  

Additional planned comparisons between young experienced and older drivers at 

each load condition revealed a significant difference in accuracy under no load (p 

=.001) and low load (p <.001) but not high load (p>.10). 

 

Figure 5.5. Mean hazard detection accuracy ( 95% CI) as a function of load 

condition and driver group. 

Inverse efficiency (IE). 

As explained in Chapter 2, the inverse efficiency score combines reaction 

times and error rates in order to rule out potential trade-offs between speed and 

accuracy.  This analysis revealed no main effect of group, F(2, 87) = 1.94, p =.15, 
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=.04, or of load condition, F(1.3, 115.9) = .47, p =.62, =.005.  The interaction 

between load condition and group was also not significant, F(2.7, 115.9) = 1.31, p 

=.27, =.03 (figure 5.6).  Planned comparisons between young experienced and 

novice drivers at each load condition identified a significant difference in IE score 

between the driver groups during the low load condition (p =.02) but not during the 

no or high load conditions (ps >.06).  Additional planned comparisons between 

young experienced and older drivers at each load condition found no significant 

difference in IA score at any of the load conditions (ps >.09). 

 

Figure 5.6. Mean IE score ( 95% CI) as a function of load condition and driver 

group. 

Missed hazard and incorrect identification of driving hazard. 

 One final consideration (which was not examined in earlier chapters) 

concerns the different types of error that participants can make in the hazard 

detection task; namely, either missing the hazard entirely, or incorrectly identifying 

the hazard.  In the final analyses, I separated out these two types of error and 

calculated the proportion of error for each. 

First, a mixed ANOVA was conducted on the missed hazard rates, using the 

within-subjects factor of load condition (no load, low load and high load), and 
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experimental group as the between-subjects factor (young experienced, novice and 

older population, see Figure 5.7).  In line with the analysis of overall accuracy, the 

effect of load condition was significant, F(1.5, 131.1) = 6.22, p =.006,  =.07.  

Fewer missed hazard errors were made on average in the no load condition than in 

the low load condition (2.9% vs. 7.7%; p =.006).  All other post hoc tests were non-

significant (p >.08). The main effect of experimental group was not significant, F(2, 

87) = 2.19, p =.18, =.05, however some differences between groups emerged in 

relation to the significant interaction between load condition and experimental 

group, F(3.1, 131.1) = 2.79, p =.043, =.06.  Post hoc analysis showed that in the 

low load condition younger experienced drivers made fewer missed hazard errors 

than older drivers (p =.02), and in the high load condition younger experienced 

drivers made fewer missed hazard errors than novice drivers (p =.04).  All other 

post hoc tests were non-significant p>.06.  Planned comparisons between young 

experienced and novice drivers at each load condition showed that there was a 

significant difference in missed hazard errors between the groups during the high 

load condition (p =.03) but not during the no or low load conditions (ps >.09).  

Showing that younger experienced drivers made fewer missed hazard errors than 

novice drivers under higher load.  This indicates that the skill of detecting hazards in 

situations of high cognitive load is better developed in the younger experienced 

drivers than in novice drivers.  Additional planned comparisons between young 

experienced and older drivers at each load condition found a significant difference 

during low load (p =.02) but not under no or high load (ps >.10). Showing that 

younger experienced drivers made fewer missed hazard errors than older drivers 

under low load.   
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Figure 5.7. Missed hazard error rate (%) ( 95% CI) as a function of load condition 

and driver group. 

Next, a mixed ANOVA was conducted on the incorrect hazard identification 

rates, using the within-subjects factor of load condition (no load, low load and high 

load), and experimental group as the between-subjects factor (young experienced, 

novice and older population; see Figure 5.8).  Interestingly, in contrast to the 

analysis of overall accuracy, the main effect of load condition was not significant, 

F(2, 174) =1.69, p =.19,  =.02. This suggests that the significant effect of load that 

was seen in the accuracy analysis was primarily driven by differences in missed 

hazard rates rather than incorrect identifications. This is perhaps unsurprising, 

because the missed hazard rates are likely to reflect trials in which the relevant 

hazard elements were not noticed and may therefore be more open to disruption 

by the concurrent workload of the non-hazard task than incorrect hazard 

identification rates (which are likely to reflect more of a misunderstanding of the 

situation and its severity). The main effect of experimental group was significant, 

F(2, 87) = 5.4, p =.006, =.11.  Younger experienced drivers on average made 

fewer incorrect hazard identification errors than older drivers (4.2% vs 11%, p 

=.005). All other post hoc comparisons were non-significant (p >.17).  The 
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interaction between load condition and experimental group was also significant, 

F(4, 174) = 2.98, p =.02, =.06.  In the no load condition, older drivers made more 

incorrect hazard identifications than both younger experienced drivers (p =.01) and 

novice drivers (p =.005).  While this finding could reflect genuinely worse hazard 

perception in older drivers under low levels of workload, it could also be attributed 

to the fact that this group (unlike the two younger groups) will not have 

encountered hazard perception tasks as part of their initial driver training. In the 

low load condition younger experienced drivers made fewer incorrect 

identifications than both novice drivers (p =.03) and older drivers (p =.001).  All 

other post hoc tests were non-significant (p >.07).  Planned comparisons between 

young experienced and novice drivers at each load condition showed that there 

was a significant difference in incorrect hazard identification rates between the 

groups during the low load condition (p =.01) but not during the no or high load 

conditions (ps >.24).  Additional planned comparisons between young experienced 

and older drivers at each load condition found significant differences under no load 

(p =.01), low load (p =.001) and high load (p =.04). This result shows that regardless 

of load condition older drivers are more likely to incorrectly identify a hazard than 

younger experienced drivers.  This links back to the point above that older drivers 

will not have encountered hazard perception tasks as part of their initial driver 

training and therefore are disadvantaged with their lack of hazard perception 

training compared to younger experienced drivers. 
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Figure 5.8. Incorrectly identified hazard error rate (%) ( 95% CI) as a function of 

load condition and driver group. 

Discussion 

The detailed comparison of the three driving groups carried out in this 

chapter overall revealed a mixed pattern of results.  RSME scores increased reliably 

between the load conditions and did not differ between the groups, indicating that 

the groups experienced a similar overall level of subjective workload.  Yet, when 

looked at in more detail, older drivers in the no load condition rated the condition 

as requiring significantly more effort than the young experienced driving age 

sample reported.  This might reflect an overall reduced capacity in the older drivers, 

such that they already experience the hazard detection task alone as relatively 

demanding. However, this could also reflect the fact that the older drivers are less 

experienced with hazard detection tasks, having not experienced them as part of 

their driver training (unlike the other participants). In addition, because of the 

subjective nature of this measure, it is also possible that older drivers simply use 

the ratings scale differently than the other participants. 
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However, the differences between older drivers and the other two groups 

persisted in the findings relating to accuracy and RT in the number probe task.  

Older drivers made more mistakes than both the young experienced and novice 

driving age samples and took significantly longer to respond to the probe.  Although 

it at first seemed possible that older drivers may have been sacrificing their number 

task performance in order to maintain good performance on the hazard task, this 

seems unlikely because if anything their performance on the hazard task was on 

balance worse than that of the young experienced drivers, as I will now outline. 

Overall, the factors of load condition and driving group had little effect on 

the RTs to detect the driving hazard.  However, there was a small but significant 

difference between novice and older drivers under no load, such that novice drivers 

exhibited significantly longer RTs. This could relate to the relative inexperience of 

the novice drivers by comparison with the older drivers, who will have had 

exposure to a much wider variety of driving hazards.  There was no difference in 

hazard detection accuracy between these groups, thus overall the hazard detection 

performance of the older drivers could be characterised as slightly better than that 

of the novice drivers under no load conditions. The fact that the RT difference only 

arose under the no load condition rules out the possibility (raised earlier) that the 

older drivers were sacrificing their performance on the number probe task in order 

to maintain good performance on the hazard detection task, because no such trade 

off would have been necessary under no load conditions where the number probe 

task was absent. 

A different pattern of results was evident in the comparisons between the 

older and young experienced drivers. These groups did not differ in hazard 

detection RTs, but the older drivers did show worse overall accuracy than the young 

experienced drivers, as well as significantly lower accuracy under no load and low 

load conditions. Thus, the older drivers exhibited worse performance than the 

young experienced drivers, both on the hazard perception task and on the number 

probe task. This is in line with the wealth of literature showing worse hazard 

perception in older (vs. young experienced) drivers and, in some cases, worse dual 
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task performance (Caird et al., 2005; Maquestiaux et al., 2013, 2010; Ross et al., 

2012). 

Interestingly, the novice drivers also performed worse overall than the 

young experienced drivers on the hazard detection task, because although their 

overall RTs were no different from those of the young experienced drivers, their 

overall accuracy was significantly worse.   In addition, under low load conditions, 

the novice drivers’ RTs and accuracy were both significant worse than those of the 

younger experienced drivers. This is also in line with the substantial research 

evidence demonstrating worse hazard perception in novice (vs. more experienced) 

drivers (Borowsky & Oron-Gilad, 2013; Horswill et al., 2010; McDonald et al., 2014; 

Scialfa et al., 2012). 

It is important to note that, although the above patterns of results are 

identifiable when comparing between the RT and accuracy analyses, almost no 

group differences emerged when these measures were combined into a single 

inverse efficiency score (with the exception of the novice drivers showing worse 

performance than the younger experienced drivers under low load).  However, the 

inverse efficiency measure is open to criticism.  For example, the use of IE scores 

can increase the variability of the data particularly if the study has a small number 

of observations (<20) per condition (as was the case in this study, in which 20 

observations were collected per load condition) and in cases where there is little 

correlation between RT and accuracy (Bruyer & Brysbaert, 2011).  However, these 

authors also argue that the use of IE scores is acceptable as a complementary 

analysis to RT and accuracy analyses, and thus the IE measure was only used in this 

context in the present work.
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Chapter 6 - The Effect of Automation on Takeover Performance and Situation 

Awareness 
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Introduction 

The experiments described so far in this thesis used an abstract number 

monitoring task at different levels of load as a proxy for the different levels of 

driving demand that will result from differing levels of in-car automation.  Although 

this approach has the advantage of allowing a high level of experimental control, it 

also suffers from a significant lack of ecological validity, because the real task of 

manual driving is of course far more complex than even the high load version of the 

number monitoring task used in the work reported so far.  For this reason, the 

current chapter reports a study in which I used a driving simulator to achieve much 

more realistic levels of task demand. 

In addition, whereas Chapters 2-5 of this thesis relate to fairly low levels of 

automation (in which drivers are required to monitor the driving environment even 

when the autonomous system is engaged), the current study focuses on a higher 

level of automation, in which drivers can fully disengage from the task of driving 

during periods of automated function. This is because the industry is already 

moving very quickly towards these higher levels of automation, making the lower 

levels increasingly less relevant for current research.  For example, one of the 

current market leaders in the development of autonomous driving features, Tesla 

(USA), has already created an ‘advanced autopilot’ mode that can match speed to 

traffic conditions, keep within a lane, automatically change lanes without requiring 

driver input, transition from one roadway to another, exit the roadway when the 

driver’s destination is near, self-park when near a parking spot and be summoned 

to and from the driver’s garage.  The ability to have all these tasks completed by the 

autopilot system greatly reduces the demands of driving for the driver.  However, 

the system requires the driver to maintain the ability to take back control of the car 

if the system requires the driver to do so.  This requirement of drivers to regain 

control safely and in a timely manner (i.e. return to the driving ‘loop’ from being 

‘out of the loop’), often having been engaged in a non-driving-related secondary 

task while ‘out of the loop’ (e.g. using phones, laptops, reading or writing emails), is 

a critical issue for research as more level 2/3 autonomous systems enter the 

mainstream vehicle market.  This is the focus of the current study. 
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Key Aims 

The key aims of this study are to examine how drivers regain control of a 

vehicle after a period of autonomous driving, where their attention is focused 

during this handover process, and how quickly the attentional and behavioural 

patterns of driving return to a level like that of manual driving. In addition, many 

vehicle designs are now allowing for a complete shift of driver body position during 

periods of automation, so that drivers can engage with non-driving tasks in an 

entirely different section of the vehicle (e.g. pivoting in the driving seat to use a 

laptop station that is mounted in between the driver and passenger seats). In 

comparison with designs that keep the driver facing forwards in a static driver seat, 

these more flexible designs will reduce the ongoing level of situation awareness 

that the driver is able to maintain, because in some cases they will be able to 

readjust their body position such that very little relevant visual information is 

available (e.g. by spinning the seat through 180 degrees to face backwards). Thus, 

an additional research question in the current study concerns the impact on the 

handover process of the level of visual information from the driving scene that has 

been available throughout the automated period. Rather than manipulating this 

through changing the driver’s body position (which would have been practically 

challenging, particularly in relation to the collection of eye movement data), I 

instead introduced heavy fog in some conditions, reducing the amount of visual 

scene information to close to zero. 

Takeover Time Following Automated Driving 

  There is a large amount of existing research examining the time needed to 

take over manual control after a period of automation.  Eriksson and Stanton (2017) 

reviewed existing research into driver control transitions to determine the time it 

takes drivers to resume control from an AV in noncritical scenarios.  Their initial 

meta-analysis of 25 relevant studies highlighted that takeover-request lead times 

(TORlt) and takeover RT (TOrt) varied widely from study to study with times varying 

from 0 to 30 secs for TORlt and 1.14 to 15 secs for TOrt.  Their review highlighted 

that the mean TORlt was 6.37 sec with a mean TOrt of 2.96 secs. The most 

commonly used TORlt was 3 secs with a mean TOrt of 1.14 secs. It is important to 
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note the significant variability identified between the results of studies examining 

the same phenomenon (i.e. takeover request RT).  This is likely to be driven by 

differences in TORlts and other methodological differences.   

 Indeed, one recent simulator study directly compared the effects of three 

different TORlts.  Mok, Johns, Miller, and Ju (2017) measured the driving 

performance of 30 participants at three abrupt transition times (2, 3 and 8 secs 

before the vehicle entered a sharp corner with reduced lanes).  The secondary task 

performed during automated driving was playing a simple computer game on a 

tablet computer.  The driving task was simply to disengage from the task and regain 

control of the car when the transition from automation to manual driving occurred.  

Interestingly, most drivers were observed to drop the tablet on the passenger seat 

or on their lap (28/30) in response to an urgent handover request.  Among the 

more formal performance measures were the standard deviation of steering wheel 

position. This measures quality of driving performance, with a smaller deviation 

indicating finer vehicular control.  These results showed that there was a significant 

difference between the 2 second (Mean = 1.29), the 5 second (Mean = 0.48) and 

the 8 second (Mean = 0.19) transition times, such that the longer transition times 

had less variability and thus showed finer control than the shorter transition times. 

The standard deviation of lane position (SDLP) results showed the same pattern, 

with a significant difference between the 2 second (Mean = 1.88), the 5 second 

(Mean = 0.6) and the 8 second (Mean = 0.28) conditions.  In summary, the shortest 

transition time produced a coarser and less smooth set of driving behaviour 

responses compared with the longer transition times.  In the light of this previous 

research, the current study used an intermediate TORlt of 3 seconds, which is in 

line with the majority of the published experiments.  

Previous research on this topic has also identified significant variability 

between participants in the time taken to regain control. For example, Eriksson and 

Stanton (2017) also carried out a simulator-based study in which 26 participants 

completed two scenarios with an autonomous driving system activated. Drivers 

were either asked to read a newspaper, or to monitor the system, and to relinquish, 

or resume, control from the autonomous system when prompted.  The results 
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showed that drivers took between 1.9 and 25.7 seconds (median = 4.6 secs) to 

resume control from automated driving under normal conditions but when drivers 

were engaged with a secondary task the time taken increased to between 3.2 and 

20.9 seconds (median = 6.1 secs). These findings demonstrate that there are likely 

to be individual differences between drivers’ RTs and reengagement after 

automation, which will be an important consideration in evaluating the findings of 

the current study. In addition, because participants in the current study will be 

engaged in a secondary task during the automated period, I expect them to be 

slower at regaining control than participants in studies where no secondary task is 

completed. 

Situation Awareness Following Automated Driving 

One of the central questions of the present study concerns people’s visual 

attention (as measured by their eye movement behaviour) following the handover 

of an automated driving system, as well as their subsequent responding to 

developing hazards in the driving environment. The clear prediction is that the 

disengagement of the driver during the period of autonomous driving will have 

significant effects on situation awareness when manual driving is subsequently 

reengaged (by comparison with conditions of continuous manual driving without 

any period of autonomous control).  Although to my knowledge no studies have 

looked at exactly this question, there is evidence that differing levels of 

engagement during autonomous driving lead to differences in situations awareness 

when the system subsequently hands over control.  For example, Louw, Madigan, 

Carsten and Merat (2016) ran a simulator study examining drivers’ patterns of 

fixation during partially-automated (SAE Level 2) driving on approach to critical and 

non-critical events.  75 participants completed five different conditions which used 

different levels of screen visibility and secondary tasks to induce varying levels of 

engagement with the driving task.  The 5 conditions were: no fog, light fog, heavy 

fog, heavy fog plus a visual quiz task, and no fog plus a simple cognitive task. 

Drivers’ first fixations back to the screen after automation disengagement were 

influenced by the condition.  In the no fog, light fog and heavy fog conditions, 

between 55-65% of the first fixations fell in the centre of the screen (a 6o circle in 
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the centre of the screen).  However, in the two conditions with a secondary task, a 

lower proportion of first fixations fell in the centre of the screen (35-40%), 

indicating a more diffuse pattern of first fixations in these conditions. The 

percentage of fixations falling in the road centre (PRC) was calculated for three one-

second time windows, immediately after the drivers were prompted to take back 

control of the vehicle.  PRC is defined as the proportion of fixation data points 

which fall within the road centre area, a 6o circular region located around the 

driver’s median fixation point. PRC has previously been demonstrated to be a 

sensitive indicator of visual distraction with lower values indicating less attention is 

dedicated to the visual demands of driving (Victor, Harbluk, & Engström, 2005).  

Regardless of condition, the PRC in the first second was significantly lower than in 

the second (65% vs. 75%) and the difference between the 1st and 3rd second (65% 

vs. 78%) was also significant.  Importantly, in the two conditions with the highest 

visual occlusion of the screen (heavy fog and heavy fog plus task) the PRC was 

significantly lower in the 1st second compared with the other conditions but then 

recovered to a similar level as to the other conditions.  This potentially indicates 

that drivers were scanning the driving environment more diffusely after not having 

seen the road beforehand, but at the expense of focusing on the centre of the 

screen. These findings might at first suggest that participants’ visual attention in the 

current study will be more diffuse following the conditions in which the driving 

environment is occluded by fog (vs. conditions in which no fog occurs). However, an 

important difference between the current study and that of Louw et al. is that 

participants in my study will be looking away from the driving environment during 

the automated period, engaging with a tablet or phone. Thus, any performance 

reductions in the fog (vs. no fog) condition in the current study would suggest that 

drivers were making some use of the visual information available in the no fog 

condition, despite not explicitly directing their attention towards the screen. 

Recovery from Automation Failure  

A key question in the study of automation concerns the driver’s ability to 

resume control from an automated system, particularly after a failure in 

automation.  There is evidence to suggest that the unexpected disengagement of 
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an automated system can have a detrimental impact on vehicle control and visual 

attention.  For example, in a recent driving simulator study, Merat, Jamson, Lai, 

Daly and Carsten (2014), examined drivers’ ability to resume control from a highly 

automated vehicle in two automation conditions.  The first condition examined 

when automation was switched off and manual control was required at regular 

intervals.  In the second condition, the transition to manual occurred when the 

participant had been looking away from the road for 10s or more.  Performance, 

measured by steering behaviour and fixations towards the centre of the road, was 

significantly better in the first condition compared to the second condition.  

Specifically, visual attention towards the driving scene was erratic for up to 40s 

after the less predictable transfer of control, compared to when disengagement 

was predictable and at a fixed pace.  Additionally, in the second condition following 

the unpredictable transfer, driving measures and eye fixations showed a 10-15 

second lag in time between disengagement of the automation and resumption of 

control by the driver, with the largest discrepancy in the first 15 seconds following 

transfer, compared to more stabilised vehicle control after 35-40 seconds.  These 

results demonstrate that there are significant potential costs to driving 

performance of the unexpected disengagement of an automated system. 

Research has also suggested that the extent of the performance costs 

associated with automation failures relates to the level of automation experienced 

before the failure.  For example, in a study using a high-fidelity driving simulator, 

Strand, Nilsson, Karlsson and Nilsson (2014), examined semi-automated (ACC) and 

highly automated driving (HAD) conditions in which there were 3 levels of system 

failure (complete, severe, and moderate failures).  They found that drivers who 

were engaged in HAD and experienced any system failure were involved in more 

near collision events than those driving using a semi-automated vehicle (43% vs. 

22%).  The effect of system failure on the number of near collisions between the 

HAD and ACC conditions was only significant in the complete system failure 

condition.  Additionally, Radlmayr, Gold, Lorenz, Farid and Bengler (2014) using a 

high-fidelity driving simulator compared automation failure response times in a 

HAD condition to a manual driving response times.  The manual driving condition 
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was a baseline with no automation failure but they experienced the same track and 

driving hazards as the HAD condition.  In the HAD condition response times were 

longer than the baseline manual condition (2370 vs. 1850 milliseconds), although 

the number of near collisions was comparable across both condition (seven vs. five, 

N=24 participants in each condition). 

However, alternative evidence suggests that the level of automation that is 

engaged before the transfer of control might not have a large effect on driving 

performance following unexpected transfers of control.  For example, Young and 

Stanton (2007) demonstrated that level of automation had no influence on the 

braking response time (BRT) following failure of automation.  Using a driving 

simulator the level of automation was varied across two conditions: one with ACC 

and a second with ACC and active steering (AS).  AS is a lane-keeping device, which 

keeps the vehicle in the centre of its lane until the system is disengaged or manual 

steering input is received from the driver.  BRT was then measured in recovering 

control of the vehicle following failure of automation and no difference was 

observed between the two automation conditions.  When the data of the two 

automation conditions were compared with previous experiments on manual 

driving BRT, response times were substantially longer (1000-1500 ms) when using 

automated (vs. manual) systems.  However, the lack of a manual comparison group 

in the original experiment makes it difficult to draw firm conclusions on the basis of 

these findings, because they rely on comparisons between two experiments with 

different methodologies.  Nevertheless, the results do suggest that a reduction in 

task specific workload – namely, the need to control the vehicle’s heading and 

speed - rather than improving task performance conversely might interfere with 

recovering control of the vehicle following failure of automation.  A plausible 

explanation for this decrease in performance is that reducing mental workload, 

creating cognitive under-load, is not necessarily a good thing, particularly in cases 

where the task is already manageable.  Indeed, this mental under-load has been 

claimed in some circumstances to be as detrimental to performance as very high 

workload (Desmond & Hoyes, 1996; Young & Stanton, 2002).  Recall, in addition, 
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that similar effects were seen in Chapter 2, such that participants performed worse 

on the hazard detection task under lower (vs. higher) workload conditions. 

Study Rationale and Hypothesis 

In this study, I set out to examine the effect of reduced visual information 

during a period of automated driving on drivers’ subsequent situation awareness 

and resumption of vehicular control.  To examine this, I used a screen manipulation 

that reduced the amount of visual information available during automated periods 

and measured drivers’ eye movements and driving behaviour in the time following 

a handover request. My study considered the following questions: 

i. What is the time course of driving behaviour after the resumption of control 

following a period of automated driving? 

ii. Does the amount of visual information that is available during automated 

driving influence drivers’ eye movements and driving behaviour when they 

resume control? 

Method 

Participants 

Forty participants were recruited for the study (mean age = 49.5, SD = 11.1, 

23 males).  All participants held a full UK driving licence (mean years licence held = 

31, SD = 11.4) and drove more than 3 times a week (mean annual mileage = 13,750, 

SD = 9075).  In addition, all participants self-reported normal or corrected-to-

normal visual acuity (normal = 12 participants, corrected-to-normal = 28 

participants) as well as normal colour vision. Two participants had experienced 

driving automation of level 2 or above (Tesla autopilot and GPS controlled farm 

machinery).  All participants had previously taken part in studies at TRL and 

experienced the driving simulator.  Participants were paid £30 for their 

participation. 

Apparatus 

Visual stimuli were presented on three 27-in monitors (Asus MX279H) each 

with a resolution of 1920x1080 pixels, a refresh rate of 60Hz and a viewing distance 
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of approximately 90cm to the central monitor.  Eye movements from the central 

monitor were recorded using a Tobii X-1 Light running at 20hz.  A nine-point 

calibration procedure was used and accepted only if the average error was less than 

0.5° of visual angle and the maximum error was less than 1.0° of visual angle.  Head 

position was unrestricted.  Auditory stimuli were presented through the stereo 

speakers present in the monitors at a comfortable listening volume (approximately 

60dB).  Participants controlled the car using a steering wheel, clutch, brake, 

accelerator and gear stick attached to the simulator computer (Logitech G27 Racing 

Wheel).  (Figure 6.1).

 Figure 6.1. Example of the simulator set up (note eye tracker not included in this 

photo) 

Stimuli  

Driving environment. 

 Participants were presented with a simulated motorway driving 

environment for the duration of the study (see Figure 6.2). The simulator itself was 

implemented in SCANeR II studio (www.oktal.fr) with a data sampling rate of 20Hz, 

and a custom eye tracking module interface designed to integrate with the SCANeR 

II software and the Tobii.  The driving environment presented in this study was a 

three-lane motorway with gentle S-curves, with intermittent overhead gantries and 
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occasional bridges.  The motorway had a maximum advised speed limit of 70 mph 

(112 kph).  The landscape was flat and wide open with trees in the surrounding 

area. The two carriageways were separated by a double crash barrier in the middle.  

There was no traffic presented on the opposing carriageway.  The ego vehicle 

(vehicle driven by participants) showed a 1st person view of the driving environment 

and had the speedometer, gear and rev counter presented on the bottom of the 

screen in the centre.  The wing mirrors were presented on the left and right 

monitors, in the top left corner of the screen for the left monitor and the top right 

for the right monitor; there was no rear-view mirror.  The motorway environment 

the driver drove through consisted of 50 vehicles which swarmed around the ego 

car within the following parameters:  1) the average headway of the swarm vehicles 

was 1.5-2 secs with an average speed of 65-70 mph (104-112 kph); 2) swarm 

vehicles were distributed between all three motorway lanes with the majority in 

the centre and left lane; 3) when swarm vehicles were over 700 metres in front of 

the ego vehicle they either regenerated 600 metres in front of the ego vehicle or 

100 metres behind.  This allowed the driving environment to remain busy and 

relatively crowded regardless of each driver’s individual driving style and speed, but 

not create an environment where the driver perceived ghost vehicles (disappearing 

and appearing vehicles).  Finally, swarm vehicles could change lane if changes to the 

driving environment required them to. 
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Figure 6.2. An example of simulated motorway driving environment used in the 

study (note the speedometer and rev counter are not shown in this image). 

Driving hazards. 

 I created in the simulator software two common types of driving hazard that 

can occur in the motorway environment: a crash between two vehicles blocking a 

lane, and cones reducing the carriageway down from three lanes to two.  Both 

hazards occurred 150 metres after the ego car passed a programmed data trigger, 

making them just visible in the distance to the driver.   The crash obscured the left 

lane and involved a collision between a small lorry and a car, forcing all swarm 

vehicles in the left lane to move into the centre lane.  The cones hazard again 

reduced the carriageway from three to two lanes, and forced the swarm drivers to 

move from the left to the centre lane.  The cones were spaced at 7 metre intervals 

according to department for transport guidelines (Department for 

Transport/Highways Agency, 2009) for 700 metres. 

Autonomous system.  

The autonomous driving system was a custom module created by TRL.  The 

autonomous system was programmed to maintain an average speed that matched 

the roadway (e.g. 65-70mph (104-112 kph) for motorway) at a minimum headway 

of 1.5-2 secs, and the speed at the point of takeover was 65-70mph (104-112 kph).  

It maintained lane position and controlled lateral position in the lane.  The 
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handover and takeover requests both consisted of a 3 second sequence of auditory 

tones which was matched as closely as possible to the tones used in BMWs and 

Teslas.  The sequence consisted of three 250ms tones (700Hz, 44.1khz sample rate) 

equally presented over 3 seconds with the final tone the point at which either the 

autonomous system took over driving or handed back control to the driver. 

Screen manipulation. 

I used a screen manipulation to assess the impact of reduced visual 

information during automation on the resumption of control after a period of 

automation.  The two-screen conditions were: no screen manipulation; and fog 

screen manipulation.  Both screen manipulations were only active when the 

autonomous system was driving the ego vehicle. The fog screen manipulation was a 

heavy fog that obscured 90% of the visual information on the screen, bar faint road 

markings within 1-2 metre of the ego vehicle.  The fog screen manipulation was 

removed within 10ms of the first takeover tone occurring. 

Design and Procedure 

Participants were asked to drive the simulated vehicle safely through the 

driving environment whilst controlling the lateral and longitudinal direction with 

the steering wheel, clutch, brake, accelerator and gear stick.  They were asked to 

maintain their speed at approximately 70mph and to stay in the centre lane at all 

times unless there was a serious risk of them crashing into swarm vehicles (at which 

point they could move into the right lane). They were informed that in some trials 

they would handover control of the vehicle to an autonomous driving system (as 

per the auditory tones) and that they would be required to resume control of the 

vehicle when requested by the system (also as per the auditory tones).  Participants 

completed one two-minute practice trial to familiarise themselves with the task, 

the handover/take back request and driving controls.  There then followed eight 

experimental trials (manual driving leading to crash hazard, manual driving leading 

to cones hazard, autonomous drive with no hazards and no fog, autonomous drive 

with no fog leading to a crash hazard, autonomous drive with no fog leading to a 

cones hazard, autonomous drive with fog but without any hazard, autonomous 
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drive with fog leading to a crash hazard, and autonomous drive with fog leading to 

a cones hazard).  I counterbalanced the trial order to ensure that each trial did not 

occur more frequently in one of the eight possible trial positions across 

participants. 

The manual and autonomous drive conditions varied slightly in their 

procedures.  In the manual condition, the drivers drove for approximately 2 

minutes before they reached the data trigger at which point one of the two hazards 

occurred.  After a further two minutes the trial ended.  In the autonomous drive, 

the participants drove for approximately 2 minutes before the handover request 

occurred.  The autonomous system then drove for 7-8 minutes, during which time 

participants were encouraged to engage with their mobile phone or tablet, doing 

whatever they would normally do on their device.  After 7-8 minutes, the takeover 

request occurred. Approximately 3 seconds after the end of the takeover request 

the participants passed the hazard data trigger and one of the three hazard 

conditions occurred (no hazard, crash hazard or cones hazard). Approximately 3 

minutes after passing the hazard data trigger the trial ended.  The entire 

experiment took 90 minutes to complete, including the practice trials. 

Results and Preliminary Discussion 

In the results below, I begin by describing our analytic approach for this 

study, and the manner in which the data were prepared for analyses. I then 

describe the results of those analyses in relation to a series of dependent measures 

– six behavioural measures of driving performance as well as three eye tracking 

measures. The first of the measures of driving behaviour concerns the time taken 

for participants’ hands to return to the wheel. This provides a measure of motor 

readiness to resume control of the vehicle after the period of automation.  Next, I 

examined braking RT to the driving hazard to assess drivers’ situation awareness in 

relation to developing hazards. I also examined the participants’ speed, headway to 

the vehicle in front and time to contact with the vehicle in front, all measured from 

the start of the developing hazard. The final behavioural measure was the time 

course of lane position of the drivers over 60 seconds, to ascertain their resumption 

of control after automation. In the eye tracking analysis, I examined the first 
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fixation time back to the screen at the start of the takeover request, to ascertain 

how quickly drivers were able to set aside their secondary task (engaging with 

phone or tablet) and redirect their gaze back to the driving scene. I also examined 

the time course of the PRC over 60 seconds following the handover, to examine the 

extent to which drivers directed their visual attention to the central area of the 

screen during that period. Finally, I examined first fixation durations to determine 

whether there were any basic processing differences between the different 

conditions. Because of the complexity of the analyses and the number of 

dependent measures, I provide preliminary discussion of the results from each 

measure as it is presented. 

Analytic Approach 

Eye tracking studies in which dynamic, moving displays are used produce a 

qualitatively different form of eye movement data than studies which use static 

displays. Unlike static displays, where participants tend to make fixations of 

relatively short duration (e.g. 200-250ms), in dynamic displays like those used here, 

participants often make longer, ‘smooth pursuit’ fixations, during which the fixation 

position moves slowly enough to enable the acquisition of visual information 

without making a saccade (which would prevent the acquisition of visual 

information).  It has been argued (e.g. Baayen, Davidson, & Bates, 2008; Hua 

Huang, Ming Luh, Sheu, Tzeng, & Chen, 2011) that Mixed Linear Models (MLMs) 

constitute a more appropriate analysis method for data of this type than the more 

standard approaches (e.g., F-tests, standard t-tests) for several reasons. First, the 

MLM approach is able to capture the full variability of the dataset, because MLMs 

examine data pertaining to each individual data point, rather than mean-averaging 

the data as is the case with standard statistical tests. This is important since I am 

analysing data derived from a dynamic, changing environment so the data were 

naturally different than would be observed in a static task.  Second, this approach 

has the advantage that participants can be added as a random factor to the models, 

and the resulting models can shift their fits based on each individual participant.  As 

a result, the variable strategies or methods adopted by each participant to 

complete the driving task can be captured, to a certain extent, by allowing the 
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model to modify its fit based on each participant.  Mixed-effects modelling treats 

participants and items (if specified) in an experiment as random samples from 

larger populations (Raaijmakers, Schrijnemakers, & Gremmen, 1999), whereas 

ANOVA analysis fails to look at the systematic variability due to individual items, 

and overlooks the systematic variability due to individual participants (Locker, 

Hoffman, & Bovaird, 2007).  For these reasons, MLMs are becoming a more and 

more common analysis method in eye tracking studies (e.g. Godwin et al., 2015; 

Godwin, Benson, & Drieghe, 2013; Godwin et al., 2013; Laubrock, Engbert, Rolfs, & 

Kliegl, 2007). 

Data Preparation 

 The data were prepared in the following manner.  For analyses that related 

to participants’ responses to takeover requests (which only involved autonomous 

conditions), I used 60 seconds of the data indexed to 0 seconds from the start of 

takeover request (the beginning of the first auditory takeover request tone). This 

allowed me to analyse in detail any specific differences and time course of any 

differences in takeover performance between the autonomous conditions.  For 

analyses that related to a hazard response (including both autonomous and manual 

conditions) I used 60 seconds of the data indexed to 0 seconds from the start of 

hazard data trigger.  This allowed me to compare any driving performance and 

situation awareness differences in all conditions in an equal and consistent manner.  

Further data preparation will be explained for each dependent variable below.  A 

data recording error meant that all manual crash hazards conditions were not 

analysed in the subsequent sets of analysis. 

Behavioural Data Analysis 

Hands returning to the wheel. 

 Video of each experimental run was recorded on a Go-pro camera which 

was placed to the right of the participant and covered a view that encompassed the 

wheel and the participants’ hands (but not their face).  I used these videos to 

manually calculate the time it took participants to return both of their hands to 

wheel in all autonomous conditions, measured from the start of the takeover 
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request.  A repeated measures ANOVA was conducted using the DV of hands to the 

wheel RT and IV of screen manipulation (no-fog, with-fog).  There was a significant 

effect of screen manipulation on hands to the wheel RT, F(1, 39) = 6.94, p =.012, 

=.15, power =.73, such that responding was slower in the no-fog condition (4150 

ms) than in the fog condition (3850 ms), see Figure 6.3. 

Figure 6.3. Time taken to return hands to the wheel in milliseconds (error bars 

represent standard deviation) 

 These results have two interesting implications. First, when drivers have 

been engaging with their phones or tablets in a lifelike manner (as they were in the 

current study), it takes them around 4 seconds on average to return their hands to 

the wheel following a takeover request from an autonomous system.  Second, 

people were slower to return their hands to the wheel in the ‘no fog’ condition, 

where visual information about the driving scene remained available during the 

automated period (vs. the ‘fog’ condition where no such information was available). 

Although at first this may seem to be a surprising result, it is possible that the 

abrupt removal of the fog (which occurred at the start of the takeover request) led 

to an alerting effect, speeding reaction times in that condition. If this is the case, a 

2

p
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similar effect should be seen in the eye tracking analysis (such that first fixations 

back to the screen should also be faster in the fog vs. the no fog condition). 

Braking RT. 

Comparison of autonomous conditions (fog vs. no fog).  

The braking RT was calculated, measured from the onset of the developing 

hazard, as a function of the screen manipulation (fog vs. no fog). A MLM was 

conducted on the braking RT using the lme4 package in R (Version 3.4.0; Bates, 

Maechler, Bolker, & Walker, 2017). All reported p-values were obtained using the 

lmerTest package in R (Kuznetsova, Brockhoff, Haubo, & Maintainer, 2013).  Linear 

mixed model fit by REML (restricted maximum likelihood) t-tests use Satterthwaite 

approximations to degrees of freedom from the lmerTest package, which produces 

acceptably low Type 1 error rates even for smaller samples.  I conducted contrasts 

to explain main effects within the models using the lsmeans R package (Lenth, 

2016), correcting for multiple comparisons where required.  For the model 

participants was used as the random factor and screen manipulation (no-fog, with-

fog) was the fixed factor.  Marginal R² represents the variance explained by the 

fixed factors and conditional R² represents variance explained by both the fixed and 

random factors (i.e. the entire model). 

There was no significant difference in braking RT between the two screen 

manipulations: No fog (mean= 3.81sec) vs. fog (3.61sec), t(103.67) =0.47, p =.64, 

Marginal R² = .001, Conditional R² = .08. Thus, by the time the hazard started, there 

were no effects of the amount of visual information that had been present during 

the autonomous period. Given that the hazard started at approximately 3-4 

seconds after the handover, this finding suggests that, even if there were any initial 

differences in situation awareness between the fog and no fog conditions (a 

possibility which is examined further in the following analyses), these were not 

detectable in hazard braking responses after 3-4 seconds.  
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Comparison of manual condition with autonomous condition (no fog). 

A second model was constructed using participants as the random factor 

and including all of the different trial types (manual cones hazard, autonomous 

drive crash hazard no fog, autonomous drive cones hazard no fog, autonomous 

drive crash hazard with fog, autonomous drive cones hazard with fog) as the fixed 

factor.  There was a significant overall effect of trial t(142.9) =2.29, p =.02, Marginal 

R² = .07, Conditional R² = .10.   

The most important post-hoc comparison in relation to the study’s main 

hypotheses is between the ‘manual cones hazard’ condition and the ‘autonomous 

drive cones hazard no fog’ condition. This allows an examination of hazard 

responding following the handover of an autonomous system, compared with 

hazard responding following a period of manual driving. (Recall that the data from 

the ‘manual crash hazard’ condition were not usable due to a technical error, 

meaning that the cones hazard is the only condition suitable for this analysis). This 

comparison was not significant (p>.15), suggesting that braking in response to a 

developing hazard was no slower following an autonomous handover than 

following a period of manual driving. 

Results from remaining trial comparisons. 

For completeness, this section reports the results from the remaining post-

hoc contrasts. These showed a significant difference between hazard braking RTs in 

the ‘autonomous drive cones hazard no fog’ condition (4.6 sec) and the 

‘autonomous drive cones hazard with fog’ condition (4.5 sec) (p =.02). Interestingly, 

this replicates the finding from the ‘hands to the wheel’ analysis, with faster 

responding in the ‘fog’ versus the ‘no fog’ condition.  However, it is important not 

to overstate this finding, because recall that the earlier analysis found no significant 

difference in braking RT as a function of screen manipulation overall. There was 

also a significant difference between the ‘autonomous drive cones hazard with fog’ 

condition (4.5 sec) and the ‘autonomous drive crash hazard with fog’ condition (2.5 

sec; p =.01) indicating that within the ‘autonomous drive with fog’ conditions, a 
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faster reaction time was obtained to the crash hazard than to the cones hazard.  All 

other contrasts were non-significant (p >.15). 

Speed at developing hazard (kph). 

Comparison of autonomous conditions (fog vs. no fog). 

The speed at which participants were driving at the start of developing 

hazard was analysed in the same way as the braking RTs. For the first model, 

participants was used as the random factor and screen manipulation (no-fog, with-

fog) as the fixed factor.  In line with the analysis of the braking RTs, there was no 

significant difference in speed at the start of the developing hazard between the no 

fog condition (mean= 90.7 kph) and the fog condition (92.1 kph), t(157.9) =0.77, p 

=.44, Marginal R² = .003, Conditional R² = .02. 

Comparison of manual condition with autonomous condition (no fog). 

As in the braking RT analysis, a second model was constructed using 

participants as the random factor and including all trial types (manual cones hazard, 

autonomous drive crash hazard no fog, autonomous drive cones hazard no fog, 

autonomous drive crash hazard with fog, autonomous drive cones hazard with fog) 

within the fixed factor.  There was an overall significant effect of trial t(269.6) =2.71, 

p =.007, Marginal R² = .11, Conditional R² = .14.  

Once again, the most theoretically interesting post-hoc comparison is 

between the ‘manual cones hazard’ condition and the ‘autonomous drive cones 

hazard no fog’ condition. In contrast to the braking RT analysis, the speed at the 

onset of the hazard did differ between these two conditions. The post-hoc contrast 

showed a significant difference in approach to the cones hazard between the 

manual condition (101.3 kph) and the autonomous no fog condition (88.2 kph; p 

<.001). Interestingly, this indicates that participants were driving more slowly at the 

time of the hazard onset following handover of the autonomous system than 

following a period of manual driving, perhaps suggesting that drivers are more 

cautious in the period following the handover and therefore adopt lower speeds.  
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Results from remaining trial comparisons. 

For completeness, I note that the post hoc contrasts also revealed 

differences between the ‘manual cones hazard’ condition (101.3 kph) and the 

‘autonomous drive cones hazard with fog’ condition (88.1 kph; p <.001). However, 

this comparison is not particularly meaningful because it confounds the effects of 

manual (vs. autonomous) driving with the effects of fog (vs. no fog). There was also 

a significant difference between the ‘manual cones hazard’ condition (101.3 kph) 

and the ‘autonomous drive crash hazard with fog’ condition (91.7 kph) but again 

this comparison is not meaningful because it confounds driving condition (manual 

vs. autonomous), fog presence and hazard type.  All other contrasts were non-

significant (p >.09). 

Headway to lead vehicle. 

Comparison of autonomous conditions (fog vs. no fog). 

The headway in metres to the lead car at the start of the hazard was 

analysed in the same way as the previous two measures. For the model, 

participants was used as the random factor and screen manipulation (no-fog, with-

fog) was the fixed factor.  In line with the braking RT and speed results, no 

significant difference was found between the no-fog condition (111.9 metres) and 

the fog condition (113.1 metres), t(179) =.16, p =.88, Marginal R² = .0001, 

Conditional R² = .0001. 

Comparison of manual condition with autonomous condition (no fog). 

As in the preceding analyses, a second model was constructed using 

participants as the random factor and trial type (manual cones hazard, autonomous 

drive crash hazard no fog, autonomous drive cones hazard no fog, autonomous 

drive crash hazard with fog, autonomous drive cones hazard with fog) as the fixed 

factor.  There was a significant overall effect of trial t(207.1) =2.48, p =.01, Marginal 

R² = .07, Conditional R² = .08.  Post-hoc contrasts showed no significant difference 

between the ‘manual cones hazard’ condition and the ‘autonomous drive cones 

hazard no fog’ condition (p >.05). Thus, although the previous analysis indicated 
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that drivers were travelling more slowly at the hazard onset following a period of 

automated (vs. manual) driving, perhaps indicating a more cautious approach, this 

was not mirrored in the amount of headway that they left in relation to the car in 

front.  

Results from remaining trial comparisons. 

For completeness, I note that the contrast between the ‘autonomous drive 

crash hazard no fog’ condition (133.2 metres) and the ‘autonomous drive cones 

hazard with fog’ condition (93.2 metres) was significant (p =.03). However, this 

comparison is not meaningful because it confounds hazard type and fog presence. 

No other contrasts were significant (p>.05). 

Time to contact with lead vehicle. 

Comparison of autonomous conditions (fog vs. no fog). 

The time to contact (TTC) the lead vehicle incorporates the speed and 

distance to lead vehicle at the start of the hazard. As before, participants was used 

as the random factor and screen manipulation (no-fog, with-fog) was the fixed 

factor.  In line with the braking RT, speed and headway analyses, no significant 

difference was found between the no fog condition (4.4 sec) and the fog condition 

(4.3 sec), t(245) =.035, p =.72, Marginal R² = .0005, Conditional R² = .0005. 

Comparison of manual condition with autonomous condition (no fog). 

Also as before, the second model used participants as the random factor 

and trial type (manual cones hazard, autonomous drive crash hazard no fog, 

autonomous drive cones hazard no fog, autonomous drive crash hazard with fog, 

autonomous drive cones hazard with fog) as the fixed factor.  There was an overall 

significant effect of trial t(207.3) =2.06, p =.04, Marginal R² = .08, Conditional R² = 

.09.  However, once again post-hoc contrasts showed no significant difference in 

the comparison of interest, between the ‘manual cones hazard’ condition and the 

‘autonomous drive cones hazard no fog’ condition (p>.05). 
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Results from remaining trial comparisons. 

Again, for completeness I note that post-hoc contrasts showed a significant 

difference between the ‘autonomous drive cones hazard no fog’ condition (3.9 sec) 

and the ‘autonomous drive crash hazard with fog’ (3.5 sec; p =.03). However, this 

comparison is not meaningful because it confounds fog presence and hazard type. 

There was also a significant difference between the ‘autonomous drive cones with 

fog’ condition (5.2 sec) and the ‘autonomous drive crash hazard with fog’ (3.5 sec; p 

=.003). This indicates that, following the handover from the autonomous condition 

with fog, TTC was greater for an upcoming cone hazard than for an upcoming crash 

hazard. 

Lane position analysis. 

The distance in centimetres from the centre of the lane was calculated for 

all autonomous drive conditions for 60 seconds following the start of the takeover 

request.  Smaller lane position values represent a vehicle position that is closer to 

the centre of the lane.  For the model, participants was used as the random factor, 

with screen manipulation (no-fog, with-fog) and time bin (60 x 1 sec time bins) as 

the fixed factors.  There was no overall effect of screen manipulation (no fog = 54.2 

cm, fog = 52.7 cm), t(287000) = 0.08, p =.91, Marginal R² = .17, Conditional R² = .26.  

The effect of time bin was significant for all times (p <.0001) except for the 0-1, 1-2, 

2-3 sec time bins (p >.08). This result is unsurprising, because the autonomous 

driving system was still in control of the vehicle for the three seconds following the 

takeover request.  The interaction between screen manipulation and time bin was 

significant at a large number of time points. For the sake of brevity, Table 6.1 below 

covers only the first ten seconds following the start of the takeover request. The 

results for the full 60 seconds can be seen in Appendix A. 
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Table 6.1. Mean distance in centimetres from the lane centre and standard 

deviation as a function of time bin (0-10 sec) and fog condition. 

(ns= non-significant, *p<.05, **p<.01, ***p<.0001) 

As can be seen in Table 6.1, there was no difference in lane positioning 

between the fog and no fog conditions in the first three seconds following the 

handover request. This is not surprising, because the automated system was 

controlling the lane positioning during that time. Over the following four seconds, 

drivers positioned the vehicle significantly further from the centre of the lane in the 

no fog (vs. fog) condition. However, it is important not to overstate the importance 

of these results, given that the maximum difference between the fog and no fog 

conditions amount to around 11cm, which is not particularly meaningful in the 

context of a normal driving task.  The remaining three seconds for which data are 

shown in the table demonstrate a more varied pattern of results, without any 

systematic pattern of difference between the fog and no fog conditions. 

Eye tracking analysis. 

Fixation time back to the screen. 

 The first fixation time (FFT) back to the screen from the start of the takeback 

warning signal was calculated using the saccades package in R (Malsburg, von der, 

 No fog With fog  

Time bin (sec) Mean SD Mean SD Significance 

0-1 1.2 1.7 1.2 1.6 .97ns 

1-2 1.7 2.0 1.8 2.0 .99ns 

2-3 0.9 1.0 0.9 1.0 .96ns 

3-4 3.6 5.6 3.5 5.8 <.0001*** 

4-5 27.6 25.1 23.9 25.0 <.0001*** 

5-6 64.3 43.9 53.4 38.0 <.0001*** 

6-7 69.3 43.4 62.1 36.7 <.0001*** 

7-8 63.3 41.2 64.5 40.0 .36ns 

8-9 61.4 43.5 64.4 42.6 .03* 

9-10 62.1 44.4 59.1 38.9 .03* 
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2017).  Any fixations of less than 100ms or more than 2000 ms were removed.  

Additionally, any RT to look back at the display over 5000ms were also removed.  

For the model, participants was used as the random factor and screen manipulation 

(no-fog, with-fog) was the fixed factor. There was a significant difference in FFT 

between the no fog condition (mean = 1989ms) and the fog condition (mean = 

1566ms), t(182.72) =2.73, p =.007, Marginal R² = .02, Conditional R² = .24. See 

Figure 6.4. 

Figure 6.4. Time taken to make first fixation back to the screen after a takeover 

request in milliseconds (error bars represent 95% CI). 

In line with the analysis of the time taken for participants’ hands to return to 

the wheel, participants were quicker to return their eyes to the screen in the fog 

(vs. no fog) condition. Again, it seems likely that these results reflect an alerting 

effect in the fog condition, due to the abrupt removal of the fog causing a sudden 

visual change at the point of the handover request. This suggests that the 

presentation of an artificial stimulus creating a similar level of visual change at the 

point of the handover request (e.g. a large flashing stimulus on the windscreen) 

could improve reaction times to the request. However, as this was not the focus of 
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this study, more research will be needed before firm conclusions concerning this 

possibility can be drawn. 

First fixation duration. 

The duration of the first fixation back to the screen was also compared 

between the fog and no fog conditions. Once again, any fixations of less than 

100ms and more than 2000ms were removed.  For the model participants was used 

as the random factor and screen manipulation (no-fog, with-fog) was the fixed 

factor.  There was no significant difference between the no fog condition (358 ms) 

and the fog condition (328 ms), t(196.56) =1.05, p =.31, Marginal R² = .005, 

Conditional R² = .008. 

Percentage of road centre. 

The percentage of road centre (PRC) was calculated using the eyetrackingR 

package (Dink & Ferguson, 2015) by finding the median fixation point for each 

individual participant and then constructing a square interest area of 6o by 6o visual 

angle.  The number of gazes that fell in the interest area was then expressed as a 

proportion of the total number of gazes.  The higher the proportion of gazes in the 

road centre, the more focused on task relevant information the participant is 

assumed to be.  The PRC was only calculated for the comparison between fog and 

no fog conditions, as this was the main analysis of interest for this study. The basic 

data preparation was conducted for track-loss (i.e. when the eye tracker lost the 

eyes, through blinks, looking away or very low validity of gaze capture).  There are 

no clear guidelines for what is acceptable tracker loss for this type of analysis.  By 

comparison in an early word learning study of 18-48 month olds, a track loss 

threshold of 25% was used (Yurovsky & Frank, 2017).  Because of the challenging 

nature of the eye tracking in this study (due to the fact that participants were 

encouraged to look away from the screen and down at their phones or tablets 

during periods of automation) I took a slightly more liberal threshold of 40% track 

loss on individual trials and 40% track loss for individual participants (i.e. if an 

individual trial for one participant had more than 40% track loss it was removed 

from the analysis and if an individual participant had more than 40% track loss 
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across all trials they were removed).  This resulted in 8 trials being removed and the 

data from 1 participant. 

For the model, participants were used as the random factor and screen 

manipulation (no-fog, with-fog) and time bin (60 x 1 sec time bins) as the fixed 

factors.  I used a logit adjusted proportion of PRC for the analysis but for clarity of 

interpretation I will report the proportion (%) of PRC.  There was a significant effect 

of screen manipulation in the first second following the handover request signal (p 

=.04, no fog mean PRC= 55.6%, fog mean PRC= 36.9%, see figure 6.5).  Thus, 

fixations during the first second were more dispersed following an automated 

period without visual scene information than following an automated period where 

visual scene information remained available. This finding could be seen as reflecting 

an increased need to examine the entire scene following the fog condition, due to 

the reduced situation awareness that is likely to have occurred during that 

condition (vs. the no fog condition). These results might at first appear difficult to 

reconcile with the mean values from the first fixation back to the screen analysis 

(no fog condition mean = 1989 ms, fog condition mean = 1566 ms), which 

suggested that many participants would not have returned their gaze to the screen 

in the first second following the handover signal.  However, this difference is likely 

to be due to the way the two measures were analysed.  In the PRC analysis, all 

fixations to the scene were analysed regardless of their duration i.e. very short 

(<100 ms were included) and long (>2000 ms) fixations were included in the 

proportion analysis, whereas in the FFT analysis very short and long fixations were 

excluded from analysis.  This therefore means in the FFT only a first fixation greater 

than 100 ms would be counted as the first fixation, as previous research shows that 

fixations are very rarely less than 100 ms and often in the range of 200-400 ms 

(Salvucci & Goldberg, 2000) this seemed like a reasonable assumption to make.  

This therefore means that the amount of data included in each analysis was 

different, and the FFT analysis will have had a smaller amount of usable data 

compared to the PRC analysis. 

The next significant difference between the fog and no fog conditions 

occurred 15-16 sec after the handover signal (p =.02, no fog mean = 74.7%, fog 
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mean = 68.2%). This is in line with the previous finding, such that fixations were 

more dispersed in the fog (vs. no fog) conditions. And indeed, similar patterns of 

significant differences also arose at some subsequent time points, namely: 28-29 

sec (p =.03, no fog mean = 75.4%, fog mean = 67.1%); 29-30 sec (p =.01, no fog 

mean = 77.6%, fog mean =68.1%); and 53-54 sec (p =.03, no fog mean = 85.2%, fog 

mean = 79.5%).  These differences were not significant at any other time points (p 

>.06 for all comparisons). Overall, although significant differences between the fog 

and no fog conditions did not arise at all time points in the 60 seconds following the 

handover request, where there were significant differences they were always in the 

same direction, such that fixations were more dispersed following the fog (vs. no 

fog) condition. Taken together, these results suggest that drivers may have been 

taking in a small amount of visual information in the no fog condition, despite being 

engaged with their devices, such that they subsequently needed to spend less time 

scanning the scene very broadly when the automated system disengaged. 
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Overall Discussion 

 In the present study, I examined the influence of providing visual 

information during a period of autonomous on both driving behaviour (lane 

position, headway, time to contact and speed) and eye movement behaviour 

(percentage of road centre, first fixation time and average fixation duration). 

Overall, my two goals were to examine the effect of providing or occluding visual 

information during a period of automated driving on takeover performance and 

how responding to a hazard might differ following automated driving as compared 

with manual driving. 

One of the most consistent findings was that takeover responses were 

quicker when the period of automated driving included heavy fog (and thus visual 

information from the driving scene was occluded) compared with when the 

automated period did not include fog. This finding was the same whether takeover 

response was measured in terms of the time taken to make a fixation back to the 

screen or the time taken to return the hands to the wheel.  As discussed above, it is 

likely that the abrupt removal of the fog caused a visual transient which captured 

visual attention.  However, it is also possible that drivers were aware of their 

reduced access to visual information during the fog condition and therefore 

prioritised the takeover process more highly in fog (vs. no fog) conditions. Future 

work could examine this possibility directly by removing the fog more gradually, so 

as to avoid creating such a large visual change. 

It is also interesting to note the large standard deviations in both of these 

takeover measures (time taken to return hands to the wheel and to make a fixation 

back to the screen). This is in line with previous research (e.g. Eriksson and Stanton, 

2017) identifying large individual differences in the time taken to regain control. It 

is also likely that the variation in the tasks that the participants were engaged with 

could have contributed to these results.  Participants were given free choice of the 

task to carry out on their device during automated driving, so it is possible that 

those who were doing a task that interested them and engaged them more may 

have taken longer to fixate away from the device and put the device down than 
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those who had chosen a less engaging task. Future research could examine this 

possibility by controlling the task that participants carry out during the period of 

automated driving, although this would lose some of the ecological validity that was 

present in the current study, because in real world operations drivers will have 

control over the additional tasks that they perform. These results have implications 

for the takeover request times used by the automobile industry or policy makers. It 

might at first seem prudent that they should endeavour to use transition times that 

are as long as possible, so that they do not exclude users with reaction times that 

are longer than average.  However, this idea may not be feasibly practical, 

particularly because the need for the human driver to take over will not always be 

detected with a great deal of warning. Nevertheless, it might be possible through 

settings present in the autonomous system to tailor the takeover request time to 

individual drivers, and this could be an interesting area for future research. 

The PRC analysis which is argued to be a sensitive indication of visual 

distraction showed that in the first second after a takeover request visual attention 

was more dispersed in the with-fog to the no-fog condition.  This shows that when 

visual information has been reduced during automated driving, a driver is more 

likely to look holistically at the visual scene during the subsequent takeover 

process, rather than focussing on a central point where most of the important task 

relevant information is available.  This is indicative of a driver in the with-fog 

condition reorienting themselves back into the visual scene and the task of driving 

by widely scanning the environment.  Importantly, this reorientation seems to be 

quick and resolves after 1 second.  The observed difference in PRC between the two 

conditions at 15-16 secs, 28-30 sec and 53-54 sec were always in the same 

direction, such that scanning was more dispersed following fog (vs. no fog) in the 

period of autonomous driving. It is possible that this may indicate a similar 

reorientation process occurring from time to time across the 60 seconds. However, 

this seems unlikely because visual attention is likely to resolve to a similar level 

fairly quickly following the handover, so it seems implausible that visual occlusion 

during the automated period would still be having genuine effects.  If that were the 
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case, I would expect to see more differences earlier after the takeover request, but 

these were not apparent. 

The driving behaviour measures show that the braking RT, speed, headway, 

and TTC at the start of the driving hazard do not significantly differ between the 

two occlusion conditions.  This indicates that in the approximately 3-4 seconds after 

the driver takes back control of the vehicle they regain a similar amount of 

vehicular control.  However, the lane position analysis shows that at the takeover 

point (after the 3 second takeover warning) where the vehicle is back under manual 

driver control, there is a significant difference in lane position between the 

conditions.  In the initial 4 seconds (between 3-7 secs in table 6.1) drivers in the no-

fog condition on average deviated further from the centre of lane than those in the 

with-fog condition.  As argued in relation to the takeover reaction time results, it is 

possible that drivers in the with-fog condition were aware of their reduced access 

to visual information and therefore prioritised the takeover process more highly 

than drivers in the no-fog condition, which could explain why drivers in the with-fog 

condition appeared to exhibit slightly better control of lane position. However, 

these differences between the two conditions are relatively small, in the range of 

11 centimetres at the most, and differences were not observed in any of the other 

measures of vehicle control, so it is important not to overstate the implications of 

these results. 

Responding to a hazard was observed to differ following automated driving 

as compared with manual driving in the current study.  Specifically, participants 

tended to drive more slowly in the autonomous condition at the start of the driving 

hazard, perhaps suggesting that drivers are more cautious in the period following 

the handover and therefore adopt lower speeds.  However, this cautious driving 

behaviour was not mirrored in the headway and TTC analysis.  Additionally, braking 

in response to a developing hazard was no slower following an autonomous 

handover than following a period of manual driving.  Taken all together these 

results show that after a period of automation and a short 3-4 sec duration after 

takeover before the hazard starts, drivers in the autonomous conditions show very 

few differences in driving performance compared to manual drivers.  This 
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potentially indicates that drivers are able to quickly and effectively reengage with 

manual driving following a period of autonomous driving.  The patterns of results is 

similar to those found by Young and Stanton (2007) who found no differences in 

braking response time to a hazard between autonomous and manual driving.  But 

this contrasts with the results found by Radlmayr, Gold, Lorenz, Farid, and Bengler 

(2014) demonstrating slower responses to hazards after a period of automation 

compared to a manual driving condition.  Additionally, my results show similar 

takeover performance as found by Mok et al. (2017), and a similar pattern of visual 

attention as found by Louw et al. (2016) in their studies.  However, the results of 

my study need to be qualified in the sense that the driving environment used was 

benign, i.e. swarm vehicles were not decelerating rapidly and there were no 

substantial speed differentials between the ego and swarm vehicle.  Although 

drivers were able to maintain the “status-quo” of vehicular control, they might not 

be ready for severe avoidance manoeuvres after a period of autonomous driving. 

Although the handover requests in the present study occurred at a similar 

speed in all conditions (60-70 mph), it is important to note that the speed of the 

vehicle at the moment of handover can affect the speed and accuracy with which 

the driver is able to regain control of the vehicle. The Venturer Trial 1 assessed this 

using two methods: a driving simulator and a road driven vehicle (Morgan & Alford, 

2017).  In both methods, the key experimental variables were takeover (time taken 

to reengage with vehicle controls) and handover (time taken to regain a 

baseline/normal level of driving) behaviour.  Performance was measured when 

switching frequently between automated and manual driving within urban settings 

during relatively short (4 -8 mins) driving scenarios.  The IV in this study was speed 

(20, 30, 40, and 50 mph) and the DVs included lateral acceleration, lane position, RT 

to regain manual controls after a handover request and average speed.  One of the 

unique aspects of this study’s methodology is that it allows for direct comparisons 

between the behavioural results from the simulator and real-world driving.  31 

participants took part in the simulator study and 27 participants took part in the 

real-world road driven vehicle study.  In the simulator study, the takeover time 

analysis revealed that takeover time was significantly higher in the 20-mph 
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condition than the 30 mph (p < .01), 40 mph (p < .05), and 50 mph (p < .001) 

conditions. More specifically, the minimum amount of time to take back the 

simulator controls after the handover request was 1.99 seconds in the 50-mph 

condition rising to 2.47 seconds in the 20-mph condition.  Takeover time in 

between the 30, 40, and 50 mph conditions did not differ statistically (ps> .05).  In 

the next set of analyses, a baseline manual condition was compared with the 

handover phase (over 55 secs) for the IV and several different DVs.  The standard 

deviation lateral position (SDLP), measured in metres from the centre of the lane, is 

an index of a drivers ‘weaving’ in a lane, and is a stable measure of driving 

performance with high test–retest reliability (Verster & Roth, 2011). Analysis of this 

measure revealed a difference between the handover period and manual baseline 

only in the 50-mph condition, such that there was more weaving during handover 

(vs. baseline). This indicates that participants were less able to maintain a stable 

lane position during handover at this higher speed.  The steering input results (how 

many times the driver moves the steering wheel) showed that in all but the 30 mph 

condition participants tended to move the steering wheel more often during 

handover than in the baseline condition suggesting less controlled steering during 

handover.  In summary, it took approximately 2 seconds to take back manual 

vehicle controls following a handover request in the 30-50 mph conditions, with a 

slight slowing in the 20-mph condition.  At some speeds, there was also lower 

control over the vehicle (steering input) and less appropriate positioning within lane 

during handover (vs. the baseline condition). 

These results make an interesting comparison with my study, in particular in 

relation to the handover times. More specifically, whereas Morgan & Alford (2017) 

found reaction times of around 2 seconds for taking back manual control following 

the handover request, I found reaction times of around 4 seconds. This is likely to 

reflect the fact that participants in the current study were engaged in a secondary 

task (using their phone/tablet) and this is likely to have slowed down their motor 

RTs.  

 In the real-world driving task, Morgan and Alford (2017) used the IV of 

driving mode (manual driving and driving after handover) and a range of DVs 
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(including average speed, SD of average speed and SDLP).  The speed of the 

autonomous vehicle was limited to a maximum of 20 mph.  The handover time was 

1.73 sec (SD=.81) at an average speed of 14-17 mph.  This handover time is shorter 

in duration than the comparable speed (20mph) in the simulator condition, perhaps 

suggesting that people were not prioritising the takeover process to the same 

extent in the simulator as they did in real driving conditions. The driving speed and 

SD speed were compared to the baseline, over 0-1 second, 0-5 seconds and 0-10 

seconds after handover.  The manual baseline speed recorded at the same location 

as the assessed handovers was close to 20 mph.  All other handover speeds were 

lower than at baseline and decreased with longer post- handover period of 

assessment (baseline - 20 mph; 1 sec after handover - 17 mph; 5 secs after 

handover - 15 mph; 10 secs after handover - 14 mph).  This result suggests that 

drivers slow down after control is transferred back to them. The SD speed showed a 

reduction in speed variation at 1 sec after handover in comparison to baseline, 

speed variation then increased at 5 secs after handover and then further at 10 secs 

after handover.  

In summary, the results of both the simulator and real-world studies show 

that the handover time is impacted by the autonomous vehicle’s speed at the point 

of handover, with longer handover times in the lower speed condition. This 

potentially indicates that the drivers believe that the risk of the vehicle swerving or 

changing course is lower at slower speeds and therefore treat the handover process 

with less urgency than they do at higher speeds.  As for the SDLP results, these 

show that vehicle control and lane positioning are easier to manage at lower 

speeds and only in the fastest speed condition (50 mph) was there a significant 

difference from the baseline condition. It is therefore possible that different results 

would have been found from the current study had lower handover speeds been 

used, and this could be an interesting area for future research. 

For reasons of practicality, the periods of automation that I used in the 

current study were fairly brief (i.e. 7-8 minutes) whereas takeover requests in 

future AVs are likely to occur less frequently.  To examine if there are any 

differences between short or long periods of automation, Feldhütter, Gold, 
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Schneider and Bengler (2017) compared driving performance, eye movement 

patterns and RTs during a takeover after 5 or 20 minutes of automated driving in a 

driving simulator.  They also examined the effect of two levels of task load (no 

additional task, and visual pattern matching task) on takeover performance.  There 

was a significant difference in RT – defined as the time that the participants need 

for directing the first gaze away from the secondary task after the takeover request 

– between the 5-minute automation condition (.55 sec) and the 20-minute 

condition (.64 sec).  However, there was no difference between the two conditions 

in take over time – defined as the time that the participants need to start a 

manoeuvre as a reaction to the takeover request.   Thus overall, there is a slight 

slowing of the first fixation back to the central visual scene following a longer 

period of automation, but for all other measures there is no difference of the length 

of automated driving period that occurs before the handover.  This potentially 

indicates that the results of the current study should be broadly comparable to 

studies that use longer periods of automation. 

One of the design features that have been explored by vehicle manufactures 

to help drivers reengage with driving after a period of autonomous driving is to 

periodically prompt the driver to take over control the vehicle. Although this 

technique was not used in the current study, there is evidence to suggest that it can 

improve takeover performance. For example, in a simulator and eye tracking study, 

Merat, Jamson, Lai, Daly and Carsten (2014) examined drivers’ ability to resume 

control from a highly AV in three conditions: one in which automation was switched 

off and manual control was required at regular 6 minute intervals (fixed); a second 

condition where the transition back to manual driving was based on the duration of 

time drivers were looking away from the screen (variable); and a third manual drive 

condition that was used as a baseline. 46 participants completed the three driving 

conditions in a high fidelity driving simulator.  Merat and colleagues measured 

percentage of road centre (PRC) and SDLP over the 60 seconds following the 

handover.  The results showed that PRC as measured across the entire 60 seconds 

following the handover did not vary significantly between the fixed and variable 

conditions.  However, differences were revealed when the PRC was broken down 
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into 12 five-second time chunks.  In the variable condition (vs. the fixed condition), 

the PRC was generally lower during the first minute of manual control.  Specifically, 

in the fixed condition, the PRC stayed stable over the first 10 seconds following the 

handover, but in the variable condition the PRC started off lower than the fixed 

condition (indicating more of a spread of fixations) but quickly increased over the 

first ten seconds to a level that was comparable with that in the fixed condition.  

Additionally, PRC in the variable condition significantly decreased between 30-50 

secs whereas PRC in the fixed condition remained relatively stable over this period.  

This result would indicate that in the variable condition the driver’s visual attention 

is more diffuse than in the fixed condition after the initial takeover request, and 

after a short period of stabilisation again dips before recovering to a similar level as 

in the fixed condition.  SDLP was not significantly different between the two 

conditions when collapsed across the entire 60 seconds following the handover 

request. However, for both conditions, SDLP was much lower during the first 10 

secs (approximately .05m) than during the remaining 50 seconds, during which time 

SDLP stabilised to between 0.1- 0.2m.  This indicates that drivers are likely to spend 

some time orientating themselves within the driving environment before they start 

to make changes to their lateral position.  In summary, these results importantly 

show that there is a quantifiable difference between a fixed or variable schedule of 

takeover requests in patterns of some aspects of driving behaviour and visual 

attention.  The implications of the results are that a fixed schedule may work better 

at reengaging drivers with manual driving rather than a schedule in which the 

handover is only requested when the driver’s attention drifts.  However, this may 

not be a practical method for keeping drivers in the loop and future research is 

needed. 

The current study used an auditory takeover request signal presented from 

speakers within the computer monitors. Indeed, in almost all studies in this area 

takeover requests are presented either visually or auditorily and unidirectionally, 

with little research identifying if these modalities are the most optimal ways to 

present this information. Petermeijer, Bazilinskyy, Bengler and de Winter (2017) 

conducted a simulator-based study to investigate the effects of takeover request 
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modality and directionality on drivers' steering behaviour when facing a collision 

scenario.  24 drivers drove an AV which could issue takeover requests in different 

modalities: auditory, vibrotactile, and auditory-vibrotactile.  The auditory stimuli 

were presented via speakers in the simulator and the vibrotactile stimuli via a seat 

that included tactors on both sides.  Regardless of modality, takeover requests 

could be presented from the left, from the right, or from both the left and the right.  

The takeover request warned the drivers about a stationary vehicle that had to be 

avoided by changing lane. The researchers measured the hands to the wheel RT, 

braking RT and lane change RT.  Interestingly, the auditory-vibrotactile (1.5 sec) 

requests induced significantly faster hands to the wheel RT than the either the 

auditory (1.69 sec) or vibrotactile requests (1.8 sec).  There was no difference in 

hands to the wheel RT time between the unimodal cues.  Additionally, the braking 

RT and lane change RT did not significantly differ between either of the three 

conditions.  Finally, the direction and congruency of the stimuli (i.e. if the stimuli 

were presented from the left and the driver needed to move left) did not influence 

any of the RT measures.  In summary, the results of this study show that a 

multimodal auditory-vibrotactile cue can speed up the RT for driving returning their 

hands to the wheel and start regaining control of a vehicle compared to unimodal 

cues. There seem to be no benefits of directional auditory and vibrotactile stimuli in 

prompting a driver to change lane if required to by the autonomous system.  

However, it is possible that the saliency of the cues and the relative novelty of the 

presentation of the cues may have made it more difficult for the drivers to utilise 

the cues effectively.   

Participants in the current study had only a brief practice period in which to 

become familiar with the handover process. Although this was necessary from a 

practical standpoint, it may mean that handover performance was underestimated 

in the present study, because such performance has been shown to improve with 

practice.  For example, Hergeth, Lorenz and Krems (2017) examined the effects of 

prior familiarisation with takeover requests during level 3 automation on drivers’ 

takeover performance.  Using a driving simulator, takeover performance was 

examined across four familiarisation groups (no familiarisation, description, 
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experience, description-and-experience).  Takeover time was significantly longer in 

the no familiarisation (3.5 secs), and experience conditions (2.9 secs) than in the 

description-and-experience condition (2.3 secs). There was no difference between 

the description condition (2.5 sec) and the other conditions.  Thus, prior 

familiarisation with takeover requests can reduce the RT to take over control of the 

vehicle after a system request to do so, particularly if the familiarisation includes 

both description and experience. However, there were no effects of familiarisation 

condition on the measure of time to collision with the lead vehicle at the takeover 

request (i.e. the time after which two objects would collide if they maintained their 

present speed and trajectories).   

Finally, there is evidence that takeover processes can be affected by the 

level of trust that drivers have in the autonomous system. For example, Payre, 

Cestac and Delhomme (2016) conducted a study to assess the impacts of practice, 

trust, and interaction on manual control recovery when resuming control of a level 

4 AV in a driving simulator.  69 participants were split into two groups: one group 

had limited practice of resuming control of the vehicle after a period of automation; 

the second group received additional practice on this task.  All participants 

completed a questionnaire before and after the driving session that probed their 

trust in the autonomous driving system.  There was no significant difference in the 

trust of the system before or after experiencing the autonomous driving system.  

Thus, in this study at least, the level of trust in the system was not influenced by 

exposure to the driving system.  However, participants that had a higher trust score 

showed longer RTs to resume control of the vehicle than participants with a lower 

trust score, and these effects were not modulated by the amount of practice 

available.  These findings suggest that a driver with a higher level of trust in the 

system might also exhibit a higher level of complacency toward the system, such 

that they are more likely to assume that the system is capable of dealing with 

complex situations without manual input, and they therefore allocate less attention 

from the driving task.  By contrast, drivers with low levels of trust might be less 

complacent, constantly monitoring what the system is doing and the driving 

environment, and therefore are more likely to be primed to take over vehicular 
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control at short notice.  This theory is broadly congruent with other work on 

automation (not driving-specific) that shows that complacency in autonomous 

systems due to lack of understanding of the system’s boundaries and limitations 

can influence how people respond towards them (Bainbridge, 1983; Hoc, Young, & 

Blosseville, 2009). Thus, although I did not measure or manipulate participants’ 

levels of trust in the autonomous system in the current study, it is possible that pre-

existing differences in their levels of knowledge and acceptance of automation may 

have influenced their takeover performance, and this may have contributed to the 

large individual variability that I observed. Given the more general importance of 

people’s trust in automation for the eventual acceptance of driverless technology, 

my final empirical study focused on measuring current attitudes to autonomous 

vehicles. 
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Chapter 7 – Attitudes to Autonomous Vehicles Survey 
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Introduction 

“When a train goes through a tunnel and it gets dark, you don't throw away the 

ticket and jump off.  You sit still and trust the engineer”. Corrie Ten Boom 

Whereas the previous chapters have looked at dual task performance, 

situation awareness and visual attention, I am now turning to examine people’s 

attitudes to automated vehicles. This is important because the route to full 

automation is likely to involve significant challenges, with public attitudes playing 

an important role in determining the level of success with which the technology is 

introduced.  Trust in automation and in particular trust in AVs is important for the 

eventual uptake and success of AVs. There already exists a lot of research on this 

topic, as outlined in the following sections, but the survey reported in the current 

chapter includes an additional experimental manipulation, designed to investigate 

whether providing up-to-date information on the future impact of AVs influences 

people’s opinions of AVs.  

General Attitudes Towards AVs 

 There already exists a rapidly-growing body of surveys on public attitudes to 

vehicle automation. For example, Gkartzonikas & Gkritza (2017) identified 25 such 

surveys published since 2012. In general, the findings remain unclear concerning 

the public’s overall level of interest in using or buying the technology (e.g. Cavoli, 

Phillips, Cohen, & Jones, 2017). However, there is fairly good agreement regarding 

the most frequently identified concerns:  

1) Safety and reliability of the system: safe functioning is often rated as 

people’s top priority when judging the desirability of autonomous vehicles 

(e.g. Bansal & Kockelman, 2016; Schoettle & Sivak, 2014)                   

2) Security of the software: respondents typically raise the potential for people 

to hack into vehicle control systems as another serious concern (e.g. 

Kyriakidis, Happee, & de Winter, 2015) 

3) Cost: there is an assumption that autonomous vehicles will increase the cost 

of vehicle ownership (e.g. Bansal & Kockelman, 2016; Howard & Dai, 2014) 
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4) Liability: several surveys identify concerns around the legal issues associated 

with use of the technology (e.g. Howard & Dai, 2014; Kyriakidis et al., 2015). 

Given this level of agreement concerning the most frequently-raised concerns 

around the introduction of AVs, the survey used in this chapter did not ask 

participants directly about their concerns, but instead focused on their trust and 

acceptance of the technology. 

  In order to understand what factors influence trust in AVs, Choi and Ji 

(2015) developed a structural equation model of trust and acceptance of AVs.  A 

survey of 552 Korean drivers was conducted, focusing on drivers’ acceptance of 

new technology, how much they trust the technology and the perceived risk of the 

new technology.  They identified 10 constructs (such as perceived usefulness, 

perceived ease of use, trust, perceived risk, system transparency, technical 

competence and situation management) to be used in the model and tested the 

strength of the hypothesised relationships in the model and the robustness of the 

model in predicting behavioural intention to use AVs.  Perceived usefulness and 

trust were the major determinants of intention to use AVs, with some of the major 

determinants of trust levels being identified as: system transparency, technical 

competence, and situation management.  Trust also had a negative effect on 

perceived risk i.e. as trust in AVs increased their perceived related risk decreased. 

There is a potential limitation to this study, being that they had a relatively high 

proportion of younger (<35 yrs.) respondents (who may be more open to 

technological developments) as well as more male than female respondents. The 

potential problem with this gender imbalance is that there may be a different 

pattern of responses between the genders, as I will outline in the following section.   

Gender Differences in Trust and Acceptance Of AVs 

There are notable differences between the sexes in terms of their 

willingness to use AVs, with males usually reporting higher tendencies to use AVs 

than females (Ernst and Young, 2013; Kyriakidis et al., 2015).  Hohenberger, Spörrle, 

and Welpe (2016) investigated the possibility that affective reactions (the 

emotional or mood response to a situation, e.g. pleasure or anxiety) might be able 
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to explain behavioural intentions and responses towards AVs, and that these effects 

might vary depending on sex and age.  Using an internet-based survey methodology 

they sampled 1603 German participants asking five questions in relation to a 

description of a level 2-4 SAE vehicle (“How frightening would such a car be for 

you?, How much pleasure would driving such a car provide for you?, Were you 

willing to use such a car today?, Age, and gender”). Using mediation analysis, they 

found that affective responses towards AVs (e.g. anxiety or pleasure, measured 

using a Likert scale in relation to the questions above) explained the effect of 

biological sex on willingness to use AVs, such that the female group which exhibited 

higher levels of anxiety were less likely to respond that AVs would be pleasurable or 

they would be willing to use them.  Males showed lower levels of anxiety and 

higher levels of willingness to use and pleasurableness from AVs.  Additionally, age 

was an important factor in determining the level of anxiety around AVs across all 

participants, with the level of anxiety decreasing as age increased.  The results of 

this study indicate two clear messages: one, the uptake and willingness to use AVs 

is influenced by gender, with males reporting lower levels of anxiety than females; 

and two, increasing age moderates the effect of anxiety in the willingness to use 

AVs, as older people feel less anxious than younger experienced drivers with AVs.  

Although, it was beyond the scope of the current study to attempt to measure 

anxiety, the effects of gender and age on responding will be considered. 

The Effect of Providing Information About AVs on People’s Trust and Acceptance 

of Them 

 Two of the main factors than might affect drivers’ trust of automation are: 

1) experience of automation; and 2) a better understanding about the pros and 

cons of automation.  The former is harder to assess at present due to the relatively 

low prevalence of higher level (2/3 SAE) vehicle automation (although I did ask 

participants to report their prior exposure to AVs in the current survey).  By 

contrast, the effects of providing information are more amenable to experimental 

study.  Indeed, a small number of studies have assessed whether providing 

information to survey respondents can influence their trust in automation.  For 

example, Souders and Charness (2016) provided older participants (55+) with 
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information regarding AVs and different ADAS systems, and measured their trust in 

AVs.  A sample of 459 took part in the survey with 188 receiving the additional 

information and 271 not receiving the additional information.  The results showed 

that there was no difference between the control and information group for any of 

the demographics collected, highlighting that the groups were homogenous.  The 

main survey results showed that for the combined data for both groups, the 

willingness to use AVs, the perceived benefits and familiarity with ADAS was all 

positively correlated with their trust in the system i.e. as trust increased so did the 

acceptance of the technology.  The effect of providing information had little 

significant effect on the overall trust in automation, but did influence the level of 

concern about issues involving AVs and their safety.  More specifically, those who 

received the information sheet reported less concern about AVs than those who did 

not.  In conclusion, the results of this study show that providing information about 

AVs and ADAS systems to older drivers does have a small effect on their concern 

about AVs.  However, the generalisability of the results is potentially limited given 

that the sample surveyed were all older drivers, who may not have views that are 

representative of the population as a whole (as demonstrated, for example, by 

Hohenberger, Spörrle, and Welpe, 2016, described above).  One of the strengths of 

my survey is that I imposed no such restrictions, which should render the results 

more generalisable to the wider population. 

 Howard and Dai (2014) surveyed a wider age and gender range than 

Souders and Charness (2016) and also presented additional information to 

participants. They surveyed 107 people at an American science museum, and 

showed all participants a short 10-minute video that explained what AVs are and 

how the technology works.  The results showed that participants found increased 

safety, the ability to multitask, and convenience to be the most useful features of 

AVs.  Additionally, the results revealed that participants were interested in AVs as 

an improvement to their lives, and valued personal comforts and convenience 

higher than societal benefits (like environmental friendliness and reduced travel 

times).  The aspect that was most concerning for most participants concerned who 

would be liable if there were a crash, the cost of AVs and control of the vehicle.  
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Finally, the males surveyed were more likely to be concerned with liability and less 

likely to be concerned with control than the females.   Although it is possible that 

the presentation of information about AVs (via the video) may have influenced the 

responses of respondents, with no control group it is not possible to assess the 

effect. 

The purpose of this study was first to gauge peoples’ general views on AVs, 

and whether they trusted and accepted AVs on the road in the UK.  Second, I 

wanted to examine if presenting information about the potential pros and cons 

about the effect of AVs on business, transport, society and individuals would 

influence their views of AVs. This study provides a novel way of examining the 

effect of information on people’s perception of AVs by using a control group (with 

no information) and an experimental group (with information) to provide a direct 

assessment of the effects of providing new information about AVs to the public.   

Method 

An online survey examining people’s trust and acceptance of AVs was 

conducted from December 2016 to February 2017 using Qualtrics. The majority of 

questionnaire items used in the survey were adapted from previous studies of 

general driving attitudes, trust and acceptance, and specific attitudes to AVs (AAA, 

2016; Garcia, Kreutzer, Badillo-Urquiola, & Mouloua, 2015; Tennant et al., 2015).  

Additionally, I used an adapted version of the 12 question ‘trust between people 

and automation’ scale (Jian, Bisantz, & Drury, 2010).  This is 7-point Likert scale 

made up of statements that evaluate trust between people and automated 

systems.  I adapted the scale by changing the focus of the question from “system” 

to “a driverless vehicle(s)”. For example, “I am suspicious of the system’s intent, 

action or outputs” was adapted to “I am suspicious of a driverless vehicle’s intent, 

action or outputs”.  Additionally, a range of demographic information was also 

collected, covering driving habits, driving experience, experience of driving aids, 

occupation and education. The full text of the survey, along with responses 

(including all freeform responses to an open section at the end asking for “do you 

have any additional comments?”) is included in Appendix B and C. 
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As previous research has indicated that a lack of information may cause 

people to adopt a more cautious attitude to AVs, I also provided half of the 

respondents with up-to-date information on AVs (see information sheet in 

Appendix D) before they completed the main survey questions (i.e. after they had 

completed the demographic questions).  Two comprehension questions were 

included for this group (“In the previous article what was the percentage of road 

traffic collisions thought to be caused by human error?” and “What was fatality rate 

of manual driving in the UK?”) with the purpose of screening out participants who 

did not properly comprehend the additional information.  The entire survey took 

between 20-30 minutes to complete. 

An internet-based approach was used with the aim of recruiting a wide and 

diverse demographic. However, I specifically targeted members of public who had 

signed up to take part in the GATEway project. The GATEway (Greenwich 

Automated Transport Environment) project is an £8m research project, led by TRL, 

to understand and overcome the technical, legal and societal challenges of 

implementing automated vehicles in an urban environment. Taking place in the 

Royal Borough of Greenwich, the project is trialling and validating a series of 

different use cases for automated vehicles, including driverless shuttles and 

automated urban deliveries. The work aims to inspire and engage the public with 

the potential of automated transport technology and the project has recruited 

many supporters and those interested in trialling the technology (GATEway, 2017).  

The questionnaire was also disseminated through Twitter, email and the Royal 

Holloway, University of London intranet. The recruitment process resulted in 299 

replies from potential respondents. Only surveys that were at least 85% complete 

and with at least one of the comprehension questions correct (if relevant) were 

included for further analysis, resulting in a final sample of 233 respondents. Finally, 

it should be noted that online surveys, by their nature, do result in the exclusion of 

individuals without computer or internet access. 

Results and Preliminary Discussion 

148 of the 233 respondents were recruited via TRL’s Gateway project, 

having expressed an interest in taking part in research and trials relating to vehicle 
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automation. The remaining 85 people (henceforth referred to as the ‘internet 

group’) indicated that they had been recruited via other means (primarily email and 

social media). The GATEway group (mean age 41) were significantly older than the 

internet group (mean age 35; t (231) = 3.38, p =.001). The GATEway group also had 

a significantly larger proportion of male respondents (79%) than the internet group 

(60%; χ2 (1, N = 229) = 9.24, p =.002). Because both age and gender are known to 

affect attitudes to autonomous vehicles (e.g. Cavoli et al., 2017; Hohenberger, 

Spörrle & Welpe, 2016), and in addition because the GATEway group were 

recruited based on an already-stated interest in driverless vehicles, the results are 

compared separately for the GATEway and internet groups on the two central 

questions (“Driverless cars are a good idea” and “I can trust a driverless vehicle”) in 

acknowledgement of the fact that the GATEway group may be less representative 

of mainstream attitudes than the internet group. 

Overall Attitudes to Autonomous Vehicles 

Overall attitudes to autonomous vehicles can be gauged from responses to 

the two general statements “Driverless cars are a good idea” and “I can trust a 

driverless vehicle”.  The sections below examine the responses to these two 

questions. 

“Driverless cars are a good idea”. 

The results from all participants shows that 81% replied ‘agree’ or ‘agree 

strongly’ and 1% replied ‘disagree’ or disagree strongly’ with the statement above.  

Figure 7.1 shows responses from all participants to the statement ‘driverless cars 

are a good idea’.  In order to test for a difference between the GATEway and 

internet groups, answers were categorised as “agree” (comprising both the “agree” 

and “strongly agree” categories), “neutral” (comprising the “somewhat agree”, 

“neither agree nor disagree” and “somewhat disagree” categories) or “disagree” 

(comprising the “disagree” and “strongly disagree” categories). A Fisher’s exact test 

revealed a significant difference in the patterns of responding across the two 

groups (p =.04).  
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Figure 7.1. Responses from all participants to the statement “Driverless cars are a 

good idea”.  Reprinted from Attitudes to autonomous vehicles, by Hyde, Dalton and 

Stevens 2017, Transport Research Laboratory (TRL). ISBN: 978-1-910377-91-8. 

Reprinted with permission. 

Figure 7.2 therefore shows responses separately for the GATEway and 

internet groups. Note that, despite being less positive than the GATEway group, the 

internet group were nevertheless highly positive overall: 74% replied “agree” or 

“agree strongly” and 1% replied “disagree” or “disagree strongly”.  In line with 

previous research (e.g. Hohenberger, Spörrle & Welpe, 2016) a Fisher’s exact test 

using the same response categories identified a significant difference between the 

response patterns of male and female participants (p < .001). Men were more likely 

to agree with the target statement than women (89% vs. 62%) and less likely than 

women to give a neutral response (11% vs. 36%). I did not undertake detailed 

qualitative analysis of participants’ replies to the freeform response section at the 

end of the survey (in which respondents were asked “Do you have any additional 

comments?”) However, some examples of these comments are provided 

throughout the report where they relate to key themes. Two examples of the most 
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positive comments are provided below, taken verbatim from within the 

questionnaires: 

“Bring them on!” - respondent comment 

 “I work in the railway industry where digital signalling has meant that 

driverless trains are the norm for metro railways. I have seen first hand the 

improvements in safety the technology has delivered therefore I have no 

doubt it will deliver the same results for road transport. I can see the 

enormous benefit this technology will have for elderly and disabled people 

who no longer can drive and find it difficult to use public transport/ walking 

or cycling as mobility options.” - respondent comment 

 

Figure 7.2. Responses to the statement “Driverless cars are a good idea” separated 

by group. Reprinted from Attitudes to autonomous vehicles, by Hyde, Dalton and 

Stevens, 2017, Transport Research Laboratory (TRL). ISBN: 978-1-910377-91-8. 

Reprinted with permission. 

 ‘I can trust a driverless vehicle’. 

The results from all participants on this item demonstrated that 55% replied 

“agree” or “agree strongly”, 23% replied “somewhat agree” and 3% replied 

“disagree” or disagree strongly’. Figure 7.3 shows responses from all participants to 

the statement “I can trust a driverless vehicle”.  Again, in order to test for a 

difference between the GATEway and internet groups, answers were categorised as 
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described for the previous question.  A Fisher’s exact test again revealed a 

significant difference in the patterns of responding across the two groups (p =.004). 

Figure 7.4 therefore shows responses separately for the two groups.  Again, 

although the internet group was in general less positive, their responses showed a 

similar pattern overall.  A Fisher’s exact test using the same response categories 

identified no significant difference between the response patterns to this statement 

of male and female participants (p =.13). 

 

Figure 7.3. Responses from all participants to the statement “I can trust a driverless 

vehicle”. Reprinted from Attitudes to autonomous vehicles, by Hyde, Dalton and 

Stevens, 2017, Transport Research Laboratory (TRL). ISBN: 978-1-910377-91-8. 

Reprinted with permission. 
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Figure 7.4. Responses to the statement “I can trust a driverless vehicle” separated 

by group. Reprinted from Attitudes to autonomous vehicles, by Hyde, Dalton and 

Stevens, 2017, Transport Research Laboratory (TRL). ISBN: 978-1-910377-91-8. 

Reprinted with permission. 

The reduction in positivity in response to “I can trust a driverless vehicle” 

compared with “driverless cars are a good idea” perhaps indicates a general 

openness to the concept of the technology coupled with caution over the reliability 

of the systems as they currently exist. This is supported by the responses to the 

freeform response section at the end of the survey. Of the 57 participants who 

provided responses to this item, eight made the point that their level of trust in an 

autonomous vehicle would depend on the specifics of the vehicle, with factors such 

as manufacturer, safety record and independent reviews likely to influence their 

judgements. It therefore seems likely that people are open in principle to adopting 

this technology, but that their decisions when given the opportunity to use or 

purchase an autonomous vehicle will depend on the characteristics of the vehicle in 

question. This attitude is summed up by the following example comment: 

“A lot of the trustworthiness of the driverless vehicles would depend on 

independent reviews, safety ratings, and other people's experiences, as well 
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as the trustworthiness of the manufacturer and the technology.” - 

respondent comment 

Main concerns about autonomous vehicles. 

This survey did not ask directly about the nature of people’s concerns 

around autonomous vehicles. However, many respondents did set out their 

concerns in the freeform response section at the end of the survey. The most 

frequently raised concerns involved interactions between autonomous and non-

autonomous vehicles in the early phases of introduction and the security of the 

software.  Other common concerns involved: the ethical questions raised by the 

introduction of the technology; the likelihood of problems with the technology in 

the early phases of introduction; and the need for new policies and legislation to 

regulate the use of self-driving vehicles. Typical example comments were: 

“Based on what we know about automated systems I would trust it more 
than a human being in a driving task. It's the other humans on the road that 
will cause problems in its initiation process.”- respondent comment. 

“My big concern is the possibility of a hack attack.”- respondent comment. 

 “I am concerned about the inevitable situation where the vehicle chooses to 
kill its driver to save a greater number of external people in an unavoidable 
collision.”- respondent comment. 

Different degrees of automation. 

79% of people reported that they were extremely or moderately likely to 

want to be a passenger in a vehicle with semi-autonomous features (specified in 

the survey as: “e.g. lateral and longitudinal control, motorway assist systems for 

travel on high speed roads, remote control parking, Volvo or Tesla autopilot”), with 

only 3% being extremely or moderately unlikely. Fewer people (73%) were 

extremely or moderately likely to want to be a driver in a vehicle “which you can 

allow to take over driving”, with 10% reporting that they were extremely or 

moderately unlikely. The patterns of responding between these two questions were 

significantly different (χ2 (1, N = 464) = 8.65, p =.01), suggesting that there may 

currently be a higher degree of acceptance for partial automation than for full 

automation. 
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Effects of providing information. 

Participants who received up-to-date information about autonomous 

vehicles were no more positive in their responses to the statements “Driverless cars 

are a good idea” and “I can trust a driverless vehicle” than participants who did not 

receive the information.  This pattern was the same across the GATEway and 

internet groups (p >.60 for all comparisons).  These findings are in line with those of 

Souders and Charness (2016) whose information manipulation had little effect on 

overall trust levels (although note that their study was in participants aged 55 and 

over, whereas the current study surveyed a broader range of ages). 

Discussion 

The attitudes towards autonomous vehicles revealed in this survey are 

broadly very positive. This may reflect an increasing openness among the general 

public to engage with driverless cars. However, it is important to note that 64% of 

the sample was drawn from a group of people who had registered to take part in 

trials relating to the GATEway project, perhaps indicating an unusually high level of 

interest in this topic area. Indeed, this group were significantly more positive than 

the internet group in their responses to the statements “Driverless cars are a good 

idea” and “I can trust a driverless vehicle”. Nevertheless, the responses remained 

highly positive in general, even with these participants removed.  

Of course, the internet group were also self-selecting and might be 

considered as more engaged with technology than the public in general. So, a 

further caveat of the findings concerns the representativeness of the sample. For 

example, by comparison with another larger survey study (Schoettle & Sivak, 2014), 

the present sample had a higher proportion of male respondents (60% vs. 53%) and 

was overall somewhat younger and more likely to have a university degree. In 

addition, both of these surveys were carried out online, necessarily excluding 

individuals without internet access. Thus, caution should be applied in generalising 

the findings too far beyond the group reached here. 

The fact that providing additional information concerning the technology did 

not significantly change people’s attitudes suggests that knowledge level may not 
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be a central factor in determining people’s views of autonomous vehicles, at least 

for the respondents reached by the current survey. However, very few of the 

participants had experienced real-world travel in an autonomous vehicle (there 

were only 37 positive responses to this question out of 233 respondents, meaning 

that a maximum of 16% of participants had experienced the technology). It is likely 

that this type of experience would have a much larger impact on attitudes than a 

brief information sheet. For this reason, it may be useful to re-run this survey both 

before and after people’s first experience of a real-world driverless vehicle. The 

survey could also be used to track changing attitudes on a more general level, as 

autonomous vehicles become more widespread, and their benefits become more 

visible. 

Finally, although this survey and the other research described in this chapter 

used a subjective measure of trust in automation, recent research has identified 

gaze behaviour as a possible means of measuring trust levels more objectively. In a 

simulator study, Hergeth, Lorenz, Vilimek, and Krem (2016) examined the gaze 

behaviour and self-reported trust in automation of 35 participants during periods of 

highly automated driving (SAE level 3/4) and during periods of completing a non-

driving related task (a simple target matching task completed on an iPad). Trust in 

automation was probed with a simple question that asked, “On a scale from 0% to 

100%, how much do you trust the system?” (Hergeth et al., 2016, pg 4) and was 

presented 8 times during the testing session.  There was a consistent relationship 

between drivers’ trust in automation and their gaze behaviour.  Specifically, in the 

automated driving condition, higher levels of trust in the vehicle automation were 

associated with lower levels of monitoring the automation and the driving 

environment, as measured by the number of glances per second.  Additionally, in 

the non-driving condition, a higher trust in automation was associated with lower 

frequency monitoring of the autonomous system.  Interestingly as the trial session 

progressed the participants’ trust in the autonomous system increased, such that 

60% of participants self-reported an increased level of trust and the same 

participants 54% showed a decrease in their monitoring frequency.  Thus overall, 

this study shows that in principle a driver’s trust in automation can be inferred from 
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their visual monitoring behaviour, and this could be an interesting avenue for 

future research on this topic.   
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Chapter 8 – General Discussion 
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Introduction 

The experiments reported in this thesis have investigated several aspects of 

vehicle automation and their effects on visual cognition and situation awareness 

using a variety of different methods and populations.  In Chapters 2-5, I used a 

laboratory-based task to compare the effects of dual task workload on hazard 

perception across three groups: younger experienced drivers; older drivers; and 

novice drivers. In Chapter 6 I investigated the specific effect of vehicle automation 

on visual attention and situation awareness using eye tracking and a realistic 

simulated driving environment. Finally, in Chapter 7 I examined people’s trust and 

acceptance of AVs on UK roads using an online survey.  In this chapter, I also used a 

manipulation to assess the effect of providing up to date information about AVs 

and their future benefits on people’s perceptions of AVs.  In the next section, I will 

briefly highlight the key findings from each Chapter, their strengths and limitations, 

and their implications for cognitive psychology, human factors research and vehicle 

design. 

Key Findings, Evaluation and Implications 

In Chapter 2 I examined the effect of task workload on the perception of 

driving hazards, using a dual task paradigm in which a simple (vs. choice) RT task 

was paired with a video-based hazard detection task.  The results suggested that 

the young experienced drivers who took part in this study exhibited better hazard 

detection performance under dual (vs. single) task conditions.  This result was 

surprising given the weight of evidence that shows a cost to primary task 

performance under dual (vs. single) task conditions (e.g. Ettwig & Bronkhorst, 2015; 

Pashler, Johnston, & Ruthruff, 2001; Pashler, 1994).  The effect observed could be 

potentially explained by the ‘attentional boost’ effect as proposed by Swallow and 

Jiang (2010, 2011, 2012) which has demonstrated that detection of a target in one 

task can temporarily enhance processing of concurrently-presented (yet task-

irrelevant) information. However, these findings would constitute a similar but 

longer-lasting effect.  One implication of these results is that keeping drivers 

engaged in some element of driving (e.g. lane control) is likely to improve hazard 
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response performance by comparison with full automation. This could be an 

important consideration for future human factors research and AV design. 

The study design in this chapter was designed to control the visual cognitive 

demands of the task.  By using a simplified primary driving task with a simple (vs. 

choice) response secondary task, I could look specifically at the effects of dual task 

cognitive workload, while all other aspects of the visual display remained constant. 

Furthermore, the use of official hazard perception videos meant that the stimuli 

were representative of real life driving hazards and scenarios (unlike the hazards 

presented in many simulator implementations).  However, there are a few clear 

limitations to this study design.  First, the use of the hazard perception videos and a 

non-driving related secondary task as a proxy for automation levels means that 

there is an issue with the generalisation of the results beyond this study.  This proxy 

for automation lacks the realism of even a simulated automated driving task, in 

which multiple simultaneous tasks are required in order to control the vehicle.  On 

balance this approach was taken due to the practical consideration of using a 

simpler, less realistic design to better control for any potential confounding 

variables.  Next, the sample size used may have not been ideal and, compounded 

with the small effect size in the hazard detection RT, may indicate an overestimate 

of effect size and inflation in the type one error rate.  The gold standard of 80% 

power was not achieved in this study and was observed to be 63% in the hazard 

detection RT analysis, which although not very low was under what would have 

been ideal.  A power calculation was not conducted during the design of this study 

due to the lack of similar previous studies from which to get the required guide to 

expected effect size or alpha value.  In the end, I based the sample size on those 

that had been used in previous studies into hazard perception and driving, which 

tended to use approximately 30 participants.  Finally, related to the limitations 

raised above, the probability values observed for the hazard detection RT (p =.038) 

are only marginally significant, and do not suggest a very strong case to reject the 

null hypothesis.  Therefore, the results of this chapter should be interpreted with 

caution, and, as will be discussed in the future research section, constitute a prime 

candidate for a replication study. 
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In Chapter 3 I examined the effect of task workload on the perception of 

driving hazards in older drivers, using the same paradigm as Chapter 2.  The results 

revealed that older drivers’ RTs for detecting driving hazards were on average 

1100ms longer when they also completed a high load secondary task than when 

they completed the hazard detection task alone.  Unlike the pattern of results seen 

in Chapter 2, this finding is in line with previous research on dual task interference, 

which typically find significant costs in dual (vs. single) task conditions.  However, 

subsequent analysis indicated that there might have been a speed-accuracy trade-

off, because the longer overall RTs to the hazards as task difficulty increased were 

accompanied by an increase in accuracy. In line with this possibility, there was no 

difference in inverse efficiency scores between the load conditions.  This is 

suggestive of a strategy change by older drivers, such that they sacrifice speed as 

task load increases, to achieve better accuracy.  One possible implication of these 

results is that the reduction in task demand associated with increasing levels of 

automation could benefit older people’s driving performance and remove the need 

for older drivers to implement these types of trade-off.  These are important 

considerations for AV designers and future human factors research, particularly in 

the areas of handover and takeover request research, as older drivers may have 

difficulties in quickly detecting and responding to a real driving hazard during an 

emergency takeover request, and further research is needed (as will be discussed 

below). 

In Chapter 4 I used the same paradigm to examine the effect of task 

workload on the perception of driving hazards in novice drivers.  The results 

demonstrated that RTs for detecting driving hazards were not significantly different 

as dual task workload increased.  Additionally, there was no significant change in 

hazard detection accuracy also as workload increased. Interestingly, the 

improvement in hazard detection with the additional task that was seen in Chapter 

2 with younger experienced drivers was not mirrored in the current findings, 

perhaps due to the relative inexperience of the novice drivers used in Chapter 4. 

Nevertheless, both experiments produced findings that contradict previous 

research on dual task interference, which typically finds significant costs in dual (vs. 
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single) task conditions.  This indicates that novice drivers might be partially better 

protected from dual task interference potentially because of their younger age, and 

they might be able to switch between secondary task of varying workload with little 

drop in their primary task performance (and indeed, in the case of Chapter 2, some 

evidence for improvement).  A reasonable explanation for these non-differences 

might stem from the participants having relatively high working memory capacity 

(WMC) due to the sample being taken from a university population.  Higher WMC in 

novice drivers may confer a protective quality when completing dual or multiple 

tasks (e.g. Wood, Hartley, Furley, & Wilson, 2016; Feldhütter, Gold, Schneider, & 

Bengler, 2017). However, this idea was not examined directly in this study and 

would need further clarification in a follow up study. 

In Chapter 5 I examined the differences between younger experienced, 

older and novice drivers in the effects of task demand on hazard detection 

performance.  The pattern of results was mixed.  The workload measures indicated 

that the perceived workload increased reliably between the load conditions and did 

not differ between the groups, demonstrating that the groups experienced a similar 

overall level of subjective workload. Yet, older drivers in the no load condition 

reported requiring significantly more effort than the young experienced driving age 

sample reported to complete the task, possibly reflecting an overall reduced 

capacity in the older drivers, such that they already experienced the hazard 

detection task alone as relatively demanding. Older drivers also made more 

mistakes than both the young experienced and novice age samples and took 

significantly longer to respond in the secondary number probe task.  In terms of the 

hazard task, load condition and driving group had little effect on detection RTs.  

However, in the hazard perception accuracy, both the older and novice drivers 

showed worse hazard performance than the young experienced drivers, in line with 

the literature showing worse hazard perception in older (vs. young experienced) 

drivers and in novice (vs. young experienced) drivers (Caird et al., 2005; Crundall & 

Underwood, 1998; Horswill et al., 2015; Maltz & Shinar, 1999; Scialfa et al., 2011, 

2012). This could suggest that for at risk driving groups, including both older drivers 
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and novice, inexperienced drivers, additional hazard perception training might be 

beneficial.   

In Chapter 6 I examined the effect of vehicle automation on non-emergency 

takeover performance and situation awareness.  One of the most consistent 

findings was that takeover responses were quicker when the period of automated 

driving involved the occlusion of visual information from the driving scene by fog, 

compared with situations where this occlusion was not present. This finding was 

the same whether takeover response was measured in terms of the time taken to 

make a fixation back to the screen or the time taken to return the hands to the 

wheel.  A practical implication of this result is that it might be feasible for vehicle 

designers and manufactures to deliberately accompany the takeover request with a 

stimulus that results in a high level of visual change (e.g. a large flashing box 

presented very briefly around the windscreen) in order to alert drivers in the way 

that the abrupt fog removal is thought to have done in my simulator study. The 

large individual differences in the takeover times observed might also lead to the 

suggestion that designers could present settings in the autonomous system to allow 

tailoring of the takeover request time to individual drivers’ preferences. However, 

neither of these implications were examined directly in this work, and both would 

require future research before firm recommendations could be made. 

The eye tracking analysis showed that in the first second after a takeover 

request visual attention was more dispersed in the with-fog compared to the no-fog 

condition.  This demonstrates that when visual information has been reduced 

during automated driving, a driver is more likely to look holistically at the visual 

scene during the subsequent takeover process, rather than focussing on a central 

point where arguably most of the important task relevant information is available.  

This is indicative of a driver in the with-fog condition reorienting themselves back 

into the visual scene and the task of driving by widely scanning the environment.  

Importantly, this reorientation seems to be quick and resolves after 1 second.  This 

may suggest that vehicle manufacturers could design cabins that allow the driver to 

not always be facing the roadway in front of them, knowing that potentially drivers 

can visually reorient themselves into the driving scene very effectively even when 
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they have not been monitoring the scene during the automated period.  However, 

this idea would need to be approached with utmost caution and would require 

further rigorous testing. 

The driving behaviour measures showed that the braking RT, speed, 

headway, and TTC at the start of the driving hazard did not significantly differ 

between the two occlusion conditions.  This indicates that in the approximately 3-4 

seconds after the driver takes back control of the vehicle they appear to regain a 

similar amount of vehicular control whether or not they were monitoring the scene 

during the automated period. Again, a tentative implication for designers from 

these findings is that the ability to monitor the driving scene throughout the 

automated period might not be important in determining driving performance 

following a takeover request, at least under the conditions that were simulated in 

Chapter 6. 

Responding to a hazard was observed to differ following automated driving 

as compared with manual driving in the current study.  Specifically, participants 

tended to drive more slowly in the autonomous condition at the start of the driving 

hazard, perhaps suggesting that drivers are more cautious in the period following 

the handover and therefore adopt lower speeds.  However, this cautious driving 

behaviour was not mirrored in the headway and TTC analysis.  Additionally, braking 

in response to a developing hazard was no slower following an autonomous 

handover than following a period of manual driving. 

Taken all together these results show that after a period of automation and 

a short 3-4 sec duration after takeover before the hazard starts, drivers in the 

autonomous conditions show very few differences in driving performance 

compared to manual drivers.  This potentially indicates that drivers can quickly and 

effectively reengage with manual driving following a period of autonomous driving.  

However, as previously mentioned in Chapter 6, the driving environment used was 

benign and although drivers were able to maintain good vehicular control under 

these conditions, they might not have been ready for severe avoidance manoeuvres 

after a period of autonomous driving or in an emergency situation.  The implication 

of this set of driving behaviour results is that there is little impact of automation 
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and screen occlusion on situation awareness and this may cautiously inform on 

future vehicular design and human factors research. 

The study reported in Chapter 6 has several strengths by comparison to the 

laboratory-based experiments presented in Chapters 2-5.  First, the use of a driving 

simulator edges the methodology closer to a more ecologically valid methodology 

compared with the paradigm used in Chapters 2-5.  This allowed me to make more 

generalisable claims and provide clear real-world interpretations of the results.  

Second, the task used is very like the takeover type request that drivers of level 2/3 

automation are likely to experience in the future.  Third, the use of a real-world 

additional task during the period of automation is a clear strength (and potential 

limitation).  Electronic devices are likely to be the most frequent things with which 

drivers will interact during periods of automation, ahead of books, magazines, 

videos etc.  Therefore, this gives the study a more realistic edge than if they were 

completing a controlled and contrived task (as seen in previous research e.g. 

Hergeth, Lorenz, Vilimek, & Krems, 2016). It is also a slight weakness, as the 

participants chose to use the device in whatever way they wanted.  This means that 

the type of task (e.g. playing a game, watching videos, sending texts or browsing 

the internet) was not controlled for, and each task is likely to involve differing levels 

of cognitive or attentional involvement (e.g. having to reengage with driving whilst 

in the middle of writing a text/mail is potentially different from simply reading a 

news article or playing a computer game) which is likely to have added noise to the 

results. 

There are also some limitations of the study. First, the simulator used was of 

a moderate fidelity, i.e. it was not as immersive as using a full vehicle based 

simulator or a real vehicle and task.  However, this is only a slight limitation as the 

mini simulator set up utilised the excellent software, facilities and programming 

expertise at TRL to create a realistic and immersive driving task.  Second, the 

recording fidelity of the eye tracker used was low.  The eye tracker only recorded at 

a 20Hz data sampling rate, which is low when compared to more modern eye 

trackers that can record at a sample rate of 1000Hz (i.e. 1000 samples per second).  

The down side to this low sample rate in this study is reduced temporal accuracy. 
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Higher sampling rates produce better temporal accuracy when measuring the 

duration of fixations and saccades. Specifically, the average temporal accuracy error 

will be approximately half the duration of the time between samples.  For example, 

a sampling rate of 1000 Hz will lead to an average error of 0.5 ms and a sampling 

rate of 60 Hz (i.e. samples every 16.7 ms) will lead to an average error of 

approximately 8 ms.  However, given that I was not specifically looking at the 

number, or velocity of saccades, a low sample rate was deemed acceptable and 

suitable for collecting satisfactory fixation data.   

In the final Chapter 7 I examined the trust and acceptance of AVs.  The 

attitudes towards autonomous vehicles revealed in this survey were broadly very 

positive. This may reflect an increasing openness among the public to engage with 

driverless cars. However, it is important to note that 64% of the sample was drawn 

from a group of people who had registered to take part in trials relating to an 

automated vehicle project, perhaps indicating an unusually high level of interest in 

this topic area. Indeed, this group were significantly more positive than the internet 

group in their responses to the statements “driverless cars are a good idea” and “I 

can trust a driverless vehicle”. Nevertheless, the responses remained highly positive 

in general, even with these participants removed.  The implications from this study 

are clear: 1) UK-based transport users are interested in seeing AVs on UK roads; and 

2) there is a good level of trust in AVs. This last point is qualified by the finding that 

there was a more diverse range of responses concerning people’s level of trust in 

AVs and the sample surveyed already had a keen interest in AVs so may not be truly 

representative.   

One of the main strengths of this survey is that it can easily be re-run in the 

future to assess trends in trust and acceptance of automation.  However, the 

sample used in Chapter 7 had a higher proportion of male respondents (60% vs. 

53%) and was overall somewhat younger and more likely to have a university 

degree than the general population.  This may slightly weaken the generalisability 

of the results.  Finally, there were only 233 useable respondents. In a future study, 

a far larger sample, in the thousands, would hopefully address some of the issues 
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highlighted above and broaden the generalisability of the results to the wider 

population.  

Future Research  

The findings of the studies presented in this thesis do highlight some key 

areas for future research.  The results in Chapter 2, in which hazard detection 

performance improved as secondary task workload increased, were clearly in 

contrast with a large amount of previous cognitive psychology literature.  

Therefore, it would be sensible to run a replication study using the same 

methodology and stimuli with a new sample of drivers.  Doing so will either confirm 

and strengthen the results found or indicate that the original results may have 

occurred due to a type 1 error.  Additionally, a new study using a secondary task 

which engages another modality (e.g. audition) could be an interesting area for 

future research.  Auditory warning cues are already being used in many vehicles 

(e.g. to indicate lane departure, communicate a takeover request or announce a 

need for drivers to return their hands to the wheel in certain level 2 vehicles) so 

examination of the effects of auditory task load would be an interesting topic for 

future work.  This would allow for the removal of extra visual information while 

maintaining the workload manipulation, and would also be useful in testing 

whether the patterns of results reported in Chapter 2 hold up when engaging a 

different modality or whether the effects are restricted to contexts in which both 

tasks involve visual information. 

The results of Chapter 3 showed a more traditional dual task interference 

effect in the older drivers.  Although this is not a hugely surprising result, it is 

potentially an important one, in that older drivers may benefit from the reduction 

of task workload on their driving performance.  However, it is vitally important that 

the hand over and takeover performance of older drivers is examined in order to 

ascertain if the reduction in tasks impacts their performance if they are asked to 

resume control of semi-autonomous vehicle at short notice.  This possibility can be 

examined easily, safely and with good validity with the use of a driving simulator, 

using a paradigm like that used in Chapter 6. 
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The results of Chapter 4 show a mixed pattern for the novice drivers and 

would therefore warrant replication in a follow-up study.  Given that working 

memory capacity differences might have accounted for many aspects of the results 

(across Chapters 2-5, but in particular for novice drivers) controlling for and 

measuring WMC capacity of individual participants should be taken into account in 

future research. 

In both Chapters 3 and 4, the literature presented shows that driver and 

perceptual training interventions for novice and older drivers can improve their 

hazard perception and visual scanning behaviour.  It would be therefore an 

interesting future avenue for research to assess the impact of training interventions 

tailored to help all drivers with their takeover control and visual scanning behaviour 

after automation.  

The results of Chapter 6 show an interesting pattern of results in takeover 

performance and situation awareness.  A clear area for future research would be to 

take this study and apply it to the at-risk driving groups as previously described in 

Chapters 3 and 4.   Doing so would help to tease apart the differences in driving 

performance in a more realistic setting and examine if the at-risk driving groups’ 

takeover performance is different from a younger experienced population.  This 

would allow human factors research to carefully inform policy decisions regarding 

the safety of level 2/3 automation across the whole population. 

Finally, the results of the Chapter 7 showed an interesting pattern, with a 

clear area for future research: namely, repeating the survey on a periodic basis (e.g. 

biennial), with a larger sample (>1000 people) and open to all members of the 

public.  This would provide a useful tool for assessing any trends in people’s trust 

and acceptance of AVs over time.  

Contribution to the Field 

The contributions of this body of work to psychological and human factors 

knowledge is varied.  First, for cognitive psychology, the surprising results of 

Chapter 2 show that under certain circumstances the addition of a secondary task 

can improve primary task performance.  These findings may not relate directly to 
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the attentional boost as it is currently defined, but may instead raise the possibility 

of a similar but longer-lasting effect.  The results of Chapters 3-5 of the thesis show 

that there are some small key differences in task performance under dual task 

workload conditions in the at risk driving groups compared to younger experienced 

drivers, which could inform future human factors research.  The results of Chapter 6 

cautiously add to the knowledge of takeover performance, situation awareness and 

visual attention in younger experienced drivers after a period of vehicle 

automation.  Finally, the results of Chapter 7 establish the public’s levels of trust 

and acceptance of AVs in 2017, providing a potential avenue for assessing these 

perceptions as they develop into the future.  
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Appendix A 

Mean distance in centimetres from the lane centre and standard deviation as a 

function of time bin (0-60 sec) and fog condition. 

 No fog With fog  

Time bins (sec) Mean SD Mean SD Significance 

0-1 1.2 1.7 1.2 1.6 .97 ns 

1-2 1.7 2.0 1.8 2.0 .99 ns 

2-3 0.9 1.0 0.9 1.0 .96 ns 

3-4 3.6 5.6 3.5 5.8 <.0001*** 

4-5 27.6 25.1 23.9 25.0 <.0001*** 

5-6 64.3 43.9 53.4 38.0 <.0001*** 

6-7 69.3 43.4 62.1 36.7 <.0001*** 

7-8 63.3 41.2 64.5 40.0 .36 ns 

8-9 61.4 43.5 64.4 42.6 .03* 

9-10 62.1 44.4 59.1 38.9 .03* 

10-11 56.3 39.3 55.1 36.6 .36 ns 

11-12 53.5 38.7 51.6 34.3 .17 ns 

12-13 51.5 34.7 48.7 35.8 .04* 

13-14 51.9 34.9 46.5 36.6 <.0001*** 

14-15 51.8 31.6 48.6 34.8 .02* 

15-16 50.0 30.4 48.5 35.6 .29 ns 

16-17 48.4 30.0 46.1 33.0 .11 ns 

17-18 49.1 34.2 45.9 31.9 .02 * 

18-19 48.4 33.8 48.6 31.6 0.90 ns 

19-20 48.9 34.2 48.0 31.8 .55 ns 

20-21 48.6 32.9 47.4 33.4 .41 ns 

21-22 48.3 32.1 49.8 33.4 .25 ns 
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 No fog With fog  

Time bins (sec) Mean SD Mean SD Significance 

22--23 52.8 34.4 56.0 39.1 .02* 

23-24 58.6 42.0 60.3 41.4 .20 ns 

24-25 64.6 44.0 62.2 42.7 .08 ns 

25-26 72.1 41.7 62.7 40.9 <.0001*** 

26-27 72.0 43.2 64.2 40.4 <.0001*** 

27-28 71.0 43.6 67.9 40.9 .02* 

28-29 67.5 42.0 69.1 40.3 0.24 ns 

29-30 66.2 42.0 68.4 39.3 .12 ns 

30-31 63.9 40.2 68.5 38.8 <.0001*** 

31-32 62.8 39.4 70.3 38.7 <.0001*** 

32-33 64.7 39.1 68.6 38.5 .004** 

33-34 71.7 43.1 65.0 37.9 <.0001*** 

34-35 70.3 39.4 63.5 38.6 <.0001*** 

35-36 64.7 38.3 61.6 36.0 .02* 

36-37 60.7 38.0 60.6 35.6 0.95 ns 

37-38 59.7 38.0 61.7 35.9 .14 ns 

38-39 61.0 38.4 61.0 35.4 .97 ns 

39-40 61.5 37.0 59.6 36.0 .19 ns 

40-41 60.8 35.9 58.6 35.7 .11 ns 

41-42 61.1 33.4 57.5 32.3 .009** 

42-43 62.8 36.8 57.9 33.7 .0004*** 

43-44 63.3 39.0 59.5 36.1 .005** 

44-45 62.9 39.8 59.1 35.8 .006** 

45-46 62.6 38.5 56.1 33.5 <.0001*** 

46-47 61.3 37.8 52.4 32.6 <.0001*** 
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 No fog With fog  

Time bins (sec) Mean SD Mean SD Significance 

47-48 59.8 35.5 50.2 32.0 <.0001*** 

48-49 56.5 33.5 51.4 34.1 <.0001*** 

49-50 53.9 33.3 51.5 34.9 .08 ns 

50-51 53.4 34.3 51.7 35.4 0.24 ns 

51-52 52.9 34.0 52.0 36.0 .51 ns 

52-53 53.2 33.2 54.7 37.6 .27 ns 

53-54 52.7 32.6 55.7 35.4 .03* 

54-55 51.7 30.8 55.8 34.6 .002** 

55-56 50.3 30.4 54.1 33.7 .004** 

56-57 49.3 30.1 52.8 34.0 .01* 

57-58 49.8 31.2 51.8 32.5 .15 ns 

58-59 52.0 33.1 53.8 33.1 .18 ns 

59-60 53.6 33.5 57.0 35.9 .009** 

60 53.3 32.4 57.8 36.5 .31 ns 

(ns= non-significant, *p<.05, **p<.01, ***p<.0001) 
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Appendix B 

 All questionnaire items and responses by group 

Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

Age (in years) 18 to 29  

30 to 39  

40 to 49  

50 to 59  

60 to 69  

70 or older 

30 (20.3%) 

45 (30.4%) 

45 (30.4%) 

14 (9.5%) 

10 (6.75%) 

4 (2.7%) 

29 (34.1%) 

29 (34.1%) 

11 (12.9%) 

8 (9.4%) 

4 (4.7%) 

4 (4.7%) 

59 (25.3%) 

74 (31.7%) 

56 (24.0%) 

22 (9.4%) 

14 (6.0%) 

8 (3.4%) 

Gender  Male 

Female 

Trans gender or 

intersex 

Would rather not 

disclose 

117 (79%) 

30 (20.3%) 

1 (0.7%) 

 

0 (0%) 

50 (60.2%) 

32 (38.6%) 

0 (0%) 

 

1(1.2%) 

167 (71.7%) 

62 (26.6%) 

1 (0.4%) 

 

1 (0.4%) 

Region of birth UK 

ROI 

EU 

Non-EU 

117 (79.1%) 

0 (0%) 

7 (4.7%) 

24 (16.2%) 

57 (68.7%) 

3 (3.6%) 

7 (8.4%) 

16 (19.3%) 

174 (75.3%) 

3 (1.3%) 

14 (6.1%) 

40 (17.3%) 

Region of 

driving licence 

UK 

ROI 

EU 

Non-EU 

I don't drive 

114 (77.0%) 

1 (0.7%) 

5 (3.4%) 

6 (4.1%) 

22 (14.9%) 

57 (67.9%) 

1 (1.2%) 

3 (3.6%) 

3 (3.6%) 

20 (23.8%) 

171 (74.0%) 

2 (0.8%) 

8 (3.4%) 

9 (3.9%) 

44 (18.9%) 

Licence type 

(including 

transmission 

type permitted 

to drive) 

Provisional 

manual 

Provisional 

automatic 

Full manual 

59 (30.9%) 

 

7 (3.7%) 

118 (61.8%) 

29 (31.2%) 

 

3 (3.2%) 

59 (63.4%) 

88 (30.9%) 

 

10 (3.5%) 

177 (62.3%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

Full automatic 7 (3.7%) 2 (2.1%) 9 (3.2%) 

Length of time 

driving licence 

held (in years) 

0-5 years 

6-10 years 

11-15 years 

16-20 years 

21-25 years 

26-29 years 

30+ years 

24 (19.2%) 

20 (16.0%) 

14 (11.2%) 

14 (11.2%) 

15 (12.0%) 

12 (9.6%) 

26 (20.8%) 

12 (19.7%) 

15 (24.6%) 

10 (16.4%) 

6 (9.8%) 

5 (8.2%) 

1 (1.6%) 

12 (19.7%) 

36 (19.3%) 

35 (18.8%) 

24 (12.9%) 

20 (10.7%) 

20 (10.7%) 

13 (6.9%) 

38 (20.4%) 

Average 

mileage driven 

per year 

(approximately) 

Less than 1000  

1001 to 2500 

2501 to 5000  

5001 to 7500  

7501 to 10000 

10001 to 12500  

12501 to 15000  

15001 to 17500  

17501 to 20000  

20001 to 25000  

25001 to 30000  

30001 to 35000  

35001 to 40000  

40000 or more 

39 (31.2%) 

15 (12.0%) 

18 (14.4%) 

12 (9.6%) 

12 (9.6%) 

14 (11.2%) 

7 (5.6%) 

4 (3.2%) 

2 (1.6%) 

0 (0.0%) 

1 (0.8%) 

1 (0.8%) 

0 (0.0%) 

0 (0.0%) 

14 (22.6%) 

10 (16. 9%) 

7 (11.3%) 

6 (9.7%) 

12 (19.4%) 

7 (11.3%) 

5 (8.1%) 

0 (0.0%) 

0 (0.0%) 

0 (0.0%) 

1 (1.6%) 

0 (0.0%) 

0 (0.0%) 

0 (0.0%) 

53 (29.8%) 

15 (8.4%) 

25 (14.0%) 

18 (10.1%) 

24 (13.5%) 

21 (11.8%) 

13 (7.3%) 

4 (2.2%) 

2 (1.1%) 

0 (0.0%) 

2 (1.1%) 

1 (0.7%) 

0 (0.0%) 

0 (0.0%) 

Have you 

experienced 

any driving aids 

in your time 

driving? (Select 

all applicable to 

you) 

Adaptive cruise 

control 

Lane-keep 

assistance 

Parking assist 

Collision 

19 (22.1%) 

 

9 (10.4%) 

 

32 (37.2%) 

33 (32.7%) 

 

15 (14.8%) 

 

31 (30.7%) 

52 (28.8%) 

 

24 (12.8%) 

 

63 (33.7%) 



197 
 

Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

avoidance 

systems 

Blind-spot 

monitoring  

Tesla autopilot 

Other system not 

mentioned above 

12 (13.9%) 

 

8 (9.3%) 

 

3 (3.5%) 

3 (3.5%) 

10 (9.9%) 

 

9 (8.9%) 

 

0 (0%) 

3 (2.9%) 

22 (11.8%) 

 

17 (.1%) 

 

3 (1.6%) 

6 (3.2%) 

Have you 

experienced 

travel in a self-

driving vehicle? 

(Select all 

applicable to 

you) 

Greenwich shuttle  

Heathrow ultra-

PODs 

Google car  

Other self-driving 

vehicle 

1 (4.2%) 

17 (71.8%) 

 

0 (0%) 

6 (25%) 

1 (16.7%) 

3 (50%) 

 

0 (0%) 

2 (33.3%) 

2 (6.7%) 

20 (66.7%) 

 

0 (0%) 

8 (26.6%) 

Overall do you 

enjoy driving? 

Definitely yes 

Probably yes 

Neither yes or no 

Probably not 

Definitely not 

58 (46.0%) 

31 (24.6%) 

12 (9.5%) 

13 (10.3%) 

12 (9.5%) 

30 (47.6%) 

18 (28.6%) 

9 (14.3%) 

2 (3.2%) 

4 (6.3%) 

88 (46.6%) 

49 (25.9%) 

21 (11.1%) 

15 (7.9%) 

16 (8.5%) 

What roads do 

you typically 

drive on most 

of the time? 

(Select all 

applicable to 

you) 

Urban 

Suburban 

Motorway 

Rural 

65 (32.9%) 

50 (25.4%) 

45 (22.8%) 

37 (18.8%) 

66 (28.2%) 

35 (14.9%) 

61 (26.1%) 

72 (30.8%) 

111 (25.7%) 

72 (16.7%) 

111 (25.7%) 

137 (58.5%) 

What time(s) of 

day do you 

usually drive? 

(Select all 

applicable to 

you) 

Early morning 

Morning rush 

hour 

Off-peak day time 

Evening rush hour 

Night time 

30 (15.3%) 

28 (14.3%) 

 

63 (32.3%) 

37 (18.9%) 

37 (18.9%) 

30 (12.9%) 

36 (15.5%) 

 

69 (29.7%) 

46 (19.8%) 

51 (21.9%) 

60 (14.1%) 

64 (14.9%) 

 

132 (30.9%) 

83 (19.4%) 

88 (20.6%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

When traveling 

by motor 

vehicle are you 

typically the 

driver or 

passenger? 

Driver 

Passenger 

87 (58.8%) 

61 (41.2%) 

45 (55.6%) 

36 (44.4%) 

132 (57.6%) 

97 (42.4%) 

Are you 

registered 

disabled? 

Yes 

No 

Would rather not 

say 

5 (3.4%) 

142 (6.6%) 

0 (0.0%) 

4 (4.8%) 

77 (92.8%) 

2 (2.4%) 

9 (3.9%) 

219 (95.2%) 

2 (0.9%) 

What is your 

occupation? 

Professional 

Clerical/office  

Service worker 

Executive/director 

Sales worker 

Skilled trade 

Unskilled/laborer 

Semi-skilled  

IT professional 

Student 

Business owner 

Retired 

Other 

48 (32.4%) 

12 (8.1%) 

3 (2%) 

23 (15.5%) 

4 (2.7%) 

3 (2%) 

0 (0%) 

2 (1.4%) 

22 (14.9%) 

5 (3.4%) 

4 (2.7%) 

14 (9.5%) 

8 (5.4%) 

29 (35.4%) 

6 (7.3%) 

1 (1.2%) 

15 (18.3%) 

0 (0%) 

0 (0%) 

1 (1.2%) 

0 (0%) 

10 (12.2%) 

13 (15.9%) 

0 (0%) 

3 (3.7%) 

4 (4.9%) 

97 (40.4%) 

18 (7.5%) 

4 (1.7%) 

38 (15.8%) 

4 (1.7%) 

3 (1.2%) 

1 (0.4%) 

2 (0.8%) 

32 (13.3%) 

18 (7.5%) 

4 (1.7%) 

7 (2.9%) 

12 (5.0%) 

What is your 

highest level of 

education? 

University or 

college degree  

Other University 

or college 

qualification  

Upper secondary 

school  

Lower secondary 

 

103 (70.1%) 

 

19 (12.9%) 

 

12 (8.2%) 

 

57 (68.7%) 

 

6 (7.2%) 

 

15 (18.1%) 

 

160 (69.6%) 

 

25 (10.9%) 

 

27 (11.7%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

school 

qualification  

None of these 

 

13 (8.8%) 

 

0 (0%) 

 

3 (3.6%) 

 

2 (2.4%) 

 

16 (6.9%) 

 

2 (0.9%) 

Where did you 

hear about this 

survey? 

GATEway project 

Social media 

Email 

Through RHUL 

Through TRL 

Other 

  

 

148 (63.5%) 

14 (6.0%) 

43 (18.4%) 

11 (4.7%) 

0 (0.0%) 

17 (7.3%) 

How likely are 

you to want be 

a driver in a 

vehicle which 

you can allow 

to take over 

driving 

Extremely likely 

Moderately likely 

Slightly likely 

Neither likely nor 

unlikely 

Slightly unlikely 

Moderately 

unlikely 

Extremely unlikely 

81 (54.7%) 

32 (21.6%) 

10 (6.8%) 

6 (4.1%) 

 

3 (2%) 

5 (3.4%) 

11 (7.4%) 

33 (38.8%) 

23 (27.1%) 

14 (16.5%) 

4 (4.7%) 

 

3 (3.5%) 

4 (4.7%) 

4 (4.7%) 

114 (48.9%) 

55 (23.6%) 

24 (10.3%) 

10 (4.3%) 

 

6 (2.6%) 

9 (3.9%) 

15 (6.4%) 

How likely are 

you to want be 

a passenger in 

a vehicle with 

semi-

autonomous 

features? 

Extremely likely 

Moderately likely 

Slightly likely 

Neither likely nor 

unlikely 

Slightly unlikely 

Moderately 

unlikely 

Extremely unlikely 

95 (64.2%) 

30 (20.3%) 

10 (6.8%) 

7 (4.7%) 

 

0 (0%) 

1 (0.7%) 

 

5 (3.4%) 

37 (44.6%) 

22 (26.5%) 

14 (16.9%) 

5 (6%) 

 

3 (3.6%) 

2 (2.4%) 

  

0 (0%) 

132 (59.5%) 

55 (24.7%) 

24 (10.8%) 

13 (5.8%) 

 

3 (1.3%) 

3 (1.3%) 

 

5 (2.2%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

In the future 

when driverless 

vehicle's are 

available as an 

option how 

likely are you to 

want to ride in 

one(regardless 

of cost)? 

Extremely likely 

Moderately likely 

Slightly likely 

Neither likely nor 

unlikely 

Slightly unlikely 

Moderately 

unlikely 

Extremely unlikely 

108 (73.0%) 

30 (20.3%) 

5 (3.4%) 

4 (2.7%) 

 

0 (0.0%) 

0 (0.0%) 

1 (0.7%) 

42 (50.6%) 

22 (26.5%) 

8 (9.6%) 

3 (3.6%) 

 

3 (3.6%) 

5 (6.0%) 

0 (0.0%) 

150 (64.9%) 

52 (22.5%) 

13 (5.6%) 

7 (3.0%) 

 

3 (1.3%) 

5 (2.2%) 

1 (0.4%) 

Do you think 

that a human 

being should 

always be in 

charge of a 

vehicle? 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

6 (4.1%) 

12 (8.1%) 

28 (18.9%) 

18 (12.2%) 

 

11 (7.4%) 

30 (20.3%) 

43 (29.1%) 

5 (6.0%) 

12 (14.5%) 

20 (24.1%) 

13 (15.7%) 

 

10 (12.0%) 

17 (20.5%) 

6 (7.2%) 

11 (4.8%) 

24 (10.4%) 

48 (20.8%) 

31 (13.4%) 

 

21 (9.1%) 

47 (20.3%) 

49 (21.2%) 

How much do 

you agree with 

the following 

statement: 

'driverless cars 

are a good 

idea?' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

98 (66.2%) 

29(19.6%) 

17(11.5%) 

1 (0.7%) 

 

2 (1.4%) 

0 (0%) 

1 (0.7%) 

37 (44.6%) 

24 (28.9%) 

14 (16.9%) 

4 (4.8%) 

 

3 (3.6%) 

1 (1.2%) 

0 (0%) 

135 (58.19%) 

53 (22.84%) 

32 (13.79%) 

5 (2.16%) 

 

5 (2.16%) 

1 (0.43%) 

1 (0.43%) 

How much do 

you agree with 

the following 

Strongly agree 

Agree 

117 (79.1%) 

18 (12.2%) 

53 (63.9%) 

12 (14.5%) 

170 (73.6%) 

30 (13.0%) 



201 
 

Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

statement: 

'driverless cars 

are an exciting 

prospect? 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

9 (6.1%) 

1 (0.7%) 

 

2 (1.4%) 

1 (0.7%) 

0 (0.0%) 

10 (12.0%) 

4 (4.8%) 

 

3 (3.6%) 

1 (1.2%) 

0 (0.0%) 

19 (8.2%) 

5 (2.2%) 

 

5 (2.2%) 

2 (0.9%) 

0 (0.0%) 

Do you think 

driverless cars 

should take 

control to 

prevent a 

crash? 

Definitely yes 

Probably yes 

Might or might 

not 

Probably not 

Definitely not 

88 (59.5%) 

47 (31.8%) 

7 (4.7%) 

 

4 (2.7%) 

2 (1.4%) 

34 (41.0%) 

37 (44.6%) 

11 (13.3%) 

 

0 (0.0%) 

1 (1.2%) 

122 (52.8%) 

84 (36.4%) 

18 (7.8%) 

 

4 (1.7%) 

3 (1.3%) 

How much do 

you agree with 

the following 

statement: 'If 

90% or more of 

accidents are 

down to human 

error then 

there is a 

strong case for 

taking driver 

control out of 

the equation 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

89 (60.1%) 

29 (19.6%) 

19 (12.8%) 

2 (1.4%) 

 

4 (2.7%) 

5 (3.4%) 

0 (0.0%) 

30 (36.1%) 

23 (27.7%) 

23 (27.7%) 

2 (2.4%) 

 

3 (3.6%) 

2 (2.4%) 

0 (0.0%) 

119 (51.5%) 

52 (22.5%) 

42 (18.2%) 

4 (1.7%) 

 

7(3.0%) 

7(3.0%) 

0 (0.0%) 

How much do 

you agree with 

the following 

statement: 

'advances in 

engineering 

sciences and 

automotive 

technology will 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

89 (60.1%) 

35 (23.6%) 

16 (10.8%) 

5 (3.4%) 

 

1 (0.7%) 

33 (39.8%) 

27 (32.5%) 

13 (15.7%) 

6 (7.2%) 

 

4 (4.8%) 

122 (52.8%) 

62 (26.8%) 

29 (12.6%) 

11 (4.8%) 

 

5 (2.2%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

allow driverless 

cars to be at 

least as safe as 

human drivers' 

disagree 

Disagree 

Strongly disagree 

2 (1.4%) 

0 (0.0%) 

0 (0.0%) 

0 (0.0%) 

2 (0.9%) 

0 (0.0%) 

How much do 

you agree with 

the following 

statement: 

'driverless cars 

may be suitable 

for use in other 

countries (e.g. 

USA) but 

they're not 

suitable for use 

on our roads' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

1 (0.7%) 

3 (2.0%) 

8 (5.4%) 

9 (6.1%) 

 

18 (12.2%) 

50 (33.8%) 

59 (39.9%) 

0 (0.0%) 

5 (6.0%) 

5 (6.0%) 

11 (13.3%) 

 

9 (10.8%) 

24 (28.9%) 

29 (34.9%) 

1 (0.4%) 

8 (3.5%) 

13 (5.6%) 

20 (8.7%) 

 

27 (11.7%) 

74 (32.0%) 

88 (38.1%) 

How much do 

you agree with 

the following 

statement: 

'driverless cars 

should be 

segregated and 

used only on 

dedicated 

roads/lanes' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

7 (4.7%) 

8 (5.4%) 

22 (14.9%) 

18 (12.2%) 

 

18 (12.2%) 

41 (27.7%) 

34 (23.0%) 

5 (6.0%) 

9 (10.8%) 

17 (20.5%) 

14 (16.9%) 

 

13 (15.7%) 

11 (13.3%) 

14 (16.9%) 

12 (5.2%) 

17 (7.4%) 

39 (16.9%) 

32 (13.9%) 

 

31 (13.4%) 

52 (22.5%) 

48 (20.8%) 

How much do 

you agree with 

the following 

statement: 'I 

would trust 

manufacturer 

or government 

assurances that 

driverless cars 

were safe' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

25 (16.9%) 

49 (33.1%) 

35 (23.6%) 

13 (8.8%) 

 

16 (10.8%) 

 

9 (10.8%) 

20 (24.1%) 

23 (27.7%) 

9 (10.8%) 

 

13 (15.7%) 

 

34 (14.7%) 

69 (29.9%) 

58 (25.1%) 

22  (9.5%) 

 

29 (12.6%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

Strongly disagree 6 (4.1%) 

4 (2.7%) 

3 (3.6%) 

6 (7.2%) 

9 (3.9%) 

10 94.3%) 

How much do 

you agree with 

the following 

statement: 'I 

enjoy driving 

too much to 

ever want a 

driverless 

vehicle' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

0 (0.0%) 

5 (3.4%) 

10 (6.8%) 

22 (14.9%) 

 

14 (9.5%) 

39 (26.4%) 

58 (39.2%) 

1 (1.2%) 

3 (3.6%) 

16 (19.3%) 

16 (19.3%) 

 

17 (20.5%) 

17 (20.5%) 

13 (15.7%) 

1 (0.4%) 

8 (3.5%) 

26 (11.3%) 

38 (16.5%) 

 

31 (13.4%) 

56 (24.2%) 

71 (30.7%) 

How much do 

you agree with 

the following 

statement: 'a 

driverless 

vehicle would 

increase my 

mobility' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

35 (23.6%) 

29 (19.6%) 

15 (10.1%) 

35 (23.6%) 

 

4 (2.7%) 

18 (12.2%) 

12 (8.1%) 

17 (20.7%) 

13 (15.9%) 

10 (12.2%) 

23 (28.0%) 

 

2 (2.4%) 

14 (17.1%) 

3 (3.7%) 

52 (22.6%) 

42 (18.3%) 

25 (10.9%) 

58 (25.2%) 

 

6 (2.6%) 

32 (13.9%) 

15 (6.5%) 

How much do 

you agree with 

the following 

statement: 'a 

driverless 

vehicle would 

reduce the 

stress of 

driving' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

65 (43.9%) 

48 (32.4%) 

23 (15.5%) 

4 (2.7%) 

 

5 (3.4%) 

1 (0.7%) 

2 (1.4%) 

21 (25.3%) 

26 (31.3%) 

18 (21.7%) 

9 (10.8%) 

 

7 (8.4%) 

1 (1.2%) 

1 (1.2%) 

86 (37.2% 

74 (32.0% 

41 (17.7% 

13 (5.6% 

 

12 (5.2% 

2 (0.9% 

3 (1.3%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

How much do 

you agree with 

following 

statement: 'My 

extent of 

understanding 

vehicle 

automation 

and driverless 

technology is a 

significant 

factor in my 

feelings 

towards 

driverless 

vehicles' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

43 (29.1%) 

51 (34.5%) 

31 (20.9%) 

17 (11.5%) 

 

2 (1.4%) 

3 (2.0%) 

1 (0.7%) 

22 (26.2%) 

33 (39.3%) 

15 (17.9%) 

9 (10.7%) 

 

2 (2.4%) 

2 (2.4%) 

1 (1.2%) 

65 (28.0%) 

84 (36.2%) 

46 (19.8%) 

26 (11.2%) 

 

4 (1.7%) 

5 (2.2%) 

2 (0.9%) 

How much do 

you agree with 

the following 

statement: 'I 

am suspicious 

of a driverless 

vehicles intent, 

action or 

outputs' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

2 (1.4%) 

8 (5.4%) 

10 (6.8%) 

14 (9.5%) 

 

13 (8.8%) 

55 (37.2%) 

46 (31.1%) 

1 (1.2%) 

4 (4.8%) 

18 (21.7%) 

8 (9.6%) 

 

13 (15.7%) 

27 (32.5%) 

12 (14.5%) 

3 (1.3%) 

12 (5.2%) 

28 (12.1%) 

22 (9.5%) 

 

26 (11.3%) 

82 (35.5%) 

58 (25.1%) 

How much do 

you agree with 

the following 

statement: 'I 

am wary of 

driverless 

vehicles' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

2 (1.4%) 

5 (3.4%) 

30 (20.3%) 

12 (8.1%) 

 

15 (10.1%) 

39 (26.4%) 

45 (30.4%) 

6 (7.2%) 

10 (12.0%) 

17 (20.5%) 

8 (9.6%) 

 

11 (13.3%) 

20 (24.1%) 

11 (13.3%) 

8 (3.5%) 

15 (6.5%) 

47 (20.3%) 

20 (8.7%) 

 

26 (11.3%) 

59 (25.5%) 

56 (24.2%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

Strongly disagree 

How much do 

you agree with 

the following 

statement: 'I 

am confident in 

a driverless 

vehicles 

performance' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

38 (25.7%) 

50 (33.8%) 

35 (23.6%) 

17 (11.5%) 

 

6 (4.1%) 

1 (0.7%) 

1 (0.7%) 

10 (12.0%) 

22 (26.5%) 

24 (28.9%) 

15 (18.1%) 

 

6 (7.2%) 

6 (7.2%) 

0 (0.0%) 

48 (20.8%) 

72 (31.2%) 

59 (25.5%) 

32 (13.9%) 

 

12 (5.2%) 

7 (3.0%) 

1 (0.4%) 

How much do 

you agree with 

the following 

statement: 'A 

driverless 

vehicle will 

provide safety 

to both the 

occupants of 

the vehicle and 

pedestrians' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

50 (33.8%) 

57 (38.5%) 

26 (17.6%) 

10 (6.8%) 

 

2 (1.4%) 

2 (1.4%) 

1 (0.7%) 

11 (13.3%) 

29 (34.9%) 

19 (22.9%) 

18 (21.7%) 

 

4 (4.8%) 

1 (1.2%) 

1 (1.2%) 

61 (26.4%) 

86 (37.2%) 

45 (19.5%) 

28 (12.1%) 

 

6 (2.6%) 

3 (1.3%) 

2 (0.9%) 

How much do 

you agree with 

the following 

statement: 'A 

driverless 

vehicle will be 

dependable in 

all situations' 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

12 (8.1%) 

41 (27.7%) 

36 (24.3%) 

22 (14.9%) 

 

22 (14.9%) 

12 (8.1%) 

3 (2.0%) 

4 (4.8%) 

14 (16.9%) 

25 (30.1%) 

8 (9.6%) 

 

16 (19.3%) 

11 (13.3%) 

5 (6.0%) 

16 (6.9%) 

55 (23.8%) 

61 (26.4%) 

30 (13.0%) 

 

38 (16.5%) 

23 (10.0%) 

8 (3.5%) 

How much do 

you agree with 

Strongly agree 33 (22.3%) 5 (6.0%) 38 (16.5%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

the following 

statement: 'A 

driverless 

vehicle will be 

reliable' 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

59 (39.9%) 

30 (20.3%) 

18 (12.2%) 

 

7 (4.7%) 

0 (0.0%) 

1 (0.7%) 

30 (36.1%) 

16 (19.3%) 

21 (25.3%) 

 

7 (8.4%) 

3 (3.6%) 

1 (1.2%) 

89 (38.5%) 

46 (19.9%) 

39 (16.9%) 

 

14 (6.1%) 

3 (1.3%) 

2 (0.9%) 

How much do 

you agree with 

the following 

statement: 'I 

can trust a 

driverless 

vehicle 

Strongly agree 

Agree 

Somewhat agree 

Neither agree nor 

disagree 

Somewhat 

disagree 

Disagree 

Strongly disagree 

33 (22.3%) 

59 (39.9%) 

31 (20.9%) 

18 (12.2%) 

 

5 (3.4%) 

1 (0.7%) 

1 (0.7%) 

11 (13.1%) 

24 (28.6%) 

22 (26.2%) 

13 (15.7%) 

 

9 (10.8%) 

5 (6.0%) 

0 (0%) 

44 (18.9%) 

83 (35.8%) 

53 (22.8%) 

31 (13.4%) 

 

14 (6.0%) 

6 (2.6%) 

1 (0.4%) 

Which sector or 

area do you 

believe will 

benefit the 

most from 

driverless 

vehicles (please 

only select one) 

Car industry 

Businesses 

Society 

Environment 

Individuals 

Not sure 

7 (4.8%) 

19 (13.0%) 

66 (45.2%) 

19 (13.0%) 

24 (16.4%) 

11 (7.5%) 

8 (9.9%) 

9 (11.1%) 

23 (28.4%) 

12 (14.8%) 

19 (23.5%) 

10 (12.3%) 

15 (6.6%) 

28 (12.3%) 

89 (39.2%) 

31 (13.7%) 

43 (18.9%) 

21 (9.3%) 

Do you think 

driverless 

vehicles will 

bring more 

freedom 

Definitely yes 

Probably yes 

Might or might 

not 

Probably not 

Definitely not 

74 (50.3%) 

45 (30.6%) 

17 (11.6%) 

9 (6.1%) 

2 (1.4%) 

27 (33.3%) 

31 (38.3%) 

15 (18.5%) 

8 (9.9%) 

0 (0.0%) 

101 (44.3%) 

76 (33.3%) 

32 (14.0%) 

17 (7.5%) 

2 (0.9%) 
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Question Response 

selection 

GATEway 

respondents 

Internet 

respondents 

Total 

respondents 

Do you think 

driverless 

vehicles will 

make future 

cities better to 

live and travel 

in? 

Much better 

Moderately 

better 

Slightly better 

About the same 

Slightly worse 

Moderately worse 

Much worse 

85 (57.8%) 

28 (19.0%) 

20 (13.6%) 

7 (4.8%) 

4 (2.7%) 

2 (1.4%) 

1 (0.7%) 

32 (39.5%) 

20 (24.7%) 

13 (16.0%) 

14 (17.3%) 

1 (1.2%) 

0 (0.0%) 

1 (1.2%) 

117 (51.3%) 

48 (21.1%) 

33 (14.5%) 

21 (9.2%) 

5 (2.2%) 

2 (0.9%) 

2 (0.9%) 

Do you think 

driverless 

vehicles will ‘be 

the norm on UK 

roads’ within 

the next 5-10 

years? 

Definitely yes 

Probably yes 

Might or might 

not 

Probably not 

Definitely not 

17 (11.6%) 

44 (29.9%) 

37 (25.2%) 

 

39 (26.5%) 

10 (6.8%) 

5 (6.2%) 

15 (18.5%) 

16 (19.8%) 

 

38 (46.9%) 

7 (8.6%) 

22 (9.6%) 

59 (25.9%) 

53 (23.2%) 

 

77 (33.8%) 

17 (7.5%) 

Do you think 

driverless 

vehicles will ‘be 

the norm on UK 

roads’ within 

the next 15-20 

years? 

Definitely yes 

Probably yes 

Might or might 

not 

Probably not 

Definitely not 

63 (42.9%) 

59 (40.1%) 

11 (7.5%) 

 

13 (8.8%) 

1 (0.7%) 

22 (26.8%) 

32 (39.0%) 

17 (20.7%) 

 

9 (11.0%) 

2 (2.4%) 

85 (37.1%) 

91 (39.7%) 

28 (12.2%) 

 

22 (9.6%) 

3 (1.3%) 
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Appendix C 

All additional comments from respondents (verbatim). 

GATEway Respondents 

“Have a look at the case story's from TESLA, you will see quite a few of their 

"driverless cars" crashing at high speeds, and crossing red lights, breaking driving 

laws etc.  Now ask yourself why aren't any other brands doing what TESLA are doing 

with their driverless cars and systems?” 

“I think there's too many people who enjoy driving manually for driverless to be the 

norm in the short term, but the closer we get to making manually driven cars less 

attractive to people looking for a car, the better. Whether this is by law or by cost, 

will be interesting.” 

None 

“Success of driverless vehicles depend on the infrastructure (and security of) for 

success. In a closed - short distance environment it would be beneficial to all. 

Further testing and development is needed to change mindsets before they would 

be the norm on main roads.”  

“Can you please push for driverless vehicles to be on the roads sooner!”  

“I think the discussion on potential accidents - a car choosing to hit elderly vs. 

Younger people in case an accident cannot be avoided will be very interesting” 

“My big concern re driverless cars is the possibility of a hack attack” 

“Based on what we know about automated systems I would trust it more than a 

human being in a driving task. There are too many variables even in regular driving 

especially in unforeseen situations that a normal human can react well too. Every 

human has to be trained to drive to do automotive processes and machines have 

been proven to be able to do tasks better. Driving can be seen as a relative simple 

task to teach. It's the other humans on the road that will cause problems in its 

initiation process.”  

“I think the technology will have a massive impact on society and the environment. 

Driverless cars can be cleaner and more fuel-efficient. They will be safer on the road 

because they will not take unnecessary risks, drive erratically, speed, or get tired. 

Travelling long distances will be less stressful and safer, especially for the old or 

disabled.” 

“Cant wait ....” 
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“Interesting concept and once safety issues are firmly in public mind I can see there 

being a real shift towards driverless cars” 

“I am wary of driverless vehicles in the short term but confident they will quickly (5-

15 years) become substantially safer and more efficient than driven vehicles.” 

“I am concerned about the inevitable situation where the vehicle chooses to kill its 

driver to save a greater number of external people in an unavoidable collision.”  

“Many of these questions assume a level of knowledge and experience of driverless 

vehicles which the vast majority of respondents will not have - so the results of this 

survey can hardly be accurate or even representative. Certainly many of my answers 

have been pure guesswork or based on supposition. Sadly, I suspect that the aim of 

this survey is to tick the "public consultation" box ...” 

“As a philosophy graduate with an interest in ethics, I find the moral arguments 

about driverless cars fascinating, but not as complex as they may first seem. I think 

that when viewed rationally, the main issue most people raise ('who would be 

responsible in a crash?') is not actually that important.” 

“Morally, the primary consideration should be maximising the benefits and 

minimising the risks. Motor vehicles cause a gargantuan amount of death, illness 

and injury directly through collisions and indirectly through increasing inactivity, 

dominating road space and polluting.”  

“As driverless cars already surpass humans in terms of pollution generated and 

collisions involved in, there is a very strong moral case that transition to driverless 

vehicles gets underway swiftly.”   

“Of course, doing so in a rash and irresponsible manner would not be morally 

justifiable, yet delaying unnecessarily would be no more right or reasonable.”  

“The 'I like to drive' argument is frankly worthy of contempt and should be 

immediately countered by facts about the harm human drivers cause.”  

“Whilst it is assumed that driverless cars of the future will run on cleaner fuel 

sources, it should also be bourne in mind that much pollution comes from 

particulates caused by braking and general vehicle functioning. Perhaps it would be 

worth considering if driverless vehicles were able to minimise the volume of 

particulates emitted.” 

“The sooner we can switch to full automation and electric vehicles, the safer and 

cleaner we'll be.”  

“I have a motorcycle licence, a car licence, a HGV licence, a Coach Licence, a 

certificate to drive dangerous goods, I have been a transport supervisor, a Hospital 

Ambulance driver, a HGV delivery driver, and an Army driver.”   
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“I look forward to driverless vehicles becoming the norm on UK roads as soon as 

possible, because I want to cycle on London's roads safely, I want children to be able 

to play safely on London's roads, I'm tired of being abused by young impatient 

drivers when I don't race to the next set of traffic lights, and I find the time that I 

spend driving to be wasted time so I look forward with eager anticipation to being in 

the rear browsing the internet or being asleep.” 

“I think the prospects of driverless cars being accepted depend on changes to traffic 

and road policies and strategy as much as the reliability as the cars.” 

“Bring them on !” 

“Driverless technology is exciting but with all new technologies, younger people will 

be more trusting of the technology than older people. It is this level of trust that will 

be the barrier to success for the adoption of driverless vehicles.” 

“I would only doubt a driverless cars abilities in adverse weather conditions or 

unpredictable situations such as flooding, landslides etc, and would appreciate 

manual override to avoid fatalities.” 

“The government has outlined Levels 0-5 of automated vehicle control, it might 

have been better if explanations outlined these to give a greater idea as to the 

expected levels of sophistication and asked questions relating to these levels, rather 

than just dividing questions between 'driver assist (driver still has responsibility)' and 

'fully automated' (i.e. Level 5 automation).” 

“Yes driverless vehicle may good for the mobility of people , but it's business that 

will be the big winner saving millions and meaning less jobs putting more people out 

of work” 

“Driverless vehicles are only a small part of an intelligent integrated transport 

system. One should be very wary of seeing them as some sort of transport 

panacea.”  

“An ideal transport future would have autonomous portions, but a like for like 

replacement of private human controlled cars with private autonomous cars would 

solve very few problems.” 

“Additionally, the more significant use case is in moving goods rather than people.” 

“I find it difficult to answer questions on trust and faith etc in a driverless vehicle as I 

(and the majority of the public in the UK) have no experience of driverless vehicles, 

and so not much to base an opinion on. A lot of the trust will come when 

manufacturers start bringing products to market. For example, consumers put their 

trust in various car brands based on factors such as quality, safety, reliability etc. I 

believe consumers will make similar opinions for driverless cars - for example Volvo 
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owners may be more likely to trust a Volvo-manufactured driverless car than one of 

a different brand.”  

“To the individual, there could be substantial benefits. However, at a city-wide level, 

if they reduced the cost and inconvenience of using cars, problems like congestion 

could get worse” 

“I'm very keen for driverless cars to be introduced as I really dislike driving as my 

spatial awareness skills are not strong” 

“My biggest worry is ability of criminals to hack into the systems” 

“I think driverless cars are a great idea. I have concerns over security and software 

viruses affecting safety. And how this is implemented needs very careful thought as 

it could put public transport costs out of reach of people. This should not be a 

private only enterprise.” 

“I am far far more wary of the semi-autonomous vehicles than the full driverless 

vehicles It allows humans to take back control and have an accident. So if we had a 

society where all cars were automated it feels safer as they'd all be working within 

their programmed parameters for safety. But if it is 'some' driverless cars in 

amongst normal drivers speeding, drink driving, aggressive driving etc, then it feels 

unsafe to be in a driverless car at that point - if I do not have control of my driverless 

car I cannot make sure I get out of the way when the bad driver is near me and I do 

not trust the driverless car to be able to react correctly/quickly to all the possible 

bad 'human' driving possibilities that could occur. Does that make sense? Summary: 

All cars fully automated feels safe, half and half feels risky to me.”  

“No” 

“I am visually impaired and no longer have a licence. I can't wait for a driverless 

vehicle to give me back my freedom.” 

“I have a good understanding of the technology as I work in the railway industry 

where digital signalling has meant that driverless trains are the norm for metro 

railways. I have seen first hand the improvements in safety the technology has 

delivered therefore I have no doubt it will deliver the same results for road 

transport. I am primarily a cyclist (and pedestrian) so I see on a daily basis the 

hazards in cities of human drivers - also for motorway and rural roads driver fatigue 

is a massive problem. For me personally the biggest benefits of driverless vehicles 

will be the improvement in safety. However I can see the enormous benefit this 

technology will have for elderly and disabled people who no longer can drive and 

find it difficult to use public transport/ walking or cycling as mobility options.” 
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“I think that driverless vehicles will have a significant impact on our city's landscape. 

No longer do we need streets lined with parked vehicles or parking lots.  Cars will 

move themselves out of the way to less dense areas” 

“I also think that the model of ownership will change - one will rent time in a 

driverless vehicles rather than own one.” 

“I am short sigted in my vision and i am legally not permitted to have a licence. I 

have answered the questions as if i was a driver. I am interested to see how the semi 

autonomous features of driverless cars might benefit people like me and our 

mobility” 

Internet Respondents 

 “I love the idea of driverless vehicles but the concern is the early days where they 

will not be able to compensate for human drivers errors. Once all cars are driverless 

roads will be much more efficient with no more ripple effect of tiny human delays 

causing jams. Also there's been some concerning reports of crashes where the 

driverless vehicle has failed to detect a large white lorry in the lane next to it. 

Although I'm confident these issues will improve other time with more testing”  

“My main concern is not with the driverless cars it's other road users. The period 

with non autonomous and autonomous cars will be strife with concern and blame. 

Were dedicated routes be driverless only I would be completely confident due to the 

removal or human error” 

“I would love to take part in the trials please.”  

“It is hard to form opinions on a hypothetical driverless system. Early systems will 

not be as robust as more mature systems in years to come. I would be cautious of 

early systems, but expect drivers to be fully replaced eventually. In the future you 

will not be able to buy a car that you can drive yourself.” 

“I feel the biggest benefit will be to non drivers in rural areas who will be able to 

utilise these vehicles”  

“Driverless vehicles will provide a great deal of independence, mobility and freedom 

to the disabled community if we are allowed to make use of them, especially those 

of us whose conditions mean we are unable to attain a driving licence for a normal 

car and so are completely dependant on another person being willing to drive us 

currently.” 

“Driverless vehicles make sense on boring roads like motorways where we could get 

greater throughout from by using platoons but I would want to drive without 

assistance if I was driving on say the A830 Road to the Isles where it is all about the 

driving experience”  
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“I think it will be necessary to show that the existing infrastructure can adapt to 

driverless vehicles at the same time as showing the qualities of the vehicles 

themselves because our learned traffic responses are bound up with what we know 

about the existing infrastructure” 

“No” 

“Trust in driverless cars is dependent on performance which at this stage is 

unproven. The fear of 3 rd party intervention is a real risk. Potentially a great idea 

that will increase safety and people mobility in an ageing society.” 

“I think there needs to be clear responsibility over the actions of the vehicle even if 

the driver is 'hands and eyes off'. I can see how a minority could benefit from it but 

the cost of it may be prohibitive to many especially in poorer urban areas where 

owning a car at all is difficult.”  

“I'm for the introduction of driverless cars during rush hours as it would be feasible 

to me that by maximising the vehicle to vehicle interaction the traffic flow would 

become more efficient and reduce stress on the drivers and passengers...” 

“The mix of external factors outside the cars control causes the levels of uncertainty 

I have. If all cars were automated then I would have stronger trust. Obviously next 

risk is their security and being hacked, but I think inside a city they would have a 

large benefit.” 

“Everybody will benefit from driverless cars once they can trust them, but getting 

people to trust them will be the hardest part to implement them into society.”  

“Can't wait to try them” 

“I don't know enough about this subject to give useful answers. Good luck!” 

“Sounds like the future might actually be happening. I can see huge positives with 

automatic cars but these will work better with more on the road and i doubt the 

majority will want this.” 

“I hope driverless vehicles in future will all be EVs.” 

“My main concerns around driverless cars is the reliability and ethics of the artificial 

intelligence.” 

“My answers to a lot of the questions would ideally be prefaced by It depends on the 

safeguards in the technology, which I don't know much about.” 

“A lot of the trustworthiness of the driverless vehicles would depend on independent 

reviews, safety ratings, and other people's experiences, as well as the 

trustworthiness of the manufacturer and the technology” 
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“I worry about reliability long term and cost to maintain. Could be great for people 

who would otherwise be housebound. It would take a lot for me to feel comfortable 

driving one and would worry that I couldn't trust it.” 
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Appendix D 

Information sheet presented to half of the participants who took part in the survey 

The following information is taken from British government reports, a report 

by KPMG and academic research reports from UK and US universities. 

Driverless Cars Currently on the Road 

Google reports that collectively their driverless cars have driven over 1.5 

million miles driverless and more than 500,000 miles without crashing. The first 

reported fatality in a semi-autonomous vehicle was recently reported by Tesla in 

over 130 million miles of driving. This fatality rate compares favourably to that of 

manual driving in the US (on average one fatality for every 94 million miles driven) 

and manual driving worldwide (one fatality per 60 million miles) but not to that of 

manual driving in the UK (one fatality per 178 million miles). 

Predicted Societal Impacts 

Driverless vehicles could enable more efficient use of road space, through 

developments such as platooning (vehicle groups travelling close together), 

narrowing of lanes, and reduced junction stops. This could lead to improved traffic 

flow, reduced congestion, improved fuel economy, reduced pollution emissions and 

lower costs. Changes in engine design could also reduce emissions and increase fuel 

efficiency. Driverless technology could enhance disabled or older people’s mobility, 

giving transport access to those who currently cannot drive. This could reduce both 

the need for motorists to chauffeur non-drivers and the use of subsidised public 

transport. The introduction of driverless vehicles could facilitate car sharing (vehicle 

rental services that substitute for personal vehicle ownership) leading to reductions 

in various costs associated with car ownership (e.g. insurance premiums, 

maintenance). Driverless technology could reduce driver stress and allow motorists 

to relax, socialise and work while traveling. 

Predicted Economic Impacts 

Driverless vehicle technologies could lead to improved productivity and 

increased trade for the UK, as industries capture part of a wider global market for 
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Intelligent Mobility estimated to be worth £900bn worldwide by 2025. This influx of 

new business and industry for driverless vehicles could create an additional 320,000 

jobs in the UK by 2030, of which 25,000 would be in automotive manufacturing. It is 

estimated that driverless technology could increase GDP by 1% by 2030. Overall, 

the economic and social benefits of connected and driverless vehicles (i.e. fewer 

accidents, improved productivity and increased trade) are predicted to amount to 

somewhere in the region of £51 billion per year by 2030. Longer-term estimates 

predict that by 2040 these benefits will more than double, to £121 billion. 

Predicted Safety Impacts 

More than 90% of road traffic collisions are currently thought to be caused 

by human error. Recent collision avoidance technologies such as Electronic Stability 

Control and Autonomous Emergency Braking Systems have shown a more than 20% 

benefit in collision reduction. The adoption of semi-autonomous and driverless 

technology could save over 2,500 lives and prevent more than 25,000 serious 

accidents in the UK by 2030. This increased safety may reduce many common 

accident risks and therefore crash costs and reduce insurance premiums. 

Predicted Risks and Costs 

There may be reduced employment and business activity in sectors such as 

haulage and private vehicle hire, which rely heavily on people to drive vehicles. 

There could be additional short- to mid-term costs to consumers and governments 

as vehicles require additional equipment, services and maintenance, and changes 

are required to roadway infrastructure. There could be additional risks both 

anticipated (e.g. encouraging road users to take additional risks) or unforeseen (e.g. 

technological, economic, political) that could cause problems for us and future 

generations. 

 

 

 


