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Abstract

The coronavirus disease 2019 (COVID-19) pandemic is caused by a novel

betacoronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-

2), similar to SARS-CoV and Middle East respiratory syndrome (MERS-CoV),

which cause acute respiratory distress syndrome and case fatalities. COVID-19

disease severity is worse in older obese patients with comorbidities such as dia-

betes, hypertension, cardiovascular disease, and chronic lung disease. Cell

binding and entry of betacoronaviruses is via their surface spike glycoprotein;

SARS-CoV binds to the metalloprotease angiotensin-converting enzyme

2 (ACE2), MERS-CoV utilizes dipeptidyl peptidase 4 (DPP4), and recent

modeling of the structure of SARS-CoV-2 spike glycoprotein predicts that it

can interact with human DPP4 in addition to ACE2. DPP4 is a ubiquitous

membrane-bound aminopeptidase that circulates in plasma; it is

multifunctional with roles in nutrition, metabolism, and immune and endo-

crine systems. DPP4 activity differentially regulates glucose homeostasis and

inflammation via its enzymatic activity and nonenzymatic immunomodulatory

effects. The importance of DPP4 for the medical community has been

highlighted by the approval of DPP4 inhibitors, or gliptins, for the treatment of

type 2 diabetes mellitus. This review discusses the dysregulation of DPP4 in

COVID-19 comorbid conditions; DPP4 activity is higher in older individuals

and increased plasma DPP4 is a predictor of the onset of metabolic syndrome.

DPP4 upregulation may be a determinant of COVID-19 disease severity, which

creates interest regarding the use of gliptins in management of COVID-19.

Also, knowledge of the chemistry and biology of DPP4 could be utilized to

develop novel therapies to block viral entry of some betacoronaviruses, poten-

tially including SARS-CoV-2.
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Highlights

• Coronavirus disease 2019 (COVID-19) is caused by SARS-CoV-2; recent

modeling of the structure of SARS-CoV-2 spike glycoprotein, which medi-

ates viral-host-cell entry, predicts interactions with dipeptidyl peptidase

4 (DPP4) in addition to angiotensin-converting enzyme 2.

• Increased DPP4 expression and activity are associated with diabetes, obesity,

and metabolic syndrome, all of which have been reported to influence

COVID-19 severity.

• DPP4 inhibitors (gliptins), which vary in their interactions with the active

site of the enzyme, may have immunomodulatory and cardioprotective

effects that could be beneficial in COVID-19 cases.

1 | INTRODUCTION

The rampant new clinical infectious disease that emerged
in late 2019 and rapidly became a world pandemic is cau-
sed by a novel betacoronavirus; the disease is now called
COVID-19 (Coronavirus Disease 2019). The natural res-
ervoir of these enveloped, single-stranded positive-sense
RNA viruses is thought to be bats. The zoonotic potential
of betacoronaviruses is well recognized, with species such
as pangolins, the most illegally trafficked mammal,1

civets, and dromedary camels serving as intermediate
hosts. The sudden emergence and spread of COVID-19 is
similar to severe acute respiratory syndrome (SARS)—
a related disease that appeared in 2002 in Asia.2

Nearly a decade later in 2012 another respiratory syn-
drome erupted in the Middle East, Middle East respi-
ratory syndrome (MERS), which was also caused by
zoonotic transmission of a coronavirus.3 The cor-
onaviruses that cause these 21st century clinical respi-
ratory syndromes are now classified as SARS
coronavirus (SARS-CoV), MERS coronavirus (MERS-
CoV), and SARS-CoV-2.

In SARS and MERS cases a number of risk factors
were noted to be associated with progression to acute
respiratory distress syndrome (ARDS), especially
advanced age and male sex. For MERS, additional risk
factors included chronic conditions such as diabetes
mellitus, hypertension, cardiac diseases, and obesity.4

A similar picture is emerging with COVID-19. An anal-
ysis of 46 248 SARS-CoV-2 infected patients found that
the most prevalent comorbidities were hypertension
and diabetes, followed by cardiovascular diseases and
respiratory system disease. Compared with the nonse-
vere patient, the pooled odds ratios (OR) of hyperten-
sion/diabetes, respiratory system disease and
cardiovascular disease in severe patients were OR 2.36,
OR 2.46, and OR 3.42 respectively.5 Another meta-

analysis of six Chinese studies showed the highest odds
ratio (5.97) for COVID-19 in patients with preexisting
chronic obstructive pulmonary disease (COPD).6,7 Sim-
ilarly, a report of 72 314 confirmed and suspected cases
of COVID-19 published by the Chinese Centre for Dis-
ease Control and Prevention showed increased mortal-
ity in people with diabetes (2.3%, overall in 44 672
confirmed cases and 7.3% for patients with diabetes).8

Italian COVID-19 patients show similar comorbidities;
more than two-thirds of the COVID-19 case fatalities
had diabetes, cardiovascular diseases, cancer, or were
former smokers.9 Older age and male sex have also been
confirmed as important factors in disease severity in a
recent meta-analysis.10 Clinical features of severe
COVID-19 include not only acute lung injury but also
acute cardiac injury and heart failure, irrespective of
whether the patient has a history of hypertension.11

Acute kidney injury was also associated with mortality
in 25% of these 113 deceased COVID-19 patients. The
disease can rampage throughout the body, with gastro-
intestinal symptoms such as diarrhea and seizures in
some severe patients.

The course of any acute viral infection is deter-
mined by host factors including the immune response
and viral strategies to evade that response to establish
primary and rapid replication (Figure 1).12,13 In both
SARS and MERS the viral load in those with severe ill-
ness was higher than in those with mild disease, and
viral shedding in respiratory secretions was more pro-
longed.14 This implies that the balance was tipped
toward the virus in those with comorbidities. Initial
interactions between a virus and host cell are required
for productive viral infection and initiation of the
viral life cycle. Thus, the host factors required for
SARS-CoV-2 - host interactions during attachment,
binding, and entry are important not only in vaccine

650 BASSENDINE ET AL.



development but also in disease pathogenesis and
treatment.

1.1 | Coronavirus (CoV) entry via the
spike glycoprotein

Coronavirus entry is via the spike (S) protein, a type I
transmembrane glycoprotein, which contains an N-
terminal S1 subunit receptor binding domain (RBD) and
a C-terminal S2 subunit domain that enables membrane
fusion. Binding by the S-protein to a receptor causes a
conformational change that is necessary for activation by
host cell proteases, and both steps are essential for coro-
navirus infection of a cell.15

At the cell surface, a type II transmembrane serine
protease, TMPRSS2, activates the SARS coronavirus S
protein such that it can then bind to the metalloprotease
angiotensin-converting enzyme 2 (ACE2)16,17; these pro-
teases are co-expressed by type II pneumocytes.
TMPRSS2 dependency occurs in both SARS-CoV and
SARS-CoV-2. This is important as TMPRSS2 inhibitors,
for example, Camostat, that are already licensed for other
indications could be repurposed as antiviral therapy.17,18

Camostat is being evaluated in Phase I and II clinical

trials (ClinicalTrials.gov Identifier: NCT04321096), with
an upper age limit of 110 years to encompass older adults
at risk of severe disease. Trials with Nafamostat mesylate
(Fusan), licensed in Japan for treatment of acute pancrea-
titis, are due to start at the University of Tokyo.

MERS-CoV on the other hand utilizes dipeptidyl-
peptidase 4 (DPP4), also termed cluster of differentiation
26 (CD26), as its main entry receptor.19,20 The tetraspanin
CD9 facilitates MERS-CoV entry by scaffolding host cell
receptors including DPP4.21 MERS-CoV infection is
mediated by the binding of its S1 protein to the
β-propeller domain of DPP4; there are 11 critical residues
within the β-propeller domain that directly interact with
the S1 protein of the virus (reviewed in22). Species per-
missivity to MERS-CoV is governed by both protein
sequence and the variable glycosylation of DPP4.23 Adap-
tive evolution of the MERS-CoV spike protein has been
demonstrated to occur by multiple paths in vitro all of
which alter the surface charge of the spike.24 Human
adenosine deaminase (ADA), which binds to extracellu-
lar DPP4 of all mammals except rodents,25,26 has been
shown to compete for MERS-CoV binding, acting as a
natural antagonist for MERS-CoV infection.27

The interaction of MERS-CoV spike protein with
DPP4 involves not only the RBD in domain B of the S1

FIGURE 1 The course of any acute viral infection is a balance between viral strategies to establish rapid replication and immune

strategies to control infection (adapted from12). Studies of coronavirus disease 2019 (COVID)-19 cases consistently show that preexisting

chronic conditions—hypertension, diabetes, chronic obstructive pulmonary disease, and cardio/cerebrovascular disease—increase the odds

of severe disease.7 Dipeptidyl peptidase 4 (DPP4) dysregulation may be a contributory factor to case fatalities, raising the question of the role

of DPP4 inhibitors in COVID-19 management

BASSENDINE ET AL. 651

http://ClinicalTrials.gov


subunit but also interactions of domain A with sialylated
receptors that facilitate viral entry into airway epithelial
cells. It is suggested that this additional attachment factor
may also be a determinant of tissue and host tropism.20

The number of sialylated DPP4 isoforms isolated from
human peripheral blood mononuclear cells increases sig-
nificantly with age greater than 40 years.28 That study
also found that hypersialylation of DPP4 modifies its sur-
face charge, promoting binding of human immunodefi-
ciency virus (HIV) peptides such that certain HIV
moieties are likely to engage this phenomenon as an aux-
iliary adhesion mechanism to fuse with cells.

Recent modeling of the homotrimer structure of
SARS-CoV-2 spike protein predicts that the S1 domain
binds to human DPP4.29 The model demonstrated a large
binding interface between the SARS-CoV-2 S1 glycopro-
tein and DPP4 suggesting a tight interaction. It might be
that this binding is influenced by the sialylation of DPP4,
discussed previously. Other studies have not shown that
SARS-CoV-2 binds to DPP4 but have shown that
betacoronaviruses are capable of entering human cells
through an unknown receptor.30 There are thus impor-
tant commonalities between coronaviruses in relation to
the first step in the viral life cycle, host cell binding and
entry. This review focuses on DPP4 as its expression may
be a factor in determining the balance between virus and
host in COVID-19 and can potentially be linked to some
of the known comorbidities.

2 | DIPEPTIDYL-PEPTIDASE 4

The abundant ubiquitous DPP4 protein was first isolated
in the 1970s and is now well characterized. It is a 110 kDa
glycoprotein, a membrane-bound aminopeptidase that
preferentially cleaves peptides containing a proline or ala-
nine residue in the penultimate amino-terminal position.
The extracellular domain of homodimeric DPP4 is often
cleaved from cell membranes and circulates in plasma,
where it remains enzymatically active. DPP4 is
multifunctional with roles in nutrition, metabolism, the
immune and endocrine systems, bone marrow mobiliza-
tion, cancer growth, and cell adhesion. The importance of
DPP4 for the medical community has been highlighted by
the approval of DPP4 inhibitors for the treatment of type
2 diabetes mellitus (T2DM) (reviewed in31).

2.1 | Tissue distribution of DPP4 and
dysregulation in disease(s)

The clinical features of COVID-19 reflect the ability of
SARS-Cov-2 to infect different tissues and their

constituent cells, which in turn echoes the expression of
viral attachment/binding receptors. Although ACE2 is
expressed on pneumocytes and enterocytes of the small
intestine,32 a recent study has shown that the expression
on alveolar type 2 cells is rather low compared to other
cells expressing ACE2, raising the possibility that SARS-
CoV-2 utilizes coreceptors.33 That study demonstrates
ACE2 expression is high in kidney and intestine (esopha-
gus, stomach, ileum, colon, and rectum) and is correlated
with expression of other peptidases that are used as entry
receptors by coronaviruses. DPP4 was found to be the
first gene clustered with ACE2 and, as modeling suggests
a tight interaction between SARS-CoV-2 S1 and DPP4,29

the tissue distribution of DPP4 is relevant.
In the natural reservoir of betacoronaviruses, bats,

DPP4 is in epithelial cells of both the respiratory and the
intestinal tract of frugivorous bats, similar to humans,
but in insectivorous bats it is preferentially expressed in
the intestinal tract.34 This suggests that in some bat spe-
cies the mode of transmission is via the fecal-oral route.
Hence differences in the distribution of DPP4 expression
among MERS-CoV susceptible species might influence
virus tropism, pathogenesis, and transmission route.

In humans the most intense expression of DPP4 is in
salivary gland, kidney, seminal fluid, and liver (Figure 2).
DPP4 is also high in enterocytes, particularly colonic
enterocytes, as well as blood vessel capillaries, lung epi-
thelium, and immune cells (activated T, B, and natural
killer cells and myeloid cells). The level of expression
depends on the cell type, differentiation state, and/or the
activation state.35,36 DPP4 activity is in saliva of humans
and ferrets37,38 and mucosal-associated invariant T cells
(MAITs) express high levels of CD26/DPP4.39 SARS-
CoV-2 is probably spread by the fecal-oral route in
humans and ferrets.38,40

DPP4 activity is higher in older individuals compared
to younger ones and, in vitro, is selectively expressed on
the surface of senescent, but not proliferating, human
diploid fibroblasts.41 DPP4 is present in the lower respira-
tory tract epithelium, mainly on alveolar type 2 cells,33

but patients with COPD and cystic fibrosis exhibit
increased DPP4 not only in these cells but also alveolar
macrophages.42,43 DPP4 upregulation in type I
pneumocytes may be a crucial determinant for severe
MERS-CoV infection.22

The widespread expression of DPP4 on blood capil-
laries, myocardium, and myeloid cells and the non-
enzymatic function of DPP4 as a signaling and binding
protein, across a wide range of species, imply a role in
angiogenesis, cardiovascular regulation, and inflamma-
tion.44,45 DPP4 inhibition is beneficial in animal models
of acute and chronic kidney injury (reviewed in46). In
patients with different stages of chronic kidney disease
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the activities of both DPP4 and ACE2 correlate with esti-
mated glomerular filtration rates (eGFR).47 This study of
268 participants found that those with the lowest eGFR
exhibited the highest DPP4 and ACE2 activities and that
DPP4 also correlated with age.

The liver plays a crucial role by contributing to sys-
temic DPP4 levels. DPP4 is highly expressed in the
healthy liver and this expression is increased in liver dis-
ease and cirrhosis.48 Elevated expression of DPP4 in the
liver promotes non-alcoholic fatty liver disease (NAFLD)
and insulin resistance.49-51 Glucose-induced expression of
DPP4 in the liver is facilitated by demethylation of the
DPP4 gene early in life52 and this epigenetic regulation is
responsive to dietary protein restriction.53 There is impor-
tant crosstalk between the liver and visceral adipose tis-
sue in obesity-induced metabolic syndrome (MS).54 In
this mouse model obesity stimulates hepatocytes to syn-
thesize and secrete DPP4, which acts with plasma factor
Xa to increase inflammation in adipose tissue. Adipose
tissue is also a relevant source of DPP4 in diet-induced
obesity55 and is involved in linking obesity to MS.56,57

Obese individuals have higher circulating levels of
DPP457 and the level is correlated with body mass index
(BMI) in young healthy people.58

2.2 | DPP4, immunomodulation, and
infection

DPP4 also possesses noncatalytic functions through its
interaction with ligands, primarily ADA.25 DPP4 is a co-
stimulator for T cell activation by binding to ADA and
additionally enhances lymphocyte proliferation

independent of ADA binding.59 As adenosine is a potent
suppressor of T cell proliferation, inducing its degrada-
tion through increased DPP4 activity can increase T cell
proliferation. Obese humans demonstrate increased
levels of DPP4 expression in dendritic cell/macrophage
cell populations from visceral adipose tissue, potentiating
inflammation in obesity by interacting with ADA.60

Hence increased DPP4 in conditions such as obesity-
induced MS results in failure to resolve inflammation
and chronic subclinical activation of the immune system.
This metabolic/immune dysregulation may provide the
“ideal home” for some coronavirus infections.

The adenosine nucleoside analogue, galidesivir
(BCX4430), which has broad-spectrum activity against a
wide range of RNA viruses, including flaviviruses such as
Zika,61 is now being evaluated in COVID-19
(ClinicalTrials.gov Identifier: NCT03891420). The ratio-
nale is that it acts to block viral RNA-dependent RNA
polymerase, which plays a crucial role in the viral repli-
cation process. It is unknown how such a therapy could
interact with the immunoregulatory, mostly anti-inflam-
matory, effects of adenosine in different immune cell
types62 and how increased DPP4 expression and chronic
subclinical inflammation in obesity-induced MS will
affect the clinical response.

DPP4 has identified roles in other infections. In
chronic hepatitis C virus (HCV), DPP4 generates an
antagonist form of the chemokine CXCL10 (also known
as IP-10) by amino-terminal truncation of the protein,63

such that the elevated plasma CXCL10 found in patients
with chronic HCV can modulate immune responses by
chemokine receptor antagonism.64 CXCR3 antagonism
via truncated CXCL10 may also be an important

FIGURE 2 Dipeptidyl peptidase

4 (DPP4) expression on epithelia and

endothelium. In humans, DPP4 is

strongly expressed on the apical surfaces

of polarized epithelium including lung,

liver (hepatocytes and cholangiocytes),

pancreas (acinar cells), intestine, and

kidney tubules. DPP4 is also present on

the inner surfaces of capillary

endothelial cells. Figure design Michelle

Sui Wen Xiang
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regulatory mechanism occurring in tumours65 and in
sites of tuberculosis pathology.64

3 | COVID-19 COMORBIDITIES,
DISEASE MANIFESTATIONS, AND
SEVERITY

Older age and comorbidities play important roles in
influencing the severity of COVID-19. In one study the
incidences of hypertension, cardio-cerebrovascular dis-
eases, and diabetes mellitus (DM) were 2-3-fold higher in
intensive care unit (ICU)/severe cases than in their non-
ICU/severe counterparts.66 In individuals with DM but
without other comorbidities, serum levels of
inflammation-related biomarkers such as interleukin
(IL)-6, C-reactive protein, serum ferritin and coagulation

index, and D-dimer, were significantly higher (P < .01)
compared with those without DM, suggesting that
patients with diabetes are more susceptible to an inflam-
matory storm eventually leading to rapid deterioration
and increased mortality.8,67 As approximately 425 million
adults (1 in 11) are living with diabetes, therapeutic
options in diabetes become important.

In a French study of 124 consecutive hospitalized
COVID-19 patients, obesity (BMI >30 kg/m2) and severe
obesity (BMI >35 kg/m2) were present in 47.6% and
28.2% of cases, respectively.68 The need for invasive
mechanical ventilation was significantly associated with
male sex (P < .05) and BMI (P < .05), independent of
age, diabetes, and hypertension. As noted previously,
increased DPP4 expression and activity are associated
with obesity and MS.54,57,58,69 Hence extensive emerging
data is pointing to an important direct metabolic and

FIGURE 3 Potential roles of dipeptidyl peptidase 4 (DPP4) in COVID-19. DPP4 contributes to pathogenesis in type 2 diabetes melliturs

via cleavage of GLP-1. DPP4 has roles in inflammation and immunity. Adenosine deaminase (ADA) binds to DPP4 on the same site that the

Middle East respiratory syndrome (MERS-CoV) S1 protein binds to DPP4. DPP4 is on macrophages and classical dendritic cells (cDC) and is

upregulated on activated lymphocytes. DPP4 cleaves CXCL10, which prevents its binding to CXCR3 on T cells and cDC. DPP4 cleaves NPY,

which is able to stimulate NK and B cells. The S1 Spike protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV2) is predicted

to bind to DPP4, which may facilitate infection of epithelia. Figure design Michelle Sui Wen Xiang
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endocrine mechanistic link to the viral disease process
(Figure 3) leading to the suggestion that more attention
should be paid to the treatment of comorbidities in
COVID-19 as these patients often die.6

4 | DPP4 INHIBITION

DPP4 inhibitors, also known as gliptins, are now a firmly
established class of oral antidiabetic agents for the treat-
ment of T2DM (reviewed in70).The gliptins are not a
homogenous class of compounds but show different
interactions with the active site of the enzyme mole-
cule.31,70 The gliptins are classified into three classes
depending on their mode of binding.71 Eight DPP4 inhib-
itors are currently approved for T2DM, some only in
Japan and Korea. For example teneligliptin, which was
developed in Japan, has a unique structure characterized
by a J-shape and an anchor-lock domain and not only
has strong DPP4 inhibitory function but also is safe for
patients with end-stage renal disease.72

As modeling suggests that DPP4 is a co-receptor for
SARS-CoV-2 viral entry29 and disease severity in COVID-
19 is associated with conditions in which there is dys-
regulation of DPP4, the role of DPP4 inhibition in the
COVID-19 disease process needs to be explored.

Although the gliptins do not bind to the putative
receptor binding site of SARS-CoV-2, research over the
past two decades toward drug discovery of the gliptins
has yielded vast knowledge of the chemistry and biology
of DPP4 and its binding interactions26,31,71; this could be
utilized in developing new anticoronavirus drugs. It is
feasible that a therapy could be designed to shield the
human viral entry protein(s) from the virus, using an
antibody or peptide that binds to the human protein. A
therapeutic vaccine to human DPP4 has already been
developed as a novel potential therapy for T2DM.73 Pang
et al selected three suitable regions in DPP4 as candidate
targets for a vaccine and conjugated these peptides to the
adjuvant, keyhole limpet hemocyanin, which presents a
variety of T cell epitopes to induce helper T cell responses
and demonstrated its efficacy in improving the diabetic
phenotype in animal models.

Altered DPP4 expression in comorbid conditions of
COVID-19 may favor the virus in ways that are not cur-
rently understood. There is a possibility not only that
gliptins may modulate the severity of COVID-19 but also
each DPP4 inhibitor/class may have differential effect(s).
It would be of interest to compare the diabetic (and
other) therapy in those with severe vs nonsevere disease.8

For example, in Japan a DPP4 inhibitor was chosen as
initial monotherapy in the majority of T2DM patients
(1410/2666 patients), a decision influenced by older

age.74 Does such therapy influence severity of COVID-19
compared to treatment with a sulfonylurea or a
biguanide? Would the addition of a DPP4 inhibitor
improve the hyperglycemia and inflammatory activation
in older patients with COVID-19? Are any potential bene-
ficial effects of gliptins outweighed by treatment with
ACE inhibitors, which increase ACE2 expression in dia-
betics?75 It is unclear whether the use of renin-angioten-
sin-aldosterone system inhibitors alone have potential for
more benefit than harm in patients with COVID-19.76

Data collected during this pandemic need to be interro-
gated for medicinal drug usage and interactions in all
groups with comorbidities.

In rodent models, different gliptins have been shown
to have a variety of effects that could be beneficial in
COVID-19 pathology. Thus, vildagliptin and saxagliptin
have significant anti-inflammatory activity comparable to
that of aspirin in an acute model of inflammation.77

Saxagliptin-mediated DPP4 inhibition can attenuate DM-
induced activation of the NLRP3 inflammasome and
reduce the serum levels of CRP, tumor necrosis factor α,
IL-1β, IL-18, and IL-6.78 There is also evidence of
crosstalk between DPP4 and the renin-angiotensin sys-
tem in the pathophysiology of cardiorenal syndromes
and that gliptins are cardioprotective and may delay the
onset of cardiovascular impairment in chronic kidney
disease.46,79 Likewise, gliptins may have a role in treat-
ment of the hepatic manifestation of obesity-induced
metabolic syndrome, NAFLD.80,81

In patients, gliptins exert a comprehensive and potent
anti-inflammatory effect; it has been shown for example that
sitagliptin treatment not only causes a significant fall of
plasma concentrations of C-reactive protein (CRP) and IL-6
but also suppressed the mRNA expression of CD26/DPP4 in
mononuclear cells by 16 ± 6% within 2 hours after a single
dose.82 Mathematical modeling indicates that the spread of
MERS-CoV infection could be controlled by decreasing the
expression of DPP4.83 Hence, if DPP4 expression facilitates
infection by SARS-CoV-2, perhaps the anti-inflammatory
activity of clinically used DPP4 inhibitors84 could be rep-
urposed to treat COVID-19 patients, especially those with
elevated blood glucose, markers of virally driven hyper-
inflammation85,86 or cardiorenal problems.46

Another question to ask is whether known genetic
variation(s) in DPP4 87 affect viral entry and attenuate
viral replication, as has been noted for MERS.88

5 | CONCLUSIONS

At the time of writing SARS-CoV-2 has infected >3.75
million people in 187 countries, leading to at least
265 000 deaths and the numbers of COVID-19 cases
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continue to rise exponentially worldwide. Comorbid con-
ditions that include obesity-induced metabolic syndrome
and associated T2DM influence disease severity. T2DM
has itself been called a pandemic with around 415 million
adults living with the disease. As a higher proportion of
these individuals can expect to become critically ill when
infected with SARS-CoV-2 it is important not only to ask
why but also to optimize treatment regimens.

In this review we focus on DPP4 as recent modeling of
the structure of SARS-CoV-2 spike glycoprotein, which
mediates viral-host-cell binding and entry, predicts that it
interacts with human DPP4 in addition to ACE2. Further-
more, increased DPP4 expression and activity have been
consistently associated with obesity, T2DM, and diabetes
complications. DPP4 inhibitors, also known as gliptins, are
now a firmly established class of oral antidiabetic agents
for the treatment of T2DM. It is important to understand
whether some or all gliptins modulate COVID-19 disease
severity, possibly via their immunomodulatory and cardi-
oprotective effects. Finally, although gliptins do not bind
to the putative binding site of SARS-CoV-2, it may be that
the vast knowledge of the biology and biochemistry of
DPP4 and other proteases that has accumulated over past
decades could be utilized in the development of novel ther-
apies to block viral entry and in vaccine design.
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