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ABSTRACT 

Nickel dichalcogenides have received extensive attention as promising noble-metal-free 

nanocatalysts for hydrogen evolution reaction. Nonetheless, their catalytic performance is 

restricted by its sluggish reaction kinetics, limited exposed active sites and poor conductivity. In 

this work, we report on an effective strategy to solve those problems by using as-designed new 
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porous-C/Ni2SeS nanocatalyst which Ni2SeS nanostubs anchored on porous-carbon skeletons 

process. Based on three advantages of the enhanced the intrinsic activity using the ternary 

sulfoselenide, increased number of exposed active sites due to the 3D hollow substrate, and 

increased conductivity caused by porous-carbon skeletons,  the resulted porous-C/Ni2SeS requires 

an overpotential of only 121 mV at a current density of 10 mA cm−2 with a Tafel slope of 78 mV 

dec−1 for hydrogen evolution in acidic media, and a good long-term stability. Density functional 

theory calculations also show that the Gibbs free energy of hydrogen adsorption of the Ni2SeS is 

-0.23 eV, which is not only close to the ideal value (0 eV) and Pt reference (-0.09 eV), but is lower 

than NiS2 and NiSe2; Large electrical states exist in the vicinity of Fermi level, which further 

improve its electrocatalytic performance. This work provides new insights into rational design of 

ternary dichalcogenides and hollow structure materials for practical applications in HER catalysis 

and energy fields. 

 

1. INTRODUTION 

Hydrogen, as a clean green energy carrier, has been regarded as one of the alternatives to 

traditional energy, which can effectively improve climate change and address environmental 

problems.1 In particular, hydrogen produced from water splitting has attracted extensive attention. 

The critical issue is the high-energy consumption of electric-energy to produce hydrogen from 

water which is related with the high electrolysis overpotential. The catalyst is one of the most 

important components for achieving the highly efficient electrochemical water splitting.2-6 The 

most commonly used electrocatalysts for hydrogen evolution reaction (HER) are platinum (Pt) and 

its alloys which have critical issues such as low abundance and high cost. In the past few years, 

various materials such as transition metal carbides7, nitrides8, borides9, sulfides10, phosphides11 
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and selenides12, have been investigated as catalysts toward the electrochemical HER.6,13 Among 

these, transition metal chalcogenides (TMCs) with a general formula of MpXq (M = transition 

metal, X = S, Se or Te) are especially attractive with good HER performances due to their large 

interlayer distances, tunable bandgaps, and transformable phases.14,15 However, their limited 

exposed active sites, sluggish reaction kinetics and the poor conductivity restrict their successful 

applications as HER catalysts.  

Currently there are three major strategies which have been proposed to optimize the HER 

catalytic performance of the TMCs: (i) improving the electrical conductivity; (ii) increasing the 

number of exposed active sites; (iii) enhancing the intrinsic activity of catalyst.16 Correspondingly, 

there are three main methods to achieve these objectives. The first method is to use conductive 

nanomaterials as substrate to improve electron transfer within the HER electrocatalyst, such as 

carbonaceous materials.17-20 The second method is to construct 3D nanostructures with large 

specific surface areas and make more active sites exposed. For example, recent studies have 

successfully synthesized nanostructured materials with preferentially exposed edge sites on the 3D 

nickel foam substrate, which has increased the catalytic activity due to more HER active sites 

exposed.21-23 The third method is to introduce a third element to form ternary compounds to raise 

the intrinsic activity of catalyst (e.g. Mo1−xWxSe2 )
 24,25. With the addition of a third element, these 

ternary chalcogenides are very effective because of stoichiometric variations and synergistic 

effects compared to those of their binary counterparts.26 Among them, numerous studies have been 

focused on using metal sulfoselenide as a substitute for HER. Ultrathin MoS2(1−x)Se2x alloy 

nanoflakes were prepared and showed good activity and durability.27 Ternary CoS2xSe2(1−x) 

nanowire array was also synthesized and proved to be a stable electrode in the acidic media.28 

These results clearly show that partial anion-substitutions of transition metal sulfoselenide could 
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achieve the desirable HER performance. Nevertheless, nickel sulfoselenide has been rarely studied 

in HER catalysis. 

Based on the above the three methods and the good catalytic activity of Ni-based catalysts29,30, 

in this study, we designed and developed porous-C/Ni2SeS hollow structures with Ni2SeS 

nanostubs (NSs) uniformly anchored onto the porous-carbon skeletons (PCSs)31,32 as the highly 

effective electrocatalyst for the HER. Such a designed catalyst enable a superior HER performance 

with a low overpotential, a small Tafel slope and a long term stability. The as-prepared porous-

C/Ni2SeS hollow structures, when used as the catalyst, has three unique features which are 

beneficial for the electrocatalytic performance: (1) the PCSs supports ensure good conductivity of 

catalysts; (2) the as-designed 3D hollow PCSs have plentiful inter-connected macrochannels with 

large surface areas, which not only increase the number of Ni2SeS exposed active sites and their 

effective availability in a unit volume with preventing the aggregation of nanostructures, but also 

improve the proton transport and catalytic velocity; (3) the ternary nickel sulfoselenide, compared 

with NiS2 and NiSe2, could enhance the intrinsic activity for HER. Density functional theory (DFT) 

calculations also reveal that the Gibbs free energy of hydrogen adsorption (ΔGH) as a descriptor of 

HER indicates that Ni2SeS show better catalytic performance than NiSe2 and NiS2. These results 

prove its potential as a new stable efficiency catalyst for HER. 

2. EXPERIMENTAL DETAILS 

2.1. Synthesis of porous-C/Ni2SeS nanostructure 

The porous-C/Ni2SeS nanostructure was transformed from porous-C/NiSe2 based on the PCSs 

synthesized from our previous works.31,32 In a typical synthetic procedure, 1 mmoL Ni(NO3)2 • 

6H2O, 0.5 mmoL selenium powder and 10 mg PCSs were added into 20 mL of distilled water at 

room temperature. The mixture was stirred for 30 min with ultrasonic treatment until the mixture 
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was clear and the PCSs were dispersed homogeneously in the solution. Hydrazine hydrate solution 

(2 mL and 80% concentration) was then added into the solution, and the mixed solution were 

transferred to a 25 mL Teflon-lined stainless-steel autoclave, which was sealed and kept at 180°C 

for 24 hrs. After naturally cooled down to room temperature and washed with deionized water and 

ethanol, the product of porous-C/NiSe2 was then dried in a vacuum dryer at 60°C for 4 hrs. Then 

the as-prepared porous-C/NiSe2 composites (20 mg) and sulfur powders (500 mg) were put at two 

separate positions in two porcelain boats with sulfur powders at the upstream side of the furnace. 

Under N2 atmosphere, the furnace temperature was increased from room temperature to 200°C, 

and from 200°C to 400 °C, with rate of 10°C min-1 and 2°C min-1, respectively, and the composites 

were kept at 400 °C for 90 min. After naturally cooled down to room temperature, the final product 

of porous-C/Ni2SeS was collected and washed with deionized water and ethanol for three times, 

and dried at 60°C for 4 hrs. 

2.2. Characterization 

Morphology and microstructures of the samples were investigated using a field emission 

scanning electron microscope (FE-SEM, JEOL, S-4800, Japan), a transmission electron 

microscope (TEM) and a high-resolution TEM (HRTEM, JEOL JEM-2100EX microscopy, Japan). 

X-Ray powder diffraction (XRD) patterns were recorded using a Bruker D8 advanced (German) 

diffractometer with a Cu Kα radiation source (γ=0.154056nm). Elemental maps were carried out 

under energy disperse X-ray spectroscopy (EDS) conducted at 15 keV on a TN5400 EDS 

instrument (Oxford). X-ray photoelectron spectroscopy (XPS) measurements were performed 

using a PHI-5000C ESCA system (Perkin Elmer) with Al Kα radiation (hv=1486.6 eV). The 

survey XPS spectrum (0-1100 eV) and high-resolution spectra were recorded using a RBD 147 
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interface XPS (RBD Enterprises, USA) and Auger Scan 3.21 software. Binding energies were 

calibrated using the containment carbon (C 1s=284.6 eV).  

2.3. Electrochemical measurements 

Electrochemical measurements were performed using an electrochemical workstation with a 

standard three-electrode setup (CH Instruments), with Ag/AgCl (in 3.5 M KCl solution) as the 

reference electrode, a graphite rod (Alfa Aesar, 99.9995%) as the counter electrode, and a glassy 

carbon electrode (GCE, 5 mm in diameter) coated with the as-prepared catalysts as the working 

electrode on a rotating disk electrode (RDE). All the measurements were carried out in 0.5 M 

H2SO4 aqueous solution and all the HER measurements were conducted in an N2-saturated solution 

at ambient temperature. In a typical experiment, 4 mg of the catalyst was added in a mixture of 

750 μL of water, 250 μL of ethanol and 40 μL of Nafion solution (5 wt%). The mixture was 

vigorously sonicated for about 30 min to form a homogeneous ink solution. Electrocatalyst 

suspension of 10 µL was dropped onto the glassy carbon electrode (with a mass loading of ~0.204 

mg cm−2). All the measurements were referred to the reversible hydrogen electrode (RHE) by using 

the relationship (eqn (1)):  

 E(RHE)  =  E(Ag/AgCl)  +  E 0(Ag/AgCl)  +  0.059V ×  pH (1) 

Linear sweep voltammetry (LSV) was used to examine the electrochemical activities of these 

samples at a scan rate of 5 mV s−1 with a RDE at 1600 rpm. Electrochemical impedance 

spectroscopy (EIS) measurements were carried out in the frequency range from 106 to 0.1 Hz with 

an overpotential of 150 mV. Additionally, chronoamperometry durability tests were conducted at 

150 mV and cyclic voltammetry (CV) tests were performed for 300 cycles between -0.4 V and 0.2 

V (vs. RHE) at 100 mV s−1 to investigate the electrochemical stability of the catalysts. All these 

results were calibrated by iR correction. 
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3. RESULTS and DISCUSSION 

3.1. Microstructure analysis 

As illustrated in Figure 1, the porous-C/Ni2SeS hollow structures were synthesized through a 

solvothermal-chemical vapor deposition (CVD) process. Based on PCSs prepared by spray-

pyrolysis (Figure S1), selenium powder and nickel nitrate hexahydrate are used as the Se and Ni 

resource, which was ultrasonicated with the PCSs to make Ni2+ and Se fully absorbed onto PCSs; 

After that, hydrazine hydrate solution was injected into the solution to form in situ reduced Se2-. 

In the whole solvothermal reaction, there isn’t Ni(0) due to its lower redox potential. Then, we 

employed a facile CVD method for further converting porous-C/NiSe2 to porous-C/Ni2SeS 

through sulfurization reaction.  

 

Figure 1 The schematic view of the formation and catalytic mechanism for porous-C/Ni2SeS. 

Figure 2 shows the morphology and microstructures of the synthesized porous-C/Ni2SeS hollow 

structures. As shown in Figures 2A-C, the Ni2SeS NSs are uniformly dispersed onto the surface of 

the PCSs. In addition, the constructed hollow 3D structure remains the porous structure of PCSs 
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with abundant interconnected macropores. Compared to the structure of Ni2SeS NSs without the 

PCSs (Figure S2), the newly formed hollow structures can increase specific surface areas and 

expose more active sites. Moreover, the Ni2SeS NSs have a narrow distribution of crystal 

diameters within 6-14 nm (Figure 2D and the inset). In Figure 2E, the HRTEM image shows clear 

lattice fringes of 0.2667 nm and 0.2031 nm, which are responding to (101) and (102) plane of 

Ni2SeS, respectively. The selected area electron diffraction (SAED) pattern in Figure 2F exhibits 

the polycrystalline diffraction rings, revealing the existence of tiny particle sizes relative to the 

electron beam spot.33 A set of bright diffraction rings can be indexed to be the diffraction patterns 

of (220), (311), (400) and (440) planes, respectively. EDS elemental mapping images indicate that 

Ni, Se and S elements are uniformly distributed on PCSs (Figure 2G-J).  

 

Figure 2 Morphology and structure characterization of porous-C/Ni2SeS hollow structure: (A, B) SEM images 

and (C, D) TEM images (Inset: particle size distribution) with different magnification; (E) HRTEM image; (F) 

SAED image; (G-J) SEM-EDS elemental mapping. 
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Figure 3A shows XRD patterns of as-prepared products. Contrast to porous-C/NiS2 (PDF# 11-

0099) and porous-C/NiSe2 (PDF# 65-1843), porous-C/Ni2SeS presents four major peaks at 2θ 

values of 33.5, 44.8, 51.3, 62.7o, which can be indexed to the (101), (102), (110) and (112) planes 

of Ni2SeS, respectively (PDF# 65-4017, Figure S2). This clearly demonstrates that the porous-

C/Ni2SeS has been converted from porous-C/NiSe2 based on the amorphous structure of PCSs 

(Figure S1D). Figure 3B shows the EDS elemental analysis results. The porous-C/Ni2SeS has an 

atomic ratio of Ni:Se:S at ~2:1:1, which indicates that it has an elemental stoichiometry of Ni2SeS.  

XPS analysis was further performed to acquire valence and elemental binding information of 

the porous-C/Ni2SeS. In Figure 3C, the survey spectrum shows peaks of C 1s, O 1s, Ni 2p, S 2p 

and Se 3d in the binding energy region from 0 to 1100 eV. The high-resolution spectrum of Ni 2p 

could be fitted into four peaks (Figure 3D). Apart from the satellite peaks, two main peaks located 

at 852.6 and 870.7 eV are attributed to Ni 2p3/2 and 2p1/2, which are similar to those reported for 

Ni3S2, NiS and NiS2.
34 The process giving rise to the Ni 2p3/2 peak is mainly of metal (Ni) character, 

with little contribution from the surrounding ligand.35,36 Therefore, the nickel 2p3/2 peaks of porous-

C/Ni2SeS are very close in position to that of metallic nickel (852.5 ± 0.2 eV).34,36 High resolution 

spectrum of S 2p signal is shown in Figure 3E. The doublet peaks of 161.9 (S 2p3/2) and 163.1 eV 

(S 2p1/2) are slightly lower than the reported spectra of nickel sulfides34,36 because of the 

substitution of Se. In a similar way, the high resolution Se 3d peak can be split into two well-

defined 3d5/2 and 3d3/2 peaks at 54.6 and 55.5 eV (Figure 3F), which is a negative shift of compared 

with nickel selenide 35,37 due to the substitution of S. What’s more, the peak at around 58.7 eV is 

corresponding to the Se-O bonds, indicating the surface oxidation species of Se.37 Thus, the below 

XPS results demonstrate the Ni2SeS have been synthesized successfully on the PCSs. 
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Figure 3 (A) XRD and (B) EDS patterns of the prepared samples; XPS analysis of (C) full spectra, (D) Ni 2p, 

(E) S 2p and (F) Se 3d of porous-C/Ni2SeS. 

3.2. Catalytic Performance 

The LSV polarization curves and their values at 10 mA cm−2 of porous-C/Ni2SeS and the control 

samples are shown in Figure 4A and C. The porous-C/Ni2SeS exhibits improved electrocatalytic 

activity with 121 mV at 10 mA cm−2, if compared with those of porous-C/NiS2 (232 mV at 10 mA 

cm−2) and porous-C/NiSe2 (174 mV at 10 mA cm−2). Such result is comparable with those of the 

previously reported MSxSey materials, as summarized in Table S1. In addition, it demonstrates that 

the Ni2SeS has an overpotential of 144 mV to reach the current density of 10 mA cm−2, while those 

of NiS2 (Figure S4A) and NiSe2 (Figure S5A) have values of 245 and 194 mV, respectively. These 

results conclude that the ternary Ni sulfoselenide shows a better HER activity than its binary 

counterparts, which is verified in the following DFT calculations. Furthermore, the overpotentials 

of porous-C/Ni2SeS, porous-C/NiS2 (Figure S4B) and porous-C/NiSe2 (Figure S5B) is lower than 

those of Ni2SeS (144 mV at 10 mA cm−2), NiS2 and NiSe2. The results clearly indicate that the 
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substrate of PCSs plays an important role to improve the HER performance due to its unique 

interconnected channels and good conductivity.31,32 The Tafel slope, which is derived from the 

polarization curve, is commonly used to discern the rate-determining step and the possible HER 

reaction pathway.6 The linear portion of the Tafel plot was fitted using the conventional equation 

(eqn (2)):  

 η =  b log j +  a (2) 

where η is the overpotential, j is the current density, and b is the Tafel slope. As shown in Figures 

4B and C, the obtained results for the porous-C/Ni2SeS show a Tafel slope of 78 mV per decade, 

which is smaller than those of porous-C/NiS2 (142 mV per decade), porous-C/NiSe2 (110 mV per 

decade), Ni2SeS (99 mV per decade), NiS2 (212 mV per decade) and NiSe2 (141 mV per decade), 

As is well known, the HER in acidic electrolytes consists three reactions38 (eqn (3)–(5)): 

The discharge reaction or Volmer reaction:   

 𝐻+ + 𝑒_ → 𝐻𝑎𝑑
∗  (1) 

The electrochemical desorption reaction or Heyrovsky reaction: 

 𝐻𝑎𝑑
∗ + 𝐻+ + 𝑒_ → 𝐻2 (2) 

The recombination reaction or Tafel reaction: 

 𝐻𝑎𝑑
∗ + 𝐻𝑎𝑑

∗ → 𝐻2 (3) 

Theoretically, the Tafel slope is 118 mV per decade, 39 mV per decade or 29.5 mV per decade  

when reaction follow Volmer, Volmer-Heyrovsky and Volmer-Tafel mechanism.6 Therefore, the 

porous-C/Ni2SeS electrode follows the Volmer-Heyrovsky reaction mechanism and the migration 

of adsorbed hydrogen intermediate state (Had*) is the rate-limiting step in the overall HER process. 

EIS measurement results are shown in Figure 4D. The obtained charge-transport impedance (Rct) 
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of porous-C/Ni2SeS is 51 Ω, which is lower than that of Ni2SeS, suggesting that the interconnected 

porous structure of PCSs improves the proton transport and catalytic velocity.39  

Figure 4E shows the characterization results of durability of Ni2SeS and porous-C/Ni2SeS, 

which is another important parameter for HER. Compared with those of Ni2SeS, the Ni2SeS NSs 

on PCSs possesses larger and more stable electric current densities at a static overpotential (150 

mV). In particular, the polarization curve of porous-C/Ni2SeS after 300 cycles is similar to that of 

the initial one (Figure 4F). These results clearly indicates that the insoluble and stable carbon 

supports have provided a high durability of the catalysts. After the chronoamperometry durability 

test, the large mass of Ni2SeS were loaded onto the PCSs, suggesting an outstanding stability 

during the HER process (Figure S6). 

 

Figure 4 (A) Polarization curves, (B) Tafel plots, (C) the values of the overpotential at 10 mA cm−2 and Tafel 

slope, (D) Nyquist plots and (E) Chronoamperometry curves of the prepared samples; (F) Stability tests of 

porous-C/Ni2SeS with initial polarization curve and the one after 300 potential cycles. 
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3.3. DFT calculations 

In order to clarify the mechanism for the performance enhancement, we performed DFT 

calculations as implemented in the VASP codes40, details of computation are given in the 

Supporting Information. The atomic structures of the bulk NiS2, NiSe2 and Ni2SeS used in the DFT 

calculation are illustrated in Figure S7. Based on the previous part of synthesized NiS2, NiSe2, and 

Ni2SeS, NiS2 and NiSe2 belong to the space group Pa3̅, and theoptimized lattice constants are a = 

b = c = 5.63 Å for NiS2 and a = b = c = 5.96 Å for NiSe2 unti cell. Whereas the Ni2SeS are in 

P63/mmc space group and the calculated lattice constants are a=b= 3.57 Å, c= 5.27 Å. These lattice 

constants and crystal structures are well consistent with our experimental studies and other 

theoretical data41,42. In this study, the (001) surface of NiS2 and NiSe2 was investigated for HER 

performance. The possible adsorption sites of hydrogen absorbed on the surface are determined 

based on the symmetry of surface geometry (as shown in Figure S8). For example, there are two 

possible adsorption sites on NiS2 (001) surface as show in Figure S8a: the top Ni sites (Ni) and top 

S sites (S). For Ni2SeS, the (110) surface was selected to study its HER performance due to its 

regular atomic arrangement, and the Ni, S, Se sites are all exposed on these facets as shown in 

Figure S8c. Thus, six candidated H adsorption sites on the surface are take into account, including 

three surface sites (Ni1, S1 and Se1) and three hollow sites (Ni2, S2 and Se2).   

According to thermodynamics, ΔGH is a common descriptor for evaluating the HER 

performance. The ΔGH should be close to zero for an ideal catalyst43-45, in order to be beneficial 

for a faster formation of Had* and to provide a rapid concomitant hydrogen releasion. The HER 

free energy diagrams for different catalyst surface sites on NiS2, NiSe2 and Ni2SeS are illustrated 

in Figure 5. For the (001) surface of NiS2 (Figure 5A), the ΔGH of Ni sites is -1.49 eV, which is 

too large for the hydrogen molecules releasion from the catalytic sites. Similar results are also 
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obtained for the (001) surface of NiSe2 as shown in Figure 5B. The ΔGH of the surface Ni sites is 

-0.41 eV, which is much closer to zero than that on the NiS2 surface, however, is still not good 

enough for the requirement of advanced HER catalyst.  

The adsorption of H on the six possible sites on Ni2SeS-(110) surface are also investigated, and 

the free energy diagrams of HER are shown in Figure 5C. The calculated Gibbs free energy for H 

adsorbed on hollow Se sites (Se2) is -0.23 eV, which is much close to the ideal value (0 eV) and 

Pt reference (-0.09 eV) than that of NiS2 and NiSe2.
46 These results exhibit the electrocatalytic 

performance of Ni2SeS is better than NiS2 and NiSe2. Additionally, an ideal catalyst for HER 

reaction should also have good electron conductivity, the projected density of states (PDOS) for 

(001) surface of NiS2, NiSe2 and Ni2SeS-(110) surface are shown in Figure S9. The PDOS results 

show continuous trend near the Fermi level, which are mainly composed of the Ni 3d, S 3p and Se 

4p orbitals, revealing their intrinsically metallic features, faster rate of charge transfer. Therefore, 

on the basis of the results of our experimental and theoretical analysis based on the DFT 

calculations, we conclude that Ni2SeS shows very good HER performance.  
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Figure 5 The ΔGH diagram for H adsorbed on possible sites of (A) NiS2-(001) surface, (B) NiSe2-(001) surface, 

(C) Ni2SeS-(110) surface and (D) summary of the ΔGH on NiS2, NiSe2, Ni2SeS and Pt reference at the condition 

of equilibrium potential and pH=0. 

 

4. CONCLUSION 

In summary, porous-C/Ni2SeS, a ternary sulfoselenide based on 3D hollow structure, have been 

successfully synthesized via solvothermal and CVD methods. It shows superior HER 

electrocatalytic activity with a low overpotential of only 121 mV at a current density of 10 mA 

cm−2 with a Tafel slope of 78 mV dec−1, as well as a good long-term durability, which is superior 

to those from the control groups of Ni2SeS and porous-C/NiSe2 or porous-C/NiS2. Its excellent 

performances are caused by the following three reasons: (i) the better conductivity of the PCSs.; 

(ii) increasing the number of exposed active sites and specific surface areas due to the hollow 

structure; (iii) enhancing the intrinsic activity of catalyst by the ternary sulfoselenide system, 
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which is consistent with the DFT calculation results. This study also provides new insights toward 

the design and improvement of new carbon-based ternary chalcogenides as a low cost and efficient 

catalyst electrode for water-splitting applications, and can be extended to design other Ni-based 

materials for high-performance HER catalysis. 
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