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Orthogonal Frequency Division Multiple Access (OFDMA) with Dynamic spectrum allocation
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I. INTRODUCTION

Orthogonal Frequency Division Multiple Access (OFDMA) is a high-rate multiple access

scheme where different users are allocated with non-overlapping spectral bands. Due to its re-

silience to intersymbol interference and low-complexity equalization at the receiver end, OFDMA

has attracted significant attention over the past decades. For example, OFDMA has been adopted

in IEEE 802.16 standard [1] and Long Term Evolution (LTE) downlink [2]. The multicarrier

transmission nature of OFDMA implies that it may suffer from high peak-to-mean envelope

power ratio (PMEPR) which could result in distorted transmitted signals and reduced communi-

cation range [3]. Different from traditional OFDM system operated over a dedicated contiguous

spectral band, dynamic spectrum allocation (DSA) is employed in OFDMA to accommodate

instantaneous network conditions and different requirements of quality of service. In DSA, a

large contiguous spectral band is divided into several resource blocks (RBs), and any user, after a

request-and-grant random access procedure, may be given one or more RBs which are contiguous

or non-contiguous. Note that a RB, which is comprised of several contiguous subcarriers, is the

smallest spectrum allocation unit in OFDMA systems.

The objective of this paper is to design preamble sequences with low PMEPRs for OFDMA

systems with DSA. We consider DSA carried out over four contiguous RBs and target at a

preamble sequence design which leads to low-PMEPRs for a variety of DSA schemes. There

are two main reasons that we consider a chunk of four contiguous RBs: 1) In practice, four

contiguous RBs may well serve most scenarios in DSA. Moreover, a large frequency band can

always be divided into multiple chunks each having four RBs; 2) There exists a mathematical

beauty in this setting that the maximum PMEPR can be proved to be at most 4. When more

than four RBs are considered, the PMEPR upper bound may increase. However, analytical

characterization of the PMEPR upper bound in this case is not straightforward. In the sequel,

we introduce the related works, followed by a summary of our contributions in this work.
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A. Related Works

A preamble refers to an OFDM symbol (or more) which is placed at the front of each

transmission frame for a series of signal processing operations such as synchronization and

channel estimation. A preamble, known at the receiver, is desired to have time domain waveform

with low PMEPR in order to avoid excessive signal distortion at the nonlinear region of the power

amplifier.

There have been numerous works on the search of waveforms with low PMEPRs. A remarkable

work was done by Davis and Jedwab [4] who have constructed 2h-ary Golay complementary

sequences (GCSs) [5] using the algebraic tool of generalized Boolean functions. In this work,

the Golay complementary pairs (GCPs) constructed by Davis and Jedwab are called the standard

GCPs, and any constituent sequence in a standard GCP is called a Golay-Davis-Jadweb (GDJ)

sequence. By definition, two polyphase GCSs form a GCP with zero out-of-phase aperiodic

autocorrelation sums. When a GCS is spread over a contiguous group of subcarrier frequencies,

each GCS gives rise to an OFDM waveform with a PMEPR bounded by 2 [6]. [7] studied

the PMEPR distribution of binary GDJ sequences. As an alternative to GCSs, complementary

(or near-complementary) sets with constituent sequences of 2 or more, have been proposed in

[8]–[11], in which their PMEPRs are upper bounded by a small value slightly larger than 2.

GDJ sequences are excellent candidates for rapid hardware generation especially for large

sequence lengths. In the context of DSA based OFDMA systems, however, the resultant PMEPR

of a preamble sequence, called a subsequence in this work by taking certain sequence elements

of a GDJ sequence (contiguously or non-contiguously), may be unacceptably high. [12] proposed

hierarchical construction methods of long complementary sequences out of short ones for 2k-RB

OFDMA systems, but they required additional resources as side information bits, which could

lead to reduced spectrum efficiency. Moreover, the PMEPRs of the concatenations of any three

adjacent short complementary sequences were not considered in [12]. In IEEE 802.11ax [13] ,

there are some designs for short training fields (STF) and long training fields (LTF), where the

widths of RBs are 26, 52, 106, 242 and 484 for different bandwidths. Although the subsequences
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on each RB of these training sequences have low PMEPRs, their lengths are fixed. It is found in

[14] that certain variations of the concatenations of 2m GCS are still GCSs, whose subsequences

on each RB have PMEPRs upper bounded by 2. Chen proposed a construction of complementary

sequences (CSs) of length 2m−1 +2v with PMEPRs upper bounded by 4, which are subsequences

on contiguous RBs of some CSs with lengths 2m by deleting the last 2m−1 − 2v elements [15].

B. Main Contributions

This paper considers the design of preambles in OFDMA system with DSA, where an entire

(contiguous) spectral band is divided into four RBs. Due to the dynamism of the spectrum

allocation, each of the preambles in these four RBs may be turned on or off independently. We

aim to design families of sequences, whose subsequences, all display low PMEPRs. This finding

allows us to deploy a fixed preamble sequence, to an OFDMA system, which has guaranteed

low-PMEPRs for any DSA schemes over the four RBs. With the aid of GDJ sequences, we

introduce two classes of preamble sequences, whose subsequences corresponding to all the DSA

schemes, deployed contiguously or non-contiguously, have PMEPRs of at most 4.

C. Paper Organization and Notations

The remainder of this paper is organized as follows. Section II gives the preliminaries and

the mathematical tools used in the paper. In Section III, we recall the construction of GDJ

sequences, and then we discuss the PMEPR properties of subsequences of GDJ sequences. In

Section IV, first, we present a class of preamble sequences whose subsequences corresponding

to any number of contiguous RBs have PMEPR less than 3.3334. Then, we present a class of

preamble sequences whose subsequences under contiguous DSA have PMEPR upper bounded

by 4. In Section V, we study the PMEPR properties for the subsequences of the sequences in

Section IV for OFDMA systems with non-contiguous DSA. Section VI compares the PMEPR

properties of proposed sequences with those of m-sequences and Zadoff-Chu sequences by some

simulation results. Section VII concludes this paper with some remarks.
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We end this section by introducing some notations:

• q is an even integer;

• Zq = {0, 1, ..., q − 1} denotes the ring of integers modulo q;

• ξq denotes the qth primitive root of unity;

• |a| denotes the modulus of the complex number a;

• a∗ denotes the complex conjugation of the complex number a;

• |a| denotes the magnitude of the vector a;

• aT denotes the transposition of the vector a;

• a(n : m) denotes the partial sequence of the sequence a from the nth element to the mth

element;

• a ‖ b denotes the concatenation of the sequences a and b;

• |C| denotes the size of the set C;

• Re(a) denotes the real part of the complex number a.

II. PRELIMINARIES

A. Complementary Sequence Sets

Let a = (a(0), a(1), ..., a(L − 1)) and b = (b(0), b(1), ..., b(L − 1)) be complex-valued

sequences of length L. The aperiodic cross-correlation between a and b at a time shift τ is

defined as

Ra,b(τ) =



∑L−1−τ
i=0 a(i)b∗(i+ τ), 0 ≤ τ ≤ L− 1;∑L−1+τ
i=0 a(i− τ)b∗(i), −(L− 1) ≤ τ ≤ −1;

0, |τ | ≥ L;

and R∗a,b(τ) denotes the complex conjugation of Ra,b(τ). When a = b, Ra,a(τ) is called the

aperiodic auto-correlation of a. In this case, we write Ra,a(τ) = Ra(τ).

Definition 1 ( [16]). Let A = (ai)
N
i=1 be a set of N sequences of length L. It is said to be a

complementary sequence set (CSS) of size N if
∑N

i=1Rai(τ) = 0 for any τ > 0. In this case,
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every ai in A is called a complementary sequence (CS). In particular, when N = 2, A is called

a Golay complementary pair (GCP), and any constituent sequence in this pair is called a Golay

complementary sequence (GCS).

Definition 2. Let C = (a,b) be a set of two sequences of length L. It is said to be an almost

complementary pair (ACP) if there exists a positive integer µ (1 ≤ µ ≤ L− 1) and a complex

number A 6= 0, such that for any τ , 1 ≤ τ < L, we have

Ra(τ) +Rb(τ) =


A, τ = µ;

0, otherwise.

Such a is called an almost complementary sequence (ACS).

Definition 3. Let S = (a,b) and K = (c,d) be two GCPs of length L. S is said to be a Golay

mate of K if

Ra,c(τ) +Rb,d(τ) = 0, 0 ≤ τ ≤ L− 1.

B. Generalized Boolean Functions

For x = (x1, x2, · · · , xm) ∈ Zm2 , a generalized Boolean function f(x) is defined as a mapping

f from Zm2 to Zq:

f(x) =
2m−1∑
i=0

ai

m∏
k=1

xikk , ai ∈ Zq,

where (i1, i2, · · · , im) is the binary representation of the integer i =
∑m

k=1 2k−1ik. For any given

f(x), we can define a sequence

f = (f(0), f(1), · · · , f(2m − 1))

= (f(0, 0, · · · , 0), f(1, 0, · · · , 0), · · · , f(1, 1, · · · , 1)).
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One can naturally associate a complex-valued sequence ψ(f (L)) of length L with f (L) as

ψ(f (L)) = (ξf(0)
q , ξf(1)

q , · · · , ξf(L−1)
q ).

From now on, whenever the context is clear, we ignore the superscript of f (L) unless the sequence

length is specified.

C. PMEPRs of OFDMA Symbols

Let us consider an L-subcarrier OFDMA system. Without loss of generality, for kth trans-

mitter, let Ω be the subcarrier index set allocated to this system. For a Zq-valued sequence

a = (a(0), a(1), ..., a(L − 1)), there is a sequence ã = (ã(0), ã(1), ..., ã(L − 1)) corresponding

to Ω, where

ã(i) =


ξ
a(i)
q , i ∈ Ω,

0, i 6∈ Ω.

The transmitted OFDMA signal is the real part of the complex envelope, which can be written

as

Sã(t) =
L−1∑
i=0

ã(i)e2π(fc+i∆f)t
√
−1, 0 ≤ t < T,

where fc denotes the carrier frequency and ∆f = 1
T

denotes the subcarrier spacing, with T being

the OFDMA symbol duration. The sequence ã of length L is called the modulating codeword

of the OFDMA symbol for the subcarrier set Ω.

The instantaneous power of an OFDMA sequence (codeword) ã is given by

Pã(t) = Rã(0) + 2Re

(
L−1∑
τ=1

Rã(τ)e2π(τ∆f)t
√
−1

)
. (1)

The peak-to-mean energy power ratio (PMEPR) of the OFDMA sequence ã is then defined as:

PMEPR(ã) =

sup
t∈[0,T )

Pã(t)

Pav(ã)
, (2)
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where Pav(ã) is the average power of ã, and

Pav(ã) =
1

T

∫
[0,T ]

Pã(t)dt =‖ ã ‖2= Rã(0). (3)

In addition, define the “instantaneous-to-mean envelope power ratio (IMEPR)” of ã as

IMEPR(ã, t) = Pã(t)/Pav(ã),

clearly, PMEPR(ã) = supt∈[0,T )IMEPR(ã, t). Accordingly, the PMEPR of a sequence set A =

{a1, a2, · · · , aN} is defined as

PMEPR(A) = max
ai∈A

PMEPR(ai).

Combining Eqs. (1) and (2), it can be derived that for sequence set A of length n, we have

PMEPR(ai) ≤
1

Rai(0)

(
N∑
k=1

Rak(0) + 2
L−1∑
τ=1

∣∣∣∣∣
N∑
k=1

Rak(τ)

∣∣∣∣∣
)

(1 ≤ i ≤ N), (4)

which implies the following lemma:

Lemma 1 ( [17]). Let A be a CSS of size N in which all the sequences have the same energy.

Then the PMEPR of A is upper bounded by N .

Lemma 1 is useful to evaluate the PMEPR of a sequence in the sequel.

III. PMEPR PROPERTIES OF THE SUBSEQUENCES OF GDJ SEQUENCES

In this section, first, we give some notations needed in the sequel. Then, we introduce the

GDJ sequences and discuss the PMEPR properties of their subsequences.

For a Zq-valued sequence a of length L = 4H , where H is a positive integer which can be

seen as the width of a RB, define four subsequences corresponding to the RBs from it as

a1 = (a0, a1, ..., aH−1), a2 = (aH , aH+1, ..., a2H−1),

a3 = (a2H , a2H+1, ..., a3H−1), a4 = (a3H , a3H+1, ..., a4H−1).
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Based on these subsequences and a zero-sequence 0H = (0, ..., 0), we define 15 subsequences

as shown in Fig. 1, where L is the number of subcarriers, i =
∑4

k=1 ik2
k−1, Ai = A(i1,i2,i3,i4) =

H
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Fig. 1: Subsequences Ai (1 ≤ i ≤ 15) constructed from a and 0H

(i1ψ(a1) ‖ i2ψ(a2) ‖ i3ψ(a3) ‖ i4ψ(a4)), i = (i1, i2, i3, i4) and ik = 1 (1 ≤ k ≤ 4) means

the kth RB has been allocated to the transmitter, otherwise, ik = 0. It is straightforward that

A15 = A(1,1,1,1) = ψ(a). These sequences can be divided into 2 disjoint subsequence sets

of a: contiguous subsequence set C = {A1,A2,A3,A4,A6,A7,A8,A12,A14,A15} and non-

contiguous subsequence set NC = {A5,A9,A10,A11, A13}. (Note that in IEEE 802.11ax [13],

they only considered subsequences A1,A2,A3,A4,A8,A12,A15, which are included in C.)

In this paper, we define PMEPRC(a) as the maximum PMEPR of C, i.e.,

PMEPRC(a) = max
s∈{1,2,3,4,6,7,8,12,14,15}

PMEPR(As),
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and we define PMEPRNC(a) as the maximum PMEPR of NC, i.e.,

PMEPRNC(a) = max
s∈{5,9,10,11,13}

PMEPR(As).

In addition, we define PMEPRA(a) as the maximum PMEPR of A = NC
⋃
C, i.e.,

PMEPRA(a) = max
s∈{1,2,...,15}

PMEPR(As) = max{PMEPRC(a),PMEPRNC(a)}.

The following lemma gives the construction of GDJ sequences.

Lemma 2 (Corollary 11 of [18], Theorem 3.3 of [19]). Let q be an even integer and m be a

positive integer. Let

a(x) =
q

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk + c,

b(x) = a(x) +
q

2
xπ(1),

c(x) = a(x) +
q

2
xπ(m),

where π is a permutation of {1, 2, · · · ,m} and x ∈ Zm2 , ck, c ∈ Zq. Then (ψ(a), ψ(b))) and

(ψ(a), ψ(c)) are GCPs of length 2m. In particular, let

d(x) = a(x) +
q

2
xπ(1) +

q

2
xπ(m),

then (ψ(a), ψ(c)) is the Golay mate of (ψ(b), ψ(d)).

Remark 1. In particular, when q = 2s where s is a positive integer, Lemma 2 is the Theorem 3

of [4]. Any sequence constructed by Lemma 2 is called a Golay-Davis-Jedwab (GDJ) sequence.

Remark 2. The PMEPR of every GDJ sequence is upper bounded by 2.

The PMEPRs of the subsequences of GDJ sequences may be large. We illustrate this by the

following example.

Example 1. For q = 2,m = 9, let π be a permutation of {1, 2, ..., 9} with π(1) = 7, π(2) =
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9, π(3) = 6, π(4) = 3, π(5) = 1, π(6) = 5, π(7) = 4, π(8) = 8, π(9) = 2, and a(x) =∑m−1
k=1 xπ(k)xπ(k+1). Tables I and II show the PMEPRs for the subsequences of a. It can be

observed that PMEPRC(a) = 8 and PMEPRNC(a) = 4, which would be undesirable in practical

communication systems.

TABLE I: The PMEPRs of the contiguous subsequences of the GDJ sequence a in Example 1

As A1 A2 A3 A4 A6 A7 A8 A12 A14 A15

PMEPR(As) 8.0000 7.6216 4.0000 7.3279 3.8469 3.0682 7.7605 3.9155 2.9077 2.0000

TABLE II: The PMEPRs of the non-contiguous subsequences of the GDJ sequence a in Example
1

As A5 A9 A10 A11 A13

PMEPR(As) 4.0000 4.0000 3.9215 3.1025 3.3668

Example 1 motivates us to search some GDJ sequences whose subsequences have low-PMEPR

properties.

IV. PROPOSED LOW-PMEPR PREAMBLE SEQUENCES FOR CONTIGUOUS SPECTRUM

ALLOCATION

In this section, we introduce two classes of preamble sequences with good PMEPR properties

of the subsequences for the OFDMA system of contiguous frequency bands allocation.

A. Preamble Sequences with PMEPRs of Contiguous Subsequences Upper Bounded by 10
3

Theorem 1. Let m ≥ 2 be a positive integer and q be an even integer. Let

a(x) =
q

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk + c,

b(x) = a(x) +
q

2
xπ(1),

where x ∈ Zm2 , ck, c ∈ Zq. Let H = 2m−2 and π is a permutation of {1, 2, · · · ,m} satisfying

π(m) = m and π(m− 1) = m− 1, then the GDJ sequences have the following properties:
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1) for s = 7, 14, (As,Bs) is an ACP, i.e.,

RAs(τ) +RBs(τ) =


6H, τ = 0,

ξ
− q

2( s7−1)−cm
q · 2H, τ = 2H,

0, otherwise;

2) for s = 3, 6, 12, (As,Bs) is a GCP;

3) for s = 1, 2, 4, 8, (As,Bs) is a GCP.

Proof. 1) For s = 7, 14, when 0 ≤ i ≤ L− 1− τ , let j = i+ τ , then

As(i)− As(j) =
q

2

m−1∑
k=1

(iπ(k)iπ(k+1) − jπ(k)jπ(k+1)) +
m∑
k=1

ck(ik − jk),

Bs(i)−Bs(j) = As(i)− As(j) +
q

2
(iπ(1) − jπ(1)).

Hence we have

RAs(τ) +RBs(τ) =
L−1−τ∑
i=0

[
ξAs(i)−As(j)q + ξBs(i)−Bs(j)q

]
=

L−1−τ∑
i=0

ξAs(i)−As(j)q

[
1 + (−1)iπ(1)−jπ(1)

]
= 2

∑
i∈J(τ)

ξAs(i)−As(j)q , (5)

where J(τ) = {0 ≤ i ≤ L− 1− τ : iπ(1) = jπ(1)}.

• When τ = 2m−1, since j = i + 2m−1, π(m) = m and π(m − 1) = m − 1, it can be

obtained that jm = 1, im = 0, im−1 = jm−1 = s and iπ(t) = jπ(t) for 1 ≤ t ≤ m − 2,

which results in As(i)− As(j) = − q
2
( s

7
− 1)− cm and J(τ) = {0, 1, · · · , 2m−2 − 1}.

Hence (5) can be reduced as

RAs(τ) +RBs(τ) =
2m−2−1∑
i=0

2ξ
− q

2( s7−1)−cm
q = 2m−1 · ξ−

q
2( s7−1)−cm

q .

• When τ ∈ {1, 2, · · · , L−1}\{2m−1}, for any i ∈ J(τ), let t be the smallest integer in
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{1, 2, ...,m} such that iπ(t) 6= jπ(t), which implies 2 ≤ t < m. Let i′ and j′ be integers

which are different from i and j in only one position π(t−1), i.e., i′π(t−1) = 1−iπ(t−1),

respectively, and so j′ = i′ + τ . Then we have

As(i)− As(j)− (As(i
′)− As(j′)) ≡

q

2
(mod q),

which implies ξAs(i)−As(j)q = −ξAs(i
′)−As(j′)

q . Hence (5) can be reduced to

RAs(τ) +RBs(τ) =
∑
i∈J(τ)

ξAs(i)−As(j)q +
∑
i′∈J(τ)

ξAs(i
′)−As(j′)

q = 0.

Combining these two cases, we have

RAs(τ) +RBs(τ) =


ξ
− q

2( s7−1)−cm
q · 2H, τ = 2H,

0, otherwise;

i.e., (As,Bs) is an ACP.

2) • For s = 3, and 0 < τ < 2H − 1, we have im = 0. Then

A3(i) =
q

2

m−2∑
k=1

iπ(k)iπ(k+1) +
m−1∑
k=1

ckik + c,

B3(i) = A3(i) +
q

2
iπ(1).

According to Lemma 2, (A3,B3) is a GCP of length 2H .

• For s = 6, 0 < τ < 2H−1, let j = i+τ and H ≤ i, j < 3H , we have im−1 = 1, im = 0

or im−1 = 0, im = 1. Then,

A6(i)− A6(j) =
q

2

m−2∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m∑
k=1

ck(ik − jk), (6)

B6(i)−B6(j) = A6(i)− A6(j) +
q

2

(
iπ(1) − jπ(1)

)
. (7)

If iπ(1) 6= jπ(1), we have

ξA6(i)−A6(j)
q = −ξB6(i)−B6(j)

q .
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If iπ(1) = jπ(1), let t be the smallest integer such that iπ(t) 6= jπ(t). Let i′ and j′ be

integers which are different from i and j in only one position π(t− 1), i.e., i′π(t−1) =

1− iπ(t−1), respectively, and so j′ = i′ + τ . Hence we have

(B6(i)−B6(j))− (B6(i′)−B6(j′)) = (A6(i)− A6(j))− (A6(i′)− A6(j′))

≡ q

2
(mod q),

and then

3H−1−u∑
i=H

(
ξA6(i)−A6(j)
q + ξB6(i)−B6(j)

q

)
= 0.

The proof for s = 12 is similar to the case for s = 3, and hence we omit it here.

3) For 0 ≤ i < H = 2m−2, we have im−1 = 0 and im = 0. Then,

A1(i) =
q

2

m−3∑
k=1

iπ(k)iπ(k+1) +
m−2∑
k=1

ckik + c,

B1(i) = A1(i) +
q

2
iπ(1).

According to Lemma 2, (A1,B1) is a GCP.

The proof of s = 2, 4, 8 is similar with that of s = 1, we omit it here.

Remark 3. Actually, when q = 2, (A7,B7) and (A14,B14) are two binary Z-complementary

pairs given in [20].

According to Lemma 1, Remark 2 and Eq. (4), we can get an upper bound on the PMEPR

of As in Theorem 1.

Corollary 1. With the same notations as Theorem 1, we have

PMEPR(As) ≤


10
3
, s = 7, 14,

2, s = 1, 2, 3, 4, 6, 8, 12, 15.
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It is clear that

PMEPRC(a) ≤ 10

3
.

Example 2. For q = 2, let π be the identical permutation of {1, 2, ...,m}, and a(x) =
∑m−1

k=1 xkxk+1.

Table III shows the PMEPR properties of the contiguous subsequences of a for various s and

m. It can be observed that PMEPRC(a) ≤ 10
3

.

TABLE III: PMEPR comparison for the contiguous subsequences of a in Example 2 for m =
3, 4, 5, 6

L = 2m

PMEPR As

A1 A2 A3 A4 A6 A7 A8 A12 A14 A15

8 2.0000 2.0000 1.7071 2.0000 1.7071 2.6667 2.0000 1.7071 3.3166 2.0000
16 1.7071 1.7071 2.0000 1.7071 2.0000 3.0000 1.7071 2.0000 1.8844 1.7071
32 2.0000 2.0000 1.8210 2.0000 1.8210 3.1910 2.0000 1.8210 3.3274 2.0000
64 1.8210 1.8210 2.0000 1.8210 2.0000 3.1910 1.8210 2.0000 2.9419 1.8210

B. Preamble Sequences with PMEPRs of Contiguous Subsequences Upper Bounded by 4

Theorem 2. Let m ≥ 2 be a positive integer and q be an even integer. Let

a(x) =
q

2

m−1∑
k=1

xπ(k)xπ(k+1) +
m∑
k=1

ckxk + c,

b(x) = a(x) +
q

2
xπ(1),

d(x) = a(x) +
q

2
xm−1,

e(x) = a(x) +
q

2
xπ(1) +

q

2
xm−1.

where x ∈ Zm2 , ck, c ∈ Zq. Let H = 2m−2 and π is a permutation of {1, 2, · · · ,m} satisfying

π(m) = m− 1 and π(m− 1) = m, then the GDJ sequences have the following properties:
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1) for s = 7, 14, (As,Bs) is an ACP, i.e.,

RAs(τ) +RBs(τ) =


6H, τ = 0,

ξ
− q

2( s7−1)−cm−1

q · 2H, τ = H,

0, otherwise;

2) for s = 3, 12, (As,Bs,Ds,Es) is a CSS;

3) for s = 6, (As,Bs) is a GCP;

4) for s = 1, 2, 4, 8, (As,Bs) is a GCP.

Proof. Let As(x) (s = 1, 2, 3, 4, 6, 7, 8, 12, 14) be the generalized Boolean function correspond-

ing to the sequence As.

1) For s = 7, 14, when 0 ≤ i ≤ L− 1− τ , let j = i+ τ , then

As(i)− As(j) =
q

2

m−1∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m∑
k=1

ck (ik − jk) ,

Bs(i)−Bs(j) = As(i)− As(j) +
q

2

(
iπ(1) − jπ(1)

)
.

Hence we have

RAs(τ) +RBs(τ) =
L−1−τ∑
i=0

[
ξAs(i)−As(j)q + ξBs(i)−Bs(j)q

]
=

L−1−τ∑
i=0

ξAs(i)−As(j)q

[
1 + (−1)iπ(1)−jπ(1)

]
. (8)

• When τ = 2m−2, since j = i + 2m−2, π(m) = m − 1 and π(m − 1) = m, it can be

obtained that
im = 0, im−1 = 0, jm = 0, jm−1 = 1, 0 ≤ i ≤ 2m−2 − 1,

im = 0, im−1 = 1, jm = 1, jm−1 = 0, 2m−2 ≤ i ≤ 2m−1 − 1,

im = 1, im−1 = 0, jm = 1, jm−1 = 1, 2m−1 ≤ i ≤ 2m−1 + 2m−2 − 1,
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and iπ(t) = jπ(t) for 1 ≤ t ≤ m− 2, which leads to

a(i)− a(j) =


−cm−1, 0 ≤ i ≤ 2m−2 − 1,

− q
2
jπ(m−2) − cm + cm−1, 2m−2 ≤ i ≤ 2m−1 − 1,

− q
2
− cm−1, 2m−1 ≤ i ≤ 2m−1 + 2m−2 − 1,

where As(i) = a(i+H · s). Hence Eq. (8) can be reduced to

RAs(τ) +RBs(τ) = 2
2m−1−1∑
i=0

ξAs(i)−As(j)q

= 2
2m−2−1∑
i=0

ξAs(i)−As(j)q + 2
2m−1−1∑
i=2m−2

ξAs(i)−As(j)q

= 2H · ξ−
q
2( s7−1)−cm−1

q .

• When τ ∈ {1, 2, · · · , L− 1} \ {2m−2}, 0 ≤ i, j ≤ L− 1, Eq. (8) is equal to

RA7(τ) +RB7(τ) = 2
∑
i∈J(τ)

ξA7(i)−A7(j)
q , (9)

where J(τ) = {0 ≤ i ≤ L − 1 − τ : iπ(1) = jπ(1)}. For any i ∈ J(τ), let t be

the smallest integer such that iπ(t) 6= jπ(t). which implies 2 ≤ t ≤ m. Let i′ and

j′ be integers which are different from i and j in only one position π(t − 1), i.e.,

i′π(t−1) = 1− iπ(t−1), respectively, and so j′ = i′ + τ . Then we have

A7(i)− A7(j)− (A7(i′)− A7(j′)) ≡ q

2
(mod q),

which implies ξA7(i)−A7(j)
q = (−1)ξ

A7(i′)−A7(j′)
q . Hence (9) is equal to

RA7(τ) +RB7(τ) =
∑
i∈J(τ)

ξA7(i)−A7(j)
q +

∑
i′∈J(τ)

ξA7(i′)−A7(j′)
q = 0.

In a similar way, one can prove that (A14,B14) is an ACP.

Combining these two cases, we have the result of 1).
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2) According to Theorem 12 of [18], it can be easily obtained that (As,Bs,Ds,Es) is a CSS

for s = 3, 12, which implies the result of 2).

3) For 0 < τ ≤ 2H − 1, let j = i + τ and H ≤ i, j < 3H , we have im−1 = 1, im = 0 or

im−1 = 0, im = 1. Then, we have

A6(i)− A6(j) =
q

2

m−2∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m∑
k=1

ck (ik − jk) , (10)

B6(i)−B6(j) = A6(i)− A6(j) +
q

2

(
iπ(1) − jπ(1)

)
. (11)

If iπ(1) 6= jπ(1), then

ξA6(i)−A6(j)
q = (−1)ξB6(i)−B6(j)

q .

If iπ(1) = jπ(1) and τ = H , which implies H ≤ i < 2H and im−1 = 1, im = 0, jm−1 =

0, jm = 1, then

B6(i)−B6(j) = A6(i)− A6(j) = −q
2
jπ(m−2) + cm−1 − cm,

and then

3H−1−τ∑
i=H

ξB6(i)−B6(j)
q =

3H−1−τ∑
i=H

ξA6(i)−A6(j)
q =

2H−1∑
i=H

ξ
− q

2
jπ(m−2)+cm−1−cm

q = 0.

If iπ(1) = jπ(1) and τ 6= H , let t be the smallest integer such that iπ(t) 6= jπ(t). Let i′

and j′ be integers which are different from i and j in only one position π(t − 1), i.e.,

i′π(t−1) = 1− iπ(t−1), respectively, and so j′ = i′+ τ . Then, we have t ≤ m−1. Otherwise,

since iπ(k) = jπ(k) for k ∈ {1, 2, ...,m− 1} which implies that j = i+ 2m−2, τ = 2m−2, it

contradicts the assumption. Therefore, we have H ≤ i′, j′ ≤ 3H − 1. According to (10)

and (11), we have

(B6(i)−B6(j))− (B6(i′)−B6(j′)) = (A6(i)− A6(j))− (A6(i′)− A6(j′)) ≡ q

2
(mod q).
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and then

3H−1−τ∑
i=H

(
ξA6(i)−A6(j)
q + ξB6(i)−B6(j)

q

)
= 0.

i.e., (A6,B6) is a GCP.

4) The proof of it is similar with 3) of Theorem 1, so we omit it here.

Remark 4. (A7,B7) and (A14,B14) in Theorem 2 are two new constructions of ACPs of length

2m−1 + 2m−2.

According to Lemma 1, Remark 2 and Eq. (4), we can get an upper bound on the PMEPR

of As in Theorem 2.

Corollary 2. With the same notations as Theorem 2, we have

PMEPR(As) ≤


10
3
, s = 7, 14,

4, s = 3, 12,

2, s = 1, 2, 4, 6, 8, 15.

It is clear that

PMEPRC(a) ≤ 4.

Example 3. For q = 2, let π be a permutation of symbols {1, 2, ...,m} with π(k) = k for

1 ≤ k ≤ m − 2 and π(m − 1) = m,π(m) = m − 1, and a(x) =
∑m−1

k=1 xπ(k)xπ(k+1). Table IV

shows the PMEPR properties of the contiguous subsequences of a for various s and m. It can

be observed that PMEPRC(a) ≤ 4, implying that the PMEPRs of the contiguous subsequences

in Example 2 are lower than those in Example 3.

Only the contiguous subsequences are considered in Theorems 1 and 2, while the non-

contiguous frequency bands allocation also be widely used in OFDMA systems.
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TABLE IV: PMEPR comparison for the contiguous subsequences of a in Example 3 for m =
3, 4, 5, 6

L = 2m

PMEPR As

A1 A2 A3 A4 A6 A7 A8 A12 A14 A15

8 2.0000 2.0000 4.0000 2.0000 1.7071 2.6667 2.0000 2.0000 1.6667 2.0000
16 1.7071 1.7071 2.0000 1.7071 2.0000 3.0000 1.7071 3.4142 3.3166 1.7071
32 2.0000 2.0000 4.0000 2.0000 1.8210 2.6667 2.0000 3.3066 1.9369 2.0000
64 1.8210 1.8210 3.4142 1.8210 2.0000 3.1910 1.8210 3.6419 3.2424 1.8210

V. THE PMEPR PROPERTIES OF PROPOSED PREAMBLE SEQUENCES FOR

NON-CONTIGUOUS FREQUENCY BANDS ALLOCATION

In this section, we show the upper bounds of the PMEPR properties of the non-contiguous

subsequences in Theorem 1 and 2 for the OFDMA system of non-contiguous DSA.

Theorem 3. With the same notations as Theorem 1, let

d(x) = a(x) +
q

2
xm,

e(x) = a(x) +
q

2
xπ(1) +

q

2
xm.

For s = 5, 9, 10, 11, 13, (As,Bs) has the following properties:

1) (A11,B11) and (A13,B13) are ACPs, i.e., for s = 11, 13,

|RAs(τ) +RBs(τ)| =


6H, τ = 0,

2H, τ = 2H,

0, otherwise.

2) (A9,B9) is a GCP.

3) Both (A5,B5,D5,E5) and (A10,B10,D10,E10) are CSSs.

Proof. For s = 11, to prove (A11,B11) is a GCP, we need to demonstrate that RA11(τ) +

RB11(τ) = 0 when 0 < τ ≤ 4H − 1.
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• When 0 < τ ≤ H − 1, it can be obtained that

RA11(τ) = RA1(τ) +R∗A2,A1
(H − τ) +RA2(τ) +RA8(τ),

RB11(τ) = RB1(τ) +R∗B2,B1
(H − τ) +RB2(τ) +RB8(τ).

By Theorem 1, (A1,B1), (A2,B2), (A8,B8) are GCPs, so we have

RA11(τ) +RB11(τ) = R∗A2,A1
(H − τ) +R∗B2,B1

(H − τ).

For 0 ≤ i ≤ H−1−(H−τ) = τ−1, let j = i+H−τ . Since π(m−1) = m−1, π(m) = m,

then

A1(x) = q
2

∑m−3
k=1 xπ(k)xπ(k+1) +

∑m−2
k=1 ckxk + c, B1(x) = A1(x) + q

2
xπ(1),

A2(x) = A1(x) + xπ(m−2) + cm−1, B2(x) = A2(x) + q
2
xπ(1),

A8(x) = A1(x) + xπ(m−2) + cm−1 + cm + q
2
, B8(x) = A8(x) + q

2
xπ(1),

so we have

A2(i)− A1(j) =
q

2

m−3∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m−2∑
k=1

ck (ik − jk) +
q

2
iπ(m−2) + cm−1,

B2(i)−B1(j) = A2(i)− A1(j) +
q

2

(
iπ(1) − jπ(1)

)
,

and then

R∗A2,A1
(H − τ) +R∗B2,B1

(H − τ) = 2
∑

i∈J(H−τ)

ξ−(A2(i)−A1(j))
q ,

where J(H − τ) = {0 ≤ i ≤ H − 1 − (H − τ) : iπ(1) = jπ(1)}. For any i ∈ J(H − τ),

let t be the smallest integer such that iπ(t) 6= jπ(t). which implies 2 ≤ t ≤ m − 2. Let

i′ and j′ be integers which are different from i and j in only one position π(t − 1), i.e.,

i′π(t−1) = 1− iπ(t−1), respectively, and so j′ = i′ + τ . Then,

A2(i)− A1(j)− (A2 (i′)− A1 (j′)) ≡ q

2
(mod q),
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which implies ξA2(i)−A1(j)
q = (−1)ξ

A2(i′)−A1(j′)
q . Hence,

R∗A2,A1
(H − τ) +R∗B2,B1

(H − τ) =
∑

i∈J(H−τ)

ξ−(A2(i)−A1(j))
q +

∑
i′∈J(H−τ)

ξ−(A2(i′)−A1(j′))
q = 0,

which implies RA0(τ) +RB0(τ) = 0.

• When H ≤ τ ≤ 2H − 1, we have

RA11(τ) = RA1,A2(τ −H),

RB11(τ) = RB1,B2(τ −H).

If τ = H , since π(m− 1) = m− 1, π(m) = m, then π(m− 2) ≤ m− 2 and

RA11(H) = RB11(H) = RA1,A2(0) =
H−1∑
i=0

ξ
− q

2
iπ(m−2)−cm−1

q = ξ−cm−1
q

H−1∑
i=0

(−1)iπ(m−2) = 0.

If H < τ ≤ 2H − 1, for 0 ≤ i ≤ 4H − 1− (τ −H), let j = i+ τ , then we can get that

A1(i)− A2(j) =
q

2

m−3∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m−2∑
k=1

ck (ik − jk)−
q

2
jπ(m−2) − cm−1,

B1(i)−B2(j) = A1(i)− A2(j) +
q

2

(
iπ(1) − jπ(1)

)
.

With similar arguments as the first case in this proof, it can also be obtained that

RA11(τ) +RB11(τ) = RA1,A2(τ −H) +RB1,B2(τ −H) = 0.

• When 2H ≤ τ ≤ 3H − 1, we have

RA11(τ) = R∗A8,A1
(H − (τ − 2H)) +RA2,A8(τ − 2H),

RB11(τ) = R∗B8,A1
(H − (τ − 2H)) +RB2,B8(τ − 2H).

If τ = 2H , then

RA11(2H) = RB11(2H) = RA6,A8(0) = −Hξ−cmq ,
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which implies |RA11(2H) +RB11(2H)| = 2H .

• When 3H ≤ τ ≤ 4H − 1, it can be obtained that

RA11(τ) = RA1,A8(τ − 3H),

RB11(τ) = RB1,B8(τ − 3H).

If τ = 3H , we have

RA11(3H) = RB11(3H) = RA1,A8(0) =
H−1∑
i=0

ξ
− q

2
iπ(m−2)− q2−cm−1−cm

q = 0.

If 3H < τ ≤ 4H − 1, for 0 ≤ i ≤ 4H − 1− τ , let j = i+ u, then

A1(i)− A8(j) =
q

2

m−3∑
k=1

(
iπ(k)iπ(k+1) − jπ(k)jπ(k+1)

)
+

m−2∑
k=1

ck (ik − jk)−
q

2
jπ(m−2)

−q
2
− cm−1 − cm,

B1(i)−B8(j) = A1(i)− A8(j) +
q

2

(
iπ(1) − jπ(1)

)
.

With similar arguments as the first case in this proof, it can also be obtained that

RA11(τ) +RB11(τ) = RA1,A8(τ − 3H) +RB1,B8(τ − 3H) = 0.

We can similarly prove the results of s = 5, 9, 10, 13, so we omit it here.

Remark 5. The constructions of GCPs, CSSs and ACPs in Theorem 3 are new for length 2m

and spectral nulls inside.

The following lemma is straightforward from Lemma 1 and Eq. (4).

Corollary 3. With the same notations as Theorem 3, for s = 5, 9, 10, 11, 13, we have

PMEPR(As) ≤


10
3
, s = 11, 13,

2, s = 9,

4, s = 5, 10,
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which implies that PMEPRNC(a) ≤ 4.

Example 4. With notations in Example 2, Table V shows the PMEPR properties of the non-

contiguous subsequences of sequence a for various m and s. It can be observed that

• for L = 8, PMEPRNC(a) = 4.0000;

• for L = 16, PMEPRNC(a) = 3.4142;

• for L = 32, PMEPRNC(a) = 4.0000;

• for L = 64, PMEPRNC(a) = 3.6419.

Hence, Theorem 3 is verified.

TABLE V: PMEPR comparison of the non-contiguous subsequences for various m and s in
Example 4

L = 2m

PMEPR(As) As

A5 A9 A10 A11 A13

8 4.0000 1.7071 3.4142 1.9024 2.6667
16 3.4142 2.0000 3.3066 3.1910 3.3166
32 4.0000 1.8210 3.4765 3.2077 3.3166
64 3.6419 2.0000 3.6029 3.3158 3.3166

Theorem 4. With the same notations as Theorem 2, for s = 5, 9, 10, 11, 13, (As,Bs) has the

following properties:

1) (A11,B11) and (A13,B13) are ACPs, i.e., for s = 11, 13,

|RAs(τ) +RBs(τ)| =


6H, τ = 0,

2H, τ = H;

0, otherwise.

2) (A5,B5), (A9,B9) and (A10,B10) are GCPs.

Proof. The proof here is similar with it of Theorem 3, so we omit it here.
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Remark 6. The constructions of GCPs, and ACPs in Theorem 4 are new for lengths 2m and

spectral nulls inside.

As Corollary 3, we get an upper bound on the PMEPR of As in Theorem 4.

Corollary 4. With the same notations as Theorem 4, for s = 5, 9, 10, 11, 13, we have

PMEPR(As) ≤


10
3
, s = 11, 13;

2, s = 5, 9, 10

which implies that PMEPRNC(a) ≤ 10
3

.

Example 5. With notations in Example 3, Table VI shows the PMEPR properties of the non-

contiguous subsequences of sequence a for various m and s. It can be observed that

• for L = 8, PMEPRNC(a) = 2.6667;

• for L = 16, PMEPRNC(a) = 3.0000;

• for L = 32, PMEPRNC(a) = 3.3166;

• for L = 64, PMEPRNC(a) = 3.3166.

With these explanations, we verify Theorem 4.

TABLE VI: PMEPR comparison of the non-contiguous subsequences for various m and s in
Example 5

L = 2m

PMEPR(As) As

A5 A9 A10 A11 A13

8 1.0000 1.7071 1.0000 2.6667 1.6667
16 2.0000 2.0000 2.0000 3.0000 1.9084
32 1.7682 1.8210 1.7682 3.3166 3.1910
64 2.0000 2.0000 2.0000 3.3166 3.1157

Remark 7. Combining Corollaries 1–5, it can be obtained that the PMEPR of the contiguous

and non-contiguous subsequences of GDJ sequences introduced in this paper are less than 4.

Note that the reduction of PMEPRs of proposed sequences is not because the increase of the
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average power. As defined in equation (3), for any GDJ sequence a and a given subcarrier index

set Ω, the average power is equal to the cardinality of Ω, i.e.,

Pav(ã) = Rã(0) = |Ω|,

where ã is the complex-valued version of a corresponding to Ω.

Remark 8. The proposed sequences are constructed in a systematic way: First, generate a

sequence ψ(a) from Theorem 1 or 2 depending on the number of subcarriers. Then, for a given

subcarrier index set Ω allocated to this system, null the elements of ψ(a) whose indices are not

in Ω to zero.

VI. PMEPR COMPARISONS

In this section, we compare the proposed preamble sequences are undertaken, showing their

good PMEPR properties for DSA OFDMA systems compared with m-sequences and Zadoff-

Chu (ZC) sequences in terms of their PMEPR performances under DSA transmissions. In our

comparisons, we consider enlarged ZC sequence and m-sequence of length 64 and 32 by adding

“−1” at the end of a ZC sequence and m-sequence, respectively. The parameters of ZC sequence

and m-sequence are chosen from [21], where the ZC sequence root index is 25. The proposed

sequences in our comparisons are chosen from Examples 2 and 3.

Tables VII and VIII list the PMEPRs of some subsequences of m-sequences, ZC sequences

and proposed preamble sequences, where “Proposed Sequence Family X ” refers to the proposed

sequences in Theorem 1, and “Proposed Sequence Family Y” refers to the proposed sequences

in Theorem 2. It can be observed that the PMEPRs of A2, A9 and A15 are significantly lower

than those of m-sequences and ZC sequences both in Tables VII and VIII, which are 2 at most,

while for m-sequences and ZC sequences, the PMEPRs of their subsequences can be as high

as 4.5000 and 3.7842. In Table VII, the PMEPRs of A14 are lower than those of m-sequences

and ZC sequences, while in Table VIII they are slightly higher than those of m-sequences

and ZC sequences. However, our proposed preamble sequences outperform m-sequences and
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ZC sequences with regard to the maximum PMEPR of all the contiguous and non-contiguous

subsequences.

TABLE VII: PMEPR comparisons among m-sequences, ZC sequences and proposed sequences
of length L = 32 in DSA OFDMA systems

Sequences

PMEPR(As) As

A2 A9 A14 A15 PMEPRC(a) PMEPRNC(a) PMEPRA(a)

ZC sequence [21] 2.8072 3.7842 3.6073 2.4250 3.6313 4.0079 4.0079
m-sequence [21] 4.5000 3.1269 3.3333 2.2500 4.5000 3.1269 4.5000

Proposed Sequence
2.0000 1.8210 3.3274 2.0000 3.3274 4.0000 4.0000

Family X
Proposed Sequence

2.0000 1.8210 1.9369 2.0000 4.0000 3.3166 4.0000
Family Y

TABLE VIII: PMEPR comparisons among m-sequences, ZC sequences and proposed sequences
of length L = 64 in DSA OFDMA systems

Sequences

PMEPR(As) As

A2 A9 A14 A15 PMEPRC(a) PMEPRNC(a) PMEPRA(a)

ZC sequence [21] 3.4609 3.4519 2.7979 2.7952 4.6421 4.1302 4.6421
m-sequence [21] 2.8762 3.5175 2.6213 2.2101 5.1374 3.5175 5.1374

Proposed Sequence
1.8210 2.0000 2.9419 1.8210 3.1910 3.6419 3.6419

Family X
Proposed Sequence

1.8210 2.0000 3.2424 1.8210 3.6419 3.3166 3.6419
Family Y

VII. CONCLUSION

In this paper, we have introduced two classes of preamble sequences from GDJ sequences

for PMEPR reduction of OFDMA systems with DSA, specifically, over contiguous or non-

contiguous spectral sub-bands which are carved from four adjacent RBs. In the first class,

the subsequences corresponding to contiguous and non-contiguous DSAs have PMEPRs upper

bounded by 3.3334 and 4, respectively. On the other hand, the second class consists of subse-

quences corresponding to contiguous and non-contiguous DSAs have PMEPRs upper bounded

by 4 and 3.3334, respectively. Compared with m-sequences and Zadoff-Chu sequences, our
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proposed sequences have better PMEPR properties for any OFDMA DSA schemes. We remark

that the same PEMPR properties may be hard to attain when the number of RBs is larger than

four. For example, it can be observed by concatenating the proposed preamble sequences k

times to an OFDMA system with 4k-RBs, to form a 4k-RB DSA OFDMA system, the resultant

subsequence PMEPRs may be as high as 4k. How to construct preamble sequences having low

PMEPRs for any number of RBs (different from four) will be a challenging but interesting future

direction of this research.
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