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Abstract 

An ultra-high sensitivity label-free optical fiber biosensor for inactivated Staphylococcus aureus (S. aureus) 

detection is proposed and investigated in this study, with additional advantages of robust and stability compared 

to traditional tapered fiber structure. The proposed fiber biosensor is based on a tapered singlemode- no core-

singlemode fiber coupler (SNSFC) structure, where the no core fiber was tapered to small diameter (taper-waist 

diameter of about 10 µm) and functionalized with the pig immunoglobulin G (IgG) antibody for detection of S. 

aureus. The measured maximum wavelength shift of the sensor for an S. aureus concentration of 7×101 CFU/ml 

(colony forming unit per milliliter) is 2.04 nm, which is equivalent to a limit of detection (LOD) of 3.1 CFU/ml 

(a highest LOD reported so far for optical fiber biosensors), considering the maximum wavelength variation of 

the sensor in phosphate buffered saline (PBS) is ±0.03 nm over 40 minutes, where 3 times of maximum 

wavelength variation (3×0.03=0.09 nm) is defined as measurement limit. The response time of the developed 

fiber sensor is less than 30 minutes. The ultra-sensitive biosensor has potential to be widely applied to various 

areas such as disease, medical diagnostics and food safety inspection.    

Keywords: Optical fiber sensor, biosensor, Staphylococcus aureus (S. aureus), foodborne pathogens. 

1. Introduction 

Staphylococcus aureus (S. aureus), firstly discovered by Dr. Alexander Ogston in 1880, is a type of spherical 

bacteria with a diameter of about 0.8 µm and arranged like a cluster of grapes under the microscope without 

spores [1]. S. aureus is one of the most common foodborne pathogens and often parasitic on human and animal 

skin, nasal cavity, stomach, air and sewage, which can produce variety of toxins causing diseases, such as 

pneumonia, pus infections and pericarditis, etc [2-5]. In order to avoid the diseases caused by S. aureus, it is 

crucial to achieve rapid and highly sensitive detection of S. aureus before the contaminated food is consumed. 

The traditional detection methods for the detection of S. aureus are culture-based assay, which normally requires 

several days to culture the bacteria before the results can be obtained. Most foods are contaminated with fewer 

pathogen cells [normally less than 100 CFU/g (Colony Forming Unit per gram)]. Therefore, an initial 

enrichment of the sample is needed with the traditional methods. However, the products are minimally 

processed and have an inherently short shelf life, which limited the application of these traditional methods. 

Hence, there is an urgent need to develop a high sensitivity, rapid detection method for foodborne pathogens. In 

recent years, some rapid detection technologies have been developed, such as polymerase chain reaction (PCR) 

[6-7], enzyme linked immunosorbent assay (ELISA) [8] and nucleic acid-based molecular biology methods [9]. 

For example, Majumdar et al reported an electrochemical biosensor for detection of S. aureus by depositing 

antibody on the surface modified platinum electrode, which achieved a limit of detection (LOD) of 10 CFU/ml. 

However, these electrochemical biosensors have disadvantages of generating false current values due to the 
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existence of different electro-active compounds, thus often leading to interferences and hence measurement 

errors [10]. In 2017, Menti et al developed a mass-based biosensor based on the magneto-elastic method for S. 

aureus detection. However, this technique has been limited with a relatively poor LOD of 104 CFU/ml and 

complicated operation processes [11-12]. 

In comparison with these techniques, optical biosensors have unique advantages such as high sensitivity, simple 

fabrication processes, capability for real time monitoring and robust to environments, which are widely 

investigated for detection of pathogens [13]. Depending on different working principles, optical biosensors can 

be divided into different categories, including fiber grating [14-15], surface plasmon resonance (SPR) [16], 

tapered optical fiber [17-18], surface enhanced Raman spectroscopy (SERS) [19], colorimetric sensor [20], 

fluorescence [21], U-bent fiber [22] and optical fiber interferometry [23]. For example, Tripathi et al adopted a 

long period grating modified with T4 bacteriophage to detect Escherichia coli (E.coli) and achieved an LOD of 

103 CFU/ml [24]. A tapered fiber biosensor was developed to specifically identify dead E. coli O157:H7 and 

obtained an LOD of 104 CFU/ml [25]. Janczuk-Richter et al demonstrated a long period grating based biosensor 

for T7 bacteriophage detection and achieved an LOD less than 5×103 CFU/ml [26]. Abdelhamid and Wu et al 

utilized fluorescence optical biosensors to detect S. aureus and achieved an LOD of 2 × 102 CFU/ml [27]. Most 

recently, Kumar et al developed an ultra-highly sensitive biosensor based on tapered no-core fiber structure for 

human chorionic gonadotropin (hCG) detection with an LOD of 0.0001 mIU/ml [28]. The tapered fiber 

interferometer provides an ultrahigh sensitivity, however due to a very small diameter (~10 µm) of the taper 

waist, this type of sensor is fragile with relatively poor stability. In this paper, we propose a novel tapered fiber 

biosensor based on tapered no-core fiber coupler structure, which has a much larger taper waist diameter 

(double waist diameter of a single taper fiber and hence robust with a better stability) without sacrificing the 

sensitivity, and applied it for detection of S. aureus.  

2. Sensor structure 

Figure1 shows a schematic diagram of the tapered singlemode-no core-singlemode fiber coupler (SNSFC) 

structure. When the light is transmitted from input singlemode fiber (SMF) to the tapered no core fiber (NCF), it 

will excite multiple cladding modes and coupled to the other NCF which is physically contacted with the input 

NCF. The light will then be coupled to the two output SMF fibers. The multiple cladding modes in the NCF 

section will interact with the surrounding environment, thus resulting in a wavelength shift or power variation 

for the tapered SNSFC structure. Once the wavelength shift or the power variation is calibrated, the change of 

surrounding environment will be determined. 

 

 

 

 

 

 

 

Fig. 1. Schematic diagram of SNSFC fiber structure 

3.  Experiments 

3.1 The tapered SNSFC structure for refractive index (RI) measurement. 

In the experiments, two singlemode-no core-singlemode (SNS) fiber sensor structures were firstly prepared by 

fusion splicing a short section of NCF (15 mm length) between two SMFs. The NCF used in the experiments is 

FG125LA purchased from Thorlabs. The fabricated two SNS fiber structures were then aligned and twisted two 

turns between two fiber holders with a distance of 80 mm, which enables the two SNS fiber structures having 

good physical contact. The NCF sections of the two SMS fiber structures were then heated to circa 1200 C that 

can soften the NCFs, and the two ends of the SNS were pulled by two computer-controlled translation stages for 

thinning the NCF to form a tapered SNSFC structure. Two tapered SNSFCs with different taper waist diameters 
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(58.6 and 10.4 µm) were prepared for RI sensitivity measurement. Figure 2(a) shows wavelength shifts of the 

sensors with two different taper waist diameters at the RI range of 1.33. The sensor with a smaller diameter of 

10.4 µm has a higher RI sensitivity of 1523.333 nm/RIU, compared to that of 233.977 nm/RIU for the sensor 

with a taper waist diameter of 58.6 µm. Therefore, the fiber sensor with a taper diameter of 10.4 µm is selected 

for further experiments for detection of S. aureus (provided from State Key Lab Food Science and Technology, 

Nanchang University, China). Since S. aureus normally survived in phosphate buffered saline (PBS; Catalog 

number: SH30256.01, pH=7.4, purchased from GE Healthcare Life Sciences) environment, the stability of the 

biosensor in PBS was firstly tested. Figure 2(b) shows the tapered SNSFC sensors have good stability with 

maximum wavelength variations of ±0.03 nm over 40 minutes in the PBS. 

 

Fig. 2. (a) Wavelength shift of the tapered SNSFC vs. RI with two different taper waist diameters (58.6 and 10.4 µm) and (b) 

stability of the tapered SNSFC sensor in PBS with a taper waist diameter of 10.4 µm. 

         (i) silane treatment    (ii) EDC/ NHSS   (iii) IgG antibody            (iv) BSA        (v) specific binding  

                                                                               
 

The pig IgG antibody            BSA                  S. aureus 

 

Fig. 3. A schematic diagram of fiber surface modification process: (i) treat with silane reagent to create carboxyl group; (ii) 

generate NHS active ester with EDC/NHSS; (iii) immobilize pig immunoglobulin G (IgG) antibodies on the fiber sensor 

surface; (iv) block unbind sites with BSA; (v) specific bind with S. aureus 

3.2 Functionalization of the tapered SNSFC sensor  

In order to enable the fiber sensor for S. aureus detection, the sensor needs to be functionalized with pig IgG 

antibody (product code: b1108, purchased from BEIJING BERSEE SCIENCE AND TECHNOLOGY CO.LTD, 

http://www.berseebio.com), which can specifically bind with target S. aureus [29-32]. The functionalization 

process is illustrated below: 

i. The fiber sensor is immersed in a solution of 5% silane reagent (3-(3-triethoxysilylpropyl)oxolane-2,5-

dione) (product code:T195932-5g, purchased from aladdin) in ethanol for 4 hours at room temperature to 

create a carboxyl group on the fiber sensor surface. 
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ii. After cleaning the above fiber with deionized water, the fiber is then immersed into freshly prepared pH 

buffer(pH=6.0, product code: P118681 and P118682, purchased from aladdin) containing 1-(3-

Dimethylaminopropyl)-3-ethylcar-bodiimide hydrochloride (EDC, product code: 39141134, purchased 

from Sinopharm Chemical Reagent Co., Ltd) for 30 minutes, followed by immediately immersed in a 

mixed solution of EDC and hydroxy-2,5-dioxopyrolidine-3-sulfonicacid sodium salt (NHSS, product code: 

H109337, purchased from aladdin) for 30 minutes. 

iii. The above fiber sensor is washed with PB buffer and then immersed into a pig IgG antibody solution (in 

PBS buffer) for 4 hours. This process enables the pig IgG antibody be immobilized on the surface of fiber 

sensor. 

iv. After washing the above fiber with a PBS, the above fiber sensor is then immersed into 1% Bovine serum 

albumin (BSA, product code: A119741, purchased from aladdin) in PBS for 2 hours at room temperature, 

then the fiber sensor is cleaned with PBS before being used for detection of S. aureus. 

A schematic diagram of the fiber sensor surface functionalization process is illustrated in Fig. 3(b): i-iv, which 

corresponds to above four steps, respectively. The functionalized fiber sensor will specifically bind with S. 

aureus as shown in Fig. 3(b): v. 

Figures 4(a) and (b) illustrated scanning electron microscope (SEM) images of the functionalized fiber sensor 

bind with S. aureus (the sphere in Fig. 4). 

 

Fig. 4. SEM images of (a) the tapered SNSFC bind with S. aureus; (b) amplified S. aureus bind to the fiber sensor surface. 

3.3 Detection of S. aureus 

Figure 5 shows a schematic diagram of the experimental setup for detection of S. aureus by using the developed 

fiber sensor, where a broadband light source (BBS, SC-5-FC) is connected to one of the input SMFs and an 

optical spectrum analyzer (OSA, YOKOGAWA AQ6370D) is used to measure spectral response of the tapered 

SNSFC sensor. The fiber coupler sensor section was immersed in a rectangular container (44 mm×5 mm×5 

mm), in which different concentrations of S. aureus samples were added in sequence (from low to high: 7×101 

CFU/ml, 7×102 CFU/ml, 7×103 CFU/ml, 7×104 CFU/ml) during the tests. Before changing each concentration 

of S. aureus sample, the functionalized sensor was immersed into PBS buffer for 20 minutes to wash out the 

nonspecific bind S. aureus. The fiber sensor was then immersed into S. aureus sample for 30 minutes to allow 

the pig IgG antibodies specifically capture and bind with S. aureus, which effectively introduces change of the 

surrounding RI and coating thickness of the fiber sensor, resulting in change of spectral responses.  

 

 

  

 

 

         

Fig. 5. Schematic diagram of the experimental setup of the tapered SNSFC for S. aureus detection 
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4.  Results and discussion 

Investigation of capture layer concentration 

The spectral response of the functionalized sensor (sensor surface functionalized with 50 µg/ml pig IgG 

antibody) at different durations are shown in Fig. 6(a) by immersing the fiber sensor within S. aureus solution 

with a concentration of 7×101 CFU/ml. The dip wavelength is shifted monotonically to short wavelength side as 

the time is increased up to 30 minutes.  

The influence of the concentration of pig IgG antibody on the performance of the sensor was studied using three 

different tapered SNSFC structures (fabricated under the same conditions) functionalized with three different 

concentrations (25 µg/ml, 50 µg/ml and 200 µg/ml) of pig IgG antibody to detect S. aureus samples with 

different concentrations of 7×101 CFU/ml, 7×102 CFU/ml, 7×103 CFU/ml, 7×104 CFU/ml in sequence, 

respectively. Figure 6(b) summarized the relationships between time and dip wavelength shifts of the three fiber 

biosensors immersed in different concentrations of S. aureus samples. 

It can be clearly seen from Fig. 6(b) that, for all the three fiber biosensors, as the immerse time increases, the dip 

wavelength shifts monotonically to the short wavelength side, which is due to the binding process of S. aureus 

onto the functionalized fiber sensor surface. It also shows that the higher the S. aureus concentration, the larger 

the dip wavelength shift. Whereas the dip wavelength shift is mainly observed in the initial 20 minutes, after 

which the spectral responses become stabilized, indicating that the binding process is mainly taken place in the 

first 20 minutes. During the binding process, the shift of wavelength shows an exponential relationship with 

immersing time, which is consistent with the kinetic response of the immune behaviour reported in the literature 

[33]. At the same concentration of S. aureus, the sensor functionalized with a higher concentration of pig IgG 

antibody has a much larger dip wavelength shift and hence a higher sensitivity. The possible reason is that a 

higher concentration of pig IgG antibody has better capability to capture S. aureus and hence result in a larger 

wavelength shift for the same concentration of S. aureus. Reproducibility of the biosensors was investigated by 

fabricating 15 tapered SNSFC fiber structure with same fabrication parameters. The fabricated 15 tapered 

SNSFC structures were then functionalized with 25 µg/ml, 50 µg/ml and 200 µg/ml pig IgG antibody, where 

each concentration of pig IgG antibody is used to modify 5 tapered SNSFC structures. The measurement results 

were shown in Fig. 6(c), which clearly show that the tapered SNSFC biosensor has a relatively good 

reproducibility. The average dip wavelength shifts of fiber biosensors modified with 25 µg/ml, 50 µg/ml and 

200 µg/ml were 0.25, 0.56, 0.87, 1.20; 0.70, 1.76, 3.09, 4.22 and 2.04  nm, 3.73 nm, 5.25 nm, 7.58 nm for 

different concentrations (7×101 CFU/ml, 7×102 CFU/ml, 7×103 CFU/ml, 7×104 CFU/ml) of S. aureus. It is 

noted that, in the above calculation of average dip wavelength shift, the accumulated wavelength variations in 

PBS solution as shown in Fig. 6(b) weren’t counted. Figure 6(c) also shows that the fiber biosensor has largest 

error bar at the lowest concentration of 7×101 CFU/ml compared to that of highest concentration of 7×104 

CFU/ml. This is possibly because that number of S. aureus of one colony isn’t certain and the higher 

concentration of S. aureus sample will have better average effect compared to that of lower concentration of S. 

aureus sample, and thus smaller measurement difference with different fiber biosensors. When the concentration 

of S. aureus is 7×101 CFU/ml, the sensor functionalized with pig IgG antibody concentration of 200 µg/ml has 

the largest average wavelength shift of 2.04 nm. Since the wavelength variation of the fiber sensor in PBS is 

within ±0.03 nm, the LOD for S. aureus reachs 3.1 CFU/ml provided the measurement limit is defined as 3 

times of the wavelength variation (0.09 nm). 

The specificity of the biosensor was further investigated by immersing three identical sensors (functionalized 

with 50 µg/ml pig IgG antibody) into three different analytes (varying from large bacteria E.Coli to small 

protein hCG),  namely 4×106 CFU/ml E. coli, 10 mg/ml BSA and 50 mIU/ml hCG and each analytes were 

tested five times. Experimental results combined with measurement of S. aureus with concentration of 7×104 

CFU/ml are shown in Fig.6 (e). The average dip wavelength shifts of identical sensors were observed to be 4.22; 

0.14; 0.23; and 0.42 nm for the S. aureus, E. coli, BSA and hCG respectively, indicating that the biosensor has 

relatively good specificity and reproducibility. 
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Fig. 6. (a) Spectral responses of the tapered SNSFC sensor functionalized with 50 µg/ml pig IgG antibody for detection of S. 

aureus with concentration of 7×101 CFU/ml; (b) comparison of different capture layer concentrations (25 µg/ml, 50 µg/ml, 

200 µg/ml) for S. aureus detection; (c) reproducibility and (d) specificity results of the biosensor. 

Table 1 A summary of optical biosensor techniques used for the detection of pathogenic bacteria  

Transducer Pathogenic bacteria LOD Reference 

Long-period fiber gratings (LPFGs) S. aureus 224 CFU/ml [34] (2019) 

A fiber optic SPR immunosensor 

with functionalized molybdenum 

disulfide (MoS2) nanosheets 

E. coli 94 CFU/mL [35] (2019)  

Fluorescent (optical) bioprobe S. aureus 85 CFU/mL [36] (2019) 

Multi-column capillary biosensor 

based on Fenanocluster 

amplification and smart phone 

imaging 

Salmonella Typhimurium (S. 

Typhimurium) 
14 CFU/mL [37] (2019) 

Multimode microfiber E. coli 103 CFU/ml [38] (2018) 

Single mode-tapered multimode-

single mode (SMS) 
S. Typhimurium 247 CFU/mL 

[39] (2018) 

 

Microfluidic biosensor based on 

fluorescence labelling and 

smartphone video processing 

S. Typhimurium 58 CFU/mL 
[40] (2019) 

 

Fluorescence imaging biosensor by 

smartphone 
S. aureus 10 CFU/mL [41] (2018) 

Microcavity in-line Mach-Zehnder Live E. coli 100 CFU/mL [42] (2018) 
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interferometer 

Tapered SNSFC biosensor S. aureus 3.1 CFU/mL 
Proposed method in 

this paper 

The performance comparison between our newly developed fiber biosensor and those of recently published 

optical biosensor techniques for the detection of bacteria are shown in Table 1. The LOD of our proposed sensor 

is as low as 3.1 CFU/ml, which is the best result reported so far by using optical fiber sensors, demonstrating the 

significant advantage of our proposed sensor. 

As for the lifetime of the sensor, our initial tests showed that after storage 3 days at room temperature or 6 days 

in a fridge at 3-5 ℃, the optical fiber biosensors functionalized with the pig IgG antibody still worked very well. 

When the storage time was longer than the indicated days, the activity of the fiber biosensor functionalized with 

pig IgG antibody decreased significantly.  

5.  Conclusion 

In conclusion, an ultra-highly sensitive tapered SNSFC label-free biosensor for measurement of S. aureus is 

proposed and experimentally demonstrated. The tapered SNSFC sensor is composed of two parallel physical 

contact SNS fiber structures, where the two NCF sections are heated to be tapered to small diameter. The 

tapered SNSFC fiber sensor is then functionalized with pig IgG antibody which can specifically bind with S. 

aureus. Experimentally, for the tapered SNSFC sensor with a taper waist diameter of 10.4 m and 

functionalized with 200 µg/ml pig IgG antibody, an average wavelength shift of 2.04 nm is obtained over a 

period of 30 minutes for the measurement of S. aureus with concentration of 7×101 CFU/ml. The tapered 

SNSFC has a large taper waist dimension (two 10.4 µm diameter fibers), and hence has a good stability, which 

has been demonstrated by achieving a maximum wavelength variation of ±0.03 nm in the PBS for 40 minutes. 

The LOD of the biosensor is calculated as low as 3.1 CFU/ml, showing an ultrahigh sensitivity. The developed 

tapered SNSFC sensor structure can be used for various applications such as earlier diseases/medical diagnostics 

and food safety inspection once the fiber sensor is properly functionalized. 
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