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Abstract 

Sulfur Mustard (SM) is the most widely used chemical weapon. It was used in World War 1 and 

in the more recent Iran-Iraq conflict. Genetic toxicity and DNA alkylation effects of SM in 

molecular and animal experiments are well documented. In this study, lymphocytic telomere 

lengths and serum levels of isoprostane F2α were measured using q-PCR and enzyme 

immunoassay-based methods in 40 Iranian veterans who had been exposed to SM between 1983-

88 and 40 non-exposed healthy volunteers. The relative telomere length in SM-exposed 

individuals was found to be significantly shorter than the non-exposed individuals. In addition, 

the level of 8-isoprostane F2α was significantly higher in the SM-exposed group compared to 

controls. Oxidative stress can be caused by defective antioxidant responses following gene 

mutations or altered activities of antioxidant enzymes. Chronic respiratory diseases and 

infections may also increaseoxidative stress. The novel finding of this study was a the 

identification of ‘premature ageing phenotype’. More specifically, telomere shortening which 

occurs naturally with aging is accelerated in SM-exposed individuals. Oxidative stress, mutations 

in DNA repair genes and epimutaions may be among the major mechanisms of telomere attrition. 

These findings may help for a novel therapeutic strategy by telomere elongation or for validation 

of an exposure biomarker for SM toxicity. 
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1. Introduction 

Sulfur mustard (SM) is a highly toxic chemical warfare agent which was widely used in World 

War One and during the Iran-Iraq conflict from 1983-88 [1]. There are different reports of long-

term health effects, organ damage and cancer progression after a single exposure to SM [1-4]. 

Genotoxic and mutagenic properties of SM  are well-documented in molecular and animal 

experiments [5] but  only few studies focused on the potential delayed genotoxicity of SM in 

human beings. The critical issue is how a single exposure to SM can lead to chronic 

inflammatory and degenerative diseases many years after exposure. A variety of cancers were 

reported in chemically injured individuals with a history of exposure to SM in the First World 

War and in the Iran-Iraq conflict, which indicates that genetic  change takes place in SM-exposed 

individuals [3, 4, 6]. These findings may lead to continuing/ongoing genetic instability in 

exposed individuals. The toxicity of SM was postulatedto be mediated by alkylation of DNA and 

proteins, although the precise mechanisms are not clear yet. DNA damage induced by SM has 

been previously shown in vitro after acute exposure [7-9] and in peripheral lymphocytes of 

Iranian veterans many years after exposure, with the latter being consistent with ongoing genetic 

instability [10].  

Telomeres are unique DNA-protein structures containing noncoding hexanucleotide repeats 

(TTAGGG) which serve as protective caps at the ends of chromosomes. These specialized 

structures are essential to maintain genomic integrity [11]. They play an important role in 

preserving chromosome stability and telomere shortening is considered to be associated with 

cellular senescence, aging and mortality [12]. Progressive shortening of telomeres can lead to 

apoptosis or oncogenic transformation of somatic cells, affecting the health and lifespan of an 
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individual. Shorter telomeres than normal, have been associated with cellular stress (including 

reactive oxygen species) and increased incidence of disease and poor survival [13].  

It wasproposed that the cytotoxicity of SM is predominantly due to DNA/protein alkylation, as 

well as an increase in the level ofreactive oxygen species (ROS). SM forms a highly reactive 

carbonium ion which reacts with DNA, proteins and other biological molecules such as 

glutathione. Glutathione depletion increases the level of ROS production [14]. Furthermore, 

conversionof ROS to highly toxic oxidants can cause lipid peroxidation in membrane 

phospholipids, leading to loss of membrane functions [15]. Stimulation of poly(ADP-ribose) 

polymerase-1 (PARP-1) following SM-induced DNA damage leads to consumption of cell 

energy and generation of reactive oxygen species [16].  

To increase our understanding of the toxic mechanism of SM and how this might contribute to 

the long-term health issues after exposure, this study investigated telomere length as a potential 

novel target of SM toxicity.  The findings demonstrate accelerated telomere shortening and 

increased levels of oxidative stress in a SM-exposed population compared to non-exposed 

controls. 

2. Materials and Methods 

2.1 Study Population 

The study was a historical cohort investigation with Iranian veterans who were exposed to SM 

between 1983 and 1988. It was not possible to estimate individual SM exposure levels,  therefore 

they were categorized in three different groups as: Mild (25-40%), Moderate (40-70%), and 

Severe (>70%), based on veterans’ current health status and the severity of SM toxicity-induced 

disability [10]. Briefly, the classification method was mainly based on the chronic health effect 

of exposure to SM in three organs which are the most common targets of SM exposure: 
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respiratory system, eyes and skin. [10, 17]. The evaluation of the respiratory system, eyes and 

skin injuries was based on guidelines that was reported in the previous studies [18, 19]. The 

study group was 40 male veterans (age 35–74 y) with disability of >25% due to complications of 

SM poisoning. Controls were veterans’ male relatives as non- SM-exposed healthy volunteers. 

For those who didn’t have male relatives, healthy participants with no exposure to SM, were 

selected to achieve 40 control cases. Since smoking is associated with accelerated telomere 

shortening [13], the cases and controls were matched 1:1 on aging (±1) and smoking (up to 25% 

pack/year). The study was approved by the Research Ethics Committee of Mashhad University 

of Medical Sciences (E.C.151/88787) and conducted in accordance with the Declaration of 

Helsinki and guidelines on Good Clinical Practice. Written and signed informed consents were 

obtained from all participants of the study. All the following laboratory experiments were 

repeated three times in duplicates. 

2.2 Telomere Length Measurement using relative comparative real time PCR 

Three milliliters of whole blood sample were collected in EDTA contained venoject tubes from 

each individual and genomic DNA was extracted from buffy coat using the QIAamp DNA Mini 

kit (Qiagen, Chatsworth, CA). The amounts of leukocyte DNA were quantified using a 

Nanodrop2000 spectrophotometer (Thermo Scientific, USA). Total DNA was then kept at -80 ̊C 

until further use. Leukocyte telomere length was measured in blood genomic DNA using the 

quantitative real-time PCR [20, 21]. To standardize the experiments, which run at different times 

and to eliminate the differences between experiments, a pooled DNA was prepared. Five 

microliters of each control samples were mixed and the amount of DNA was quantified and 

aliquoted. In each experiment, a dilution series (1:4) of pooled DNA ranging from 8 ng/μl to 0.5 

ng/μl were run and fresh standard curve was created. Single-copy gene human β-Globin (HBG) 



6 

 

was used to normalize the sample-to-sample variation in template DNA. All PCRs were 

performed on a Step One Thermal Cycler (Applied Biosystems, USA). 

The PCR primer sequences used in PCR reactions are presented in Table 1 [22]. 

Each10 μl of single copy gene reaction contained 300 nM and 700 nM of the forward and reverse 

human β-Globin primers (HBG) (Metabion International AG, Germany), respectively, and 5 μl 

of 2 × Power SYBR® Green PCR Master Mix (Applied Biosystems, USA). The following 

temperature profile was applied: initial denaturation step of 95°C for 10 min, followed by 40 

cycles of 95°C for 15s, 58°C for 20s, and 72°C for 28 s. Each 10 μl of telomere reaction 

contained 100 nM and 900 nM in the forward and reverse Tel primers (TEL) (Metabion 

International AG, Germany), respectively, 5 μl of 2 × Power SYBR® Green PCR Master Mix 

(Applied Biosystems) and 0.3 μl of DMSO PCR Reagent (Merck, Germany). The PCR profile 

for telomere (TEL) amplification was: initial denaturation step of 95°C for 10 min, followed by 

40 cycles of 95°C for 15 s, and 54°C for 2 min. Each plate was composed equally of 

interdigitated cases and controls, and included negative control wells (containing no DNA). At 

the end of each reaction, a melting curve was obtained for both TEL and HBG PCRs. 

2.3 Oxidative Stress Measurement 

The measurement of the concentrations of F2-isoprostane (sum of esterified and non-esterified 

isomers) in serum was carried out as described previously [23] with some modifications. Serum 

was collected by centrifugation of coagulated blood at 2500 X g for 10 min and collecting the 

supernatant. To hydrolyze esterifies lipids, the serum samples were treated with KOH at the ratio 

of 4:1 at 45 °C for 2 hours. Thereafter, the samples were neutralized by addition of HCl (0.1 

mol/L), and the pH was adjusted to 3.5 with NaOH (1 mol/L). The samples were centrifuged at 

500 × g at 5°C for 15 min, and the supernatants were removed for the measurement of 
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Isoprostane F2α using direct 8-iso-Prostaglandin F2α kit (Assay designs, USA). The 

concentration of total Isoprostan F2α in each sample was recorded as pg/ml. Each sample was 

tested in duplicate. 

2.4 Statistical Analysis 

Statistical analyses were performed using SPSS version 15 (Chicago, USA). Data were analyzed 

for normality and demographic distribution of the groups by means of student's t test and 

expressed as mean ± SEM. SEM of relative telomere length for each exposure category were 

calculated with generalized linear regression models, adjusted for age (± 1 year) and cigarette 

smoking (pack/day/year). Association between telomere length and age was determined by 

Pearson correlation test. The Association between relative telomere length and level of 

Isoprostane with severity of chemical injury was measured using ANOVA with post-test Tukey. 

A P-value <0.05 was considered significant. 

3. Results 

3.1 Demographic information 

General information of the patients were summarized as shown in Table 2. In this study, controls 

and SM exposed individuals were matched by age (± 1 year) and cigarette smoking (pack-years) 

and were similar for these characteristics and therefore, controls and patients did not differ 

significantly in age mean ± SEM (44.37± 9.70 and 46.85 ± 6.31 respectively). 

3.2 Relative Telomere lengths 

Telomere length was determined in DNA isolated from peripheral blood leukocytes as the T/S 

ratio (Telomere to Single copy gene), using a relative comparative qPCR method [24] with a 

78mer TTAGGG repeat as a standard curve (Absolute).  



8 

 

The results showed that the relative telomere length in SM-exposed veterans was significantly 

lower than non-exposed controls; (Mean ± SD: 0.80 ± 0.06 vs. 1.02 ± 0.01, P< 0.05, Figure 1) 

(Mean Age ± SEM 46.85 ± 6.31, N = 40) (Mean Age ± SEM 44.37 ± 9.7, N = 40). P value is 

based on the student t-test and *P < 0.05 is considered significant. We divided the veterans to 

three different categories as mild (25-40 %) (n=18), moderate (40-70 %) (n=10) and severe (>70 

%) (n=12) disability. Mean relative telomere length in lymphocyte DNA in SM exposed 

individuals with the history of severe toxicity and the highest disability (>70%) had shorter 

telomeres compared to mild and moderate injury groups and non-exposed controls (*P< 0.05, 

Figure 1). Data are expressed as Mean± SEM and P value is based on ANOVAs with post-hoc 

Tukey-Kramer and *P < 0.05 is considered significant. 

There was an inverse correlation between T/S and age. The association of telomere length with 

age in SM exposed individuals were significant (r= -0.39, P<0.05), while this association for 

healthy controls was near to be significant (r=-0.22, P= 0.08). Data represents the relationship 

between mean telomere lengths (T/S ratio from qPCR) of DNA samples prepared from 

lymphocytes of SM exposed individuals with age (Figure 2).  

3.3 Oxidative stress  

Direct 8-iso-Prostaglandin F2α Enzyme Immunoassay kit (Assay designs, USA) was used to 

determine levels of isoprostanes which is correlated to the levels of oxidative stress in both SM-

exposed and control groups. The results shows that levels of 8-isoprostane F2α in serum of SM 

exposed group are significantly higher compared to the controls (429 pg/ml and 198 pg/ml, 

respectively) (*** P<0.001) (Figure 3). Also, we observed a significant relationship between 

severity of SM toxicity and serum level of isoprostane, asshown in Fig.3.  

4. Discussion 
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SM is the most used chemical weapon and its genotoxic effects (predominantly via 

monofunctional and bifunctional DNA adduction) have been confirmed in several in vitro, in 

vivo, and clinical studies. [25]. 

In order to find suitable diagnostic tools and possible therapeutic options for SM toxicity, it is 

necessary to have a detailed understanding of the molecular mechanisms mediating SM 

genotoxicity and the associated cellular response. In vitro studies have shown that telomeres are 

highly susceptible to oxidative stress. Oxidative stress-mediated DNA damage is an important 

determinant of telomere shortening [26]. Kawanishi showed an accelerated telomere shortening 

in human cell cultures induced by oxidative stress and formation of 8-oxodG at the GGG triplet 

in the telomere sequence has been revealed [27]. 

Our findings indicate that exposure to SM results in telomere shortening and increased oxidative 

stress in human beings. In this study, mean relative telomere length in the SM exposed 

individuals was lower compared to the healthy controls. To the best of our knowledge, this is the 

first report elucidating an association between shortening of telomere length and SM toxicity in 

human subjects. Our investigation shows that the inverse relationship between telomere length 

and age is even more significant after SM exposure, indicating accelerated aging phenotype after 

SM exposure. However,  it is likely that theresponses vary between individuals due to the genetic 

background and environmental factors. The accelerated telomere shortening/cell aging could be a 

novel causative factor for the delayed health effects and organ degeneration observed in SM-

exposed individuals.  

A possible explanation for the mechanisms of delayed toxicity would be epigenetic perturbations 

caused by SM exposure.  The epigenotype can be transmitted to daughter cells maintaining a 

specific epigenotype within the cell lineages. Mutations of genes involved in DNA methyl 
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transferase (DNMT) synthesis and histone deacetylases (HDAC) due to SM exposure, may lead 

to gene malfunction in SM-exposed cells. Although this is a speculative hypothesis at this stage, 

SM may change the activity of important enzymes involved in epigenetic regulation such as 

HDAC and suppress DNMT, leading to epigenetic perturbations. DNMT and HDAC are 

responsible for p53 regulation, as well as many antioxidants and anti-inflammatory products; and 

mutation in these enzymes could be responsible for p53 activation and increasing oxidative stress 

[16]. This may explain delayed SM complications, genotoxicity and even cancer.  

Previous studies showed a decrease of the activities of certainantioxidant enzymes and an 

increased oxidative stress in peripheral lymphocytes of Iranian veterans who were exposed to 

SM. [28, 29]. In this study, the level of Isoprostane F2α was measured in the serum of the 

patientsas a marker of oxidative stress. Isoprostanes are biologically active and long-lasting 

chemicals which are produced in high quantities during oxidative stress [30] and currently 

considered as a useful measure of oxidative injury in vivo [31].  

There could be a possible correlation between telomere length and oxidative stress, which 

shouldbe investigated in future studies. It is notable that the level of 8- Isoprostane F2α, a marker 

of oxidative stress, was significantly higher in SM group compared to the controls. Using a 

chemical analogue of SM in mice can induce general oxidative stress and activation of 

transcription factors such as NF-Kappa B through the MAPK pathway [32]. In a study with 250 

SM-exposed veterans, significant glutathione depletion was observed. Furthermore, a correlation 

was detected between glutathione-related enzyme activity and pulmonary disorders due to SM 

exposure [2, 29]. It was found that chronic exposure to SM in rats, decreases glutathione 

reductase and glutathione peroxidase activity and increases lipid peroxidation [33]. As an 

alternative mechanism, chronic respiratory diseases, infections and common health problems in 
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SM-exposed veterans, may lead to greater levels of oxidative stress. Increased levels of IgM, 

disruption in cellular and humeral immunity and increased interleukin 1, 2 (twenty years after 

single exposure to SM) are other signs of progressive and chronic effects of SM toxicity, which 

can cause oxidative stress [1]. Oxidative stress can induce different types of DNA damage 

including base oxidation, as well as DNA single- and double-strand breaks. (SSBs and DSBs, 

respectively) [34]. An increased level of DNA damage has been shown previously in SM 

exposed individuals using comet assay [10]. Oxidative stress is the most possible cause for such 

DNA damage and our current findings support our previous results.  

Telomeres typically shorten with aging by a few dozen to hundreds of base pairs  per cell 

division [35]. Compared with aging, oxidative stress is considered to be a more important cause 

of telomere shortening [27]. Telomere contains Guanine rich regions and GGG repeats which are 

highly sensitive to oxygen species. Therefore, telomeric DNA is a preferential target for 

oxidative damage [36]. Accelerated telomere shortening in SM-exposed individuals may lead to 

premature cell senescence and can therefor cause degenerative disorders to be developed sooner 

than in normal cells/non-exposed individuals. If the telomere shortening induced by SM, persists 

occurrs at the time of exposure, would be permanent and would mean that the normal telomere 

shortening which occurs with aging would take less time to reach a critical point (Fig. 2).  This 

would manifest itself as a ‘premature ageing phenotype’ and this hypothesis is supported by 

thefindings of the present study; showing an increased rate of age-related telomere shortening in 

SM-exposed individuals compared to non-exposed controls. Interestingly, there was a significant 

association between telomere shortening and severity of SM disability, which confirms the 

accelerated telomere shortening after single exposure to SM and a dose-dependent correlation. 

Adose-dependent relationship was also observed between severity of disability and levels of 
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oxidative stress marker, although it was not statistically significant. In a study with the same 

group of patients, increased DNA damage was detected in lymphocytes from SM-exposed 

individuals using the comet assay [2]. Mutations in DNA repair genes following exposure to SM 

has been proposed as a possible reason for this DNA damage [10]. Such mutations may also 

occur in the epigenetic system. Apart from genetic factors, telomeres are under epigenetic 

control [37, 38]. Mammalian telomeres contain nucleosomes and can be subjected to many types 

of histone modifications such as acetylation, methylation and phosphorylation [39]. Changes in 

either histone modification at the telomeres or DNA methylation at subtelomeres are associated 

with telomere length deregulation [40].  

It is known that disturbs the epigenetic environment of transcription factors such as NF-κB, AP-1 

and pro-inflammatory genes such as TNF-α and ILs. It has been shown that epigenetic modifiers 

have an influence on gene expression in the pathogenesis of SM-induced lung toxicity [16]. 

Furthermore, inflammatory reactions induce oxidative stress. TNF-α significantly decreases 

telomerase activity and reduces telomere length in leukemic cells [41]. Therefore, oxidative 

stress and chronic inflammation may be among the major mechanisms of telomere attrition.  

According to our findings, SM can cause DNA damage, oxidative stress, gene silencing and 

expression of some proteins. It will be interesting to investigate the mechanisms mediating the 

increased levels of oxidative stress in SM-exposed individuals.  

5. Conclusion 

In conclusion, we found shorter telomere length and increased levels of a biomarker of oxidative 

stress in veterans many years after their exposure to SM. These findings confirm delayed 

genotoxicity of SM in patients over 25 years after single exposure to SM. Accelerated aging after 

SM was another novel finding of this study, which may contribute to chronic and progressive 
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organ damage/dysfunction and different cancers many years after SM exposure. There has long 

been an interest in manipulating telomere length in cancer and age-related disease. Although a 

long way down the line, it can be considered that these findings may help for a novel therapeutic 

strategy for SM toxicity utilizing telomere elongation methods.  
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Fig. 1-Relative telomere length in SM exposed individuals and non-exposed controls and 

based on disability percentages due to complications of SM poisoning. The Mean relative 

telomere length in lymphocyte DNA in SM exposed individuals were significantly shorter (mean 

age ± SEM 46.85 ± 6.31, N = 40) than non-exposed controls (mean age ± SEM 44.37 ± 9.7, N = 

40). P value is based on the student t-test and *P < 0.05 is considered significant. The mean 

relative telomere length in lymphocyte DNA in SM exposed individuals in three different 

categories as mild (25-40 %)(n=18), moderate (40-70 %)(n=10) and severe (>70 %)(n=12) 

disability and controls. SM exposed individuals in the group of severe injury have significantly 

shorter telomeres compared to mild and moderate injury groups and non-exposed controls. Data 

are expressed as Mean± SEM and P value is based on ANOVAs with post-hoc Tukey-Kramer 

and *P < 0.05 is considered significant. 
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Fig. 2- Correlation between mean telomere length and age in SM exposed individuals. Each 

point represents an individual (Pearson correlation test) (r= -0.39, P < 0.05). 
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Fig. 3- Concentration of 8-isoprostane F2α in serum samples of SM exposed individuals and 

non-exposed controls and based on disability percentages due to complications of SM 

poisoning. 
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Table1: Primer sequences used for Real time-PCR assay. 

Sequence Primer Gene 

(5’-CGGTTTGTTTGGGTTTGGGTTTGG GTTTGGGTTTGGGTT-3’) 

(5’-GGCTTGCCTTACCCTTACCCTTAC CCTTACCCTTACCCT-3’) 

Forward 

Reverse 
Telomere 

(5’-CTTCTGACACAACTGTGTTCACTAGC-3’) 

(5’-CACCAACTTCATCCACGTTCACC-3’) 

Forward 

Reverse 
HBG 

 

 

 

Table 2: Demographic characteristics of patients with delayed complications of sulfur 

mustard poisoning with different severity of disability (mild, moderate and severe) and the 

control group. 

Parameter Control SM Exposed Individuals P value 

Number 

Mild 

Moderate 

Severe 

40 

- 

- 

- 

40 

18 

10 

12 

 

Sex Male Male  

Age 44.37 ± 9.7* 46.85 ± 6.31 0.185 

Pack-years of smoking 6.65 ± 4.15 8.25 ± 5.50 0.12 

*Mean ± SD 

Student t test for difference in medians 

   

 

 

 


