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20

21 Abstract 

22 Full-waveform inversion (FWI) of cross-borehole Ground Penetrating Radar (GPR) 

23 data is a technique with the potential to investigate the subsurface structures. Typical FWI 

24 applications transform the 3D measurements into a 2D domain via an asymptotic 3D to 2D data 

25 transformation, widely known as a Bleistein filter. Despite the broad use of such a 

26 transformation, it requires some assumptions that make it prone to errors. Although the 

27 existence of the errors is known, previous studies have failed to quantify the inaccuracies 

28 introduced on permittivity and electrical conductivity estimation. Based on a comparison of 3D 

29 and 2D modeling, errors could reach up to 30% of the original amplitudes in layered structures 

30 with high contrast zones. These inaccuracies can significantly affect the performance of the 

31 crosshole GPR FWI in estimating permittivity and especially electrical conductivity. We 

32 addressed these potential inaccuracies by introducing a novel 2.5D crosshole GPR FWI that 

33 utilizes a 3D finite-difference time-domain forward solver (gprMax3D). This allows us to 

34 model GPR data in 3D, while carrying out FWI in the 2D plane. Synthetic results showed that 

35 2.5D crosshole GPR FWI outperformed the 2D FWI by achieving higher resolution and lower 

36 average errors for permittivity and conductivity models. The average model errors in the whole 

37 domain were reduced by around 2% for both permittivity and conductivity, while zone-specific 

38 errors in high contrast layers were reduced by about 20%. We verified our approach using 

39 crosshole 2.5D FWI measured data, and the results showed good agreement with previous 2D 

40 FWI results and geological studies. Moreover, we analyzed various approaches and found an 

41 adequate trade-off between computational complexity and accuracy of the results, i.e. reducing 

42 the computational effort whilst maintaining the superior performance of our 2.5D FWI scheme. 
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45 Main Body 

46 INTRODUCTION

47 Crosshole Ground Penetrating Radar (GPR) has gained popularity amongst geophysical 

48 methods for high resolution tomography of the near surface in a wide field of applications in 

49 last three decades (Hubbard et al., 1997; Slater et al., 1997; Tronicke and Holliger, 2004; Looms 

50 et al., 2008; Doetsch et al., 2010; Dorn et al., 2011). Traditionally, travel times from crosshole 

51 GPR data are used to estimate the velocity of the electromagnetic waves between the boreholes, 

52 where the velocity in the medium is inversely proportional to the relative permittivity εr  (Annan, 

53 2009). Amplitudes from first arrival picks can be processed to estimate the attenuation of the 

54 electromagnetic waves, where the attenuation is associated with the electrical conductivity σ of 

55 the medium. A standard approach to derive tomographic images of the subsurface is to apply a 

56 ray-based inversion (RBI) that only considers the first arrivals of the waves and corresponding 

57 first cycle amplitudes, which are a relativity small fraction of the information contained in the 

58 recorded traces (Holliger et al., 2001; Holliger and Maurer, 2004). Moreover, the resolution of 

59 the RBI tomogram is scaled by the first Fresnel zone  , where  is wavelength and L is the 𝜆𝐿 𝜆

60 total path. Therefore, RBI is mostly reliable for models that have a small variation of medium 

61 properties relative to the wavelength, and struggles with presence of high contrast layers 

62 (Stratton, 2015; Williamson, 1991; Rector and Washbourne, 1994; Brenders and Pratt, 2007).

63  Tarantola (1984) was one of the first who introduced the high-fidelity data fitting 

64 technique for seismic data known as full-waveform inversion (FWI). In contrast to RBI, FWI 

65 includes the entire waveform (or at least the first few cycles) of the signal, and its resolution 

66 approaches half of the dominant wavelength or better. As a rule of thumb, by moving from RBI 

67 to FWI, the spatial resolution can improve by up to one order of magnitude for and for borehole 

68 applications, it can reach to one of borehole logging methods (Wu and Toksöz, 1987; Dickens, 
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69 1994; Pratt and Shipp, 1999; Dessa and Pascal, 2003; Belina et al., 2009; Virieux and Operto, 

70 2009; Warner et al., 2013). Since the pioneering work by Tarantola (1984), a large number of 

71 FWI approaches for acoustic and elastic waves have been proposed using time-domain, 

72 frequency-domain, and hybrid methods (Sirgue et al., 2008; Butzer et al., 2013; Lavoué et al., 

73 2013; Warner et al., 2013; Agudo et al., 2016). Despite the existence of an elastic solution for 

74 crosshole seismic FWI, many applications are still restricted to acoustic-wave solutions due to 

75 the high computational costs of both the forward modeling and inversion (Pratt et al., 1998; 

76 Hollender et al., 1999; Ernst et al., 2007a; Butzer et al., 2013). Within the last decade, FWI was 

77 adapted for electromagnetic wave propagation, especially for crosshole GPR (detailed 

78 overview by Klotzsche et al., 2019). Because finite-difference solutions of Maxwell’s equations 

79 are computationally comparable to those of the viscoacoustic-wave equations in seismic, most 

80 of the applications of GPR FWI used a 2D FDTD forward modeling (Ernst et al., 2007a; Meles 

81 et al., 2010). Kuroda et al. (2007) introduced a time-domain 2D FWI to obtain εr by performing 

82 synthetic studies. Ernst et al. ( 2007a, 2007b) developed a 2D FWI that utilize a gradient-based 

83 method to obtain high resolution εr and σ tomograms, and applied it to synthetic and 

84 experimental data. Meles et al. (2010) extended the approach of Ernst et al. (2007a) by 

85 incorporating the vector-based properties of the electromagnetic fields into the FWI, and 

86 simultaneously updating εr and σ. Next to the time-domain approaches, several frequency-

87 domain FWI approaches have been developed in the last few years. For example, Lavoué et al. 

88 (2014) proposed a frequency-domain 2D FWI that could reconstruct the εr and σ of multi-offset 

89 GPR for a synthetic model. 

90 The first application of 2D crosshole GPR FWI to experimental data based on Meles et 

91 al. (2010) was performed by Klotzsche et al. (2010). Since this initial application, FWI has been 

92 continuously developed to enhance the application to experimental data and multiple field 

93 applications have been conducted, including the characterization of aquifers (Klotzsche et al., 
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94 2013; Gueting et al., 2017), karst (Keskinen et al., 2017), and clayey till (Looms et al., 2018). 

95 Studies related to the Widen site (Klotzsche et al., 2013) and the Boise hydrogeophysical test 

96 site (Klotzsche et al., 2014) specifically indicated the potential of FWI to obtain high-resolution 

97 subsurface images including high-contrast layers that were not able to be detected by RBI. Such 

98 layers are important to accurately map and detect, because they can be linked to hydrologically 

99 relevant features such as high porosity zones, preferential flow paths, and impermeable clay 

100 lenses that can significantly effect to flow and transport characteristic of aquifers. High 

101 resolution 2D forward modeling demonstrates that such high contrast layers, related to an 

102 increased εr, can act as low-velocity waveguides causing late arrival high amplitude events in 

103 the data. An overview of the current state-of-the-art of crosshole GPR FWI and its application 

104 to experimental data is provided by Klotzsche et al. (2019). 

105 All of the applications of crosshole GPR FWI to experimental data were carried out 

106 with a computationally attractive 2D forward model. FWI using a complete 3D model with 

107 realistic model size requires significantly higher computational resources and large memory 

108 requirements. Wave propagation in 2D and 3D media have differences in its geometrical 

109 spreading, phase, and frequency scaling characteristics. It is necessary to take these differences 

110 into account before using a 2D forward model to invert measured data obtained in a 3D 

111 environment (Ernst et al., 2007a; Brossier et al., 2009; Červený and Pšenčík, 2011; Watson, 

112 2016). The normally applied 2D assumptions are valid as long as there is no out-plane arrival 

113 in the data and in the far-field regime. Any numerical or analytical solution for the 2D wave 

114 equation inherently carries the assumption that any source is a line source, i.e., that it extends 

115 infinitely out-of-plane, causing a cylindrical wave front expanding from the center line. In a 3D 

116 homogenous medium a realistic point source generates a spherical wave front. The difference 

117 in the geometrical spreading of the wave in 2D and 3D media leads to a different amplitude 

118 decay with distance r and time. In the 3D medium, the energy is spread over the surface of a 

Page 6 of 49Geophysics Manuscript, Accepted Pending: For Review Not Production



Confidential manuscript submitted to Geophysics
2.5D crosshole GPR full-waveform inversion

119 sphere. Hence the amplitude is scaled with . Whereas in the 2D environment, the energy is 1 𝑟

120 distributed over the surface of a cylinder, so the amplitude is scaled with . Therefore, an 1 𝑟

121 identical pulse will decay faster in the 3D medium. These differences in geometrical spreading 

122 also create phase differences between the 2D and 3D Green’s functions. In 2D, the Green’s 

123 function is scaled with  compared to 3D, which results in a  phase shift between the 1 𝜔 𝜋 4

124 wave solutions for the 3D and 2D environments (Williamson and Pratt, 1995; Červený, 2001; 

125 Miksat et al., 2008; Červený and Pšenčík, 2011). The differences in geometrical spreading in 

126 the 2D and 3D environments and the effects on the associated amplitudes and phases should be 

127 accounted for prior to the inversion. The most common practice to address this issue is to apply 

128 a 3D to 2D transformation to the field data, referred to as a “geometrical spreading correction” 

129 (Crase et al., 1990; Červený, 2001; Bleibinhaus et al., 2009; Mulder et al., 2010). The crosshole 

130 configurations restrict a transmitter and a receiver to a single plane, with the implicit assumption 

131 that there is negligible variation in the properties of the embedding medium in the direction 

132 normal to this plane (Song and Williamson, 1995). Bleistein (1986) calculated out-of-plane 

133 spreading factors using asymptotic theory and approximate asymptotic transformation for 

134 converting recorded seismic wave fields in a restricted 3D environment to two dimensions. 

135 Bleistein assumed that acoustic waves propagate in the far-field regime and that the medium 

136 properties of the host change smoothly. It is formulated in the frequency domain (where  is 𝜔

137 the angular frequency) as: 

𝐺2𝐷(𝜔) = 𝐺3𝐷(𝜔) 𝑒𝑥𝑝[𝜔(𝑖𝜋
4 )] 2𝜋𝐿

|𝜔|  ,
(1)

138 where  is the Green’s function of the 2D and 3D media.  denotes the integral of the velocity 𝐺 𝐿

139 with respect to the arc-length of the ray trajectory that, in the homogeneous medium, is equal 

140 to the velocity v multiplied by the distance r between the transmitter and receiver . This 𝐿 = 𝑣𝑟
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141 asymptotic transformation of restricted 3D to 2D is often termed the “Bleistein filter” and is 

142 commonly applied in seismic data processing. Ernst et al. (2007b) adapted this transformation 

143 to electromagnetic wave propagation in the frequency domain as follows: 

𝑬2𝐷(𝒙𝑠, 𝒙𝑟,𝜔 ) = 𝑬𝑜𝑏𝑠(𝑥𝑠, 𝒙𝑟,𝜔 )
2𝜋𝑇(𝒙𝑠, 𝒙𝑟)

―𝑖𝜔𝜀𝑚𝑒𝑎𝑛
𝑟  𝜇0

 ,
(2)

144 where are the observed 3D field data and the transformed 2D data for each transmitter 𝐸3𝐷 𝐸2𝐷

145  and receiver  location, respectively. T is the travel time between the transmitter and receiver xs xr

146 positions, , is the mean of the relative permittivity of the media, and  is the 𝑖2 =  ― 1 𝜀𝑚𝑒𝑎𝑛
𝑟  𝜇0

147 magnetic permeability of free space. Despite the benefits of the asymptotic 3D to 2D 

148 transformation in avoiding the requirement for computationally intensive 3D modeling, it still 

149 has some shortcomings. The transformation only uses the first-arrival times T and may perform 

150 poorly for multiple later arrivals. Auer et al. (2013) study the performance of the asymptotic 

151 transformations for seismic crosshole data and show that substantial errors are observed in data 

152 from overlapping arrivals and curved paths. These errors translate into poor model 

153 reconstruction using FWI. Ernst et al. (2007b) claimed a satisfactory performance of the 

154 asymptotic 3D to 2D transformation for experimental data in a far-field regime, but did not 

155 provide a quantitative analysis of the accuracy. Van Vorst et al. (2014) state a good performance 

156 of the asymptotic 3D to 2D transformation for GPR data for travel times, but observed high 

157 inaccuracy in the amplitude transformation that critically influenced the associated σ. 

158 Therefore, more research is required to quantify the effects of the asymptotic 3D to 2D 

159 transformation on 2D GPR FWI, and specifically investigate the electrical conductivity results 

160 in the presences of high contrast zones.

161 In this paper, we first present a numerical modeling study aimed at quantifying the travel 

162 time and amplitude differences between true 2D, and 3D to 2D transformed GPR crosshole 
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163 data. We study the performance of the asymptotic 3D to 2D transformation in complex 

164 structures, and propose using 3D forward modeling to mitigate inaccuracies in the crosshole 

165 FWI to enhance resolution and quantify of the εr and σ results. Therefore, we coupled a 3D 

166 FDTD forward modeling package with our 2D FWI scheme based on Meles et al. (2010) 

167 proposing a 2.5D FWI. The performance of this novel 2.5D FWI is tested and verified using 

168 synthetic and experimental data. 

169 EFFECTS OF THE GEOMETRICAL SPREADING CORRECTION

170 To quantify the influence of the asymptotic 3D to 2D transformation on the 

171 experimental data and hence the crosshole GPR FWI results, we first performed a numerical 

172 study to estimate possible errors introduced by this transformation. Previous studies (Auer et 

173 al., 2013; Van Vorst et al., 2014) indicated that the functionality of this transformation is 

174 sensitive to the degree of complexity of subsurface structures. Therefore, we designed a typical 

175 aquifer model including an unsaturated and saturated domain to study the effect of overlapping 

176 arrivals caused by the significant difference in velocity of the electromagnetic waves in 

177 unsaturated and saturated zones. Greenhalgh et al. (2007) showed that the change of acoustic 

178 wave velocity influences the performance of the asymptotic transformation more than the 

179 change in the amplitude through the interface. Because of analogous relations between visco-

180 acoustic and electromagnetic wave propagation, the translation of this statement for 

181 electromagnetic waves is that the contrast of the εr values before and after the interface is more 

182 important than a change of the σ. Therefore, we limited our studies to models with variations 

183 in the εr and constant σ. We used a 2D FDTD (Meles et al., 2010) and a 3D FDTD (Warren et 

184 al., 2016) algorithm to compute the 2D and 3D data. Both codes use perfect matched layer 

185 (PML) boundaries (Berenger, 1994) to truncate the computational domain, and to simulate the 

186 open boundary nature of the GPR problem. Both algorithms also enforce the CFL stability 

187 condition for FDTD (Hagness and Taflove, 1997). We apply equation 2 to transform the 3D 
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188 data to 2D (which we term ‘semi-2D’). The 2D model has the size 11 m x 6 m with boreholes 

189 5 m apart located at 0.5 m and 5.5 m. The 3D model used the same dimensions as the 2D model 

190 and was extended by 1.2 m in the transverse direction with the same model parameters as the 

191 2D plane. The numerical setup contains 11 transmitters and 65 receivers that are placed in the 

192 two opposite boreholes, from which one specific pair is located in a high contrast zone. Both 

193 models used a uniform grid with a 3 cm spatial discretization in all dimensions. Figure 1 

194 highlights a single transmitter (no. 4) and receiver (no. 21) pair (red crosses) in four different 

195 media configurations. Models (a), (b) and (c) present water saturated scenarios, while model 

196 (d) illustrates the interaction between the unsaturated and saturated zone. Models (a) and (b) 

197 are chosen to be homogenous with εr values of 12 and 18, respectively. Model (c) is 

198 homogenous with a εr of 12 including a lateral structure with a thickness of 1 m and a εr of 18 

199 located in the middle of the domain. This lateral layer acts as a low velocity waveguide that 

200 traps the emitted EM wave in this layer and causes multiple late arrival high amplitudes in the 

201 data (Klotzsche et al., 2014). Model (d) is extended from model (c) considering the unsaturated 

202 zone with a εr = 5. All four models have a homogenous σ with a constant value of 9.5 mS/m 

203 . As source wavelet we used a predefined wavelet similar to the studies of (~105 Ω𝑚)

204 Klotzsche et al. (2012) with a center frequency of 92 MHz for all the models.

205 The left column of Figure 1 shows the simplest possible ray-paths for each model, and 

206 the corresponding received waveforms are marked with the same number in the center column. 

207 The shape of the semi-2D waveform is produced by equation 2. To compare the amplitudes of 

208 the true 2D and the semi-2D waveforms, we scaled the semi-2D waveform to the maximum 

209 amplitude of 2D  in the homogeneous cases (a) and (b), and, we use the same scaling factor 𝐴2𝐷
𝑚𝑎𝑥

210 for the models (c) and (d). Note the amplitude of the 3D waveforms have also been scaled for 

211 visualization purposes. It is clear that there is a good fit between the true 2D and semi-2D 

212 waveforms for the simple homogenous cases (a) and (b). The ratio of  is almost 𝐴2𝐷
𝑚𝑎𝑥/ 𝐴𝑠𝑒𝑚𝑖 ― 2𝐷

𝑚𝑎𝑥
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213 identical for models (a) and (b), despite the fact that there is a 50% difference in εr values of 

214 the two models. This result confirms the previous studies of Ernst et al. (2007b) and Van Vorst 

215 et al. (2014), where they claimed the good performance of the asymptotic 3D to 2D 

216 transformation for simple cases. In contrast, a significant misfit is observed between the 2D and 

217 semi-2D traces for the models (c) and (d) with a higher degree of complexity. In the model (c) 

218 multiple reflections in the waveguide structure cause later arrivals of the waves (6 ns to 12 ns). 

219 The energy distribution is also changed because the first arrival wave has less energy, and the 

220 trapped late arrival waves carry most of the energy. The misfit between the waveforms for 2D 

221 and semi-2D models (c) reaches up to 17% when waves traveling on path 1 and 2 interfere. In 

222 model (d) the misfit rises to 20% of the recorded amplitudes for waves traveling along the 

223 curved ray path (labeled 3 in Figure 1k). The maximum misfit occurs for the waves traveling 

224 along ray path 3 which overlaps with the wave traveling along ray path 2. This results in an 

225 amplitude error of 31%. For both model (c) and model (d), the error increases when the arrival 

226 of the different events overlap. It is important to note that the asymptotic 3D to 2D 

227 transformation does not provide the absolute semi-2D amplitude and therefore requires a 

228 scaling factor for homogeneous media. 

229 The misfit in the frequency spectra increases with increasing degree of complexity of 

230 the models. These results confirm the findings of Auer et al. (2013) and Van Vorst et al. (2014), 

231 who outlined that the 3D to 2D transformation performs poorly in complex structures, where 

232 overlapping events occur, and that the transformation has a substantial influence on the 

233 amplitude of the semi-2D waveform. This problem is caused by the nature of the asymptotic 

234 3D to 2D transformation approach that relies on the transformation of the first arrival waves 

235 and the assumption that the highest amplitude of the data is associated with this first arrival 

236 event. Therefore, the performance of the transformation for overlapping or late arrival, high 

237 amplitude events is not reliable (Klotzsche et al., 2010). Moreover, the Bleistein (1986) 
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238 asymptotic transformation is based on the assumption of gradually varying medium properties. 

239 Therefore, sudden changes in medium properties, like the waveguide structure in model (c) and 

240 the transition from unsaturated to saturated zones in model (d), violate this assumption and 

241 consequently the asymptotic 3D to 2D transformation exhibits poor performance in these 

242 scenarios. It is important to point out that the asymptotic 3D to 2D transformation was initially 

243 developed to transform the acoustic waves in seismic analyses where far-field conditions almost 

244 always exist. The far-field assumption is potentially valid for the GPR crosshole setup when 

245 there is sufficient distance between the transmitter and receiver boreholes, but it is not valid for 

246 closely spaced boreholes and on-ground GPR (Streich and van der Kruk, 2007). By comparing 

247 the 2D, semi-2D, and 3D frequency spectra, we observe a small downshift in the center 

248 frequency for the semi-2D and 2D compared to the 3D. Červený and Pšenčík (2011) observed 

249 this phenomenon in seismic data, and they claimed it occurs because of differences between 

250 point and line sources. This shift is an important consideration concerning spatial resolution 

251 since the high-frequency data are necessary for detailed imaging of structures.

252 Summarizing, we observed poor performance of the asymptotic 3D to 2D 

253 transformation in complex structures, with amplitude mismatch errors of more than 30%. 

254 Additionally, applying the asymptotic transformation caused a loss of high-frequency content 

255 in the data, which subsequently affected the resolution of the FWI tomogram. Furthermore, 

256 Watson (2016) stated that even with the geometry of the crosshole setup limiting the transmitter 

257 and receiver to a single plane, the out-of-plane scattering is not zero. Therefore, the 2D 

258 modeling approach may not be able to resolve the data thoroughly and can lead to artifacts in 

259 the reconstruction. These shortcomings of the 3D to 2D transformation make it necessary to 

260 move towards 3D modeling for more accurate FWI. Moreover, 3D modeling makes the detailed 

261 finite-length antenna and borehole modeling possible, which could increase the accuracy of the 

262 FWI for experimental data. 
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263 NOVEL 2.5 CROSSHOLE GPR FWI METHODOLOGY 

264 3D forward model 

265 To reduce the issues arising from the 3D to 2D transformation, we coupled our existing 

266 2D crosshole GPR FWI with a 3D forward modeling kernel. Therefore, we use gprMax, a well-

267 developed software for simulating electromagnetic wave propagation based on the 3D FDTD 

268 method (Giannopoulos, 2005; Warren et al., 2016). gprMax uses PML to truncate the 

269 computational domain (Berenger, 1994; Allen Taflove, 1995; Giannopoulos, 2012) and is able 

270 to model rough surfaces and the finite-length GPR antennae (Warren and Giannopoulos, 2011). 

271 The 2D setup is extended to a 3D model , by keeping the medium properties invariant in the 

272 direction perpendicular to the plane containing the boreholes (Song and Williamson, 1995), 

273 which are cylindrical objects, producing a 2.5D model (Tabarovsky and Rabinovich, 1996). 

274 Inverse Problem 

275 FWI is an ill-posed problem that can solved by applying a gradient search method 

276 (Meles et al., 2010). The method requires εr and σ starting models with adequate initial 

277 information. Synthetic data based on these starting models need to yield results that are within 

278 half a wavelength  of the measured data throughout the entire domain. If the synthetic (𝜆 2)

279 response has more than half a wavelength misfit from the measured data, the synthetic pulse 

280 could fit an earlier or later measured pulse or even skip the whole pulse. This phenomenon is 

281 called “cycle skipping”, where the inversion is trapped in a local minimum and is not able to 

282 converge to the global minima. Therefore, reasonably accurate starting models are a necessity 

283 for successful inversion (Tarantola, 1986; Chunduru et al., 1997; Virieux and Operto, 2009; 

284 Fichtner, 2011; Klotzsche et al., 2012; Warner et al., 2013). The simultaneous vector-based 

285 gradient search method minimizes the cost function C, or misfit, between the observed and 

286 modeled data using the FDTD forward model. 
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𝐶 = 0.5 × ‖𝑬𝑠𝑦𝑛 ― 𝑬𝑜𝑏𝑠‖2 (3)

287 where  and are the modeled and observed data for all transmitter/receiver pairs within 𝑬𝑠𝑦𝑛 𝑬𝑜𝑏𝑠 

288 a pre-defined time window. The gradients for the εr and σ are calculated by a zero-lag cross-

289 correlation between the back propagated residual wavefield and the modeled data. These 

290 gradients define the direction that is expected to minimize the misfit function (see equation 3). 

291 In the next part, optimal step-lengths for εr and σ are obtained, which are used together with the 

292 gradients to simultaneously update the εr and σ models. Details of the calculation of the misfit 

293 function, the gradient, and the step-length can be found in Meles et al. (2010). This iterative 

294 procedure continues until the misfit between the observed and modeled data is reduced below 

295 a specified value. The method requires knowing the excitation source which is not normally the 

296 case for experimental data unknown (Pratt, 1999). Therefore, it is necessary to estimate the 

297 effective source using a deconvolution approach. For more details, see Ernst et al. (2007b) and 

298 Klotzsche et al. (2010).

299 CASE STUDY 1: REALISTIC SYNTHETIC MODEL

300 Model description and generating synthetic data

301 Our first case study investigates the performance of our new 2.5D FWI approach and 

302 compare the results with the standard 2D FWI. As realistic input models for the 3D forward 

303 model, we used the final 2D crosshole GPR FWI results of Klotzsche et al. (2012) that includes 

304 a high εr zone between 5 m to 6 m depth acting as a low-velocity waveguide (Figure 2). As 

305 discussed above, such small-scale zones cause problems in the 3D to 2D transformation by 

306 introducing possible errors especially in the full-waveform σ results. We used these models in 

307 the 3D FDTD forward solver with a known effective source wavelet to produce 3D realistic 

308 synthetic GPR data. For the model dimensions we choose a similar setup as Klotzsche et al. 
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309 (2012) with 7.62 m × 11.67 m dimensions using a cell size of 3 cm for the forward modeling 

310 and 9 cm for the inversion. We built the 3D computational grid by extending the transverse 

311 direction to 0.9 m (inversion plane in the center) and truncated the domain with 10 cells of PML 

312 at each boundary. A Hertzian dipole point source was used, and all materials were modeled as 

313 lossy dielectrics, i.e. with no frequency dispersive properties. We transformed these 3D 

314 synthetic GPR data into 2D GPR data using the standard 3D to 2D transformation. The source 

315 wavelet for the 2D FWI is updated using the deconvolution approach as proposed by Klotzsche 

316 et al. (2010). Note that this step is necessary to also account for the different radiation patters 

317 of the 3D and 2D environment. 2D FWI using the transformed data is prone to exhibit poor 

318 performance in determining εr and σ with a subsurface model that contains thin layers and high 

319 contrasts in medium properties. Hence, two inversions are performed: (1) 2.5 FWI using the 

320 3D data and the known input source wavelet, and (2) 2D FWI using the asymptotic 3D to 2D 

321 data transformation and an updated source wavelet.

322 Starting models 

323 Ray-based inversion can usually provide sufficient information as starting models, by 

324 using first-arrival times and first-cycle amplitudes of the data (Holliger et al., 2001; Maurer and 

325 Musil, 2004) However, Klotzsche et al. (2012) show that ray-based inversion can fail to identify 

326 the major changes in the εr close to high contrast regions like the water table or small-scale high 

327 contrast layers. Hence, they propose updating the starting model for the εr by including a 

328 homogeneous zone near the water table and water table itself. Similar to Klotzsche et al. (2012), 

329 we used the starting models based on the ray-based inversion results with an updated zone 

330 between 5 – 6 m depth. For the σ starting model we used a homogenous model similar to 

331 Klotzsche et al. (2012) that represents the mean of the first cycle amplitude inversion with a 

332 value of σ = 9.5 mS/m.
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333 We observed that the 2.5D FWI did not converge using the same starting models as for the 2D 

334 inversion of the synthetic data, while the 2D FWI could successfully reproduce the synthetic 

335 models. We believe there were simultaneous effects from the 3D to 2D transformation that 

336 caused this issue: 

337  The 3D to 2D transformation shifts the data on average by 1.5 ns in time (see Figure 1). 

338 Using the 2D ray-based starting models produced data within half a wavelength for the 

339 2D inversion. However, due to this shift, the 3D measured data are more than a half-

340 wavelength away from the modeled data and therefore could not converge successfully 

341 due to cycle skipping. 

342  Because the center frequency of the transformed data using the 3D to 2D transformation 

343 is slightly lower than the original 3D data. This shift indicts that the high-frequency 

344 content in the transformed data is reduced and the transformed data have a lower spatial 

345 resolution compared to the original data. Therefore, it is easier to fit the modeled data 

346 to the transformed data with lower complexity compared to the original measured data 

347 with higher resolution. Thus, synthetic traces produced by the 2D forward model could 

348 fit the transformed data while synthetic traces from the 3D forward model could not 

349 match the original data due to the additional detail present in the 3D model.

350 Therefore, to guarantee an overlap within half a wavelength of the starting model based 

351 synthetic data and the measured data in the entire domain, we updated the εr starting model 

352 with a single homogenous upper layer with a constant value of εr = 18 in the depth range 4 m 

353 to 6 m (before in average εr = 16). This update guaranteed an overlap of half a wavelength in 

354 the entire domain and allowed successful convergence for both 2D and 2.5D FWI. 

355 Inversion strategies 
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356 2.5D FWI requires almost 300 times more computational CPU-hours than 2D FWI due 

357 to the computationally intensive 3D modeling. As we have seen the 2.5D FWI is also more 

358 sensitive to the εr starting model. Hence, there is a higher chance of the inversion becoming 

359 trapped in local minima instead of converging to the global minimum. Therefore, alongside the 

360 conventional FWI (direct method), we studied possible inversion strategies that could reduce 

361 the required computational effort and increase the chance of a successful convergence (cascade 

362 method). These cascade methods require the 2D inversion to be stopped in a particular stage, 

363 and the output is used as a priori information for a new start of the inversion with more detailed 

364 starting models. Since we knew the expected output from our synthetic study, we were able to 

365 compare the performance of the 2D FWI (with asymptotic 3D to 2D transformation applied) 

366 and 2.5D FWI schemes. We quantified the evaluation by calculating the relative model error 

367 for the εr and σ independently as follows: 

𝜉(𝑚𝑐𝑎𝑙)𝜎,𝜀 = 100 × (𝑚𝑐𝑎𝑙 ― 𝑚𝑡𝑟𝑢𝑒

𝑚𝑡𝑟𝑢𝑒 )
𝜎,𝜀

(4)

368 where  is the relative average error (AE) in percentage,  and  are the 𝜉(𝑚𝑐𝑎𝑙)𝜎,𝜀 𝑚𝑐𝑎𝑙 𝑚𝑡𝑟𝑢𝑒

369 modeled and reference values for each element in the domain, respectively. As the performance 

370 of the 2D FWI is prone to inaccuracy in the layered zone, we calculated lateral average error 

371 (LAE) as a function of the depth alongside the AE in the whole domain. 

372 Direct 2.5D FWI

373 The εr and σ tomograms obtained from 2D and direct 2.5D FWI strategy for identical 

374 starting model are shown in Figure 3. Comparing the results with the reference models (Figure 

375 2) shows that both 2D and 2.5D FWI were able to qualitatively resolve the main features of the 

376 εr and the σ tomograms. For the εr tomograms, both FWIs reconstructed the three main layers 
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377 successfully, while the results of the 2D FWI appear to be smoother than those from the 2.5D 

378 FWI. The σ tomograms are well-reconstructed for both approaches as both results shows main 

379 features of the synthetic input model. Despite the fact that the tomograms look similar from a 

380 qualitative perspective, a quantitative comparison shows differences in accuracy. The 2D FWI 

381 overestimates εr between 4.2 m - 5.7 m, where the LAE reaches 26%. The obtained εr for the 

382 2.5D FWI fits better the reference model with a maximum LAE of 7% at the interface between 

383 the upper high-velocity zone and the low-velocity waveguide. The AE in estimated εr in the 

384 whole domain is 2.5% for 2D FWI, while this value is 0.18% for 2.5D FWI. The LAE for σ 

385 reached 32% and then dropped to -21% in the transition from high to low σ layers at depths of 

386 5 m to 6 m. The LAE for the 2.5D FWI σ has maximum values of +6.5% and -21%. The AE for 

387 σ in the whole domain is 2.8% for 2D FWI, while this value is 0.5% for 2.5D FWI.

388 To evaluate the performance of the two FWI approaches with the reference model, we compare 

389 two cross-sections (A-A) and (B-B) in each model (indicated in Figure 3). The εr values in A-

390 A show a better fit to the reference values for the 2.5D FWI compared to the 2D FWI (Figure 

391 4). While both 2D and 2.5D FWI underestimate the εr at depths of 8 m to 10 m. The values of 

392 σ in A-A reveal a more accurate 2.5D FWI result. In the B-B cross-section, εr of the 2D FWI 

393 shows significant error in first 1.5 m depth and slightly misplaces the maximum peak. The εr 

394 values for the 2.5D FWI better fit the reference model all along cross-section B-B. The 2D FWI 

395 overestimates the σ in the upper layer and underestimates it continuously in the middle and 

396 lower areas, whereas the 2.5D FWI result was closer to the reference model. Moreover, the εr 

397 and σ model produced with the 2.5D FWI shows higher resolution in comparison to the results 

398 of the 2D FWI while it revealed smaller spatial variation for both εr and σ. This observation 

399 agrees with our hypothesis previously mentioned that the 2.5D FWI better reconstructs the 3D 

400 input models especially the electrical conductivity results by eliminating the effect of the 

401 asymptotic 3D to 2D data transformation. 
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402 The normalized root mean square (RMS) error for the 2D FWI is reduced to 22% of the initial 

403 value, while this value is reduced to 12% for 2.5D FWI results. Both 2D and 2.5D FWI had 

404 termination criteria to stop the inversion when the change of the RMS error value in two 

405 consecutive iterations was less than 0.5%. The 2D FWI stopped after 21 iterations, while the 

406 2.5D FWI met this criterion after 23 iterations. Note that also a good data fit and no remaining 

407 gradient was present for all inversion results. Our new 2.5D FWI approach exhibits better 

408 performance over the 2D FWI in reconstructing the εr and σ models, regarding both correct 

409 positioning and accuracy of the assigned values. Furthermore, the εr and σ models of the 2.5D 

410 FWI have lower AE than the 2D FWI, and structures are slightly better resolved in the 2.5D 

411 FWI. Despite this superior performance, it is necessary to consider the higher computational 

412 demands of the 3D modeling used in our 2.5D FWI. Computational times for the simulations 

413 mentioned above are given in Table-1.

414 Cascade 2.5D FWI

415 As shown in Mozaffari et al. (2016), the results of the 2D FWI with a limited number of 

416 iterations can be used to improve the starting models for the 2.5D FWI, which allows a faster 

417 convergence and hence reduces the computational effort. Therefore, we applied 2D FWI to 

418 create εr starting models at iterations 1, 4 and 7, and then we used them for the 2.5D FWI. These 

419 εr models were used as starting models and were inverted with the 2.5D FWI (homogenous σ 

420 starting model) until change of the misfit between two subsequent iterations is less than 0.5% 

421 (see Figure 5). All three models successfully show the key features and structures of both εr and 

422 σ. Furthermore, the comparison of the εr and σ results show that AE and LAE are increased by 

423 using the starting models that developed for a more extended time by the 2D FWI (see Table 

424 1), indicating an increase in inaccuracies of the tomograms. 
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425 All these results show that the percentage of the AE increases proportionally with increasing 

426 number of iterations of the 2D FWI used as starting models. Nevertheless, using this method 

427 could have a significant effect on the required computational effort. The computational time for 

428 the total inversion reduced by 5%, 20%, and 35% for the three models respectively, as shown 

429 in Table 1. All computations were carried out on JURECA cluster (Krause and Thörnig, 2016) 

430 , which is part of the Jülich Supercomputing Centre (JSC). It is equipped with 1872 computing 

431 nodes with two Intel Xeon (E5-2680) with 2x12 cores at 2.5 GHz, simultaneous multithreading, 

432 and DDR4 (2133 MHz) memory with various capacities from 128 to 512 GB.

433 2.5D FWI with updated εr starting model

434 We propose a second strategy, where we combine the methods of Klotzsche et al. (2012) 

435 and Mozaffari et al. (2016). Thereby, we update only the εr starting model with essential 

436 features revealed in the 2D FWI. Note that we checked for each starting model update if the 

437 half-wavelength criterion is still valid by performing forward modeling using these models and 

438 the 3D forward solver, and compared the input and the modeled data. The most significant 

439 missing attribute in the εr starting model that we used so far is the high εr layer at a depth of 5.5 

440 m to 6.0 m. This feature is revealed after a limited number of iterations in both the 2D and 2.5D 

441 FWI, while the σ does not show significant changes. Hence, our new updated εr starting model 

442 consists of two-horizontal layers, where the lower and upper layer have εr values of 22 and 18, 

443 respectively (Figure 6a). 

444 The 2.5D FWI with the updated εr starting model produced εr and σ tomograms with 

445 maximum LAE of 8% and 9%, respectively. These maximums occurred at the interface of the 

446 high εr layers. The AE for εr and σ errors were 0.16% and 0.45%, respectively, which is slightly 

447 better than the 2.5D FWI using the direct approach (compare Figure 6). Using this updated εr 

448 starting model, the 2.5D FWI required 44% less computational time to converge using the same 
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449 number of CPUs. A summary of the 2D FWI and 2.5D FWI using different strategies with 

450 required computational demand is presented in Table 1. Furthermore, by comparing the 

451 convergence of the inversion and the RMS distributions over number of iterations for the 

452 different strategies (Figure 7), it can be noticed that both strategies for the 2.5D FWI result in 

453 the same final RMS value, while updating the εr starting model helped to reduce the RMS in 

454 earlier iterations of inversion. 

455 In summary, despite the fact of the reduction in computational effort by using the 

456 cascaded 2.5D FWI, the final 2.5D FWI results are significantly affected by the 2D FWI 

457 drawbacks. This is because the AE is directly linked to the level of development of the starting 

458 model from the 2D FWI. Hence, choosing an adequate starting model based on the 2D FWI 

459 results is a compromise between the computational effort and accuracy of the results. Therefore, 

460 we do not suggest using early-stage results from the 2D FWI as an input for the 2.5D FWI. In 

461 contrast, the proposed method using a εr starting model for the 2.5D FWI with updates based 

462 on the results of the 2D FWI can significantly reduce the computational effort, while the 

463 accuracy of the models is not affected. We further apply this approach to invert experimental 

464 GPR data from the Widen test site. 

465 CASE STUDY 2: EXPERIMENTAL DATA 

466 Test site description

467 To validate the findings of the synthetic tests, we applied the 2.5D FWI approach to the 

468 experimental data of the Widen site (Switzerland). Several geophysical and hydrological 

469 studies have been performed at this site characterizing the aquifer in detail (Diem et al., 2010; 

470 Doetsch et al., 2010; Coscia et al., 2011). The aquifer compromises a glaciofluvial deposit that 

471 includes a 3 m alluvial loam (silty sand) at the top, a 7 m thick gravel layer, and a low 

472 permeability clay aquitard below 10 m depths (Cirpka et al., 2007). Multiple monitoring wells 

473 with 11.4 cm diameter are installed near to the river Thur. The GPR data were measured with 
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474 a RAMAC Ground Vision system from Mala Geoscience with 250 MHz antennae. The dataset 

475 was acquired in neighboring boreholes on the south-west plane, where the water table was at 

476 approximately 4.2 m depth (Doetsch et al., 2010). As shown in Klotzsche et al. (2012) a high 

477 εr (high porosity) zone that could be linked to zones of preferential flow is located between 5 

478 m - 6 m depth. 

479 FWI results

480 We applied 2.5D FWI to the same dataset as Klotzsche et al. (2012) and used the same 

481 data pre-processing steps, except that the 3D to 2D conversion is not necessary anymore for the 

482 2.5D FWI. The effective source wavelet was updated using the deconvolution approach for the 

483 3D GPR data and compared to the 2D FWI effective source wavelet (Figure 8). Based on the 

484 finding of the synthetic studies, we chose as a starting model for the εr the updated model based 

485 on the 2D features (Figure 6a). A homogenous σ starting model of 9.5 mS/m is used. The 

486 inversion converged and the 16th iteration was estimated as an optimal solution (Figure 9), 

487 where the change of the RMS error compared to the previous iteration was less than 0.5% and 

488 no remaining gradient was present. Unfortunately, we do not have any logging data from the 

489 same boreholes. Therefore, we tried to validate the experimental based on previous studies. The 

490 εr and σ tomograms produced by 2.5D FWI are in a good agreement with the 2D FWI results 

491 from Klotzsche et al. (2012). The slightly upward dipping high εr structure between 5.3 m to 

492 6.1 m was identified as low-velocity. We also observed the same structure using our new 2.5D 

493 FWI approach. The average σ values for 2.5D FWI results are around 1.4% lower than the 

494 average values from the 2D FWI. These differences in σ values are higher in zones with higher 

495 εr between 5.2 m – 6 m and 9.2 m – 10 m. The RMS misfit error between the measured and 

496 2.5D modeled data was reduced to 50% from the starting model values. In comparison, the 2D 

497 RMS errors for the same starting model only reduced by 48%. The lower average σ in the entire 
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498 domain for 2.5D FWI is the main reason for the 2% improvement in the RMS misfit compared 

499 to the 2D FWI. 

500 The computational requirement of the 2.5D FWI is more than 300 times higher than for 

501 the 2D FWI. The small increase in accuracy of the 2.5D FWI for the experimental data is 

502 perhaps not convincing given the high computational effort. Nevertheless, higher accuracy and 

503 less uncertainty for the σ results are achieved by reducing assumptions that mainly affect the 

504 amplitudes, and hence more quantitative results are obtained. Furthermore, 3D modeling will 

505 enable us to model the borehole, borehole-filling, and realistic finite-length antennas in the 

506 future. We expect to make significant improvements in accuracy by including these features in 

507 our future simulations, which will justify the extra computational effort from using 3D forward 

508 models.

509  CONCLUSION

510 In this paper, we have investigated the performance of the asymptotic 3D to 2D 

511 transformation. Despite the usefulness of the asymptotic data transformation to avoid 

512 computationally expensive 3D modeling, it assumes that the highest wave amplitudes are 

513 associated with the first arrival. We demonstrated that this asymptotic transformation function 

514 only works accurately in such simple subsurface cases, while it fails with complex structures 

515 such as high contrast layers that produce overlapping arrivals from several different features. 

516 Moreover, the amplitudes assigned to waves after the 3D to 2D transformation are only valid 

517 for simple homogenous media and are therefore not suitable for non-uniform media. We also 

518 observed that applying the 3D to 2D transformation to measured data lowers the resolution of 

519 the data by reducing the high-frequency content. Therefore, to overcome the restrictions of the 

520 3D to 2D conversion assumptions and to minimize the associated errors in the crosshole GPR 

521 FWI results, we extended the existing 2D FWI with a 3D forward model. Our new 2.5D FWI 
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522 uses gprMax as a complete 3D FDTD modeling engine which makes the 3D to 2D 

523 transformation unnecessary. We compared the performance of 2D FWI (with 3D to 2D 

524 transformation) and the 2.5D FWI for realistic synthetic data. The results for 2.5D FWI showed 

525 higher accuracy in estimated εr and σ and provided lower AE in tomograms. Thereby, we 

526 observed that the εr starting model of the 2.5D FWI needed some modifications in comparison 

527 to the 2D starting model to still fit the requirements to provide modeled data within half of the 

528 wavelength of the measured data. The time shifts caused by the asymptotic 3D to 2D 

529 transformation placed the transformed 2D data less than the half-wavelength distance from 

530 modeled data while the original 3D data were too far from modeled data to converge. Moreover, 

531 a slight decrease in the dominant frequency of the transformed data was observed, which caused 

532 a loss of high-frequency content. Despite the lower AE and higher resolution of the 2.5D FWI, 

533 the trade-off is a significant increase in computational resources. Therefore, we examined 

534 multiple strategies to improve the starting model by using results from the less computationally 

535 intensive 2D FWI directly. We have studied the possibility of using the 2D FWI intermediate 

536 results as input for 2.5D FWI to reduce the required computational effort. But we found out that 

537 this method will introduce inaccuracies and we have abandoned this idea. Alternatively, we 

538 found that by updating the starting model based on the main features obtained by 2D FWI, we 

539 can reduce the computational costs by more than 40% while maintaining accuracy and 

540 resolution.

541 Finally, we applied the novel 2.5D FWI to previously studied experimental GPR data 

542 from the Widen test site (Switzerland) to investigate changes achieved in the final tomograms. 

543 The results showed agreement with previous 2D works, and all the expected structures were 

544 identified. As expected, the main improvement was that the σ tomogram shows higher values 

545 in zones of higher εr and high contrast layers. For both synthetic and experimental data, we 

546 have seen that using the ray-based results as starting models for the 2.5D FWI causes the 
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547 inversion to be trapped in a local minimum and an update of the permittivity model was required 

548 to successfully perform the inversion. Overall, we demonstrated that our new 2.5D FWI with 

549 3D forward modeling is a valuable tool for an improved and more quantitative modeling of the 

550 subsurface. In particular, the use of a 3D forward model allows us to reduce assumptions that 

551 mainly affect the quantitative σ results, and, furthermore allows us to simulate important details 

552 including borehole structure, borehole filling, and finite length antennas. 
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762 Table Caption:

763 Table 1. Results of the synthetic study using different inversion strategies and different starting 

764 models SM. Maximum lateral average error LAE and average error AE for the entire domain 

765 between the boreholes for εr and σ. Computation time CT, reduction of the computational time, 

766 and RMS reduction normalized to the starting models (SM represented by 100%) for 2D and 

767 2.5D FWI. The bold values indicate the best results. 

768
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769 Figures Captions: 

770 Figure 1. Synthetic subsurface crosshole GPR setup with: model a) homogenous medium (εr = 

771 12) (1a); model b) homogenous medium (εr = 18) (1d); model c) homogenous medium (εr = 

772 12) with a waveguide structure (εr = 18) in the center (1g); and model d) homogenous medium 

773 (εr = 12) with a waveguide structure (εr = 18) in the center with an unsaturated zone (εr = 5) on 

774 top (1j). The transmitter-receiver pairs are marked by red crosses. The corresponding simulated 

775 2D, calculated semi-2D, and 3D traces are in the center column, where the major events are 

776 assigned to possible ray paths by number and dashed purple circles. The frequency spectra are 

777 presented in the right column. Note that the amplitude of the semi-2D and 3D traces are scaled 

778 by the ratio of . 𝐴2𝐷
𝑚𝑎𝑥/ 𝐴𝑠𝑒𝑚𝑖 ― 2𝐷

𝑚𝑎𝑥  

779 Figure 2. Relative dielectric permittivity (a) and electrical conductivity (b) models based on 

780 Klotzsche et al. (2012) as the simulated reality for synthetic analysis. Note the logarithmic scale 

781 for the σ tomogram. Transmitter and receiver positions are indicated by circle and crosses, 

782 respectively.

783 Figure 3. εr and σ models for 2D (a and b) and 2.5D FWI (c and d), and corresponding lateral 

784 average errors plotted on the left side of the tomograms. A-A and B-B show the positions of 

785 the cross-sections presented in Figure 4. Note the logarithmic scale for σ tomograms. 

786 Transmitter and receiver positions are indicated by circle and crosses, respectively.

787 Figure 4. εr and σ values of the cross-sections A-A (a and b) and B-B (c and d) (position shown 

788 by dotted line in Figure 3) for the reference values (blue), and models produced with 2D (red) 

789 and 2.5D FWI (black).

790 Figure 5. εr and σ and tomograms produced by 2.5D FWI for different starting models created 

791 from the 1st (a and b), 4th (c and d) and 7th (e and f) iteration of 2D FWI. Corresponding lateral 
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792 average errors are plotted on the right side of each tomogram. Note the logarithmic scale for σ 

793 tomograms. Transmitter and receiver positions are indicated by circle and crosses, respectively.

794 Figure 6. Updated εr starting model (a), εr, (b) and σ (c) resulting tomograms of the 2.5D FWI 

795 and the corresponding lateral average model errors on the left side. Note the logarithmic scale 

796 for σ tomogram. Transmitter and receiver positions are indicated by circle and crosses, 

797 respectively.

798 Figure 7. RMS misfit curves for 2D FWI (blue) and 2.5D FWI (red) using the same starting 

799 models, and, the 2.5D FWI using the updated εr starting model. RMS curves are normalized to 

800 the starting model value (0 iteration) used for the 2D and 2.5D FWI. 

801 Figure 8. Comparison of the 2D effective source wavelet based on Klotzsche et al. (2012) in 

802 red and the 2.5D effective source wavelet in blue using the deconvolution approach. Note both 

803 wavelets are normalized to their maximum amplitude.

804 Figure 9. 2.5D FWI tomograms for εr (a) and σ (b) for the experimental data of the Widen test 

805 site using the updated starting model (see Figure 6a) and effective source wavelet (see Figure 

806 8, blue). Note the logarithmic scale for σ tomogram. Transmitter and receiver locations are 

807 indicated by circles and crosses, respectively.

808
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Table 1. Results of the synthetic study using different inversion strategies and different starting 

models SM. Maximum lateral average error LAE and average error AE for the entire domain 

between the boreholes for εr and σ. Computation time CT, reduction of the computational time, 

and RMS reduction normalized to the starting models (SM represented by 100%) for 2D and 

2.5D FWI. The bold values indicate the best results. 

FWI strategy

Max. 

LAE (%) 

for εr

AE 

(%) of 

εr 

Max.LAE 

(%) for σ

AE 

(%) for 

σ 

CT for 20 

iteration 

(min)

CT 

reduction 

compare 

to 2.5D 

FWI (%)

RMS 

reduction 

normalized to 

SM (%) 

2D 25 2.5 35 2.8 4,5 - 78

2.5D 6 0.18 19 0.5 1196.7 - 88

2.5D – with 1st 

iteration of the 

2D FWI as SM 

8 0.21 19 1.0 1136.4 5 84

2.5D – with 

4th iteration of 

the 2D FWI as 

SM

19 1.55 28 1.6 957.7 20 82

2.5D – with 

7th iteration of 
23 1.9 33 2.2 778.9 35 81
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the 2D FWI as 

SM

2.5D with 

updated SM
8 0.16 11 0.45 664.8 44 88
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Figure 1 / Synthetic subsurface crosshole GPR setup with: model a) homogenous medium (εr = 12) (1a); 
model b) homogenous medium (εr = 18) (1d); model c) homogenous medium (εr = 12) with a waveguide 

structure (εr = 18) in the center (1g); and model d) homogenous medium (εr = 12) with a waveguide 
structure (εr = 18) in the center with an unsaturated zone (εr = 5) on top (1j). The transmitter-receiver 

pairs are marked by red crosses. The corresponding simulated 2D, calculated semi-2D, and 3D traces are in 
the center column, where the major events are assigned to possible ray paths by number and dashed purple 

circles. The frequency spectra are presented in the right column. Note that the amplitude of the semi-2D 
and 3D traces are scaled by the ratio of Amax

2D/ Amax
semi-2D . 
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Figure 2 / Relative dielectric permittivity (a) and electrical conductivity (b) models based on Klotzsche et al. 
(2012) as the simulated reality for synthetic analysis. Note the logarithmic scale for the σ tomogram. 

Transmitter and receiver positions are indicated by circle and crosses, respectively. 
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Caption : Figure 3 / εr and σ models for 2D (a and b) and 2.5D FWI (c and d), and corresponding lateral 
average errors plotted on the left side of the tomograms. A-A and B-B show the positions of the cross-
sections presented in Figure 4. Note the logarithmic scale for σ tomograms. Transmitter and receiver 

positions are indicated by circle and crosses, respectively. 
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Figure 4 / εr and σ values of the cross-sections A-A (a and b) and B-B (c and d) (position shown by dotted 
line in Figure 3) for the reference values (blue), and models produced with 2D (red) and 2.5D FWI (black). 
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Figure 5 / εr and σ and tomograms produced by 2.5D FWI for different starting models created from the 1st 
(a and b), 4th (c and d) and 7th (e and f) iteration of 2D FWI. Corresponding lateral average errors are 

plotted on the right side of each tomogram. Note the logarithmic scale for σ tomograms. Transmitter and 
receiver positions are indicated by circle and crosses, respectively. 
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Figure 6 / Updated εr starting model (a), εr, (b) and σ (c) resulting tomograms of the 2.5D FWI and the 
corresponding lateral average model errors on the left side. Note the logarithmic scale for σ tomogram. 

Transmitter and receiver positions are indicated by circle and crosses, respectively. 
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Figure 7 /  RMS misfit curves for 2D FWI (blue) and 2.5D FWI (red) using the same starting models, and, 
the 2.5D FWI using the updated εr starting model. RMS curves are normalized to the starting model value (0 

iteration) used for the 2D and 2.5D FWI. 
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Figure 8 /  Comparison of the 2D effective source wavelet based on Klotzsche et al. (2012) in red and the 
2.5D effective source wavelet in blue using the deconvolution approach. Note both wavelets are normalized 

to their maximum amplitude. 
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Figure 9 / 2.5D FWI tomograms for εr (a) and σ (b) for the experimental data of the Widen test site using 
the updated starting model (see Figure 6a) and effective source wavelet (see Figure 8, blue). Note the 

logarithmic scale for σ tomogram. Transmitter and receiver locations are indicated by circles and crosses, 
respectively. 
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