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Abstract

The application of dependability concepts and approaches to the design of secure distributed systems is raising

a considerable amount of interest in both communities under the designation ofintrusion tolerance. However,

practical intrusion-tolerant replicated systems based on the state machine approach can handle at mostf Byzan-

tine components out of a total ofn = 3f + 1, which is the maximum resilience in asynchronous systems.

This paper extends the normal asynchronous system with a special distributed oracle called TTCB. Using this

extended system we manage to implement an intrusion-tolerant service, based on the state machine approach

(SMA), with2f + 1 replicas only. Albeit a few other papers in the literature present intrusion-tolerant services

based on the SMA, this is the first time the number of replicas is reduced from3f +1 to 2f +1. Another interesting

characteristic of the described service is a low time complexity.

1 Introduction

The application of dependability concepts and approaches to the design of secure distributed systems is raising

a considerable amount of interest in both communities under the designation ofintrusion tolerance[29, 37]. The

idea is that security concepts like vulnerability, attack and intrusion are contained in the dependability notion of

fault, therefore it is possible to build secure systems based, to some extent, on dependability mechanisms. This

idea has been used to design several protocols and systems in recent years [3, 6, 9, 14, 17, 23, 26, 27, 30, 31, 38].

The state machine approachprovides a general solution for the implementation of distributed fault-tolerant

services [34]. The idea is to implement a service using a set of server replicas in such a way that the overall

service can continue to behave as specified even if a number of servers is faulty. If the service is designed to

tolerate arbitrary faults, which include attacks and intrusions, then the service can be said to beintrusion-tolerant,

∗This work was partially supported by the FCT through project POSI/1999/CHS/33996 (DEFEATS), project POSI/CHS/39815/2001

(COPE) and the Large-Scale Informatic Systems Laboratory (LASIGE).



or Byzantine-resilient, since these faults are often called Byzantine in the literature [21]1.

This paper presents a solution for the implementation ofstate machine replication services (SMR)in practical

distributed systems. The wordpractical is used in this context to signify open distributed systems with networks

that provide weak quality of service guarantees, like the Internet, Ethernet LANs and other common network

technologies. This kind of systems is often modelled using theasynchronous model, which makes no assumptions

about processing times, communication delays or clock drift rates. The asynchronous model is extensively used

mainly because it is hard to identify realistic bounds for these delays in practical systems. Moreover, for intrusion-

tolerant systems, there is an additional motivation: protocols based on time assumptions frequently have subtle

vulnerabilities, which can be exploited in order to cause their failure [4, 2]. We are aware of four asynchronous

intrusion-tolerant SMR services in the literature: Rampart [31], BFT [4], SINTRA [3] and FS-NewTOP [27].

The resilienceof a protocol can be defined as the maximum number of faults in the presence of which the

protocol still behaves according to its specification. Notwithstanding the advantages of the asynchronous model

discussed above, the optimal resilience for an SMR service based on this model isbn−1
3 c, since the problem

essentially boils down to atomic multicast [31, 4], which is equivalent to consensus [16]. A proof of the maximum

resilience for asynchronous Byzantine consensus can be found in [1]. This means that the service needsn > 3f

replicas to toleratef faults: four replicas to tolerate one fault, seven to tolerate two faults, etc. Each additional fault

the system has to tolerate has a significative cost since it requires three additional machines. Moreover, the whole

approach is based on the assumption that replicas fail independently, but this is true only if they do not have the

same vulnerabilities [4]. This involves using different replicas, i.e., different code running in different operating

systems. To summarize, each additional replica has two costs: (1) the cost of its hardware and software; and (2)

the cost of its design, since it has to be different from the other replicas. Notice that the number of faults that can

be tolerated can be improved either by detecting and removing faulty replicas [34], or by proactively recovering

the state of the replicas [5]. However, in a window of time between detection and removal or between recoveries,

the resilience remainsbn−1
3 c.

This paper presents a solution that reduces the cost of intrusion-tolerant SMR services by decreasing the number

of replicas required to tolerate a number of faults/intrusions. More precisely, the presented SMR service has a

resilience ofbn−1
2 c, i.e., it requires only a majority of correct replicas (n > 2f servers to toleratef faults). This

means a reduction from 25% to 33% on the number of machines to tolerate the same number of faults: three

replicas to tolerate one fault, five to tolerate two faults, seven to tolerate three faults, etc. Detection and removal,

or proactive recovery of replicas, can also be used to improve the maximum number of faulty replicas.

How is it possible to improve the resilience fromf = bn−1
3 c to f = bn−1

2 c? The solution has something in

common with the approach several protocols in the literature use to circumvent the Fischer, Lynch and Paterson

(FLP) impossibility result [15]. FLP says that no deterministic protocol can solve the problem of consensus in

an asynchronous system if a single process can crash. One of the most common approaches to circumvent this

1Throughout the paper we also use the expressionmalicious faultsto emphasize that the cause of the fault is an intelligent attacker that

has the purpose of violating some property of the system.



result is to extend the asynchronous system with some kind of oracle, like an unreliable failure detector [7, 22, 18]

or an ordering oracle [28]. These oracles allow the protocols to circumvent FLP because they encompass some

degree of synchrony, e.g., enough synchrony to detect when a process crashed. The solution in this paper also

relies on an oracle, but this particular oracle provides two advantages, instead of a single one: circumventing FLP

and increasing the resilience.

In the past few years, we have been exploring a type of oracles calledwormholes[35], to deal with the un-

certainty (or lack of coverage) of assumptions as time bounds [36], or intruder resistance [11, 9]. This paper

extends the asynchronous system with a wormhole oracle calledTrusted Timely Computing Base (TTCB), already

introduced elsewhere [11]. This oracle provides a novel ordering service that allow us to implement an atomic

multicast protocol with a resilience ofbn−1
2 c. This service is the main building block of our SMR solution.

The paper provides the following main contributions:

• it presents an SMR service implemented mostly on a Byzantine asynchronous systems, but that uses the

services provided by a wormhole oracle with stronger properties;

• the SMR service has a resilience ofbn−1
2 c instead of the optimal resilience in asynchronous systems of

bn−1
3 c;

• the SMR service circumvents the FLP impossibility result without any synchrony assumptions on the asyn-

chronous part of the system; all synchrony necessary to circumvent FLP is in the wormhole oracle;

• the service arguably exhibits good performance since it has a low time complexity.

The paper is organized as follows. Section 2 presents the system model and the TTCB wormhole. Section 3

defines the main TTCB service used in the paper, the Trusted Multicast Ordering Service. Section 4 defines the

state machine approach and describes the solution we propose. Section 5 discusses the performance of the service.

Section 6 reviews some related work and Section 7 concludes the paper. The appendix presents a correctness proof

of the algorithm.

2 System Model and the TTCB

The system is essentially composed by a set of hosts interconnected by a network, called payload network. This

environment is asynchronous, i.e., there are no assumptions about processing delays or message delivery delays.

The hosts have clocks but there are no assumptions, either about local clock drift rates, or about the reliability of

the readings they provide.

The asynchronous environment is extended with a TTCB wormhole, a distributed component with local parts

in some of the hosts (local TTCBs) and its own communication channel (TTCB control channel). The system is

depicted in Figure 1. Besides being distributed, the TTCB has three important features:

• it is assumed to be secure, i.e., resistant to any possible attacks; it can only fail by crashing;
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Figure 1. Architecture of the system.

• it is real-time, capable of executing certain operations with a bounded delay;

• it provides a limited set of services, which cannot be possibly affected by malicious faults, since the TTCB

is secure.

The TTCB provides a very simple and limited set of services, so that the security of its implementation can

be verified. This paper uses only two of these services. The first is the Local Authentication Service, which

establishes a trusted path between the server and its local TTCB, i.e., a channel that guarantees the integrity of

their communication [11]. The second is the Trusted Multicast Ordering service (TMO), which is the core of our

solution and will be described in Section 3.

In relation to the real-time property mentioned above, it is important to make clear that the single consequence

of this property for this paper is that the Trusted Multicast Ordering service is not bound by the FLP impossibility

result. Otherwise there is no need for the TTCB to be synchronous in the context of this paper. Moreover, the TMO

can be implemented in a non-real-time wormhole if another solution is used to circumvent FLP, e.g., randomization

or failure detectors.

The approach presented in the paper makes sense only if it is possible to implement the TTCB. There are several

possible solutions, which were presented in another paper [11]. Moreover, an implementation based on COTS



(Commercial Off-The-Shelf) components is currently available for free noncommercial use2. Let us describe this

implementation briefly for the reader to have an idea on how it works.

The local TTCBs have to be secure and real-time. The current TTCB implementation relies on an real-time

engineering of Linux called RTAI [8] and is protected by hardening the kernel, since its code is executed inside

the kernel. Another solution to protect the local TTCB would be to execute it inside a hardware module inserted

in the computer, like a PC/104 board. In relation to the control channel, the current TTCB implementation relies

on a Fast-Ethernet network, which is completely independent of the payload network (each host has two network

adapters). The control-channel can be assumed to be secure for an inside premises system. Wide-area solutions

could be based on virtual private networks over ISDN or Frame Relay. The real-time behavior is ensured by RTAI

and by an admission control mechanisms that forces the control channel traffic to be limited and the communication

delay bounded. This is a very brief idea and the reader is referred to [11] for a longer discussion on all these issues.

The SMR service is executed by a set ofserversS = {s1, s2, ...sn}. The service can be invoked by a set of

clientsC = {c1, c2, ...cm}. The servers and clients are connected by a fully connected network, although their

communication can be delayed arbitrarily, e.g., in consequence of an attack. Every host with a server needs a

local TTCB, but not the hosts with clients (see Figure 1). We use the wordprocessesto denote both servers and

clients. Each serversi is uniquely identified byeidi, a number obtained by calling the TTCB Local Authentication

Service [11].

A process iscorrect if it follows the protocol it is supposed to execute. We assume that any number of clients

can fail, but the number of servers that can fail is limited tof = bn−1
2 c. The failures can be Byzantine or arbitrary,

meaning that the processes can simply stop, omit messages, send incorrect messages, send several messages with

the same identifier, etc. Faulty processes can pursue their goal of breaking the properties of the protocol alone

or in collusion with other corrupt processes. A process is also considered to be faulty if one of the secret keys

discussed below is disclosed, or if it is not able to communicate with the local TTCB in its host for some reason

(e.g., a local denial of service attack).

The communication among clients and servers is done exclusively through the payload network. The communi-

cation among servers is also, to most extent, done through the payload network. We assume that each client-server

pair{ci, sj} and each pair of servers{si, sj} is connected by areliable channelwith two properties: if the sender

and the recipient of a message are both correct then (1) the message is eventually received and (2) the message

is not modified in the channel. In practice, these properties have to be obtained with retransmissions and using

cryptography. Message Authentication Codes (MACs) are cryptographic checksums that serve our purpose, and

only use symmetric cryptography [25]. The processes have to share symmetric keys in order to use MACs. In the

paper we assume these keys are distributed before the protocol is executed. In practice, this can be solved using

key distribution protocols available in the literature [25]. This issue is out of the scope of the present paper.

Wrapping up, the system is essentially “asynchronous Byzantine”: there are no bounds on the processing and

communication delays; and the processes can fail arbitrarily. This system is extended with the TTCB wormhole,

2The TTCB implementation is available for download at http://www.navigators.di.fc.ul.pt/software/ttcb/



which is synchronous and secure, therefore it provides some “well-behaved” services that the processes can use to

perform some steps of their protocols.

3 Trusted Multicast Ordering Service

The SMR service proposed in the paper uses a new TTCB service calledTrusted Multicast Ordering Service

(TMO). The TMO service is implemented inside the TTCB, therefore its execution cannot be affected by malicious

faults.

The TMO service was designed with the purpose of assisting the execution of an intrusion-tolerant atomic

multicast (or total-order multicast) protocol. The service doesnot implement the atomic multicast protocol, but

simply assigns an order number to the messages. The messages, however, are sent through the payload network,

not through the TTCB. This is important since the TTCB has limited processing and communication capacities.

Let us introduce briefly how an atomic multicast based on the TMO service can be implemented (the full protocol

is introduced later in Section 4.2.1). When a processp wants to send a message to a set of recipients, it makes two

operations: (1) it gives the TMO a cryptographic hash of the message and (2) it multicasts the message through

the payload network reliable channels. Then, when another processq receives the message, it also gives the TMO

a hash of the message it received. When a certain number of processes gave the hash of the message, the TMO

service assigns an order number to the message and gives that number to the processes. The processes deliver the

messages in that order. Figure 2 illustrates the procedure.

The cryptographic hash mentioned above has to be obtained using ahash functionh defined by the following

properties [25]:HF1 Compression:h maps an inputx of arbitrary finite length, to an outputh(x) of fixed length.

HF2 One way:for all pre-specified outputs, it is computationally infeasible to find an input that hashes to that

output.HF3 Weak collision resistance:it is computationally infeasible to find any second input that has the same

output as a specified input3. HF4 Strong collision resistance:it is computationally infeasible to find two different

inputs that hash to the same output.

The interface of the TMO service contains three functions: TTCBTMO send, TTCBTMO receive and TTCB

TMO decide:

error, tag ← TTCB TMO send(eid, elist, threshold, msgid, msghash)

error, tag ← TTCB TMO receive(eid, elist, threshold, msgid, msghash, sendereid)

error, ordern, hash, propmask ← TTCB TMO decide(tag)

A process is said to startan execution of the TMO service, or simply to starta TMO, when it calls TTCBTMO

send. The parameters of this function have the following meanings. The first,eid, is the identifier of the sender

3A guessing attack is expected to break the property HF3 in2m hashing operations, wherem is the number of bits of the hash. A

birthday attack can be expected to break property HF4 in2m/2 hashing operations. In a practical setting, a hashing function with 128 bits

like MD5, or 160 bits like SHA-1, can be considered secure enough for our protocol. Nevertheless, we consider HF2, HF3 and HF4 to be

assumptions.
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Figure 2. Atomic multicast using the TTCB TMO service.

before the TTCB (see Section 2).elist is an array with the identifiers of all processes involved in the set of

atomic multicast executions to be ordered.thresholdis the number of processes inelist that must give the TTCB

the hash of the message (msghash) for an order number to be assigned to the message. This parameter will be

further discussed in Section 4.2.1.msgid is a message number that has to be unique for the sender.msghashis

a cryptographic hash of the message. The function returns atag, which identifies the TMO execution when the

process later calls TTCBTMO decide, and an error code.

When a process receives a message it has to call TTCBTMO receive. The parameters are the same as for

TTCB TMO send, except for the eid of the sender,sendereid. How does the TTCB knows that a call to

TTCB TMO receive corresponds to a certain TMO, which was started by a call to TTCBTMO send? It knows by

looking at a set of parameters that together uniquely identify a TMO service execution:(elist, threshold, msgid,

sendereid). The reader should notice that this last sentence has an important implication: if an attacker attempts to

break the behavior of the TMO by calling TTCBTMO receive with any of these parameters modified, the TTCB

will simply consider it to be a call to a different TMO, so the attack would be ineffective.

TTCB TMO receive returns atag that is used by TTCBTMO decide to identify the TMO. When TTCBTMO

receive is called and the local TTCB has no data about the TMO, a TMOUNKNOWN error is returned. If there

is data about the TMO butmsghashis different from the hash provided by the sender, a WRONGHASH error is

returned. If there is a TMOUNKNOWN error, notag is returned; on the contrary, if there is a WRONGHASH

error, thetag is returned.

To get the result of the TMO – the order number of the message – a process calls TTCBTMO decide. If

thresholdprocesses did not propose the hash yet, a THRESHOLDNOT REACHED error is returned. If there is

no error, the function returns the order numberorder n, the hash of the messagehash, and a mask with one bit per

process, indicating the processes that proposed the correct hash,prop mask. For each TMO execution, the order

number returned to all processes must be the same, since the TTCB is assumed to be secure and reliable.

The purpose of the TMO service is to assign consecutive numbers (1, 2, 3, . . . ) to a set of TMO executions. At

this stage the reader might ask: does the TTCB ordersall TMO executions with a single sequence of numbers? Or

can there be several sets of TMO executions being ordered simultaneously by the TTCB? The answer is related



to the purpose of the TMO service: to assist the execution of an atomic multicast protocol; there can be several

atomic multicast channels in the system, therefore the TTCB has also to order several sets of TMO executions

simultaneously. So, what TMO executions does the TTCB order? The TTCB orders independently each set of

TMO executions that belong to the same sequence, defined as follows:

Two TMO executions, identified respectively by (elisti, thresholdi, msgidi, sendereidi) and (elistj , thresholdj ,

msgidj , sendereidj), are said to belong to the samesequence of TMO executionsiff elisti = elistj .

TMO Service Implementation

A brief discussion of the implementation we envisage for the TMO service can give a sense of the semantics of

the service. The protocol that implements the service is executed by all local TTCBs, which communicate using

the TTCB control channel. The protocol can be simple because the TTCB is real-time, local TTCBs can only fail

by crashing (they are secure) and they have synchronized clocks. The protocol is implemented on the top of the

(crash-tolerant) reliable broadcast protocol presented in [10].

The protocol is based on a fixed coordinator. When a process calls TTCBTMO send or TTCBTMO receive

in a local TTCB, the information about the call is broadcasted to all local TTCBs. When the coordinator gets

information aboutthresholdcalls for a TMO execution, it assigns the next order number to the TMO, defines the

maskprop maskwith the processes that proposed the correct hash, and broadcasts this information to all local

TTCBs. Then, when a process calls TTCBTMO decide the order number is returned. If the coordinator crashes,

another local TTCB takes over in a consistent manner, since it is aware of the (reliable) broadcasts made by the

coordinator.

4 State Machine Replication

A state machineis characterized by a set ofstate variables, which define the state of the machine, and a set

of commandsthat modify the state variables [34]. Commands have to be atomic in the sense that they cannot

interfere with other commands. Thestate machine approachconsists of replicating a state machine inn servers

si ∈ S. The set of serversS implements theservice. We assume that no more thanf = bn−1
2 c servers fail. All

servers follow the same history of states if four properties are satisfied:

• SM1 Initial state.All servers start in the same state.

• SM2 Agreement.All server execute the same commands.

• SM3 Total order.All servers execute the commands in the same order.

• SM4 Determinism.The same command executed in the same initial state generates the same final state.

The first property states that each state variable has the same initial value in all servers, something that is usually

simple to guarantee. The second and third properties demand that the servers agree in the commands to execute



and in their order. This can be guaranteed sending the commands to the servers using an atomic multicast protocol.

The fourth property is about the semantics of the commands at the application level, so in this paper we simply

make the assumption that the commands are deterministic.

The system works essentially the following way:

1. a client sends a command to one of the servers;

2. the server sends the command to all servers using an atomic multicast protocol;

3. each server executes the command and sends a reply to the client;

4. the client waits forf + 1 identical replies from different servers; the result in these replies is the result of

the issued command.

This is a simplified description of the process, so let us first delve into the details of the clients, and later we

describe the protocol executed by the servers.

4.1 Clients

A client ci issues a commandcmdto the service by sending a REQUEST message to one of the servers,sj . The

message is sent through the payload network, since the only communication that is performed inside the TTCB is

the one related to the execution of the TMO service. The format of the message is:

〈REQUEST, addr, num, cmd, vec〉

where REQUEST is the type of the message,addr is the address of the client (e.g., the IP address and the port),

num is the request number,cmd is the command to be executed (including its parameters) andveca vector of

MACs (see discussion below). The request number has to be unique, since the SMR service discards requests

from the same client with the same number. A solution to generate these numbers is to use a counter incremented

for each sent message.

If the client and the server are correct, the REQUEST message is eventually received bysj , due to the properties

of the reliable channels (Section 2). Then, if the server is correct it atomically multicasts the message to all servers

in S. Finally, all correct servers inS execute the command and send a reply to the client. The format of the reply

message is:

〈REPLY, addr, num, res〉

where REPLY is the type of the message,addr is the address of the server,numis the request number, andres is

the result of the executed command.

This scheme, albeit simple, is vulnerable to some attacks. A serversj can be malicious and forward the message

only to a subset ofS, or discard it altogether. To solve this problem, ifci does not receivef + 1 replies from



different servers afterTresend units of time read in its local clock, it assumes thatsj did not forward the request,

so it multicasts the message to anotherf servers. If this happens, it sends the message to a total off + 1 servers,

therefore at least one must be correct, and the request will eventually be atomically multicasted.

Ideally,Tresend should be greater than the maximum round trip delay between any client and a server. However,

the payload system is assumed to be asynchronous, i.e., there are no bounds on communication delays, so it is

not possible to define such an “ideal” value forTresend. Therefore, the value ofTresend involves a tradeoff: if

too high, the client can take long to have the command executed; if too low, the client can resend the command

without necessity. The value should be selected taking this tradeoff into account. If the command is resent without

need, the duplicates are discarded using a mechanism discussed in the next section.

A malicious server might attempt a second attack: to modify the message before multicasting it to the other

servers. To tolerate this attack, the request message takes a vector of MACsvec. This vector takes a MAC per

server, each obtained with the key shared between the client and that server. Therefore, each server can test the

integrity of the message by checking if its MAC is valid, and discard the message otherwise4.

In general, there will be restrictions on the commands that each client can execute. For instance, if the com-

mands are queries on a database, probably not all the clients are allowed to query all registers in the same way.

This involves implementing some kind of access control. There are several schemes available in the literature and

this issue is orthogonal to the problem we are addressing in the paper, so we do not propose any particular scheme.

4.2 Servers

The protocol executed by the servers is a thin layer on the top of an atomic multicast protocol. A server calls

atomicmcast(MREQ) to atomically multicast a request MREQ to all servers, and the atomic multicast protocol

layer callsatomicdlv(MREQ) to deliver MREQ to a server. The basic protocol executed by each server is in

Algorithm 1.

Algorithm 1 SMR protocol (for serversi).

1: When a request MREQ = 〈REQUEST, addr, num, cmd, vec〉 is received from a client: if there is no message

MREQ’ , with MREQ’.addr = MREQ.addrandMREQ’.num = MREQ.num, for whichatomicdlv(MREQ’) has

been previously called, then callatomicmcast(MREQ); otherwise discard the request.

2: When atomicdlv(MREQ) is called: if there is no messageMREQ’ , with MREQ’.addr = MREQ.addr and

MREQ’.num = MREQ.num, for whichatomicdlv(MREQ’) has been previously called, then executecmdand

send a message〈REPLY, addr, num, res〉 with the result of the command to the client.

The objective of checking in both steps ifatomicdlv(MREQ’) , with MREQ’.addr = MREQ.addrandMREQ’.num

= MREQ.num, has been previously called, is to guarantee that a request from a client is executed only once. Re-

call that a client, even if correct, can resend a request (Section 4.1). This condition is implemented using a set

4A malicious client might build a vector of MACs with a combination of valid and invalid MACs. This attack would be ineffective: if

enough correct servers received the message with the correct MAC the command would be executed, otherwise it would be discarded.



that stores the request number and the client address (MREQ’.num andMREQ’.addr) for all requests for which

atomicdlv(MREQ’) has already been called. If the server already received the request, the request is simply dis-

carded (step 1). If several requests with the same command are delivered by the atomic multicast protocol, only

the first one causes the execution of the command (step 2). When the command is executed, a reply is sent to the

client.

This basic protocol makes at least one atomic multicast for each client request. This cost may be excessive

depending on the rate of requests being issued. This cost can be greatly reduced using abatching mechanism, i.e.,

aggregating several requests in a single atomic multicast. The decision about batching requests is left for each

server to take; if it assesses that the rate of requests is greater than a given bound, it starts collecting a number of

requests before atomic multicasting them together in a single message. This mechanism introduces some delay in

the system, so the client’sTresend has to take this delay into account.

4.2.1 Atomic Multicast Protocol

The core of the algorithm executed by the servers is the atomic multicast protocol. This protocol guarantees

basically two properties: all correct servers deliver the same messages in the same order; if the sender is correct all

servers deliver the sent message. More formally, a server is said to (atomically) multicast a message M if it calls

atomicmcast(M), and it is said to (atomically) deliver a message M ifatomicdlv(M) is called in the server. The

protocol is defined in terms of four properties:

• AM1 Validity. If a correct server multicasts a message M with a vector with all MACs valid, then some

correct server eventually delivers M.

• AM2 Agreement.If a correct server delivers a message M, then all correct servers eventually deliver M.

• AM3 Integrity. For any identifierID, every correct server delivers at most one message M with identifier

ID, and ifsender(M)is correct then M was previously multicast bysender(M)5.

• AM4 Total order.If two correct servers deliver two messagesM1 andM2 then both servers deliver the two

messages in the same order.

This definition is similar to other definitions found in the literature, e.g., in [16]. However, property AM1 does

not guarantee that the message is delivered in case the message does not have a vector filled with valid MACs

(i.e., MACs properly obtained using the key shared between the client and each of the servers). Recall that the

objective of this vector of MACs if to prevent a malicious server from atomically multicasting a corrupted request

(Section 4.1). Albeit the objective is to deal with malicious servers, if the client itself is malicious and sends a

message with some invalid MACs, the message may not be delivered by the atomic multicast protocol.

5The predicatesender(M)gives the sender field of the header of M.



The protocol is shown in Algorithm 2. It has four parts: initialization (lines 1-8), processing of a call to

atomicmcast(M)(lines 9-13), processing of the reception of an ACAST message (line 14), and a task that pro-

cesses the messages stores in a number of buffers (lines 15-34).

The atomic multicast protocol uses a single type of messages:

〈ACAST, addr, mreq, msgid, sendereid, elist, threshold〉

whereACASTis the message type,addr the address of the sender server,mreq the request message (mreq =

MREQ), msgid a message number unique for the sender,sendereid the eid of the server that atomically multi-

casted the message,elist is the list ofeid’s of the processes involved in the protocol, andthresholdis the value

f + 1 = bn−1
2 c+ 1.

Lines 1-7 initialize several local variables, including three sets used to store messages in different stages of

processing:Wait tmo, Wait threshandWait deliv. Line 8 starts task T1.

Whenatomicmcast(MREQ) is called, the server callsverify macto test if in the vector of MACs, the MAC that

corresponds to itself (si) is valid (line 9). If it is not, the server simply dismisses the message. If the MAC is valid,

the request MREQ is enveloped in an ACAST message and multicasted to all servers except the sender (line 10).

Then, the server starts the execution of one instance of the TTCB TMO service by calling TTCBTMO send (line

11). Each call toatomicmcastcauses exactly one execution of the TMO service. After starting the TMO service,

the server puts the ACAST message in the setWait thresh, waiting for the TMO threshold to be achieved (line 13).

When an ACAST message is received by a server, it is simply stored inWait tmo(line 14).

Task T1is permanently checking if the messages in the three sets can be processed. The messages inWait tmo

are handled in lines 16-22. For each message inWait tmo, task T1 makes a call to TTCBTMO receive (lines 16-

18). If the MAC corresponding tosi is valid, the hash of message is given to TTCBTMO receive (lines 17-18).

Otherwise, a value out of the range of valid hashes is given,⊥ (lines 17-18). If the local TTCB is still now aware

of that TMO execution6, then TTCBTMO receive returns the error TMOUNKNOWN. If the TTCB is aware of

the TMO but the hash of the request is wrong, then an error WRONGHASH is returned. If the TTCB is aware

of the TMO and either the hash is correct, or the hash is⊥ (the MAC is invalid), the message is removed from

Wait tmoand inserted inWait thresh(lines 19-22). If the TTCB is aware of the TMO but the hash is wrong (but

not⊥), the message is discarded since it has been corrupted at some stage (lines 19-22).

The setWait threshcontains messages waiting for the number of calls to their TMO to reach the threshold.

These messages are handled in lines 23-30. The purpose of thethresholdis to guarantee that the servers only

decide to deliver a message if they eventually become able to deliver it. In other words, they can only decide to

deliver a message if at least one correct server has the message. This is guaranteed if at leastf + 1 servers prove

that they know the hash of the message, therefore the threshold is set tof + 1 (line 3). Notice that a server that

received a message with an invalid MAC does not contribute to the threshold, since it gives TTCBTMO receive

6The TMO is started in the local TTCB of the server that atomically multicasts the ACAST message, so the information about the TMO

takes a certain time to be broadcasted and received by the other local TTCBs. Therefore, it is not possible to guarantee that the TMO

information will be available in a local TTCB when the corresponding ACAST message is received.



Algorithm 2 Atomic multicast protocol (serversi).

INITIALIZATION :

1: elist←{all eid’s in E in canonical order} {for TMO service}
2: msg id next←1 {number of next ACAST to send}
3: threshold←bn−1

2 c+ 1 {threshold for TMO service(f + 1)}
4: ordernext←1 {number of next request to deliver}
5: Wait tmo←∅ {set w/recvd ACASTs while TMO unknown}
6: Wait thresh←∅ {set w/ACASTs while thresh. not reached}
7: Wait deliv←∅ {set with requests waiting for delivery}
8: activate task(T1)

WHEN ATOMIC MCAST (M REQ) IS CALLED DO

9: if verify mac(MREQ.vec[si]) then {if the MAC for si is valid, handle MREQ, otherwise discard it}
10: multicast MACAST = 〈ACAST, addri, MREQ, msgid next, myeid, elist, threshold〉 to servers S\ {si}
11: err, tag←TTCB TMO send(eidi, elist, threshold, msgid next, Hash(MREQ))

12: msg id next←msg id next + 1

13: Wait thresh←Wait thresh∪ {(MACAST ,tag)}

WHEN MACAST = 〈ACAST, ADDR, MREQ, MSG ID , SENDER EID, ELIST, THRESHOLD〉 IS RECEIVED DO

14: Wait tmo←Wait tmo∪ {MACAST }

TASK T1:

15: loop

16: for all MACAST ∈ Wait tmo do {messages waiting while TMO is unknown}
17: if verify mac(MREQ.vec[si]) then hash←Hash( MACAST .mreq) else hash←⊥
18: err, tag←TTCB TMO receive(eidi, MACAST .elist, MACAST .threshold, MACAST .msgid, hash, MACAST .

sendereid)

19: if err 6= TMO UNKNOWN then

20: Wait tmo←Wait tmo\ {MACAST }
21: if (err 6= WRONG HASH) or (hash =⊥) then

22: Wait thresh←Wait thresh∪ {(MACAST ,tag)}
23: for all (MACAST ,tag)∈Wait threshdo {messages waiting while threshold not reached}
24: err, n, hash, propmask←TTCB TMO decide(tag)

25: if err 6= THRESHOLDNOT REACHEDthen

26: Wait thresh←Wait thresh\ {(MACAST ,tag)}
27: if Hash(MACAST .mreq) = hashthen

28: Wait deliv←Wait deliv∪ {(MACAST .mreq,n)}
29: if MACAST .addr6= addri then {if not the sender}
30: multicast MACAST to {∀sj∈S : sj /∈prop mask}
31: while ∃(MREQ,n)∈Wait deliv : n = ordernextdo {messages waiting to be delivered}
32: Wait deliv←Wait deliv \ {(MREQ,n)}
33: ordernext←ordernext + 1

34: ATOMIC DLV (M REQ)



the value⊥ instead of the hash of the message (lines 17-18). When the threshold is reached, the message is

removed fromWait thresh(lines 25-26). If the message corresponds to the hash returned, the message is inserted

in Wait deliv (lines 27-28). Then, if the server is not the message sender, it resends the message to the servers that

did not ‘contribute’ to the threshold, i.e., to the servers not inprop mask(lines 29-30). The rationale for resending

the message is that a malicious sender can send the message only to a subset of the servers; therefore, these servers

may not have the message.

The setWait deliv keeps messages that already have an order number assigned by the TMO service, therefore

they can be delivered. These messages are handled in lines 31-34. The algorithm keeps a number with the next

message to be delivered,order next. If the next message to be delivered is stored inWait deliv (line 31), then task

T1 delivers it (lines 32-34). Otherwise, the message has to wait for its turn.

Appendix A gives a proof that the protocol satisfies its specification in terms of properties AM1-AM4.

4.2.2 FLP Impossibility Result

The consensus problem has been proven to be impossible to resolve deterministically in asynchronous systems if

a process is allowed to fail, even if only by crashing [15]. This FLP impossibility result also applies to the atomic

multicast problem since it is essentially equivalent to consensus [16]. Therefore, it is important to discuss how the

atomic multicast protocol proposed in the paper circumvents this result.

A first observation is that our system does not have to be bound by FLP, since it is not strictly asynchronous: it is

mostly asynchronous, but includes the TTCB subsystem, which is synchronous. The problem of atomic multicast

is essentially equivalent to a consensus about the set of messages to deliver and their order. Our protocol leaves

this consensus to the TTCB TMO service, which is executed in a synchronous environment, therefore FLP does

not apply.

Another way of reasoning about the problem is given in a paper by Dolev et al. [13]. The TMO service

implements a sort of communication with two properties: (1) the communication can be considered to be ordered,

since the service service assigns order numbers to the messages and a simple buffering scheme allows the messages

to be delivered in that order; (2) the communication is, according to that paper nomenclature, by “broadcast”,

because all (correct) servers deliver the same messages in the same step. Therefore, the classification of consensus

protocols in terms of communication primitives presented in the paper, allow us to conclude that the FLP result

does not apply to communication based on a mechanism like the TMO service.

5 Performance

The evaluation of the performance of distributed protocols is usually made in terms of time and message com-

plexities. In asynchronous systems, thetime complexityis usually measured in terms of the maximum number of

asynchronous roundsof message exchange. An asynchronous round involves a process sending a message and

receiving one or more messages in response. For the Byzantine fault model, only the number of rounds executed



by correct processes matter, since malicious processes can behave arbitrarily. We consider separately the number

of rounds of TMO execution.

The time complexity is two rounds of message exchange in the payload network, plus one round of TMO

executions. Let us justify this complexity by presenting the worst case. The client sends a request to a sendersj

(half round), butsj is crashed (or is malicious), sosj does not multicast the message to the other servers. This

situation forces the client to resend the request to anotherf servers, which we count as another half round. Then,

all correct servers that received the request, multicast the request in an ACAST message to all other servers (half

round) and start one TMO (one round of TMO executions, since all TMOs are executed in parallel). When the first

of these TMOs terminates, the command is executed and all correct servers send a reply to the client (half round).

Therefore, there are two rounds of message exchange plus one round of TMO executions.

Themessage complexityis measured in number of messages (unicasts) sent. We start by discussing this com-

plexity when the batching mechanism is disabled. The complexity of the SMR service can be divided essentially

in three cases:

1. One request.For each command, a client sends only one REQUEST message to a single server because the

client is correct, the server is correct, and the servers answer in less thanTresend units of time measured in

the client’s clock. A single TMO is executed.

2. f +1 requests.For each command, a client sends REQUEST messages tof +1 servers because the servers

do not respond beforeTresend, although both the client and the server for which it first sends the request are

correct.f + 1 TMOs are executed.

3. n requests.For each command, a malicious client sends REQUEST messages to alln servers.n TMOs

are executed. A malicious client can issue any number of commands but the SMR protocol prevents it from

forcing the execution of more thann TMOs by command (see Algorithm 1).

Table 1 summarizes the message complexities for the three situations. The deduction of these values from the

protocol is straight forward.

Requests Message complexity TMOs

1 O(n2) 1

f + 1 O(n3) f + 1

n O(n3) n

Table 1. Message complexity and number of TMOs executed (batching disabled).

The table presents the message complexities and the number of TMOs executed when the batching mechanism

is disabled. However, the purpose of this mechanism is precisely to reduce these numbers. How much are they

reduced? If we consider that the average number of requests batched in each atomic multicast isB, then the



message complexities and the number of TMOs presented in the table have to be divided byB. Therefore, the

higher the value ofB, the higher is the reduction in the complexity and number of TMOs. Nevertheless, there is a

tradeoff involved. To increaseB the algorithm has to delay requests until a certain number can be batched in an

atomic multicast, therefore increasing the average latency of the algorithm.

6 Related Work

The state machine approach was first introduced by Lamport for systems in which faults were assumed not to

occur [19]. Later, Schneider generalized the approach for systems with crash faults [33], and Lamport generalized

it for a class of Byzantine faults [20]. The Byzantine faults considered in this latter paper cannot be considered

to include malicious faults. The algorithm is essentially synchronous, in the sense that an interaction that exceeds

a maximum delayδ is assumed to be a fault, which the algorithm tolerates if its resilience is not exceeded. If

the system model assumes malicious faults, then an attacker might purposely delay the communication to force

correct processes to be considered failed.

More recently, two Byzantine-resilient or intrusion-tolerant state machine replication systems appeared: Ram-

part and BFT. Both services have the optimal resilience for asynchronous systems, i.e.,bn−1
3 c.

Rampart is an intrusion-tolerant group communication system. It provides a set of communication primitives

and a membership service, which handles the joining and leaving of group members [31, 32]. The atomic multicast

protocol relies on a reliable multicast protocol that guarantees, essentially, that all correct processes deliver the

same messages. When a message is atomically multicast to the group, the reliable multicast protocol is used to

send the message. Then, a special process, the sequencer, defines an order for the messages and also reliably

multicasts this order to the group. All these protocols use digital signatures to authenticate some messages [25].

Rampart is mostly asynchronous but assumes enough synchrony to detect process failures. The state machine

approach is implemented by a set of servers, which form a group [31]. Clients send their requests to a server of

their choice, similarly to our algorithm. The output of the service has to be voted so that the results provided by

correct servers prevail over those returned by malicious servers. Rampart implemented two solutions. In the first,

the client receives individual results from the servers and performs the voting, in the same way as in our approach.

In the second, the voting is executed by the servers using a (k,n)-threshold signature scheme [12]. This scheme

generates a public key andn shares of the corresponding private key. Each share can be used to obtain a partial

signature of a message and anyk of those partial signatures form a full signature that can be verified using the

public key. Albeit elegant, this scheme has poor performance.

BFT is a Byzantine-resilient state machine replication service. The system is optimized for having good per-

formance, therefore, on the contrary to Rampart, it does not use public-key cryptography most of the time. BFT is

not a full-fledged group communication system since it does not have a membership service and does not provide

generic group communication primitives, similarly to our algorithm. In BFT, all clients send the requests to the

same server, the primary. Then, the primary atomically multicasts the request to the backups (the other servers);

all replicas execute the request and send the result to the client; the client waits forf + 1 replies with the same



result, which is the result of the operation. BFT assumes enough synchrony to detect the failure of the primary.

When it fails, a new primary is elected.

SINTRA (previously called Hydra) is a framework aimed to support the implementation of replicated intrusion-

tolerant services [3]. It provides a number of group communication primitives, like reliable, atomic and causal

multicast. These primitives are implemented on the top of a randomized Byzantine agreement protocol based on

cryptographic primitives like threshold cryptography and coin tossing, therefore they are strictly asynchronous.

The resilience is alsobn−1
3 c.

Besides Rampart, there are two other intrusion-tolerant group communication systems: SecureRing [17] and

SecureGroup [26]. However, in the literature about those systems there is no discussion about their use for the

implementation of the state machine approach. Castro and Liskov argue that these systems are slower than BFT [4].

The resilience is the same.

FS-NewTOP is a recent intrusion-tolerant SMR system based on fail-signal (FS) processes, i.e., processes that

announce when they fail [27]. Each FS process is implemented by two nodes connected by a synchronous channel.

Each node monitors its peer. When one node detects that its peer has misbehaved in some way, it signals the failure

to all processes and stops the FS process. The resilience is allegedly4f + 2, which is sub-optimal. However, the

algorithm does not tolerate the failure of two nodes, if they form one FS process. The assumption that two nodes

of the same FS process do not fail simultaneously is hard to substantiate in environments prone to malicious faults.

Quorum systems are an alternative to the state machine replication approach to implement fault-tolerant sys-

tems. Malkhi and Reiter were, to the best of our knowledge, the first to present a study of their application to

tolerate Byzantine faults and to use them to build a dependable data repository that supports shared data abstrac-

tions, Phalanx [23]. The applications for quorum systems are not the same as for SMR. Phalanx provides data

stores (read/write operations) and locks, not a generic service. Fleet builds on Phalanx but provides support for

generic objects instead of just read/write operations on variables [24].

Pedone et al. usedweak ordering oraclesto solve crash-tolerant agreement problems in asynchronous sys-

tems [28]. The oracle basically gives a hint about the order of the messages, which may be right or wrong. The

hint is simply the order in which the messages are received from the network, which is often right in a local net-

work. Although our work is completely different from theirs, the ‘TTCB with TMO’ oracle might be considered

to be a perfect ordering oracle.

7 Conclusion

This paper proposes a novel state machine approach solution. The algorithm is executed in an asynchronous

and Byzantine environment, with the exception of a synchronous and secure distributed subsystem, the Trusted

Timely Computing Base wormhole. The algorithm is based on a novel TTCB service, the Trusted Multicast

Ordering Service, which defines an order for a set of messages represented by their hashes. Using this service,

we managed to design an atomic multicast protocol with a resilience lower than the maximum theoretical bound

in asynchronous systems:bn−1
2 c againstbn−1

3 c. The paper also shows how the TTCB can be used to circumvent



FLP.

The performance of the system was assessed in terms of time and message complexities, and number of TMOs

executed. The system is currently being implemented using the COTS-based TTCB [11].
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[37] P. Veŕıssimo, N. F. Neves, and M. Correia. Intrusion-tolerant architectures: Concepts and design. In

R. Lemos, C. Gacek, and A. Romanovsky, editors,Architecting Dependable Systems, volume 2677 ofLecture

Notes in Computer Science, pages 3–36. Springer-Verlag, 2003.

[38] L. Zhou, F. Schneider, and R. van Renesse. COCA: A secure distributed on-line certification authority.ACM

Transactions on Computer Systems, 20(4):329–368, November 2002.

A Correctness Proofs

This appendix presents a proof that the atomic multicast protocol in Algorithm 2 behaves according to its

specification in Section 4.2, i.e., that it satisfies properties AM1-AM4. We assume the system and TTCB models



in Section 2. We also assume that the TMO service behaves according to its specification in Section 3 and that at

mostf = bn−1
2 c servers might fail, out of a total ofn servers.

Theorem 1 If a correct server multicasts a message M with a vector with all MACs valid, then some correct

server eventually delivers M (AM1 Validity).

Proof (sketch):Let us consider MREQ = M. A serversj is said to multicast a message MREQ when it calls

atomicmulticast(MREQ). This call is handled by lines 9-13. The server follows the protocol since it is assumed

to be correct. MREQ is enveloped in a MACAST message and multicasted to the other servers (line 10). Then, the

server calls TTCBTMO send and starts a TMO for the message MREQ (line 11).

Now let us consider another correct serversk. This server eventually receives a correct copy of message

MACAST attending to the properties of the reliable channels and that bothsj andsk are correct. Whensk re-

ceives the message it saves it inWait tmo (line 14). This set is processed by task T1, specifically by lines 16-22.

TTCB TMO receive is called with the sameelist and thresholdas the ones passed bysj to TTCB TMO send.

Themsgid and the hash of the message are also the same since the message MACAST received is the same as the

one sent (all MACs are valid sohashis set to the hash of the message in line 17). Attending to the properties of the

TTCB and the TMO service, TTCBTMO receive eventually returns an error different from TMOUNKNOWN.

The error WRONGHASH can not occur since the message received is the same as the one sent. This allow us

to conclude that the message MACAST is eventually removed fromWait tmo and inserted inWait thresh(lines

19-22).

This second set,Wait thresh, is handled by task T1 in lines 23-30. TTCBTMO decide returns an error

THRESHOLDNOT REACHED until (1)sj has called TTCBTMO send and (2)threshold− 1 = bn−1
2 c other

servers inelist have called TTCBTMO receive withhash6= ⊥. The first condition is a direct consequence of the

sendersj being correct (assumed by the theorem). In relation to the second condition, all correct servers (except

sj) eventually receive MACAST with a valid MAC for the same reasons assk. There are at leastn−f = n−bn−1
2 c

correct servers, son− bn−1
2 c − 1 eventually call TTCBTMO receive withhash6= ⊥. So we need to have:

n− bn−1
2 c − 1 ≥ bn−1

2 c ⇐⇒ n ≥ 2bn−1
2 c+ 1

This is always true, so the threshold is eventually reached and TTCBTMO decide eventually returns an error

different from THRESHOLDNOT REACHED and the hash of the message MACAST . When this happens,sk

puts the message MREQ in Wait deliv (lines 25-28).

This third set is processed in lines 31-34. A message is delivered when its order numbern, returned by

TTCB TMO decide (line 24), is the next one to be delivered, i.e., equal toorder next (line 31). TMO gives

these numbers in order, starting with 1. Only messages that reach the threshold are counted and all correct servers

receive these messages (as discussed above and attending to the fact that all correct servers, in line 30, multicast

the MACAST messages to all servers that they are not aware of having receive them). Therefore, all messages with

numbers lower thann are eventually received and delivered, so also does MREQ = M. 2



Theorem 2 If a correct server delivers a message M, then all correct servers eventually deliver M (AM2 Agree-

ment).

Proof (sketch):For a correct server to deliver a message MREQ = M, thresholdservers have to give the hash

of MREQ to the TMO service (lines 23-24). Before a correct server delivers a message MREQ, it multicasts a

message MACAST containing MREQ to all servers that did not give the correct hash of MREQ to the TMO, given

in the maskprop mask(line 30). The theorem assumes one correct server delivers M, therefore all correct servers

receive the message either from the sender or from another correct server. If a correct server receives the message

then it also delivers it (see the proof for Theorem 1). 2

Theorem 3 For any identifierID, every correct server delivers at most one message M with identifierID, and if

sender(M)is correct then M was previously multicast bysender(M)(AM3 Integrity).

Proof (sketch):The identifier (ID) of a message is(ACAST, msgid, sendereid, elist, threshold). The TMO service

uniquely identifies one TMO execution by the combination of parameters(elist, threshold, msgid, sendereid),

so only one TMO can be executed for a message with the identifier ID. Therefore, only one message with that ID

can be put inWait tmo (lines 18-20),Wait thresh(lines 21-22),Wait deliv (line 28), and finally delivered (lines

31-34).

The second part of the theorem is an immediate consequence of the properties of the reliable channels that

interconnect the servers. 2

Theorem 4 If two correct servers deliver two messagesM1 andM2 then both servers deliver the two messages

in the same order (AM4 Total order).

Proof (sketch):The servers deliver the messages in the order indicated by the TMO service. This service gives the

same order to all servers. 2


