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Abstract 

Different injection methods have been already proposed by different researchers to improve the 

solubility of CO2 in the formation brine. In this study a novel injection technique is presented, its aim 

being to cool down (liquefy) the supercritical CO2 injected in the wellbore by the use of a downhole 

cooler equipment. The higher temperature CO2 enters the cooling equipment and exits with a lower 

temperature further downstream. If the temperature of the downhole, where CO2 contacts the 

formation brine, decreases to the lowest possible safe operational temperature, the consequence 

is an increase in the solubility of CO2 to the highest possible value for that pressure. The colder 

(liquid) CO2 has a higher solubility in brine, higher density and viscosity, which increases the security 

of the CO2 storage. With this method the supercritical CO2 is cooled down to a liquid phase to 

increase the solubility at the wellbore thereby eliminating the risk of phase change or pressure and 

rate fluctuation in the liquid CO2 injection from the surface. Additionally the formation will have a 

lower pressure build-up because CO2 and brine are well mixed, and so less CO2 remains in the free 

phase.  

Key Words: CO2 storage, Cold CO2 injection, CO2 solubility, Storage security 

1. Introduction 

The concentration of CO2 in the atmosphere has increased up to 45% the since the industrial 

revolution (Bachu et al. 2015). Carbon capture and storage (CCS), that comprises the separation of 



  

 

CO2 from the gaseous exhaust of power plants and other heavy industries and its subsequent safe 

and secure long-term storage in geological formations is considered as the most applicable method 

for mitigation of CO2 concentration in the atmosphere (Metz, Davidson et al. 2005, Bachu 2008, 

Jiang 2011). The best storage sites are those that trap the CO2 as an immobile phase under the ultra-

low permeability confining reservoir caprock where it is subjected to further gradual physical and 

chemical trapping mechanisms (Metz et al. 2005). In the long-term, several trapping mechanisms 

are active in the aquifer which are categorised as: structural trapping, residual trapping, solubility 

trapping and mineral trapping (Garcia, Kaminska et al. 2010). Since the leakage from the storage 

sites can create harmful environmental defects, the security of long-term storage is of a great 

importance (Metz et al. 2005, Gasda, Bachu et al. 2004, Nordbotten, Celia et al. 2005, Burton, Bryant 

2007a, M. A. Celia, Nordbotten et al. 2011). In this regard, researchers have proposed different 

engineering techniques in order to improve the solubility of CO2 in the formation brine. When the 

CO2 is dissolved in brine the density of the formation brine increases by 1%, resulting in  the 

dissolved CO2 sinking  in the reservoir and preventing any upward migration of the free CO2 phase 

towards the caprock (J. Ennis-King, Preston et al. 2005, Riaz, Hesse et al. 2006). (Emami-Meybodi, 

Hassanzadeh et al. 2015) have categorized these engineering techniques into subsurface 

dissolution, surface mixing and downhole mixing.  

Cold CO2 injection in the liquid phase from the surface is a method which has been proposed to be 

energetically efficient injection (Silva, Carrera et al. 2011). In the liquid phase the density of CO2 is 

close to that of water, thus it sinks downwards and requires less compression energy. The thermal 

stress imposed by the temperature difference resulting from cold CO2 injection, however, might 

cause some damage, such as the wellbore cement failure resulting in the creation of some fractures 

in the cement and forming pathways for the CO2 to leak away (Teodoriu 2013, Kaldal, Jónsson et al. 

2015, Roy, Morris et al. 2018). Additionally, the temperature decrease under the hydrate formation 

zone for CO2 may result in creation of hydrate which blocks the pores and decreases the injectivity 

(Uchida 1998, Zhang, Yang et al. 2017). Moreover, cooling the reservoir around the injection well 

will create a thermal stress that might induce fracture instability which should be avoided in the 

caprock because they might create leakage pathways (Vilarrasa, Olivella et al. 2014, Salimzadeh, 



  

 

Paluszny et al. 2018, Vilarrasa, Makhnenko 2017, Luo, Bryant 2011). (Vilarrasa, Silva et al. 2013) 

investigated liquid CO2 injection from the surface and they analysed the evolution and the thermo-

hydro-mechanical response of the formation and caprock. They proposed that injecting CO2 in the 

liquid phase is more efficient because liquid CO2 is denser resulting in less over pressure due to less 

water being displaced and requiring less compression energy. Other injection techniques have been 

proposed by different researchers which are briefly as follows: (Xue 2009) proposed microbubble 

sequestration in which the atomized foams of CO2 in gas, in supercritical or liquid phase, are 

dispersed into the pores of variety of rocks. The CO2 microbubbles with a size of less than 10 micro-

metres will shrink and quickly dissolve into the brine. They propose that microbubbles of CO2 do not 

tend to create a uniform large bubble, which has a large buoyant force in the ground water. (Ozah, 

Lakshminarasimhan et al. 2005) presented an injection strategy to use horizontal wells low in the 

formation, referred to as “Inject Low and Let Rise”. In this regard, all or a huge part of the CO2 will 

trap, dissolve or be precipitated before reaches the seal of the formation. (Leonenko, Keith 2008) 

suggested to lift the brine from the areas of the aquifer not already saturated with CO2 and then 

inject it to the areas occupied by CO2. (Hassanzadeh, Pooladi-Darvish et al. 2009) addressed a new 

method for accelerating CO2 dissolution in aquifers by injecting brine on top of the injected CO2. In 

another approach, (Shariatipour, Mackay et al. 2016) proposed an engineering solution in which 

brine extracted from the top of the aquifer is mixed by a downhole mixing tool with CO2 which is 

injected through the tubing. Then, the dissolved CO2 in brine is injected into the same formation 

through another lateral at the bottom of the aquifer. In this new study, an engineering injection 

technique is presented to increase the solubility of CO2 in brine by implementation of downhole 

cooling equipment to cool down the injected CO2 in the bottom of the well thereby eliminating the 

risk of phase change or pressure and rate fluctuation in the liquid CO2 injection from the surface. 

2. Methodology 

The main focus of this work is to present a method to maximize CO2 solubility in brine in downhole 

conditions where the injected CO2 first comes into contact with the formation brine. The idea comes 

from the well-known rule that the solubility of CO2 in brine increases with a decrease in temperature 

(Spycher, Pruess et al. 2003, Duan, Sun 2003). Thus, our proposed idea is to install tools that can 



  

 

effect a decrease in the temperature of the injected CO2 in the wellbore where the CO2 contacts 

with brine (Fig. 1). The advantage of this method is that when the temperature decreases, the 

highest possible amount of CO2 corresponding that pressure could be dissolved in the formation 

brine (theoretically) and Not only does this proposed methodology minimize the amount of free CO2 

entering the formation, but also since the CO2 saturated brine has a higher density than the fresh 

formation brine it will sink to the bottom of the formation. The consequence is that less CO2 migrates 

upward towards the top seal thus increasing the storage security. Additionally, the denser brine 

creates a convective flow regime, thereby accelerating the dissolution of CO2 in brine within the 

reservoir (J. P. Ennis-King, Paterson 2005, Kneafsey, Pruess 2010). 

Downhole cooler

Top Layer of the 
Aquifer

Tubing

Warm CO2

Cold CO2

Aquifer

Casing

Packer

Cold CO2

 

Fig. 1: Schematic of the downhole cooler equipment and process. 

 Moreover, another effect of cold CO2 injection is the creation of thermal stress which results in 

fracturing near the wellbore formation (Oldenburg 2007) and an increase in injectivity. These 

fractures may also act as a path way for CO2 upwards which may increase the risk of leakage (Bissell, 

Vasco et al. 2011a, Nimtz, Klatt et al. 2010). Generally, it is more desirable that the CO2 is injected 

in a supercritical condition to prevent problems created by phase change in the pipeline and the 

length of the tubing in deep formations (Nimtz et al. 2010). Although liquid injection of CO2 has been 

proposed as a method to not convert CO2 into supercritical phase at the surface, non-isothermal 



  

 

studies show that the temperature of CO2 must be decreased considerably (down to -10 ˚C) at the 

surface in order to remain in the liquid phase in the tubing considering the heat exchange with 

surrounding until a depth of 1500 m causing the problem of phase change (i.e. pressure and rate 

fluctuation) within the wellbore (Vilarrasa et al. 2013). Using this new technique, however, means 

that we can ensure that the CO2 is converted to liquid (in case of a high temperature decrease) only 

in the wellbore while it is in the supercritical phase in the tubing preventing any phase change 

problems there.  Additionally, by implementing this equipment we can maintain a precise control 

of the temperature of the CO2 in the downhole in terms of rock mechanics stability and CO2 

dissolution in brine. Surface mixing of CO2 with brine, which has been already presented as an 

efficient way of CO2 injection, is very expensive, while CO2-enriched brine result in high levels of 

corrosion on surface equipment due to its acid nature (Burton, Bryant 2007b). Usually the normal 

temperature to ensure that the CO2 is in the supercritical phase in the downhole of a well is 

approximately 40 ˚C at the surface (Nimtz et al. 2010, Vilarrasa et al. 2013, Möller, Liebscher et al. 

2014). Analytical calculations show that assuming a temperature of 55 ˚C and a pressure of 150 bar 

(i.e. the top layer of Bunter Sandstone in the UK Southern North Sea), a 30 ˚C decrease in 

temperature results in near 20% increase in CO2 solubility in brine at the same pressure (Spycher et 

al. 2003, Spycher, Pruess 2005). The temperature decrease in a section of the wellbore can be 

created by implementing tools that use the external energy of a colder fluid. We can install a 

throttling valve in the wellbore to decrease the pressure, with the consequence that  the 

temperature decreases based on the Joule-Thomson effect in an isenthalpic process to cool down 

the injected CO2 (Oldenburg 2007, Mathias, Gluyas et al. 2010). It should be noted that the 

temperature decrease must not be under the hydrate formation region (approximately 12 ̊ C), which 

may cause the formation of hydrate (Zhang et al. 2017) and blocking the pores and decreasing the 

injectivity (Fig. 2). Additional pressure, however, might be applied at the wellhead to compensate 

for the pressure drop in the throttling valve which may cause some additional operational expense. 

This downhole cooler equipment can also be utilised along with other methods already presented 

in the literature to improve their performance. 



  

 

 

Fig. 2: The CO2 phase diagram and the Hydrate formation zone for CO2 (Uchida 1998). 

Several models have been proposed to date to investigate the non-isothermal flow of CO2 through 

the injection well (Hagoort 2005, Lu, Connell 2008, Han, Stillman et al. 2010) and we have used the 

equations presented by (Lu, Connell 2008) and solved the equations using the assumption that the 

kinetic energy term can be neglected (Paterson, Lu et al. 2008). 
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(4) 

where, ρm is the density of the mixture, νm is the velocity, z is the well depth, f is the friction factor, 

h is the enthalpy of the mixture and ϴ is the well inclination. Q(z) in equation (3) is the heat exchange 

between flowing fluid and the surrounding of the well which is calculated as 

 (Equation (5)). Rw is the well diameter and U is the overall heat transfer 

coefficient for wellbores. Solving the above equations gives the temperature profile in an injection 

well and the temperature of the CO2 in the bottom hole. The non-isothermal calculations show that 

if CO2 is injected at a temperature of 45 ˚C from the surface while the surface temperature is 15 ˚C, 

the CO2 will reach the bottom hole of the well at a depth of 1500 m at a temperature of 52 ˚C (Fig. 

3). The analytical calculations show that if the temperature decreases from 52 ˚C to 20 ˚C, there will 

be near 20% increase in CO2 solubility in brine in theory (Duan and Sun, 2003). 

 

Fig. 3: the Non-isothermal temperature profile through the injection well.

In order to cool down the CO2 from 52 ˚C to 20 ˚C two methods are considered: 1) installing devices 

to extract heat from the flowing CO2 in the well; 2) Installing a throttling valve to drop the pressure 

instantly and decrease the temperature based on the Joule-Thomson effect.  

3. Model Setup 
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The three-dimensional reservoir simulation model for studying CO2 injection in a saline aquifer was 

created by the Eclipse 300 through the CO2STORE option combined with the THERMAL option. The 

dimensions of the model are 1600m long, 800m wide and 140m thick which is discretised into 

80×40×70grid blocks, respectively. The main input data and the thickness of the formation were 

adopted from the work by Heinemann et al. (2012). The porosity and horizontal permeability in the 

homogeneous case is 0.18 and 250 mD, respectively, and with a Kv/Kh ratio of 0.1 for the base case. 

For the heterogeneous case, the heterogeneity data were generated based on the same mean as 

the homogeneous model. Fig. 4 shows the heterogeneous model used in this study. The thermal 

conductivity of water and rock were calculated based on (Sengers, Watson et al. 1984, Eppelbaum, 

Kutasov et al. 2014). The model input data is shown in Table 1. 

Table 1: The model input data 

Input Data Value 

Model size (m) 1600×800×140 

Number of grid blocks 80×40×70 

Horizontal Permeability (mD) 250 

Porosity 0.18 

Kv/Kh Ratio  0.1 

Depth (m) 1500 

Rock Compressibility (1/bars) 5.56e-5 

Thermal Conductivity of Water (kJ/m.day.K) 56.5 

Thermal Conductivity of Rock (kJ/m.day.K) 158 

Injection rate (Mt/year) 1 



  

 

As there is no way to simulate the cooler equipment separately in the downhole of the well in this 

regard, it is considered that the CO2 is injected with a lower temperature (i.e. 20 ˚C) than the 

reservoir from surface through the use of THERMAL option. The injection rate is determined at a 

constant value of 1 Mt/year through a vertical well for the base case and the injection pressure 

should not exceed the fracture pressure of the formation rock. In this regard, the method presented 

by (Brook, Shaw et al. 2003) was used to calculate the fracture pressure of the formation. We 

considered the bottom hole pressure constraint as 90% of the fracture pressure of the formation 

(Williams, Jin et al. 2013). The pore volume of the outer sides of the model are multiplied by 1000 

in order to show that the model is a part of a larger aquifer. The injection process progresses for 20 

years, then the injection stops and the simulation is continued up until 100 years. It should be noted 

that this work does not consider the design of such a heat exchanger device but we only consider 

the idea of utilization of such an equipment. 

 

Fig. 4: Heterogeneity of horizontal permeability between 5 md - 600 md. 

4. Results and discussion: 

4.1 Application of the downhole cooler tools at the depth of 1500 m 

Fig. 5 shows the amount of dissolved CO2 saturation in brine in both homogeneous and 

heterogeneous models with and without applying the cooling method. As can be seen in the left 



  

 

side figures, because the CO2 in the base case is less dense and less viscose it moves upwards and 

reaches the top of the formation. In the right hand side figures, however, the CO2 has been injected 

with a lower temperature in the liquid phase and consequently with higher density and viscosity. 

Therefore in the same duration it becomes more dissolved in the brine in the lower part of the 

aquifer and CO2 plume does not reach the top of the formation and no gravity override has been 

observed. Additionally, analytical calculations show that by a decrease in temperature from 52 ˚C to 

20 ˚C for in the same pressure (150 bar), the viscosity and density of the free CO2 increases by 71% 

and 34%, respectively.  This creates a reduction in the gravity override and so viscose forces will 

have more impact on the movement of CO2 in the aquifer in comparison to buoyant forces 

(Rayward-Smith, Woods 2011). It should be noted that the low temperature CO2 cools down the 

vicinity of the wellbore and as it moves farther into the aquifer the temperature of that will increase 

due to the geothermal temperature. The cooled area around the wellbore, however, remains for a 

long time and it takes time longer than the injection time to warm up again (Vilarrasa, Rutqvist 

2017). 

 

Fig. 5: Dissolved CO2 in the aquifer brine after 20 years. 



  

 

Fig. 6 presents the uniform pressure distribution in the aquifer for the two cases. As shown, by the 

use of the new technique the pressure build up in the formation is less than the base case in which 

CO2 is injected with a higher temperature because more CO2 is dissolved in the formation brine and 

less stays in the free phase. Furthermore, as the cooled and denser CO2 occupies a lower capacity 

of the reservoir rock and less brine will be displaced, thus the pressure increase in the formation will 

be smaller (Vilarrasa et al. 2013, Randolph, Saar et al. 2013, Zhao, Cheng 2015). It should be noted 

that in order to see the pressure build up in the model a closed model is considered.  

 

Fig. 6: Pressure build-up in the aquifer after 20 years. A) Without cooling system. B) With 

cooling system. 

The impact of the amount of injected CO2 (injection rate) into the aquifer on CO2 solubility is 

demonstrated in Fig. 7 based on Kilogram-Mole (Kg-M). The figure shows that as the amount of 

injected CO2 increases, the solubility of the CO2 in brine also increases and moreover the impact of 

cooling is more significant when the amount of injected CO2 is higher. This figure presents the 

comparison between the amount of dissolved CO2 in the normal CO2 injection under supercritical 

conditions and the injection of CO2 with a lower temperature. As the amount of CO2 injection 

increases, the amount of dissolved CO2 in the brine also increases but with a higher rate. It means 

that as the injection rate increases the percentage of dissolved CO2 also increases. As can be seen 

there is no significant change in solubility down to 0.2 Mt/year. It shows that this method can be 



  

 

used in the projects with high availability of the CO2 where the CO2 injection rate is high enough 

(near 1 Mt/year and above). 

 

 

Fig. 7: impact of the amount of injected CO2 and cooling on CO2 solubility in brine after 

120 years. 

The amount of mobile CO2 in the aquifer based on the CO2 injection rate and the cooling effect is 

shown in Fig. 8. The results show that the cooling has an indirect impact on the amount of mobile 

(free) CO2 in the medium in comparison to the CO2 injection without cooling. The amount of free 

CO2 in the aquifer increases due to the increase in the amount of total injected CO2. The impact of 

cooling and the CO2 injection rate on the amount of trapped CO2 is shown in Fig. 9. The amount of 

residually trapped CO2 increases with an increase in the total amount of injected CO2; however, this 

increase is less for the system with cooling compared to the standard CO2 injection method without 

cooling. When the cooling effect is applied more CO2 is dissolved in the formation, and thus less CO2 

will remain residually trapped. Additionally, in this simulation, since cooling temperature create a 

two-phase regime for the injected CO2 and a part of CO2 is converted to liquid, the amount of 

residually trapped CO2 is considered to be less. 
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Fig. 8: Impact of CO2 injection rate and cooling on mobile CO2 in brine after 120 years. 

 

Fig. 9: Impact of CO2 injection rate and cooling on residually trapped CO2 in brine after 120 

years. 

4.2 Application of the downhole cooler tools at shallow (1000 m) and deep (2700 m) reservoirs 

In another exercise, as the storage reservoirs are located in different depths, the impact of the depth 

of the reservoir was investigated with the new cooling technique. Two different reservoir depths 

were imposed in the model other than the base case: 2700 m (with a geothermal temperature of 

98 ˚C) and 1000m (with a geothermal temperature of 35 ˚C). The results show that at a depth of 

2700 m as the temperature decreases from 98 ̊ C to 68 ̊ C in the vicinity of the wellbore the solubility 

of CO2 in brine does not change notably by this temperature decrease. This is because in this range 



  

 

of pressure and temperature this change in temperature does not lead to a significant increase in 

the CO2 solubility in brine. Although, the density and viscosity of CO2 will increase up to 22% and 

33%, respectively; CO2 is still in the supercritical condition and will rise towards the caprock with the 

same pattern (Fig. 10). Although it should be noted that in some cases CO2 will reach the formation 

with a temperature less than the geothermal gradient itself (Bissell, Vasco et al. 2011b); however, 

after a while an equilibrium temperature higher than CO2 temperature will be achieved.  In our 

study, this phenomena is not considered, however, the main idea is to show the impact of the 

temperature decrease in the wellbore on the CO2 solubility in the aquifer. 

 

Fig. 10: The results of the variation of temperature (A): 270 bars, 98 ˚C (B): 270 bars, 68 ˚C. 

On the other hand, a temperature decrease down to 25 ˚C was investigated in the model at a depth 

of 2700 m (Fig. 11). This huge temperature decrease creates a considerable increase in the amount 

of dissolved CO2 in brine and the saturation distribution of CO2 in the aquifer will change due to the 

phase change of CO2. The simulation results show that the amount of dissolved CO2 in brine 

increases up to 13 % at the end of the injection period in comparison to the case without cooling. 

Creating such a temperature decrease in this depth, however, seems controversial in practice. 



  

 

 

Fig. 11: The results of the variation of temperature (A): 270 bars, 98 ˚C (B): 270 bars, 25 ˚C. 

At a depth of 1000 m, the temperature is reduced from 35 ˚C to 15 ˚C. The temperature could not 

be reduced less than 12 ˚C in this case because of the software limitations and moreover the 

temperature lies under the hydrate formation zone. The decrease in temperature and phase change 

will increase CO2 solubility in brine and change the CO2 plume distribution in the aquifer. Fig. 12 

shows the CO2 mole fraction and distribution for this case. The figure shows that through the 

temperature decrease the CO2 will sink to the formation and does not rise upwards during the 

injection.  Dissolution will increase up to 7 % at the end of injection period in comparison to the 

case without cooling. 

 

Fig. 12: The results of the variation of temperature (A): 100 bars, 35 ˚C (B): 100 bars, 15 ˚C. 



  

 

Fig. 13 shows the increase in CO2 dissolution in brine during and post injection for all the three 

depths. The results show that the CO2 solubility will increase up to 7%, 6% and 13% at the end of 

injection period and up to 14.5%, 13% and 21% at the end of post injection period for the depths of 

1000, 1500 and 2700m, respectively. Fig. 14 shows the average CO2 saturation in the whole aquifer 

during and post injection for all cases. When CO2 is injected in a model with low temperature the 

CO2 saturation in the medium is lower because more CO2 is dissolved in the formation brine. 

Additionally, even after the injection stops the average CO2 saturation decreases with a higher slope 

which is an indication of a higher dissolution rate compared to other models. Table 2 shows the 

summary of the results of all the sensitivity analysis with depth. 

 

Fig. 13:  Application of the downhole cooler tools in different depths and its impact on 

CO2 solubility in the aquifer. 

 

Fig. 14: Average CO2 saturation in the whole aquifer for different depths. 
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Table 2: Increase in solubility of CO2 in aquifer brine at the end of injection. 

Depth (m) 
Initial 

temperature (˚C) 

Temperature at 

the sand face (˚C) 

Increase in 

solubility at the 

end of injection 

(%) 

1000 35 15 7 

1500 52 20 6 

2700 98 68 ̴0 

2700 98 25 13 

5. Application of downhole cooler tools in a real field 

The British Geological Survey (BGS) has considered a field in Lincolnshire as a potential storage site 

near to future potential capture sites (i.e. Ferrybridge Power Station). The saline aquifer in this area 

locates in the Sherwood Sandstone Group with a Mercia Mudstone Group as the caprock (Smith, 

Campbell et al. 2011). The dimensions of the model are 43 km * 33 km * 600 m thick and it is 

discretised to 96 *67 *15 grid blocks. The mean permeability for the storage formation is 500 mD 

and 0.005 mD for the low permeable cap rock layer. The ratio of vertical to horizontal permeability 

is considered to be 0.1 due to the sedimentation in this region. The original model is large with a top 

surface area of 1419 km2; thus, in this study a sector of the model was considered for the simulation 

(Fig. 15). 



  

 

 

Fig. 15: The simulation model for the Lincolnshire field showing the pressure distribution. 

The injection formation has an initial pressure of 100 bars and temperature of 35 ˚C. CO2 is injected 

to the formation through a horizontal well with a temperature of 15 ˚C by adding the THERMAL 

option to the model. The injection rate is determined to be at a constant rate of 1 Mt/year. The 

pressure constraint is considered to be 90% of the fracture pressure of the caprock as explained 

earlier. In this model CO2 is injected for 20 years and then the injection stops and the simulation 

runs for a further 100 years. Fig. 16 shows CO2 mole fraction in brine at the end of the injection 

period. As can be seen CO2 is more dissolved in the brine and has sink more downward to the aquifer 

as a result of colder (liquid) CO2 injection with higher density. 

 

Fig. 16: CO2 dissolution in brine after 30 years of injection. A) With cooling system. B) Without 

cooling system. 

Fig. 17 shows the average CO2 saturation in the formation. The plot determines that by the use of 

downhole cooling the average CO2 saturation in the free phase has decreased and it becomes 

dissolved more in the formation brine. The percentage of dissolution increase is shown in Fig. 14 for 



  

 

the real model and the solubility has increased up to 9.7% at the end of the injection and 16.1% 90 

years after the injection has stopped. 

 

Fig. 17: Average CO2 Saturation in the aquifer in the Sherwood sandstone model. 

Conclusion 

The results of this study show that through the use of downhole cooler equipment the amount of 

dissolved CO2 in brine increases and consequently the storage security improves. If the temperature 

of the downhole, where the CO2 contacts the formation brine, decreases to the lowest possible safe 

operational temperature, the solubility of CO2 in brine increases to the highest possible value. Thus, 

more CO2 becomes dissolved in the brine during the injection. When CO2 is dissolved in brine the 

density of brine increases and the CO2 plume will not move upwards as rapidly. It sinks into the 

formation and because of the higher density and viscosity the viscose forces will be more significant 

than the buoyant forces. Furthermore, in this method CO2 is injected in the supercritical phase at 

the surface and in the length of injection tubing, although the temperature decrease and the phase 

may change only in the wellbore which eliminates the risk of phase change in the tubing and 

consequent problems. Additionally, the overall field pressure increase will be less than that of 

supercritical CO2 injection due to the higher CO2 dissolution in brine and also because of the lower 

volume of CO2 when it is turned to liquid. 
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