
An Indulgent Uniform Total
Order Algorithm with
Optimistic Delivery

Pedro Vicente
Lúıs Rodrigues

DI–FCUL TR–02–13

17th September 2002

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

An Indulgent Uniform Total Order Algorithm

with Optimistic Delivery∗†

Pedro Vicente

Universidade de Lisboa
pedrofrv@di.fc.ul.pt

Lúıs Rodrigues

Universidade de Lisboa
ler@di.fc.ul.pt

17th September 2002

Abstract

A total order algorithm is a fundamental building block in the con-
struction of distributed fault-tolerant applications. Unfortunately, the
implementation of such a primitive can be expensive both in terms of
communication steps and of number of messages exchanged. This prob-
lem is exacerbated in large-scale systems, where the performance of the
algorithm may be limited by the presence of high-latency links. Typ-
ically, the most efficient total order algorithms do not provide uniform
delivery and assume the availability of a perfect failure detector. Such
algorithms may provide inconsistent results if the system assumptions do
not hold. On the other hand, algorithms that assume an unreliable failure
detector always provide consistent results but exhibit higher costs. This
paper presents a new algorithm that combines the advantages of both ap-
proaches. On good periods, when the system is stable and processes are
not suspected, the algorithm operates as if a perfect failure detector is as-
sumed. Yet, the algorithm is indulgent, since it never violates consistency,
even in runs where processes are suspected.

1 Introduction

A Total Order Broadcast algorithm is a fundamental building block
in the construction of distributed fault-tolerant applications [1]. The
purpose of such an algorithm is to provide a communication primi-
tive that allows processes to agree on the set of messages they deliver
and also on their delivery order. Total Order Broadcast is particu-
larly useful to implement fault-tolerant services by using software-
based replication [15]. By employing this primitive to disseminate
updates, all correct copies of a service deliver the same set of up-
dates in the same order, and consequently the state of the service is
∗This work has been partially supported by the project IST-1999-20997, GlobData and

by project POSI/CHS/41285/2001, StrongRep.
†Sections of this report have been published in the Proceedings of the 21st Symposium on

Reliable Distributed Systems (SRDS’02). October, 2002, Osaka, Japan.

1

kept consistent. In particular, the algorithm presented in this paper
is being used to support the replication of persistent object-oriented
repositories on geographically dispersed nodes [27].

The Total Order Broadcast problem has been extensively studied
in the literature. Therefore, several algorithms have been proposed
to implement this primitive, considering a diverse set of execution
environments and system models. Although many classifications
are possible, when considering algorithms designed for asynchronous
systems it is important two distinguish two main classes of algo-
rithms: algorithms that assume a perfect failure detector and al-
gorithms that assume only unreliable failure detectors [5]. In the
first category, one must also distinguish algorithms that offer uni-
form total order from those that offer only non-uniform total order
(the precise distinction between these two variants is defined in Sec-
tion 3). Algorithms that assume unreliable failure detectors offer
uniform total order.

Not surprisingly, the most efficient algorithms are the ones that
assume a perfect failure detector and, among these, those that pro-
vide only non-uniform delivery [17, 2]. In this setting, is is possible
to provide total order delivery in a single communication step: a
sequencer based-algorithm [17] can deliver the messages from the
sequencer in a single step, and a symmetric algorithm [20, 7, 2, 9]
can also deliver messages in a single step when all processes are
transmitting. Under the same assumptions, uniform delivery can be
provided at the cost of one additional communication step, for a to-
tal of two communication steps. Unfortunately, if the assumptions
do not hold, these algorithms may provide inconsistent results (or
force processes to crash [4]).

On the other hand, algorithms that assume unreliable failure de-
tectors are indulgent [14], i.e., they never violate safety even if the
assumptions do not hold (in the worst case, they may not termi-
nate). It has been shown that, in this setting, the Total Order
Broadcast problem is equivalent to the Consensus problem [5]. It
has also been shown that Consensus cannot be solved in this type
of systems in less than two communication steps [18]. Since many
Total Order Broadcast algorithms for asynchronous systems with
unreliable failure detectors use consensus as a building block, they
require at least three communication steps [5, 26, 13, 28].

This paper presents a novel algorithm that combines the good
properties of the algorithms in the two previous classes. In good pe-
riods, when the system is stable and processes are not suspected, the
algorithm operates as an algorithm for the perfect failure detector
model. Therefore, in stable periods (the most common case), the

2

algorithm is as efficient as the algorithms in the first class. When
processes are suspected, the algorithm runs a consensus-based re-
configuration phase that ensures safety. Therefore, the algorithm is
indulgent as it copes with partial synchrony and solves the Uniform
Total Order problem assuming only unreliable failure detectors.

Additionally, the structure of the algorithm is exploited to pro-
vide optimistic delivery. An optimistic delivery is an early indication
of the estimated uniform total order. The application can use this es-
timate to perform a number of actions optimistically, which are later
committed when the final definitive order is established. The goal is
to execute some application steps in parallel with the communica-
tion steps of the total order algorithm. Although several algorithms
that support optimistic delivery have been proposed before [23, 10],
these are specialized to some specific network types [23] or interac-
tion patterns [10]. Our approach is more generic because, in stable
conditions, both the optimistic and uniform order are derived from
the output of a fully fledged non-uniform total order algorithm.

The principles of our approach are the following. An efficient
algorithm that provides non-uniform total order assuming a per-
fect failure detector is used to provide fast optimistic delivery. If
processes are not suspected, this optimistic order is made uniform
through an additional round of message exchange. If processes are
suspected, a consensus-based reconfiguration phase is executed to
ensure the termination of pending broadcasts (determining a cer-
tain delivery order) and to reconfigure the operation mode for the
next stable period. The reconfiguration procedure does not assume
a perfect failure detector. The challenge of this algorithm is to en-
sure that the order established by the reconfiguration phase never
conflicts with the order established during the stable-period.

The rest of the paper is structured as follows. Section 2 describes
our system model and Section 3 defines the servide provided and
introduces the building blocks used by the algorithm. A discussion
on the cost of total order is provided in Section 4; it motivates our
new total order algorithm which is presented in Section 5. Section 6
offers a performance evaluation of the algorithm, including measure-
ments from a running prototype. Section 7 compares our work with
related work and Section 8 concludes the paper.

3

2 System Model

2.1 Asynchronous System

We consider a distributed system composed of a finite set of pro-
cesses Ω = {p1, p2, . . . , pn} completely connected through a set of
channels. Communication is by message passing, asynchronous and
eventually reliable. Asynchrony means that there is no bound on
communication delays, nor on process relative speeds. An eventual
reliable channel ensures that a message sent by a process pi to a
process pj is eventually received by pj, if pi and pj are correct (i.e.,
do not fail)1. An eventual reliable channel can be implemented by
retransmitting lost or corrupt messages. Processes fail by crashing
(we do not consider Byzantine failures). A correct process is a pro-
cess that does not crash in an infinite run. We assume that only a
minority of processes may crash, i.e., let f be the maximum number
of processes that can crash, then f < |Ω|/2

2.2 Failure Detectors

Given the impossibility of reaching consensus in asynchronous sys-
tems [12], alternative system models have been defined: partially
synchronous [8], timed asynchronous [11], and asynchronous augmen-
ted with failure detectors [5]. In this paper we follow the latter
model. We consider failure detectors in class ♦S (Eventually Strong),
the weakest class of failure detectors that allow to solve consensus
and atomic broadcast/multicast problems [5]: such failure detectors
can make an infinite number of false suspicions. Failure detectors are
required to solve consensus and used to trigger the reconfiguration
in our algorithm.

2.3 Local Clocks for Optimal Performance

Our algorithm does not require the use of physical clocks to ensure
correctness. However, it adapts the configuration according to an
estimate of the sending rate at each process and of the network delay
among processes. In order to obtain these estimates, an implemen-
tation requires the use of local clocks with a stable drift rate. These
clocks are used to measure the inter-arrival time of messages and to
measure round trip delays. The inaccuracy of these clocks may re-
sult in sub-optimal configurations in terms of the average latency of
message delivery but has no impact on the properties of the service.

1This does not exclude link failures, if we require that any link failure is eventually repaired.

4

UTO1 - Uniform Agreement: Consider UTO-broadcast(m). If a process in Ω
(correct or not) has UTO-delivered(m), then every correct process in Ω eventually
UTO-delivers(m).

UTO2 - Termination: If a correct process UTO-broadcasts(m), then every correct
process in Ω eventually UTO-delivers(m).

UTO3 - Uniform Total order: Let m1 and m2 be two messages that are UTO-
broadcast. We note m1 < m2 if and only if a process (correct or not) UTO-delivers
m1 before m2. Total order ensures that the relation < is acyclic.

UTO4 - Integrity: For any message m, every correct process delivers m at most
once, and only if m was previously broadcast by some process p ∈ Ω.

Table 1: Uniform total order properties

3 Service Description and Building Blocks

In this section, we define the service provided by our algorithm and
introduce some of the building blocks used in its design.

3.1 Uniform Total Order Broadcast with Optimistic De-
livery

Uniform total order broadcast is defined on the set Ω by the prim-
itives (1) UTO-broadcast(m) which issues message m to Ω, and (2)
UTO-deliver(m) which is the corresponding delivery of m. When a
process pi executes UTO-broadcast(m) (resp UTO-deliver(m)), we
say that pi “UTO-broadcasts m” (resp “UTO-delivers m”). The
properties of the primitive UTO-broadcast [16] are listed in Table 1.

Our algorithm includes an additional primitive UTO-opt-deliver(m).
When a process pi executes UTO-opt-deliver(m), we say that pi
“UTO-opt-delivers m”. The order by which a process p UTO-opt-
delivers messages is an estimate of the order by which p will UTO-
deliver the same messages. Note that in some cases the estimate may
be wrong, i.e., the order by which messages are UTO-opt-delivered
may differ from the order by which they are UTO-delivered (al-
though in stable periods it is desirable that it is the same). Note
also that it is possible that a message is directly UTO-delivered
without ever being UTO-opt-delivered.

3.2 Building Blocks

The building blocks of our algorithm are a Regular Reliable Broad-
cast primitive, a Consensus primitive and a Total Order algorithm

5

Unstable
(processes are
suspected)

Stable period

(Perfect FD)

Broadcast

Suspect

(check configuration)

UTO-opt-deliver UTO-deliver

Uniformity
Consensus

Total Order

Regular Reliable Unreliable

Failure
Detector

Reconfigure

Figure 1: Algorithm Architecture.

primitive (for the Perfect Failure Detector model), as illustrated in
Figure 1 (uniformity is achieved by running an additional round of
message exchange).

Regular Reliable Broadcast We assume the existence of a (regular)
reliable broadcast primitive, denoted R-broadcast(m), and the cor-
responding reliable delivery primitive, denoted R-deliver(m). The
primitive R-broadcast(m) satisfies the following three properties: (1)
(agreement) if a correct process in Ω has R-delivered(m), then ev-
ery correct process in Ω eventually R-delivers(m); (2) (validity) if
a correct process R-broadcasts(m), then every correct process in Ω
eventually R-delivers(m); (3) (integrity) for any message m, every
correct process delivers m only if m was previously broadcast by
some process p ∈ Ω. An example of a simple implementation of
reliable broadcast is given in [5].

Consensus We also assume the existence of a consensus function,
which solves the uniform consensus problem [5]. The problem is
defined over a set of processes Π, each proposes an initial value,
and has to decide on a final value, such that (1) agreement: no two
processes decide differently, (2) termination: every correct process
eventually decides, and (3) non-triviality: the value decided is one
of the values proposed. An example of a consensus algorithm for
asynchronous systems augmented with unreliable failure detectors
is given in [5].

6

Total Order with Perfect Failure Detector A fundamental goal of
our design is to create an algorithm that, in stable periods, is as
efficient as the algorithms that assume a perfect failure detector.
Therefore, we have decided to select an existing algorithm in that
class to serve as the basis for our new algorithm.

Although several algorithms have been described in the litera-
ture [4, 6, 7, 17, 19, 2], few were specifically targeted to operate in
(geographically) large-scale systems. In a large scale network pro-
cesses’ traffic patterns are usually heterogeneous. The same applies
to the network links: some processes will be located within the same
local area network whereas others will be connected through slow
links, and thus subject to long delays. In such an environment, none
of the previous approaches can provide optimal performance. There-
fore, we have opted to base our new algorithm on the Hybrid Total
Order algorithm described in [25]. This algorithm combines two of
the most used approaches to enforce total order in systems where a
perfect failure detector is available, specifically: the token-site [6, 17]
and symmetric [24, 7] approach. It does so by implementing a dy-
namic configuration policy that adapts the algorithm behavior such
that the most adequate mechanism is used as a function of the net-
work delays and of the traffic load.

In the token-based approach, a process is responsible for order-
ing messages on behalf of the other processes in the system. This
process works as a sequencer of all messages and is often called
the token holder. Token algorithms are appealing because they
are relatively simple and provide good performance when message
transit delays are small (they are particularly well suited for lo-
cal area networks). However, in a token algorithm, a message sent
by a process that does not hold the token experiences a latency
of twice the network delay (i.e., the time to disseminate the mes-
sage plus the time to obtain either the token or an order number
from the token holder). Thus, token-based approaches are ineffi-
cient in face of large network delays. In the symmetric approach,
ordering is established by all processes in a decentralized way, using
information about message stability. This approach usually relies
on logical clocks [20] or vector clocks [4, 24, 19]: messages are deliv-
ered according to their partial order and concurrent messages are
totally ordered using some deterministic algorithm. Symmetric al-
gorithms have the potential for providing low latency in message
delivery when all processes are producing messages. In fact, using
a technique called rate-synchronization [25], symmetric algorithms
can exhibit a latency close to the network delay plus δ, where δ is
the largest inter-message transmission time. Unfortunately, this also

7

RTO1 - Agreement: Consider RTO-broadcast(m). If a correct process in Ω has
RTO-delivered(m), then every correct process in Ω eventually RTO-delivers(m).

RTO2 - Termination: (as UTO2).

RTO3 - Total order: Let m1 and m2 be two messages that are RTO-broadcast. We
note m1 < m2 if and only if a correct process RTO-delivers m1 before m2. Total order
ensures that the relation < is acyclic.

RTO4 - Integrity: (as UTO4).

Table 2: Regular total order properties

means that all (or at least a majority [7, 2]) of processes must send
messages at a high rate to achieve low algorithm latency. There-
fore, in a large scale system, a token-site approach is more favorable
when the inter-message arrival time is greater than the delay of the
communication step and a symmetric approach is more favorable
otherwise. The hybrid algorithm allows some processes to operate
using one approach while, at the same time, other processes use the
other approach, and is able to commute the operation mode of each
process in runtime.

A limitation of the hybrid total order algorithm described in [25]
is that it assumes the availability of a perfect failure detector and
provides only a regular (non-uniform) version of total order, whose
properties are depicted in Table 2. As it will be seen, our new
algorithm addresses these two limitations.

4 On the Cost of Total Order

Since on geographically large-scale systems, the network delay is one
of the most limiting factors on the performance of a total order algo-
rithm, in this paper we concentrate on analyzing the cost in terms of
the number of communication steps needed to provide the service.
This measure is less ambiguous than the usual number of “phases”.
To give an example, the classical two phase commit protocol (2PC)
has three communication steps [3]: (1) vote request sent from the
coordinator to the participants, (2) reply of the participants sent to
the coordinator, and (3) decision sent by the coordinator to the par-
ticipants. We consider in our analysis only the best case scenario,
i.e. runs with no failure suspicions. This is the most frequent case in
practice. Using this metric, we now analyze the cost of the several
basic total order algorithms and of related building blocks. These

8

Primitives Failure-detector Cost

Regular reliable broadcast ♦S 1
Non-Uniform Hybrid Total Order P min(1+ δs, 2)
Uniform reliable broadcast ♦S 2
Uniform Hybrid Total Order P min(2+ δs, 3)
Consensus ♦S 2
Consensus based total order ♦S 3

Table 3: Communication Steps

costs are summarized in Table 3.
The cheaper of the listed primitives is reliable broadcast, which

can be implemented in one communication step. The non-uniform
hybrid algorithm exhibits a latency of two communication steps or
one-communication step plus δs, whichever is more favorable (δs is
the longest inter-message transmission time of all sequencers) but
assumes a perfect failure detector. A uniform reliable broadcast
primitive can be implemented in two communication steps [16]. The
hybrid protocol can also be trivially extended to support uniform
delivery if a perfect failure detector continues to be assumed, by
resorting to an additional round of message exchange. The cost of
consensus is two communication steps (this is a lower bound [18]).
It should be noted that some consensus algorithms require more
communication steps even in failure-free runs [5]. In certain special
cases, when all processes propose exactly the same value, it is pos-
sible to reach consensus in a single communication step. Finally,
consensus-based total order algorithms require at least three com-
munication steps (one step to disseminate the message plus the cost
of consensus).

In this paper we present a new algorithm that has the following
interesting features:

• In stable periods it provides an UTO-opt-deliver indication as
fast as the non-uniform hybrid total order protocol.

• In stable periods it provides an UTO-deliver indication as fast
as a hybrid total order protocol extended to ensure uniformity2.

• In opposition to the hybrid total order protocol (and other pro-
tocols of the same class such as typical token-site or symmetric
protocols), it does not assume a perfect failure detector. In-
stead, it never violates safety if failure detection is imperfect

2Note that in face of high load and high network delays, the hybrid algorithm offers a much
more favorable latency than a consensus based algorithm.

9

and relies on unreliable failure detectors of the class ♦S for
termination.

To motivate the need to design a new algorithm, we first show
why some naive combinations of the previous approaches do not
provide satisfactory results. For instance:

• One might consider to execute the hybrid total-order algorithm
(to provide the optimistic delivery) in parallel with a consensus
based algorithm (to provide uniform delivery). Unfortunately,
it is extremely unlikely that two separate algorithms provide
the same ordering. Therefore, in such configuration, the infor-
mation provided by UTO-opt-deliver would be of no practical
use.

• Another simple alternative would be to execute the two algo-
rithms sequentially (by using the output of the hybrid algo-
rithm as an input to the consensus based algorithm). However,
the total number of communication steps for UTO-deliver in
such approach would be too high.

Additionally, it must be noted that the hybrid algorithm, as any
other algorithm that assumes a perfect failure detector, needs to
be reconfigured when failures are detected. For instance, in a pure
token-based approach, when the token holder fails and a new token
holder has to be elected. Ensuring that this sort of reconfigura-
tion is still possible even when failure detection is not perfect is a
challenging issue addressed by our approach.

5 The Algorithm

5.1 Overview

In the steady-state, the algorithm works closely to the algorithm
of [25] with additional steps to ensure uniform total order. Central
to the execution of the algorithm is the notion of a configuration.
A configuration defines which processes assume an active or a pas-
sive role with regard to message ordering. Each configuration has
an unique configuration id. A new configuration is installed using
an underlying consensus algorithm. Each execution of consensus,
identified by the associated configuration sequence number, installs
a new configuration.

Active processes issue sequence numbers for their own messages
and on behalf of (some) passive nodes. The sequence number as-
signed to a given message is called a ticket. Passive nodes do not

10

issue tickets. In each configuration, each passive node is assigned to
an unique active node, called the passive node’s sequencer. Tickets
issued by active nodes are ordered using a symmetric total order
algorithm and the associated messages are delivered according to
this order. Since the symmetric total order algorithm requires a
perfect failure detection to terminate, it may block in case of the
failure of an active node. To prevent blocking, when an active node
is suspected, a consensus-based phase is used to terminate the algo-
rithm and install a new configuration. A difficulty of the approach
is to ensure that the order established by the consensus-based phase
never conflics with the order established in steady-state.

Tickets are disseminated in two communication steps. In the first
step, the ticket is used to establish an optimistic ordering for the
associated message. In the second step, the uniformity of the ticket
reception is guaranteed. At the end of the second step of the ticket
dissemination, if no failures occur, the associated message can be
uniformly delivered. The next paragraphs present the algorithm in
greater detail.

5.2 State Variables

The algorithm requires several variables to be maintained at each
node (depicted in Figure 2). The set of messages that have been
UTO-delivered is stored in variable u-delivered. Similarly, the set
of messages that have been UTO-opt-delivered is stored in variable
opt-delivered. In order to be delivered, both the message and its as-
sociated ticket must have been previously received. When a message
(resp. a ticket) is received for the first time it is stored in variable r-
received (resp. r-ticket). When the uniformity of the message (resp.
a ticket) is guaranteed, it is moved to the variable u-received (resp.
u-ticket). The sequence number of the installed configuration is kept
in variable config-sn. The configuration itself is stored in the vari-
able curr-config as a set of tuples (p, sp). Each tuple associates each
process p ∈ Ω with a sequencer sp ∈ Ω. Active processes are those
assigned as sequencers of (at least) their own messages; the initial
configuration is pre-defined (usually, a single process is initiated as
active). Finally, each process stores the list of suspected processes
(suspected) and two control variables (blocked and reconfig) whose
purpose will be introduced later in the text.

11

Initial values:
u-delivered ← ∅; // uniformly ordered
opt-delivered ← ∅; // optimistically ordered
r-received ← ∅; // reliably received
u-received ← ∅; // uniformly received
r-ticket ← ∅; // reliably received ticket
u-ticket ∅; // uniformly received ticket
config-sn ← 0
curr-config ← {(p1, p1), (p2, p1), . . .}
local-sn ← 0; // local sequence number (to issue tickets)
suspected ← ∅; // suspected nodes
blocked ← false;
reconfig ← false;

Figure 2: State Variables

5.3 Steady-State Operation

The steady-state operation of the algorithm is depicted in Figures 3
and 4. The algorithm is initiated by a request from the applica-
tion to UTO-broadcast a message. In response to this request, the
message is sent to the other processes using an underlying reliable
broadcast primitive. Then, if the sender is an active process, it
immediately issues a ticket to the message, which is also reliably
broadcast (in the implementation, the ticket is piggybacked to the
message in order to optimize network resources). Both the message
and the ticket are stamped with the identifier of the configuration
they are sent in.

When a message is received, it is stored in the r-received variable.
Additionally, the message is retransmitted to ensure uniformity. If
the message was sent by a passive node and is received by that node’s
sequencer in the same configuration it was sent, the sequencer issues
a ticket for the message. Note that messages received in a configu-
ration different from the one they were sent in are not ordered using
tickets, they are ordered using a consensus based-algorithm. This
may happen when a sequencer is suspected an a new configuration
installed. Due to the asynchrony of the system, the sequencer may
send several messages with an old configuration before it receives
the outcome of consensus.

Tickets are only processed if they are received in the configuration
they were sent. In this case, they are saved in the r-ticket set and
later used to order messages optimistically. Tickets used this way
are positively acknowledged using an AckTicket message. Oth-
erwise, tickets are simply discarded and negatively acknowledged
using a NackTicket message. When received, the AckTickets
for message m (resp. NackTickets) are stored in an ack-ticketm

12

variable (resp. nack-ticketm). Only tickets that are positively ac-
knowledged from a majority of processes are used to uniformly order
messages.

Data messages are moved from the r-received set to the u-received
set as soon as a retransmission is received from a majority of pro-
cesses. Similarly, tickets are moved from r-ticket to u-ticket when
an AckTicket is received from a majority of processes. If a ticket
cannot be moved to the uniform set due to lack of enough positive
acknowledgements, the respective message has to be ordered using
a consensus-based algorithm. Such algorithm is triggered by setting
the reconfig flag. There are other three scenarios that may trigger
a reconfiguration: i) the existence of an (unordered) uniformly de-
livered message sent in a previous configuration; ii) the existence
of an (unordered) uniformly delivered message sent in the current
configuration but whose sequencer is suspected or; iii) the change
of the network delays or traffic load leads the adaptation policy
to trigger a change of roles (transitions from active to passive and
vice-versa). Processes that are suspected are simply stored in the
suspected variable.

Received tickets (in r-ticket) are used to UTO-opt-deliver mes-
sages. Similarly, tickets whose uniformity has been guaranteed (in u-
ticket) are used to UTO-deliver messages. The function next returns
the next message that has been ordered and not delivered (if any).
More specifically, consider two tickets T1 = (Ticket,p1, csn,m1, sn1)
and T2 = (Ticket,p2, csn,m2, sn2). We say that T1 < T2 iff,
sn1 < sn2 ∨ (sn1 = sn2 ∧ p1 < p2). Note that only tickets from
the same configuration are comparable. Function next has three pa-
rameters: ret, a set of received messages; tset, a set of tickets and;
dset, a set of delivered messages. It returns the message m ∈ rset
such that m 6∈ dset∧ 6 ∃m′∈rset : m′ 6∈ dset ∧ Tm′ < Tm and for every
other sequencer s, ∃Ts∈tset : Tm < Ts.

5.4 Reconfiguration

Reconfiguration is always performed through the execution of a con-
sensus algorithm. The reconfiguration has two main purposes: to
install a new set of roles (active, passive, and sequencer assignments)
and to order the remaining unordered messages from the previous
configuration.

A reconfiguration is triggered when the flag reconfig is activated.
The first step consists in collecting the state from other nodes about
the list of ordered messages. This is performed by exchanging MyS-
tate messages. The MyState message carries the contents of the

13

upon ¬ blocked ∧ UTO-broadcast(m) at p:
r-received ← r-received ∪{m};
ackm ← {p};
R-broadcast (Data, p, config-sn, m);
if (p = sequencer (p)) then

local-sn ← local-sn +1;
ack-ticketm ← ack-ticketm ∪ {p};
R-broadcast (Ticket, p, config-sn, m, local-sn);

fi

upon R-deliver (Data, q, csn, m) at p:
ackm ← ackm ∪ {q};
if m 6∈ r-received then

r-received ← r-received ∪{m};
ackm ← ackm ∪ {p};
R-broadcast (Data, q, csn, m);
if (csn = config-sn ∧ p = sequencer (q)) then

local-sn ← local-sn +1;
ack-ticketm ← ack-ticketm ∪ {p};
R-broadcast (Ticket, p, csn, m, local-sn);

fi
fi

upon ¬ blocked ∧ R-deliver (T ← Ticket, q, csn, m, sn) at p:
r-received ← r-received ∪{m};
ackm ← ackm ∪ {q, p};
if (csn = config-sn) then

r-ticket ← r-ticket ∪{T};
R-broadcast (AckTicket, p, m, T);
ack-ticketm ← ack-ticketm ∪ {p, q};

else
R-broadcast (NackTicket, p, m, T);
nack-ticketm ← nack-ticketm ∪ {p};
ack-ticketm ← ack-ticketm ∪ {q};

fi

upon R-deliver (AckTicket, q, m, T) at p:
r-received ← r-received ∪{m};
ackm ← ackm ∪ {p, q};
r-ticket ← r-ticket ∪{T};
ack-ticketm ← ack-ticketm ∪ {q};

upon R-deliver (NackTicket, q, m, T) at p:
r-received ← r-received ∪{m};
ackm ← ackm ∪ {p, q};
nack-ticketm ← nack-ticketm ∪ {q};

Figure 3: Algorithm (Sending and Receiving)

14

upon suspect(q) at p: //
suspected ← ∪{q};

upon #ackm > |Ω|/2:
r-received ← (r-received \{m});
u-received ← (u-received ∪{m});

upon (#ack-ticketm + #nack-ticketm) > |Ω|/2:
if #ack-ticketm > |Ω|/2 then

T ← t ∈ r-ticket: t.m = m;
r-ticket ← r-ticket \{T};
u-ticket ← u-ticket ∪{T};

else if m 6∈ u-delivered
reconfig← true;

fi

upon next (r-received,r-ticket,opt-delivered):
m← next (r-received,r-ticket,opt-delivered);
opt-delivered ← opt-delivered∪{m};
UTO-opt-deliver (m);

upon next (u-received,u-ticket,u-delivered):
m← next (u-received,u-ticket,u-delivered);
u-delivered ← u-delivered∪{m};
UTO-deliver (m);

upon ∃m ∈ u-received: csn(m) 6= config-sn):
∨ ∃m ∈ u-received: csn(m) = curr-config.sn ∧ sequencer(m) ∈ suspected
∨ performance-reconfiguration:

reconfig← true;

Figure 4: Algorithm (Delivering Messages)

following variables at each node: suspected, u-delivered, r-received,
u-received, r-ticket, u-ticket. Basically, it contains the list of all de-
livered messages, all received messages and all received tickets.

A majority of MyState messages has to be received to compute
the new state after reconfiguration. The new state is computed in
the following manner:

• The sequence number of the next configuration is simply com-
puted by incrementing the current configuration number.

• The list of suspected members is the union of members sus-
pected by the different processes (this list is only used when as-
signing the active role to processes: suspected members should
be configured as passive nodes). The process excludes from
the suspected list all the processes from which is has received
a MyState message as an input to the new configuration (in-
cluding itself).

• All known messages (i.e., those included in the collected MyS-
tate messages) are gathered to be delivered before a new con-
figuration is installed.

15

• All known tickets (i.e., those included in the collected MyS-
tate messages) are gathered to be applied before a new con-
figuration is installed.

• Known messages without a ticket are explicitly listed in an
unordered set (uset).

• A new configuration of passive and active roles is constructed
using data from the adaptive policy (see discussion below) and
the list of suspected members. As noted before, suspected
members can only be assigned a passive role.

The new state computed this way is used as an input to con-
sensus. Note that different processes may have used a different set
of MyState messages when computing the proposal for the next
state. Consensus ensures that all correct processes decide on the
same configuration.

The decided configuration is used to update the local state at
each node. The set of know messages is added to the u-received set
(and removed from r-received). Similarly, the set of known tickets is
added to u-ticket (and removed from r-ticket). Then, all messages
with a ticket in u-ticket that have not been delivered are delivered in
the order of their tickets. Finally, the list of messages in u-received
without tickets is delivered in some deterministic order. Note that
this particular set of messages is ordered as in the consensus-based
total order algorithm of [5]. Finally, the new configuration is in-
stalled.

Before initiating a reconfiguration (i.e, before sending its MyS-
tate message) each process enters in the blocked state. In blocked
state, the process does not send new messages and does not accept
new tickets. This prevents the order established by consensus to
conflict with an order established using the new tickets. It also min-
imizes the number of messages sent to an obsolete configuration.
The process changes to the unblocked state after installing a new
configuration.

5.5 Adaptive Policy

To allow dynamic reconfiguration processes must be able to eval-
uate system parameters as traffic load and network delays. The
following approach may be used: each process timestamps every
message with its own local clock at the time of transmission; based
on the message’s timestamp, all processes can determine the aver-
age transmission rate of the sender process. To determine delays in

16

function captureState:
my-state.csn ← config-sn;
my-state.susp ← suspected;
my-state.del ← u-delivered;
my-state.rec ← r-received ∪ u-received;
my-state.ticket ← r-ticket ∪ u-ticket;
return my-state;

function computeNewState (rec-state):
new-state.csn ← config-sn +1;
new-state.susp ← ⋃

s∈rec-state s.susp;
new-state.rec ← ⋃

s∈rec-state s.del ∪ s.rec;
new-state.ticket ← ⋃

s∈rec-state s.ticket;
new-state.uset ← new-state.rec \ new-state.ticket ;
new-state.config ← reassignSequencers (new-state);
return new-state;

function ApplyState (new-state):
u-received ← u-received ∪ new-state.rec;
r-received ← r-received \ u-received;
u-ticket ← u-ticket ∪ new-state.ticket
r-ticket ← r-ticket\u-ticket;
deliverInOrderTickets (u-ticket, u-delivered);
deliverInDeterministicOrder (new-state.uset);
config-sn ← new-state.csn;
curr-config ← new-state.config;
suspected ← ∅;
blocked← false;
reconfig ← false;

upon ¬ blocked ∧ reconfig at p:
my-state ← captureState;
R-broadcast (MyState, p, my-state);
rec-statecsn ← ∪{ my-state});
blocked← true;

upon R-deliver (MyState, p, s);
rec-states.csn ← ∪{s};
if ¬ blocked ∧ s.csn ≥ config-sn

my-state ← captureState;
R-broadcast (MyState, p, my-state);
rec-stateconfig-sn ← ∪{ my-state};
blocked← true;

fi

upon # rec-stateconfig-sn > |Ω|/2:

proposed-state ← computeNewState (rec-statecsn);
next-state ← consensus (config-sn+1, proposed-state);
applyState (next-state);

Figure 5: Algorithm (Reconfiguring)

17

inter-process links, a simple round-trip delay method is used. At ev-
ery pre-determined fixed interval of time, all receiving processes of a
given data message respond immediately with a point-to-point null
message to the originator process of the first message. This process
can then calculate the delay between itself and all recipients.

In order to evaluate system parameters based on sample measure-
ments, a simple mean-shift detector is used: an initial mean value
of rate and delay is calculated using the first k samples from each
process. Whenever a run of k or more samples fall either all above
the mean value or all below it, that mean value is recalculated and
used in the next iteration. As the symmetric algorithm relies on the
fact that all processes must be constantly sending messages, system
parameters can be evaluated after a short period of operation.

With the system parameters the algorithm must assign roles to
each process. In order to configure the system, a heuristic that anal-
yses each pair of processes in isolation is used. Consider a process p,
subject to a load characterized by a mean inter-message transmission
time δp, and such that the delay to the nearest (in terms of network
delay) active process a is D(p,a). The condition that must be satis-
fied for process p to assume a passive role is D(p,a) + δp > 2D(p,a). In
this case, inter-message transmission time is longer than the round-
trip delay to the nearest active process (therefore, p can request and
obtain a ticket from a before there is a new message to be sent).
On the other hand, if D(p,a) + δp ≤ 2D(p,a) then, p should assume an
active role since it is sending messages faster than the time required
to obtain a ticket from the token-site.

5.6 Correctness

The correctness proofs are presented in Appendix.

6 Performance Evaluation

6.1 Analytical Evaluation

In this section the performance of the presented algorithm is evalu-
ated and compared with the non-uniform hybrid algorithm and the
consensus based total order, using communication steps. Let δs be
the maximum inter-message time of all sequencers of a given config-
uration. When the sender is the sequencer of its own messages the
algorithm requires two communication steps plus δs (one for send-
ing the message with the associated ticket, another guaranteeing the
uniformity, and δs to stabilize the ticket); when the sequencer is a

18

different process then the algorithm requires three communication
steps plus δs (one for sending the message, other for sending the
ticket, another assuring uniformity, and δs to stabilize the ticket).
It is important to notice that, due to the adaptive policy of the al-
gorithm, the execution that requires three communication steps is
only configured when the latency cost of one communication step
is smaller than δs. The other important characteristic of this algo-
rithm is that when it makes an optimistic delivery of the messages,
this order is equal to the final order when none of the processes is
suspected. This delivery is made one communication step before the
termination of the broadcast, so the cost of optimistic delivery is one
or two, whichever is best in terms of latency. The performance of
optimistic delivery is equal to the performance with the non-uniform
hybrid total order, presented in the Table 3, so if an application can
take advantage of this early delivery the cost of the uniform and
non-uniform algorithms is the same. A consensus based total order
requires three communication steps, so our algorithm has the same
or lower cost while providing the optimistic delivery in the same
number of steps as the hybrid algorithm.

6.2 Experimental Evaluation

We have implemented a prototype of our algorithm and performed
some simple proof-of concept experiments. Before presenting the
collected results, we briefly describe the characteristics of the imple-
mentation and the experimental setup.

6.2.1 The prototype

A prototype of the algorithm has been implemented in Java using
Appia[22], a framework for the composition of micro-protocols. The
prototype has various optimizations but these do not change the
structure of the presented algorithm. These optimizations are made
to reduce the number of messages exchanged by the algorithm and
may increase the latency of the message delivery. The optimiza-
tions are the following: The Ticket and AckTicket messages are
piggybacked with data messages; the retransmission of messages by
processes other than the sender (for reliability) is delayed until the
sender is suspected; unless nodes are suspected, message uniformity
is obtained through the exchange of acknowledgements (instead of
the retransmission of the data message itself).

19

S S S S S S S

p1 p2 p3 p4

100 Mb/s Ethernet

p1 p2 p3 p4 p1 p2 p3 p4

100 Mb/s Ethernet 100 Mb/s Ethernet 100 Mb/s Ethernet 100 Mb/s Ethernet

Long-haul link (200 ms delay) Long-haul link (200 ms delay) Long-haul link (200 ms delay)

a) Sequencer-based b) Symmetric c) Hybrid

100 Mb/s Ethernet

Figure 6: Protocol configurations.

6.2.2 Experience I

The experimental setup consisted of a simple network of four nodes
interconnected in a topology consisting of two local-area networks
interconnect by a long-haul link. Each node is a PC, equipped with
Pentium 3 at 800 Mhz processors with 512M of RAM. In each local-
area network, one machine runs the Linux OS and other Windows
2000; all machines run the Java virtual machine version 1.4. The
local area networks are 100 Mb/s Ethernets. The long-haul link
was simulated using a layer that introduced a random delay with
200 ms average (this value was obtained by measuring round-trip
delays from nodes in our lab to different machines in the USA).
All nodes were subject to a periodic load. Nodes 1 and 3 have a
inter-message transmission time of 100ms and nodes 2 and 4 have
a inter-message transmission time of 250ms.

With this configuration, we have measured the performance of
three different protocol configurations, as illustrated in Figure 6: a)
a single sequencer (as in pure sequencer-based approaches); b) all
processes are sequencers (as in pure symmetric approaches); c) the
hybrid configuration, with a sequencer in each LAN. All the tests
were made in runs where the network conditions were stable and
no crashes or failure suspicions occurred. An implementation of the
original non-uniform hybrid algorithm, implemented using the same
framework, was used as a comparative term. Three values have been
measured: the latency of optimistic delivery (UTO-opt-deliver), the
latency of the definitive delivery (UTO-deliver) and the latency of
the original hybrid algorithm (TO-deliver).

Table 4 shows the average latency of each primitive. We have
measured the time elapsed between the transmission of a message
and its delivery at the sending node. The values presented are the
average of 3 runs where every node transmits 5 consecutive batches
of 500 messages. The table presents the results for the values mea-
sured in a particular node (p3). Note than, in this topology, a single

20

TO UTO-opt UTO

One-sequencer 475.0 479.0 652.7
Symmetric 328.0 328.0 484.3
Hybrid 303.0 303.0 496.7

Table 4: Performance Results: p3 (ms)

communication step across the long-haul link takes 200ms.
In the configuration with a single sequencer, the analytical ex-

pected latency for node 3 is at least two times the network delay
(that is, at least 400ms, since the sequencer is in the remote LAN).
The higher measured value (475ms) is due to the fact that, in the
prototype, tickets are not sent immediately but piggybacked in the
next transmitted message. The difference among the original non-
uniform implementation and the optimistic delivery of the indul-
gent implementation is due to the overhead introduced by the need
to exchange acknowledgements to ensure the uniformity of delivery.
The implementation also piggybacks the acknowledgements required
to achieve uniformity in the normal data traffic. This delays the
uniform delivery, which requires 652.7ms, but reduces considerably
the message overhead of the algorithm. It should be noted that a
consensus-based algorithm would require at least three communica-
tion steps (see Table 3). A similar analysis can be applied for the
pure symmetric approach. The original non-uniform algorithm has
a latency of 328ms which matches the analytical expected value of
(1+δ) communication steps. In this case, the overhead of the indul-
gent algorithm is not noticeable and, naturally, the uniform delivery
exhibits an additional delay that roughly matches the required ad-
ditional communication step. It is interesting to notice that, in the
symmetric approach, the performance is limited by the larger inter-
arrival time of processes 2 and 4. For this load configuration, the
best performance is achieved by the hybrid approach, assigning a
sequencer to each of the processes with smaller inter-arrival time.

6.2.3 Experience II

In order to test the algorithm in more realistic conditions a exper-
iment was made using two local networks, one in Lisbon, Portugal
and the other Valencia, Spain. Each node was a PC equipped with
Pentium 3 processors with 512MB of RAM, in Portugal, and 256MB
in Spain. All nodes were running Linux and the Java Virtual Ma-
chine 1.4. The local networks were 100 Mb/s Ethernets and the
measured one-way delays in the long-haul link was 53.2ms.

21

As presented in the previous experience three different protocol
configurations were tested: a) Single sequencer; b) All processes
are sequencers; c) Hybrid configuration, with one sequencer in each
LAN. The inter-message transmission times were 25ms for node p1
and node p3 and 100ms for node p2 and node p4. All the tests
were made when the network conditions were stable and no crashes
and failure suspicions occurred. Three values have been measured:
the latency of optimistic delivery (UTO-opt-deliver), the latency of
the definitive delivery (UTO-deliver) and the latency of the original
hybrid algorithm (TO-deliver).

TO UTO-opt UTO

p1 132.2 130.4 179.8
p2 140.5 141.6 192.7
p3 147.1 148.4 181.9
p4 145.6 148.8 190.9

Table 5: Symmetric - Performance Results (ms)

TO UTO-opt UTO

p1 3.5 3.9 147.5
p2 23.3 27.0 213.5
p3 126.1 126.0 219.8
p4 118.7 119.8 227.4

Table 6: One Sequencer - Performance Results (ms)

TO UTO-opt UTO

p1 73.1 76.4 124.1
p2 76.2 76.7 149.3
p3 70.3 70.3 123.3
p4 75.3 88.2 169.8

Table 7: Hybrid - Performance Results (ms)

As in the other experience 3 runs of 5 consecutive batches of 500
messages were measured and the average latency of each primitive in
three different scenarios are presented in table5, table6 and table7.

In the configuration with a single sequencer and using the op-
timistic delivery or the original total hybrid the latency of the se-
quencer node(p1) and the node in the same local network(p2) are
very small due to the low latency in the local networks and the im-
mediate self-delivery in the sequencer node. In node p3 and node p4

22

the delay is caused by the two communication steps over a long-haul
link (aprox. 100 ms) and the inter-message rate between messages
in the sequencer node (25 ms). Using the uniform total order prim-
itive, an extra communication step is needed to assure uniformity,
furthermore the use of piggybacking delays the transmission of mes-
sages.

In the symmetric configuration using the optimistic delivery or
the original total hybrid protocol the latency depend on the largest
message transmission cost(50ms) and the largest inter-message trans-
mission rate(100ms) Using a uniform total order protocol the cost
depends on the sending of the message and the confirmation of a
majority of nodes, so the analytical expected latency was 200ms,
100ms due to the cost of message transmission and 100ms due to
the inter-message transmission time.

In the hybrid scenario the optimistic delivery and the original
total hybrid protocol depend on the communication cost and the
inter-message transmission rate of the slowest sequencer node. So
in this case the maximum cost should be 75ms ; as expected, lower
than the average of the other scenarios. For the uniform total order
primitive the cost is lower than the other scenarios mainly because
the latency between the closest sequencer is also smaller. The ana-
lytical expected latency is 200ms for the sequencer nodes and 225ms
for the other nodes.

6.2.4 Summary of evaluation

The collected experimental data confirms the analytical measures.
The data also highlights a common tradeoff in this sort of protocols,
where a smaller message overhead may be achieved at the cost of
an increase of latency: the prototype exhibits a higher latency than
the analytical value in all phases where the strategy of piggybacking
control messages on data traffic is used in order to reduce the number
of messages exchanged by the protocol.

7 Related Work

Optimistic approaches have lately been applied in communication
algorithms, specially in total order algorithms. In [23] an atomic
broadcast algorithm that extends the Chandra-Toueg algorithm [5]
is presented. This algorithm assumes that the physical and data-
link layers of local area networks totally order messages in most runs,
and that this order can be used as input for a optimistic consensus.
The optimistic consensus is an adaptation of the consensus problem

23

that can reach two results, optimistic and conservative. These con-
clusions may differ, but the conservative is always the final decision.
The optimistic decision is reached if all processes use the same order
as input to the optimistic consensus. This algorithm is of limited
use in large-scale networks.

A replicated system that uses optimistic algorithms as been pre-
sented in [10]. This system uses an optimistic version of a non-
uniform sequencer based total order algorithm. The algorithm is
optimized for crash-free runs and uses a consensus algorithm when
failures are detected. Requests are made by sending a total order
message to the group of servers. This total order message is not uni-
form and the order is not guaranteed in the presence of crashes, but
if a majority of processes delivers the message with a certain order
then this order can never be changed. When the request is processed
by a server a reply is sent to the client, but the response can only be
delivered after a majority of replies have been received. This total
order algorithm is tailored to this particular form of client-server
interaction and difficult to adapt to more general problems.

The Paxos algorithm [21] is a total order algorithm that does not
depend on reliable failure detection and that incorporates a lease
mechanism. Such mechanism can be seen as a way to optimistically
configure the system such that a single process acts as a sequencer
for a given batch of messages.

As noted, even if a perfect failure detector is used, uniform de-
livery is more expensive than non-uniform total order. In fact, de-
pending on the strategy used, some algorithms may even offer worse
latency than the best case depicted in Table 3. For instance, in [2]
total order is implemented using a token that circulates around the
logical ring with the current total order sequence number. In or-
der to guarantee uniformity the token must circulate twice for each
message (thus, 2|Ω| communication steps may be needed to order a
message).

8 Conclusions

In this paper we have presented an new integrated uniform total or-
der broadcast algorithm that is able to offer optimistic delivery with
an efficiency comparable with the best non-uniform algorithms. The
optimistic delivery is later confirmed by an uniform delivery indi-
cation which is as efficient as any consensus-based total order al-
gorithm. The algorithm has the interesting feature of using local
clocks to optimize the system configuration in steady-state. How-

24

ever, the accuracy of these clocks is not mandatory to ensure the
safety of the algorithm outcome. When nodes are suspected, a con-
sensus is executed to order pending messages and reconfigure the
system. Therefore, the algorithm combines the best of both worlds:
i) it offers an early estimate of the definitive order with the efficiency
of the algorithms that require the use of a perfect failure detection;
and ii) the safety of algorithms that make no other assumption than
the availability of an asynchronous system augmented with an un-
reliable failure detector. The algorithm is being used to support
the replication of a transactional persistent object repository in ge-
ographically large-scale systems [27].

Acknowledgements

The authors are grateful to A. Casimiro, J. Martins and J. Pereira
for their comments to earlier versions of this paper.

References

[1] Special issue on group communication. Communications of the ACM, 39(4):50–
97, 1996.

[2] Y. Amir, L.E. Moser, P.M. Melliar-Smith, D.A. Agarwal, and P.Ciarfella. The
Totem Single-Ring Ordering and Membership Protocol. ACM Trans. on Com-
puter Systems, 13(4):311–342, November 1995.

[3] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and Recovery
in Distributed Database Systems. Addison-Welsey, 1987.

[4] K. Birman and R. van Renesse, editors. Reliable Distributed Computing with the
Isis Toolkit. IEEE Computer Society Press, 1993.

[5] T.D. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 34(1):225–267, 1996.

[6] J. Chang and N. Maxemchuck. Reliable broadcast protocols. ACM, Transactions
on Computer Systems, 2(3), August 1984.

[7] D. Dolev, S. Kramer, and D. Malki. Early delivery totally ordered multicast in
asynchronous environments. In Digest of Papers, The 23th International Sympo-
sium on Fault-Tolerant Computing, pages 544–553, Toulouse, France, June 1993.

[8] C. Dwork, N. Lynch, and L. Stockmeyer. Consensus in the presence of partial
synchrony. Journal of the ACM, 35(2):288–323, April 1988.

[9] P. Ezhilchelvan, R. Macedo, and S. Shrivastava. Newtop: A Fault-Tolerant Group
Communication Protocol. In IEEE 15th Intl. Conf. Distributed Computing Sys-
tems, pages 296–306, May 1995.

[10] P. Felber and A. Schiper. Optimistic active replication. In Proc. of 21st Inter-
national Conference on Distributed Computing Systems (ICDCS’2001), Phoenix,
Arizona, USA, April 2001. IEEE Computer Society.

[11] C. Fetzer and F. Cristian. On the possibility of consensus in asynchronous sys-
tems. Pacific Rim Int. Conference on Fault-Tolerant Systems, December 1995.

25

[12] M. Fischer, N. Lynch, and M. Paterson. Impossibility of Distributed Consensus
with One Faulty Process. Journal of the ACM, 32:374–382, April 1985.

[13] U. Fritzke Jr., P. Ingels, A. Moustefaoui, and M. Raynal. Fault-tolerant total order
multicast to asynchronous groups. In Proc. 17th IEEE Symposium on Reliable
Distributed Systems, pages 228–234, West Lafayette (IN), October 1998.

[14] R. Guerraoui. Indulgent algorithms. In Proc. of the ACM Symposium on Princi-
ples of Distributed Computing (PODC’00), July 2000.

[15] R. Guerraoui and A. Schiper. Software-based replication for fault tolerance. IEEE
Computer, 30(4):68–74, 1997.

[16] V. Hadzilacos and S. Toueg. Fault-Tolerant Broadcasts and Related Problems.
In Sape Mullender, editor, Distributed Systems, pages 97–145. ACM Press, 1993.

[17] M. Kaashoek and A. Tanenbaum. Group communication in the Amoeba dis-
tributed operating system. In Proc. of the 11th International Conference on
Distributed Computing Systems, pages 222–230, 1991.

[18] I. Keidar and S. Rajsbaum. On the cost of fault-tolerant consensus when there are
no faults - a tutorial. Technical report, MIT Laboratory for Computer Science,
2001.

[19] R. Ladin, B. Liskov, L. Shrira, and S. Ghemawat. Lazy replication: Exploiting the
semantics of distributed services. In Proc. of the Ninth Annual ACM Symposium
of Principles of Distributed Computing, pages 43–57, 1990.

[20] L. Lamport. Time, clocks, and the ordering of events in a distributed system. In
Communications of the ACM. 1978.

[21] L. Lamport. The part-time parliament. Technical Report 49, Digital Systems
Research Center, Palo Alto, California, May 1989. A revised version of the paper
was published in ACM Transactions on Computer Systems, Vol. 16, Number 2.

[22] H. Miranda, A. Pinto, and L. Rodrigues. Appia, a flexible protocol kernel support-
ing multiple coordinated channels. In Proc. of the 21st International Conference
on Distributed Computing Systems, pages 707–710, Phoenix, Arizona, April 2001.

[23] F. Pedone and A. Schiper. Optimistic atomic broadcast. In Proc. of the 12th
International Symposium on Distributed Computing (DISC’98), 1998.

[24] L. Peterson, N. Buchholz, and R. Schlichting. Preserving and using context infor-
mation in interprocess communication. ACM Transactions on Computer Systems,
7(3):217–146, August 1989.

[25] L. Rodrigues, H. Fonseca, and P. Veŕıssimo. Totally ordered multicast in large-
scale systems. In Proc. of the 16th International Conference on Distributed Com-
puting Systems, pages 503–510, Hong Kong, May 1996.

[26] L. Rodrigues, R. Guerraoui, and A. Schiper. Scalable atomic multicast. In Proc.
of the Seventh International Conference on Computer Communications and Net-
works (IC3N’98), pages 840–847, Lafayette, Louisiana, USA, October 1998.

[27] L. Rodrigues, H. Miranda, R. Almeida, J. Martins, and P. Vicente. Strong repli-
cation in the globdata middleware. In Proc. of the Workshop on Dependable
Middleware-Based Systems (Part of Dependable Systems and Networks Confer-
ence, DSN 2002), Washington D.C., USA, June 2002.

[28] L. Rodrigues and M. Raynal. Atomic broadcast in asynchronous crash-recovery
distributed systems. In Proc.of the 20th IEEE International Conference on Dis-
tributed Computing Systems (ICDCS’20), pages 288–295, Taipe, Taiwan, April
2000.

26

A Correctness Argument

We just prove the properties for the uniform total order delivery.
The difficulty of our algorithm is to ensure that the order decided
as a result of a consensus (to install a new configuration) never
conflicts with the order decided during the stable-period.

Lemma 1. If a message is inserted in u-received at a given process
p ∈ Ω, then m is eventually UTO-delivered at every correct process.

Proof. To insert m in u-received, a process p ∈ Ω must have
received a retransmission of m from a majority of processes. There-
fore, there is at least one correct process that has the message. This
process will send the message to every correct process. This will
cause the message to be uniformly received at every correct process.
If the sequencer of the message is correct and the configuration does
not change, a ticket will be issued and positively acknowledged by
all correct processes. If the sequencer of the message fails, it will be
eventually suspected and this will trigger a reconfiguration. Assume
that at some point, after one or more reconfigurations, message m
has been inserted in u-received of all correct processes but not yet
u-delivered. This will trigger a new reconfiguration (see Figure 4).
Since any process q that proposes a new reconfiguration must first
collect the u-received set from a majority of processes, m will be
collected by q. In the state information associated with the instal-
lation of the new configuration, m will be necessarily ordered (if a
ticket is also collected, the ticket is used, otherwise m is added to the
uset). By definition of consensus, all correct processes will install
that configuration. Therefore, all correct processes UTO-deliver m
(as part of the state installation procedure). �

Proposition UTO1. The algorithm satisfies the Uniform Agree-
ment property (UTO1).

Proof. Consider UTO-broadcast(m) and a process p ∈ Ω that
has UTO-delivered m. There are two cases that can cause m to be
UTO-delivered:

1. m was delivered as part of the agreed state of a reconfiguration
process, or;

2. at p, m was uniformly received and ticketm has been positively
acknowledged by a majority of processes.

In the first case, by definition of consensus, all correct processes
will also install the same state (as a result of the corresponding

i

consensus execution), and the message is delivered by all these pro-
cesses. In the second case, the proof derives directly from Lemma 1.
�

Proposition UTO2. The algorithm satisfies the Termination prop-
erty (UTO2).

Proof. Consider the execution of UTO-broadcast(m) by a correct
process p. By the property of reliable broadcast, every correct pro-
cess R-delivers(m). Thus every correct process will retransmit m
and m becomes u-received at every correct process. The rest of the
proof derives from Lemma 1. �

Lemma 2. Let m be a message that is UTO-broadcast. If a process
uses a ticketm to order a message, in a given configuration, every
correct process orders the message m using that ticket in the same
configuration.

Proof. In order to be UTO-delivered at p, message m must have
been added to set u-received at p and ticketm must have been pos-
itively acknowledged by a majority of processes. This means that
ticketm must have been added to r-ticket at a majority of processes.

If there is no reconfiguration, the sequencer for that message will
ensure every correct process will receive and acknowledge positively
the ticketm. Therefore, every correct process will eventually UTO-
deliver m using ticketm.

If there is a reconfiguration, the tickets to be used before a new
configuration is installed, as part of the state installation procedure,
are the union of the r-ticket sets collected from a majority of pro-
cesses. At least one process q that has acknowledged ticketm to p
must belong to any such majority. Therefore, ticketm belongs to
the state proposed by any process to the next configuration. By
definition of consensus, ticketm will be processed by every correct
process before the new configuration is installed. �

Lemma 3. Let m be a message that is UTO-broadcast. If a process
p ∈ Ω uses the deterministic order of a uset to deliver a message,
then no process orders this message using ticketm.

Proof. Let q be a process that proposes a configuration where m
belongs to the new-state.uset. For m to be added to new-state.uset,
q did not receive ticketm in any of MyState messages. On the
other hand, q has waited for at least a majority of MyState mes-
sages before proceeding. Therefore, there is at least a majority of
processes that did not include ticketm in their r-ticket sets before

ii

they blocked their state. The processes in this majority will only
unblock their state when they receive a new configuration and, at
that point, refuse further tickets from the previous configuration.
This means that no process was or will be able to collect a majority
of AckTicket messages required to use ticketm to order m. �

Proposition UTO3. The algorithm satisfies the Uniform Total
Order property UTO3.

Proof. Messages are either:

• i) UTO-delivered in the order defined by their sequence tickets,
or;

• ii) UTO-delivered in deterministic order from the new-state.uset
of a consensus execution.

By Lemma 2, if a message m is delivered by a process p ∈ Ω
according to ticketm, then every process q ∈ Ω delivers m according
to ticketm. If a process p ∈ Ω orders m in deterministic order from
the new-state.uset of a consensus execution, by definition of consen-
sus, every correct process will agree on the same new-state.uset and
deliver the message in the same order. Additionally, by Lemma 3,
if a process uses method ii), no process ever uses method i). �

Proposition UTO4. The algorithm satisfies the Integrity property
UTO4.

Proof. The proof derives trivially from the integrity property of
the regular reliable broadcast and from the fact that messages that
have been UTO-delivered are registered in the u-delivered variable
and not delivered again. �

iii

