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Session Types for Functional Multithreading∗

Vasco Vasconcelos† António Ravara‡ Simon Gay§

May 20, 2005

Abstract

We define a language whose type system, incorporating session
types, allows complex protocols to be specified by types and verified
by static typechecking. A session type, associated with a communica-
tion channel, specifies the state transitions of a protocol and also the
data types of messages associated with transitions; thus typechecking
can verify both correctness of individual messages and correctness of
sequences of transitions. Previously session types have mainly been
studied in the context of the π-calculus; instead, our formulation is
based on a multi-threaded functional language with side-effecting in-
put/output operations. Our typing judgements statically describe dy-
namic changes in the types of channels, our channel types statically
track aliasing, and our function types not only specify argument and
result types but also describe changes in channels. We formalize the
syntax, semantics and typing rules of our language, and prove subject
reduction and runtime type safety theorems.
Keywords: Session types, static typechecking, concurrent program-
ming, specification of communication protocols.

1 Introduction

Communication in distributed systems is typically structured around pro-
tocols, which specify the sequence and form of messages passing over com-
munication channels. Correctness of such systems implies that protocols are
obeyed.

∗A revised version of the paper in Concur 2004, volume 3170 of LNCS, pages 497–511,
Springer-Verlag, 2004; includes proofs for the results. A forthcoming paper in Theoretical
Computer Science describes a type inference algorithm for an explicitly typed version of
the language.
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The theory of session types [9, 13, 14, 24] allows the specification of a
protocol to be expressed as a type; when a communication channel is cre-
ated, a session type is associated with it. Such a type specifies not only
the data types of individual messages, but also the state transitions of the
protocol and hence the allowable sequences of messages. By extending the
standard methodology of static typechecking, it becomes possible to verify,
at compile-time, that an agent using the channel does so in accordance with
the protocol.

The theory of session types has been developed in the context of the
π-calculus [18, 23], an idealized concurrent programming language which
focuses on inter-process communication. Session types have not yet been
incorporated into a mainstream programmming language, or even studied
theoretically in the context of a standard language paradigm: functional,
imperative or object-oriented. Vallecillo et al. [25] use session types to add
behavioural information to the interfaces of CORBA objects, and use Gay
and Hole’s [9] theory of subtyping to formalize compatibility and substi-
tutability of components, but they have not attempted to design a complete
language.

The Vault [5] and Cyclone [12] languages extend C with facilities for
safe control of stateful resources. In Cyclone, locks must be acquired and
released; Vault goes further by allowing operations on a resource to be stat-
ically checked against an automaton which specifies valid transitions. In
contrast, session types are specialized to communication channels as a par-
ticular kind of resource, but as a result they enable further typechecking
in association with each state transition: typechecking verifies the types of
individual messages, as well as verifying that a sequence of messages obeys
a given protocol. (These languages are further discussed in Section 7.)

In previous work [8] we have presented a language supporting typed
functional programming with inter-process communication channels, but we
only considered individual processes in isolation. Here we address collections
of functional threads communicating via channels. This formulation allows
us to prove a runtime safety property: well-typed programs do not misuse
channels.

By transferring the concept of session types from the π-calculus to a
multi-threaded functional language with side-effecting input/output oper-
ations, we show that static checking of session types could be added to a
language such as Concurrent ML [22], at least without imperative features.
In particular we have addressed the key differences between a conventional
programming style and the programming notation of the π-calculus:

• The operations on channels are independent terms, rather than pre-
fixes of processes, so we have introduced a new form of typing judge-
ment which describes the effect of a term on channel environment.

• We have separated creation and naming of channels, and because this
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introduces the possibility of aliasing, we represent the types of chan-
nels by indirection from the main type environment to the channel
environment.

The structure of the paper is as follows. In Section 2 we explain ses-
sion types in connection with a progressively more sophisticated example.
Sections 3, 4 and 5 define the syntax, operational semantics and type sys-
tem of our language. In Section 6 we present the runtime safety result. In
Sections 7 and 8 we discuss related and future work.

2 Session Types and the Maths Server

Input, Output, and Sequencing Types. First consider a server which
provides a single operation: addition of integers. A suitable protocol can be
defined as follows.

The client sends two integers. The server sends an integer which
is their sum, then closes the connection.

The corresponding session type, from the server’s point of view, is

S =?Int.?Int.!Int.End

in which ? means receive, ! means send, dot (.) is sequencing, and End
indicates the end of the session. The type does not correspond precisely
to the specification, because it does not state that the server calculates the
sum. However, the type captures the parts of the specification which we
can reasonably expect to verify statically. The server communicates with
a client on a channel called u; we think of the client engaging in a session
with the server, using the channel u for communication. In our language,
the server looks like this:

server u = let x = receive u in

let y = receive u in

send x + y on u

or more concisely: send ((receive u) + (receive u)) on u.
Interchanging ? and ! yields the type describing the client side of the

protocol:
S =!Int.!Int.?Int.End

and a client implementation uses the server to add two particular integers;
the code may use x but cannot use the channel u except for closing it.

client u = send 2 on u

send 3 on u

let x = receive u in code
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Branching Types. Now let us modify the protocol and add a negation
operation to the server.

The client selects one of two commands: add or neg . In the
case of add the client then sends two integers and the server
replies with an integer which is their sum. In the case of neg the
client then sends an integer and the server replies with an integer
which is its negation. In either case, the server then closes the
connection.

The corresponding session type, for the server side, uses the constructor &
(branch) to indicate that a choice is offered.

S = &〈add : ?Int.?Int.!Int.End,neg : ?Int.!Int.End〉

Both services must be implemented. We introduce a case construct:

server u = case u of {
add ⇒ send (receive u) + (receive u) on u

neg ⇒ send −(receive u) on u }

The type of the client side uses the dual constructor ⊕ (choice) to indi-
cate that a choice is made.

S = ⊕〈add : !Int.!Int.?Int.End,neg : !Int.?Int.End〉

A client implementation makes a particular choice, for example:

addClient u = select add on u

send 2 on u

send 3 on u

let x = receive u in code

negClient u = select neg on u

send 7 on u

let x = receive u in code

Note that the type of the subsequent interaction depends on the label
which is selected. In order for typechecking to be decidable, it is essential
that the label add or neg appears as a literal name in the program; labels
cannot result from computations.

If we add a square root operation, sqrt , then as well as specifying that
the argument and result have type Real, we must allow for the possibility of
an error (resulting in the end of the session) if the client asks for the square
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root of a negative number. This is done by using the ⊕ constructor on the
server side, with options ok and error . The complete English description
of the protocol is starting to become lengthy, so we will omit it and simply
show the type of the server side.

S = &〈add : ?Int.?Int.!Int.End,

neg : ?Int.!Int.End,

sqrt : ?Real .⊕〈ok : !Real.End, error : End〉〉

This example shows that session types allow the description of protocols
which cannot easily be accommodated with objects, that is, with sequences
of the form: select a method; send the arguments; receive the result.

Recursive Types. A more realistic server would allow a session to consist
of a sequence of commands and responses. The corresponding type must be
defined recursively, and it is useful to include a quit command. Here is the
type of the server side:

S = &〈add : ?Int.?Int.!Int.S,

neg : ?Int.!Int.S,

sqrt : ?Real.⊕〈ok : !Real.S, error : S〉,
quit : End〉

The server is now implemented by a recursive function, in which the positions
of the recursive calls correspond to the recursive occurrences of S in the type
definition. To simplify the theory we decided not to include recursive types
in this paper; the interested reader may refer to report [8].

Function Types. We have not mentioned the type of the server itself.
Clearly, it accepts a channel and returns nothing. If c is the name of
the channel, the input/output behaviour of the function is described by
Chan c → Unit. When control enters the function, channel c is in a state
where it offers add and neg services. The function then “consumes” the
channel, leaving it in a state ready to be closed. In order to correctly con-
trol channel usage, we annotate function types with the initial and the final
type of all the channels used by the function. If c is the (runtime) channel
denoted by the (program) variable u, we may assign the following type to
server.

server :: (c : &〈add : . . .,neg : . . .〉;Chan c → Unit; c : End)
server u = case u of {add ⇒ . . . ,neg ⇒ . . . }

Note how the function type describes not only the type of the parameter
and that of the result, but also its effect on channel c. It can also be useful
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to send functions on channels. For example we could add the component1

eval : ?(Int → Bool).?Int.!Bool.End

to the branch type of the server, with corresponding server code, to be
placed within the server’s case above.

eval ⇒ send (receive u)(receive u) on u

A client which requires a primality test service (perhaps the server has
fast hardware) can be written as follows.

primeClient :: (c : ⊕ 〈add : . . .,neg : . . ., eval : . . .〉;Chan c → Unit; c : End)
primeClient u = select eval on u

send isPrime on u

send bigNumber on u

let x = receive u in code

Establishing a Connection. How do the client and the server reach a
state in which they both know about channel u? We follow Takeuchi, Kubo
and Honda [24], and propose a pair of constructs: request v for use by clients,
and accept v for use by servers. In use, request and accept occur in separate
threads, and interact with each other to create a new channel. The value
v in both request and accept, denotes the common knowledge of the two
threads: a shared name used solely for the creation of new channels. If S
is the type of a channel, the type of a name used to create channels of type
S is denoted by [S]. Functions server and negClient now receive a name
of type [&〈add : . . .,neg : . . ., eval : . . .〉], as shown in the following piece of
code.

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in (case u of . . .; close u)
negClient :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

negClient x = let u = request x in (select neg on u . . . ; close u)

Note that the same type for the shared name x is used both for the server
and for the client; it is the accept/request construct that distinguishes one
from the other. This is also where we introduce the operation to close a
channel: accept/request creates a channel; close destroys it.

1We often omit the empty channel environment on each side of the arrow, so that
Int → Bool is short for ∅; Int → Bool; ∅.

6



Sharing Names. In order for a name to become known by a client and a
server, it must be created somewhere and distributed to both. To create a
new, potentially shared, name of type [S], we write new S. To distribute it
to a second thread, we fork a new thread, in whose code the name occurs.2

Our complete system creates a name x and launches three threads (a server
and two clients), all sharing the newly created name.

system :: Unit

system = let x = new &〈add : . . .,neg : . . ., eval : . . .〉 in

fork negClient x; fork addClient x; fork server x

Given the above implementation of server , one of the clients will be
forever requesting x. Fortunately, it is easy to extend the server to accept
more than one connection in its life time.

server :: [&〈add : . . .,neg : . . ., eval : . . .〉] → Unit

server x = let u = accept x in fork (case u of . . .; close u)
server x

Sending Channels on Channels. Imagine two clients which need to
cooperate in their interaction with the server: one client establishes a con-
nection, selects the neg operation, and sends the argument; the second client
receives the result. After selecting neg and sending the argument, the first
client must provide the second with the channel to the server. In order to do
so, both clients must share a name of type ?(?Int.End).End (called S below)
and establish a connection for the sole purpose of transmitting the server
channel.

askNeg :: [〈add : . . .〉] → [S] → Unit getNeg :: [S] → Unit

askNeg x y = let u = request x in getNeg y = let w = accept y in

select neg on u; send 7 on u let u = receive w in

let w = request y in let i = receive u in

send u on w; close w close u; close w;
code

It is instructive to follow the evolution of the state (the type) of channels
c and d, connected to variables u and w, respectively. After the execution
of the first line of getNeg, d has type S =?(?Int.End).End; after the second
line, d is reduced to End, but c shows up with type ?Int.End; after the third
line both channels are of type End, that is, ready to be closed. By the end
of the fourth line, we gather no more information on channels c and d, for
they are now closed. That is the sort of analysis our type system performs.

2Alternatively, we may send the name on an existing channel.
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After sending a channel, no further interaction on the channel is possible.
Note that askNeg cannot close u, for otherwise the channel’s client side would
be closed twice (in askNeg and in getNeg). On the other hand, channel w
must be closed at both its ends, by askNeg and by getNeg.

The remainder of this section deals with further issues arising from the
interaction between types and programming.

Channel Aliasing. As soon as we separate creation and naming of chan-
nels, aliasing becomes an issue. Consider the function below.

sendSend u v = send 1 on u; send 2 on v

Function sendSend can be used in a number of different ways, including
the one where u and v become aliases for a single underlying channel.

sendTwice :: c : !Int.!Int.End;Chan c → Unit; c : End

sendTwice w = sendSend w w

Clearly our type system must track aliases in order to be able to correctly
typecheck programs such as this. Our approach is to introduce indirection
into type environments. In the body of function sendSend, the types of u
and v are both Chan c. The state of c, initially !Int.!Int.End, is recorded
separately.

Free Variables in Functions. If we write

sendFree v = send 1 on u; send 2 on v

then function sendSend becomes λu.sendFree. In order to type sendTwice,
thus effectively aliasing u and v in sendSend, we must have3

sendFree :: c : !Int.!Int.End;Chan c → Unit; c : End

sendSend :: c : !Int.!Int.End;Chan c → Chan c → Unit; c : End

in a typing environment associating the type Chan c to the free variable u of
sendFree. However, if we do not want to alias u and v, then we must have

sendFree :: c : !Int.End, d : !Int.End;Chan c → Unit; c : End, d : End

sendSend :: c : !Int.End, d : !Int.End;Chan c → Chan d → Unit; c : End, d : End

in a typing environment containing u : Chan d. Note how the above type
for sendFree captures changes to channels that are parameters (c) and to
channels that occur free (d).

3We abbreviate Σ; T → (Σ; U → V ; Σ′); Σ′ to Σ; T → U → V ; Σ′.
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v ::= c | n | x | λx.e | rec x.v | true | false | unit

e ::= t | vv | if v then e else e | new | accept v | request v |
send v on v | receive v | case v of {li ⇒ ei}i∈I | select l on v | close v

t ::= v | let x = e in t | fork t; t
C ::= 〈t〉 | (C | C) | (νn)C | (νc)C

Figure 1: Syntax of values, expressions, threads and configurations

Polymorphism. We have seen that sendFree admits at least two different
types. In order to allow for code reuse we type our let-bound values as
many times as needed, potentially with different types. The paragraph
above showed a share/not-share kind of polymorphism. Other forms include
channel polymorphism and session polymorphism. For an example of channel
polymorphism, consider

sendTwiceSendTwice :: c : S, d : S;Chan c → Chan d → Unit; c : End, d : End

sendTwiceSendTwice x y = sendTwice x; sendTwice y

where S is !Int.!Int.End. Here sendTwice must be typed once with channel c,
and another with channel d. For an example of session polymorphism, we
have:

sendQuad :: c : !Int.!Int.!Int.!Int.End;Chan c → Unit; c : End

sendQuad x = sendTwice x; sendTwice x

where sendTwice must be typed once with c : !Int.!Int.!Int.!Int.End, and a
second time with c : !Int.!Int.End.

3 Syntax

Most of the syntax of our language has been illustrated in the previous
section; here we define it formally by the grammar in Figure 1 (cf. [17]).

We use channel identifiers c, . . ., name identifiers n, . . . , term variables
x, . . ., and labels l, . . ., and define values v, expressions e, threads t, and
configurations C. To simplify some definitions, we use (νa) to stand for
either (νc) or (νn).

Channel identifiers and name identifiers are not available in the top-level
syntax of threads; they arise only during reduction, in a request/accept syn-
chronization, and in a new operation, respectively, as described in Section 4.

In Section 2 we used several derived constructors. An expression e; t
(sometimes implied in our examples by the indentation) is an abbrevia-
tion for let y = e in t, provided y does not occur free in t. Idioms like
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(C, |, 〈unit〉) is a commutative monoid (S-Monoid)
(νn)C1 | C2 ≡ (νn)(C1 | C2) if n not free in C2 (S-ScopeN)
(νc)C1 | C2 ≡ (νc)(C1 | C2) if c not free in C2 (S-ScopeC)

Figure 2: Structural congruence

send (receive c)(receive c) on c need appropriate de-sugaring into consecu-
tive lets, making the evaluation order explicit. We sometimes “terminate”
threads with an expression rather than a value: a thread e is short for
let x = e in x. Recursive function definitions must be made explicit with
rec.

4 Operational Semantics

The binding occurrences are x in λx.e, rec x.e, let x = e in t, n in (νn)C and
c in (νc)C. Free and bound identifiers are defined as usual and we work up to
α-equivalence. Substitution, of values for variables, is defined as expected.
We define a reduction semantics on configurations (Figure 3), making use
of a simple structural congruence relation [18] (Figure 2), allowing for the
rearrangement of threads in a configuration, so that reduction may happen.4

We now explain the reduction rules. R-Init synchronizes two threads
on a shared name n, creating a new channel c known to both threads. Rules
R-Com, R-Branch, and R-Close synchronize two threads on a channel c:
R-Com transmits a value v from one thread to the other; R-Branch, rather
than transmitting a value, chooses one of the branches in the case thread;
and R-Close closes a channel in both threads simultaneously. R-New
creates a new name n, and records the fact that the name is potentially
shared, by means of a (νn) in the resulting configuration. The last four rules
allow reduction to happen underneath restriction, parallel composition, and
structural congruence.

Unlike other thread models, the value a thread reduces to is not com-
municated back to its parent thread (the one that forked the terminating
thread). Such behaviour would have to be programmed by arranging for
both threads to share a channel and explicitly sending the result back to the
parent.

4We could easily arrange for structural congruence to garbage collect all threads of the
form 〈v〉, for v closed.
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〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉) (R-Init)

〈let x = receive c in t1〉 | 〈let y =send v on c in t2〉 →
〈let x =v in t1〉 | 〈let y =unit in t2〉 (R-Com)

〈let x = case c of {li ⇒ ei}i∈I in t1〉 | 〈let y = select lj on c in t2〉 →
〈let x = ej in t1〉 | 〈let y = unit in t2〉 (R-Branch)
〈let x = close c in t1〉 | 〈let y = close c in t2〉 →

〈let x = unit in t1〉 | 〈let y = unit in t2〉 (R-Close)
〈let x = new in t〉 → (νn)〈let x = n in t〉 (R-New)

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉 (R-Fork)
〈let x = if true then e else e′ in t〉 → 〈let x = e in t〉 (R-IfT)
〈let x = if false then e else e′ in t〉 → 〈let x = e′ in t〉 (R-IfF)

〈let x = (λy.e)v in t〉 → 〈let x = e{v/y} in t〉 (R-App)
〈let x = (rec y.v)u in t〉 → 〈let x = (v{rec y.v/y})u in t〉 (R-Rec)

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉 (R-Let)
〈let x = v in t〉 → 〈t{v/x}〉 (R-Beta)

C → C ′

(νa)C → (νa)C ′
C → C ′

C | C ′′ → C ′ | C ′′
C ≡ → ≡ C ′

C → C ′ (R-Conf)

In R-Init, c is not free in t1, t2; in R-New, n is not free in t.

Figure 3: Reduction rules

5 Typing

The syntax of types is described in Figure 4. We define session types S,
channel environments Σ, data types D, and term types T . The type Chan c
represents the type of the channel with identity c; the session type associated
with c is recorded separately in a channel environment Σ. Channel type
bottom, ⊥, denotes a channel that is already in use by two threads, hence that
cannot be used further. Similarly to channel and name identifiers, ⊥ is not
available at the top level syntax, arising only via the channel environment
composition operator, Σ1 • Σ2, defined below. Among datatypes we have
channel-state annotated functional types Σ;T → T ; Σ, and types for names
[S] capable of establishing sessions of type S.

The type system is presented in Figures 5 to 9. Typing judgements for
constants are of the form Γ ` v : T , where Γ is a map from names and
variables to types. Value judgements do not mention channel environments,
for values, having no behaviour, do not change channels. Judgements for
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S ::= ?D.S | !D.S | ?S.S | !S.S | &〈li : Si〉i∈I | ⊕ 〈li : Si〉i∈I | End | ⊥
D ::= Bool | Unit | Σ; T → T ; Σ | [S]
Σ ::= ∅ | Σ, c : S (c : S not in Σ)
T ::= D | Chan c

Figure 4: Syntax of types

Γ ` true : Bool Γ ` false : Bool Γ ` unit : Unit (T-Const)

Γ ` c : Chan c Γ, n : [S] ` n : [S] Γ, x : T ` x : T
(T-Chan,T-Name,T-Var)

Γ, x : T ` Σ . e : U / Σ′

Γ ` λx.e : (Σ; T → U ; Σ′)
Γ, x : T ` v : T T = (Σ;U → U ′; Σ′)

Γ ` rec x.v : T
(T-Abs,T-Rec)

Figure 5: Typing rules for values

expressions are of the form Γ ` Σ.e : T/Σ′, where Σ is a channel environment
(a map from channels into sorts, as in Figure 4). The difference between
Σ and Σ′ reflects the effect of an expression on the types of channels, for
example

x : Chan c ` c : ?Int.End . receive x : Int / c : End.

Finally, typing judgements for configurations are of the form ∆ ` Σ . C
where ∆ is a map from names to datatypes of the form [S].

Typing Values (Figure 5). T-Chan says that a channel named c has
type Chan c. The actual type (or state) of channel c is to be found in a
channel environment Σ, in the rules for expressions. In T-Abs, the initial
and final channel environments of the function body are recorded in the
function type.

Typing Expressions (Figures 6, 7). There are two rules for receive
and two rules for send, for these constructors are overloaded: they allow
transmission of data as well as channels. In T-ReceiveD, the prefix ?D.,
of the type for channel c, is consumed, provided that we are receiving on
a value aliased to channel c (of type Chan c). In T-ReceiveS, we receive
a channel, that we decided to call d; the type of the expression is Chan d,
and we add a new entry to the final channel environment, where we record
the type for d. The particular form of the final channel environment allows

12



Γ ` v : Chan c

Γ ` Σ, c : ?D.S . receive v : D / Σ, c : S
(T-ReceiveD)

Γ ` v : Chan c d fresh
Γ ` Σ, c : ?S′.S . receive v : Chan d / Σ, d : S′, c : S

(T-ReceiveS)

Γ ` v : D Γ ` v′ : Chan c

Γ ` Σ, c : !D.S . send v on v′ : Unit / Σ, c : S
(T-SendD)

Γ ` v : Chan d Γ ` v′ : Chan c

Γ ` Σ, c : !S′.S, d : S′ . send v on v′ : Unit / Σ, c : S
(T-SendS)

Γ ` v : Chan c j ∈ I

Γ ` Σ, c : ⊕〈li : Si〉i∈I . select lj on v : Unit / Σ, c : Sj
(T-Select)

Γ ` v : Chan c Γ ` Σ, c : Sj . ej : T / Σ′ ∀j ∈ I

Γ ` Σ, c : &〈li : Si〉i∈I . case v of {li ⇒ ei}i∈I : T / Σ′ (T-Case)

Γ ` v : Chan c

Γ ` Σ, c : End . close v : Unit / Σ
(T-Close)

Γ ` v : [S] c fresh
Γ ` Σ . request v : Chan c / Σ, c : S

Γ ` v : [S] c fresh
Γ ` Σ . accept v : Chan c / Σ, c : S

(T-Request,T-Accept)

Figure 6: Typing rules for expressions I: Channel operations

the continuation to hold both ends of the channel. The rules T-SendD
and T-SendS, for sending values and channels, are similar. In T-Select,
the type for c in the final channel environment is that of branch li in the
type for c in the source channel environment. In T-Case, all branches must
produce the same final channel environment. This enables us to know the
environment for any code following the case, independently of which branch
is chosen at runtime. The same applies to the two branches of the conditional
in T-If. Rule T-Close requires that the channel must be ready to be closed
(of type End). We remove the closed channel from the environment.

Rules T-Request and T-Accept both introduce a new channel c in
the channel environment, of dual polarities [9, 13, 14, 24, 25]. The dual of
a session type S, denoted S, is defined for all session types except ⊥, and
is obtained by interchanging output ! and input ?, and by interchanging
branching & and selection ⊕, and leaving S otherwise unchanged. The
inductive definition of duality is in Figure 8.

In T-App, the initial and final channel environments in the type of the
function are released into the typing for the application. T-Val says that
constants do not affect the state of channels. Expression new has any type
of the form [S], denoting a name that, when shared by two threads, is able
to produce (via accept/request) new channels of type S.
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Γ ` Σ1 . t1 : T1 / ~c : ⊥ Γ ` Σ2 . t2 : T2 / ~d : ⊥
Γ ` Σ1 • Σ2 . fork t1; t2 : T2 / ~c : ⊥, ~d : ⊥

(T-Fork)

Γ ` Σ . new : [S] / Σ
Γ ` v : (Σ; T → U ; Σ′) Γ ` v′ : T

Γ ` Σ . vv′ : U / Σ′

(T-New,T-App)

Γ ` v : T

Γ ` Σ . v : T / Σ
Γ ` v : Bool Γ ` Σ . e : T / Σ′ Γ ` Σ . e′ : T / Σ′

Γ ` Σ . if v then e else e′ : T / Σ′

(T-Val,T-If)

Γ ` Σ . e : T / Σ′′ Γ, x : T ` Σ′′ . t : U / Σ′

Γ ` Σ . let x = e in t : U / Σ′
Γ ` Σ . t{v/x} : T / Σ′

Γ ` Σ . let x = v in t : T / Σ′

(T-Let,T-PolyLet)

Figure 7: Typing rules for expressions II: Other rules

End = End ?D.S =!D.S ?S′.S =!S′.S !D.S =?D.S !S′.S =?S′.S

&〈li : Si〉i∈I = ⊕〈li : Si〉i∈I ⊕〈li : Si〉i∈I = &〈li : Si〉i∈I

Figure 8: Duality on session types

Rule T-Fork composes the initial channel environments of two con-
figurations, by checking that the types of the channels occurring in both
environments are dual. As for the final environment, the rule requires, via
the ~c : ⊥ and ~d : ⊥ in the antecedent, that each thread involved either con-
sumes their channels (that is sends or closes), or uses them in dual mode.

The composition of two channel environments, Σ1 • Σ2, is defined only
when Σ1(c) = Σ2(c), for all c ∈ dom Σ1∩dom Σ2. In this case dom(Σ1•Σ2) =
dom Σ1 ∪ dom Σ2, and (Σ1 • Σ2)(c) is ⊥ when c ∈ dom Σ1 ∩ dom Σ2, and is
Σi(c) when c ∈ dom Σi \ dom Σ3−i, for i = 1, 2.

Rule T-PolyLet types the various forms of polymorphism identified in
Section 2, by separately typing different copies of the polymorphic value [20,
Chapter 22].

Typing Configurations (Figure 9). Rule T-Thread requires that
threads either consume their channels or use them in dual mode, similarly to
T-Fork. The ∆ in the antecedent of rule T-Thread ensures that threads
are closed for variables, for the domain of ∆ does not include variables.
Rule T-Par is similar to T-Fork. T-NewN discards information on the
bound name. There are two rules for channel creation. Rule T-NewB says
that a newly created channel must be used with dual modes by exactly two
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∆ ` Σ . t : / ~c : ⊥
∆ ` Σ . 〈t〉

∆ ` Σ1 . C1 ∆ ` Σ2 . C2

∆ ` Σ1 • Σ2 . C1 | C2

∆, n : [ ] ` Σ . C

∆ ` Σ . (νn)C
(T-Thread,T-Par,T-NewN)

∆ ` Σ, c : ⊥ . C c not in ∆,Σ
∆ ` Σ . (νc)C

∆ ` Σ . C c not in ∆,Σ
∆ ` Σ . (νc)C

(T-NewB,T-NewC)

Figure 9: Typing rules for configurations

threads, since the type ⊥ usually arises from the • operator in rules T-Par
or T-Fork. Rule T-NewC allows to garbage collect unused channels.

The formulation of Subject Reduction is standard; the proof is in Ap-
pendix A, page 21.

Theorem 1 (Subject Reduction). If ∆ ` Σ.C and C → C ′, then ∆ ` Σ.C ′.

6 Type Safety

In our language of functional communicating threads different sorts of prob-
lems may occur at runtime, ranging from the traditional error of testing, in
a conditional expression, a value that is not true or false; through applying
close to a value that is not a channel; to the most relevant to our work:
having one thread trying to send on a given channel, and another trying
to select on the same channel, or having three or more threads trying to
synchronize on the same channel.

In order to define what we mean by a faulty configuration, we start by
calling a c-thread any thread ready to perform an operation on channel c,
that is a thread of the form 〈let x = receive c in t〉, and similarly for send,
case, select, and close. A c-redex is the parallel composition of two threads
ready to communicate on channel c, that is 〈let x = send v on c in t1〉 |
〈let y = receive c in t2〉, and similarly for case/select, close/close. A con-
figuration C is faulty when C ≡ (ν~a)(C1 | C2) and C1 is

1. the thread 〈let x = e in t〉, where e is i) if v then else with v 6=
true, false, or is ii) v with v 6= λy.e′ and v 6= rec y.e′; or is

2. the thread 〈let x = accept/request v in t〉, where v is not a name; or is

3. the thread 〈let x = e in t〉, where e is i) receive/close v, or ii) send on v,
or iii) case v of , or iv) select on v, with v not a channel; or is

4. the parallel composition of two c-threads that do not form a c-redex;
or is
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5. the parallel composition of three or more c-threads.

The main property of this section says that typable configurations are
not faulty; the proof is in Appendix B, page 31.

Theorem 2 (Type Safety). Typable configurations are not faulty.

7 Related Work

Cyclone [12] is a C-like type-safe polymorphic imperative language. It fea-
tures region-based memory management, and more recently threads and
locks [11], via a sophisticated type system. The multithreaded version re-
quires “a lock name for every pointer and lock type, and an effect for every
function”. Our locks are channels; but more than mutual exclusion, chan-
nels also allow a precise description of the protocol “between” acquiring and
releasing the lock. In Cyclone a thread acquires a lock for a resource, uses
the resource in whichever way it needs, and then releases the lock. Using
our language a thread acquires the lock via a request operation, and then
follows the protocol for the resource, before closing the channel obtained
with request.

In the Vault system [5] annotations are added to C programs, in order
to describe protocols that a compiler can statically enforce. Similarly to
our approach, individual runtime objects are tracked by associating keys
(channels, in our terminology) with resources, and function types describe
the effect of the function on the keys. Although incorporating a form of
selection (⊕), the type system describes protocols in less detail than we
can achieve with session types. “Adoption and Focus” [7], by the same
authors, is a type system able to track changes in the state of objects; the
system handles aliasing, and includes a form of polymorphism in functions.
In contrast, our system checks the types of individual messages, as well as
tracking the state of the channel. Our system is more specialized, but the
specialization allows more type checking in the situation that we handle.

Type and effect systems can be used to prove properties of protocols.
Gordon and Jeffrey [10] use one such system to prove progress properties of
communication protocols written in π-calculus. Bonelli, Compagnoni, and
Gunter [2, 3] combine the language of Honda, Vasconcelos and Kubo [14]
with the correspondence assertions of Gordon and Jeffrey, thus obtaining
a setting where further properties can be proved about programs. Adding
correspondence assertions to session types increases the expressiveness of the
system in two ways. Although session types only specify the structure of
interactions between pairs of participants of a possibly multiparty protocol,
the new setting makes it possible to specify and check that the interactions
between participants in different pairs respect the overall protocol. Fur-
thermore, the integrity and correct propagation of data is also verifiable.
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However, this is a different kind of extension of session types than our work;
their language does not include function types.

Rajamani et al.’s Behave [4, 21] uses CCS to describe properties of π-
calculus programs, verified via a combination of type and model checking.
Since our system is purely type checking (not model checking) we expect
verification to be more efficient and easier to implement. Igarashi and
Kobayashi have developed a generic framework in which a range of π-calculus
type systems can be defined [16]. Although able to express sequencing of in-
put and output types similarly to session types, it cannot express branching
types.

A somewhat related line of research addresses resource access. Walker,
Crary, and Morrisett [26] present a language to describe region-based mem-
ory management together with a provably safe type system. Igarashi and
Kobayashi [15] present a general framework comprising a language with
primitives for creating and accessing resources, and a type inference algo-
rithm that checks whether programs access resources in a disciplined man-
ner. Although types for resources in this latter work are similar in spirit to
session types, we work in a much simpler setting.

Neubauer and Thiemann encoded a version of session types in the
Haskell programming language, and proved that the embedding preserves
typings [19], but the results are limited to type soundness.

Very recently, Dezani-Ciancaglini et al. [6] have proposed a minimal
distributed object-oriented language with session types. Apart from the use
of objects, the main difference between their version of session types and
ours seems to be that they do not allow channels to be sent along channels
(although objects containing names of potential channels may be sent). A
more detailed comparison is a subject for future work.

8 Future Work

We outline some of the issues involved in extending our language to include
a wider range of standard features.

Recursive Session Types. We have introduced recursive session types
in a previous work [8]. We feel its incorporation in the present setting would
not present major difficulties, although care must be taken in the definition
of duality [25].

Principal Typings. For practical type inference, for separate compilation
and modularity, one needs a notion of principal typings for the language.
Particularly challenging is the share/not-share kind of polymorphism iden-
tified in section 2.
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Type Inference. We are working on a constraint-based type inference
algorithm for (the monomorphic fragment of) the language.

ML-style references and assignment. This would introduce further
issues of aliasing. We do not yet know whether our present infrastructure for
typechecking in the presence of aliasing would be sufficient for this extension.
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A Proof of Theorem 1, Subject Reduction

We start with a few auxiliary results; the proof of Subject Reduction is on page 25.
To simplify the proofs, we make use of the variable convention [1], allowing, for
example, to assume that, in sequent ∆ ` Σ . (νc)C, channel c does not occur in
either ∆ or Σ. Relatedly, when we say that c does not occur in C, we mean that
it does not occur free in C and, by the variable convention, that it does not occur
bound either.

The following easy results allow to grow and shrink the variable environment of
an expression. Weakening is used in Subject Reduction (rule R-Let) and narrowing
in the Substitution Lemma 12.5

Lemma 3 (Variable Weakening). Suppose that x does not occur in e, v.

1. If Γ ` Σ . e : U / Σ′, then Γ, x : T ` Σ . e : U / Σ′.

2. If Γ ` v : U , then Γ, x : T ` v : U .

Proof. The proofs, by mutual induction on the derivation of the judgements, are
straightforward.

Lemma 4 (Variable Narrowing). Suppose that x does not occur in e, v.

1. If Γ, x : T ` Σ . e : U / Σ′, then Γ ` Σ . e : U / Σ′.

2. If Γ, x : T ` v : U , then Γ ` v : U .

Proof. The proofs follow the pattern of the ones above.

The following two unchallenging results allow to grow and shrink, this time, the
name environment of a configuration. They are both used in the proofs of Subject
Congruence (rule S-ScopeN), and Weakening is also used in the proofs of Subject
Reduction (rule R-New).

Lemma 5 (Name Weakening). Suppose that n does not occur in C, e, v.

1. If ∆ ` Σ . C, then ∆, n : [S] ` Σ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ, n : [S] ` Σ . e : T / Σ′.

3. If Γ ` v : T , then Γ, n : [S] ` v : T .

Proof. The proof for configurations is a straightforward induction on the derivation
of the judgement, using the result for expressions when the last rule in the deriva-
tion tree is T-Thread. The proofs for expressions and for values are by mutual
induction.

Lemma 6 (Name Narrowing). Suppose that n is not in C, e, v.

1. If ∆, n : [S] ` Σ . C, then ∆ ` Σ . C.

2. If Γ, n : [S] ` Σ . e : T / Σ′, then Γ ` Σ . e : T / Σ′.

3. If Γ, n : [S] ` v : T , then Γ ` v : T .

5In the formulation of the lemma, we have omitted the hypothesis that x is not in the
domain of Γ (for otherwise Γ, x : T would not be defined in the conclusion). We henceforth
follow this convention for all sorts of environments.
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Proof. The proofs follow the pattern of the ones for the previous lemma.

The following two results allow to grow and shrink the channel environment
of a configuration. Weakening is needed in Subject Reduction (rule R-Close);
Narrowing in Subject Congruence (channel extrusion using rule T-NewB).

Lemma 7 (Channel Weakening). Suppose that c does not occur in any of
Σ,Σ′, C, e, v.

1. If ∆ ` Σ . C, then ∆ ` Σ, c : ⊥ . C.

2. If Γ ` Σ . e : T / Σ′, then Γ ` Σ, c : ⊥ . e : T / Σ′, c : ⊥.

3. If Γ ` v : (Σ; T → U ; Σ′), then Γ ` v : (Σ, c : ⊥;T → U ; Σ′, c : ⊥).

Proof. The proofs follow the pattern of the previous two lemmas.

Lemma 8 (Channel Narrowing). Suppose that c does not occur in any of Γ, C, e, v.

1. If ∆ ` Σ, c : S . C, then S = ⊥ and ∆ ` Σ . C.

2. If Γ ` Σ, c : S . e : T / Σ′, then Σ′ = Σ′′, c : S and Γ ` Σ . e : T / Σ′′.

3. If Γ ` v : (Σ, c : S;T → U ; Σ′, c : S), then Γ ` v : (Σ; T → U ; Σ′).

Proof. The proofs are by induction on the possible derivation trees for the judge-
ment.

1. Configurations. The only cases worth mentioning are when the last rule
is T-Par or T-Thread; the four remaining cases follow directly by induction.

T-Par. By hypothesis we have a tree of the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : S . C1 | C2

We analyse the possibilities for splitting the environment (Σ1 •Σ2), c : S. There
are three cases.

1. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : S

3. S = ⊥, Σ∗
1 = Σ1, c : S1 and Σ∗

2 = Σ2, c : S1

The first two cases follow directly by induction. In the third case, the induction
hypothesis implies that S1 = ⊥ and S1 = ⊥, meaning that Σ∗

1 • Σ∗
2 is not defined.

So the third case cannot arise.
T-Thread. By hypothesis we have a tree of the form:

∆ ` Σ, c : S . t : T / ~d :⊥

∆ ` Σ, c : S . 〈t〉

and use the clause for expressions in this lemma, to conclude that ~d :⊥ = Σ′, c : S
(and therefore S = ⊥) and that ∆ ` Σ . t : T / Σ′. The result follows by induction.

2. Expressions. The cases for all the rules in Figure 6 (except T-Case), as
well as T-New and T-Val in Figure 7 are direct, for the antecedents (if any) do
not mention channel environments. The case for rule T-App uses the clause for
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functional values in this lemma. All other cases, except T-Fork follow directly by
induction.

T-Fork. By hypothesis we have a proof tree of the form:

∆ ` Σ∗
1 . t1 : T1 / ~c :⊥ ∆ ` Σ∗

2 . t2 : T2 / ~d :⊥
T-Fork

∆ ` (Σ1 • Σ2), c : S . fork t1; t2 : T2 / ~c :⊥, ~d :⊥

A similar analyses to that done above in the case of rule T-Par of configurations
concludes the proof.

3. Values. Rules T-Const, T-Chan, and T-Name do not apply, for the
types in the axioms are not of the required form. Rule T-Var does not apply, for c
is not in Γ, by hypothesis. Rule T-Rec follows by induction, and rule T-Abs uses
the clause for expressions in this lemma.

The following result accounts for the monoidal structure of configurations; it is
used in the proof of Subject Congruence.

Lemma 9 (Channel environment monoid). Consider the commutative monoid ax-
ioms expressed in terms of (Σ, •, ∅), each in the form LHS = RHS. For each axiom,
LHS is defined if and only if RHS is defined, and then they are equal.

Proof. Directly from the definition of channel environment composition, on page
14.

Congruent configurations share the same typings. This result is used in the
proof of Subject Reduction, rule R-Conf.

Lemma 10 (Subject Congruence). If ∆ ` Σ . C and C ≡ C ′, then ∆ ` Σ . C ′.

Proof. The proof proceeds by induction on the derivation of C ≡ C ′. The inductive
cases (the congruence rules) are straightforward. We now consider the base cases.

When the last rule applied is the commutative monoid rule, we use Lemma 9.
For the scope extrusion rules S-ScopeN and S-ScopeC we must consider each
rule in both directions; for S-ScopeC we must consider two cases, depending on
whether the typing derivation uses T-NewB or T-NewC.

S-ScopeN. When reading the rule left-to-right we use name weakening
(Lemma 5). In the other direction we use name narrowing (Lemma 6). In both
cases, we use the hypothesis (in the congruence rule) that n is not in C2.

S-ScopeC, left-to-right, T-NewB. By hypothesis, we have

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

From the assumptions in the above tree, we build the following derivation,
where we crucially use the variable convention to ensure that c is not in Σ2.

∆ ` Σ1, c : ⊥ . C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` Σ1 • Σ2 . (νc)(C1 | C2)

23



S-ScopeC, left-to-right, T-NewC. Similar to the previous case, again using
the variable convention.

S-ScopeC, right-to-left, T-NewB. By hypothesis, we have a proof tree of
the form:

∆ ` Σ∗
1 . C1 ∆ ` Σ∗

2 . C2
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . C1 | C2 c not in ∆,Σ1,Σ2
T-NewB

∆ ` (Σ1 • Σ2) . (νc)(C1 | C2)

We analyse the possibilities for splitting environment (Σ1 •Σ2), c : ⊥. There are
three cases.

1. Σ∗
1 = Σ1, c : ⊥ and Σ∗

2 = Σ2.

2. Σ∗
1 = Σ1 and Σ∗

2 = Σ2, c : ⊥.

3. Σ∗
1 = Σ1, c : S and Σ∗

2 = Σ2, c : S.

In case 1 we build the following derivation.

∆ ` Σ1, c : ⊥ . C1 c not in ∆,Σ1
T-NewB

∆ ` Σ1 . (νc)C1 ∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

In case 2, as by hypothesis of rule S-ScopeC c does not occur free in C2 (and
thus, by the variable convention, it does not occur bound neither), we build the
following derivation.

∆ ` Σ1 . C1 c 6∈ ∆,Σ1
T-NewC

∆ ` Σ1 . (νc)C1

∆ ` Σ2, c : ⊥ . C2 c 6∈ ∆,Σ2, C2
Lemma 8

∆ ` Σ2 . C2
T-Par

∆ ` Σ1 • Σ2 . (νc)C1 | C2

In case 3 the typing derivation gives us the additional hypothesis that
(Σ1, c : S) • (Σ2, c : S) is defined. As we have ∆ ` Σ2, c : S . C2 and we know
that c is not in C2, Lemma 8 applies and this judgement is ∆ ` Σ2, c : ⊥ . C2,
contradicting the assumption that (Σ1, c : S) • (Σ2, c : S) is defined. Therefore this
case cannot arise.

S-ScopeC, right-to-left, T-NewC. Similar to case 1 of the previous argu-
ment.

The following result allow to replace a given channel for a another one, through-
out a derivation tree. We use it in Subject Reduction, rule R-Init, to unify the
two fresh channels in the hypothesis.

Lemma 11 (Channel replacement). Suppose that d does not occur in any of
Γ,Σ,Σ′, T, e, v, and c does not occur in e, v.

1. If Γ ` Σ . e : T / Σ′, then Γ{d/c} ` Σ{d/c} . e : T{d/c} / Σ′{d/c}.

2. If Γ ` v : T , then Γ{d/c} ` v : T{d/c}.
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Proof. The proof of the two results, by mutual induction, is straightforward.

The following lemma accounts for all cases in Subject Reduction where substi-
tution is needed, namely, in rules R-App, R-Rec, and R-Beta.

Lemma 12 (Substitution). Suppose that Γ ` v : T .

1. If Γ, x : T ` Σ . e : U / Σ′ then Γ ` Σ . e{v/x} : U / Σ′.

2. If Γ, x : T ` u : U then Γ ` u{v/x} : U .

Proof. The proof of the two results is by mutual induction on the derivation of the
judgement.

1. Expressions. The result follows easily using the result for values and
induction.

2. Values. The cases of rules T-Const, T-Chan, and T-Name follow easily,
observing that x does not occur in u, and applying Lemma 4. The case of rule
T-Var follows trivially, as u = x. The case of rule T-Abs uses the result for
expressions, and that of rule T-Rec follows by induction.

We are finally in a position to prove Subject Reduction.

Proof of Theorem 1, page 15. The proof proceeds by induction on the derivation
of C → C ′. We analyse each reduction rule in Figure 3, page 11, in turn.

R-Init. By hypothesis, we have

〈let x = request n in t1〉 | 〈let y = accept n in t2〉 →
(νc)(〈let x = c in t1〉 | 〈let y = c in t2〉).

and ∆ ` Σ . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉. The only proof tree
for this sequent is of the form

(1) (2)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = request n in t1〉 | 〈let y = accept n in t2〉

where (1) is the tree

∆ ` n : [S] d1 fresh

∆ ` Σ1 . request n : Chan d1 / Σ1, d1 : S ∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥

∆ ` Σ1 . let x = request n in t1 : T / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈let x = request n in t1〉

and (2) is the tree

∆ ` n : [S] d2 fresh

∆ ` Σ2 . accept n : Chan d2 / Σ2, d2 : S ∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥

∆ ` Σ2 . let y = accept n in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈let y = accept n in t2〉
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From the assumptions in the above tree we may build the following derivation
tree, since as c does not occur in t1, t2, by the variable convention it does not occur
neither in ∆,Σ1,Σ2. Thus, we are in the conditions of Lemma 11, since d1 and d2

are fresh in the assumptions of tree (1) and (2). By the same reason ∆{c/di} = ∆,
and similarly for Σ1,Σ2 and for T,U .

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2, c : ⊥ . 〈let x = c in t1〉 | 〈let y = c in t2〉
T-NewB

∆ ` Σ1 • Σ2 . (νc)(〈let x = c in t1〉 | 〈let y = c in t2〉)

where (1*) is the tree

T-Chan
∆ ` c : Chan c

∆, x : Chan d1 ` Σ1, d1 : S . t1 : T / ~c : ⊥
Lemma 11

∆, x : Chan c ` Σ1, c : S . t1 : T / ~c{c/d1} : ⊥
T-Let

∆ ` Σ1, c : S . let x = c in t1 : T / ~c{c/d1} : ⊥
T-Thread

∆ ` Σ1, c : S . 〈let x = c in t1〉

and (2*) is the tree

T-Chan
∆ ` c : Chan c

∆, y : Chan d2 ` Σ2, d2 : S . t2 : U / ~d : ⊥
Lemma 11

∆, y : Chan c ` Σ2, c : S . t2 : U / ~d{c/d2} : ⊥
T-Let

∆ ` Σ2, c : S . let y = c in t2 : U / ~d{c/d2} : ⊥
T-Thread

∆ ` Σ2, c : S . 〈let y = c in t2〉

R-Com. By hypothesis, we have

〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉 →
〈let x = v in t1〉 | 〈let y = unit in t2〉

There are two possible derivations to consider, depending on the kind of value v
carried by channel c. Let us consider the case where v is a channel (the other case
is similar—and simpler).

(1) (2)
T-Par

∆ ` Σ . 〈let x = receive c in t1〉 | 〈let y = send v on c in t2〉

where Σ is (Σ1 • Σ2), c : ⊥, d : S′, and (1) is the tree

T-Chan
∆ ` c : Chan c d fresh

∆ ` Σ1, c : ?S′.S . receive c : Chan d / Σ′
1 ∆, x : Chan d ` Σ′

1 . t1 : T / ~c : ⊥, c : ⊥

∆ ` Σ1, c : ?S′.S . let x = receive c in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : ?S′.S . 〈let x = receive c in t1〉
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where Σ′
1 is Σ1, c : S, d : S′. (2) is the tree

∆ ` v : Chan d ∆ ` c : Chan c

∆ ` Σ2, c : !S′.S, d : S′ . send v on c : Unit / Σ′
2 ∆, y : Unit ` Σ′

2 . t2 : U / ~d : ⊥

∆ ` Σ2, c : !S′.S, d : S′ . let y = send v on c in t2 : U / ~d : ⊥
T-Thread

∆ ` Σ2, c : !S′.S, d : S′ . 〈let y = send v on c in t2〉

where Σ′
2 is Σ2, c : S.

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥, d : S′ . 〈let x = v in t1〉 | 〈let y = unit in t2〉

where (1*) is the tree

∆ ` v : Chan d ∆, x : Chan d ` Σ1, c : S, d : S′ . t1 : T / ~c : ⊥, c : ⊥
T-Let

∆ ` Σ1, c : S, d : S′ . let x = v in t1 : T / ~c : ⊥, c : ⊥
T-Thread

∆ ` Σ1, c : S, d : S′ . 〈let x = v in t1〉

and (2*) is the tree

T-Unit
∆ ` unit : Unit ∆, y : Unit ` Σ2, c : S . t2 : U / ~d : ⊥

T-Let
∆ ` Σ2, c : S . let y = unit in t2 : U / ~d : ⊥

T-Thread
∆ ` Σ2, c : S . 〈let y = unit in t2〉

Notice that the type environment (Σ1, c : S, d : S′) • (Σ2, c : S) in the conclusion of
rule T-Par above is defined, since (Σ1, c : ?S′.S)• (Σ2, c : !S′.S, d : S′) is defined (in
the tree for the hypothesis) and d is fresh (in tree (1)).

R-Close. By hypothesis, we have

〈let x = close c in t1〉 | 〈let y = close c in t2〉 →
〈let x = unit in t1〉 | 〈let y = unit in t2〉

and

(1) (2)
T-Par

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = close c in t1〉 | 〈let y = close c in t2〉

where (1) is the tree

· · · ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1, c : End . let x = close c in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1, c : End . 〈let x = close c in t1〉
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and (2) is the tree below.

· · · ∆, y : Unit ` Σ2 . t2 : U / ~c : ⊥2
T-Let

∆ ` Σ2, c : End . let y = close c in t2 : U / ~c : ⊥2
T-Thread

∆ ` Σ2, c : End . 〈let y = close c in t2〉

From the assumptions in the above tree, one may build

(1*) (2*)
T-Par

∆ ` Σ1 • Σ2 . 〈let x = unit in t1〉 | 〈let y = unit in t2〉
Lemma 7

∆ ` (Σ1 • Σ2), c : ⊥ . 〈let x = unit in t1〉 | 〈let y = unit in t2〉

where (1*) is the tree

∆ ` unit : Unit
T-Val

∆ ` Σ1 . unit : Unit / Σ1 ∆, x : Unit ` Σ1 . t1 : T / ~c : ⊥1
T-Let

∆ ` Σ1 . let x = unit in t1 : T / ~c : ⊥1
T-Thread

∆ ` Σ1 . 〈let x = unit in t1〉

and (2*) is a similar tree.
R-New. By hypothesis, we have

〈let x = new in t〉 → (νn)〈let x = n in t〉

and

∆ ` new : [S]
T-Val

∆ ` Σ . new : [S] / Σ ∆, x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = new in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = new in t〉

From the hypothesis in the above tree, we build a tree to complete the proof.
Notice that, by the hypothesis of rule R-New, n is not free in t. Thus, Lemma 5
is applicable to the premise of rule T-Let above, and hence,

∆, n : [S] ` n : [S]

∆, x : [S] ` Σ . t : T / ~c : ⊥
Lemma 5

∆, n : [S], x : [S] ` Σ . t : T / ~c : ⊥
T-Let

∆, n : [S] ` Σ . let x = n in t : T / ~c : ⊥
T-Thread

∆, n : [S] ` Σ . 〈let x = n in t〉
T-NewN

∆ ` Σ . (νn)〈let x = n in t〉

R-Fork. By hypothesis, we have

〈fork t1; t2〉 → 〈t1〉 | 〈t2〉
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and
∆ ` Σ1 . t : / ~c : ⊥ ∆ ` Σ2 . t′ : / ~d : ⊥

T-Fork
∆ ` Σ1 • Σ2 . fork t; t′ : / ~c : ⊥, ~d : ⊥

T-Thread
∆ ` Σ1 • Σ2 . 〈fork t; t′〉

From the hypotheses in the above tree, we build a tree to complete the proof.

∆ ` Σ1 . t : / ~c : ⊥
T-Thread

∆ ` Σ1 . 〈t〉

∆ ` Σ2 . t′ : / ~d : ⊥
T-Thread

∆ ` Σ2 . 〈t′〉
T-Par

∆ ` Σ1 • Σ2 . 〈t〉 | 〈t′〉

R-App. By hypothesis, we have

〈let x = (λy.e)v in t〉 → 〈let x = e{v/y} in t〉

and

∆, y : T ` Σ . e : U / Σ′

T-Abs
∆ ` λy.e : (Σ; T → U ; Σ′) ∆ ` v : T

T-App
∆ ` Σ . (λy.e)v : U / Σ′ ∆, x : U ` Σ′ . t : T / ~c : ⊥

∆ ` Σ . let x = (λy.e)v in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (λy.e)v in t〉

Then, one may build the following derivation to complete the proof.

∆ ` v : T ∆, y : T ` Σ . e : U / Σ′

Lemma 12
∆ ` Σ . e{v/y} : U / Σ′ ∆, x : U ` Σ′ . t : T / ~c : ⊥

T-Let
∆ ` Σ . let x = e{v/y} in t : T / ~c : ⊥

T-Thread
∆ ` Σ . 〈let x = e{v/y} in t〉

R-Rec. By hypothesis, we have

〈let x = (rec y.v)u in t〉 → 〈let x = (v{rec y.v/y})u in t〉

and

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (rec y.v)u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (rec y.v)u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (rec y.v)u in t〉

where (1) is ∆, x : U ` Σ′ . t : T / ~c : ⊥.
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Then, one may build the following derivation to complete the proof.

∆, y : (Σ; T → U ; Σ′) ` v : (Σ; T → U ; Σ′)
T-Rec

∆ ` rec y.v : (Σ; T → U ; Σ′)
Lemma 12

∆ ` v{rec y.v/y} : (Σ; T → U ; Σ′) ∆ ` u : T
T-App

∆ ` Σ . (v{rec y.v/y})u : U / Σ′ (1)
T-Let

∆ ` Σ . let x = (v{rec y.v/y})u in t : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (v{rec y.v/y})u in t〉

R-Beta. By hypothesis, we have

〈let x = v in t〉 → 〈t{v/x}〉.

There are two possible derivations for 〈let x = v in t〉; we analyse each in turn.
When the derivation uses rule T-Let, the result follows by Lemma 12.

∆ ` v : U
T-Val

∆ ` Σ . v : U / Σ ∆, x : U ` Σ . t : T / ~c : ⊥
T-Let

∆ ` Σ . let x = v in t : / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉

When the derivation uses rule T-PolyLet, the result is immediate.

∆ ` Σ . t{v/x} : T / ~c : ⊥
T-PolyLet

∆ ` Σ . 〈let x = v in t〉 : T / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = v in t〉

R-Let. By hypothesis, we have

〈let x = (let y = e in t′) in t〉 → 〈let y = e in (let x = t′ in t)〉

and

∆ ` Σ . e : T / Σ1 ∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆ ` Σ . let y = e in t′ : T1 / Σ′
1 ∆, x : T1 ` Σ′

1 . t : U / ~c : ⊥

∆ ` Σ . let x = (let y = e in t′) in t : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let x = (let y = e in t′) in t〉

Then,, using Lemma 3 one may build the following derivation to complete the
proof. Notice that, by the variable convention, y is not free in t, since it is bound
in let y = e in t′.

∆ ` Σ . e : T / Σ1 (1)
T-Let

∆ ` Σ . let y = e in (let x = t′ in t) : U / ~c : ⊥
T-Thread

∆ ` Σ . 〈let y = e in (let x = t′ in t)〉
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where (1) is the tree

∆, y : T ` Σ1 . t′ : T1 / Σ′
1

∆, x : T1 ` Σ′
1 . t : U / ~c : ⊥

Lemma 3
∆, y : T, x : T1 ` Σ′

1 . t : U / ~c : ⊥
T-Let

∆, y : T ` Σ1 . let x = t′ in t : U / ~c : ⊥

R-IfT/R-IfF. Follows the pattern in all the above cases.
R-Branch. Follows the pattern in all the above cases.
R-Conf . The three cases follow directly by induction. For the rule that uses

structural congruence, we use Lemma 10.

B Proof of Theorem 2, Type Safety

We start with a couple of easy results.

Lemma 13. Suppose that ∆ ` Σ . C.

1. If C is a c-thread, then c is in the domain of Σ.

2. If C is a c-redex, then Σ is of the from Σ′, c : ⊥.

Proof. 1. A simple analysis of the conclusions of the last rule applied in the deriva-
tion of the sequent for c-threads, namely T-SendD, T-SendS, T-ReceiveD,
T-ReceiveS, T-Case, T-Select, and T-Close.

2. A simple analysis of the possible derivation trees for the three possible c-
redex cases.

Proof of Theorem 2, page 16. By contradiction, assuming faulty configurations ty-
pable and performing a case analysis on the possible forms of the faulty configura-
tions.

Assume ∆ ` Σ.(ν~a)(C1 | C2). Without loss of generality, assume that ~a = ~n~c~d,
where ~d are the channels that do not occur in ∆,Σ. Build the only possible proof
tree for the above sequent, first using rule T-NewN as many times as there are
names in ~n, then proceeding similarly with rules T-NewB and T-NewC, a finally
with rule T-Par, to obtain two subtrees ending with the sequents (i = 1, 2):

∆, ~n : ~[S] ` Σi . Ci (1)

where Σ,~c : ~⊥ = Σ1 • Σ2. We now analyse each of the five possible cases of faulty
configurations defined in Section 6, where we let ∆′ = ∆, ~n : ~[S].

1. The three cases are similar. We analyse the conditional expression. The
only derivation tree for sequent (1) above is of the form below.

∆′ ` v : Bool · · · · · ·
T-If

∆′ ` Σ1 . if v then e1 else e2 : / ~f : ⊥ · · ·
T-Let

∆′ ` Σ1 . let x = if v then e1 else e2 in t : / ~f : ⊥
T-Thread

∆′ ` Σ1 . 〈let x = if v then e1 else e2 in t〉

Analysing the rules for values (Figure 5, page 12), one realises that v can only be
true or false, for the T-Var does not apply since variables are not in the domain of
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∆′, and the type in the conclusion of the remaining rules (T-Abs, T-Rec, T-Chan,
T-Name, Unit) is not Bool.

2. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = accept v in t〉

to obtain a tree for
∆′ ` v : [S].

Once again, among the rules for values, only T-Name applies. Then, v is a name.
3. As above, analyse the lower part of the only proof tree for, say,

∆′ ` Σ1 . 〈let x = receive v in t〉

to obtain a tree for
∆′ ` v : Chan c.

Once again, among the rules for values, only T-Chan applies. Clearly v can only
be the channel c.

4. There are several cases to check in this point; they are all similar. Pick, for
example, the pair select/close, and expand the lower part of the proof tree, until
obtaining subtrees for the following two sequents,

∆′ ` Θ1 . select l on c : T1 / Θ′
1 ∆′ ` Θ2 . close c : T ′

2 / Θ′
2

where Σ1 = Θ1 •Θ2. Analysing the rule for select, one finds that c : ⊕ 〈l : S〉 must
be in Θ1. Similarly, analysing the rule for close one realises that c : End must be
in Θ2. Then, Θ1 • Θ2 is not defined (for ⊕〈l : S〉 is not the dual of End), hence
(ν~a)(C1 | C2) is not typable.

5. We check the case for three c-threads 〈t1〉 | 〈t2〉 | 〈t3〉, the others reduce to
this. We have:

∆′ ` Σ′ . 〈t1〉 | 〈t2〉 ∆′ ` Σ′′ . 〈t3〉
T-Par

∆′ ` Σ1 . 〈t1〉 | 〈t2〉 | 〈t3〉

with Σ1 = Σ′ • Σ′′. If 〈t1〉 | 〈t2〉 is not a c-redex, then we use the previous case.
Otherwise, by Lemma 13, it must be the case that c : ⊥ is part of Σ′. Since 〈t3〉 is
a c-thread, by Lemma 13, c is in the domain of Σ′′. But then Σ′ •Σ′′ is not defined
(for ⊥ is dual to no type), and (ν~a)(C1 | C2) is not typable.
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