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Abstract

This paper proposes a stack of three Byzantine-resistant protocols aimed to be used in practical dis-

tributed systems: multi-valued consensus, vector consensus and atomic broadcast. These protocols are

designed as successive transformations from one to another. The first protocol, multi-valued consensus, is

implemented on top of a randomized binary consensus and a reliable broadcast protocol.

The protocols share a set of important structural properties. Firstly, they do not use digital signatures

constructed with public-key cryptography, a well-known performance bottleneck in this kind of protocols.

Secondly, they are time-free, i.e., they make no synchrony assumptions, since these assumptions are often

vulnerable to subtle but effective attacks. Thirdly, they are completely decentralized, thus avoiding the cost

of detecting corrupt leaders. Fourthly, they have optimal resilience, i.e., they toleratef = bn−1
3 c out of

a total ofn processes. In terms of time complexity, the multi-valued consensus protocol terminates in a

constant expected number of rounds, while the vector consensus and atomic broadcast protocols haveO(f)

complexity.

The paper also proves the equivalence between multi-valued consensus and atomic broadcast in the

Byzantine failure model without signatures. A similar proof is given for the equivalence between multi-

valued consensus and vector consensus. These two results have theoretical relevance since they show once

more that consensus is a fundamental problem in distributed systems.

∗This work was partially supported by the EU through project CRitical UTility InfrastructurAL Resilience (CRUTIAL), and the

FCT through project POSI/EIA/60334/2004 (RITAS) and the Large-Scale Informatic Systems Laboratory (LASIGE). A version of this

paper was accepted for publication by Oxford University Press in the Computer Journal.



1 Introduction

Distributed protocols capable of tolerating Byzantine faults have been studied for more than two decades [1,

2, 3, 4]. Recently, interest in these protocols has gained a new momentum under the designation ofintrusion

tolerance[5]. The basic idea is that the security concepts of attack, intrusion and vulnerability can be considered

asfaults, more precisely as arbitrary faults, also called Byzantine faults. A consequence of this assertion is that

Byzantine-resistant protocols can be important building blocks for the construction of secure systems.

Byzantine-resistant (or intrusion-tolerant) protocols usually have higher time and message complexities

than crash-tolerant protocols do. They are also more CPU-time demanding since they must use cryptography1,

and often public-key cryptography. This CPU-time issue is frequently dismissed since the processing power of

computers is constantly increasing. However, new classes of computing environments are appearing in which

resources are scarce, e.g., embedded systems. This is an important motivation for the design of less CPU-time

consuming intrusion-tolerant protocols. Moreover, public-key cryptography operations can be an important

bottleneck for the performance of intrusion-tolerant systems even in more powerful hardware. Castro and

Liskov designed an intrusion-tolerant NFS system which performs on average only 3% slower than standard

NFS, in part due to avoiding the use of signatures based on public-key cryptography [6].

An argument of this paper is that the design of efficient Byzantine-resistant protocols is crucial for the

implementation of practical intrusion-tolerant systems, therefore these protocols have to avoid as much as pos-

sible the use of public-key cryptography. Moreover, practical intrusion-tolerant systems require protocols with

other characteristics, like strict asynchrony, optimal resilience, and low time complexity. The paper provides a

modular and consistent family of protocols with these properties.

Paper Results. The paper presents a stack of three message-passing Byzantine-resistant protocols: multi-

valued consensus, vector consensus and atomic broadcast (see Figure 1). Consensus is a distributed systems

problem with both theoretical and practical interest. The problem can be stated this way: how does a set of

distributed processes achieve agreement on a value despite a number of process failures? The paper implements

two flavors of consensus:multi-valued consensusthat makes agreement on values with an arbitrary size; and

vector consensusthat makes agreement on a vector with the values proposed by several of the processes. An

atomic broadcastprotocol is a communication protocol that delivers the same messages to all processes in

the same order. Atomic broadcast is, for instance, the main component of fault-tolerant systems based on the

state-machine approach, with both crash [7] and Byzantine faults [8, 6]. The protocols in the paper do not solve

consensus from scratch but are built on top of a randomized binary consensus protocol (e.g., [9, 10]) and a

1Here we are talking about practical systems. Theoretically we can assume private channels connecting the processes, therefore

cryptography is not an absolute requirement.
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reliable broadcast protocol (e.g., [9]) – see Figure 1.

reliable channels


binary consensus
 reliable broadcast


multi
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Figure 1: Protocol architecture.

The problem of consensus has been studied with different system models, such as the synchronous and

the asynchronous time models, the crash and the arbitrary failure models, and in message-passing and shared-

memory systems. In asynchronous systems, consensus has been shown to be constrained by the FLP im-

possibility result, which says that it is impossible to solve consensus deterministically in a completely asyn-

chronous system [11]. Consequently, various researchers have proposed ways to circumvent this limitation2:

using randomization [3, 4, 9, 12, 13, 10, 14], making synchrony or timing assumptions on the behavior of

the system [15, 16, 17], using failure detectors [18, 19, 20, 21, 22] or ordering oracles [23], using worm-

holes [24, 25, 26], or imposing conditions on inputs [27, 28]. Some common misunderstandings about consen-

sus and FLP are discussed in [29].

The protocols presented in the paper are intended to be practical. Their modularity allows a system designer

to implement only the protocols he/she needs, instead of the full stack. Moreover, the protocols share the

following set of important structural properties:

• Signature free.The protocols do not use signatures based on public-key cryptography.

• Asynchrony.The protocols are asynchronous, i.e., there are no synchrony assumptions whatsoever.

• Decentralization.Decisions are taken in a decentralized way, i.e., there are no coordinators, leaders or

token-holders.

• Optimal resilience.The protocols toleratef = bn−1
3 c faulty processes out of a total ofn processes.

A stack of protocols with this combination of characteristics is novel, to the best of our knowledge. We

argue that all of them are important if the protocols are to be used in practice. The argument for avoiding

2We use the expressionto circumvent FLPsince it is common in the literature. However, what the expression means it that the

model for which FLP was stated is modified so that FLP no longer applies.
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public-key cryptography (first property) has already been done above, so let us discuss the importance of the

other three properties.

Many protocols in the literature are designated “asynchronous” but make synchrony assumptions, either

explicitly [15, 16, 17] or contained in the unreliable failure detector abstraction [19, 20, 21, 22]. These as-

sumptions can make the protocols vulnerable to subtle but effective attacks in the domain of time, something

that cannot happen in time-free systems. Some discussion about this kind of attacks and the corresponding

vulnerabilities can be found in [6, 14]. Our protocols are time-free or strictly asynchronous (second property)

but circumvent FLP by being built on top of a randomized binary consensus protocol. Randomized protocols

have a probability of satisfying their properties that increases with the number of rounds executed. The proto-

cols in the paper satisfy deterministically all their properties except termination, that nevertheless happens with

probability1.

The third property – decentralization – is important because it eludes the need for detecting faulty coordi-

nators, leaders or token-holders. This detection usually has a price in terms of time and messages transmitted.

Moreover, even a common failure like a process crash cannot be detected in a strictly asynchronous system,

since there are no bounds on the communication delays.

Theresilienceof a protocol can be defined as the maximum number of faults in the presence of which the

protocol still behaves according to its specification. The optimal resilience for asynchronous consensus has been

shown to bebn−1
3 c [13] and we prove that atomic broadcast is an equivalent problem, so the optimal resilience

is the same (this has already been claimed by [13, 30, 31]). Optimal resilience is an important property because

the need for additional processes to tolerate the same number of faults involves a cost in terms of additional

resources (e.g., additional hardware).

The evaluation of a distributed protocol is usually made in terms of time and message complexities, so we

evaluate the protocols in terms of both. In asynchronous systems, time complexity is usually measured in terms

of maximum number ofasynchronous rounds. An asynchronous round involves a process sending a message

and receiving one or more messages sent by the other processes. For randomized protocols, the metric is usually

theexpected number of asynchronous rounds. Our multi-valued consensus protocol has time complexityO(1),

i.e., it has a constant expected number of rounds. The complexities of the vector consensus and the atomic

broadcast protocols are bothO(f), although they are reduced toO(1) when all processes are correct. These

complexities are at least as good as previous works, except for one vector consensus that manages to have time

complexityO(1) at the cost of a significatively higher message complexity [32]. The message complexities,

measured inexpected number of messages sent, are usually higher than those obtained by protocols that use

signatures, so there is a tradeoff involved.

The paper has a further contribution. Atomic broadcast has been shown to be equivalent to multi-valued
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consensus in systems prone to crash faults [30, 18]. For systems prone to Byzantine faults with signatures there

is also a proof [31]. Here we prove this equivalence without the requirement of signatures. Moreover, we also

prove that multi-valued consensus and vector consensus are equivalent in the same system model.

Paper organization. The paper is organized as follows. The following section defines the system model and

the two components used by our protocols: reliable broadcast and binary consensus. Section 3 presents our

multi-valued consensus protocol and proves its correctness. Sections 4 and 5 present, respectively, the vector

consensus and atomic broadcast protocols. Section 6 proves the equivalence multi-valued consensus / atomic

broadcast, and Section 7 proves the equivalence multi-valued consensus / vector consensus. Section 8 assesses

the performance of the protocols. Section 9 discusses some related work and Section 10 concludes the paper.

2 Definitions

2.1 System Model

The system is composed by a set ofn processesP = {p1, p2, ...pn}. A process is said to becorrect if it

does notfail during the execution of the protocol, i.e., if it follows the protocol. We assume that at most

f = bn−1
3 c processes can fail and we call these processescorrupt. These failures can be Byzantine, meaning

that processes can stop, omit messages, send incorrect messages, send several messages with the same identifier,

etc. Additionally, corrupt processes can pursue their goal of breaking the properties of the protocol alone or in

collusion with other corrupt processes.

Processes are fully-connected byreliable channelswith two properties: if the sender and the recipient of a

message are both correct then (1) the message is eventually received and (2) the message is not modified in the

channel3.

The system is asynchronous, which means that there are no bounds on the processing times or communi-

cation delays.

2.2 Reliable Broadcast

A reliable broadcast protocol ensures essentially that all correct processes deliver the same messages, and that

messages broadcast by correct processes are delivered. Moreover, it ensures that no different messages with the

same identifier are delivered. This identifier includes the typical information in a protocol header: protocol type,

3In practice, reliable channels have to be implemented using retransmissions and cryptography, e.g., with message authentication

codes (MACs) that are based on symmetric cryptography [33]. Processes have to share symmetric keys in order to use MACs. In

the paper we assume these keys are distributed before the protocol is executed. In practice, this can be solved using key distribution

protocols available in the literature, but the issue is out of the scope of the paper.
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sender, broadcast channel, and sequence number. An example of an asynchronous Byzantine-resistant reliable

broadcast protocol is the one proposed by Bracha [9]. We consider that the reliable broadcast is executed by

calling the functionR Broadcast (M) (see, e.g., Algorithm 1 below).

Formally, a reliable broadcast protocol can be defined in terms of the following properties [30, 31]:

• RB1 Validity:If a correct process broadcasts a message M, then some correct process eventually delivers

M.

• RB2 Agreement:If a correct process delivers a message M, then all correct processes eventually deliver

M.

• RB3 Integrity:For any identifierID, every correct processp delivers at most one message M with iden-

tifier ID, and ifsender(M)is correct then M was previously broadcast bysender(M).

The predicatesender(M)gives the field of the message header that identifies its sender. We consider that

the sender also delivers the messages it broadcasts.

Note that property RB3 prevents the behavior we discussed above: it prevents a correct process from

delivering two messages with the sameID broadcast by the same malicious process. This is important for the

protocols in this paper, as we will see later. However, it has only to be satisfied during the execution of the

protocol that uses reliable broadcast, not forever.

2.3 Binary Consensus

A binary consensus protocol performs consensus on a binary valueb ∈ {0, 1}. The problem can be formally

defined in terms of three properties:

• BC1 Validity: If all correct processes propose the same valueb, then any correct process that decides,

decidesb.

• BC2 Agreement:No two correct processes decide differently.

• BC3 Termination:Every correct process eventually decides.

This definition has two immediate consequences that we state and prove for later reference in the paper:

Theorem 1 If a correct process decidesb, thenb was proposed by some process.

Proof: If all processes propose the same valueb, then BC1 guarantees that this is the value decided. If processes

propose different values then the value decided must have been proposed since there are only two possible

values:{0, 1}. 2
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Theorem 2 If a valueb is proposed only by corrupt processes, then no correct process that decides, decidesb.

Proof: If a valueb is proposed only by corrupt processes then all correct processes proposed¬b sinceb ∈ {0, 1}.
Therefore, BC1 guarantees that any correct process that decides, decides¬b, i.e., does not decideb. 2

Besides satisfying this definition, the binary consensus protocol to be used in the stack has to be com-

patible with the structural properties given in the introduction: it cannot use public-key signatures, has to be

asynchronous, has to take decisions in a decentralized way and has to have optimal resilience. Examples of

protocols that satisfy these requirements are [9, 10]. Appendix A presents an efficient protocol that also satis-

fies these requirements, although it does not avoid public-key cryptography entirely (it uses a variation of the

Diffie-Hellman problem).

Throughout the paper we consider that the binary consensus protocol is executed by calling the function

B Consensus (b, bcid), whereb is the binary value proposed andbcid the protocol execution identifier.

3 Multi-Valued Consensus

The first protocol of the stack proposed in the paper is a multi-valued consensus. The definition of the problem

is similar to the binary consensus, except that processes can propose values with arbitrary lengthv ∈ V (V is

the domain of values that can be proposed). The protocol can decide one of the proposed values or a default

value⊥ /∈ V. The definition is:

• MVC1 Validity 1.If all correct processes propose the same valuev, then any correct process that decides,

decidesv.

• MVC2 Validity 2.If a correct process decidesv, thenv was proposed by some process orv = ⊥.

• MVC3 Validity 3.If a valuev is proposed only by corrupt processes, then no correct process that decides,

decidesv.

• MVC4 Agreement.No two correct processes decide differently.

• MVC5 Termination.Every correct process eventually decides.

The problem of multi-valued consensus is often stated in terms of the properties MVC4, MVC5 and either

MVC1 or MVC2 (e.g., MVC1 in [15, 34, 35] and MVC2 in [20, 22, 21]). We define consensus using all

three validity properties following the definition used in the original Byzantine Generals paper [2]4. Moreover,

a consensus protocol that satisfies only MVC1 or MVC2 has limited interest in practice. Property MVC1

4The original definition is in the context of the “Byzantine Generals” metaphor used in the paper: “(1) All loyal generals decide

upon the same plan of action; (2) A small number of traitors cannot cause the loyal generals to adopt a bad plan.” [2].
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does not say anything about which value is decided when the correct processes do not propose the same value.

Property MVC2 does not impose that the value decided is proposed by a correct process. Notice that we proved,

respectively in Theorems 1 and 2, that for binary consensus, Validity 1 implies Validity 2 and Validity 3.

A word is due about why the other papers do not use a definition more similar to ours. The reason is

probably that the interest of these other papers in consensus is theoretical. These papers are mostly interested in

proving that consensus can be solved under a certain model, e.g., in the presence of partial synchrony [15], with

a quietnessfailure detector [34] or with amutenessfailure detector [20]. Our interest on Byzantine consensus,

on the contrary, follows, for example, Guerraoui and Schiper that aim to solve practical problems using this

type of protocol, albeit with a crash failure model in their case [36].

3.1 The Protocol

The protocol is presented in Algorithm 1. Local variables are designated by lowercase letters with a subscript

indicating the process to which they belong: wi, bi, ci in process pi. Vectors have one entry per process in

P and are designated by an uppercase letter, e.g., vector Vi has entries Vi[1], V i[2],. . . Vi[n]. Function #x(V)

counts the number of occurrences ofx in vector V. The maximum number of faulty processes is a function of

the total number of processesn: f = bn−1
3 c. The protocol uses two types of messages: INIT and VECT. The

content of messages is represented inside angles:〈...〉. A set called INITdeliveredi is used to store the received

INIT messages. A call toreturn causes the termination of all the protocol’s tasks. The value returned is the

result of the protocol, i.e., the decided value.

FunctionMV Consensus is called with two arguments: the value proposed by the process (vi) and the

consensus identifier (cid). There is an initialization and tasks T1 and T2 are started concurrently (lines 1-2).

Task T1 does most of the work, while task T2 simply receives INIT messages and stores them in INITdeliveredi

(lines 22-23).

Task T1 begins by reliably broadcasting an INIT message with the value vi proposed by process pi (line

3). The identifier of the message includes the message type (INIT), the consensus (cid) and sender identifiers

(i). Then, the task waits for the reception of(n− f) INIT messages (including its own) and stores the proposed

values in vector Vi (lines 4-5). The reliable broadcast protocol guarantees that two correct processes pi and pj

do not receive different proposals from the same process (see Section 2.2). However, Vi can be different from

Vj since the first(n− f) INIT messages received by the two processes do not have to be the same.

If all correct processes propose the same valuev then all correct processes receive at least(n − 2f) INIT

messages withv. If a process receives this number of messages with a valuev, then it selects this value (lines

6-7) and reliably broadcasts it to all processes together with the vector Vi that justifies the selection (line 10).

Otherwise, it selects the default value⊥, which it also broadcasts. After broadcasting this message (VECT),
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Algorithm 1 Multi-valued Consensus protocol (for processpi).

Function MV Consensus (vi, cid)

INITIALIZATION :

1: INIT deliveredi ←∅; {INIT messages delivered}
2: activate task(T1,T2);

TASK T1:

3: R Broadcast ( 〈INIT, vi, cid, i〉 );

4: wait until (at least(n− f) INIT messages have been delivered);

5: ∀j : if (〈INIT, vj , cid, j〉 has been delivered)then Vi[j] ← vj ; elseVi[j] ←⊥;

6: if (∃1
v : #v(Vi) ≥ (n− 2f)) then

7: wi ← v;

8: else

9: wi ←⊥;

10: R Broadcast ( 〈VECT, wi, Vi, cid, i〉 );

11: wait until (at least(n− f) valid messages〈VECT, wj , Vj , cid, j〉 have been delivered);

12: ∀j : if (〈VECT, wj , Vj , cid, j〉 has been delivered)then Wi[j] ←wj ; elseWi[j] ←⊥;

13: if (∀j,k Wi[j] 6= Wi[k] ⇒ Wi[j] = ⊥ or Wi[k] = ⊥) and (∃w: #w(Wi) ≥ (n− 2f)) then

14: bi ←1;

15: else

16: bi ←0;

17: ci ←B Consensus (bi, cid);

18: if (ci = 0) then

19: return ⊥;

20: wait until (at least(n− 2f) valid messages〈VECT, vj , Vj , cid, j〉 with vj = v have been delivered);

21: return v;

TASK T2:

22: whenmi = 〈INIT, vj , cid, j〉 is delivereddo

23: INIT deliveredi ← INIT deliveredi
⋃ {mi};
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the process waits for(n− f) valid VECT messages, i.e., messages known to have a vector with real proposals

and a value substantiated by those proposals. The identifier of a message VECT includes the protocol type

(VECT), and also the consensus (cid) and sender identifiers (i).

Definition 1 A message〈VECT, wj , Vj , cid, j〉 is said to bevalid at process pi iff:

• ∀k, Vj [k] =⊥ or there is a message〈INIT, vk, cid, k〉 ∈ INIT deliveredi so that Vj [k] = v k

• wj 6=⊥ ⇔ #wj (Vj) ≥ (n− 2f)

If the process does not receive two VECT messages with different valuesw 6= w′, and it receives at least

(n− 2f) messages withw, it proposes 1 for the binary consensus, otherwise it proposes 0 (lines 13-16). If the

binary consensus decides 0, the vector consensus protocol decides on the default value⊥ (lines 17-19).

If the binary consensus decides 1, the process waits until it received(n− 2f) valid VECT messages with

the same valuev (line 20). The process does not wait until it received(n − 2f) valid VECT messages with

the same valuein line 20, but rather until it received cumulatively these messages since the beginning of the

protocol execution (some of them were received in line 11). When these messages are received, the protocol

returnsv (line 21). The protocol can be sure that there can only be one valuev for which a correct process can

consider(n−2f) VECT messages to be valid, or two different correct processes might decide different values.

We show that this is true in the proof of Theorem 6.

3.2 Correctness Proof

The protocol in Algorithm 1 is correct if it satisfies properties MVC1 to MVC5. A preliminary result is given

by the following lemma:

Lemma 1 If a message〈VECT, wi, Vi, cid, i〉 is reliably broadcast by a correct process pi, then eventually all

correct processes will consider itvalid.

Proof: The INIT messages are reliably broadcast (line 3). Consequently, all correct processes eventually deliver

the same INIT messages (properties RB1-RB3 in Section 2.2). A correct process only puts in Vi values vj it

received in INIT messages (line 5). Therefore, for every valuev in a VECT message sent by a correct process,

there is a INIT message that is eventually delivered by all correct processes. Additionally, a correct process

always sends VECT messages with at least(n− f) values (lines 4-5, 10). This proves the lemma, attending to

the definition ofvalid message. 2

Theorem 3 (Validity 1) If all correct processes propose the same valuev, then any correct process that decides,

decidesv.
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Proof: If all correct processes propose the same valuev, then all processes deliver at least(n − 2f) INIT

messages withv and at mostf INIT messages withv′ 6= v (at mostf processes are corrupt). Consequently,

all correct processes make wi = v, and send this value in a VECT message (lines 6-10). Moreover, all correct

processes deliver at least(n − 2f) valid VECT messages in line 11 (Lemma 1). No valid VECT message can

have wi 6= v since at mostf (corrupt) processes send INIT messages with a value different fromv. Therefore,

all correct processes make bi = 1 (lines 13-14). All correct processes start a binary consensus protocol (line

17) that decides 1 (property BC1). The value decided is necessarilyv (lines 18-21). 2

Theorem 4 (Validity 2) If a correct process decidesv, thenv was proposed by some process orv = ⊥.

Proof: The proof is obtained with a trivial inspection of the protocol. 2

Theorem 5 (Validity 3) If a valuev is proposed only by corrupt processes, then no correct process that decides,

decidesv.

Proof: The proof is by contradiction. If a correct process decidesv then it received at least(n − 2f) valid

VECT messages withv. For a VECT message to be valid there has to be at least(n− 2f) > f INIT messages

with v, but the theorem assumes only corrupt processes proposedv: a contradiction. 2

Theorem 6 (Agreement) No two correct processes decide differently.

Proof: All correct processes get the same decision from the binary consensus protocol (property BC2). The

proof can be divided in two cases, depending on the value ci decided by the binary consensus (line 17). The

first case, ci = 0, its trivial: all correct processes decide⊥ (lines 18-19).

For the second case, ci = 1, the proof is by contradiction. Two correct processes p1 and p2 decide differently

if: (1) p1 delivers(n − 2f) valid VECT messages with the same value v1 (line 20); and (2) p2 delivers also

(n− 2f) valid VECT messages but with a value v2 6= v1.

The binary consensus protocol decided 1, so at least one correct process p1 (without loss of generality)

proposed 1 in line 17 (Theorem 2). p1 proposed 1, therefore the two conditions in line 13 were satisfied. The

second condition implies that p1 received at least(n − 2f) valid VECT messages with value v1 in line 11.

The first condition implies that p1 did not receive any valid VECT message with a value different from v1.

Therefore, p1 received:

• m1 valid VECT messages with v1, andm1 ≥ (n− 2f)

• m2 valid VECT messages with⊥, andm1 + m2 ≥ (n− f)
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Now, the proof assumes p2 receivedm3 = (n − 2f) valid VECT messages with v2. However, there can

be at most one valid VECT message per process for an execution of the consensus protocol, totalizingn, due

to the reliable broadcast protocol’s property RB3. Therefore, we have:

m1 + m2 + m3 ≤ n ⇒

(n− f) + (n− 2f) ≤ n ⇔

n ≤ 3f

This is a contradiction since we assume thatf = bn−1
3 c, what implies thatn > 3f . 2

Theorem 7 (Termination) Every correct process eventually decides.

Proof: Correct processes decide when they execute lines 19 or 21. The places of the protocol in which we have

to prove that the protocol makes progress are the two executions of the reliable broadcast protocol (lines 3-4

and 10-11), the execution of the binary consensus protocol (line 17) and the reception of VECT messages in

line 20.

The termination of the reliable broadcast protocol is guaranteed by its Validity and Agreement properties

(RB1, RB2). All correct processes eventually deliver(n − f) INIT messages in line 4 because all correct

processes reliably broadcast an INIT message in line 3, and there are at mostf corrupt processes. This proves

that the protocol makes progress in lines 3-4. The justification for lines 10-11 is identical. The binary consensus

protocol executed in line 17 is guaranteed to terminate by property BC3.

The protocol waits for the condition in line 20 only if the binary consensus decides 1. If all correct pro-

cesses had proposed 0 for the binary consensus, then the process would have decided 0 (lines 17-19). Therefore,

at least one correct process proposed 1 for the binary consensus. A correct process proposes 1 for the binary

consensus only if it delivered(n− 2f) valid VECT messages with the same valuew (second condition in line

13 and lines 11-12). The VECT messages are reliably broadcast, therefore if a correct process delivers(n−2f)

valid VECT messages withw, then all correct processes eventually do the same. Therefore no correct process

blocks in line 20 and all terminate. 2

4 Vector Consensus

Vector consensus makes agreement on a vector with a subset of the values proposed, instead of a single

value [20, 26]. In systems where Byzantine faults can occur, the vector is useful, e.g., to implement atomic

broadcast, only if a majority of its values were proposed by correct processes. Therefore, the decided vector

needs to have at least(2f + 1) values. This problem is ultimately an adaptation for asynchronous systems of
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the classical problem ofinteractive consistencydefined for synchronous systems [1]. The difference between

the two problems is that interactive consistency makes agreement on a vector with the values proposed by all

correct processes, while vector consensus guarantees only that the majority of the values were proposed by

correct processes. The reason for this difference is that in asynchronous systems it is not possible to ensure that

the vector has the proposals of all correct processes, since they can be arbitrarily delayed.

Vector consensus can be defined in terms of the following properties:

• VC1 Vector validity:Every correct process that decides, decides on a vectorV of sizen:

– ∀pi : if pi is correct, then eitherV[i] is the value proposed bypi or⊥;

– at least(f + 1) elements ofV were proposed by correct processes.

• VC2 Agreement:No two correct processes decide differently.

• VC3 Termination:Every correct process eventually decides.

4.1 The Protocol

The protocol is implemented by the functionVector Consensus presented in Algorithm 2. The arguments

are the value proposed (vi) and the vector consensus identifier (vcid). The protocol starts by reliably broad-

casting a VCINIT message with the value proposed by the process (line 2). This message is identified by the

protocol type (VCINIT), the vector consensus identifier (vcid) and the sender (i). Then, the protocol runs one

or more rounds until a decision is made (lines 3-8).

The algorithm begins each round by waiting for the reception of(n− f + ri) VC INIT messages (line 4).

Notice that line 4 does not restart from scratch waiting for the(n − f + ri) messages, but rather waits until

that number of messages has cumulatively been received since the beginning of the execution of the protocol.

Next, the process builds a vector Wi with the values it received from other processes (at least(n− f) in round

0, (n−f +1) in round 1, ...) and proposes the vector for a multi-valued consensus (lines 5-6). The identifier of

the multi-valued consensus is unique for each execution by using a combination ofvcid and the round number,

ri.

VC INIT is reliably broadcast, therefore all correct processes will eventually receive the same VCINIT

messages and build identical W vectors. When enough processes propose the same W vector for the multi-

valued consensus, W is decided by this protocol and immediately after by the vector consensus (lines 6-9).

4.2 Correctness Proof

The protocol in Algorithm 2 is correct if it satisfies the properties VC1, VC2 and VC3.
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Algorithm 2 Vector Consensus protocol (for processpi).

Function Vector Consensus (vi, vcid)

1: ri ←0; {round number}
2: R Broadcast ( 〈VC INIT, vi, vcid, i〉 );

3: repeat

4: wait until (at least(n− f + ri) VC INIT messages have been delivered);

5: ∀j : if ( 〈VC INIT, vj , vcid, j〉 has been delivered)then Wi[j] ← vj ; elseWi[j] ←⊥;

6: Vi ←MV Consensus (Wi, (vcid,ri));

7: ri ← ri + 1;

8: until (Vi 6= ⊥);

9: return Vi;

Theorem 8 (Vector validity) Every correct process that decides, decides on a vectorV of sizen: (1) ∀pi : if

pi is correct, then eitherV[i] is the value proposed bypi or ⊥; and (2) at least(f + 1) elements ofV were

proposed by correct processes.

Proof: The values proposed by each process are reliably broadcast so all correct processes eventually deliver

the same values (lines 2 and 4). Any correct process callsMV Consensus in line 6 with a vector Wi that

satisfies the two conditions of the theorem: (1) each entryj of the vector contains either the value proposed

by process pj or ⊥; and (2) Wi has at least(n − f) elements from which at least(n − 2f) ≥ (f + 1) were

proposed by correct processes (at mostf processes are corrupt).(n− 2f) must be greater or equal to(f + 1)

becausef = bn−1
3 c. The value decided by the protocol (line 9) is the value decided on the last execution of the

multi-valued consensus (line 6). This value is one of the values proposed (property MVC2) and cannot have

been proposed only by corrupt processes (property MVC3). Therefore, the value must have been proposed by

at least one correct process so the two conditions of the theorem are satisfied. 2

Theorem 9 (Agreement) No two correct processes decide differently.

Proof: The value decided is equal to the value decided on the last execution of the multi-valued consensus

(lines 5-6). All correct processes execute the same sequence of multi-vector consensuses because the identifier

of each execution includes the round number (line 6). Therefore, the theorem is a trivial consequence of the

Agreement property MVC4 of the multi-valued consensus. 2

Theorem 10 (Termination) Every correct process eventually decides.

Proof: All VC INIT messages reliably broadcast by correct processes are eventually delivered by all correct

processes (properties RB1-RB3). Let pi be any correct process. Process pi executes one or more calls to

MV Consensus , and each of these calls eventually terminates (property MVC5). Each round of the loop,
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pi waits for one more VCINIT message (line 4) before engaging in the multi-valued consensus (line 6). If

pi does not leave the loop and terminates before, the latest by roundr = f process pi and all other correct

processes propose for the multi-valued consensus a vector with the values from all processes. Therefore, in that

round all correct processes propose the same vector, the multi-valued consensus decides a value different from

⊥ (property MVC1) and the protocol terminates (lines 8-9). 2

5 Atomic Broadcast

The problem of atomic broadcast, or total order reliable broadcast, is the problem of delivering the same mes-

sages in the same order to all processes. The definition of the problem is equal to the definition of reliable

broadcast plus a total order property:

• AB1 Validity: If a correct process broadcasts a message M, then some correct process eventually delivers

M.

• AB2 Agreement:If a correct process delivers a message M, then all correct processes eventually deliver

M.

• AB3 Integrity:For any identifierID, every correct processp delivers at most one message M with iden-

tifier ID, and ifsender(M)is correct then M was previously broadcast bysender(M).

• AB4 Total order:If two correct processes deliver two messagesM1 andM2 then both processes deliver

the two messages in the same order.

The identifier of an atomic broadcast message includes the protocol type (AMSG), the message number

(num) and the sender identifier (i).

The atomic broadcast protocol is implemented on top of the vector consensus protocol. It could also

be implemented directly on top of the multi-valued consensus but, in the end, the functionality of the vector

consensus protocol would have to be implemented in the protocol anyway. The approach we use is more

modular and elegant, besides providing the two protocols, either of which may be useful for the system designer.

5.1 The Protocol

The protocol is presented in Algorithm 3. It is inspired from the Algorithms of Chandra, Hadzilacos and

Toueg [30, 18], which assume crash faults. The initialization is carried out before the first transmission

or reception of a message (lines 1-4). A process atomically broadcasts a message by calling the procedure

A Broadcast , which simply reliably broadcasts the message to all processes (lines 5-6). The message num-

bernumguarantees that all messages broadcast by a correct process are unique, since this number is unique.
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If a malicious process tries to callR Broadcast twice with the same message, then the reliable broadcast

protocol delivers the message only once (see property RB3, Integrity).

The delivery of messages is handled by tasks T1 and T2. When a message is delivered by the reliable

broadcast protocol, it is inserted in the set Rdeliveredi (lines 15-16). Whenever this set is not empty, the

process tries to agree with the other processes on the delivery of the messages in the set (lines 7-14). The task

starts by constructing a vector Hi with a hashof each of the messages in Rdeliveredi (line 8). A hash works

essentially as a fixed-length unique identifier of the message. The objective is to compress the input supplied to

the vector consensus protocol, since the performance of this protocol depends on the size of the value (e.g., the

communication time depends on the size of the messages). A hash is obtained using ahash functionh defined

by the following properties [33]:

• HF1 Compression:h maps an inputx of arbitrary finite length, to an outputh(x) of fixed length.

• HF2 One way:for all pre-specified outputs, it is computationally infeasible to find an input that hashes

to that output.

• HF3 Weak collision resistance:it is computationally infeasible to find any second input that has the same

output as a specified input5.

• HF4 Strong collision resistance:it is computationally infeasible to find two different inputs that hash to

the same output.

The value proposed by a process to the vector consensus is itself a vector with the hashes of the messages,

Hi (lines 8-9). The vector consensus protocol decides on a vector Xi with at least(2f + 1) vectors H from

different processes. If the hash of a message appears in at least(f + 1) of these vectors, the process can be

confident that the hash was proposed by at least one correct process (there are at mostf corrupt processes),

therefore there is no doubt that the message was reliably broadcast to all processes. This is important because

a malicious process might provide a hash for which there was no message to deliver. The process waits until

all messages that are to be delivered are put in Rdeliveredi (line 10), then it stores them in Adeliveri (line

10). Finally, the process delivers the messages in Adeliveri in a pre-established order, removes them from

R deliveredi, and increments the atomic broadcast identifier (lines 12-14).

5A guessing attack is expected to break the property HF3 in2m hashing operations, wherem is the number of bits of the hash.

A birthday attack can be expected to break property HF4 in2m/2 hashing operations. In a practical setting, a hashing function with

160 bits like SHA-1 [37], can be considered secure enough for our protocol. Nevertheless, we consider HF2, HF3 and HF4 to be

assumptions.

16



Algorithm 3 Atomic Broadcast protocol (for processpi).

INITIALIZATION :

1: R deliveredi ←∅; {messages delivered by the reliable broadcast protocol}
2: aidi ← 0; {atomic broadcast identifier}
3: numi ← 0; {message number}
4: activate task(T1,T2);

WHEN ProcedureA Broadcast (m) is calledDO

5: R Broadcast ( 〈A MSG, numi, m, i〉 );

6: numi ← numi + 1;

TASK T1:

7: when (R deliveredi 6= ∅) do

8: Hi ←{hashes of the messages in Rdeliveredi};
9: Xi ←Vector Consensus (Hi, aidi);

10: wait until (all messages with hash inf + 1 or more cells in vector Xi are in Rdeliveredi);

11: A deliveri ←{all messages with hash inf + 1 or more cells in vector Xi};
12: atomically deliver messages in Adeliveri in a deterministic order;

13: R deliveredi ←R deliveredi - A deliveri;

14: aidi ←aidi + 1;

TASK T2:

15: when 〈A MSG, num, m, i〉 is delivered by the reliable broadcast protocoldo

16: R deliveredi ←R deliveredi
⋃ {〈A MSG, num, m, i〉};
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5.2 Correctness Proof

The atomic broadcast protocol in Algorithm 3 is correct if it satisfies the properties AB1, AB2, AB3 and AB4.

Theorem 11 (Validity) If a correct process broadcasts a message M, then some correct process eventually

delivers M.

Proof: A correct process broadcasts a message M by callingA Broadcast (m). Then, the atomic broadcast

protocol adds a header to the message and broadcasts it using the reliable broadcast protocol (line 5). The

properties of this reliable broadcast protocol ensure that all correct processes eventually receive M (properties

RB1-RB3). This guarantees that there is an execution of the lines 7-14 when all correct processes put the hash

of M in H (line 8), unless these processes already delivered M in a previous execution of line 12. When all

correct processes put the hash of M in H, the vector consensus decides on a vector that includes at leastf + 1

entries with that hash (property VC1, Vector validity). Therefore, if the protocol does not block, all correct

processes deliver M (lines 10-12).

The protocol might block only in lines 9 and 10. It does not block in line 9 because the vector consensus is

guaranteed to terminate (property VC3, Termination). Line 10 waits until all messages that have to be delivered

by the atomic broadcast protocol (those withf + 1 hashes in the vector) are in Rdelivered. A message with

f + 1 hashes in the vector must have been already delivered by the reliable broadcast protocol to at least one

correct process. Therefore, this protocol will eventually deliver the message to all correct processes (properties

RB1-RB3), so no correct process blocks in line 10. 2

Theorem 12 (Agreement) If a correct process delivers a message M, then all correct processes eventually

deliver M.

Proof: The theorem assumes that one correct process, say pi, delivers M. Therefore: (1) the vector consensus

in line 9 decides on a vector with at leastf + 1 hashes of M; and (2) the reliable broadcast protocol delivers M

to pi, therefore it delivers M to all correct processes (properties RB1-RB3). All correct processes get the same

results from the vector consensus so all eventually deliver M. 2

Theorem 13 (Integrity) For any message M, every correct processp delivers M at most once, and ifsender(M)

is correct then M was previously broadcast bysender(M).

Proof: The proof of the first assertion is trivial from the inspection of the algorithm, assuming the properties

of hash functions. The proof of the second assertion follows directly from the properties of the communication

channels. 2
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Theorem 14 (Total order) If two correct processes deliver two messagesM1 and M2 then both processes

deliver the two messages in the same order.

Proof: Any correct process delivers messages only after an execution ofVector Consensus (line 9). All

correct processes execute the same instances of the vector consensus protocol, identified by aid= 0, 1, 2, ... The

messages which are delivered are all those with at leastf+1 hashes in the vector returned byVector Consensus

and the order of delivery is deterministic (line 12). Therefore, all processes deliver the same messages in the

same order. 2

6 Multi-Valued Consensus and Atomic Broadcast Equivalence

The equivalence between crash-tolerant multi-valued consensus and atomic broadcast has been proved in [30,

18]. The equivalence for environments prone to Byzantine faults with signatures has been proved in [31]. Here

we prove a similar result but without the requirement of signatures. This result has been previously stated but

never proved [18, 30].

We follow an approach similar to [30, 18], i.e., we provide a transformation from multi-valued consensus

(as defined in Section 3) to atomic broadcast and a transformation from atomic broadcast to multi-valued

consensus. The first transformation was, in fact, presented in two steps in Sections 4 and 5. The transformation

from atomic broadcast to consensus is presented in Algorithm 4. The transformations are independent of the

technique used to circumvent FLP.

Algorithm 4 Transformation from Atomic Broadcast to Multi-valued Consensus (for processpi).

Function MV Consensus AB (vi, cid)

1: INIT deliveredi ←∅; {INIT messages delivered}
2: A Broadcast ( 〈INIT, vi, cid, i〉 ); {atomic broadcast}
3: wait until (at least(n− f) INIT messages from different senders have been atomically delivered);

4: ∀j : if (〈INIT, vj , cid, j〉 has been delivered)then Vi[j] ← vj ; elseVi[j] ←⊥;

5: if (∃v : #v(Vi) ≥ (n− 2f)) then

6: return v;

7: else

8: return ⊥;

The protocol is similar to the first part of Algorithm 1 so there is no need to describe its behavior. The

protocol is correct if it satisfies the properties MVC1 through MVC5 provided in Section 3:

Theorem 15 (Validity 1) If all correct processes propose the same valuev, then any correct process that

decides, decidesv.
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Proof: If all correct processes propose the same valuev, then all processes deliver at least(n − 2f) INIT

messages withv in line 3 since at mostf processes can broadcast messages with different values. It follows

immediately from lines 5-6 that any correct process that decides, decidesv. 2

Theorem 16 (Validity 2) If a correct process decidesv, thenv was proposed by some process orv = ⊥.

Proof: The proof is obtained from a trivial inspection of the protocol. 2

Theorem 17 (Validity 3) If a valuev is proposed only by corrupt processes, then no correct process that

decides, decidesv.

Proof: For a correct process to decidev (line 6), at least(n − 2f) processes must have broadcast that value.

There can be at mostf < (n− 2f) corrupt processes so no correct processes can decide a value proposed only

by those processes. 2

Theorem 18 (Agreement) No two correct processes decide differently.

Proof: The atomic broadcast protocol guarantees that all correct processes deliver the INIT messages in the

same order. Therefore, all correct processes deliver the same INIT messages in line 3 and decide the same in

lines 5-8. 2

Theorem 19 (Termination) Every correct process eventually decides.

Proof: The proof is trivial taking into account that the atomic broadcast protocol terminates (properties AB1-

AB2) and that there are at least(n− f) correct processes. 2

The proof that Algorithm 4 satisfies the definition of multi-valued consensus concludes the demonstration

that atomic broadcast and multi-valued consensus are equivalent. An immediate consequence is that the FLP

impossibility result also applies to Byzantine-resilient atomic broadcast, i.e., this problem cannot be solved

deterministically in asynchronous systems. The protocol shown in this paper circumvents this result using

randomization, i.e., by not being deterministic.

7 Multi-Valued Consensus and Vector Consensus Equivalence

Vector consensus is apparently a stronger problem than consensus. Doudou and Schiper proved that a flavor

of multi-valued consensus defined in terms of properties MVC1/MVC4/MVC5 is reducible to vector consen-

sus [20]. Here we prove that a multi-valued consensus defined by properties MVC1 to MVC5 is equivalent to

vector consensus. The transformation from multi-valued consensus to vector consensus was given in Section 4.

The reverse transformation is shown in Algorithm 5. We skip the correctness proof of this transformation given

its simplicity. The two transformations together prove the equivalence of the two problems.
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Algorithm 5 Transformation from Vector Consensus to Multi-valued Consensus (for processpi).

Function MV Consensus VC(vi, cid)

1: Vi ←Vector Consensus (vi, cid);

2: if (∃v : #v(Vi) ≥ (n− 2f)) then

3: return v;

4: else

5: return ⊥;

8 Performance Evaluation

Multi-valued consensus. The time complexity of the multi-valued consensus protocol is twice the number of

asynchronous roundsexecuted by the reliable broadcast protocolLrb (lines 3 and 10) plus the time complexity

of the binary consensus protocolLbc (line 17). The reliable broadcast protocol by Bracha and Toueg runs in

exactly 3 rounds [9]. The time complexity of the binary consensus protocol is measured inexpected number of

asynchronous rounds, since the protocol is randomized, therefore probabilistic. The binary consensus protocol

in Appendix A has constant expected time complexityO(1), or more precisely,Lbc = 20 (see appendix). The

protocol by Canetti and Rabin has also constant expected time but has a high message complexity so we do not

consider it here [10]6. Therefore, the time complexity of the multi-valued consensus protocol is (we use capital

L for expected number of asynchronous rounds):

Lmvc = 2Lrb + Lbc = 26 = O(1) (1)

The protocol can be optimized by replacing the second reliable broadcast in line 10 by a (normal) broadcast

or by the transmission of the VECT message individually to all processes. In this case, one correct process

might receive(n − 2f) messages with the value to be decidedv, while another correct process would not. To

circumvent this problem, all correct processes that receive(n−2f) messages with the valuev (line 11) have to

resend these messages to all other processes. This optimization reduces the 3 rounds of the reliable broadcast

protocol to 2 rounds.

Table 1 presents both the expected time complexity of the protocol(Lmvc) and the time complexity in the

best case(lmvc). The best case for the multi-valued consensus protocol is when the binary consensus runs in

lbc = 10 rounds instead of the expectedLbc = 20 rounds (see appendix). Notice that the reliable broadcast runs

in a constant number of rounds, thereforelrb = Lrb = 3.

Message complexities differ if the communication ispoint-to-pointor broadcast. If the communication

is point-to-point, the message complexity of Bracha’s reliable broadcast isMrb = 2n2 + n and the expected

6The binary consensus protocol by Bracha has also an expected number of rounds ofO(1) if f = O(
√

n), but O(2n−f ) other-

wise [9].
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Protocol Best time complexity Expected time complexity

Multi-valued consensus lmvc = 2lrb + lbc = 16 Lmvc = 2Lrb + Lbc = 26 = O(1)

Vector consensus lvc = lrb + lmvc = 19 Lvc = Lrb + (f + 1)Lmvc = O(f)

Atomic broadcast lab = lrb + lvc = 22 Lab = Lrb + Lvc = O(f)

Table 1: Time complexities of the three protocols (asynchronous rounds).

Protocol Expected message complexity Expected message complexity

(point-to-point) (broadcast)

Multi-valued consensus Mmvc = 2nMrb + Mbc = O(n3) M ′
mvc = 2nM ′

rb + M ′
bc = O(n2)

Vector consensus Mvc = nMrb + (f + 1)Mmvc = O(fn3) M ′
vc = nM ′

rb + (f + 1)M ′
mvc = O(fn2)

Atomic broadcast Mab = Mrb + Mvc = O(fn3) M ′
ab = M ′

rb + M ′
vc = O(fn2)

Table 2: Message complexities of the three protocols (messages).

message complexity of the binary consensus in the appendix isMbc = 12n3 + 8n2. If the messages are

broadcast, these complexities are respectively:M ′
rb = 2n + 1 andM ′

bc = 12n2 + 8n. The expected message

complexity of our multi-valued consensus corresponds to2n executions of the reliable broadcast plus one

binary consensus (Table 2):

Mmvc = 2nMrb + Mbc = 16n3 + 10n2 = O(n3) (2)

M ′
mvc = 2nM ′

rb + M ′
bc = 16n2 + 10n = O(n2) (3)

These complexities can be reduced by merging or piggy-backing some messages in others.

Vector consensus. The vector consensus protocol runs in the best case in one round, in the worst inf + 1

rounds (e.g., ifn = 4, f = 1, the protocol terminates in one or two rounds). In the best case the loop in lines

3-8 will be executed only once so the time complexity will be the sum of those of the reliable broadcast (line

2) and the multi-valued consensus (line 6). If the protocol does not terminate in the end of the first round, it is

reasonable to expect that all VCINIT messages reliably broadcast will be delivered during the first execution of

MV Consensus , since this consensus involves several rounds of message exchange (two reliable broadcasts

plus one binary consensus). This would make the protocol terminate in the second round. However, if we make

the (pessimistic) assumption that the malicious processes control the communication, then they can schedule

the messages in such a way that they delay the protocol a maximum off rounds. Therefore, the expected time

complexity of the algorithm isO(f):

Lvc = Lrb + (f + 1)Lmvc = O(f) (4)
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The best case is the execution of a single multi-valued consensus with an execution of the best case of the

binary consensus:

lvc = lrb + lmvc = 19 (5)

The expected message complexities correspond ton executions of the reliable broadcast plusf + 1 multi-

valued consensuses:

Mvc = nMrb + (f + 1)Mmvc = 18n3 + 11n2 + 16n3f + 10n2f = O(fn3) (6)

M ′
vc = nM ′

rb + (f + 1)M ′
mvc = 18n2 + 11n + 16n2f + 10nf = O(fn2) (7)

Atomic broadcast. The time complexity of the atomic broadcast protocol is equivalent to one reliable broad-

cast (line 5) plus one vector consensus (line 9), therefore the expected number of rounds isO(f) per message:

Lab = Lrb + Lvc = O(f) (8)

The best time complexity is one reliable broadcast plus a best case execution of the vector consensus:

lab = lrb + lvc = 22 (9)

The expected message complexities depends on the amount of messages being transmitted. If only occa-

sional messages are sent, the expected message complexities are, respectively with point-to-point and broadcast

communication:

Mab = Mrb + Mvc = 18n3 + 13n2 + n + 16n3f + 10n2f = O(fn3) (10)

M ′
ab = M ′

rb + M ′
vc = 18n2 + 13n + 1 + 16n2f + 10nf = O(fn2) (11)

However, if messages go on arriving during a certain execution of the vector consensus protocol, in the

next round task T1 will try to make agreement on several messages instead of only one. Therefore this protocol

exhibits the virtuous characteristic that its number of messages decline considerably if the rate of transmissions

increases.

Tables 1 and 2 summarize the results for all protocols.

9 Related Work

The FLP impossibility result implies that any consensus protocol in a strictly asynchronous environment has to

be randomized. Most randomized consensus protocols presented in the literature are binary. An exception is

the multi-valued crash-tolerant protocol in [38]. Also for crash failures, there is one transformation from binary

23



to multi-valued consensus available [39]. Turpin and Coan presented a transformation from binary to multi-

valued consensus for Byzantine synchronous systems [40]. Toueg presented a transformation for asynchronous

systems [12]. The main difference of this transformation to Algorithm 1 is that Toueg uses signatures, therefore

its algorithm does not require a reliable broadcast primitive but a weaker echo broadcast protocol. His protocol

has optimal resilience, time complexityO(1), and lower message complexity than ours, but needs asymmetric

cryptography. Cachin et al. proposed a similar transformation, but the algorithm is based on voting the selection

of the value proposed by each successive process [31]. The protocol has optimal resilience, time complexity

O(1) and lower message complexity but uses public-key signatures and threshold cryptography. Several non-

randomized, Byzantine-resilient, asynchronous multi-valued consensus protocols have been proposed in the

literature [15, 34, 21, 22, 35]. Lower bounds on the number of rounds necessary for (Byzantine) consensus and

atomic broadcast have been defined in [41].

Interactive consistency was defined as the problem of agreeing on a vector with one value per correct

process [1]. However, in asynchronous systems it is not possible to differentiate slow from crashed processes,

and with a Byzantine fault model it might also be impossible to distinguish malicious from crashed processes.

Therefore, for Byzantine asynchronous systems the vector consensus problem was defined [20]. Two vector

consensus protocols based on failure detectors and one based in wormholes have been specified [20, 21, 26].

Recently, Ben-Or and El-Yaniv presented a randomized vector consensus protocol with optimal resilience,

time complexity O(1) and no signatures [32]. However, the message complexity is considerably higher than

ours, since the protocol runsn multi-valued consensus protocols in parallel, while ours runs, in the worst case,

n− (2f + 1) + 1 multi-valued consensuses.

For the crash fault model, some transformations from multi-valued consensus to atomic broadcast have

been defined [30, 18, 36]. Cachin et al. defined a transformation from multi-valued consensus to atomic broad-

cast for Byzantine faults with signatures [31]. Doudou et al. presented a transformation closer to ours [22].

It also uses signatures and it can have a higher communication complexity since it gives the full messages to

the consensus module, instead of hashes, which are generally smaller. Doudou and Schiper briefly discuss a

reduction of atomic broadcast to vector consensus [20].

A collection of randomized atomic broadcast protocols can be found in [42]. These protocols rely on

signatures to guarantee the authenticity of the messages and do not have optimal resilience. Other Byzantine-

resistant atomic broadcasts for asynchronous systems can be found in Rampart [19] that uses signatures and

SecureRing [43] that uses a signed token. BFT [6] does not use signatures when there are no faults, therefore

it is very efficient. Unlike ours, all these three protocols need a failure detector to put away corrupt processes.

Apart from the added complexity, the design of Byzantine failure detectors that are complete is still an open

research issue. D́efago et al. present an interesting classification of atomic broadcast protocols [44]. In terms of
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that classification, our protocol is adestination agreementalgorithm, i.e., processes receive messages without

ordering information and run agreements to order them.

10 Conclusion

This paper proposes a stack of intrusion-tolerant or Byzantine-resistant protocols. These protocols form a

coherent family, sharing effective and efficient structural properties: signature freedom, full asynchrony, decen-

tralization and optimal resilience.

The stack shows a series of protocol transformations: from binary consensus to multi-valued consensus;

from multi-valued consensus to vector consensus; from vector consensus to atomic broadcast. The objective is

to provide a modular set of protocols that a designer can use in practice in the construction of intrusion-tolerant

systems, especially in systems with limited resources like embedded environments. Therefore, the protocols

evade a set of characteristics that might constitute a shortcoming in a real system: the use of public-key sig-

natures, a known performance bottleneck in intrusion-tolerant systems; time assumptions, often vulnerable to

some attacks; the existence of leaders whose failure might be costly to detect.

The multi-valued consensus protocol terminates in a constant expected number of rounds. However, due to

the severe nature of malicious faults, vector consensus is more effective as a system building block for security-

related applications. The time complexity of the vector consensus proposed isO(f). The time complexity

of the atomic broadcast protocol is alsoO(f) (per message), although the average number of rounds can be

considerably lower if there are several messages being transmitted. Both the time complexities of the vector

consensus and atomic broadcast protocols are reduced toO(1) when all processes are correct. These results

look very promising.

Besides presenting the stack of protocols, the paper also proves the equivalence between multi-valued

consensus and atomic broadcast in the Byzantine failure model without signatures. A similar proof is given for

the equivalence between multi-valued consensus and vector consensus.
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sensus. Technical Report 200499.École Polytechnique F́ed́erale de Lausanne, Lausanne, Switzerland.

[42] Moser, L. E. and Melliar-Smith, P. M. (1999) Byzantine-resistant total ordering algorithms.Information

and Computation, 150, 75–111.

[43] Kihlstrom, K. P., Moser, L. E., and Melliar-Smith, P. M. (2001) The SecureRing group communication

system.ACM Transactions on Information and System Security, 4, 371–406.
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A A Binary Consensus Protocol

This appendix presents a Binary consensus protocol compatible with the properties we stated in the introduc-

tion: it does not use signatures; it is asynchronous (uses randomization to circumvent FLP); decisions are

taken in a decentralized way during the normal operation; it has optimal resilience,f = bn−1
3 c. Moreover, its

time complexity isO(1). The protocol is a version of Bracha’s protocol in [9] enhanced with thedual-threshold

coin-tossing schemeby Cachin, Kursawe and Shoup [14]. The protocol does not avoid public-key cryptography

entirely since the coin-tossing scheme is based on the Diffie-Hellman problem.
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The (n,k,f) dual-threshold coin-tossing schemeassumesn processes, at mostf of which can be corrupt.

The processes holdshares of a functionF mapping a coin nameC to its valueF (C) ∈ {0, 1}. The main

property of the scheme is that to construct the value of a coin, a process needsk coin sharesfrom different

processes, witht < k ≤ n− f . Here we consider the specific case ofk = n− f .

The scheme assumes atrusted dealerthat generates secret keysSK1, ..., SKn and verification keysV K,

V K1, ..., V Kn. The dealer gives every processpi a secret keySKi and all verification keys. A process uses

SKi to producecoin sharesand the verification keys to construct the values of coins. The existence of the

dealer does not collide with the protocol being decentralized (in the sense above), because the dealer has no

role during the execution of the protocol.

The modification of Bracha’s protocol is simple. Lets us define a coin nameC as a unique combination

of the consensus execution identifierbcid and the round numberr, e.g.,C = bcid + 1/r. In step 3, the

protocol may have to set a variableip to 1 or 0 with probability 1
2 [9]. The modification is to use the dual-

threshold coin-tossing scheme to give identical random numbers to all correct processes, i.e., coins with name

C. More precisely, the line of Bracha’s protocol that setsip to 1 or 0 is substituted by the step 4 of the ABBA

protocol [14]. After that step,ip is set to the value of coinC.

This protocol avoids the use of digital signatures and threshold signatures of the original protocol in [14]

at the cost of additional rounds of message exchange. However, the expected time complexity is stillO(1), or

more precisely (considering the reliable broadcast in [9]):

Lbc = 6Lrb + 2 = 20 (12)

In the best case the protocol runs in a single round:

lbc = 3lrb + 2 = 10 (13)

The expected message complexities areMbc = 12n3 +8n2 = O(n3), with point-to-point communication,

or M ′
bc = 12n2 + 8n = O(n2), with broadcast communication. However, several messages of the executed

reliable broadcast might be merged or piggy-backed, thus reducing these numbers.
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