
A lexically scoped distributed
pi-calculus

António Ravara
Ana G. Matos

Vasco T. Vasconcelos
Lúıs Lopes

DI–FCUL TR–02–4

April 2002

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749–016 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The
files are stored in PDF, with the report number as filename. Alternatively, reports
are available by post from the above address.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330694?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

A lexically scoped distributed pi-calculus

António Ravara∗ Ana G. Matos† Vasco T. Vasconcelos‡ Lúıs Lopes†

April 2002

Abstract

We define the syntax, the operational semantics, and a type system for lsdπ,
an asynchronous and distributed π-calculus with local communication and process
migration. The calculus follows a simple model of distribution for mobile calculi,
with a lexical scoping mechanism that provides both for remote communication and
for process migration, making explicit migration primitives superfluous.

1 Introduction

Current hardware developments in network technology, namely high-bandwidth, low-laten-
cy networks and wireless communication, has opened new prospects for mobile computa-
tion, while at the same time introducing new problems that need to be addressed at the
software level. The fundamental problem stems from the lack of a formal background on
which to assert the correctness of a given system specification. Thus, adequate theoretical
modeling of distributed mobile systems is required to produce provably correct software
specifications and to reason about distributed computations.

We propose a natural framework to specify such systems, based on the π-calculus [10,
11], with explicit distribution and process migration. Technically, the paper describes an
asynchronous and distributed π-calculus, where each free channel belongs to a specific
site, fixed throughout the computation, further developing the work in reference [14]. We
adhere to the lexical scoping in a distributed context of Obliq [5], meaning that, in order
to determine where an a certain free channel belongs to, we just have to inspect the code
for the process where the channel occurs. The rule is simple: located channels a@s belong
to the site where they are (explicitly) located, s; simple channels a are (implicitly) located
at the current site, the site where the process they occur at is located.

To motivate the importance of lexical scoping in programming languages in general,
consider the following function written in (a variant of) Pascal.

∗Department of Mathematics, Instituto Superior Técnico. Lisbon, Portugal.
†Department of Computer Science, Faculty of Sciences, University of Porto, Portugal.
‡Department of Informatics, Faculty of Sciences, University of Lisbon, Portugal.

1

function f (): Integer;
var x: Integer := 1;
function g () : Integer;

begin g := x end;
begin f := x + g () end;

A programmer writes the body of function g knowing that x is global to g, and develops
function f keeping in mind that x is local to f, and that the x of g and that of f denote the
same variable. This is the kind of reasoning that programmers have been doing for decades,
both in imperative (Algol, Pascal) and in functional (ML, Haskell) languages. It is intuitive,
and accumulated experience has shown the concept to be right. Also, an unoptimizing
compiler assigns to variable x a memory, together with the remaining information relevant
for function f. In order to evaluate the expressions in the body of each function, the code
generated must read the value of x: in f it performs a local operation (reading from the
data for the current activation), for g it first finds where the f’s activation is. The good
news is that we do not need to abandon these ideas, when moving into distributed (and
code migrating) computing.

Consider a network where we declare a channel x within some site f, ask for the process
x?()P to migrate to another site g, and, in parallel launch a receptor x?()Q located at x.
Here is the network (in receptive distributed π [2]), and the one obtained after one reduction
step.

f [new x new x@f
go g. x?()P | g [x?()P] ‖
x?()Q] f [x?()Q]

From the preceding discussion, the pertinent questions are: “where does channel x belong
to?”, and “where is x to be stored?”. Analyzing the new x@f part, it would seem that
channel x belongs to site f, but looking at the subnetworks for g and for f we cannot really
conclude that. More importantly, we have no clue on where to place the queue for x, for we
have receptors for x at both sites g and f. Amadio et al. [2] filter out the above networks, by
imposing a unique receiver property (as in π1 [1]), together with other restrictions (locality
and receptiveness). Although this is done using a simple type system, it is an extra element
that looks to us counter-intuitive and heavy.
We address the above questions by imposing a lexical scope discipline to networks. In lsdπ,
the above left network would reduce to:

new x@f
g [x@f?()P’] ‖
f [x?()Q]

where it is clear (in each of the three lines) that channel x belongs to site f, and that
the queue for x should be at f. Process P’ (obtained from P by the application of an
appropriate substitution) reflects the fact that P has migrated from f to g: free simple
channels (implicitly located at f) become attached to their site (channel y becomes y@f);
free channels located at the target site g (say z@g) become simple (by dropping the @g
part), reflecting their new local status, ready for communication; all the remaining channels
remain unchanged. In lsdπ, programmers may refer to a channel a belonging to a site s

2

by its local name a or by its remote name a@s, reflecting two distinct views of a channel:
the local view and the network (global) view. Allowing the two views greatly simplifies
the programming task and allows a standard definition for reduction when combined with
migration. From an implementation point of view, this explicit notation provides a compiler
with precious information to generate code to access channels.

Explicitly located input/output processes (receptors x@f?(y)P and messages x@f!〈v〉,
absent in every proposal to date) obviate the need for the go primitive, written spawn(s,P)
in [1], go s.P in [2], or s::P in [8]. It suffices to attach to such processes the behavior of “mi-
grating toward the site where they belong”: a message targeted at x@f must first migrate
to f (thus becoming targeted at x) prior to engaging in some communication; a receptor
waiting on x@f must first migrate to f (thus waiting now on x) prior to engaging in any
communication. In lsdπ, reduction is local, avoiding remote communication between sites
in such a ubiquitous operation. This pattern of interaction between clients and servers is
an alternative paradigm of growing interest in programming distributed-systems. Clients
do not interact remotely with a server. Rather, they move to the site of the server and
interact locally until the session ends. Then, they return to their site of origin. Local com-
munication minimizes network traffic and improves scalability. Migration and reduction
are intimately related. An input/output process either reduces locally or migrates over the
network depending on the prefix. This is highly convenient from an implementation point
of view since possible migration operations are clearly marked in the program. Moreover,
since the migration units are either input or output processes, their implementation is far
easier than it would be for a generic process.

Lexical scope together with compound names introduce subtleties in the definition of
free names. Consider the network r[(ν a) a@s!〈〉]. It is not clear whether channel a belongs
to r or to s, as it is not obvious whether a@s should be free or bound. Now consider
the network r[b?(x)x?()(ν a) a@s!〈〉] interacting with another network r[b!〈c@t〉], yielding
t[c?()(ν a) a@s!〈〉]. We see that a belongs to whatever site x belongs to, possibly neither r
nor s (t in this case). We address this problem by imposing syntactic restrictions on
processes otherwise defined by a context-free grammar (rejecting, among others, the above
processes), and we make sure that these restrictions carry through, all the way from alpha-
congruence to reduction.

Our values are simple channels a and located channels a@s; parameters are simple
channels only. This means that we cannot rely on the usual substitution of the π-calculus,
where one substitutes channels by channels. To make sure we got the concept right, we
start with a general notion of substitution: a total function on names (sites, channels,
located channels), defined along the lines of the substitution for the λ-calculus, by Hindley
and Seldin [9]. This function is then used to define name replacement (used in alpha-
congruence), name instantiation (the substitution that arises from communication, as in
a!〈ṽ〉 | a?(x̃)P), and name translation (the substitution that happens during migration, as
in a@s!〈ṽ〉 or a@s?(x̃)P).

For the type system, we take a simplified form of that of Amadio et al. [2], which we
adapt to deal with the lexical scope of channels. Types for channels are the usual types
in the simply typed π-calculus, Ch(γ1, . . . , γn), describing a channel capable of carrying a

3

series of channels of types γ1, . . . , γn [13]. For sites, we only capture the types of the (free)
channels at the site: if a1 to an of types γ1 to γn contain the free channels of site s, then
we assign to site s the type {a1:γ1, . . . , an:γn}. The type system is simple and intuitive—a
straightforward extension of that for simply typed π-calculus [13]; it assumes types for
sites only (types for channels are taken from that of the site the channel belongs to), and
enjoys subject-reduction.

Distinctive features of lsdπ include: separate syntactic categories for processes and net-
works (in the line of Dπ [8], but unlike dπr

1 [2], nomadic-pict [12], the join-calculus [7], and
mobile ambients [6]), a syntactically flat structure of the network and local communication
(like Dπ, dπr

1, but unlike the join-calculus and ambients).
Specifically, the contributions of this work are:

1. a distributed π-calculus that provides for local communication, remote invocation,
weak mobility in a lexical scope regime;

2. a rigorous treatment of channels, allowing for the substitution of a channel by a
compound channel, ensuring that each channel belongs to a unique, lexically defined,
site;

3. a type system revealing the site of each channel, while ensuring subject-reduction.

The rest of the report is organized as follows: the next section presents the syntax
of the calculus; the operational semantics is dealt in section 3; section 4 describes types
and type assignment; and section 5 compares lsdπ with related work and points to future
developments. Detailed proofs for all the results can be found in the appendix.

2 The calculus

This section presents the (context-free) grammar of the calculus, followed by the syntactic
restrictions.

2.1 Syntax

Consider a countable set C of simple channels a, b, c, x, y, z, and a countable set S of
sites s, r, t, such that the two sets are disjoint. Compound channels—pairs channel-site,
like a@s—form located channels, designating a channel a at site s, belonging to the set

C@S def
= {a@s | a ∈ C ∧ s ∈ S}. Let u, v, . . . stand for both simple and located channels,

henceforth collectively called channels. Take x as a variable ranging over simple channels,
x̃ as a sequence of pairwise distinct variables, let |x̃| denote the length of the sequence x̃,
and let {x̃} denote the set of the channels in the sequence x̃; moreover, let ṽ stand for a
sequence of channels. Furthermore, let n, m stand for both sites and channels, henceforth

collectively called names, and belonging to the set N def
= C ∪S ∪C@S. Finally, let g, h stand

for both sites and located channels, henceforth collectively called global names.

4

Simple channels, a, b, c, x, y, z ∈ C
Sites, r, s, t ∈ S

Channels, u, v ::= a | a@s

Globals, g, h ::= a@s | s

Names, n, m ::= a | a@s | s

Processes, P, Q ::= 0 | (P |Q) | (ν n) P | u!〈ṽ〉 | u?(x̃)P

Networks, N, M ::= 0 | (N ‖M) | (ν g) N | s[P]

Figure 1: Syntax.

Definition 2.1 (Names, processes and networks). The grammars in figure 1 define
the languages of processes and of networks.

Receptors, of the form u?(x̃)P , and messages, of the form u!〈ṽ〉, are the basic processes
in the calculus. A receptor is an input-guarded process. A message has a name u for
target and carries a sequence of channels ṽ (note that we do not allow to pass sites). The
remaining constructors are fairly standard in name-passing process calculi: process (P |Q)
denotes the parallel composition of processes; process (ν n) P denotes the restriction of the
scope of the name n to the process P (often seen as the creation of a new name or site,
visible only within P ; moreover, if n∈S, no channel explicitly located at that site is visible
outside P); and inaction 0, denotes the terminated process. For the sake of simplicity, we
restrict this work to finite processes.

Networks are: processes running at a given site, s[P], where we assume that free simple
channels in P are implicitly located at s (while located channels are considered to be
explicitly located); the parallel composition of networks, (N ‖M), which is simply a merge
of networks; the restriction of the scope of a global to a network, (ν g) N; and inaction 0,
which denotes the empty network.

As usual in polyadic mobile calculi, we abbreviate (ν n1) · · · (ν nm) P to (ν ñ) P . Let
the operator ‘ν’ extend as far to the right as possible. In (P |Q), we omit the parentheses
when the meaning is clear.

2.2 Free and bound names

We envisage a “natural” definition for the free names of a process or of a network, according
to the classical definitions for the λ-calculus [3, 9], and meeting the intuitions of any π-
calculist.

Notation 2.2 (Useful sets). Let A, B ⊆N .

5

N fn(N) bn(N)
0 {} {}
(N ‖M) fn(N) ∪ fn(M) bn(N) ∪ bn(M)
(ν s) N fn(N) \ ({s} ∪ fn(N)@s) bn(N) ∪ {s} ∪ bn(N)@s
(ν a@s) N fn(N) \ {a@s} ∪ {s} bn(N) ∪ {a@s}
s[P] locate(fn(P), s) ∪ {s} locate(bn(P), s)

Figure 2: Free and bound names in networks.

P fn(P) bn(P)
0 {} {}
(P |Q) fn(P) ∪ fn(Q) bn(P) ∪ bn(Q)
(ν s) P fn(P) \ ({s} ∪ fn(P)@s) bn(P) ∪ {s} ∪ bn(P)@s
(ν a@s) P fn(P) \ {a@s} ∪ {s} bn(P) ∪ {a@s}
(ν a) P fn(P) \ {a} bn(P) ∪ {a}
u!〈ṽ〉 names(u, ṽ) {}
u?(x̃)P fn(P) \ {x̃} ∪ names(u) bn(P) ∪ {x̃}

Figure 3: Free and bound names in processes.

1. A@s
def
= {a@s | a ∈ A ∨ a@s ∈ A};

2. a@B
def
= {a@s | s ∈B};

3. names(n1 . . . nm)
def
= names(n1) ∪ . . . ∪ names(nm),

where names(s)
def
= {s}, names(a@s)

def
= {a@s, s}, and names(a)

def
= {a};

4. locate(A, s)
def
= A \ C ∪ A@s;

5. sites(A)
def
= {s | s ∈ A ∨ a@s ∈ A}.

Moreover, we say that s ∈ n when n ∈ C@s ∪ {s}, and a ∈ n when n ∈ a@S ∪ {a}.

Definition 2.3 (Free and bound names). The rules in Figures 2 and 3 inductively
define the sets of free and bound names in networks, fn(N) and bn(N), and in processes,
fn(P) and bn(P).

A channel is local to a site if it occurs as a simple channel in that site, or if it occurs
explicitly located at that site anywhere in the network. Amongst the binders of the calculus,
two cases deserve a special mention: (ν s) N makes all free channels local to s invisible
outside N ; and (ν a@s) N creates a new free site s. The free names of a network s[P]
are the free names of P where the simple channels are made explicitly located at s, via
operator locate.

6

2.3 Syntactic restrictions

In lsdπ it is crucial to distinguish local from remote channels. However, the binders may
cause undesirable side effects, leading to confusions like those described in the introduction.
Therefore, we do not accept all terms resulting from the grammar in Definition 2.1 as
processes: we impose syntactic restrictions. To rigorously define them, we use the auxiliary
notions of subnetworks and of subprocesses, which result from Definition 2.1.

Remark 2.4 (Subnetworks and subprocesses). One easily defines the set SN (N) of
the subnetworks of the network N , and the set SP(P) of the subprocesses of the process P .

We impose two conditions to accept a term as a process:

1. when a located channel has its scope restricted to some process, it cannot be used in
that process as a simple channel; and

2. similarly, when a simple channel has its scope restricted to some process, it can not
be used in that process as a located channel.

Since these are syntactic conditions, relying on the notions of free and bound names,
one can easily state (decidable) properties that capture them. The following definition
rigorously states what terms we accept as processes.

Definition 2.5 (Syntactic restrictions).

1. A process P satisfies the syntactic restrictions, and we write P ok, if for all Q∈SP(P),
we have Q ok, and:

(a) if Q = (ν a@s) R, then a 6∈ fn(R); and

(b) if Q = (ν a) R, then a@S ∩ fn(R) = ∅; and

(c) if Q = u?(x̃)R, then
⋃

x∈{x̃} x@S ∩ fn(Q) = ∅.

2. A network N satisfies the syntactic restrictions, and we write N ok, if all its subnet-
works and all its subprocesses are ok.

In order to understand the need for these syntactic restrictions we have to take into
consideration the fundamental ideas of lsdπ. As in [14], we embody a rule taken from
Hennessy and Riely [8] which considers the network (ν a@s) s[P] as indistinguishable from
the network s[(ν a) P] (forthcoming structural congruence rule SN-SCOS3). Also, we fix
that fn((ν a@s) N)= fn(N)\{a@s}, because we want the binder to capture only the channel
a local to site s (and this is a distinctive feature from Dπ, where all free occurrences of a
in N are bound). If a process of the form (ν a) P , where a@s ∈ fn(P), was to be accepted,
one would have to decide whether a@s is free in such a process.

Therefore, to define the free variables of networks and processes, one should consider
three reasonable possibilities:

7

1. either fn((ν a) P) = fn(P) \ {a}, where any a@s occurring in P would not be bound
by (ν a) , and in this way the names a and a@s have no relation to each other;

2. or fn((ν a) P) = fn(P) \ ({a} ∪ a@S), where all channels a (simple or at some site)
would be bound.

3. or fns((ν a) P) = fns(P) \ {a, a@s} where the subscript s would indicate that the
considered process appears in site s.

From each of these possibilities, and taking into consideration the above requirements, a
contradiction arises:

1. if the first definition is taken, then

fn(s[(ν a) a@s!〈〉]) = {a@s} and fn((ν a@s) s[a@s!〈〉]) = ∅;

2. if the second definition is taken, then

fn(s[(ν a) a@t!〈〉]) = ∅ and fn((ν a@s) s[a@t!〈〉]) = {a@t}.

3. if the third definition is taken, we will be further presuming that the channel a is to
be created also in site s, which might not be the case (the rule applies only to free
channels), as the following example shows: s[b?(x)x?()(ν a) a@s!〈〉]. Depending on the
location of the argument received in x, (ν a) may or may not end up in site s. The
fundamental idea here is that the location (or creation site) of a restricted channel
will be determined only when it is at the top level of a site (e.g., s[(ν a) P]). This
option will offer flexibility in the creation of channels, and is consistent with the rule
SN-SCOS3.

In all the three cases, two networks, which are supposed to be structural congruent, have
different sets of free variables, thus justifying the need for syntactic restrictions. The
introduction of these syntactic restrictions implies more work on the verification of the
consistency of the language, for we must prove that networks do not go wrong, in the sense
that computation does not transform syntactically correct networks into incorrect ones.

3 Operational semantics

This section describes the reduction semantics of lsdπ, starting from substitution, through
alpha-congruence, structural congruence, ending in reduction.

3.1 Substitution

We follow the approach of Hindley and Seldin [9].

Notation 3.1 (Entities). In the sequel, let X denote a network, a process, or a name,
and let X be the set of such entities.

8

0[]
def
= 0

(N ‖M)[n/m]
def
= N [n/m] ‖M [n/m]

((ν s) N)[n/m]
def
= (ν s) N if s ∈ m

((ν s) N)[n/m]
def
= (ν s) N [n/m] if s /∈ m and (1)

((ν s) N)[n/m]
def
= (ν t) N [t/s][n/m] if s /∈ m and ¬(1), with t fresh

((ν a@s) N)[n/a@s]
def
= (ν a@s) N

((ν a@s) N)[n/s]
def
= (ν a@n) N [n/s]

((ν a@s) N)[n/m]
def
= (ν a@s) N [n/m] if m /∈ {s, a@s} and (2)

((ν a@s) N)[n/m]
def
= (ν b@s) N [b@s/a@s][n/m] if m /∈ {s, a@s} and ¬(2), with b fresh

(s[P])[b@s/a@s]
def
= s[P [b/a][b@s/a@s]]

(s[P])[n/s]
def
= n[P [n/s]]

(s[P])[n/m]
def
= s[P [n/m]] if s /∈ m

(1) s /∈ n or m /∈ fn(N) ; (2) n /∈ {a, a@s} or m /∈ fn(N).

Figure 4: Substitution on networks.

Definition 3.2 (Substitution). A substitution on names in an entity is a total function
X [N /N] 7→ X , inductively defined by the rules in the Figures 4, 5, and 6.

The substitution function gives rise to three different operations on names: change of
bound names ; communication; and migration. The first will be used to define the alpha-
congruence relation and the others to define the reduction relation. To avoid confusion,
the application of the substitution function in each of these operations will be referred to
as, respectively, name replacement, name instantiation and name translation.

Definition 3.3 (Name replacement/instantiation/translation). Take the finite se-
quence of substitutions [n1/m1] · · · [nk/mk]. Then, ∀i ∈ {1, . . . , k}, this sequence is a:

1. name replacement, if mi ∈ A ⇒ ni ∈ A, for A = C,S, C@s, for some s.

2. name instantiation, if mi ∈ C and ni ∈ C ∪ C@S.

3. name translation, if mi = a ⇒ ni ∈ a@S or mi ∈ a@S ⇒ ni = a.

Substitution presents two properties, which follow from the reasonable requirement of
the names involved in such operations being of the “same nature”, as defined above: it
commutes with the free names and preserves the syntactic restrictions. In order to establish
the first result, it is usefull to extend the notion of substitution.

9

0[]
def
= as in the Networks case

(P |Q)[n/m]
def
= as in the Networks case

((ν s) P)[n/m]
def
= as in the Networks case

((ν a@s) P)[n/m]
def
= as in the Networks case

((ν a) P)[n/a]
def
= (ν a) P

((ν a) P)[n/m]
def
= (ν a) P [n/m] if (1) and (2)

((ν a) P)[n/m]
def
= (ν b) P [b/a][n/m] if (1) and ¬(2), with b fresh

(u!〈v1 . . . vn〉)[n/m]
def
= u[n/m]!〈v1[n/m] . . . vn[n/m]〉

(u?(x̃)P)[n/xi]
def
= u[n/xi]?(x̃)P if xi ∈ {x̃}

(u?(x̃)P)[n/m]
def
= u[n/m]?(x̃)P [n/m] if (3) and (4)

(u?(x̃)P)[n/m]
def
= u[n/m]?(x1..y..xn)P [y/xi][n/m] if (3) and ¬(4), with y fresh

(1) m 6= a (2) a /∈ n or m /∈ fn(P) (3) m /∈ {x̃} (4) ∀i: xi /∈ n or m /∈ fn(P)

Figure 5: Substitution on processes.

The substitution function [n/m] is expected to transform networks and processes by
changing all free occurrences of m by n, but still preserving their structure. One way of
observing the changes induced by such substitution is to examine the set of free names
before and after the substitution is applied. It is natural to ask whether one can predict
those changes just by considering the initial free name set and the pair of names (n, m).
The next definition will serve as a tool to prove this result.

Definition 3.4 (Substitution on sets of names). A substitution of names in a set
A⊆N is a total function A[N /N] 7→ 2N , defined by the rule

A[n/m]
def
= {m1[n/m] | m1 ∈ A} ∪ sites({m1[n/m] | m1 ∈ A}) .

Keep in mind that the Definition 3.4 should be coherent with that of free names. In
particular, care should be taken in respect to the two components of located names , for

names(a@s)
def
= {a@s, s} (try comparing fn(a!〈〉[a@s/a]) with fn(a!〈〉)[a@s/a]).

Finally, our first result allows us to deal directly with the free names of networks and
processes by observing the effects substitution has on them, while abstracting away from
the recursive nature of the definition of substitution.

Proposition 3.5 (Substitution commutes with the free names). Let Υ be a finite
sequence of substitutions.

1. If X ok and Υ is a name replacement, then fn(XΥ) = fn(X)Υ.

10

(s)[n/s]
def
= n (a@s)[n/a@s]

def
= n

(s)[n/m]
def
= s if m 6= s (a@s)[n/s]

def
= a@n

(a)[n/a]
def
= n (a@s)[n/m]

def
= a@s if m /∈ {s, a@s}

(a)[n/m]
def
= a if m 6= a

Figure 6: Substitution on names.

2. If P ok and Υ is a name instantiation, then fn(PΥ) = fn(P)Υ.

3. If P ok and Υ is a name translation, then fn(PΥ) ⊆ fn(P)Υ.

Proof. In each case, the proof consists in a structural induction over the entities, together
with a mathematical induction over the length of the sequence of substitutions. The
following results are useful auxiliary lemmas.

1. For A1, . . . ,Ak ⊆N , (A1 ∪ . . . ∪ Ak)[n/m] =A1[n/m] ∪ . . . ∪ Ak[n/m].

2. For X ok, if a@t ∈ fn(X) then t ∈ fn(X). Consequently, sites(fn(X)) ⊆ fn(X).

3. For A⊆N , if [n/m] is a name replacement then A[n/m] = {m1[n/m] | m1 ∈ A}.
A detailed proof can be found in page 27.

Due to the context in which the substitution operations occur, the below results apply to
both networks and processes for the name replacement, and to processes only for the name
instantiation and translation. The reason for the weaker proposition in the translation case
is a consequence of the definition of the names in a compound name, and the fact that the

translation of a compound name might be a simple name: fn(a@t!〈〉[a/a@t])
def
= fn(a!〈〉)def

={a},
but fn(a@t!〈〉)[a/a@t]

def
= {a@t, t}[a/a@t]

def
= {a, t}.

Proposition 3.6 (Substitution preserves the syntactic restrictions). Let Υ be a
finite sequence of substitutions.

1. If X ok and Υ is a name replacement, then XΥ ok.

2. If P ok and Υ is a name instantiation, then PΥ ok.

3. If P ok and Υ is a name translation, then PΥ ok.

Proof. Again, in each case the proof consists in a structural induction over the entities,
interleaved with mathematical induction over the length of the sequence of substitutions.
Proposition 3.5 is invoked in the cases where syntactic restriction requirements must be
verified, i.e. (ν a@s) X, (ν a) X, and u?(x̃)P . A detailed proof is in page 43.

11

3.2 Alpha congruence

The above definition of substitution allows a simple definition of alpha congruence, using
an auxiliary operation, called change of bound name (briefly, c.o.b.n.).

Definition 3.7 (Change of bound name).

1. Networks: N is obtained from M by a c.o.b.n., if N is obtained from M by replacing
some subnetwork M ′ of M by N ′ such that, either:

(a) M ′ = ((ν s) M ′′) and N ′ = (ν t) M ′′[t/s] and t /∈ fn(M ′′), or

(b) M ′ = ((ν a@s) M ′) and N ′ = (ν c@s) M ′′[c@s/a@s] and c@s /∈ fn(M ′′).

2. Processes: Q is obtained from P by a c.o.b.n., if Q is obtained from P by replacing
some subprocess P ′ of P by Q′ such that, either:

(a) P ′ = (ν s) P ′′ and Q′ = (ν t) P ′′[t/s] and t /∈ fn(P ′′), or

(b) P ′ = (ν a@s) P ′′ and Q′ = (ν c@s) P ′′[c@s/a@s] and c, c@s /∈ fn(P ′′), or

(c) P ′ = (ν a) P ′′ and Q′ = (ν c) P ′′[c/a] and c /∈ fn(P ′′) and c@S ∩ fn(P ′′) = ∅, or

(d) P ′ = u?(x1 . . . y . . . xn)P ′′ and Q′ = u?(x1 . . . z . . . xn)P ′′[z/y] and

z /∈ fn(P ′′) and z@S ∩ fn(P ′′) = ∅ and z /∈ {x1 . . . xn}.

Using this auxiliary definition, it is now easy to define alpha-congruence, as follows.

Definition 3.8 (Alpha congruence).

1. Networks: N ≡α M if N is obtained from M by a series of c.o.b.n.

2. Processes: P ≡α Q if P is obtained from Q by a series of c.o.b.n.

To understand the mechanism by which this definition prevents ill-matched networks
and processes to be related by alpha congruence, first consider the two cases which occur
classically in the λ-calculus, and are prevented here in the same way. In fact, the name
capture which could arise by changing (ν t) to (ν s) in the process (ν t) (ν a@s) a@t!〈〉 is
prevented by the definition of substitution invoked by rule 3.7.2a. Notice that the definition
of substitution changes the innermost binder name to a fresh name. On the other hand,
the change of (ν b@s) to (ν a@s) in network (ν b@s) s[a!〈〉] is prevented by the side condition
of the applicable rule 3.7.1b.

If not treated carefully, alpha congruence could lead syntactically correct processes
into incorrect ones, for the same reasons as the above two classes of problems. These are
prevented using the same mechanisms, but let us concentrate on the alpha congruence side
conditions:

1. To prevent process (ν a@s) c!〈〉 to be alpha congruent to (ν c@s) c!〈〉 (thus conflict-
ing with syntactic restriction 2.5.1a), in order to be able to apply rule 3.7.2b, the
condition c /∈ fn(c!〈〉) must be verified.

12

[SN-ALPHA] N ≡ M if N ≡α M

[SN-ASSO] ((N ‖M) ‖M ′) ≡ (M ‖ (N ‖M ′))
[SN-COMM] (M ‖N) ≡ (N ‖M)
[SN-NEUT] (N ‖ 0) ≡ N

[SN-SCOP] ((ν g) N) ‖M ≡ (ν g) (N ‖M) if g /∈ fn(M)
[SN-RESO] (ν g) (ν h) N ≡ (ν h) (ν g) N if g /∈ names(h) and h /∈ names(g)
[SN-RESZ] (ν g)0 ≡ 0

[SN-SCOS1] (ν r) s[P] ≡ s[(ν r) P] if r 6= s
[SN-SCOS2] (ν a@r) s[P] ≡ s[(ν a@r) P] if a /∈ fn(P)
[SN-SCOS3] (ν a@s) s[P] ≡ s[(ν a) P] if a@S ∩ fn(P) = ∅
[SN-ROUT] (s[P] ‖ s[Q]) ≡ s[P |Q]

[SN-INAC] s[0] ≡ 0

[SN-MIGO] s[a@s!〈ṽ〉] ≡ s[a!〈ṽ〉]
[SN-MIGI] s[a@s?(x̃)P] ≡ s[a?(x̃)P]

Figure 7: Structural congruence on networks.

2. Similarly, to prevent process (ν a) c@s!〈〉 to be alpha congruent to (ν c) c@s!〈〉 (violat-
ing syntactic restriction 2.5.1b), in order to be able to apply rule 3.7.2c, the condition
c@S ∩ fn(c@s!〈〉) = ∅ must be verified.

The following result ensures that the alpha-congruence relation is free of such problems.

Proposition 3.9 (Alpha congruence preserves the free names and the syntactic
restrictions). Let X and Y be both either networks or processes.

1. If X ok and X ≡α Y , then fn(X) = fn(Y).

2. If X ok and X ≡α Y , then Y ok.

Proof. Both proofs use the name replacement version of Proposition 3.5 for a verifica-
tion on each case of c.o.b.n.. Note that all the substitutions involved in the definition of
c.o.b.n. are name replacements. Furthermore, the second proof uses the name replacement
version of Proposition 3.6. Check the details in page 55.

3.3 Structural congruence

As usual in process calculi, we define the operational semantics of lsdπ following a “chemical
style” [4], i.e., via two binary relations on entities: a static one—structural congruence—
and a dynamic one—reduction.

13

[SP-ALPHA] P ≡ Q if P ≡α Q

[SP-ASSO] ((P |Q) |R) ≡ (P | (Q |R))

[SP-COMM] (P |Q) ≡ (Q | P)

[SP-NEUT] (P | 0) ≡ P

[SP-SCOP1] ((ν s) P) |Q ≡ (ν s) (P |Q) if s /∈ fn(Q)
[SP-SCOP2] ((ν a@s) P) |Q ≡ (ν a@s) (P |Q) if a, a@s /∈ fn(Q)
[SP-SCOP3] ((ν a) P) |Q ≡ (ν a) (P |Q) if ({a} ∪ a@S) ∩ fn(Q) = ∅
[SP-RESO1] (ν g) (ν h) P ≡ (ν h) (ν g) P if g /∈ names(h) and h /∈ names(g)
[SP-RESO2] (ν a) (ν s) P ≡ (ν s) (ν a) P if a@s /∈ fn(P)
[SP-RESO3] (ν a) (ν u) P ≡ (ν u) (ν a) P if u /∈ a@S
[SP-RESZ] (ν n)0 ≡ 0

Figure 8: Structural congruence on processes.

Definition 3.10 (Structural congruence). The structural congruence relation is the
least congruence relation containing the rules in the Figures 7 and 8.

The rules in Figure 7 are inspired on those proposed by Hennessy and Riely for Dπ [8],
while those in Figure 8 are adapted from the standard rules of the π-calculus [10, 11]. Some
of these rules deserve a special mention:

1. Rule SN-ROUT describes the way by which processes within a site may be split or
aggregated.

2. Rule SN-INAC garbage collects inactive sites.

3. The rules SCOP, RESO, RESZ (both SN and SP), and SCOS define the scope
a binder may take: the scope can expand and contract in such a way that no name
is captured or released, and no syntactic conflict arises. Furthermore, rules SCOS
extend this principle to suit the definition of free names.

4. The rules SN-MIGO and SN-MIGI embody the notion that simple channels always
belong to the site where the process is running. This clarification is needed only
at communication time, when the channel is actually used for reduction (see rule
RP-COMM in figure 9).

To clarify the side conditions of the rule RESO, we present examples of pathological cases
that are excluded.

1. The network or process (ν a@s) (ν s) X should not be congruent to (ν s) (ν a@s) X,
for the restricted located channel (ν a@s) is either being captured or released during
the commutation of the ν.

14

2. The process (ν a) (ν s) a@s!〈〉 obviously should not be congruent to (ν s) (ν a) a@s!〈〉,
since the latter process is not ok.

3. The process (ν a) (ν a@s) a@s!〈〉 should not be congruent to (ν a@s) (ν a) a@s!〈〉, and
similarly, (ν a@s) (ν a) a!〈〉 should not be congruent to (ν a) (ν a@s) a!〈〉, since in both
cases the resulting processes are not ok.

Proposition 3.11 (Structural congruence preserves the free names and the syn-
tactic restrictions). Let X and Y both be either networks or processes.

1. If X ok and X ≡ Y , then fn(X) = fn(Y).

2. If X ok and X ≡ Y , then Y ok.

Proof. Both proofs perform a verification on each rule of structural congruence. In the
process of proving this proposition, the side conditions of the mentioned rules may be un-
derstood. The cases of the ALPHA rules follow from Proposition 3.9. Check the details
in page 60.

3.4 Simultaneous substitutions and name translation

Since the calculus is polyadic, it is necessary to substitute several names at a time.

Definition 3.12 (Simultaneous substitutions). Consider two subsets {u1, . . . , un} and
{v1, . . . , vn} of C, such that u1, . . . , un are pairwise distinct. Then {v1/u1, . . . , vn/un} is a
set of simultaneous substitutions. The result of applying this set of substitutions to P is

P{v1/u1, . . . , vn/un}
def
=

{
P [v1/u1] · · · [vn/un] if {ũ} ∩ {ṽ}= ∅ ,
P [w1/u1] · · · [wn/un][v1/w1] · · · [vn/wn] otherwise,

where w1, . . . , wn are fresh.

Notation 3.13 (Set of simultaneous substitutions). Let {ṽ/x̃} abv
= {v1/x1, . . . , vn/xn}

denote a set of simultaneous substitutions.

One can easily show that the order in which the substitutions in these sets are written
is irrelevant to the result.

Proposition 3.14 (Commutativity in a set of simultaneous substitutions).
P{v1/u1, . . . , vn/un} = P{v′1/u′1, . . . v′n/u′n} modulo c.o.b.n., where {v′1/u′1, . . . v′n/u′n} is a
permutation of {v1/u1, . . . , vn/un}.

Proof. By a simple induction on the cardinality of the set.

Both the communication and the migration primitives that we present below, are defined

15

using the above notion of set of simultaneous substitutions. Notice that, in order to avoid
name capture and release, as well as the emergence of syntactic errors, renaming of bound
names may occur. This may be seen as an “automatic alpha-conversion” that enables
substitution to be a total function.

To keep channels “local by default”, when migrating process P from site r to site s, the
free channels of P must be renamed accordingly: thus simple channels become explicitly
located at r; channels located at s become simple (dropping the @s part); all other channels
remain unchanged.

Definition 3.15 (Name translation). Let A ⊆ N , A ∩ C = {a1, . . . , an} and A ∩ C@s =
{b1@s, . . . , bm@s}. Then,

σ(A, r, s)
def
= {a1@r/a1, . . . , an@r/an, b1/b1@s, . . . , bm/bm@s} .

Notation 3.16 (Application of name translation to a process). Let Pσrs abbreviate
the result of applying name translation σ(fn(P), r, s) to process P .

3.5 Reduction

We are finally in a position to define the reduction relation. Reduction contexts simplify
the presentation of the reduction relation.

Definition 3.17 (Reduction contexts).

E ::= [] | (E | P) | (ν n) E
F ::= [] | (F ‖N) | (ν g) F

Definition 3.18 (Reduction). The rules in the Figure 9 inductively define the reduction
relation on processes and networks.

Axiom RP-COMM is standard in the π-calculus [10, 11], the axioms RN-MIGO and
RN-MIGI were proposed by Vasconcelos et al. for DiTyCO [14], and the remaining rules
in the Figure 9 were proposed by Amadio et al. for Dπ [2].

So far we have defined two main relations (structural congruence and reduction) that
allow us to rewrite programs and simulate their computation. The two main results of this
section guarantee that, during reduction, on the one hand the set of free names does not
increase, and on the other hand, syntactic correctness is preserved.

Proposition 3.19 (Reduction preserves the free names and the syntactic restric-
tions). Let X and Y both be either networks or processes.

1. If X ok and X → Y , then fn(X) ⊇ fn(Y).

2. If X ok and X → Y , then Y ok.

16

[RP-COMM] a?(x̃)P | a!〈ṽ〉 → P{ṽ/x̃}
[RN-MIGO] r[a@s!〈ṽ〉] → s[(a@s!〈ṽ〉)σrs] r 6= s

[RN-MIGI] r[a@s?(x̃)P] → s[(a@s?(x̃)P)σrs] r 6= s

[RP-CONT]
P → Q

E[P] → E[Q]

[RP-STR]
P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

[RN-SITE]
P → Q

s[P] → s[Q]

[RN-CONT]
N → M

F [N] → F [M]

[RN-STR]
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M

Figure 9: Reduction rules.

Proof. Both proofs consist in an induction on the derivation of the reduction step. The
delicate cases are the axioms of reduction RP-COMM, RN-MIGO and RN-MIGI. An
auxiliary lemma is useful: If A⊆N and Υ is a finite sequence of substitutions, then

AΥ = {mΥ | m ∈ A} ∪ sites({mΥ | m ∈ A}) .

Use Proposition 3.5 and the lemma to prove the first clause, and Proposition 3.6 to prove
the second. The induction steps concerning rules STR use Proposition 3.11. In the cases
of CONT a second induction on the structure of the contexts should be used. Check the
details in page 72.

3.6 Examples

We proceed by presenting some examples of the use of the language. We omit the appli-
cation of some rules, like SN-COMM and SP-COMM, and underline redexes.

1. As an academic example, consider a site s running two processes, P and Q, in parallel.
Process P =(ν a) (b@t?(x)x?()0 |a?()0) is expecting a message at a channel b located
at site t. Furthermore, site t is running a process ready to send a message on a local

17

channel with the same channel b.

s[(ν a) (b@t?(x)x?()0 | a?()0) |Q] ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

The sphere of action of P is restricted to the scope of the enfolding (ν a) , which is
internal to site s, but using SN-SCOS, we may extrude it to the network level.

≡ (ν a@s) (s[b@t?(x)(x?()0 | a?()0) |Q]) ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

In order for P to migrate to site t, where it can perform the communication, it must
be isolated, so, using SN-ROUT, we separate the site s into two parts.

≡ (ν a@s) (s[b@t?(x)(x?()0 | a?()0)] ‖ s[Q]) ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

Process P is now ready to migrate (using RN-MIGI).

→ (ν a@s) (t[b?(x)(x?()0 | a@s?()0)] ‖ s[Q]) ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

Within the current scope of (ν a@s) , no communication can occur at channel b, even
though the two process are located at site t. We wish to extrude the scope of (ν a@s)
even further, to encompass all the fragments of site t. Since a∈fn(b!〈a〉), this will only
be possible if we rename the bound a@s to a fresh name, say c@s, using SN-ALPHA.
In this way, there will be no confusion between the channel currently named “a”, and
other uses of the same name.

≡α (ν c@s) (t[b?(x)(x?()0 | c@s?()0)] ‖ s[Q][c@s/a@s]) ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

Now we are free to expand the scope of (ν c@s) (using SN-SCOP),

≡ (ν c@s) t[b?(x)(x?()0 | c@s?()0)] ‖ s[Q][c@s/a@s] ‖ t[b!〈a〉 | a@s!〈〉 | a!〈〉]

and with SN-ROUT, we merge the two fragments of site t.

≡ (ν c@s) t[b?(x)(x?()0 | c@s?()0) | b!〈a〉 | a@s!〈〉 | a!〈〉] ‖ s[Q][c@s/a@s]

Communication may now proceed.

→ (ν c@s) t[a?()0 | c@s?()0 | a@s!〈〉 | a!〈〉] ‖ s[Q][c@s/a@s]

Now observe which processes are entitled to communicate. Only one process reduc-
tion is possible.

→ (ν c@s) t[c@s?()0 | a@s!〈〉] ‖ s[Q][c@s/a@s]

18

2. A remote procedure call as in reference [14]. The client at site s uses the channel p
to invoke a procedure Q at site r with a local argument v (assume that a does not
occur free in Q), waits for the reply and continues with P . The reply carries a local
name u, which is sent by procedure Q at the end of its computation.

s[(ν a) (p@r!〈v a〉 | a?(y)P)] ‖ r[p?(x r)Q] ≡ [(1)]

(ν a@s) s[p@r!〈v a〉] ‖ s[a?(y)P] ‖ r[p?(x r)Q] → [RN-MIGO]

(ν a@s) r[p!〈v@s a@s〉] ‖ s[a?(y)P] ‖ r[p?(x r)Q] ≡ [SN-ROUT]

(ν a@s) s[a?(y)P] ‖ r[p?(x r)Q | p!〈v@s a@s〉] → [RP-COMM]

(ν a@s) s[a?(y)P] ‖ r[Q{v@s a@s/x r}] . . . [Q reduces]

(ν a@s) s[a?(y)P] ‖ r[a@s!〈u〉] → [RN-MIGO]

(ν a@s) s[a?(y)P] ‖ s[a!〈u@r〉] ≡ [SN-ROUT]

(ν a@s) s[a?(y)P | a!〈u@r〉] → [RP-COMM]

(ν a@s) s[P{u@r/y}] ≡ [SN-SCOS]

s[(ν a) P{u@r/y}]

(1) SN-SCOS, SN-ROUT, and SN-SCOP.

3. A primitive for the migration of arbitrary processes, under the lexical scope regime.
To send a process P from site r to site s, one creates a remote channel a@s (not free
in P), prefix P with a receptor on a@s and put in parallel an message to a@s.

go s.P
abv
= r[(ν a@s) a@s?()P | a@s!〈〉] ≡ [SN-SCOP,SN-ROUT]

(ν a@s) r[a@s?()P] ‖ r[a@s!〈〉] →2 [SN-MIGO,SN-MIGI]

(ν a@s) s[a?()Pσrs] ‖ s[a!〈〉] ≡ [SN-ROUT,SN-SCOP]

s[(ν a) a?()Pσrs | a!〈〉] → [SN-COMM]

s[Pσrs]

Notice that the process that ends up in site s is not P but P with names translated
by σ. Contrast with go s.P → s[P] in Amadio et al. [2].

4. The creation of “subsites”. One may create a (logical) subsite and restrict its access
to authorized processes. Since the name of this subsite is private to the master site,
external processes must be given its identity to migrate there. In the example below,
site s creates a subsite r and a channel c@r, communicates this name to site t that
uses it to download process Q (where x /∈ fn(Q)) from the t to r.

s[(ν r) (ν c@r) a@t!〈c@r〉 | P] ‖ t[a?(x)x?()Q |R] →
(ν r) (ν c@r) s[P] ‖ t[a!〈c@r〉 | a?(x)x?()Q |R] →

(ν r) (ν c@r) s[P] ‖ t[c@r?()Q |R] →
(ν r) (ν c@r) (r[c?()Qσtr] ‖ s[P]) ‖ t[R]

19

5. The creation of channels “anywhere” in the network. Consider a server with address a
at site s that provides some application, which requires some resources (say a private
name b). Both local and remote clients may download it, since process

s[a?(x)x?()((ν b) P) | (a!〈c〉 | c!〈〉) | (a!〈c@r〉 | c@r!〈〉)]

reduces either to s[(ν b) P] or to r[(ν b) P] (consider that x does not occur free in P).
Therefore, the site where (ν b) P will end up in is determined only at run-time.

This example illustrates an advantage of maintaining both simple and located forms
of channels. If we were not able to specify the creation of simple channels (like b),
then, since we don’t allow the passing of site names, all the locations of restricted
channels would be determined statically. At first it might seem as an entanglement,
but we believe that, in result of this decision, we can do without the passing of sites.

6. The creation of remote channels might be an undesirable operation. A possibility
is to disallow the (ν a@s) P constructor. Then we would only be able to migrate
processes onto sites on which we know a friend that lends new channels (this is the
approach of reference [14]). Below, site r knows friend@s, asks for a new channel c
(at s), and prefixes the process to migrate P at the new channel c@s.

(ν friend@s) r[(ν a) a?(x)x?()P | friend@s!〈a〉] ‖ s[friend?(x)((ν c) x!〈c〉 | c!〈〉)] →

(ν friend@s, a@r) r[a?(x)x?()P] ‖ s[friend!〈a@r〉 | friend?(x)((ν c) x!〈c〉 | c!〈〉)] →

(ν a@r) r[a?(x)x?()P] ‖ s[(ν c) a@r!〈c〉 | c!〈〉] →

(ν c@s) r[(ν a) a?(x)x?()P | a!〈c@s〉] ‖ s[c!〈〉)] →
(ν c@s) r[c@s?()P] ‖ s[c!〈〉)]

At this point c@s?()P may migrate to the friend’s site s, where a trigger c!〈〉 awaits.

(ν c@s) r[c@s?()P] ‖ s[c!〈〉)] →

s[(ν c) c?()Pσrs | c!〈〉)] →

s[Pσrs]

The six reduction steps may be classified as three remote operations, each composed
of migration followed by local reduction.

Some of the features described above should be carefully used. Type systems may be
used to control and discipline the behavior of programs. The following section presents a
first system, a very basic one still not addressing security issues, but already ensuring the
absence of run-time errors.

20

4 The type system

This section presents the syntax of types, and a type checking system for lsdπ. The
system is a straightforward extension of that for the simply typed π-calculus [13], but
also borrowing ideas from that of Amadio et al.’s dπr

1 [2]; it assumes types for sites only
(types for channels are taken from that of the site the channel belongs to), and enjoys
subject-reduction.

An essential ingredient of dπr
1, a receptive and asynchronous version of Dπ, is the

type system, a simplified version of that of Hennessy and Riely [8], although it types less
processes (but a simple extension of the notion of type would probably lead to equivalent
systems). Types of lsdπ are a subset of those of dπr

1: simply remove the located type γ@,
as a located channel may substitute a simple channel. The typing rules were adapted to
take into consideration the lexical scope of channels.

Definition 4.1 (Types). Let n ≥ 0 and let a1, . . . , an and also s1, . . . , sn be pairwise
distinct.

Channel types, γ ::= Ch(γ1, . . . , γn)

Site types, ϕ ::= {a1:γ1, . . . , an:γn}
Typings, Γ ::= {s1:ϕ1, . . . , sn:ϕn}

We have channel types (those of simple and located channels), and site types (those of
sites). A site type is a partial function from channels into channel types. A typing is a
partial function from sites into site types.

Notation 4.2. 1. Let F, G be maps. The domain of F is written dom(F); the map
obtained from F by removing x from its domain is denoted by F \ x. The disjoint
union of F and G is denoted by F]G.

2. Consider the union of typing assumptions Γ+∆ defined pointwise as, for all s∈dom(Γ)
and for all a ∈ Γ(s) ∩∆(s):

(Γ + ∆)(s)
def
=

Γ(s), if s ∈ Γ \ dom(∆) or Γ(s) = ∆(s),
Γ(s) ∪∆(s), if s ∈ dom(Γ) ∩ dom(∆) and Γ(s)(a) = ∆(s)(a),
∆(s), if s ∈ dom(∆) \ dom(Γ).

Notice that this operation is not defined if Γ(s)(a) 6= ∆(s)(a).

The type system uses three kinds of judgments:

1. Γ`s ṽ:τ , that types names, locations variables, and process variables ṽ at site s, with
types τ̃ , according to the typing assumption Γ;

2. Γ`s P , saying that process P at site s conforms to the typing assumption Γ;

3. Γ`N , saying that network N conforms to typing assumption Γ.

21

TS-LCh Γ`r a@s:Γ(s)(a) TS-SCh Γ`s a:Γ(s)(a)

TS-Uni
Γ`s ñ1:γ1 ∆`s ñ2:γ2

Γ + ∆`s ˜n1n2:γ1γ1

Figure 10: Typing channels and sites.

TP-Outl
Γ`r ṽ:γ

Γ + {s:{a:Ch(γ̃)}} `r a@s!〈ṽ〉
TP-Outs

Γ`s a@s!〈ṽ〉
Γ`s a!〈ṽ〉

TP-Inpl
Γ] {r:{x̃:γ}} `r P

Γ + {s:{a:Ch(γ̃)}} `r a@s?(x̃)P
TP-Inps

Γ`s a@s?(x̃)P

Γ`s a?(x̃)P

TP-Par
Γ`s P Γ`s Q

Γ`s (P |Q)
TP-Resn

Γ] {s:ϕ} `s P

Γ`s (ν s) P

TP-Resl
Γ] {s:{a:γ}] ϕ} `r P

Γ] {s:ϕ} `r (ν a@s) P
TP-Ress

Γ`s (ν a@s) P

Γ`s (ν a) P

TP-Weak
Γ`s P

Γ + ∆`s P
TP-Nil ∅ `s 0

Figure 11: Typing processes.

Definition 4.3 (lsdπ type system). The rules in Figures 10, 11, and 12 inductively
define the type system of lsdπ.

The main result is the preservation of network typability under reduction, a property
usually know as subject reduction. The following results break the ground for it.

Definition 4.4 (Substitution on typings). 1. A substitution of channels in a typing
is a function defined, when x ∈ dom(Γ(s)), by the following rule:

Γ[a@r/x@s]
def
=

{
{s:Γ(s) \ x} ∪ {r:{a:Γ(s)(x)}+ Γ(r)} ∪ Γ \ s \ r if r 6= s ;
{s:Γ(s) \ x}+ {s:{a:Γ(s)(x)}} ∪ Γ \ s otherwise .

2. A substitution of sites in a typing is a function defined, when r ∈ dom(Γ), by rule:

Γ[s/r]
def
= Γ \ r + {s:Γ(r)}.

22

TN-Net
Γ`s P

Γ` s[P]
TN-Nil ∅ `0 TN-Resn

Γ] {s:ϕ} `N

Γ` (ν s) N

TN-Resl
Γ] {s:{a:γ}] ϕ} `N

Γ] {s:ϕ} ` (ν a@s) N
TN-Par

Γ`N Γ`M

Γ` (N ‖M)

Figure 12: Typing networks.

Since this definition uses the union of typings, Γ[a@r/x@s] is not defined if a∈dom(Γ(r))
and Γ(r)(a) 6=Γ(s)(x), and Γ[s/r] is not defined if s∈dom(Γ) and Γ(r) 6=Γ(s). The following
result assures that the definition of substitution of channels in a typing is correct.

Proposition 4.5 (Substitution on typings). Consider ∆
def
= Γ[a@r/x@s] defined. Then:

1. x 6∈ dom(∆(s)) and ∆ \ s \ r = Γ \ s \ r;

2. if r 6= s then ∆(s) = Γ(s) \ x, otherwise ∆(s) \ a = Γ(s) \ x;

3. a ∈ dom(∆(r)) and ∆(r)(a) = Γ(s)(x), and if a ∈ dom(Γ(r)) then Γ(r)(a) = Γ(s)(x).

Proof. Follows easily from the definitions of substitution on and union of typings.

Since our calculus is polyadic, we are interested in simultaneous substitutions.

Notation 4.6. Let v@s be a@s if v = a, and v otherwise. Consider the simultaneous sub-
stitution on typings Γ{ṽ@s/x̃@s} defined similarly to the respective definition on processes
(cf. Definition 3.12).

Lemma 4.7 (Simultaneous substitution). Let Γ`s P , and consider that x∈ fn(P) but
x@S ∩ fn(P) = ∅. Then, Γ{ṽ@s/x̃@s} `s P{ṽ/x̃}.

Proof. Notice that Γ{ṽ@s/x̃@s} is only defined when Γ(s)(ṽ)=Γ(s)(x̃). The proof consists
in an induction on the length of ṽ, using the following auxiliary result, which is proved by
induction on the derivation of the judgment Γ[a@r/x@s]`s P [a@r/x]:

Let Γ`s P , and consider that x ∈ fn(P) but x@S ∩ fn(P) = ∅. Then,

1. Γ[a@r/x@s]`s P [a@r/x], for all r, s; and

2. Γ[a@s/x@s]`s P [a/x], when r = s.

A detailed proof can be found in page 83.

The main result of this section states that reduction preserves the typability of a pro-
cess. The lemma above is necessary when reduction results from communication. When
reduction results from migration, apply the following lemma.

23

Lemma 4.8 (Channel translation). If Γ] {s:{a:Ch(γ̃)}}] {r:{x̃:γ̃}} `r P , then
Γ + {s:{a:Ch(γ̃), x̃:γ̃}} `s Pσ(fn(a@s?(x̃)P), r, s).

Proof. The proof follows on by induction on the derivation of the judgment.

We are finally in a position to ensure the preservation of typability by reduction.

Theorem 4.9 (Subject reduction).

1. If Γ`s P and P → Q, then ∆`s Q, for some ∆.

2. If Γ`N and N → M , then ∆`M , for some ∆.

Proof. The proof consists of inductions on the derivations of P → Q and of N → M . As
usual, we use a lemma stating that structural congruence also preserves typability. The
base case in the derivation of P → Q is when the last rule is RP-COMM. Use Lemma 4.7.
There are two base cases to consider in the derivation of N → M :

1. Case the last rule is RN-MIGO—apply the Definition 3.15 and the typing rules
TP-Outl and TP-Outs subsequently.

2. Case the last rule is RN-MIGI—use then the Lemma 4.8.

The cases of the induction steps are straightforward.

5 Comparisons and Further work

The closest calculus to lsdπ is Dπ. The main differences are:

1. the latter has a general migration primitive that sends arbitrary processes to remote
sites, while the former only migrates messages and receptors;

2. in the latter channels are global (do not belong to a specific site), while in the former
channels are local (each belong to some site, and if s and r both have a channel a,
the a of s is different from the a of r);

3. in the latter sites are first-class citizens, being passed around, while in the former
they are not.

We expect that the choices made in lsdπ do not result in loss of expressiveness, while
gaining simplicity. Possible differences of expressive power in the semantics of these two
calculi are under investigation. Different models of distribution provide for an explicit
migration primitive; it is unclear at the time of this writing whether explicit migration
may be simulated by our primitives.

24

We envisage to allow messages to carry sites; substitution, as defined in section 2, is
ready for that. Different models of distribution provide for an explicit migration primitive;
it is unclear at the time of this writing whether explicit migration may be simulated by
our primitives. Finally, we would like to control unrestricted migration (cf. [8]), possibly
via type systems.

Acknowledgments

This work started during a six months visit of António Ravara to the Project MIMOSA at
INRIA Sophia Antipolis, France, partially supported by a post-doctoral grant of the French
RNRT project MARVEL. The Portuguese PRAXIS XXI project DiCoMo was another
source for financial support of the work. Thanks to Gérard Boudol, Ilaria Castellani,
Matthew Hennessy, and Francisco Martins for several fruitful discussions. Thanks to Ana
Matos for suggesting lsd (π).

References

[1] Roberto M. Amadio. On modelling mobility. Theoretical Computer Science, 240:147–
176, 2000.

[2] Roberto M. Amadio, Gérard Boudol, and Cédric Lhoussaine. The receptive distributed
π-calculus. Rapport de Recherche 4080, INRIA Sophia-Antipolis, 2000. A preliminary
version in FST/TCS’99, LNCS 1738.

[3] Henk Barendregt. The Lambda Calculus - Its Syntax and Semantics. North-Holland,
1981 (1st ed.), revised 1984.

[4] Gérard Berry and Gérard Boudol. The chemical abstract machine. Theoretical Com-
puter Science, 96:217–248, 1992.

[5] Luca Cardelli. A language with distributed scope. In ACM, editor, POPL’95: 22nd
Annual ACM Symposium on Principles of Programming Languages (San Francisco,
CA, U.S.A.), pages 286–297. ACM Press, 1995.

[6] Luca Cardelli and Andrew D. Gordon. Mobile ambients. In Maurice Nivat, editor,
Proceedings of FoSSaCS ’98, volume 1378 of Lecture Notes in Computer Science, pages
140–155. Springer-Verlag, 1998.

[7] Cédric Fournet, Georges Gonthier, Jean-Jacques Lévy, Luc Maranget, and Didier
Rémy. A calculus of mobile agents. In CONCUR’96, volume 1119 of Lecture Notes in
Computer Science, pages 406–421. Springer-Verlag, 1996.

25

[8] Matthew Hennessy and James Riely. Resource access control in systems of mobile
agents. In HLCL’98, volume 16 (3) of Electronic Notes in Theoretical Computer Sci-
ence. Elsevier Science Publishers, 1998. Full version as CogSci Report 2/98, University
of Sussex, Brighton, U. K., 1998.

[9] J. Roger Hindley and Jonathan P. Seldin. Introduction to Combinators and λ-Calculus.
Cambridge University Press, 1986.

[10] Robin Milner. The polyadic π-calculus: A tutorial. In Logic and Algebra of Specifi-
cation, volume 94 of Series F. Springer-Verlag, 1993. Available as Technical Report
ECS-LFCS-91-180, University of Edinburgh, U. K., 1991.

[11] Robin Milner, Joachim Parrow, and David Walker. A calculus of mobile processes,
part I/II. Journal of Information and Computation, 100:1–77, 1992. Available as
Technical Reports ECS-LFCS-89-85 and ECS-LFCS-89-86, University of Edinburgh,
U. K., 1989.

[12] Peter Sewell, Pawel Wojciechowski, and Benjamin C. Pierce. Location independence
for mobile agents. In Internet Programming Languages, volume 1686 of Lecture Notes
in Computer Science. Springer-Verlag, 1999.

[13] Vasco T. Vasconcelos and Kohei Honda. Principal typing schemes in a polyadic π-
calculus. In Eike Best, editor, Proceedings of CONCUR ’93, volume 715 of Lecture
Notes in Computer Science, pages 524–538. Springer-Verlag, 1993.

[14] Vasco T. Vasconcelos, Lúıs Lopes, and Fernando Silva. Distribution and mobility with
lexical scoping in process calculi. In HLCL’98, volume 16 (3) of Electronic Notes in
Theoretical Computer Science. Elsevier Science Publishers, 1998.

26

A Proofs

A.1 Results on the operational semantics

Notation A.1 (Useful sets). In this section, the following abbreviations are used with
respect to the notation defined in Notation 2.2. Here, the use of channels of the form @s
is to be interpreted as “any channel located at the site s”. If used inside “{}”, as in { @s},
the resulting set is an abbreviation for C@s. If used as an element of a set, as in @s, it
represents an arbitrary element of C@s. Furthermore, A@s is not used as in Notation 2.2,
but is used, instead, in place of locate(A, s).

Lemma A.2 (Easy auxiliary results).

1. For A1, . . . ,Ak ⊆N , (A1 ∪ . . . ∪ Ak)[n/m] = A1[n/m] ∪ . . . ∪ Ak[n/m].

2. For X ok, if a@t ∈ fn(X) then t ∈ fn(X). Consequently, sites(fn(X)) ⊆ fn(X).

3. For X ok and [n/m] a replacement, fn(X)[n/m] = {m1[n/m] | m1 ∈ fn(X)}.

4. If A⊆N , and Υ is a finite sequence of substitutions, then
AΥ = {m1Υ | m1 ∈ A} ∪ sites({m1Υ | m1 ∈ A}) .

Proof of Lemma. These proofs are omitted, since they consist in straightforward appli-
cations of the definitions.

Proposition A.3 (Substitution commutes with the free names). Let Υ be a finite
sequence of substitutions.

1. If Υ is a name replacement, then fn(XΥ) = fn(X)Υ.

2. If Υ is a name instantiation, then fn(PΥ) = fn(P)Υ.

3. If Υ is a name translation, then fn(PΥ) ⊆ fn(P)Υ.

Proof of Proposition A.3.1 and A.3.2. The proof consists of an induction over the
structure of the entities. At the Process level, we provide both Propositions A.3.1 and A.3.2
at the same time. No confusion should arise from this choice, since it is clear from the
context whether we are verifying a name replacement or a name instantiation. Obviously,
at the Network level, it suffices to consider A.3.1.

For each case, it is necessary to perform a mathematical induction over the length of
the sequence of substitutions. Therefore we will be looking at nested induction proof.
We use the following abbreviations to refer to the invocation of induction base (i.b.) and
hypothesis (i.h.) and distinguish between the two levels of induction.

- i.h.1, i.b.1
abv
= i.h. and i.b. of the basic structural induction of this proof.

27

- i.h.2, i.b.2
abv
= i.h. and i.b. of the secondary structural inductions of this proof.

1. Processes

• a@t

– fn(a@t[n/m]) = (fn(a@t))[n/m], since

∗ If m = a@t,

fn(a@t[n/a@t])
def
= fn(n)
def
={n, t}, since [n/a@t] is a name replacement, so n ∈ { @t};

(fn(a@t))[n/a@t]
def
={a@t, t}[n/a@t]
def
={m1[n/a@t] | m1 ∈ {a@t, t}}∪
∪ sites({m1[n/a@t] | m1 ∈ {a@t, t}})
= {a@t[n/a@t], t[n/a@t]} ∪ sites({a@t[n/a@t], t[n/a@t]})
def
={n, t} ∪ sites({n, t})
def
={n, t}, since [n/a@t] is a name replacement, so n ∈ { @t}.

∗ If m = t,

fn(a@t[n/t])
def
= fn(a@n)

def
= {a@n, n}

(fn(a@t))[n/t]
def
={a@t, t}[n/t]
def
={m1[n/t] | m1 ∈ {a@t, t}} ∪ sites({m1[n/t] | m1 ∈ {a@t, t}})
= {a@t[n/t], t[n/t]} ∪ sites({a@t[n/t], t[n/t]})
def
={a@n, n} ∪ sites({a@n, n})
def
={a@n, n}.

∗ If t /∈ m,

fn(a@t[n/m])
def
= fn(a@t)
def
={a@t, t};

28

(fn(a@t))[n/m]
def
={a@t, t}[n/m]
def
={m1[n/m] | m1 ∈ {a@t, t}} ∪ sites({m1[n/m] | m1 ∈ {a@t, t}})
= {a@t[n/m], t[n/m]} ∪ sites({a@t[n/m], t[n/m]})
def
={a@t, t} ∪ sites({a@t, t})
def
={a@t, t}.

– fn(a@t[n1/m1] . . . [nf/mf])
By definition, a@t[n1/m1] ∈ C@S,
= (i.h.2) fn(a@t[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(a@t))[n1/m1] . . . [nf/mf]

• a

– fn(a[n/m]) = (fn(a))[n/m], for

∗ If m = a,

fn(a[n/a])
def
= fn(n)
def
={n} ∪ sites({n});

(fn(a))[n/a]
def
={m1[n/a] | m1 ∈ fn(a)} ∪ sites({m1[n/a] | m1 ∈ fn(a)})
def
={a[n/a]} ∪ sites({a[n/a]})
def
={n} ∪ sites({n}).

∗ If m 6= a,

fn(a[n/m])
def
= fn(a)
def
={a};

(fn(a))[n/m]
def
={m1[n/m] | m1 ∈ fn(a)} ∪ sites({m1[n/m] | m1 ∈ fn(a)})
def
={a[n/m]} ∪ sites({a[n/m]})
def
={a}.

– fn(a[n1/m1] . . . [nf/mf])
By definition, a[n1/m1] ∈ Chans. If a[n1/m1] ∈ C use i.h.2, and if a[n1/m1] ∈

29

C@S use the previous case.

= fn(a[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(a))[n1/m1] . . . [nf/mf].

• s

– fn(s[n/m]) = (fn(s))[n/m], for

∗ If m = s,

fn(s[n/s])
def
= fn(n)
def
={n}, since [n/s] is a name replacement, then n ∈ S;

(fn(s))[n/s]
def
={m1[n/s] | m1 ∈ fn(s)} ∪ sites({m1[n/s] | m1 ∈ fn(s)})
def
={s[n/s]} ∪ sites({s[n/s]})
def
={n} ∪ sites({n})
def
={n}, since [n/s] is a name replacement, then n ∈ S.

∗ If m 6= s,

fn(s[n/m])
def
= fn(s)
def
={s};

(fn(s))[n/m]
def
={m1[n/m] | m1 ∈ fn(s)} ∪ sites({m1[n/m] | m1 ∈ fn(s)})
def
={s[n/m]} ∪ sites({s[n/m]})
def
={s}.

– fn(s[n1/m1] . . . [nf/mf]).
By definition s[n1/m1] ∈ S,
= (i.h.2) fn(s[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(s))[n1/m1] . . . [nf/mf].

• 0

30

– fn(0[n/m]) = (fn(0))[n/m], for

fn(0[n/m])
def
= fn(0)
def
=∅;

(fn(0))[n/m]
def
=∅[n/m]
= ∅.

– fn(0[n1/m1] . . . [nf/mf])
def
= fn(0[n2/m2] . . . [nf/mf])
= (i.h.2) fn(0)[n2/m2] . . . [nf/mf]
= (i.b.2) fn(0)[n1/m1] . . . [nf/mf]

• u!〈ñ〉

– fn(u!〈ñ〉[n/m]) = (fn(u!〈ñ〉))[n/m], for

fn((u!〈ñ〉)[n/m])
def
= fn(u[n/m]!〈n1[n/m] . . . nf [n/m]〉)
def
= fn(u[n/m]) ∪ fn(n1[n/m]) ∪ . . . ∪ fn(nf [n/m])
= (i.h.1) fn(u)[n/m] ∪ fn(n1[n/m]) ∪ . . . ∪ fn(nf)[n/m];

(fn(u!〈ñ〉))[n/m]
def
=(fn(u) ∪ fn(n1) ∪ . . . ∪ fn(nf))[n/m]
= (Lemma A.2.1) fn(u)[n/m] ∪ fn(n1)[n/m] ∪ . . . ∪ fn(nf)[n/m].

– fn(u!〈ñ〉[n1/m1] . . . [nf/mf]).
Since by definition u!〈ñ〉[n1/m1] is of the form u′!〈n′n′〉,
= (i.h.2) fn(u!〈ñ〉[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(u!〈ñ〉))[n1/m1] . . . [nf/mf].

• P |Q

– fn((P |Q)[n/m]) = (fn(P |Q))[n/m], for

fn((P |Q)[n/m])
def
= fn((P)[n/m] | (Q)[n/m])

31

def
= fn((P)[n/m]) ∪ fn((Q)[n/m])
= (i.h.1) fn(P)[n/m] ∪ fn(Q)[n/m].

(fn(P |Q))[n/m]
def
=(fn(P) ∪ fn(Q))[n/m]
= (Lemma A.2.1) fn(P)[n/m] ∪ fn(Q)[n/m].

– fn((P |Q)[n1/m1] . . . [nf/mf]).
Since by definition (P |Q)[n1/m1] is of the form P ′ |Q′,
= (i.h.2) fn(P [n1/m1] |Q[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(P |Q))[n1/m1] . . . [nf/mf].

• (ν t) Q

– fn((ν t) Q[n/m]) = (fn((ν t) Q))[n/m], for

∗ If t ∈ m,

fn(((ν t) Q)[n/m])
def
= fn((ν t) Q)
def
= fn(Q) \ { @t, t}

(fn((ν t) Q))[n/m]
def
=(fn(Q) \ { @t, t})[n/m]
def
={m1[n/m] | m1 ∈ fn(Q) \ { @t, t}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ { @t, t}})
def
= fn(Q) \ { @t, t} ∪ sites(fn(Q) \ { @t, t}),
because t /∈ m1 but t ∈ m
= (Lemma A.2.2) fn(Q) \ { @t, t}

∗ If t /∈ m, and t /∈ n or m /∈ fn(Q)

fn(((ν t) Q)[n/m])
def
= fn((ν t) Q[n/m])
def
= fn(Q[n/m]) \ { @t, t}

(fn((ν t) Q))[n/m]
def
=(fn(Q) \ { @t, t})[n/m]
def
={m1[n/m] | m1 ∈ fn(Q) \ { @t, t}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ { @t, t}})

32

By hypothesis,

= {m1[n/m] | m1 ∈ fn(Q)} \ { @t, t}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)}) \ { @t, t}
def
=(fn(Q)[n/m]) \ { @t, t}
= (i.h.1) fn(Q[n/m]) \ { @t, t}

∗ If t /∈ m, and t ∈ n and m ∈ fn(Q), where s is fresh.

fn(((ν t) Q)[n/m])
def
= fn((ν s) Q[s/t][n/m])
def
= fn(Q[s/t][n/m]) \ { @s, s}

(fn((ν t) Q))[n/m]
def
=(fn(Q) \ { @t, t})[n/m]
def
={m1[n/m] | m1 ∈ fn(Q) \ { @t, t}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ { @t, t}})
= (*) {m1[n/m] | m1 ∈ (fn(Q)[s/t]) \ { @s, s}}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q)[s/t]) \ { @s, s}})

Since s is fresh, s /∈ n, m, thus
= {m1[n/m] | m1 ∈ fn(Q)[s/t]} \ { @s, s}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)[s/t]}) \ { @s, s}
def
=(fn(Q)[s/t][n/m]) \ { @s, s}
= (i.h.1) fn(Q[s/t][n/m]) \ { @s, s} (i.h.1. may be used since [s/t] is a
name replacement)

(*) ((fn(Q)[s/t]) \ { @s, s}
def
={m1[s/t] | m1 ∈ fn(Q)} \ { @s, s} ∪ sites({m1[s/t] | m1 ∈ fn(Q)}) \
{ @s, s}
def
={m1 | m1 ∈ fn(Q)} \ { @t, t} ∪ sites({m1 | m1 ∈ fn(Q)}) \ { @t, t}
= fn(Q) \ { @t, t}

– fn(((ν t) Q)[n1/m1] . . . [nf/mf])

By definition ((ν t) Q)[n1/m1] is of the form (ν t′) Q′

= (i.h.2) fn(((ν t) Q)[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn((ν t) Q))[n1/m1] . . . [nf/mf]

33

• (ν a) Q

– fn((ν a) Q[n/m]) = (fn((ν a) Q))[n/m], since

∗ If m = a,

fn(((ν a) Q)[n/a])
def
= fn((ν a) Q)
def
= fn(Q) \ {a}

(fn((ν a) Q))[n/a]
def
=(fn(Q) \ {a})[n/a]
def
={m1[n/a] | m1 ∈ fn(Q) \ {a}} ∪ sites({m1[n/a] | m1 ∈ fn(Q) \ {a}})
def
= fn(Q) \ {a} ∪ sites(fn(Q) \ {a}), since m1 6= a
= (Lemma A.2.2) fn(Q) \ {a}

∗ If m 6= a, and a /∈ n or m /∈ fn(Q)

fn(((ν a) Q)[n/m])
def
= fn((ν a) Q[n/m])
def
= fn(Q[n/m]) \ {a}

(fn((ν a) Q))[n/m]
def
=(fn(Q) \ {a})[n/m]
def
={m1[n/m] | m1 ∈ fn(Q) \ {a}} ∪ sites({m1[n/m] | m1 ∈ fn(Q) \ {a}})

By hypothesis,

def
={m1[n/m] | m1 ∈ fn(Q)} \ {a} ∪ sites({m1[n/m] | m1 ∈ fn(Q)} \ {a})
def
=(fn(Q)[n/m]) \ {a}
= (i.h.1) fn(Q[n/m]) \ {a}

∗ If m 6= a, and a ∈ n and m ∈ fn(Q), where b is fresh,

fn(((ν a) Q)[n/m])
def
= fn((ν b) Q[b/a][n/m])
def
= fn(Q[b/a][n/m]) \ {b}

(fn((ν a) Q))[n/m]

34

def
=(fn(Q) \ {a})[n/m]
def
={m1[n/m] | m1 ∈ fn(Q) \ {a}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ {a}})
= (*) {m1[n/m] | m1 ∈ fn(Q)[b/a]{b}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)[b/a]{b}})

Since b is fresh, b /∈ n, m, so
= {m1[n/m] | m1 ∈ fn(Q)[b/a]} \ {b}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)[b/a]}) \ {b}

def
=(fn(Q)[b/a][n/m]) \ {b}
= (i.h.1) fn(Q[b/a][n/m]) \ {b} (i.h.1. may be applied because [b/a] is
replacement.)

(*) ((fn(Q)[b/a]) \ {b}
def
={m1[b/a] | m1 ∈ fn(Q)} \ {b} ∪ sites({m1[b/a] | m1 ∈ fn(Q)}) \ {b}
def
={m1 | m1 ∈ fn(Q)} \ {a} ∪ sites({m1 | m1 ∈ fn(Q)}) \ {a}
= fn(Q) \ {a}

– fn(((ν a) Q)[n1/m1] . . . [nf/mf])

Since by definition ((ν a) Q)[n1/m1] is of the form (ν a′) Q′

= (i.h.2) fn(((ν a) Q)[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn((ν a) Q))[n1/m1] . . . [nf/mf]

• (ν a@t) Q

– fn((ν a@t) Q[n/m]) = (fn((ν a@t) Q))[n/m], for

∗ If m = a@t,

fn(((ν a@t) Q)[n/a@t])
def
= fn((ν a@t) Q)
def
= fn(Q) \ {a@t} ∪ {t}

(fn((ν a@t) Q))[n/a@t]
def
=(fn(Q) \ {a@t} ∪ {t})[n/a@t]
def
={m1[n/a@t] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})}∪
∪ sites({m1[n/a@t] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})})

35

def
= fn(Q) \ {a@t} ∪ {t} ∪ sites(fn(Q) \ {a@t} ∪ {t}), since m1 6= a@t but
m = a@t
= (Lemma A.2.2) fn(Q) \ {a@t} ∪ {t}

∗ If m = t,

fn(((ν a@t) Q)[n/t])
def
= fn((ν a@n) Q[n/t])
def
= fn(Q[n/t]) \ {a@n} ∪ {n}

(fn((ν a@t) Q))[n/t]
def
=(fn(Q) \ {a@t} ∪ {t})[n/t]
def
={m1[n/t] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})}∪
∪ sites({m1[n/t] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})})
def
={m1[n/t] | m1 ∈ fn(Q) \ {a@t}} ∪ {n}∪
∪ sites({m1[n/t] | m1 ∈ fn(Q) \ {a@t}} ∪ {n})
def
={m1 | m1 ∈ fn(Q)}\{a@n}∪{n}∪sites({m1 | m1 ∈ fn(Q)} \ {a@t} ∪ {n})
= (fn(Q)[n/t]) \ {a@n} ∪ {n} ∪ sites((fn(Q)[n/t]) \ {a@n} ∪ {n})
= (i.h.1) fn(Q[n/t]) \ {a@n} ∪ {n} ∪ sites(fn(Q[n/t]) \ {a@n})
= (Lemma A.2.2) fn(Q[n/t]) \ {a@n} ∪ {n}

∗ If m 6= a@t, t, and n 6= a,a@t or m /∈ fn(M)

fn(((ν a@t) Q)[n/m])
def
= fn((ν a@t) Q[n/m])
def
= fn(Q[n/m]) \ {a@t} ∪ {t}

(fn((ν a@t) Q))[n/m]
def
=(fn(Q) \ {a@t} ∪ {t})[n/m]
def
={m1[n/m] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})})

By hypothesis,

def
={m1[n/m] | m1 ∈ fn(Q)} \ {a@t} ∪ {t}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)} \ {a@t} ∪ {t})
= (fn(Q)[n/m]) \ {a@t} ∪ {t}
= (i.h.1) fn(Q[n/m]) \ {a@t} ∪ {t}

∗ If m 6= a@t and m 6= t, and n ∈ {a, a@t} and m ∈ fn(M), where b is fresh

36

fn(((ν a@t) Q)[n/m])
def
= fn((ν b@t) M [b@t/a@t][n/m])
def
= fn(M [b@t/a@t][n/m]) \ {b@t} ∪ {t}

(fn((ν a@t) Q))[n/m]
def
=(fn(Q) \ {a@t} ∪ {t})[n/m]
def
={m1[n/m] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q) \ {a@t} ∪ {t})})
= (*) {m1[n/m] | m1 ∈ (fn(Q)[b@t/a@t]) \ {b@t}∪ ∪{t}}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q)[b@t/a@t]) \ {b@t} ∪ {t}})

Since b is fresh, b /∈ n, m, and since m 6= t

= {m1[n/m] | m1 ∈ fn(Q)[b@t/a@t]} \ {b@t} ∪ {t}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)[b@t/a@t]} \ {b@t} ∪ {t})
def
=(fn(Q)[b@t/a@t][n/m]) \ {b@t} ∪ {t}
= (i.h.1) fn(Q[b@t/a@t][n/m]) \ {b@t}∪{t} (i.h.1. may be used because
[b@t/a@t] is a name replacement)

(*) ((fn(Q)[b@t/a@t]) \ {b@t} ∪ {t}
def
={m1[b@t/a@t] | m1 ∈ fn(Q)} \ {b@t} ∪ {t}∪ ∪
ts{m1[b@t/a@t] | m1 ∈ fn(Q)} \ {b@t} ∪ {t}

Since b is fresh, b@t /∈ fn(Q),

def
={m1 | m1 ∈ fn(Q)}\{a@t}∪{t}∪sites({m1 | m1 ∈ fn(Q)})\{a@t}∪{t}
= fn(Q) \ {a@t} ∪ {t}

– fn(((ν a@t) Q)[n1/m1] . . . [nf/mf])

Since by definition ((ν a@t) Q)[n1/m1] is of the form (ν a′@t) Q′

= (i.h.2) fn(((ν a@t) Q)[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn((ν a@t) Q))[n1/m1] . . . [nf/mf]

• u?(ã)Q

– fn(u?(ã)Q[n/m]) = (fn(u?(ã)Q))[n/m], for

∗ If m = ai and ai ∈ {ã},

37

fn((u?(ã)Q)[n/ai])
def
= fn(u[n/ai]?(ã)Q)
def
= fn(Q) \ {ã} ∪ {u} ∪ fn(u)

(fn(u?(ã)Q))[n/ai]
def
=(fn(u) ∪ fn(Q) \ {ã})[n/ai]
= (Lemma A.2.1) fn(u)[n/m] ∪ (fn(Q) \ {ã})[n/ai]
def
= fn(u)[n/ai] ∪ {m1[n/ai] | m1 ∈ fn(Q) \ {ã}}∪
∪ sites({m1[n/ai] | m1 ∈ fn(Q) \ {ã}})
def
= fn(u)[n/m] ∪ fn(Q) \ {ã} ∪ sites(fn(Q) \ {ã}) since m1 /∈ {ã}
= (Lemma A.2.2) fn(u)[n/m] ∪ fn(Q) \ {ã}
= (i.h.1) fn(u[n/m]) ∪ fn(Q) \ {ã}

∗ If m /∈ {ã}, and ∀ai : ai /∈ n or m /∈ fn(Q)

fn((u?(ã)Q)[n/m])
def
= fn(u[n/m]?(ã)Q[n/m])
def
= fn(u[n/m]) ∪ fn(Q[n/m]) \ {ã}

fn((u?(ã)Q))[n/m]
def
=(fn(u) ∪ fn(Q) \ {ã})[n/m]
= (Lemma A.2.1) fn(u)[n/m] ∪ (fn(Q) \ {ã})[n/m]
def
= fn(u)[n/m] ∪ {m1[n/m] | m1 ∈ fn(Q) \ {ã}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ {ã}})

By hypothesis,

def
= fn(u)[n/m] ∪ {m1[n/m] | m1 ∈ fn(Q)} \ {ã}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q)} \ {ã}})
def
= fn(u)[n/m] ∪ (fn(Q)[n/m]) \ {ã}
= (i.h.1) fn(u[n/m]) ∪ fn(Q[n/m]) \ {ã}

∗ If m /∈ {ã}, and for some i : ai ∈ n and m ∈ fn(Q)

fn((u?(ã)Q)[n/m])
def
= fn(u[n/m]?(a1 . . . b . . . an)Q[b/ai][n/m])
def
= fn(u[n/m]) ∪ fn(Q[b/ai][n/m]) \ {a1 . . . b . . . an}

fn((u?(ã)Q))[n/m]

38

def
=(fn(u) ∪ fn(Q) \ {ã})[n/m]
= (Lemma A.2.1) fn(u)[n/m] ∪ (fn(Q) \ {ã})[n/m]
def
= fn(u)[n/m] ∪ {m1[n/m] | m1 ∈ fn(Q) \ {ã}}∪
∪ sites({m1[n/m] | m1 ∈ fn(Q) \ {ã}})
= (*) fn(u)[n/m] ∪ {m1[n/m] | m1 ∈ (fn(Q)[b/ai]) \ {a1 . . . b . . . an}}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q)[b/ai]) \ {a1 . . . b . . . an}})

Since b is fresh, b /∈ n, m, so
= fn(u)[n/m] ∪ {m1[n/m] | m1 ∈ (fn(Q)[b/ai])} \ {a1 . . . b . . . an}∪
∪ sites({m1[n/m] | m1 ∈ (fn(Q)[b/ai])} \ {a1 . . . b . . . an})

def
= fn(u)[n/m] ∪ (fn(Q)[b/ai][n/m]) \ {a1 . . . b . . . an}
= (i.h.1) fn(u)[n/m]∪ fn(Q[b/ai][n/m]) \ {a1 . . . b . . . an} (i.h.1. may be
used because [b/ai] is a name replacement)

(*) ((fn(Q)[b/ai]) \ {a1 . . . b . . . an}
def
={m1[b/ai] | m1 ∈ fn(Q)} \ {a1 . . . b . . . an}∪
∪ sites({m1[b/ai] | m1 ∈ fn(Q)}) \ {a1 . . . b . . . an}
def
={m1 | m1 ∈ fn(Q)} \ {ã}∪
∪ sites({m1 | m1 ∈ fn(Q)}) \ {ã}
= (Lemma A.2.2) fn(Q) \ {ã}

– fn((u?(ã)Q)[n1/m1] . . . [nf/mf])

Since by definition (u?(ã)Q)[n1/m1] is of the form u′?(ã′)Q′,

= (i.h.2) fn((u?(ã)Q)[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(u?(ã)Q))[n1/m1] . . . [nf/mf]

• Networks

Note that, as mentioned in the beginning of the proof, from now on we consider
name replacement alone.

• s[Q]

– fn(s[Q][n/m]) = (fn(s[Q]))[n/m], for

∗ If m = a@s,

fn((s[Q])[b@s/a@s])

39

def
= fn(s[(Q[b/a])[b@s/a@s]])
def
= fn((Q[b/a])[b@s/a@s])@s ∪ {s}

fn(s[Q])[b@s/a@s]
def
=(fn(Q)@s ∪ {s})[b@s/a@s]
def
=(Lemma A.2.3) {m1[b@s/a@s] | m1 ∈ (fn(Q)@s ∪ {s})}
= {m1[b/a][b@s/a@s] | m1 ∈ fn(Q)}@s ∪ {s} (the substitution doesn’t
change s)
def
=(fn(Q)[b/a][b@s/a@s])@s ∪ {s}
= (i.h.1) fn(Q[b/a][b@s/a@s])@s ∪ {s} (i.h.1. may be used because [b/a]
and [b@s/a@s] are name replacements)

∗ If m = s,

fn((s[Q])[n/s])
def
= fn(n[Q[n/s]])
def
= fn(Q[n/s])@n ∪ {n}

fn(s[Q])[n/s]
def
=(fn(Q)@s ∪ {s})[n/s]
def
=(Lemma A.2.3) {m1[n/s] | m1 ∈ (fn(Q)@s ∪ {s})}
= {m1[n/s] | m1 ∈ fn(Q)}@n ∪ {n}
def
= fn(Q)[n/s]@n ∪ {n}
= (i.h.1) fn(Q[n/s])@n ∪ {n}

∗ If s /∈ m,

fn((s[Q])[n/m])
def
= fn(s[P [n/m]])
def
= fn(P [n/m])@s ∪ {s}

fn(s[Q])[n/m]
def
=(fn(Q)@s ∪ {s})[n/m]
def
=(Lemma A.2.3) {m1[n/m] | m1 ∈ (fn(Q)@s ∪ {s})}
= {m1[n/m] | m1 ∈ fn(Q)}@s ∪ {s}
def
=(fn(Q)[n/m])@s ∪ {s}
= (i.h.1) fn(Q[n/m])@s ∪ {s}

– fn((s[Q])[n1/m1] . . . [nf/mf])

40

Since by definition (s[Q])[n1/m1] is of the form s′[Q′] then

= (i.h.2) fn((s[Q])[n1/m1])[n2/m2] . . . [nf/mf]
= (i.b.2) (fn(s[Q]))[n1/m1] . . . [nf/mf]

• 0, M1 ‖M2, (ν a@t) M

As in the case for processes.

Proof of Proposition A.3.3. This proof is analogous to the previous one. Note that, by
definition of X ok, the i.h. may be applied to all subterms of X.

1. Processes

• a

– fn(a[u/v]) = (fn(a))[u/v], for

∗ If v = a,

fn(a[u/a])
def
= fn(u)
def
={u} ∪ sites({u})

(fn(a))[u/a]
def
={m1[u/a] | m1 ∈ fn(a)} ∪ sites({m1[u/a] | m1 ∈ fn(a)})
def
={a[u/a]} ∪ sites({a[u/a]})
def
={u} ∪ sites({u})

∗ If v 6= a,

fn(a[u/v])
def
= fn(a)
def
={a}

(fn(a))[u/v]
def
={m1[u/v] | m1 ∈ fn(a)} ∪ sites({m1[u/v] | m1 ∈ fn(a)})

41

def
={a[u/v]} ∪ sites({a[u/v]}) since v 6= a
def
={a}

∗ fn(a[u1/v1] . . . [uf/vf])
= (i.h.2) fn(a[u1/v1])[u2/v2] . . . [uf/vf]
= (i.b.2) (fn(a))[u1/v1] . . . [uf/vf]

• s

– fn(s[u/v]) = (fn(s))[u/v], for

∗ Of course that v 6= s,

fn(s[u/v])
def
= fn(s)
def
={s}

(fn(s))[u/v]
def
={m1[u/v] | m1 ∈ fn(s)} ∪ sites({m1[u/v] | m1 ∈ fn(s)})
def
={s[u/v]} ∪ sites({s[u/v]})
def
={s}

– fn(s[u1/v1] . . . [uf/vf])
= (i.h.2) fn(s[u1/v1])[u2/v2] . . . [uf/vf]
= (i.b.2) (fn(s))[u1/v1] . . . [uf/vf]

• a@t

– fn(a@t[u/v]) = (fn(a@t))[u/v], for

∗ If v = a@t, then u = a, since [u/v] is a name translation

fn(a@t[a/a@t])
def
= fn(a)
def
={a}

(fn(a@t))[a/a@t]
def
={a@t, t}[a/a@t]
def
={m1[a/a@t] | m1 ∈ {a@t, t}} ∪ sites({m1[a/a@t] | m1 ∈ {a@t, t}})
= {a@t[a/a@t], t[a/a@t]} ∪ sites({a@t[a/a@t], t[a/a@t]})

42

def
={a, t} ∪ sites({a, t})
def
={a, t}

∗ If t /∈ v,

fn(a@t[u/v])
def
= fn(a@t)
def
={a@t, t}

(fn(a@t))[u/v]
def
={a@t, t}[u/v]
def
={m1[u/v] | m1 ∈ {a@t, t}} ∪ sites({m1[u/v] | m1 ∈ {a@t, t}})
= {a@t[u/v], t[u/v]} ∪ sites({a@t[u/m], t[u/v]})
def
={a@t, t} ∪ sites({a@t, t}) since t /∈ v,
def
={a@t, t}

– fn(a@t[u1/v1] . . . [uf/vf])
= (i.h.2) fn(a@t[u1/v1])[u2/v2] . . . [uf/vf]
= (i.b.2) (fn(a@t))[u1/v1] . . . [uf/vf]

2. Networks

Note that the rest is analogous to Proof A.3.1, but u,v is used instead of m,n, and
in place of the equality invoked by i.h.1, the ⊆ relation is used.

Proposition A.4 (Substitution preserves the syntactic restrictions). Let Υ be a
finite sequence of substitutions.

1. If X ok and Υ is a name replacement, then XΥ ok.

2. If P ok and Υ is a name instantiation, then PΥ ok.

3. If P ok and Υ is a name translation, then PΥ ok.

Proof of Proposition A.4.1 and A.4.2. The proof consists of an induction over the
structure of the entities, supporting mathematical inductions over the length of the se-
quence of substitutions. Again, proofs for Propositions A.4.1 and A.4.2 are presented
together. Moreover, Proposition A.3.1 is invoked in the cases where syntactic restriction
requirements must be verified (i.e. (ν a@s) X, (ν a) X and u?(x̃)P). Note that by definition
of X ok, the i.h. may be applied to all the subterms of X.

43

1. Processes

• 0

– 0 ok ⇒ 0[n/m] ok

(0)[n/m]
def
= 0

– 0 ok ⇒ (0)[n1/m1] . . . [nf/mf] ok, for

((0)[n1/m1] . . . [nf−1/mf−1])[nf/mf]
= (i.h.2) 0[nf/mf]
def
=0

It is clear that (0)[n1/m1] . . . [nf/mf] belongs to the language. In (0)[n1/m1] . . .
. . . [nf/mf] there are no syntactic restrictions to satisfy.

• u!〈ñ〉

– u!〈ñ〉 ok ⇒ (u!〈ñ〉)[n/m] ok,
since (u!〈ñ〉)[n/m]
def
=[n/m](u)!〈[n/m](ñ)〉

By hypothesis {uñ} ⊂ (C ∪ C@S), and [n/m] is either a name replacement,
or a name instantiation. Therefore, {[n/m](u)} ∪ {[n/m](ñ)} ⊂ (C ∪ C@S),
which is sufficient to verify that (u!〈ñ〉)[n/m] belongs to the language. In
[n/m](u)!〈[n/m](ñ)〉 there are no syntactic restrictions to satisfy.

– u!〈ñ〉 ok ⇒ (u!〈ñ〉)[n1/m1] . . . [nf/mf] ok, since

By the i.b.2, (u!〈ñ〉)[n1/m1] ok. By definition (u!〈ñ〉)[n1/m1] is of the form
u′!〈n′n′〉, therefore by i.h.2, (u!〈ñ〉)[n1/m1][n2/m2] . . . [nf/mf] ok.

• Q1 |Q2

– Q1 |Q2 ok ⇒ (Q1 |Q2)[n/m] ok, since

(Q1 |Q2)[n/m]
def
=(Q1)[n/m] | (Q2)[n/m]

By i.h.1 we have that (Q1)[n/m] ok and (Q2)[n/m] ok. Therefore ((Q1)[n/m]|
(Q2)[n/m]) ok.

44

– Q1 |Q2 ok ⇒ (Q1 |Q2)[n1/m1] . . . [nf/mf] ok, since

By i.b.2, (Q1 |Q2)[n1/m1] ok. Since by definition (Q1 |Q2)[n1/m1] is of the
form Q′

1 |Q′
2, then by i.h.2, (Q1 |Q2)[n1/m1][n2/m2] . . . [nf/mf] ok.

• (ν t) Q

– (ν t) Q ok ⇒ ((ν t) Q)[n/m] ok, for

∗ If t ∈ m,

((ν t) Q)[n/m]
def
= (ν t) Q

∗ If t /∈ m, and t /∈ n or m /∈ fn(Q)

((ν t) Q)[n/m]
def
= (ν t) Q[n/m]

By i.h.1 we have that (Q)[n/m] ok. Therefore (ν t) (Q)[n/m] ok.

∗ If t /∈ m, and t ∈ n and m ∈ fn(M), where s is fresh

((ν t) Q)[n/m]
def
=(ν s) Q[s/t][n/m]

By i.h.1 we have that (Q)[s/t][n/m] ok. Therefore (ν t) (Q)[s/t][n/m]
ok.

– (ν t) Q ok ⇒ ((ν t) Q)[n1/m1] . . . [nf/mf] ok, since

By i.b.2, ((ν t) Q)[n1/m1] ok. Since by definition ((ν t) Q)[n1/m1] is of the
form (ν t′) Q′, then by i.h.2, ((ν t) Q)[n1/m1][n2/m2] . . . [nf/mf] ok.

• (ν a) Q

– (ν a) Q ok ⇒ ((ν a) Q)[n/m] ok, for

∗ If m = a,

((ν a) Q)[n/a]
def
= (ν a) Q

∗ If m 6= a, and a /∈ n or m /∈ fn(Q),

45

((ν a) Q)[n/m]
def
=(ν a) Q[n/m]

We must verify that if m 6= a, and (a /∈ n or m /∈ fn(Q)) then
(ν a) Q[n/m] ok. By i.h. we have that (Q)[n/m] ok.
Therefore (ν a) (Q)[n/m] ok iff it satisfies the syntactic restriction
(2.5.1b), i.e.:
∀t : a@t /∈ fn((Q)[n/m])

fn((Q)[n/m])
= (Proposition A.3.1, A.3.2) fn(Q)[n/m], because [n/m] is either a
name replacement or a name instantiation
def
={m1[n/m] | m1 ∈ fn(Q)} ∪ sites({m1[n/m] | m1 ∈ fn(Q)})

Since P ok, a@t /∈ fn(Q),∀t. Now it suffices to note that: ∀t : (n 6= a@t‖
‖m /∈ fn(Q)) and a@t /∈ fn(Q) ⇒ a@t /∈ {m1[n/m] | m1 ∈ fn(Q)}

∗ If m 6= a, and a ∈ n and m ∈ fn(Q) where b is fresh,

((ν a) Q)[n/m]
def
= (ν b) Q[b/a][n/m]

We must verify that if m 6= a, and (a /∈ n or m /∈ fn(Q)) then
(ν a) Q[n/m] ok. By i.h.1 we have that (Q)[b/a][n/m] ok. There-
fore
(ν a) (Q)[b/a][n/m] ok iff it satisfies the syntactic restriction (2.5.1b),i.e.:
∀t : a@t /∈ fn((Q)[b/a][n/m]) ∩ (C ∪ C@S)

fn((Q)[b/a][n/m]) ∩ (C ∪ C@S)
= (Proposition A.3.1, A.3.2) fn(Q)[b/a][n/m] ∩ (C ∪ C@S), since [n/m]
is either a name replacement or name instantiation and [b/a] is a name
replacement
def
={m1[b/a] | m1 ∈ fn(Q)[n/m] ∩ (C ∪ C@S)}
def
={m1[n/m] | m1 ∈ {m1[b/a] | m1 ∈ fn(Q)}}
= {m1[b/a][n/m] | m1 ∈ fn(Q)}

Since P ok, a@t /∈ fn(Q),∀t. Now it suffices to note that: ∀t : (n 6=
a@t‖m /∈ fn(Q)) and a@t /∈ fn(Q) ⇒ a@t /∈ {m1[b/a][n/m] | m1 ∈ fn(Q)}

– (ν a) Q ok ⇒ ((ν a) Q)[n1/m1] . . . [nf/mf] ok, for

By i.b.2, ((ν a) Q)[n1/m1] ok. Since by definition ((ν a) Q)[n1/m1] is of the
form (ν a′) Q′, then by i.h.2 ((ν a) Q)[n1/m1][n2/m2] . . . [nf/mf] ok.

46

• (ν a@t) Q

– (ν a@t) Q ok ⇒ ((ν a@t) Q)[n/m] ok, for

∗ If m = a@t,

((ν a@t) Q)[n/a@t]
def
= (ν a@t) Q

∗ If m = t,

((ν a@t) Q)[n/t]
def
= (ν a@n) Q[n/t]

We must verify that if (n ∈ S) then (ν a@n) Q[n/m] ok. By i.h.1
we have that (Q)[n/m] ok. Therefore, (ν a@n) (Q)[n/m] ok iff it sat-
isfies syntactic restriction (2.5.1a), that is: a /∈ fn((Q)[n/m])∩(C∪C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
= (Proposition A.3.1, A.3.2) fn(Q)[n/m] ∩ (C ∪ C@S) since [n/m] is ei-
ther a name replacement or a name instantiation
def
={m1[n/m] | m1 ∈ fn(Q)}

We know that P ok, a@t /∈ fn(Q),∀t. It suffices to note that: n ∈ S
and a /∈ fn(Q) ⇒ a /∈ {m1[n/m] | m1 ∈ fn(Q)}

∗ Ifm 6= a@t and m 6= t, and n /∈ {a, a@t} or m /∈ fn(Q)

((ν a@t) Q)[n/m]
def
= (ν a@t) Q[n/m]

We must verify that, if m 6= a@t and m 6= t, and a /∈ n or m /∈ fn(Q)
then (ν a@t) Q[n/m] ok. By i.h. we have that (Q)[n/m] ok. Thus,
(ν a@t) (Q)[n/m] ok iff it satisfies the syntactic restriction (2.5.1a), that
is: a /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
= (Proposition A.3.1, A.3.2) fn(Q)[n/m] ∩ (C ∪ C@S) since [n/m] is ei-
ther a name replacement or a name instantiation
def
={m1[n/m] | m1 ∈ fn(Q)}

We know that P ok, a@t /∈ fn(Q),∀t. It suffices now to note that:
(n 6= a or m /∈ fn(Q)) and a /∈ fn(Q) ⇒ a /∈ {m1[n/m] | m1 ∈ fn(Q)}

∗ If m 6= a@t and m 6= t, and n ∈ {a, a@t} and m ∈ fn(M) where b is fresh,

47

((ν a@t) M)[n/m]
def
= (ν b@t) M [b@t/a@t][n/m]

We must check that, if m 6= a@t and m 6= t, and a /∈ n or m /∈ fn(Q)
then (ν a@t) Q[b@t/a@t][n/m] ok. By i.h. we have (Q)[b@t/a@t][n/m]
ok. Thus (ν a@t) (Q)[b@t/a@t][n/m] ok iff it satisfies the syntactic re-
striction (2.5.1a), that is: a /∈ fn((Q)[b@t/a@t][n/m]) ∩ (C ∪ C@S)

fn((Q)[b@t/a@t][n/m]) ∩ (C ∪ C@S)
= (Proposition A.3.1, A.3.2) fn(Q)[b@t/a@t][n/m] ∩ (C ∪ C@S), since
[n/m] is either a name replacement or a name instantiation and [b@t/a@t]
is a name replacement
def
={m1[b@t/a@t] | m1 ∈ fn(Q)}[n/m] ∩ (C ∪ C@S)
def
={m1[n/m] | m1 ∈ {m1[b@t/a@t] | m1 ∈ fn(Q)}}

We know that P ok, a@t /∈ fn(Q),∀t. It suffices to note that: (n 6= a
or m /∈ fn(Q)) and a /∈ fn(Q) ⇒ a /∈ {m1[b@t/a@t][n/m] | m1 ∈ fn(Q)}

– (ν a@t) Q ok ⇒ ((ν a@t) Q)[n1/m1] . . . [nf/mf] ok, since

By i.b.2 ((ν a@t) Q)[n1/m1] ok. Since, by definition ((ν a@t) Q)[n1/m1] is of
the form (ν a′@t) Q′ then, by i.h.2 ((ν a@t) Q)[n1/m1][n2/m2] . . . [nf/mf] ok.

• u?(ã)Q

– u?(ã)Q ok ⇒ (u?(ã)Q)[n/m] ok, since

∗ If ai ∈ {ã},

(u?(ã)Q)[n/ai]
def
= u[n/ai]?(ã)Q

∗ If m /∈ {ã}, and ∀i : ai /∈ n or m /∈ fn(Q)

(u?(ã)Q)[n/m]
def
= u[n/m]?(ã)Q[n/m]

We must check that, if n /∈ {ã} and ∀i : ai /∈ n
or m /∈ fn(Q) then u[n/m]?(ã)Q[n/m] ok. By i.h. we have that
(Q)[n/m] ok. Thus u[n/m]?(ã)Q[n/m] ok iff it satisfies the syntactic
restriction (2.5.1c), that is: ∀t∀a ∈ {ã} : a@t /∈ fn((Q)[n/m])∩(C∪C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)

48

= (Proposition A.3.1, A.3.2) fn(Q)[n/m] ∩ (C ∪ C@S) since [n/m] is ei-
ther a name replacement or a name instantiation
def
={m1[n/m] | m1 ∈ fn(Q)}

We know that P ok, a@t /∈ fn(Q),∀t. It now suffices to note that:
∀t∀ai ∈ {ã} : (n 6= ai@t or (m /∈ fn(Q)) and (ai@t /∈ fn(Q) ⇒ ai@t /∈
{m1[n/m] | m1 ∈ fn(Q)}

∗ If m /∈ {ã}, and for some i : ai ∈ n and m ∈ fn(Q) where b is fresh

(u?(ã)Q)[n/m]
def
= u[n/m]?(a1 . . . b . . . an)Q[b/ai][n/m]

We must verify that, if n /∈ {ã} and ∀i : ai /∈ n or m /∈ fn(Q) then
u[n/m]?(ã)Q[b/ai][n/m] ok. By i.h. we have (Q)[b/ai][n/m] ok.
Thus u[n/m]?(ã)Q[b/ai][n/m] ok iff it satisfies the syntactic restric-
tion (2.5.1c), that is: ∀t∀a ∈ {ã} : a@t /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
= (Proposition A.3.1, A.3.2) fn(Q)[b/ai][n/m]∩(C∪C@S) since [n/m] is
either a name replacement or a name instantiation and [b/ai] is a name
replacement
def
={m1[b/ai] | m1 ∈ fn(Q)}[n/m]
def
={m1[n/m] | m1 ∈ {m1[b/ai] | m1 ∈ fn(Q)}}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that: ∀t∀ai ∈ {ã} : (n 6=
ai@t or (m /∈ fn(Q)) and ai@t /∈ fn(Q) ⇒ ai@t /∈ {m1[b/ai][n/m] | m1 ∈
fn(Q)}

– u?(ã)Q ok ⇒ (u?(ã)Q)[n1/m1] . . . [nf/mf] ok, since

By i.b.2 (u?(ã)Q)[n1/m1] ok. Since, by definition (u?(ã)Q)[n1/m1]
is of the form u′?(ã′)Q′ then, by i.h.2 (u?(ã)Q)[n1/m1][n2/m2] . . . [nf/mf] ok.

2. Networks

• 0, M1 |M2, (ν t) M , (ν a@t) M

This is similar to the case for the processes.

• s[P]

49

– s[P] ok ⇒ (s[P])[n/m] ok, since

∗ If m = a@s,

(s[P])[b@s/a@s]
def
= s[P [b/a][b@s/a@s]]

By i.h.1 we have (P)[b/a][n/m] ok. Thus, s[P [b/a][n/m]] ok.

∗ If m = s,

(s[P])[n/s]
def
= n[P [n/m]]

By i.h.1 we have (P)[n/m] ok. Thus n[P [n/m]] ok.

∗ If s /∈ m,

(s[P])[n/m]
def
= s[P [n/m]], if s /∈ m

By i.h.1 we have (P)[n/m] ok. Thus s[P [n/m]] ok.

– s[P] ok ⇒ s[P] ok, since

By i.b.2 (s[P])[n1/m1] ok. Since, by definition (s[P])[n1/m1] is of the form
s′[P ′] then, by i.h.2 (s[P])[n1/m1][n2/m2] . . . [nf/mf] ok.

Proof of Proposition A.4.3. This proof is analogous to the previous one. It differs
from that of Proposition A.4.1 only in the invocation of Proposition A.3.1 (in this case
Proposition A.3.3). Note that by definition of X ok, the i.h. may be applied to all the
subterms of X.

1. Processes

• (ν a) Q

– (ν a) Q ok ⇒ ((ν a) Q)[n/m] ok, for

∗ If m = a,

((ν a) Q)[n/a]
def
= (ν a) Q

50

∗ If m 6= a, and a /∈ n or m /∈ fn(Q)

((ν a) Q)[n/m]
def
= (ν a) Q[n/m]

We must verify that if m 6= a, and a /∈ n or m /∈ fn(Q) then (ν a) Q[n/m]
ok. By i.h. we have that (Q)[n/m] ok. Therefore (ν a) (Q)[n/m] ok iff
it satisfies the syntactic restriction (2.5.1b), i.e.: ∀t : a@t /∈ fn((Q)[n/m])

fn((Q)[n/m]) ⊆ (Proposition A.3.3) fn(Q)[n/m], for m is translatable
by n,
def
={m1[n/m] | m1 ∈ fn(Q)} ∪ sites({m1[n/m] | m1 ∈ fn(Q)})

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
∀t : (n 6= a@t ‖m /∈ fn(Q)) and a@t /∈ fn(Q)
⇒ a@t /∈ {m1[n/m] | m1 ∈ fn(Q)}
⇒ a@t /∈ fn((Q)[n/m])

∗ If m 6= a, and a ∈ n and m ∈ fn(Q) where b is fresh.

((ν a) Q)[n/m]
def
= (ν b) Q[b/a][n/m]

We must verify that if m 6= a, and a /∈ n or m /∈ fn(Q) then (ν a) Q[n/m]
ok. By i.h.1 we have that (Q)[b/a][n/m] ok. Therefore (ν a) (Q)[b/a][n/m]
ok iff it satisfies the syntactic restriction (2.5.1b), i.e.:
∀t : a@t /∈ fn((Q)[b/a][n/m]) ∩ (C ∪ C@S)

fn((Q)[b/a][n/m])∩ (C ∪ C@S) ⊆ (Proposition A.3.3) fn(Q)[b/a][n/m]∩
∩(C ∪ C@S), because [n/m] is a name translation, and [b/a] is a name
replacement.
def
={m1[b/a] | m1 ∈ fn(Q)}[n/m] ∩ (C ∪ C@S)
def
={m1[n/m] | m1 ∈ {m1[b/a] | m1 ∈ fn(Q)}}
= {m1[b/a][n/m] | m1 ∈ fn(Q)}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
∀t : (n 6= a@t ‖m /∈ fn(Q)) and a@t /∈ fn(Q)
⇒ a@t /∈ {m1[b/a][n/m] | m1 ∈ fn(Q)}
⇒ a@t /∈ fn((Q)[b/a][n/m])

– (ν a) Q ok ⇒ ((ν a) Q)[n1/m1] . . . [nf/mf] ok, for

By i.b.2, ((ν a) Q)[n1/m1] ok. Since by definition ((ν a) Q)[n1/m1] is of the
same form as (ν a′) Q′, then by i.h.2 ((ν a) Q)[n1/m1][n2/m2] . . . [nf/mf] ok.

51

• (ν a@t) Q

– (ν a@t) Q ok ⇒ ((ν a@t) Q)[n/m] ok, for

∗ If m = a@t,

((ν a@t) Q)[n/a@t]
def
= (ν a@t) Q

∗ If m = t,

((ν a@t) Q)[n/t]
def
= (ν a@n) Q[n/t]

We must verify that if n ∈ S then (ν a@n) Q[n/m] ok. By i.h.1 we have
that (Q)[n/m] ok. Therefore (ν a@n) (Q)[n/m] ok iff it satisfies the
syntactic restriction (2.5.1a), i.e.: a /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m])∩(C∪C@S) ⊆ (Proposition A.3.3) fn(Q)[n/m]∩(C∪C@S),
because m is translatable by n
def
={m1[n/m] | m1 ∈ fn(Q)}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
n ∈ S and a /∈ fn(Q)
⇒ a /∈ {m1[n/m] | m1 ∈ fn(Q)}
⇒ a /∈ fn((Q)[n/m])

∗ If m 6= a@t and m 6= t, and n /∈ {a, a@t} or m /∈ fn(Q)

((ν a@t) Q)[n/m]
def
= (ν a@t) Q[n/m]

We must verify that if m 6= a@t and m 6= t, and a /∈ n or m /∈ fn(Q)
then (ν a@t) Q[n/m] ok. By i.h. we have that (Q)[n/m] ok. Therefore
(ν a@t) (Q)[n/m] ok iff it satisfies the syntactic restriction (2.5.1a), i.e.:
a /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
⊆ (Proposition A.3.3) fn(Q)[n/m] ∩ (C ∪ C@S), because m is translat-
able by n
def
={m1[n/m] | m1 ∈ fn(Q)}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:

52

(n 6= a or m /∈ fn(Q)) and a /∈ fn(Q)
⇒ a /∈ {m1[n/m] | m1 ∈ fn(Q)} ⇒ a /∈ fn((Q)[n/m])

∗ If m 6= a@t and m 6= t, and n and m ∈ fn(M) where b is fresh.

((ν a@t) M)[n/m]
def
= (ν b@t) M [b@t/a@t][n/m]

We must verify that if m 6= a@t and m 6= t, and a /∈ n or m /∈ fn(Q) then
(ν a@t) Q[b@t/a@t][n/m] ok. By i.h. we have that (Q)[b@t/a@t][n/m]
ok. Therefore (ν a@t) (Q)[b@t/a@t][n/m] ok iff it satisfies the syntactic
restriction (2.5.1a), i.e.: a /∈ fn((Q)[b@t/a@t][n/m]) ∩ (C ∪ C@S)

fn((Q)[b@t/a@t][n/m]) ∩ (C ∪ C@S)
⊆ (Proposition A.3.3) fn(Q)[b@t/a@t][n/m]∩ (C ∪ C@S), because [n/m]
is a name translation, and [b@t/a@t] is a name replacement
def
={m1[b@t/a@t] | m1 ∈ fn(Q)}[n/m] ∩ (C ∪ C@S)
def
={m1[n/m] | m1 ∈ {m1[b@t/a@t] | m1 ∈ fn(Q)}}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
(n 6= a or m /∈ fn(Q)) and a /∈ fn(Q)
⇒ a /∈ {m1[b@t/a@t][n/m] | m1 ∈ fn(Q)}
⇒ a /∈ fn((Q)[b@t/a@t][n/m])

– (ν a@t) Q ok ⇒ ((ν a@t) Q)[n1/m1] . . . [nf/mf] ok, for

By i.b.2 ((ν a@t) Q)[n1/m1] ok. Since, by definition, ((ν a@t) Q)[n1/m1]
is of the same form as (ν a′@t) Q′, then by i.h.2 ((ν a@t) Q)[n1/m1][n2/m2] . . .
. . . [nf/mf] ok.

• u?(ã)Q

– u?(ã)Q ok ⇒ (u?(ã)Q)[n/m] ok, for

∗ If ai ∈ {ã},

(u?(ã)Q)[n/ai]
def
= u[n/ai]?(ã)Q

∗ If m /∈ {ã}, and ∀i : ai /∈ n or m /∈ fn(Q)

(u?(ã)Q)[n/m]
def
= u[n/m]?(ã)Q[n/m]

We must verify that if n /∈ {ã} and ∀i : ai /∈ n or m /∈ fn(Q) then
u[n/m]?(ã)Q[n/m] ok. By i.h. we have that (Q)[n/m] ok. Therefore

53

u[n/m]?(ã)Q[n/m] ok iff it satisfies the syntactic restriction (2.5.1c),
i.e.: ∀t∀a ∈ {ã} : a@t /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
⊆ (Proposition A.3.3) fn(Q)[n/m] ∩ (C ∪ C@S), because m is translat-
able by n
def
={m1[n/m] | m1 ∈ fn(Q)}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
∀t∀ai ∈ {ã} : (n 6= ai@t ‖m /∈ fn(Q)) and ai@t /∈ fn(Q)
⇒ ai@t /∈ {m1[n/m] | m1 ∈ fn(Q)}
⇒ ai@t /∈ fn((Q)[n/m])

∗ If m /∈ {ã}, and ∃i : ai ∈ n and m ∈ fn(Q) where b is fresh.

(u?(ã)Q)[n/m]
def
= u[n/m]?(a1 . . . b . . . an)Q[b/ai][n/m]

We must verify that if n /∈ {ã} and ∀i : ai /∈ n or m /∈ fn(Q) then
u[n/m]?(ã)Q[b/ai][n/m] ok. By i.h. we have that (Q)[b/ai][n/m] ok.
Therefore u[n/m]?(ã)Q[b/ai][n/m] ok iff it satisfies the syntactic re-
striction (2.5.1c), i.e.: ∀t∀a ∈ {ã} : a@t /∈ fn((Q)[n/m]) ∩ (C ∪ C@S)

fn((Q)[n/m]) ∩ (C ∪ C@S)
⊆ (Proposition A.3.3) fn(Q)[b/ai][n/m]∩(C∪C@S), because m is trans-
latable by n and ai is replaceable by b
def
={m1[b/ai] | m1 ∈ fn(Q)}[n/m]
def
={m1[n/m] | m1 ∈ {m1[b/ai] | m1 ∈ fn(Q)}}

Since P ok, a@t /∈ fn(Q),∀t. It suffices to note that:
∀t∀ai ∈ {ã} : (n 6= ai@t ‖m /∈ fn(Q)) and ai@t /∈ fn(Q)
⇒ ai@t /∈ {m1[b/ai][n/m] | m1 ∈ fn(Q)}
⇒ ai@t /∈ fn((Q)[n/m])

– u?(ã)Q ok ⇒ (u?(ã)Q)[n1/m1] . . . [nf/mf] ok, for

By i.b.2 (u?(ã)Q)[n1/m1] ok. Since by definition (u?(ã)Q)[n1/m1] is of the
same form as u′?(ã′)Q′, then by i.h.2 (u?(ã)Q)[n1/m1][n2/m2] . . . [nf/mf]
ok.

2. Networks

• (ν a@t) M

54

Analogous to the respective Process case.

• s[P]

– s[P] ok ⇒ (s[P])[n/m] ok, for

∗ If m = a@s,

(s[P])[b@s/a@s]
def
= s[P [b/a][b@s/a@s]]

By i.h.1 we have that (P)[b/a][n/m] ok. Therefore s[P [b/a][n/m]] ok.

∗ If m = s,

(s[P])[n/s]
def
= n[P [n/m]]

By i.h.1 we have that (P)[n/m] ok. Therefore n[P [n/m]] ok.

∗ If s /∈ m,

(s[P])[n/m]
def
= s[P [n/m]]

By i.h.1 we have that (P)[n/m] ok. Therefore s[P [n/m]] ok.

– s[P] ok ⇒ s[P] ok, for

By i.b.2 (s[P])[n1/m1] ok. Since by definition (s[P])[n1/m1] is of the same
form as s′[P ′], then by i.h.2 (s[P])[n1/m1][n2/m2] . . . [nf/mf] ok.

Proposition A.5 (Alpha congruence preserves the free names and the syntactic
restrictions). Let X and Y be both either networks or processes.

1. If X ok and X ≡α Y , then fn(X) = fn(Y).

2. If X ok and X ≡α Y , then Y ok.

Proof of Proposition A.5.1. This proof uses the name replacement version of Proposi-
tion A.3.1 for a verification on each case of c.o.b.n.Note that all the substitutions involved
in the definition of c.o.b.n. are name replacements.

55

1. Processes

If P ≡α Q, then by definition Q is obtained from P by a sequence of c.o.b.n.It is
thus enough to prove that if Q is obtained from P by a c.o.b.n., then fn(P) = fn(Q).
Suppose that P1 and Q1 are the sub-terms of P and Q, respectively, that are altered
by the c.o.b.n.P1 and Q1 share the same context and therefore, if fn(P1) = fn(Q1),
then fn(P) = fn(Q). P1 and Q1 may have the following forms:

• P1 = (ν b) R and Q1 = (ν c) R[c/b] with b(and c) ∈ C) and c, c@ /∈ fn(R).

– fn((ν b) R)
def
= fn(R) \ {b}

– fn((ν c) R[c/b])
def
= fn(R[c/b]) \ {c}
= (Proposition A.3.1) (fn(R)[c/b]) \ {c} (because P ok ⇒ R ok, [c/b] is a
name replacement
def
=(Lemma A.2.3) {m1[c/b] | m1 ∈ fn(R)} \ {c}

Since b ∈ C,

def
=

{
(fn(R) \ {b} ∪ {c}) \ {c} if b ∈ fn(R)
fn(R) \ {c} otherwise

By hypothesis, c /∈ fn(R), and therefore

def
=

{
fn(R) \ {b} if b ∈ fn(R)
fn(R) otherwise

= fn(R) \ {b}

• P1 = (ν r1) R and Q1 = (ν t1) R[t1/r1] with r1, t1 ∈ S and t1 /∈ fn(R).

– fn((ν r1) R)
def
= fn(R) \ { @r1, r1}

– fn((ν t1) R[t1/r1])
def
= fn(R[t1/r1]) \ { @t1, t1}
= (Proposition A.3.1) (fn(R)[t1/r1]) \ { @t1, t1} (since P ok ⇒ R ok, [t1/r1]
is a name replacement)
def
=(Lemma A.2.3) {m1[t1/r1] | m1 ∈ fn(R)} \ { @t1, t1}

Since r1 ∈ S,

56

= {m1 | m1 ∈ fn(R) and m1 ∈ C@S} \ { @t1, t1}∪
∪{m1[t1/r1] | m1 ∈ fn(R) and m1 = a@r1} \ { @t1, t1}∪
∪{m1 | m1 ∈ fn(R) and m1 = a@t, t 6= r1} \ { @t1, t1}∪
∪{m1[t1/r1] | m1 ∈ fn(R) and m1 = r1} \ { @t1, t1}∪
∪{m1 | m1 ∈ fn(R) and m1 = t, t 6= r1} \ { @t1, t1}

Since r1 ∈ S,

= {m1 | m1 ∈ fn(R) and m1 ∈ C}∪
∪{a@t1 | m1 ∈ fn(R) and m1 = a@r1} \ { @t1, t1}∪
∪{m1 | m1 ∈ fn(R) and m1 = a@t, t 6= r1}∪
∪{t1 | m1 ∈ fn(R) and m1 = r1} \ { @t1, t1}∪
∪{m1 | m1 ∈ fn(R) and m1 = t, t 6= r1}

Since r1 ∈ S and r1 /∈ fn(R) and using Lemma A.2.3

= {m1 | m1 ∈ fn(R) and m1 ∈ C@S} \ { @r1, r1}∪
∪{m1 | m1 ∈ fn(R) and m1 = a@r1} \ { @r1, r1}∪
∪{m1 | m1 ∈ fn(R) and m1 = a@t, t 6= r1} \ { @r1, r1}∪
∪{t1 | m1 ∈ fn(R) and m1 = r1} \ { @r1, r1}∪
∪{m1 | m1 ∈ fn(R) and m1 = t, t 6= r1} \ { @r1, r1}∪
= fn(R) \ { @r1, r1}

• P1 = (ν b@r) R and Q1 = (ν c@r) R[c@r/b@r] and c, c@r /∈ fn(R).

– fn((ν b@r) R)
def
= fn(R) \ {b@r} ∪ {r}

– fn((ν c@r) R[c@r/b@r])
def
= fn(R[c@r/b@r]) \ {c@r} ∪ {r}
= (Proposition A.3.1) (fn(R)[c@r/b@r])\{c@r}∪{r} (because P ok ⇒ R ok,
and [c@r/b@r] is a name replacement)
def
=(Lemma A.2.3) {m1[c@r/b@r] | m1 ∈ fn(R)} \ {c@r} ∪ {r}

Since b@r ∈ C@S,

def
=

{
(fn(R) \ {b@r} ∪ {c@r}) \ {c@r} ∪ {r} if b@r ∈ fn(R)
fn(R) \ {c@r} ∪ {r} otherwise

By hypothesis, c@r /∈ fn(R), then

def
=

{
fn(R) \ {b@r} ∪ {r} if b@r ∈ fn(R)
fn(R) ∪ {r} otherwise

57

= fn(R) \ {b@r} ∪ {r}

• P1 = (u?(b1 . . . b . . . bn)R) and Q1 = (u?(b1 . . . c . . . bn)R[c/b])
c, c@ /∈ fn(R)
c /∈ {b1 . . . bn}.

– fn(u?(b1 . . . b . . . bn)R)
def
= {u} ∪ fn(R) \ {b1 . . . b . . . bn}

– fn(u?(b1 . . . c . . . bn)R{c/b})
def
={u} ∪ fn(R[c/b]) \ {b1 . . . c . . . bn}
= (Proposition A.3.1) {u}∪(fn(R)[c/b])\{b1 . . . c . . . bn} (since P ok ⇒ R ok,
and [c/b] is a name replacement)
def
={u} ∪ {m1[c/b] | m1 ∈ fn(R)} \ {b1 . . . c . . . bn}

Since b ∈ C, and P ok and {b1 . . . c . . . bn} pairwise distinct,

def
=

{
(fn(R) \ {b} ∪ {c}) \ {b1 . . . c . . . bn} if b ∈ fn(R)
fn(R) \ {b1 . . . c . . . bn} otherwise

by hypothesis, c /∈ fn(R), thus

def
=

{
fn(R) \ {b1 . . . b . . . bn} if b ∈ fn(R)
fn(R) \ {b1 . . . bn} otherwise

= fn(R) \ {b1 . . . b . . . bn}

2. Networks

If M ≡α N , then by definition N is obtained from M by a sequence of c.o.b.n.It is
enough to show that, if N is obtained from M by a c.o.b.n., then fn(M) = fn(N).
Assume that M1 and N1 are the sub-terms of M and N , respectively, that are altered
by the c.o.b.n.. M1 and N1 share the same context, thus fn(M1) = fn(N1), then
fn(M) = fn(N). M1 and N1 may have the following form:

• M1 = (ν g) R and N1 = (ν h) R[h/g], [h/g] is a name replacement and h /∈ fn(R).

The proof is similar to the second and third cases for processes.

Proof of Proposition A.5.2. Analogously to the previous one, this proof uses the name
replacement version of Proposition A.3.1 for a verification on each case of c.o.b.n.Furthermore,
it uses the name replacement version of Proposition A.4.2.

58

1. Processes

If P ≡α Q, then by definition Q is obtained from P by a sequence of c.o.b.n.It is then
enough to show that if Q is obtained from P by a c.o.b.n., and P ok, then Q ok.
Assume that P1 and Q1 are the sub-terms of P and Q, respectively, that are altered
by the c.o.b.n.P1 and Q1 share the same context and thus we have P1 ok ⇒ Q1 ok,
and P ok ⇒ Q ok. P1 and Q1 may have the following form:

• P1 = (ν b) R and Q1 = (ν c) R[c/b] with b(andc) ∈ C@S), and c,c@ /∈ fn(R).

By hypothesis P ok, then R ok. Using Proposition A.4.1, if R ok then R[c/b]
ok. It is enough to check that Q1 satisfies the restriction (2.5.1b), that is,
∀t : c@t /∈ fn(R[c/b]).

fn(R[c/b])
= (Proposition A.3.1) (fn(R)[c/b])
def
=(Lemma A.2.3) {m1[c/b] | m1 ∈ fn(R)}

Since b ∈ C,
def
=

{
fn(R) \ {b} ∪ {c} if b ∈ fn(R)
fn(R) otherwise

By hypothesis, ∀t : c@t /∈ fn(R), then ∀t : c@t /∈ fn(R) \ {b} ∪ {c}.

• P1 = (ν r) R and Q1 = (ν t) R{t/r} with r, t ∈ S and t /∈ fn(R).

By hypothesis P ok, then R ok. Using Proposition A.4.1, if R ok then R[t/r]
ok. There are no more conditions to satisfy.

• P1 = (ν b@r) R and Q1 = (ν c@r) R[c@r/b@r] and c, c@r /∈ fn(R).

By hypothesis P ok, then R ok. Using Proposition A.4.1, if R ok then
R[c@r/b@r] ok. It is enough to check that Q1 satisfies restriction (2.5.1a), that
is, that c /∈ fn(R[c/b]).

fn(R[c@r/b@r])
= (Proposition A.3.1) fn(R)[c@r/b@r]
def
={m1[c@r/b@r] | m1 ∈ fn(R)}

Since b@r ∈ C@S
def
=

{
fn(R) \ {b@r} ∪ {c@r} if b@r ∈ fn(R)
fn(R) otherwise

59

By hypothesis, c /∈ fn(R), then c /∈ fn(R) \ {b@r} ∪ {c@r}.

• P1 = (u?(b1 . . . b . . . bn)R) and Q1 = (u?(b1 . . . c . . . bn)R[c/b])
and c, c@ /∈ fn(R) and c /∈ {b1 . . . bn}.

By hypothesis P ok, then R ok. Using Proposition A.4.1, if R ok then R[c/b]
ok. It is enough to check that Q1 satisfies restrictions (2.5.1c), that is, that
c /∈ {b1 . . . bn} (true by hypothesis) and that ∀t : c@t /∈ fn(R[c/b]).

fn(R[c/b])
= (Proposition A.3.1)(fn(R)[c/b])
def
={m1[c/b] | m1 ∈ fn(R)}

Since b ∈ C
def
=

{
fn(R) \ {b} ∪ {c} if b ∈ fn(R)
fn(R) otherwise

By hypothesis, ∀t : c@t /∈ fn(R), since ∀t : c@t /∈ fn(R) \ {b} ∪ {c}.

2. Networks

If M ≡α N , then by definition N is obtained from M by a sequence of c.o.b.n.It
is enough to show that if N is obtained from M by a c.o.b.n., and M ok, then N
ok. Assume that M1 and N1 are the sub-terms of M and N , respectively, that are
altered by the c.o.b.n.M1 and N1 share the same context and thus M1 ok ⇒ N1 ok,
then M ok ⇒ N ok. M1 and N1 may have the following form:

• M1 = (ν r) L and N1 = (ν t) L[t/r] and t /∈ fn(L).

By hypothesis M ok, then L ok. Using Proposition A.4.1, if L ok then L[t/r]
ok. There are no more conditions to satisfy.

• M1 = (ν b@r) L and N1 = (ν c@r) L[c@r/b@r] and c, c@r /∈ fn(L).

By hypothesis M ok, then L ok. Using Proposition A.4.1, if L ok then
L[c@r/b@r] ok. there are no more conditions to satisfy.

Proposition A.6 (Structural congruence preserves the free names and the syn-
tactic restrictions). Let X and Y both be either networks or processes.

60

1. If X ok and X ≡ Y , then fn(X) = fn(Y).

2. If X ok and X ≡ Y , then Y ok.

Proof of Proposition A.6.1. This proof performs a verification on each rule in the
definition of structural congruence. In the process of proving this proposition, the side
conditions of the mentioned rules may be understood. Of course, the cases of the ALPHA
rules just follow from Proposition A.5.

1. Processes

[SP-ALPHA]
P ≡ Q if P ≡α Q

By Proposition A.5.1.

[SP-RESR1]

(ν g) (ν h) P ≡ (ν h) ((ν g) P), if g /∈ fn(h) and h /∈ fn(g)

• (if g = t and h = r)

The rule may always be applied t 6= r.
fn((ν t) ((ν r) P))
def
= fn((ν r) P) \ { @t, t}
def
= fn(P) \ { @r, r, @t, t}

fn((ν r) ((ν t) P))
def
= fn((ν t) P) \ { @r, r}
def
= fn(P) \ { @t, t, @r, r}

• (if g = t and h = a@r)

This rule may be applied in the first case when g /∈ fn(h), and in the inverse
case when h /∈ fn(g), i.e., when, in both cases t 6= r.

fn((ν t) (ν a@r) P)
def
= fn((ν a@r) P) \ { @t, t}
def
=(fn(P) ∪ {r}) \ {a@r, @t, t}

fn((ν a@r) (ν t) P)
def
= fn((ν t) P) \ {a@r} ∪ {r}

61

def
= fn(P) \ {a@r, @t, t} ∪ {r}

The sets are equal whenever r 6= t, which is true by hypothesis.

• (if g = a@s and h = a@r)

The rule may be applied as long as t 6= r.

fn((ν a@s) (ν a@r) P)
def
= fn((ν a@r) P) \ {a@s}
def
= fn(P) \ {a@r, a@s}

fn((ν a@r) (ν a@s) P)
def
= fn((ν a@s) P) \ {a@r}
def
= fn(P) \ {a@s, a@r}

[SP-RESR2]
(ν a) ((ν s) P) ≡ (ν s) ((ν a) P) if a@s /∈ fn(P)

The rule may always be applied in this case because of the syntactic restriction
(definition 2.5.1b) a@t /∈ fn(P), and in the inverse case whenever a@s /∈ fn(P).

fn((ν s) ((ν a) P))
def
= fn((ν a) P) \ { @s, s}
def
= fn(P) \ { @s, s, a}

fn((ν a) ((ν s) P))
def
= fn((ν s) P) \ {a}
def
= fn(P) \ {a, @s, s}

[SP-RESR3]
(ν a) ((ν u) P) ≡ (ν u) ((ν a) P) if u 6= a@

• (if u = b@s)

The rule may always be applied as long as b 6= a.

fn((ν a) ((ν b@s) P))
def
= fn((ν b@s) P) \ {a}
def
= fn(P) \ {b@s, a}

62

fn((ν b@s) ((ν a) P))
def
= fn((ν a) P) \ {b@s}
def
= fn(P) \ {a, b@s}

• (if u = b)

As long as the initial process is ok, the rule may always be applied.

fn((ν a) ((ν b) P))
def
= fn((ν b) P) \ {a}
def
= fn(P) \ {b, a}

fn((ν b) ((ν a) P))
def
= fn((ν a) P) \ {b}
def
= fn(P) \ {a, b}

[SP-SCOP1]
((ν a) P) |Q ≡ (ν a) (P |Q) if a, a@ /∈ fn(M)

The rule may be applied whenever a, a@ /∈ fn(Q).

fn(((ν a) P) |Q)
def
= fn((ν a) P) ∪ fn(Q)
def
= fn(P) \ {a} ∪ fn(Q)

fn((ν a) (P |Q))
def
= fn(P |Q) \ {a}
def
= fn(P) \ {a} ∪ fn(Q) since by hypothesis a /∈ fn(Q).

[SP-SCOP2]
((ν a@s) P) |Q ≡ (ν a@s) (P |Q) if a, a@s /∈ fn(Q)

The rule may be applied whenever a, a@s /∈ fn(Q).

fn(((ν a@s) P) |Q)
def
= fn((ν a@s) P) ∪ fn(Q)
def
= fn(P) \ {a@s} ∪ fn(Q)

fn((ν a) (P |Q))
def
= fn(P |Q) \ {a@s}

63

def
= fn(P) \ {a@s} ∪ fn(Q) since by hypothesis a@s /∈ fn(Q).

[SP-SCOP3]
((ν s) P) |Q ≡ (ν s) (P |Q) if s /∈ fn(Q)

The rule may be applied whenever t /∈ fn(Q).

fn(((ν s) P) |Q)
def
= fn((ν s) P) ∪ fn(Q)
def
= fn(P) \ { @s, s} ∪ fn(Q)

fn((ν s) (P |Q))
def
= fn(P |Q) \ { @s, s}
def
=(fn(P) ∪ fn(Q)) \ { @s, s}
= fn(P)\{ @s, s}∪ fn(Q) since by hypothesis s /∈ fn(Q) and by Lemma A.2.2 if
s /∈ fn(Q) then @s /∈ fn(Q).

2. Networks

By i.h., (ν n) ((ν m) N) ok, therefore N ok. The cases which remain to be verified are:

[SN-ALPHA]
N ≡ M if N ≡α M

By Proposition A.5.1.

[SN-MIGI]
s[a@s?(b̃)P] ≡ s[a?(b̃)P]

fn(s[a@s?(b̃)P])
def
= fn(a@s?(b̃)P)@s
def
={a@r | a@r ∈ fn(a@s?(b̃)P)} ∪ {a@s | a ∈ fn(a@s?(b̃)P)}
def
={a@r | a@r ∈ ({a@s} ∪ fn(P) \ {b̃})} ∪ {a@s | a ∈ ({a@s} ∪ fn(P) \ {b̃})}
def
={a@s} ∪ {a@r | a@r ∈ fn(P) \ {b̃}} ∪ {a@s | a ∈ fn(P) \ {b̃}}
= {a@s} ∪ fn(P)@s

fn(s[a?(b̃)P])
def
= fn(a?(b̃)P)@s
def
={a@r | a@r ∈ fn(a?(b̃)P)} ∪ {a@s | a ∈ fn(a?(b̃)P)}

64

def
={a@r | a@r ∈ ({a} ∪ fn(P) \ {b̃})} ∪ {a@s | a ∈ ({a} ∪ fn(P) \ {b̃})}
def
={a@r | a@r ∈ fn(P) \ {b̃}} ∪ {a@s} ∪ {a@s | a ∈ fn(P) \ {b̃}}
= {a@s} ∪ fn(P)@s

[SN-MIGO]
s[a@s!〈ñ〉] ≡ s[a!〈ñ〉]

fn(s[a@s!〈ñ〉])
def
= fn(a@s!〈ñ〉)@s
def
={a@r | a@r ∈ fn(a@s!〈ñ〉)} ∪ {a@s | a ∈ fn(a@s!〈ñ〉)}
def
={a@r | a@r ∈ ({a@s} ∪ {ñ})} ∪ {a@s | a ∈ ({a@s} ∪ {ñ})}
def
={a@s} ∪ {a@r | a@r ∈ {ñ}} ∪ {a@s | a ∈ {ñ}}
= {a@s} ∪ {ñ}@s

fn(s[a?(b̃)P])
def
= fn(a!〈ñ〉)@s
def
={a@r | a@r ∈ fn(a!〈ñ〉)} ∪ {a@s | a ∈ fn(a!〈ñ〉)}
def
={a@r | a@r ∈ ({a} ∪ {ñ})} ∪ {a@s | a ∈ ({a} ∪ {ñ})}
def
={a@r | a@r ∈ {ñ}} ∪ {a@s} ∪ {a@s | a ∈ {ñ}}
= {a@s} ∪ {ñ}@s

[SN-RESO]

(ν g) ((ν h) N) ≡ (ν h) ((ν g) N) if g /∈ fn(h) and h /∈ fn(g)

This case is analogous to the Processes rule [SP-RESR1].

[SN-SCOS1]
(ν a@s) s[P] ≡ s[(ν a) P] if a@ /∈ fn(P)

The rule may be applied whenever a@ /∈ fn(P).

fn((ν a@s) s[P])
def
= fn(s[P]) \ {a@s}
def
=(fn(P)@s) \ {a@s}
def
={b@r | b@r ∈ fn(P)} \ {a@s} ∪ {b@s | b ∈ fn(P)} \ {a@s}
= {b@r | b@r ∈ fn(P) \ {a@s}} ∪ {b@s | b ∈ fn(P)} \ {a@s}
= (hyp){b@r | b@r ∈ fn(P)} ∪ {b@s | b ∈ fn(P)} \ {a@s}

65

fn(s[(ν a) P])
def
= fn((ν a) P)@s
def
=(fn(P) \ {a})@s
def
={b@r | b@r ∈ fn(P) \ {a}} ∪ {b@s | b ∈ fn(P) \ {a}}
def
={b@r | b@r ∈ fn(P)} ∪ {b@s | b ∈ fn(P) \ {a}}
def
={b@r | b@r ∈ fn(P)} ∪ {b@s | b ∈ fn(P)} \ {a@s}

[SN-SCOS2]
(ν a@t) s[P] ≡ s[(ν a@t) P] if a /∈ fn(P)

The rule may be applied whenever a /∈ fn(P).

fn((ν a@t) s[P])
def
= fn(s[P]) \ {a@t}
def
=(fn(P)@s) \ {a@t}
def
={b@r | b@r ∈ fn(P)} \ {a@t} ∪ {b@s | b ∈ fn(P)} \ {a@t}
= (hyp) {b@r | b@r ∈ fn(P) \ {a@t}} ∪ {b@s | b ∈ fn(P)}, for a /∈ fn(P)

fn(s[(ν a@t) P])
def
= fn((ν a@t) P)@s
def
=(fn(P) \ {a@t})@s
def
={b@r | b@r ∈ fn(P) \ {a@t}} ∪ {b@s | b ∈ fn(P) \ {a@t}}
def
={b@r | b@r ∈ fn(P) \ {a@t}} ∪ {b@s | b ∈ fn(P)}

[SN-SCOS3]
s[(ν t) P] ≡ (ν t) s[P] if s 6= t

The rule may be applied whenever s 6= t.

fn(s[(ν t) P])
def
= fn((ν t) P)@s
def
=(fn(P) \ { @t, t})@s
def
={b@r | b@r ∈ fn(P) \ { @t, t}} ∪ {b@s | b ∈ fn(P) \ { @t, t}}
def
={b@r | b@r ∈ fn(P) \ { @t, t}} ∪ {b@s | b ∈ fn(P)}

fn((ν t) s[P])
def
= fn(s[P]) \ { @t, t}
def
=(fn(P)@s) \ { @t, t}

66

def
={b@r | b@r ∈ fn(P)} \ { @t, t} ∪ {b@s | b ∈ fn(P)} \ { @t, t}
= (hyp) {b@r | b@r ∈ fn(P) \ { @t, t}} ∪ {b@s | b ∈ fn(P)}

[SN-SCOP]
((ν g) N) ‖M ≡ (ν g) (N ‖M) if g /∈ fn(M)

• (if g = s)

The rule may be applied whenever s /∈ fn(N).

fn(((ν s) N ‖M))
def
= fn((ν s) N) ∪ fn(M)
def
= fn(N) \ { @s, s} ∪ fn(M)

fn((ν s) (N ‖M))
def
= fn(N ‖M) \ { @s, s}
def
=(fn(N) ∪ fn(M)) \ { @s, s}
= fn(N) \ { @s, s} ∪ fn(M), because by hypothesis s /∈ fn(M)
and by Lemma A.2.2 if s /∈ fn(M) then @s /∈ fn(M).

• (if n = a@s)

The rule may be applied whenever a@s /∈ fn(M).

fn(((ν a@s) N) ‖M)
def
= fn((ν a@s) N) ∪ fn(M)
def
= fn(N) \ {a@s} ∪ fn(M)

fn((ν a) (N ‖M))
def
= fn(N ‖M) \ {a@s}
def
= fn(N) \ {a@s} ∪ fn(M) because by hypothesis a@s /∈ fn(M).

Proof of Proposition A.6.2. As in the previous proof, this proof also performs a veri-
fication on each rule of structural congruence. In the process of proving this proposition,
the side conditions of the mentioned rules may be understood. Of course, the cases of the
ALPHA rules just follow from Proposition A.5.

1. Processes

67

[SP-ALPHA]
P ≡ Q if P ≡α Q

By Proposition A.5.2.

[SP-RESR1]

(ν g) ((ν h) P) ≡ (ν h) ((ν g) P), if g /∈ fn(h) and h /∈ fn(g)

By i.h., (ν g) ((ν h) P) ok, therefore P ok.

• (if g = t and h = r)

There are no syntactic restrictions to satisfy. The rule may be applied
whenever t 6= r.

• (if g = t and h = a@r)

This rule may be applied in the first case whenever g /∈ fn(h), and in the
inverse case whenever h /∈ fn(g), i.e. when in both cases t 6= r.

((ν t) (ν a@r) P ok)
(def) ⇔ P ok and (ν a@r) P ok
(def) ⇔ P ok and a /∈ fn(P)
⇔ P ok and a /∈ fn(P) \ { @t}
(def) ⇔ P ok and a /∈ fn((ν t) P)
(def) ⇔ ((ν a@r) (ν t) P) ok

• (if g = a@s and h = a@r)

The rule may be applied as long as t 6= r.

((ν a@s) (ν a@r) P ok)
(def) ⇔ P ok and (ν a@r) P ok and a /∈ fn((ν a@r) P)
(def) ⇔ P ok and a /∈ fn(P) and a /∈ (fn(P) \ {a@r} ∪ {r})
⇔ P ok and a /∈ fn(P)
(def) ⇔ P ok and (ν a@s) P ok and a /∈ fn(P)
⇔ P ok and (ν a@s) P ok and a /∈ (fn(P) \ {a@s} ∪ {s})
(def) ⇔ P ok and (ν a@s) P ok and a /∈ fn((ν a@s) P)
(def) ⇔ ((ν a@r) (ν a@s) P) ok

[SP-RESR2]
(ν a) ((ν s) P) ≡ (ν s) ((ν a) P) if a@s /∈ fn(P)

68

This rule may always be applied in this case, because by syntactic rule (defini-
tion 2.5.1b), a@t /∈ fn(P), and in the inverse case it may be applied whenever
a@s /∈ fn(P).

((ν s) (ν a) P ok)
(def) ⇒ P ok and (ν a) P ok
(def) ⇒ P ok and a@ /∈ fn(P)
(2.5.1b) ⇒ P ok and a@ /∈ fn(P) \ { @s}
(def) ⇒ P ok and a@ /∈ fn((ν s) P)
(def) ⇒ ((ν a) (ν s) P) ok

Suppose that a@s /∈ fn(P),

((ν a) (ν s) P) ok
(def) ⇒ P ok and a@ /∈ fn((ν s) P)
(def) ⇒ P ok and a@ /∈ fn(P) \ { @s}
(hyp) ⇒ P ok and a@ /∈ fn(P)
(def) ⇒ P ok and (ν a) P ok
(def) ⇒ ((ν s) (ν a) P ok)

[SP-RESR3]
(ν a) ((ν u) P) ≡ (ν u) ((ν a) P) if u 6= a@

• (if u = b@s)

The rule may be applied only if b 6= a.

((ν a) (ν b@s) P) ok
(def) ⇔ P ok and a@ /∈ fn((ν b@s) P) and (ν b@s) P ok
(def) ⇔ P ok and a@ /∈ fn(P) \ {b@s} and b /∈ fn(P)
(hyp) ⇔ P ok and a@ /∈ fn(P) and b /∈ fn(P) \ {a}
(def) ⇔ P ok and (ν a) P ok and b /∈ fn((ν a) P)
(def) ⇔ P ok and (ν a) P ok and (ν b@s) (ν a) P ok
(def) ⇔ ((ν b@s) (ν a) P ok)

• (if u = b)

In this case the rule may always be applied.

((ν a) (ν b) P) ok
(def) ⇔ P ok and a@ /∈ fn((ν b) P) and (ν b) P ok
(def) ⇔ P ok and a@ /∈ fn(P) \ {b} and b@ /∈ fn(P)

69

⇔ P ok and a@ /∈ fn(P) and b@ /∈ fn(P) \ {a}
(def) ⇔ P ok and (ν a) P ok and b@ /∈ fn((ν a) P)
(def) ⇔ P ok and (ν a) P ok and (ν b) (ν a) P ok
(def) ⇔ ((ν b) (ν a) P ok)

[SP-SCOP1]
((ν a) P) |Q ≡ (ν a) (P |Q) if a, a@ /∈ fn(Q)

The rule may be applied as long as a, a@ /∈ fn(Q).

Suppose that a@t /∈ fn(Q),∀t,

((ν a) P |Q) ok
(def) ⇒ (ν a) P ok and Q ok and P ok
(def) ⇒ a@ /∈ fn(P) and Q ok and P ok
(hyp) ⇒ a@ /∈ fn(P |Q) and Q ok and P ok
(def) ⇒ ((ν a) P |Q) ok

((ν a) P |Q) ok
(def) ⇒ a@ /∈ fn(P |Q) and Q ok and P ok
⇒ a@ /∈ fn(P) and Q ok and P ok
(def) ⇒ (ν a) P ok and Q ok and P ok
(def) ⇒ (ν a) P |Q ok

[SP-SCOP2]
((ν a@s) P) |Q ≡ (ν a@s) (P |Q) if a, a@s /∈ fn(Q)

The rule may be applied as long as a, a@s /∈ fn(Q).

Suppose that a /∈ fn(Q),

((ν a@s) P) |Q ok
(def) ⇒ (ν a@s) P ok and Q ok and P ok
(def) ⇒ a /∈ fn(P) and Q ok and P ok
(hyp) ⇒ a /∈ fn(P |Q) and Q ok and P ok
(def) ⇒ (ν a@s) (P |Q) ok

(ν a@s) (P |Q) ok
(def) ⇒ a /∈ fn(P |Q) and Q ok and P ok
⇒ a /∈ fn(P) and Q ok and P ok
(def) ⇒ (ν a@s) P ok and Q ok and P ok
(def) ⇒ (ν a@s) P |Q ok

70

[SP-SCOP3]
((ν s) P) |Q ≡ (ν s) (P |Q) if s /∈ fn(Q)

The rule may be applied as long as t /∈ fn(Q). There are no syntactic restrictions
to satisfy.

2. Networks

[SN-ALPHA]
N ≡ M if N ≡α M

By Proposition A.5.2.

[SN-MIGI]
s[a@s?(b̃)P] ≡ s[a?(b̃)P]

There are no syntactic restrictions to satisfy.

[SN-MIGO]
s[a@s!〈ñ〉] ≡ s[a!〈ñ〉]

There are no syntactic restrictions to satisfy.

[SN-RESO]

(ν g) ((ν h) N) ≡ (ν h) ((ν g) N) if g /∈ fn(h) and h /∈ fn(g)

By i.h., (ν n) ((ν m) N) ok, therefore N ok. There are no syntactic restrictions
to satisfy.

[SN-SCOS1]
(ν a@s) s[P] ≡ s[(ν a) P] if a@ /∈ fn(P)

The rule may be applied as long as a@ /∈ fn(P).

(s[(ν a) P] ok)
(def) ⇒ (ν a) P ok
(def) ⇒ P ok
(def) ⇒ s[P] ok
(def) ⇒ (ν a@s) s[P] ok

Suppose that ∀t : a@t /∈ fn(P),

71

((ν a@s) s[P]) ok
(def) ⇒ s[P] ok
(def) ⇒ P ok
(hyp) ⇒ (ν a) P ok
(def) ⇒ s[(ν a) P] ok

[SN-SCOS2]
(ν a@t) s[P] ≡ s[(ν a@t) P] if a /∈ fn(P)

The rule may be applied as long as a /∈ fn(P).

(s[(ν a@t) P] ok)
(def) ⇒ (ν a@t) P ok
(def) ⇒ P ok
(def) ⇒ s[P] ok
(def) ⇒ ((ν a@t) s[P]) ok

Suppose that ∀t : a@t /∈ fn(P)

((ν a@t) s[P]) ok
(def) ⇒ s[P] ok
(def) ⇒ P ok
(hyp) ⇒ (ν a@t) P ok
(def) ⇒ s[(ν a@t) P] ok

[SN-SCOS3]
s[(ν t) P] ≡ (ν t) s[P] if s 6= t

The rule may always be applied. There are no syntactic restrictions to satisfy.

[SN-SCOP]
((ν g) N) ‖M ≡ (ν g) (N ‖M) if g /∈ fn(Q)

The rule may be applied whenever g /∈ fn(P).

Proposition A.7 (Reduction preserves the free names and the syntactic restric-
tions). Let X and Y both be either networks or processes.

1. If X ok and X → Y , then fn(X) ⊇ fn(Y).

72

2. If X ok and X → Y , then Y ok.

Proof of Proposition A.7.1. The proof consists of an induction on the derivation of the
reduction step. The delicate cases are the axioms of reduction RP-COMM, RN-MIGO
and RN-MIGI. Proposition A.3.1 is used.

The induction steps concerning rules STR use Proposition A.6. In the cases of CONT
a second induction on the structure of the contexts may be used; the first result is useful
for proving this case of the second result.

1. Processes. By induction on the structure of the derivation of P → Q. This result is
true for the process axioms:

[RP-COMM]
P = (a?(b̃)Q | a!〈ṽ〉); P → Q{ṽ/b̃}

Note that communication is defined only if |{ṽ}| = |{b̃}|.

• If {ṽ} ∩ {b̃} = ∅

fn(P)
def
= {a} ∪ fn(Q) \ {b1 . . . bn} ∪ fn({v1 . . . vn})

fn(Q{v1/b1 . . . vn/bn})
def
= fn(Q[v1/b1] . . . [vn/bn])
= (Proposition A.3.2) fn(Q)[v1/b1] . . . [vn/bn]
= (Lemma A.2.4) {m1[v1/b1] . . . [vn/bn] | m1 ∈ fn(Q)}∪
∪ sites({m1[b1/b1] . . . [vn/bn] | m1 ∈ fn(Q)})

Since by hypothesis {v1, . . . , vn}∩{b1, . . . , bn} = ∅, and since {b1, . . . , bn} ⊂
C, the substitutions in the sequence [v1/b1] . . . [vn/bn] don’t interfere with
one another. Therefore,

⊆ fn(Q)\{b1, . . . , bn}∪{v1, . . . , vn}∪sites(fn(Q) \ {b1, . . . , bn} ∪ {v1, . . . , vn})

Since ∀v : v ∈ fn(v)

⊆ fn(Q)\{b1, . . . , bn}∪fn({v1, . . . , vn})∪sites(fn(Q))\{b1, . . . , bn}∪{v1, . . . , vn})
= (Lemma A.2.2) fn(Q) \ {b1, . . . , bn} ∪ fn({v1, . . . , vn})

• If {ṽ} ∩ {b̃} 6= ∅

fn(P)
def
= {a} ∪ fn(Q) \ {b1 . . . bn} ∪ fn({v1 . . . vn})

fn(Q{v1/b1 . . . vn/bn})
def
= fn(P [c1/b1] . . . [cn/bn][v1/c1] . . . [vn/cn]) where c1, . . . , cn are fresh

73

= (Proposition A.3.2) fn(Q[c1/b1] . . . [cn/bn])[v1/c1] . . . [vn/cn]
= (Proposition A.3.1) fn(Q)[c1/b1] . . . [cn/bn][v1/c1] . . . [vn/cn]
= (Lemma A.2.4) {m1[c1/b1] . . . [cn/bn][v1/c1] . . . [vn/cn] | m1 ∈ fn(Q)}∪
∪ sites({m1[c1/b1] . . . [cn/bn][v1/c1] . . . [vn/cn] | m1 ∈ fn(Q)})

Since by hypothesis c1, . . . , cn are fresh, {c1, . . . , cn}∩{v1, . . . , vn} = ∅, and
since {c1, . . . , cn} ⊂ C, the substitutions in the sequence [v1/c1] . . . [vn/cn]
don’t interfere with one another. Therefore,

⊆ {m1[c1/b1] . . . [cn/bn] | m1 ∈ fn(Q)} \ {c1, . . . , cn} ∪ {v1, . . . , vn}∪
∪ sites({m1[c1/b1] . . . [cn/bn] | m1 ∈ fn(Q)} \ {c1, . . . , cn} ∪ {v1, . . . , vn})

Since by hypothesis c1, . . . , cn are fresh, {c1, . . . , cn}∩{b1, . . . , bn} = ∅, and
because {c1, . . . , cn} ⊂ C, the substitutions in the sequence [c1/b1] . . . [cn/bn]
don’t interfere with one another. Therefore,

⊆ (fn(Q) \ {b1, . . . , bn} ∪ {c1, . . . , cn}) \ {c1, . . . , cn} ∪ {v1, . . . , vn}∪
∪ sites((fn(Q) \ {b1, . . . , bn} ∪ {c1, . . . , cn}) \ {c1, . . . , cn} ∪ {v1, . . . , vn})

once again, since {c1, . . . , cn} are fresh, {c1, . . . , cn}∩({b1, . . . , bn}∪fn(Q)) =
∅,

⊆ fn(Q)\{b1, . . . , bn}∪{v1, . . . , vn}∪sites(fn(Q) \ {b1, . . . , bn} ∪ {v1, . . . , vn})

Since ∀v : v ∈ fn(v)

⊆ fn(Q)\{b1, . . . , bn}∪fn({v1, . . . , vn})∪sites(fn(Q))\{b1, . . . , bn}∪{v1, . . . , vn})
= (Lemma A.2.2) fn(Q) \ {b1, . . . , bn} ∪ fn({v1, . . . , vn})

This result is also true for the process derivation rules [the induction hypothesis
(i.h.) is fn(P) ⊇ fn(Q)].

[RP-CONT]
P → Q

E[P] → E[Q]

Since P and Q are inserted in the same context E[], and since E[] performs the
same changes over the sets fn(P) and fn(Q) (i.e., adds or subtracts the same
sets of names), the ⊇ relation is preserved.

[RP-STR]
P ≡ P ′ P → Q Q′ ≡ Q

P ′ → Q′

74

By Proposition A.6.1, fn(P ′) = fn(P) ⊇ (i.h.) fn(Q) = fn(Q′).

2. Networks. By induction on the structure of the derivation of N → M . This result is
true for the network axioms:

[RN-MIGO]

s[a@r!〈w̃〉] → r[σ(a@r!〈w̃〉, s, r)] def
= r[a!〈σ(w̃, s, r)〉]

fn(s[a@r!〈w̃〉])
def
= fn(a@r!〈w̃〉)@s ∪ {s}
def
=(fn(a@r) ∪ fn(w̃))@s ∪ {s}
def
={a@r, r} ∪ fn(w̃)@s ∪ {s}

fn(r[σ(a@r!〈w̃〉, s, r)])
def
=σ(fn((a@r!〈w̃〉), s, r)@r ∪ {r}
def
= fn((a@r!〈w̃〉)[b̃@s/b̃][ã/ã@r])@r ∪ {r}, where (*)
⊆ (Proposition A.3.3) (fn(a@r!〈w̃〉)[b̃@s/b̃][ã/ã@r])@r ∪ {r}, where (*)

Inside the two sequences of substitutions [b̃@s/b̃] and [ã/ã@r] there are no in-
terferences, because in each pair of names which constitutes a substitution,
an element of C is being substituted by one from C@S. Besides this, the the
substitutions from the sequence [ã/ã@r] do not interfere with those in [b̃@s/b̃],
because they only replace variables belonging to C, while the result from the
second belong to C@S.

⊆ (fn(a@r!〈w̃〉) \ {b̃, ã@r} ∪ {b̃@s, ã})@r ∪ {r}
= (fn(a@r!〈w̃〉)@r) \ {b̃@r, ã@r} ∪ {b̃@s, ã@r} ∪ {r}

Now it suffices to note that:

• By definition of {b1, . . . , bm}, if b ∈ fn(a@r!〈w̃〉) then b ∈ {b1, . . . , bm}, there-
fore
(fn(a@r!〈w̃〉)@r) \ {b̃@r, ã@r}
= fn(a@r!〈w̃〉) \ {b̃, ã@r}, and fn(a@r!〈w̃〉) \ {b̃, ã@r}
= (fn(a@r!〈w̃〉) \ {b̃, ã@r})@s
⊆ fn(a@r!〈w̃〉)@s

• By definition {b1, . . . , bm} ⊆ fn(a@r!〈w̃〉), then {b1, . . . , bm}@s
= {b1@s, . . . , b@sm}
⊆ fn(a@r!〈w̃〉)@s.

75

• By definition {a1@r, . . . , an@r} ⊆ fn(a@r!〈w̃〉), then {a1@r, . . . , an@r}
⊆ fn(a@r!〈w̃〉)@s.

• {r}{a@r, r}

(*) [b̃@s/b̃][ã/ã@r]
abv
= [b1@s/b1] . . . [bm@s/bm][a1/a1@r] . . . [an/an@r] and ai@r, bj ∈

fn(P) where i = 1, . . . , nj = 1, . . . ,m

[RN-MIGI]
s[a@r?(b̃)Q] → r[σ(a@r?(b̃)Q, s, r)]

fn(s[a@r?(b̃)Q])
def
= fn(a@r?(b̃)Q)@s ∪ {s}
def
=(fn(a@r) ∪ fn(Q) \ {b̃})@s ∪ {s}
def
={a@r, r} ∪ (fn(Q) \ {b̃})@s ∪ {s}

fn(r[σ(a@r?(b̃)Q, s, r)])
def
= fn(σ(a@r?(b̃)Q, s, r))@r ∪ {r}
def
= fn((a@r?(b̃)Q)[b̃@s/b̃][ã/ã@r])@r ∪ {r}, with (∗)
⊆ (Proposition A.3.3) (fn(a@r?(b̃)Q)[b̃@s/b̃][ã/ã@r])@r ∪ {r}, with (∗)

Inside the two sequences of substitutions [b̃@s/b̃] and [ã/ã@r] there are no in-
terferences, because in each pair of names which constitutes a substitution,
an element of C is being substituted by one from C@S. Besides this, the the
substitutions from the sequence [ã/ã@r] do not interfere with those in [b̃@s/b̃],
because they only replace variables belonging to C, while the result from the
second belong to C@S.

⊆ (fn(a@r?(b̃)Q) \ {b̃, ã@r} ∪ {b̃@s, ã})@r ∪ {r}
= (fn(a@r?(b̃)Q)@r) \ {b̃@r, ã@r} ∪ {b̃@s, ã@r} ∪ {r}

Now it suffices to note that:

• By definition of {b1, . . . , bm}, if b ∈ fn(a@r?(b̃)Q) then b ∈ {b1, . . . , bm},
therefore
(fn(a@r?(b̃)Q)@r) \ {b̃@r, ã@r}
= fn(a@r?(b̃)Q) \ {b̃, ã@r}, and fn(a@r?(b̃)Q) \ {b̃, ã@r}
= (fn(a@r?(b̃)Q) \ {b̃, ã@r})@s
⊆ fn(a@r?(b̃)Q)@s

• By definition {b1, . . . , bm} ⊆ fn(a@r?(b̃)Q), therefore

76

{b1, . . . , bm}@s = {b1@s, . . . , bm@s} ⊆ fn(a@r?(b̃)Q)@s.

• By definition {a1@r, . . . , an@r} ⊆ fn(a@r?(b̃)Q), therefore

{a1@r, . . . , an@r} ⊆ fn(a@r?(b̃)Q)@s.

• By definition {r}{a@r, r}.

(*) [b̃@s/b̃][ã/ã@r]
abv
= [b1@s/b1] . . . [bm@s/bm][a1/a1@r] . . . [an/an@r] and ai@r, bj ∈

fn(P) where i = 1, . . . , n and j = 1, . . . ,m

[RN-CONT]
N → M

F [N] → F [M]

Since N and M are inserted in the same context F , and since F this context
defines the same changes over the sets fn(N) and fn(M) (i.e., it adds or subtracts
the same sets of names), the ⊇ relation is preserved.

[RN-STR]
N ≡ N ′ N → M M ′ ≡ M

N ′ → M ′

By Proposition A.6.1, fn(N ′) = fn(N) ⊇ (i.h.) fn(M) = fn(M ′).

[RN-SITE]
P → Q

s[P] → s[Q]

fn(s[P]) = fn(P)@s ⊇ (i.h.)fn(Q)@s = fn(s[Q]).

Proof of Proposition A.7.2. Analogously to the previous proof, this proof consists in
an induction on the derivation. Proposition A.4.2 is used. Proposition A.7.1 is useful for
proving the case of CONT.

1. Processes. By induction over the structure of the derivation of P → Q. This result
is true for the process axioms:

[RP-COMM]
P = (a?(b̃)Q | a!〈ṽ〉); P → Q{ṽ/b̃}

77

By hypothesis P ok, thus, Q ok. If {ṽ} ∩ {b̃} = ∅, then Q{ṽ/b̃} def
= Q[v1/b1] . . .

[vn/bn]. [v1/b1] . . . [vn/bn] is a finite sequence of name instantiations , therefore
by Proposition A.4.2 Qṽ/b̃ ok. If, on the contrary, {ṽ} ∩ {b̃} 6= ∅, we have

that Q{ṽ/b̃} def
= Q[w1/b1] . . . [wn/bn][v1/w1] . . . [vn/wn] where wi are fresh. Then,

since [w1/b1] . . .
[wn/bn] is a finite sequence of name replacements, by Proposition A.4.1 Q[w1/b1] . . .
[wn/bn] ok. In turn, since [v1/w1] . . . [vn/wn] is a finite sequence of name in-
stantiations, by Proposition A.4.2
Q[w1/b1] . . . [wn/bn][v1/w1] . . . [vn/wn] ok.

This is also true for the process derivation rules:

[RP-CONT]
P → Q

E[P] → E[Q]

In order to simplify the proof, without loss of the strength of the proof, we
only analyze the contexts E where E1 = [], for it is possible to derive the same
reductions using the [RP-CONT] rule repeatedly.

• E = []

By the induction hypothesis, E[P] = P verifies the syntactic restrictions,
therefore the same happens with E[Q].

• E = ([] | P1)

E[P] ok by hypothesis, and by definition we conclude that P ok and P1

ok. Therefore, P | P1 ok.

• E = ((ν) [])

E[P] ok by hypothesis, therefore P ok, and by definition if E[P] ok, we
have two cases:

– If n = a, ∀t : a@t /∈ fn(P). By Proposition A.7.1 fn(P) ⊇ fn(Q), there-
fore ∀t : a@t /∈ fn(Q). It follows that E[P] ok.

– If n = a@s, a /∈ fn(P). By Proposition A.7.1 fn(P) ⊇ fn(Q), therefore
a /∈ fn(Q). It follows that E[P] ok.

78

[RP-STR]
P ≡ P ′ P → Q Q′ ≡ Q

P ′ → Q′

Suppose that P ′ ok; then, by Proposition A.6.2 we also have that P ok, and
by i.h. Q ok, and finally by Proposition A.6.2 we have that Q′ ok.

2. Networks. This result is true for the network axioms:

[RN-MIGO]
N = s[a@r!〈ñ〉]; N → r[σ(a@r!〈ñ〉, s, r)]

Suppose that N ok, then by definition a@r!〈ñ〉 ok. By definition, σ(a@r!〈ñ〉, s, r)
def
=(a@r!〈ñ〉SEQ, where SEQ is a finite sequence of name translations. There-
fore, by Proposition A.4.3 , (a@r! < nn >)SEQ ok, thus N ok.

[RN-MIGI]
N = s[a@r?(b̃)Q]; N → r[σ(a@r?(b̃)Q, s, r)]

Suppose that N ok, then by definition a@r?(b̃)Q ok. By definition,

σ(a@r?(b̃)Q, s, r)
def
=(a@r?(b̃)Q)SEQ, where SEQ is a finite sequence of name

translations. Therefore, by Proposition A.4.3 , (a@r?(bb).Q)SEQ ok, thus N
ok.

This result is also true for the network derivation rules:

[RN-CONT]
N → M

F [N] → F [M]

[The induction hypothesis 1 (i.h.1.) is N → M and N ok ⇒ M ok]

In order to simplify the proof, without loss of the strength of the proof, we only
analyze the contexts F [] where F1[] = [], for it is possible to derive the same
reductions using the [RN-CONT] rule repeatedly.

• F = []

By the induction hypothesis, F [P] = P verifies the syntactic restrictions,
therefore the same happens with F [Q].

• F = ([] | P1)

79

F [P] ok by hypothesis, and by definition we have that P ok and P1 ok.
Therefore, P | P1 ok.

• F = ((ν g) [])

F [P] ok by hypothesis, therefore P ok, and by definition if F [P] ok, then
F [P] ok.

[RN-STR]
N ≡ N ′ N → M M ′ ≡ M

N ′ → M ′

Suppose that N ′ ok; then, by Proposition A.6.2 we also have that N ok, and
by i.h. M ok. Finally, by Proposition A.6.2 we have that M ′ ok.

[RN-SITE]
P → Q

s[P] → s[Q]

Suppose that s[P] ok. Then P ok, by i.h. Q ok, and by definition s[Q] ok.

80

A.2 Results on the type system

Lemma A.8 (Free and bound names). If Γ`s P then (fn(P) ∩ C) ⊆ dom(Γ(s)) and
(bn(P) ∩ C) ∩ dom(Γ(s)) = ∅.

Proof. By induction on the derivation of the judgment.

Lemma A.9 (Substitution). Let Γ`s P . Then:

1. Γ[t/r]`s P [t/r]; and

2. if x∈ fn(P) but x@S∩ fn(P)=∅, then Γ[a@r/x@s]`s P [a@r/x] for all r, s and moreover
Γ[a@s/x@s]`s P [a/x] when r = s.

Proof. The first clause is proved by a simple induction on the derivation of the judgment.
The second is proved by induction on the derivation of the judgment Γ[a@r/x@s]`s P [a@r/x].

Base case: P = u!〈ṽ〉.
Notice that x cannot occur both in u and in ṽ, as by hypothesis P is typable (and
clearly, without recursive types we are not able to type processes like x!〈x〉). Two
cases should be considered:

1. Case u = x.

By hypothesis Γ
def
= Γ′] {s:{x:γ}} `s x!〈〉 = P , and since Γ[a@r/x@s] is defined,

Γ`s a@r:γ; it follows that:

(a) by applying Definitions 3.2 and 4.7, and rule TP-Outl, one gets

Γ[a@r/x@s]
def
= Γ′′] {r:{a:γ}} `s a@r!〈〉 = P [a@r/x] ;

(b) moreover, if r = s, by applying Definitions 3.2 and 4.7, and the rules
TP-Outl and TP-Outs, one gets

Γ[a@s/x@s]
def
= Γ′′] {s:{a:γ}} `s a!〈〉 = P [a/x] .

We attained the envisaged result in both cases.

2. Consider now the case x ∈ {ṽ}:
By axioms TS-LCh and TS-SCh, making ∆

def
= {s:{x:γ}}, then ∆`s x:γ and

∆[a@r/x@s]`s a@r:γ.

(a) If v = x then using the fact just referred, proceed like above;

(b) If x occurs in ṽ only once, then use the fact referred above, rule TS-Uni,
and proceed like above;.

(c) If x occurs in ṽ more than once, remember that the substitution of names
in a process is simultaneous; thus, the result follows as described before.

Induction step: The interesting cases are those involving binders.

81

1. Let P = c@t?(x̃)Q.

Making Γ′ def
= Γ′′ + {t:{c:Ch(γ̃)}}, the hypothesis of rule TP-Inpl ensures that

Γ′′] {s:{x:γ}}] {s:{x̃:γ}} `s Q .

Furthermore, since by hypothesis x@S ∩ fn(P) = ∅,

(c@t)[a@r/x] = c@t = (c@t)[a/x] .

(a) We examine first the result of P [a@r/x], according to Definition 3.2:
since x ∈ fn(P), then x 6∈ {x̃}; as clearly x@s 6∈ {x̃} and a@r 6∈ {x̃},

(c@t?(x̃)Q)[a@r/x] = c@t?(x̃)Q[a@r/x] ,

and the result follows using the induction hypothesis and the referred rule.

(b) In the case of P [a/x], there are two alternatives:

i. If a 6∈ {x̃}, proceed as above.

ii. Otherwise, for some fresh y,

(c@t?(x1 · · · a · · ·xn)Q)[a/x] = c@t?(x1 · · · y · · ·xn)Q[y/a][a/x] .

Notice that the Lemma A.8 ensures that {x̃} ∩ dom(Γ(s)) = ∅; it is
possible to choose y such that Γ`s c@t?(x1 · · · y · · ·xn)Q[y/a]. Thus,
the result follows using the induction hypothesis and rule TP-Inpl.

2. Let P = c?(x̃)Q.

The last rule one applies to derive the judgment is TP-Inps. In this case one
cannot use the induction hypothesis directly with the premise of this rule, but
should use it with the premise of TP-Inpl (the premise of the premise). Then,
the result follows easily.

3. Let P = (ν t) Q.

Making Γ′ = Γ′′] {t:ϕ}, the hypothesis of rule TP-Resn ensures that

Γ = Γ′′] {t:ϕ}] {s:{x:γ}} `s Q .

We examine ((ν t) Q)[a@r/x] according to Definition 3.2:

(a) If t 6= r then ((ν t) Q)[a@r/x] = (ν t) Q[a@r/x] and the result follows using
the induction hypothesis.

(b) Otherwise, for some fresh t′ we have

((ν t) Q)[a@r/x] = (ν t′) Q[t′/t][a@r/x],

and the result follows using the the first clause of this lemma and the in-
duction hypothesis.

For ((ν t) Q)[a/x] the reasoning is similar

4. Let P = (ν c@t) Q.

As before, we examine ((ν c@t) Q)[a@r/x] and ((ν c@t) Q)[a/x] according to Def-
inition 3.2. Notice first that if c = x then P = P [a@r/x] and by the Lemma A.8
also Γ[a@r/x@s] = Γ[a@r/x@s]; thus the result is, in this case, trivial. For the

82

remaining cases of the substitution the reasoning is similar to that done in the
case above.

5. Let P = (ν c) Q. The reasoning is similar to that done in the previous case.

The remaining cases are straightforward.

Corollary A.10 (Simultaneous substitution). Let Γ`s P , and consider that x∈ fn(P)
but x@S ∩ fn(P) = ∅. Then, Γ{ṽ@s/x̃@s} `s P{ṽ/x̃}.

Proof. By induction on the length of ṽ, using the previous result.

Base case: Let Γ] {s:{x:γ}} `s P and Γ`s v:γ.

1. Case v = a@r.

Notice that v@s = v; the results follows directly from the first case of the second
clause of the previous lemma.

2. Case v = a.

The results follows directly from the second case of the second clause of the
previous lemma.

Induction step: Let Γ] {s:{xx̃:γγ̃}} `s P and Γ`s vṽ:γγ̃.

Recall that in xx̃ elements are pairwise disjoint. Thus, the definitions of simultane-
ous substitutions (Definition 3.12 and its version for typings in page 23) allow the
following rearrangements:

P{vṽ/xx̃} = P{ṽ/x̃}[v/x] , and

(Γ] {s:{xx̃:γγ̃}}){v@sṽ@s/x@sx̃@s} =

((Γ] {s:{x:γ}}] {s:{x̃:γ}}){ṽ@s/x̃@s})[v@s/x@s] =

((Γ] {s:{x̃:γ}}){ṽ@s/x̃@s}] {s:{x:γ}})[v@s/x@s] .

The result follows using the induction hypothesis and doing a case analysis on v, just
as for the induction base.

83

