

Preliminary Specification of Basic
Services and Protocols

G. Blair, C. Brudna, V. Cahill, A. Casimiro,
R. Cunningham, H. Duran-Limon, J. Kaiser,

P. Martins and P. Veríssimo

 DI-FCUL TR–03–18

July 2003

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1700 Lisboa
Portugal

Technical reports are available at http://www.di.fc.ul.pt/tech-reports. The files are
stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

Project IST-2000-26031

CO-operating Real-time senTient objects:

architecture and EXperimental evaluation

Preliminary Specification of Basic Services and

Protocols

CORTEX Deliverable D5

Version 1.0

February 12, 2003

Revisions

Rev. Date Comment
0.1 17/01/2003 Draft document for internal review
0.2 12/02/2003 Final draft for comments
1.0 27/02/2003 Final document

Editor

António Casimiro, University of Lisboa

Contributors

Cristiano Brudna, University of Ulm
Gordon Blair, University of Lancaster
Vinny Cahill, Trinity College Dublin
António Casimiro, University of Lisboa
Raymond Cunningham, Trinity College Dublin
Hector Duran-Limon, University of Lancaster
Jörg Kaiser, University of Ulm
Pedro Martins, University of Lisboa
Paulo Veŕıssimo, University of Lisboa

Address

Faculdade de Ciências da Universidade de Lisboa
Bloco C5, Campo Grande
1749-016 Lisboa
Portugal

2

Contents

1 Introduction 5

2 Overview of basic services and protocols 6

2.1 TCB services . 7

2.2 Coverage awareness . 9

2.3 Resource and Task model . 9

2.4 TBMAC Basic Services . 10

2.4.1 Basics . 10

2.4.2 Inter-Cell Communication . 11

2.4.3 Entering an Empty Cell . 12

2.5 CAN . 13

2.6 Adaptable Timed Event Service (ATES) 15

3 Service interfaces 18

3.1 TCB API . 18

3.2 Resource Management framework . 21

3.2.1 Resource model . 21

3.2.2 The Resources Meta-object protocol 22

3.3 The Task model . 25

3.3.1 Overview . 25

3.3.2 Tasks and VTMs . 26

3.3.3 Task graph configurations . 27

3.4 TBMAC API . 28

3.4.1 Initialisation . 29

3.4.2 Slot Management . 29

3.4.3 Communication . 30

3.4.4 Higher layer issues . 31

3.5 ATES API . 31

4 Definition of Services and Protocols 33

4.1 TCB services and protocols . 34

4.1.1 Timestamping Service . 34

4.1.2 Local Measurement Service 34

4.1.3 Distributed Measurement Service 36

4.1.4 Timely Execution Service . 37

4.1.5 Local Timing Failure Detection Service 38

4.1.6 Communication Module and the Control Channel 41

4.1.7 Distributed Timing Failure Detection Service 41

4.2 Example of the use of the resource and task models 46

4.3 TBMAC protocol messages and inaccessibility 47

4.3.1 TBMAC protocol messages 47

4.3.2 TBMAC protocol inaccessibility 48

3

4.3.2.1 Modelling arrival/departures 48

4.3.2.2 Non empty cell . 49

4.3.2.3 Empty cell . 49

4.4 Content and Cell based Predictive Routing (CCPR) protocol for mo-
bile Ad Hoc networks . 51

4.4.1 Introduction . 51

4.4.2 TBMAC . 53

4.4.3 Content and Cell based Predictive Routing (CCPR) protocol . 54

4.4.3.1 The route discovery phase 55

4.4.3.2 The routing path construction phase 56

4.4.3.3 The route maintenance phase 58

4.4.3.4 Keeping the routing tables consistent 59

4.4.4 Related work . 60

4.4.5 Conclusion and future work 62

4.5 A real-time event channel model for the CAN-Bus 63

4.5.1 Introduction . 63

4.5.2 Events and event channels . 64

4.5.2.1 Routing, filtering and binding 65

4.5.2.2 Real-time event channels 66

4.5.3 Event channels on a CAN-Bus network 70

4.5.3.1 The reservation scheme 70

4.5.3.2 Structure of the time-slots 71

4.5.3.3 Scheduling soft real-time- and non-real-time-messages 73

4.5.3.4 Soft real-time messages 73

4.5.3.5 Structuring the CAN message identifier 74

4.5.4 Comparison with related higher level CAN protocols 74

4.5.5 Concluding remarks and future work 75

A Flowchart of the route discovery algorithm 77

B Flowchart of the routing path construction algorithm 78

4

1 Introduction

Given the objective of CORTEX to explore the fundamental theoretical and en-
gineering issues that will make possible the construction of large-scale proactive
applications composed of sentient objects, a preliminary CORTEX system architec-
ture has been proposed in a previous deliverable [17]. The proposed architecture
explicitly considers two logical scopes in terms of the problems that must be dealt.
In one hand, it considers a local scope, which includes all the issues that respect
the constitution and operation of CORTEX nodes or collections of nodes, namely
interfaces to application objects and supporting/run-time services. On the other
hand, a global scope, which addresses the need to accommodate the heterogeneity
of environments in which applications will operate, by proposing solutions that fol-
low a WAN-of-CANs approach and allow de definition of QoS containment zones
and the hierarchical composition of such zones.

In order to materialize this architecture, it is necessary to define a set of services
to support the envisaged applications, which will architecturally exist, and will be
accessed, locally to a CORTEX node, but which may have a distributed, global
scope. In deliverable WP3-D4 we have already presented a preliminary view of the
local architecture of a node, where it was possible to identify the above-mentioned
supporting services. The present deliverable somehow continues the work that has
been presented in previous deliverables, in particular in deliverables WP2-D3 and
WP3-D4.

The fundamental objective of this deliverable is to present a preliminary spec-
ification of the basic services and protocols that should be provided in CORTEX
in order to support the envisaged applications. Although it is still necessary to do
some work with respect to the integration of some of the services presented in this
deliverable, we believe that the overall view of the required services and protocols,
which is presented here, constitutes a fundamental step towards that integration.

In terms of the structure of the deliverable, we try to follow a top-down approach
by firstly motivating, in Section 2, the need for some services and by describing and
specifying what they should provide (i.e., their properties). However, this approach
is not always followed, given that in Sections 4.5 and 4.4 we provide two papers
as originally presented, therefore including in those sections all the definitions of
required properties and proposed interfaces.

Then, in Section 3, we focus on the services from the perspective of the interfaces
they should provide. We believe this makes sense because interfaces can be specified
independently of some particular implementation.

The last section focuses on the specific protocols and services to be provided in
CORTEX. They implement (at least some of) the interfaces described in Section 3.
However, since this is a preliminary deliverable, only on a subset of the services and
protocols is presented.

5

2 Overview of basic services and protocols

In this section we provide an overview of the basic services and protocols that we
propose for CORTEX. This set of services can be viewed as a middleware layer that
exists below CORTEX applications which provides the adequate abstractions and
implements the necessary functionalities required to address the needs of this class
of applications.

In order to clarify the discussion, and given that it is possible to identify certain
groups of services in terms of their purpose, their nature or their location in a service
stack, we propose to organize the services and protocols provided in CORTEX in
three main groups, as depicted in Figure 1.

�
��
��
�
�
�
�
�
�	
 � � � � �

 � � � � � � 	 � � � � � � �

� � � � 	 � � � � � � � � �

� �

 � � � � � 	 � � � � � � � � � � � �

� � � � � �
� � � � � 	

� � � � � �
� � � � � 	

� � � � � �
� � � � � 	

� � 	 � � � � � � � � � � � 	 � � � 	 � � �

�
�

�!
��
�
�
�
�
�	
��
�
��
��
�
�

� � � � � � � �
� � � � � � �

" � � � 	 � � �
� � � �

� � $ � � �
% � 	 � � 	 � � �

& � � � 	 � � �

 � � � � �
 �

� �
 � $ '
� (� �

) � � �

� *) �

 + �
� � � � 	

� 	 , � �
� � � � 	 � � � �

� � � 	 � (
� � � � � � �

� � � �

 � % � $

- � �
* � � � �
 	

 � � � � �

 � � � � � � 	 � � � � � � �

�) �

Figure 1: Block diagram of CORTEX basic services.

At a lower level of the architecture we find a group of basic communication
services and protocols, which are implemented directly on top of the network in-
frastructure and enforce abstract network properties such as those related with the
provision of guaranteed communication latency or reliability. More specifically, at
the right hand side of the figure it is possible to observe that we specifically focus
on the CAN controller area network (to provide predictable communication at the
CAN level of the WAN-of-CAN structure of CORTEX), and on TBMAC, a protocol
specifically designed to address predictability requirements over wireless communi-
cation infrastructures.

Above the communication level it is possible to consider that a set of event re-
lated services exists. The most relevant service at this level implements the required
anonymous communication, based on the publish-subscribe paradigm. Several is-
sues, such as discovery/announcement of events, filtering, and routing of events to
interested subscribers, is addressed at this level. Another important aspect is related
with the need to address non-functional requirements of applications, namely those
concerning timeliness. One approach is provided with the ATES service, which aims
at providing the means to integrate timeliness requirements in event-based commu-
nication. This is also done with the help of some supporting services, those that
constitute the third group here considered.

The Timely Computing Base (TCB) can be seen as an oracle that provides a
few very basic but fundamental services to the rest of the system, and is therefore
orthogonal to the architecture. Since there exist other support services besides the

6

TCB, they must be all included in the same group of services, as represented in
Figure 1. These other support services, which include QoS management, coverage
awareness and context awareness, are also generic services that may be useful as
building blocks for implementing the rest of the system (both other middleware
services and the applications).

The rest of this section will focus on all these services, providing a motivation
for their need and, whenever possible, stating the properties which more formally
characterize them.

2.1 TCB services

As described in deliverable WP3-D4 [17], the Timely Computing Base (TCB) can
be seen as a special architectural component serving the whole system and providing
crucial time related services. In this section we will review the basic TCB properties,
those that must be exhibited by a TCB component, which will serve to understand
the specification of the services to be provided at the TCB API. This API, which
was already presented in deliverable WP3-D4, will be summarized in Section 3.1.
The details relative to the internal definition and implementation of TCB services
and protocols are presented in Section 4.1.

Figure 2 illustrates the modular composition of a TCB component. The inter-
action (locally to a site) between payload applications and the TCB component is
made through a TCB API. However, the TCB can be internally composed of sev-
eral modules, which implement the necessary protocols and (internal and external)
services.

Distributed Timing Failure
Detection Service

Communication Module

Timely Execution Service

Local Timing Failure Detection
Service

Application Programming
Interface (API)

Local Duration Measurement
Service

Distributed Duration
Measurement Service

Service Handler

Timestamping Service

TCB Ps 1

TCB Ps 3

TCB 1, 2

TCB 3

TCB 4, 5

TCB 4, 5

1

2

3

4

5

6

8
7

9
TCB Ps 2

Control Channel

Figure 2: Architecture of a TCB Component.

Let us review the fault and synchronism model specific of the TCB subsystem.
We assume only crash failures for the TCB components, i.e. that they are fail-silent.

7

Furthermore, we assume that the failure of a local TCB module implies the failure
of that site, as seen from the other sites. The crash of a local TCB is easily detected
by the other TCB instances and does not affect application processes in other sites
(local processes do not exist anymore after a TCB crash). The TCB subsystem
enjoys the following synchronism properties:

TCB Ps 1 There exists a known upper bound TD1
max

on processing delays

TCB Ps 2 There exists a known upper bound TD2
max

on the drift rate of local TCB
clocks

TCB Ps 3 There exists a known upper bound TD3
max

on the delivery delay of mes-
sages exchanged between local TCBs

Property TCB Ps 1 refers to the determinism in the execution time of code
elements by the TCB. Property TCB Ps 2 refers to the existence of a local clock in
each TCB whose individual drift is bounded. This allows measuring local durations,
that is, the interval between two local events. These clocks are internal to the
TCB. Property TCB Ps 3 completes the synchronism properties, referring to the
determinism in the time to exchange messages among TCB modules in different sites
(each site is supposed to have a local TCB module). It is assumed that inter-TCB
channels provide reliable delivery, that is, no messages addressed to correct TCBs
are lost. The set of all local TCB modules, interconnected by the control channel,
constitutes the distributed TCB.

Timely Execution

TCB1 Eager Execution: Given any function f with an execution time bounded
by T , the TCB is able to execute f within T from the execution start instant

TCB2 Deferred Execution: Given any function f and some delay amount T ,
for any deferred execution of f triggered at real time t, the TCB will not
execute f within T from t

Duration Measurement

TCB3 Given any two events occurring in any two nodes at instants ts and te, the
TCB is able to measure the duration between those two events with a known
bounded error. The error depends on the measurement method.

Timing Failure Detection

TCB4 Timed Strong Completeness: Any timing failure is detected by the dis-
tributed TCB within a known interval from its occurrence

TCB5 Timed Strong Accuracy: Any timely action finishing no later than some
know interval before its deadline is never wrongly detected as a timing failure

Table 1: Basic services of the TCB.

Because the TCB must be a very simple component, it only provides the ser-
vices considered to be essential to satisfy a wide range of applications with timeli-
ness requirements: ability to measure distributed durations with bounded accuracy;

8

complete and accurate detection of timing failures; ability to execute well-defined
functions in bounded time. Table 1 presents an informal summary of these services
(a more detailed presentation was provided in deliverable WP3-D4).

These are the services to be provided at the TCB interface shown in Figure 2.
In this figure it is also possible to see the interactions performed among the several
modules defined in the component, represented by arrows. The oval shapes labelled
with TCB Ps x refer to the synchrony properties preserved by the TCB, and the
ones labelled with TCB x indicate the properties that each module should fulfil in
order to provide only correct services to user applications.

The specific definition of the TCB API will be provided in Section 3.1.

2.2 Coverage awareness

The coverage awareness service has been presented in WP2-D3, as a supporting or
enabler service for dependable QoS adaptation. The integration between this service
and the other support services, namely the TCB services, was also discussed in WP2-
D3. Therefore, it is our understanding that it does not make sense to describe this
service once again in the present deliverable.

2.3 Resource and Task model

Over the last few years we have seen the proliferation of embedded mobile systems
such as mobile phones and PDAs. Pervasive computing is also taking off in which
multiple cooperating possibly embedded controllers are used. A new kind of appli-
cations can now be envisaged with the emergence of both mobile computing and
ubiquitous computing. Applications of such kind are characterised by being largely
distributed and proactive, i.e. able to operate without human intervention. A set
of further characteristics are also involved such as self context awareness as a means
to sense the surrounding environment. Examples of these applications include au-
tomatic car control systems in which cars are able to operate independently and
cooperate with each other to avoid collisions. Another example is an air traffic
control system whereby thousands of aircrafts are proactively coordinated to keep
them at safe distances from each other, direct them during takeoff and landing from
airports and ensure that traffic congestions are avoided. Smart office systems can
also be foreseen in which the intensity of light, room temperature and some other
features are automatically tuned according to the user preferences of the persons
present in the room.

The CORTEX Project is examining fundamental issues relating to the support of
such applications, including the development of middleware for this domain. Impor-
tantly, CORTEX applications require the support of anonymous and asynchronous
event models, i.e. scenarios including large number of autonomous processing units
where a many-to-many communication takes place are well-suited to the anonymous
dissemination of information. In addition, systems in which frequent disconnection
is likely to happen are well-supported by asynchronous communication as block-
ing conditions are avoided. Further requirements include support for mobility and
non-functional properties such as timeliness and reliability since some of these appli-
cations are time-critical. However, current event-oriented middleware technologies
do not provide a solution for all the challenges imposed by these applications. As

9

regards timeliness requirements, we believe that resource management plays an im-
portant role in providing support for real-time applications. The mechanism that
allocates resources in the system should ensure that critical activities will be pro-
vided with enough resources to carry out their tasks in a predictable way. Changes
in the availability of network resources and periods of disconnection are frequently
experienced as mobile computing environments are highly dynamic. This kind of
unexpected changes in the environment implies that a means for adapting the system
in a dependable way needs to be introduced. Furthermore, mobile applications typ-
ically operate on devices with scarce resources, e.g. CPU capacity, system memory
and battery life. Therefore, support for the predictable and efficient management
of the system resources as well as resource reconfiguration capabilities for achieving
adaptation are required. An example of the latter is a redistribution of both CPU-
time and memory to the set of activities that the system performs, thus, ensuring
that time-critical activities are not disturbed.

Section 3.2 presents a resource management framework which provides support
for addressing the timeliness issues mentioned above. The framework makes use of
both reflection and component technology. Reflection is a means by which a sys-
tem is able to inspect and change its internals in a principled way [52]. Basically,
a reflective system is able to perform both self-inspection and self-adaptation. To
accomplish this, a reflective system has a representation of itself. This representa-
tion is causally connected to its domain, i.e. any change in the domain must have
an effect in the system, and vice versa. A reflective system is mainly divided into
two parts: the base-level and the meta-level. The former deals with the normal
aspects of the system whereas the latter regards the system’s representation. The
meta-level interface is often referred to as the meta-object protocol (MOP) [46]. On
the other hand, component technology provides great flexibility for the dynamic
replacement of components. In addition, the component approach promotes and
enhances software reusability. However, component technologies are not mature
enough yet. New component standards, such as EJB [57] and the CORBA compo-
nent model [29], have started to emerge and will consolidate in the next few years.
In fact, the implementation of our resource system is developed in OpenCOM [51],
which is a lightweight, efficient and reflective model based on Microsoft’s COM [55].

2.4 TBMAC Basic Services

In this section the Time-Bounded Medium Access Control (TBMAC) proto-
col [20, 17] will be reviewed. This section covers background information about
the TBMAC protocol that is needed for the discussion in the rest of the deliver-
able. In particular, building on this review Section 3.4 will present the Application
Programmer Interface (API) of the TBMAC protocol provided to higher layers. Fi-
nally, Section 4.3 provides an overview of the protocol messages used in the TBMAC
protocol and a discussion about the inaccessibility of the TBMAC protocol.

2.4.1 Basics

The Time-Bounded Medium Access Control (TBMAC) protocol is based on time-
division multiple access with dynamic but predictable slot allocation. TBMAC uses
a lightweight atomic multicast protocol to achieve distributed agreement on slot
allocation and employs location information to minimise contention for slots.

10

6

1

2

3

4

5

0

2

4

3

5

4

0

6

3

1

2

6

1

5

0

Figure 3: Possible Cell and Channel allocation.

To reduce the probability of the transmissions colliding, the geographical area
occupied by the mobile hosts is statically divided into a number of geographical cells.
Each cell is numbered and can have arbitrary shape and size but for simplicity, we
assume that the cells are hexagons of equal size as illustrated in Figure 3. Each
numbered cell is also allocated a distinct radio channel (or CDMA spreading code)
to use, maximising the total overall bandwidth available in the ad hoc network.

The boundaries of each of these cells are known to each mobile host in the ad
hoc network. To meet this requirement, each mobile host requires access to location
information (such as GPS). By a mobile host knowing the cell that it is in, it can
then infer the correct radio channel to use.

To further reduce the possibility of collisions, TBMAC divides access to the
wireless medium within a cell into two time periods:

1. Contention Free Period (CFP)

2. Contention Period (CP)

Both the CFP and the CP are divided into slots and each period lasts a well-
known period of time. Once a mobile host has been allocated a CFP slot, it has
predictable access to the wireless medium. The mobile host can then transmit data
in its slot until it leaves the cell or fails.

Mobile hosts, that do not have CFP slots allocated to them, contend with each
other to request CFP slots to be allocated to them in the CP. The CP is used by
mobile hosts that arrive into the cell or that have recently powered on in the cell.

The TBMAC participants reach a distributed agreement on the order of alloca-
tions and deallocation of CFP slots. The approach TBMAC uses to provide a total
ordering protocol within a cell is to use the synchronous atomic broadcast protocol
from Flaviu Cristian [18].

By fixing the number of slots in the CFP, it would appear that we are placing an
upper bound on the number of mobile hosts that can be allocated a CFP slot in the
cell at any one time. This would mean that the TBMAC protocol is very restrictive
and has only limited use. It is possible however to overcome this restriction by
allowing a dynamic logical CFP (LCFP) to grow and shrink in the repeating static
CFPs [20].

2.4.2 Inter-Cell Communication

As the area occupied by the mobile hosts has been divided up into geographical cells
and each cell has been allocated a particular radio channel to use, an obvious ques-

11

tion is how does a mobile host communicate with other mobile hosts in neighbouring
cells.

If we consider two adjoining cells A & B, then TBMAC uses a static CFP slot for
communication from cell A to cell B and another static CFP slot for communication
from cell B to cell A. Mobile hosts then atomically broadcast a request to be granted
the inter-cell CFP slot. When a mobile host transmits in the inter-cell slot, all the
mobile hosts in the adjoining cell will be listening for this transmission.

By using two static CFP slots, it would appear at first glance that TBMAC is
placing a severe restriction on the communication between mobile hosts in adjoining
cells. However, as we shall see in section 4.3.1, it is possible to allow a dynamically
varying number of CFP slots for inter-cell communication.

2.4.3 Entering an Empty Cell

When dividing access to the medium into CFP slots and the CP slots, the most
difficult task is to allocate the first CFP slot to a mobile host in a cell. Once there
is one mobile host in the cell with a CFP slot then it is possible to use the atomic
broadcast protocol to allocate and deallocate slots.

In TBMAC, a mobile host in an empty cell generates a list of CFP slots to use
after listening for one full CFP as illustrated in Figure 4.

0 1 2 3 4 5 6 7 8

Slots for B

Slots for C

Slots for A

Figure 4: Generated list of slots.

During the next CFP, the mobile host transmits in each CFP slot in its generated
list (including the Slot Bitmap in each transmission). The mobile host also listens
in each of the other CFP slots that it does not transmit in to gain knowledge about
the presence of other mobile hosts and the CFP slots that they are using.

When two or more mobile hosts enter an empty cell and generate a list of CFP
slots to use, each mobile host has an inconsistent view of the allocation of CFP
slots. After a known number of CFPs (M say), the view of each mobile host of the
allocation of CFP slots converges to a consistent view. Figure 5 illustrates how this
convergence is achieved.

When a mobile host transmits in each of its generated CFP slots, the mobile
host includes information about the other generated slots that it is using. When a
mobile host successfully receives a message from another mobile host, the receiving
mobile host obtains a list of slots being used by the transmitting mobile host. If a

12

CFP 1 CFP 2 CFP 3
MH A

MH B

MH C

Slots {0,3,7}

Slots {0,3,5}

Slots {0,3,6}

Slots {5,6,7}
Collisions {0,3}

Collisions {0,3}

MH B

MH A

Slots {6,7}

Slots {6,7}
Collisions {0,3}

MH C

Omission
failure in
slot 7

MH A

Slots {5,6,7}
Collisions {0,3}

MH B

Slots {5,6,7}
Collisions {0,3}

Slots {5,6,7}
Collisions {0,3}

MH C

Time

Figure 5: View Convergence of Slot Allocations.

mobile host realises that one of its CFP slots is causing a collision, then the mobile
host stops transmitting in this slot in subsequent CFPs.

2.5 CAN

The WAN-of-CAN Structure plays an major role in the CORTEX network archi-
tecture. CANs (Controller Area Networks) connect islands of tightly cooperating
autonomous computing nodes. At an abstract layer, a CAN constitutes a zone of
coherent QoS provision. This may be a fieldbus, an Ethernet, or even a wireless
network like bluetooth or an 802.11 infrastructure network. We assume a certain
guaranteed level of predictability as an intrinsic property of CANs which usually
is considerably higher than what we can expect from WANs. Therefore, although
CANs may have a wide spectrum of what level of predictability they provide, their
basic protocol mechanisms assist the architecture of higher level communication
schemes which allow to define temporal bounds on communication beyond a purely
best effort probabilistic approach (although it must be admitted that any system
can only guarantee probabilistic bounds!). This actually distinguishes them from
WANs where we do not make such assumptions. On a CAN, the protocol and ser-
vices allow the specification of time bounds and provide mechanisms to enforce these
constraints.

In the general interaction model of CORTEX, a CAN may usually link the smart
components of a sensor system to the respective computational engines or directly
to smart actuators. These components are embodied in an artefact like a smart
door, a car, a robot or similar stationary and mobile entities.

Two major issues have to be considered for services and protocols on CANs for
the CORTEX specific application environments:

1. Protocols and services have to support the CORTEX event model.

13

2. A range of timeliness and reliability requirements have to be supported for the
dissemination of events.

The basic interaction abstractions are events and event channels through which
events are disseminated. An event is specified by a subject and functional and
non-functional attributes. The functional attributes reflect the context in which the
event was generated, like the location, the time, the mode of operation, etc. The
non-functional attributes are related to temporal and reliability issues. They may
comprise deadlines for delivery, expiration dates, a coverage and similar parame-
ters. Thus, to a large extend the non-functional attributes of an event specify the
requirements for the underlying communication system.

The event channel abstracts the underlying communication system. In appli-
cation areas like those envisaged in CORTEX [15] non-functional attributes like
timeliness and reliability are decisive to support critical system functions. Particu-
larly in a CAN we need to support critical control loops. Hence, the communication
system has to provide the adequate resources to meet the respective QoS require-
ments. An event channel is specified by a subject defining the events which can be
disseminated by the channel and non-functional attributes. These attributes char-
acterize the timeliness and reliability properties of the channel, like latencies and
the tolerable omission degree. Thus an event channel allows to specify quality pa-
rameters explicitly which must be mapped to the underlying network. When setting
up an event channel, the respective resources will be allocated.

As a matter of fact, there is a trade-off between the predictability of commu-
nication and the needed resources. At the safe end, all communication is statically
planned and resources have to be assigned anticipating worst case load and failure
assumptions. However, this may only be required for a small number of highly crit-
ical services. In fact, critical system services as the TCB [17] could use such highly
predictable links to meet its temporal and reliability requirements. Other examples
on the application level are tight sensor/actor control loops e.g. for crash avoidance
or motor and brake control. In most cases less critical events have to be accom-
modated by the communication system which also allow a more dynamic system
behaviour. However, also for these events, temporal parameters may be needed,
e.g. the specification of when an event should be delivered or how long the event is
valid. The different requirements are reflected by event channel classes with different
properties.

On the architectural level, we distinguish three layers. Figure 6 roughly depicts
the layers and the respective abstractions. It relates to Figure 1 provided in the
introduction in that the upper middleware layer provides the event specific services.

On the publisher/subscriber layer, the main abstractions are events and different
classes of event channels. The layer enables the application to specify channels
of different QoS classes and to publish events and subscribe to channels with the
respective guarantees.

Mapping the abstractions of the publisher/subscriber layer directly to the un-
derlying network is a tough challenge because the usual abstractions on the network
layer are low level messages. Hence, this layer does not match the requirements of
group communication, subject-based addressing or the QoS specifications defined for
channels. Therefore, an abstract network (AN-) layer is introduced which enriches
the properties of the raw network (this may not just be a physical network, but a
specific MAC-layer or even a higher OSI level) by additional properties and com-

14

the TCB [WP3-D4] could use such highly predictable links to meet its temporal and reliability
requirements. Other examples on the application level are tight sensor/actor control loops e.g.
for crash avoidance or motor and brake control. In most cases less critical events have to be
accommodated by the communication system which also allow a more dynamic system
behaviour. However, also for these events, temporal parameters may be needed, e.g. the
specification of when an event should be delivered or how long the event is valid. The
different requirements are reflected by event channel classes with different properties.

On the architectural level, we distinguish three layers. Fig 1 roughly depicts the layers and the
respective abstractions. It relates to Fig. xx (the figure Antonio provided in his mail) provided
in the introduction in that the upper middleware layer provides the event specific services.

Fig. 1 Architectural Layers

On the publisher/subscriber layer, the main abstractions are events and different classes of
event channels. The layer enables the application to specify channels of different QoS classes
and to publish events and subscribe to channels with the respective guarantees.

Mapping the abstractions of the publisher/subscriber layer directly to the underlying network
is a tough challenge because the usual abstractions on the network layer are low level
messages. Hence, this layer does not match the requirements of group communication,
subject-based addressing or the QoS specifications defined for channels. Therefore, an
abstract network (AN-) layer is introduced which enriches the properties of the raw network
(this may not just be a physical network, but a specific MAC-layer or even a higher OSI level)
by additional properties and communication services as e.g. some form of reliable broadcast
or group communication and temporal guarantees for the message transfer.

As an example, Fig. 2 presents the preliminary specification of protocols and services for a
particular CAN (CAN-Bus [Bos91]). It lists the basic abstractions, the methods to deal with
these abstractions, the system services available, the components to realize the system
services and specific protocols needed to support the abstractions in the distributed
architecture. The P/S layer supports events and different classes of event channels with
different quality properties. It should be noted that the QoS properties in general depend on
what the abstract network layer can provide. Thus, it may not always be possible to e.g.
support a hard real-time event channel because the abstract network layer can not provide the

publisher/
subscriber
layer

application layer

abstract network
layer

network layer

QoS
assurance

Functional
abstractions

middleware

events with context and temporal properties,
event channels with quality properties

message classes,
messages with temporal properties,
network reliability properties

network dependent best effort message transfer

Figure 6: Architectural layers.

munication services as e.g. some form of reliable broadcast or group communication
and temporal guarantees for the message transfer.

As an example, Figure 7 presents the preliminary specification of protocols and
services for a particular CAN (CAN-Bus [28]). It lists the basic abstractions, the
methods to deal with these abstractions, the system services available, the compo-
nents to realize the system services and specific protocols needed to support the
abstractions in the distributed architecture. The P/S layer supports events and dif-
ferent classes of event channels with different quality properties. It should be noted
that the QoS properties in general depend on what the abstract network layer can
provide. Thus, it may not always be possible to e.g. support a hard real-time event
channel because the abstract network layer can not provide the respective guaran-
tees. Therefore, the event channel classes supported are dependent on the zones in
which publishers and subscribers reside. Figure 7 covers the case of a single zone
which is a CAN-Bus.

A detailed description of these abstractions and the mechanisms to enforce them
on a CAN-Bus[28] is provided in Section4 of this deliverable with the title: ”A Real-
Time Event Channel Model for the CAN-Bus”. The dynamic binding protocol of the
P/S layer and the configuration protocol of the AN-layer are described in [17, 44].

2.6 Adaptable Timed Event Service (ATES)

A proposed solution to handle some of the timeliness requirements of CORTEX
system entities is by using a specialized architectural building block, the Timely
Computing Base, which provides a set of fundamental services tailored for that
purpose. However, since the services provided by the TCB are just the essential ones
in order to keep the TCB small, simple and hence reliable, the interface supplied
by the TCB is, in a certain way, a low level interface, which should be hidden from
sentient objects in the programming model.

The Adaptable Timed Event Service (ATES) is a middleware event service that
extends the CORTEX publish/subscribe programming model with constructors to
deal with timeliness requirements. ATES hides from sentient objects the low level
services provided by the TCB concerning timing failure detection, coverage stability
and awareness, and timely execution, providing high level abstractions more suitable

15

respective guarantees. Therefore, the event channel classes supported are dependent on the
zones in which publishers and subscribers reside. Fig. 2 covers the case of a single zone
which is a CAN-Bus.

Fig. 2 Properties, Services and Protocols of Architectural Layers

A detailed description of these abstractions and the mechanisms to enforce them on a CAN-
Bus [Bos91] is provided in chapter 4 of this deliverable with the title: "A Real-Time Event
Channel Model for the CAN-Bus". The dynamic binding protocol of the P/S layer and the
configuration protocol of the AN-layer are described in [WP3-D4, KaB02].

P/S-layer

Abstract
Network layer

CAN-layer

abstractions methods services

event

event channel
classes:
- HRT-channel,
- SRT-channel,
- NRT-channel

broadcast
Messages

message
classes:
- HRT-msg
- SRT-msg
- NRT-msg

methods to access the
fields of the event object

channel methods:
- publish(channel),
- subcribe (channel, attr.)),
- announce (channel)
- discard_subscription
 (channel)

- send_HRT-msg
- send_SRT-msg
- send_NRT-msg

- get_msg

- event_notif.,
- exception_notif.
- filtering

send prioritized
CAN_msg

msg_received

components protocols

- binding
 protocol:

 channel UID
 to
 CAN-ID

- configuration
 Protocol:

 node-UID
 to
 node short ID

- HRT-calendar

- SRT deadline
 ordered queue
 (dyn. prio‘s)

- NRT fixed prio.
 ordered queue

- event-handlers
- exc. handlers
- attribute filters
- subject filters

CAN drivers CAN 2.0 b

timely and
reliable msg
delivery
according to
msg class,

automatic
network
configuration

CAN prioritized
msg transm.
and fault-
handling

event
channels of
different QoS
classes

- HRT-excpt. Detection
 (publisher and subscr.
 site)

- SRT-deadline viol.
 (publisher site)

- discard SRT-msg and
 notify (publisher site)

Figure 7: Properties, services and protocols of architectural layers.

for application programming.

In this context, the main goal of ATES is to extend the CORTEX programming
model in order to enable the definition of timeliness requirements of sentient objects.

Events on ATES are timed, in the sense that they must be produced, dissem-
inated and consumed at the subscribers within certain timing constraints. Since
ATES is a middleware component executing on the payload part of the system (ac-
cordingly to the TCB system model), it can only provide guarantees with respect to
the timely production, dissemination and consumption of events, as allowed by the
underlying payload system. However, by using the timing failure detection service
of the TCB, ATES can take advantage of the semantics of this service in order to en-
force the timely execution of safety procedures when the specified timing constraints
are not fulfilled.

Timeliness requirements are derived from the sentient objects internal logic

16

whose correctness depends on the time required to execute some actions. How-
ever, since the environments envisaged in CORTEX are characterized by attributes
like openness, heterogeneity and large-scale, they exhibit poor baseline properties
with respect to timeliness and reliability. Therefore, the ability to satisfy the tim-
ing constraints of applications can be compromised or, in other words, it may be
difficult to enforce the coverage of timing assumptions, which may degrade over the
execution.

ATES provides appropriate constructors to cope with the temporal uncertainty
of the environment. Adaptability results from the capacity of ATES to provide
operation modes (appropriate for the construction of some application classes) in
which coverage awareness can be used as a means to ensure coverage stability.

In ATES, the specification of timeliness requirements is made through <
bound, coverage > pairs, where a certain timing bound must be satisfied with a
probability indicated by coverage. One of the adaptation modes provided by ATES
can be used to ensure that the coverage stability property is preserved. Roughly
speaking, in this operation mode ATES will dynamically adjust the relevant timing
variables in order to meed the dynamics of the environment. More specifically, ATES
will adjust the bound value that is used by the application in order to maintain the
coverage near to the desired value. ATES provides another operation mode, which
can be described as a coverage awareness mode, in which it dynamically estimates
the coverage that is actually possible to provide for a given bound, and lets the ap-
plication know of this coverage. ATES implements these adaptation functionalities
using the TCB QoS extensions that were presented in another deliverable [16].

ATES notifies sentient objects of changes on the available QoS by calling adapta-
tion procedures previously defined by sentient objects. Moreover, ATES guarantees
that these adaptation procedures are triggered in real-time, that is, upon detecting
changes on the available QoS ATES immediately executes the proper adaptation
procedures. For that, the timely execution service of the TCB is used. Section 3.5
will present the ATES application programming interface (API).

17

3 Service interfaces

3.1 TCB API

A TCB component provides services through a well defined API to user applications
that execute on the payload part of the system. Observe that this interface must
ensure a correct interaction between a synchronous TCB component and potential
asynchronous applications. No timing assumptions are made regarding user appli-
cations, whereby the latency on service invocation is not bounded. The same is
also true for processing the data provided by the TCB, like the ones resulting from
service requests performed by applications.

Duration Measurement

The timestamping service of the TCB is provided through the following function:

timestamp ← getTimestamp ()

Since applications execute on the payload part of the system, a timestamp pro-
vided by the TCB is necessarily affected by the latency of the service invocation.
This means that no guarantees can be given about the time at which the timestamp
is used and, therefore, about the accuracy of this timestamp in absolute terms.
Nevertheless, it is possible to measure the duration of an interval bounded by the
instants reflected by two timestamps. If a computation takes place during the men-
tioned interval, that is, between the two timestamping operations, it is possible
to obtain an upper bound for its execution time. The TCB provides support for
measuring local durations through the following functions:

id ← startLocalMeasurement (Tevt start)

Tevt end, duration ← endLocalMeasurement (id)

The function startLocalMeasurement is used to begin a measurement oper-
ation of a local action started at Tevt start. The operation is identified inside
the TCB by id. To finish a measurement operation, an application must call the
function endLocalMeasurement providing the respective id. The service returns a
timestamp that signals the end of the measured interval (Tevt end) and, obviously,
the measured duration (duration).

The TCB also provides support for distributed measurements. A distributed
measurement is a measurement of a distributed duration, resulting from the ex-
ecution of a distributed action between two different nodes of the system. The
most simple distributed execution corresponds to the transmission of a message
through the (payload) communication channel. The distributed duration measure-
ment service provides the following two functions (only service specific parameters
are indicated):

← sendMessage (Tevt start)

Tevt end, duration, error ← receiveMessage ()

It is assumed that messages can be broadcast on the communication channel
and therefore several processes may execute the function receiveMessage. The

18

parameters are similar to the ones of the local measurement service, except for the
return value error of the receiveMessage function, corresponding the the mea-
surement error. Note that a measurement algorithm must be used, which delivers
an upper bound for the measurement to which corresponds a given error. This
function exhibits a blocking behavior, waiting for a message to be received on the
payload communication channel. Upon returning, Tevt end contains a timestamp
corresponding to the instant at which the TCB received the message.

Timely Execution

The timely execution service of the TCB supports the execution of small
and sporadic tasks, satisfying their timeliness requirements. The timely execution
service guarantees that the execution of a function will finish before a specified
deadline and will not start before a specified liveline. The interface of this service
has the following specification (note that this specification merges both eager and
deferred execution, corresponding respectively to properties TCB 1 and TCB 2
as described in Section 2.1):

Tevt end ← startExecution (Tevt start, delay, max exec, func)

The deadline for the execution of func is given by the parameters Tevt start

and max exec. The former indicates a reference instant for the execution start.
The latter, a duration specifying the maximum execution time, can be summed to
Tevt start to obtain the deadline for the execution. The parameter delay specifies
the deferral time for starting the execution of func, to be counted from Tevt start.
The service returns Tevt end, which indicates the termination instant signaled by
the TCB for the execution of func. An invocation of this service blocks the calling
application until the end of the execution.

Observe that it is not possible to accept all service invocations, either because
of intrinsic impossibility to satisfy the parameters defined for request (for instance,
if a TCB receives a request for an execution that must finish before a deadline t
at some time after t), or because of feasibility constraints related with scheduling
the request, given the available (processing) resources at the moment the request is
issued.

Timing Failure Detection

The ability to detect timing failures in a timely manner is perhaps the most
important service provided by the TCB. The timing failure detection service may
be used to simplify the development of applications and to improve their reliability.
Similarly to the duration measurement service, the timing failure detection service
is divided into a service for detecting local timing failures and into another for
detecting distributed timing failures. The following two functions describe the
interface of the local timing failure detection service:

id ← startLocalDetection (Tevt start, spec, func, deadline)

Tevt end, delay, faulty ← endLocalDetection (id)

The service is started by invoking the function startLocalDetection. The
timestamp Tevt start indicates the start of the observed action and spec the max-

19

imum duration allowed for its execution. The service must detect failures in a timely
manner, therefore it does not accept requests for the observation of timed actions
that have already failed. Timely detection implies that if the execution of an action
fails the TCB can timely execute a procedure in response to the timing failure, a the
procedure specified in func, which must be concluded within a deadline from the
instant at which the timing failure occurs. The particular function that handles the
timing failure depends on the application logic. This function may execute a variety
of actions, ranging from doing a fail-safe shutdown of the system to the update of
variables or the execution of low-level I/O commands to controls external devices.
For instance, consider the example of an application that controls the operation of
an external hardware device. If the system is unable to secure the correct operation
of the device due the occurrence of a timing failure, the function (func) must exe-
cute the necessary operations in order to stop the device operation in a safe state.
Observe that the TCB can use the timely execution service to internally execute
func (in this case with a non blocking semantic).

To terminate an observed execution, an application must call the function
endLocalDetection in order to deactivate the failure detection and to receive the
results of the respective execution, comprising the instant signaled by the TCB for
the final of the execution (Tevt end), its duration (delay) and a flag to indicate if
the execution was timely or faulty.

A distributed action requires that at least one message is exchanged between
two processes and allows to observe execution times of actions whose start and end
events are causally connected by a such message. A distributed action may be
carried out among several processes (such as when a message is broadcast). In such
cases, the execution on each distributed interaction must be observed individually.

The service is supplied by the following functions:

id ← sendMessageTFD (Tevt start, spec, func, deadline)

id ← sendMessageWRemoteTFD (Tevt start, spec, func, deadline)

id ← receiveMessage ()1

Tevt end ← endDistAction (id)

duration 1, faulty 1, lateness degree 1 ... duration n, faulty n,

lateness degree n ← waitInfo (id)

Either sendMessageTFD or sendMessageWRemoteTFD can be used to start a tim-
ing failure detection operation. These functions differ in the way and place where
the timely execution of the handler is done. In the former case, func is executed as
soon as a timing failure is detected on the sender side. In the latter, func is exe-
cuted on receiver side. The timestamp Tevt start signals the start of the observed
action and spec specifies the duration allowed for the execution. If a timing failure
occurs the function func must be concluded within a deadline. Each operation has
an unique id.

To signal the TCB of the termination of a distributed action, endDistAction
can be used after the associated message on the payload channel is returned by

1receiveMessage is a polymorphic function. When a received message is concerned to a dis-
tributed measurement operation the function returns Tevt end, duration and error. Otherwise,
the received message is associated to a timing failure detection operation in which case the function
returns id.

20

receiveMessage. The function endDistAction returns a timestamp (Tevt end)
that contains the instant at which the TCB has received and marked the termination
indication.

To obtain the results of the distributed execution observed by the timing failure
detection service it is necessary to call waitInfo. This function will block the
calling application until the TCB is able to provide all the information relative to
the completion of the operation identified by id. This includes measured durations
(duration x), failure status (faulty x) and lateness degrees (lateness degree x)
relative to all destinations addressed involved in the distributed execution.

3.2 Resource Management framework

3.2.1 Resource model

The most important elements of the resource model are abstract resources, resource
factories and resource managers [25]. Abstract resources explicitly represent system
resources. In addition, there may be various levels of abstraction in which higher-
level resources are constructed on top of lower-level resources. Resource managers
are responsible for managing resources, that is, such managers either map or mul-
tiplex higher-level resources on top of lower-level resources. Furthermore, resource
schedulers are a specialisation of managers and are in charge of managing processing
resources such as threads or virtual processors (or kernel threads). Lastly, the main
duty of resource factories is to create abstract resources. For this purpose, higher-
level factories make use of lower-level factories to construct higher-level resources.
The resource model then consists of three complementary hierarchies corresponding
to the main elements of the resource model. Importantly, virtual task machines
(VTMs) are top-level resource abstractions and they may encompass several kinds
of resources (e.g. CPU, memory and network resources) allocated to a particular
task.

team memory

physical
memory

VPi VPj

CPU

 thread k thread l
memory
 Fact

 thread
 Fact

VPFact

VTMFact

team
Fact

VTM

memory
 Mgr

thread
Sched

VPSched

VTMSched

team
Sched

(a) A hierarchy of abstract resources (b) A factory hierarchy (c) A manager hierarchy

Figure 8: A particular instantiation of the Resource Meta-model.

As an example, a particular instantiation of the framework is shown in Figure 8
(note, however, that the framework does not prescribe any restriction in the number
of abstraction levels nor the type of resources modelled). At the top-level of the
resource hierarchy is placed a VTM, as shown in Figure 8(a), which encompasses
both memory buffer and a team abstraction. The team abstraction in turn includes

21

two or more user level threads. Moreover, a user level thread is supported by one
or more virtual processors (VPs), i.e. kernel level threads. At the bottom of the
hierarchy are located physical resources. In addition, a VTM factory is at the top
of the factory hierarchy and uses both a memory and a team factory. The team
factory then is supported by both the thread and the virtual processor factory as
depicted in Figure 8(b). Finally, the manager hierarchy is shown in Figure 8(c). The
team scheduler and the memory manager support the VTM scheduler to suspend a
VTM by temporally freeing CPU and memory resources respectively. The thread
scheduler in turn allows the team scheduler to suspend its threads. Finally, the VP
scheduler supports the preemption of virtual processors. Conversely, this hierarchy
also provides support for resuming suspended VTMs.

3.2.2 The Resources Meta-object protocol

The component types of the resource model are shown in Figure 9. Such com-
ponent diagram may be used to support a particular instantiation of the resource
framework. Passive resource components represent non-processing resources such as
system memory and battery life. In contrast, jobs are capable of performing some
activity, that is, they receive messages and process them. Both passive resources
and jobs are created by factories as shown in Figure 9. In addition, passive resources
are managed by managers. However, since jobs are processing resources, they are
managed by schedulers instead. In addition, a management policy component deter-
mines the management strategy that managers employ. Similarly, schedulers use a
scheduling policy component for determining the execution order of their associated
jobs.

creates

maps

resources myFactory
1..*

1..*
resources myManager

multiplexes

creates

 Passive
Resource

 Job
1..*

1..*

 Passive
Resource
Factory

 Job
Factory

 Manager

Scheduler

Manage-
ment
Policy

Scheduling
Policy

 IManager

 IScheduler

IResourceFactory

IJobFactory

 IJob

 IResource

ISchedulingPolicy

IManagementPolicy

Figure 9: UML component diagram of the Resource model.

All component types support an interface with operations to transverse their
associated abstraction hierarchies: getLL(), setLL(), getHL() and setHL(). For
instance, the resource hierarchy may be traversed by applying the getLL() operation
at the top-level, i.e. the VTM. This operation would be later applied to the lower-
level resources, and so on. Both the higher-level and the lower-level of an entity
in the hierarchies may be set by accessing the operations setHL() and setLL()

22

respectively. The Access to both the manager and factory of a passive resource can
be obtained through the interface Iresource, as shown below. The references to
the manager and factory of an abstract resource are registered by the operations
setManager() and setFactory() respectively.

interface IResource : IUnknown {
HRESULT getLL([out, size_is(,*maxRes)] IResource**, [out] long* maxRes);
HRESULT setLL([in, size_is(,maxRes)] IResource**, [in] long maxRes);
HRESULT getHL([out] IResource**, [out] IJob**);
HRESULT setHL([in] IResource*, [in] IJob*);
HRESULT getManager([out] IManager**);
HRESULT setManager([in] IManager*);
HRESULT getFactory([out] IResourceFactory**);
HRESULT setFactory([in] IResourceFactory*);

};

The interface of a job includes the operations getSchedParam() and
setSchedParam(). The former is in charge of accessing predefined settings. The
latter is responsible for performing a control admission test. If successful, resources
are reserved and the scheduling parameters are set. The operation run() allows for
the execution of a function with associated parameters. Jobs can also be suspended
by using the operation suspend() and resume() respectively.

interface IJob : IUnknown {
HRESULT getLL([out, size_is(,*maxRes)] IResource**, [out] long* maxRes,

[out, size_is(,*maxJob)] IJob**, [out] long* maxJob);
HRESULT setLL([in, size_is(,maxRes)] IResource**, [in] long maxRes,

[in, size_is(,maxJob)] IJob**, [in] long maxJob);
HRESULT getHL([out] IJob**);
HRESULT setHL([in] IJob*);
HRESULT getManager([out] IScheduler**);
HRESULT setManager([in] IScheduler*);
HRESULT getFactory([out] IJobFactory**);
HRESULT setFactory([in] IJobFactory*);
HRESULT GetSchedParam([out] OLECHAR* schedParam);
HRESULT SetSchedParam([in] OLECHAR* schedParam);
HRESULT run([in] void* function, [in] void* parameters);
HRESULT suspend();
HRESULT resume();

};

The interfaces of factories expose an operation for the creation of abstract re-
sources, as shown below. This operation is also responsible for associating the
resource with a resource manager. In case of creating processing resources, a job
factory is used and the scheduling parameters should be indicated. This interface
also provides the operation getResources() that returns references of the resources
created by the factory.

interface IResourceFactory : IUnknown {
HRESULT getLL([out, size_is(,*maxRes)] IResourceFactory**, [out] long* maxRes);
HRESULT setLL([in, size_is(,maxRes)] IResourceFactory**, [in] long maxRes);
HRESULT getHL([out] IResourceFactory**, [out] IJobFactory**);
HRESULT setHL([in] IResourceFactory**, [in] IJobFactory**);
HRESULT newResource([in] int size, [in] OLECHAR* policy);
HRESULT getResources([out, size_is(,*maxRes)] IResource**, [out] long* maxRes);

23

};

interface IJobFactory : IUnknown {
HRESULT getLL([out, size_is(,*maxRes)] IResourceFactory**, [out] long* maxRes,

[out, size_is(,*maxJob)] IJobFactory**, [out] long* maxJob);
HRESULT setLL([in, size_is(,*maxRes)] IResourceFactory**, [in] long maxRes,

[in, size_is(,maxJob)] IJobFactory**, [in] long maxJob);
HRESULT getHL([out] IJobFactory**);
HRESULT setHL([in] IJobFactory*);
HRESULT newResource([in] int size, [in] OLECHAR* policy, [in] OLECHAR* schedParam,

[out] IJob** interf);
HRESULT getResources([out, size_is(,*maxJob)] IJob** interf, [out] long* maxJob);

};

In addition, the VTM factory should implement the interface IVtmFactory

which offers operations for obtaining the associated task of a VTM and vice versa, i.e.
the IJob interface of a VTM. An operation for obtaining the interface Ischeduler

of the VTM scheduler is also provided.

interface IVtmFactory : IUnknown {
HRESULT getVtm([in] OLECHAR* task_name, [out] IJob** vtm);
HRESULT getTask([in] IJob* vtm, [out] OLECHAR* task_name);
HRESULT getVtmScheduler([out] IScheduler** vtmScheduler);

};

The manager’s interface exposes the operation admit() which performs an ad-
mission control test that determines whether or not there are enough resources to
satisfy a resource request. In a successful case, resources may be reserved by us-
ing the operation reserve(). Reservations can then be liberated by invoking the
operation expel(). These three operations are delegated to the policy component.
Similar to factories, through the operation getResources(), resource managers are
able to retrieve the references of the resources that are mapped or multiplexed.
Such references may be included or removed from a manager’s registry by using the
operations addResource() and removeResource() respectively. In addition, the
management policy is obtained by accessing the operation getPolicy() whereas
the operation setPolicy() allows the user to set the management policy of the
manager, i.e. the management policy component is dynamically changed.

interface IManager : IUnknown {
HRESULT getLL([out, size_is(,*maxMgrs)] IManager**, [out] long* maxMgrs);
HRESULT setLL([in, size_is(,*maxRes)] IResource**, [in] long maxRes);
HRESULT getHL([out] IResource**, [out] IJob**);
HRESULT setHL([in] IResource*, [in] IJob*);
HRESULT getPolicy([out] OLECHAR** policy);
HRESULT setPolicy([in] OLECHAR* policy);
HRESULT admit([in] OLECHAR* resourceAmount);//may define one or more parameters
HRESULT reserve([in] OLECHAR* resourceAmount);
HRESULT expel([in] OLECHAR* resourceAmount);
HRESULT getResources([out, size_is(,*maxRes)] IResource**, [out] long* maxRes);
HRESULT addResource([in] IResource**);
HRESULT removeResource([in] IResource**);

};

The scheduler’s interface provides similar operations to the manager’s but ad-
ditionally include operations for suspending and resuming processing resources by

24

invoking the suspend() and resume() operations respectively. Lastly, the order
of execution of multiplexed resources is determined by the schedule() operation
which is also delegated to the policy component.

interface IScheduler : IUnknown {
HRESULT getLL([out, size_is(,*maxMgr)] IManager**, [out] long* maxMgr,

[out, size_is(,*maxSched)] IScheduler**, [out] long* maxSched);
HRESULT setLL([in, size_is(,maxMgr)] IManager**, [in] long maxMgr,

[in, size_is(,maxSched)] IScheduler**, [in] long maxSched);
HRESULT getHL([out] IScheduler**);
HRESULT setHL([in] IScheduler*);
HRESULT getPolicy([out] OLECHAR** policy);
HRESULT setPolicy([in] OLECHAR* policy);
HRESULT admit([in] OLECHAR* resourceAmount);//may define one or more parameters
HRESULT reserve([in] OLECHAR* resourceAmount);
HRESULT expel([in] OLECHAR* resourceAmount);
HRESULT getResources([out, size_is(,*maxJob)] IJob**, [out] long* maxJob);
HRESULT addResource([in] IJob*);
HRESULT removeResource([in] IJob*);
HRESULT suspend([in] IJob*);
HRESULT resume([in] IJob*);
HRESULT schedule([in] int quantum);

};

Policy components are in charge of performing control admission tests, resource
reservation and resource liberation. An operation for obtaining the policy deployed
by the component is also provided.

interface IManagementPolicy : IUnknown {
HRESULT getPolicy([out] OLECHAR** policy);
HRESULT admit([in] OLECHAR* resourceAmount);
HRESULT reserve([in] OLECHAR* resourceAmount);
HRESULT expel([in] OLECHAR* resourceAmount);

};

Scheduling policy components additionally offer operations for scheduling jobs
and the dispatch() operation for obtaining the next job to be executed.

interface ISchedulingPolicy : IManagementPolicy {
HRESULT schedule([in] int quantum, [in, size_is(,maxJob)] IJob**,

[in] long maxJob);
HRESULT dispatch([out] IJob**);

};

3.3 The Task model

3.3.1 Overview

The main feature of the task model is that it offers support for the high-level analysis
and design of the system’s resource management. More precisely, the task model
allows us to define both how system resources are allocated in a distributed system
and the resource management policies that are used. This model also prescribes
the level of quality of service for services provided by such a system. For instance,

25

for different services of the same type, such as audio transmission, more than one
service offering different level of QoS may be defined.

A task is defined as a logic unit of computation which has an amount of re-
sources allocated. Examples of tasks are activities performed by the system such
as transmitting audio over the network or compressing a video image. From the
programmatic point of view, a task may involve either a single invocation sequence
or multiple invocation sequences. The simplest case for a sequence is that whereby
only one operation is invoked. A task instance is then an occurrence of a task; a
task may be related to one or more task instances. For example, the task of receiv-
ing incoming requests from the network may have several instances when there is
a concurrent access to the server and there is a multi-threaded policy for attending
requests.

The task model is concerned with both application services and middleware
services. Thus, we take a task-oriented approach for managing resources in which
services are broken into tasks and are accommodated in a task hierarchy. Top-level
tasks are directly associated with the services provided by a distributed system.
Lower-levels of this hierarchy include the partition of such services into smaller
activities, i.e. sub-tasks. Sub-tasks are denoted as follows:

Task.sub-task.sub-sub-task...

For instance, an audio transmission task referred to as transmitAudio

may be partitioned into two subtasks, namely transmitAudio.send and
transmitAudio.receive. The former is in charge of sending audio packets whereas
the second sub-task is responsible for receiving stream data. This approach offers
resource management modelling of both coarse- and fine-grained interactions. The
former is achieved by defining coarse-grained tasks (i.e. tasks spanning components
and address spaces boundaries) and the latter is done by using task partitioning.
In addition, tasks are not necessarily disjoint and may be interconnected. For in-
stance, a component running one task may invoke another component concerned
with a different task.

3.3.2 Tasks and VTMs

Tasks have an associated VTM as said before. Hence, a VTM represents a virtual
machine in charge of supporting the execution of its associated task. VTMs also
represent a higher-level of resource management. They are an encapsulation of the
pool of resources allocated for the execution of their associated tasks. VTMs isolate
the resources that a service uses to have a better control of the desired level of QoS
provided by it. That is, the resources a task uses for execution are localised. Hence,
it is straightforward to access the resources of a task when it is under-performing to
reconfigure its resources.

The UML model in Figure 10 illustrates other details concerning the relationship
between tasks and VTMs. There is a one-to-one mapping between a task hierarchy
and a resource hierarchy. The top-level task of a task hierarchy is directly associated
with a composite VTM placed at the top of the resource hierarchy. This composite
VTM may encompass various local and/or remote VTMs. Tasks of this kind are
composite tasks, which are constituted by a number of sub-tasks. Sub-tasks may
be either interleaved or disjoint. In the former case, sub-tasks are associated with

26

1..*
1

1..*

1..*
1..*

2..*

0..*

2..* 0..*

1

1

VTMFactory

1..* 0..*

Composite VTM

1 1
VTMSched

0..*
Composite task

0..*

Primitive Task

Primitive VTM

creates

Distributed VTM

2..*

Distributed Task

2..*
 Node

schedules 1..*
0..*

creates

schedules

0..*

0..*

0,1

1..*

Figure 10: UML diagram of relationships between Tasks and VTMs.

a single operation invocation sequence whereas in the latter two or more sequences
are involved. Sub-tasks that are not further partitioned are called primitive tasks
and are only related to a single node. However, distributed tasks involve two or
more nodes. It should be noted that sub-tasks may also be composite and even
distributed. Similarly, VTMs not containing other VTMs as lower-level resources
are named primitive VTMs. Hence, the bottom-levels of a task hierarchy consist
of primitive tasks which are associated with primitive VTMs. Primitive VTMs
are then defined according to the specific platform characteristics of the node of
residence. Moreover, composite VTMs are involved with more than one local task
and distributed VTMs include two or more nodes. Importantly, distributed VTMs
may recursively encompass other distributed VTMs. Finally, VTM schedulers and
VTM factories are defined on a per-node basis.

3.3.3 Task graph configurations

A task graph is a directed graph in which an operation invocation sequence (i.e. a
task) is represented in terms of components, component interfaces and component
interface operations. Different from component configurations, task graphs define
the specific interface operations a task path goes through. There is a great vari-
ety of the task graph configurations that can potentially exist. An example of this
complexity is the fact that several tasks may be defined over the same component
configuration path. Since an interface may include several operations, different tasks
may run through the same interfaces by accessing different operations. Moreover,
different tasks may even go across the same operations when the same component
configuration is used for different purposes (e.g. marshalling video streams and
marshalling audio streams). Therefore, components, interfaces, and operations may

27

participate in more than one task at the same time. Furthermore, the transition
from one task to another one is an important issue that contributes to define how
task graphs are interconnected. Such transitions are carried out by task switching
points. Interestingly, a task switching point corresponds to a change in the under-
lying resource pool to support the execution of the task that has come into play.
A task switching point is essentially defined as a triplet including a component, an
interface, and an exported operation. Imported operations are not used for defining
these points for the sake of simplicity. It is only needed one point in the interaction
path of two components to define a task switch. This point could be defined in either
side of the interaction, however, defining it in the exporter side is more natural as
this side is in charge of attending requests.

b) multiple task switching point a) single task switching point

task_n

Task point definitions

m_x

m_x m_x

t_z

.
t_y

m_x m_x

t_k

.

t_y

t_i

t_x

t_z if t_y
t_k if t_i

m_x

Task point definitions

Figure 11: Types of Task Switching Points.

There are two types of task switching points as depicted in Figure 11. A single
task switching point, depicted in Figure 11(a), can only switch to a single task
whereas a multiple task switching point may switch to two or more different tasks,
as shown in Figure 11(b). The former maps a switching task point to a single task.
As an example of a single task switching point consider a protocol stack in which
each layer is associated with a different task. Hence, when going from one layer to
the adjacent one a task switch takes place. In contrast, a multiple task switching
point selects, from a set of tasks, the task to switch according to the current task.
To accomplish this, ”If” statements are used to define the possible options within
a task point. As an example of a multiple-task switching point, consider a task
graph of a video stream connection va which includes a filter component bound to a
compressor component and these components are part of task ty and tz respectively.
Similarly, there is another video stream connection vb that uses the same instances
for the both the filter and the compressor, although they are associated with tasks
ti and tk respectively. Thus, the compressor will switch to task tz if the filter was
executed as part of task ty, otherwise it will switch to task tk.

3.4 TBMAC API

The TBMAC API can be divided into a number of distinct parts:

1. Initialisation

2. Slot Management

28

3. Communication

Each of these parts will now be discussed followed by a discussion of issues that
higher layers, above TBMAC, should be aware of.

3.4.1 Initialisation

Firstly, before the TBMAC protocol starts, the participants in the protocol are
required to agree on a number of pieces of information. Firstly, the participants need
to agree on the number of slots in the CFP and in the CP. In addition, participants
should also agree on the duration (size of packet transmitted) in a CFP and a CP
slot.

err set cfp size(in size)

err set cp size(in size)

err set cfp slot size(in pkt size)

err set cp slot size(in pkt size)

Higher layers, above TBMAC, would also need to query these values during
execution of the protocol to, for example, implement QoS and/or Admission Control.

err get cfp size(out size)

err get cp size(out size)

err get cfp slot size(out pkt size)

err get cp slot size(out pkt size)

Secondly, the TBMAC protocol participants also need to agree on a division of
the geographical area, covered by the participants into a set of geographical cells.
As a participant in the TBMAC protocol moves, it changes the geographical cell
that it is in. A layer above the TBMAC protocol is needed to monitor the mobile
hosts position and to then notify the TBMAC protocol of a change of geographical
cells. This higher layer would also initialise the TBMAC protocol with the initial
position of the mobile host.

When the higher layer notices a change in geographical cells, it then notifies the
TBMAC layer passing in the current cell number (i.e. the cell just entered) and a
list of the numbers of the cells neighbouring the current cell.

err change in geocell(in current cell,

in list of neighbours[],

in list length)

Once the participants have agreed on a set of geographical cells, TBMAC would
then allocate a corresponding radio channel.

3.4.2 Slot Management

As the TBMAC protocol executes, layers above TBMAC will request CFP slots to
be allocated and deallocated. In the TBMAC protocol, a mobile host (which does
not have a CFP slot) requests a slot by transmitting a message in the CP. This

29

message transmission can be corrupted due to contention with another mobile host
transmitting a similar message. Therefore, the allocation of a cfp slot also needs to
be monitored by such a mobile host.

err alloc cfp slot(out slot ref, in address, in req type)

err dealloc cfp slot(in slot ref)

err monitor cfp alloc(in slot ref)

Layers above the TBMAC layer will also need to query the TBMAC protocol
for the number of slots allocated and to which mobile hosts these slots have been
allocated.

err get allocated slots(out list length,

out slot refs owners list[])

Similarly, higher layers will also need to query the TBMAC protocol for the
number of inter-cell slots that have been allocated, which mobile hosts these inter-
cell slots have been allocated to and which adjoining cell each inter-cell slot will
communicate with.

err get inter cell slots(out list length,

out list of owners and cells[])

The last slot management issue is how higher layers become aware of a change in
the allocation of CFP slots. One option would be for the higher layer to periodically
poll the TBMAC layer for changes in the allocation of slots by calling the above
get allocated slots(..) function. Another option would be for the higher layer
to register a callback to be notified when the allocation changes (or when a request
to be allocated a CFP slot is received).

err add slot mgt callback(out func ref, in callback func)

err del slot mgt callback(in func ref)

3.4.3 Communication

Once a mobile host has a CFP slot allocated to it, the mobile host can then transmit
messages in its CFP slot. There are two options for the reception of messages. Either
messages can be queued by the TBMAC layer or a higher layer can register a call
back to be notified when a message arrives.

err send(in slot ref, in pkt, in pkt len)

err recv(out address, out pkt, out pkt len)

err add recv callback(out func ref, in slot ref,

in callback recv func)

err del recv callback(in func ref)

30

3.4.4 Higher layer issues

The TBMAC protocol only provides a set of primitives for the management of CFP
slots in a cell. The decision as to whether a mobile host should get 3 CFP slots or
1 CFP slot needs to be taken by a layer above the TBMAC protocol. This decision
would typically be done by a QoS layer above the TBMAC protocol.

Similarly, the task of allocating CFP slots to newly arriving mobile hosts would
fall to an Admission Control layer (possibly in conjunction with the QoS layer to
ensure that a certain level of QoS is maintained).

Another problem not addressed by the TBMAC protocol is which mobile host in
a cell is allocated a particular inter-cell slot. Again, an Admission Control layer could
decide which mobile host is allocated a particular inter-cell slot. The mobile host
(or hosts) that is allocated an inter-cell slot takes on the role of a gateway between
two cells. This gateway role would also be a function of the routing layer, being
used to route packets between cells. Therefore, there is an interaction between the
Admission Control layer and the Routing layer which would need to be addressed.

Finally, TBMAC does not specify the number of dynamic inter-cell slots there
are between any two adjacent cells. The decision on whether or not to allocate more
inter-cell slots should be taken at the Routing layer in conjunction with the QoS
layer (or vice versa). However, TBMAC does provide the functionality to allocate
and deallocate inter-cell slots between adjoining cells (see Section 4.3.1).

3.5 ATES API

Sentient objects communicate and cooperate using a publish/subscribe event model.
Each sentient object should publish events in order to disseminate relevant informa-
tion to the surrounding environment. When using ATES, before starting to publish
events, sentient objects should specify some necessary parameters, including the
desired QoS level (a < bound, coverage > pair) and the notification procedures
that should be called when timing failures and QoS changes occur. The following
function is used for this purpose:

← requestPublishing (event, coverage, bound, mode, dev,

on timing failure handler, on QoS changing handler (new latency|

new coverage))

The above function is used to inform ATES that an operation of publishing the
event (event) is required. The QoS requirement can be specified with an associated
mode to indicate whether coverage stability or coverage awareness is the preferred
operation mode. If choosing the coverage stability mode, coverage must be specified
by the calling sentient object. On the other hand, in the coverage awareness mode,
bound should be indicated instead. To be informed in a timely manner of timing fail-
ures and QoS changes, on timing failure handler and on QoS changing handler

handlers can be defined. The former is executed when timing failures occur. The
latter will be called by ATES upon detecting QoS changes; a new value for the
bound or the coverage (depending on the adaptation mode specified) will also be
sent by ATES to the application object. In order to prevent spurious notifications
due to irrelevant changes on the available QoS, applications must specify a threshold

31

value (dev) that indicates the necessary deviation relative to the current value (of
the coverage or bound) that triggers the delivery of a notification.

After executing the operation requestPublishing, a sentient object may start
publishing events using the following function:

← publishEvent (event)

Event subscription requests are performed in ATES using an interface function
similar to those existing in traditional publish/subscribe frameworks:

← subscribeEvent (event, subscriptionHandler (event))

The parameter subscriptionHandler indicates an handler that will be executed
by ATES when events of type event are received from the event based communica-
tion subsystem. After the execution of this handler, the timed action associated to
the transmission of this event is terminated.

32

4 Definition of Services and Protocols

This section describes the services and protocols defined in the cortex architecture,
which may be used to implement the interfaces identified in Section 3. This includes
a description of protocols and services required to implement the TCB API, an
example of the use of the resource and task models and, finally, a description of
communication services and protocols. The specific implementation details relative
to other services, for instance ATES, will be provided in the final deliverable relative
to basic services and protocols.

The protocols and services described in Sections 4.5 and 4.4 continue the work
specified in WP2-D3 and WP3-D4. The goal is the interaction of islands of tight
control over a wireless channels following the WAN-of-CANs model in CORTEX.
So far, we provided a distributed event channel protocol implementation which was
mapped to the CAN-Bus [28] and to a TCP/IP network. The work described in
the two contributions: “A Real-Time Event Channel Model for the CAN-Bus” and
“Content and Cell based Predictive Routing (CCPR) Protocol for Mobile Ad Hoc
Networks” extends this previous approach and solves some of the deficiencies re-
vealed.

The “Real-Time Event Channel Model for the CAN-Bus” introduces typed
events and event channel classes with different temporal guarantees. It therefore
extends the priority-based best effort approach of the existing protocol with respect
to predictability and is a step to include the CORTEX event model on the CAN
level. The approach exploits the already existing services and protocols like the
subject-based addressing and binding mechanism and the automatic configuration
capability. The paper shows how the different classes of real-time event channels
are specified and how they are mapped to the underlying CAN-Bus network. To
our knowledge, this is the first attempt to provide typed events and real-time event
channel classes on the CAN level by a fully distributed architecture. Other ap-
proaches are either based on an event server model [34, 30] or have lower level
abstractions [59].

To support communication between the CANs, our existing protocol builds event
channels on top of TCP/IP [16, 44]. It uses a central server to perform the channel-
to-address binding in a subject-based addressing scheme. Although this is useful in
a single wireless LAN segment with a known set of nodes (e.g. a small number of
cooperating robots), the scheme has problems in a larger and more dynamic setting:

1. The central server scheme does not scale well for larger sets.

2. A publisher may have to maintain a large number of open TCP connections.

3. Mobility of nodes is not supported.

These deficiencies are tackled in the “Content and Cell based Predictive Routing
(CCPR) Protocol for Mobile Ad Hoc Networks”. CCPR includes the following
services:

1) Source (and route) discovery. Based on the event channel subjects, publish-
ers as sources of information are dynamically discovered by the protocol. A
request issued by a subscriber to an event channel uses directional confined

33

flooding to find nodes publishing to the respective channel. Location and direc-
tion information is exploited as well as the hop number to define constraints
on flooding. No central broker is needed to perform the subject-to-address
binding.

2) Cell-based route construction. CCPR exploits the geo-cells provided by the
TBMAC MAC-layer protocol described in WP3-D4 (and further elaborated in
this deliverable) to construct a route. This has the advantage that the routes
are stable even if individual nodes move. The cell-based routing thus takes
the advantages of cluster-based routing but omits its disadvantages.

3) Cell-based predictive route maintenance. As long as cells along the route
are populated, a subscriber is connected to the respective publisher(s). How-
ever, because of mobility a cell may become empty. This situation is proac-
tively discovered and a search for an alternative route is initiated. If possible,
a locally restricted solution for an alternative route is selected. CCPR exploits
the predictability provided by the TBMAC layer. Because the latency of mes-
sage transfer in a cell is bound and the number of hops is specified in the
request package, a predictable latency of the entire route can be assumed if
all intermediate cells are populated. Because of the location aware predictive
routing a situation when a cell becomes empty can early be detected and either
an alternative route can be provided or an early warning of a QoS violation
can be issued.

4.1 TCB services and protocols

In this section we will describe the protocols and internal details of the services
identified in Figure 2.

4.1.1 Timestamping Service

The timestamping module of the TCB implements the function getTimestamp. The
timestamps are obtained by reading the local clock pc of the TCB component.

Figure 12 illustrates an interaction resulting from an invocation of the times-
tamping service. At real time instant ta the application invokes the TCB to get a
timestamp. Observe that this invocation is processed by the TCB only at instant
ts > ta. At instant ts, the service reads a timestamp Ts = pc(ts) from the local clock
and sends it to the application. Finally, at instant tb, the application obtains the
timestamp and continues its execution.

4.1.2 Local Measurement Service

The local measurement service is used to measure time intervals comprised between
two local events, that is, events that occur on the same machine. The local mea-
surement module implements this service and provides it to applications through
the functions startLocalMeasurement and endLocalMeasurement.

Observe Figure 13. At real time instant ta the application invokes a local mea-
surement operation to the TCB providing a timestamp that signals the start of

34

Application

Ts = pc (ts)
Timestamping

Service

Ts

Service
invocation

latency

Response
processing

latency
ta tb

ts

TCB

Figure 12: Timestamping service in action.

Application

TCB

Tf = pc (tf)
Timestamping

Service

(Tf , Tf – Ti)

ti te

Local
Measurement

Service

real time

observed time

tf

t

Ti ID
ID

ID:
Ti

start end

2

ta

Ti = pc (ti)

Figure 13: Local measurement service in action.

the interval (Ti = pc(ti))
2. The TCB records the request and saves the timestamp

provided by the application. The operation is referenced by ID. At instant te the ap-
plication stops the measurement invoking the function endLocalMeasurement with
the identifier (ID) of the operation. The TCB calls the timestamping service to
get a timestamp that signals the end of the measured interval (represented by tf in
the figure). The duration is calculated by subtracting Ti to Tf and is sent to the
application together with the timestamp Tf .

The errors associated to the measurements performed by this service are
bounded by the following value: error = (Tf − Ti)ρ + g, where ρ is the drift of
the local clock (TCB Ps 2) and g its granularity. Recall the informal definition of
the duration measurement service provided in Section 2.1. Considering TDmin

= g
and TD2

max
= ρ, the service presented in this section verifies property TCB 3.

2This timestamp must be previously obtained, for instance be calling the TCB timestamping
service or using a timestamp provided as a result of a previous invocation of another TCB service.

35

4.1.3 Distributed Measurement Service

A distributed duration measurement requires mechanisms more elaborated than the
simple subtraction of the timestamps required for the local measurement. In this
service, the handled actions are bounded by events that may occur in distinct system
nodes and therefore marked with timestamps provided by different physical clocks
(which are not synchronized).

TCBP

Distributed
Duration

Measurement
Service

Timestamping
Service

P TCBQ

tf

ti

t
D = Г + δ

dtr

te

Q

Distributed
Duration

Measurement
Service

Node P Node Q

Г

δ = pcP (te) - pcP (ti)Send
(m, pcP(ti))

m [δ]

(m, pcQ(tf), D)

1

Figure 14: Distributed measurement service in action.

In Figure 14 it is possible to observe the operation of the distributed measure-
ment service. At an arbitrary instant, an application executing in node P sends a
message m through the payload communication channel to a process that is being
executed in node Q, using for that purpose the distributed measurement service of
the TCB (sendMessage) and specifying a start instant for the interval under ob-
servation (i.e. PCP (ti)). The duration measurement service of the TCB executing
on node P receives the request for the message transmission at instant te (in fact,
the TCB just performs an interception of the transmission, since the message will
be handed over to the normal system transmission layers). Then it calculates the
elapsed time since ti until the instant at which the message interception was per-
formed, that is, δ = PCP (te) − PCP (ti), and re-sends the message (attaching the
value of δ to it) to node Q.

When message m arrives to station Q, the duration measurement service of the
TCB component executing on node Q intercepts it in order to establish a termination
instant for the action and estimate its duration. The timestamping service is called
to obtain a termination instant for the execution. Then the TCB estimates the
duration of the action bounded by ti and tf , that is, D = δ + Γ, and forwards the
message to the application with an indication of PCQ(tt) and D. Observe that to
calculate (or estimate) D the service needs to know Γ, that is, the delivery delay of
message m. The δ variable is received jointly with the message.

Since it is not assumed that the local clocks of the TCB components are syn-
chronized, Γ must be estimated using mechanisms that do not assume the existence
of a global time reference. For this purpose it is possible to use an algorithm based
on the round-trip measurement technique [10, 26].

The distributed duration measurement service estimates durations based on the
two variables presented in Figure 14: δ and Γ. If a bound can be established on

36

the errors introduced by each one of these two variables, than it is obvious that the
sum of the two variables will also have a bounded error. Observe again Figure 14:
the variable δ represents a local measure (PCP (te) − PCP (ti)), therefore the error
implied in this measure is introduced by the drift and granularity of the local clock
of TCBP . Ignoring the clock granularity g, δ is calculated by P with an error
bounded by (PCP (te) − PCP (ti))ρ. As mentioned above, the delivery delay Γ can
be estimated using a round-trip measurement technique with known and bounded
errors.

Given all the above, it can be concluded that the distributed duration measure-
ment service just presented satisfies property TCB 3.

4.1.4 Timely Execution Service

The timely execution module of the TCB implements the function startExecution.
In general terms, the service allows the timely execution of functions provided by
user applications. The functions must be accessible to the TCB, that is, must be in
an address space that allows the TCB to execute them. The worst case execution
time (WCET) of the functions must be indicated to the TCB along with the function
definition.

Application

TCB

Tf = pc (tf)
Timestamping

Service

(Tf)

ti td

Timely
Execution
Service

max_exec

tf

t

(Ti , delay,
max_exec, func)

9

ta

func

delay
wcet

tb

ts

Ti

Figure 15: Timely execution service in action.

Figure 15 illustrates the service operation in a scenario in which a request is
accepted by the TCB. At real time instant ta the application invokes the service
specifying a deadline for the execution, which corresponds to max exec units counted
from a reference instant Ti = pc(ti). The execution has to be deferred to an instant
defined by Ti + delay. At instant ts the request is processed by the TCB and the
execution of func is delayed until td = ti + delay, being triggered at an instant
no earlier than td. When the execution finishes, the service calls the timestamping
service in order to obtain a final instant for the execution (represented in the figure by
tf) and returns Tf to the application. Observe that between ta and tb the application
stays blocked, waiting for the conclusion of the execution.

However, as mentioned earlier in Section 3.1, to secure the property TCB 1
(eager execution) some of the requests for timely executions have to be denied by

37

the TCB. Therefore, an admission control layer at the TCB interface has to verify
if the two following conditions are fulfilled:

• at instant ts, when the TCB processes a request, the time that remains for the
expiration of execution deadline, that is, max exec− (Ts− Ti), must be equal
or greater that the WCET of the function;

• at instant td = ti + delay, the time that remains for the expiration of the
deadline, that is, max exec− (Ts−Ti), must be also equal or greater that the
WCET of the function.

Although the previously enumerated conditions can be easily verified in runtime,
there exists also another restriction related with the need to preserve the timing
parameters of the active tasks inside the TCB. In other words, it is necessary to
ensure the feasibility of the schedule of all TCB tasks (internal and corresponding
to external requests). On-line schedulability analysis is therefore required, for which
it is possible to resort to known existing solutions [49].

Given that local clocks have known and bounded drifts (TCB Ps 2), property
TCB 2 (eager execution) can secured by the service in a simple way. The service
only triggers the function execution when the local clock exhibits a value equal or
greater than the instant specified for starting the execution.

However, observe that the rate of drift of the local clock can introduce consid-
erable imprecisions when positioning future events in the timeline, if the durations
associated to these events are too long.

ti tf
tt’f t’’f

∆

Figure 16: Imprecision of event positioning due to the clock rate of drift.

This imprecision can be clearly observed in Figure 16. Consider a real time
instant tf , specified by a duration ∆ counted from a reference instant ti, that is,
tf = ti +∆. With a perfect local clock, we would have pc(tf) = pc(ti)+∆. However,
when considering the clock rate of drift, at real time instant tf the clock may exhibit
any value in the interval pc(tf) ∈ [pc(ti) + ∆−∆ρ, pc(ti) + ∆ + ∆ρ].

Considering pc(tf) to be the instant specified by an application for starting an
execution (measured on the local clock), the service will ensure property TCB 2 if
it only starts the timely execution at instant pc(ti) + ∆ + ∆ρ.

4.1.5 Local Timing Failure Detection Service

By using the local timing failure detection service an application will have the guar-
antee that the TCB will promptly execute an handler function (for instance to exe-
cute safety procedures) if the observed action does not finish before some specified

38

deadline. In fact, the timing failure detection module of the TCB, which implements
the functions startLocalDetection and endLocalDetection, allows the detection
of timing failures on the execution of local computations.

Similarly to the local duration measurement service, the timing failure detection
service provides one function to initiate a new detection (startLocalDetection)
and another to finish it (endLocalDetection). In consequence, the service needs to
internally store some information about the operations in execution. This mecha-
nism is similar to the one used within the local duration measurement service.

Application

TCB

Tf = pc (tf)
Timestamping

Service

(Tf, Tf - Ti , fault=false (Scen. A) | true (Scen. B))

ti tb

Timely
Execution
Service

spec

tf

t

start (Ti, spec, deadline,
func)

8

ta

ts

Local Timing
Failure Detection

Service

func

7

deadline

ID end (ID)

te

func

spec’

Scenario B
Scenario A

ts

Ti

Figure 17: Local timing failure detection in action.

Figure 17 illustrates the service operation for two execution scenarios. In sce-
nario A, the execution of an action observed by the TCB has terminated on time.
In scenario B, the action does not finish on time, therefore doing a timing failure.

At real time instant ta a timing failure detection request is invoked with the
following parameters:

• Ti = pc(ti) - specifies the initial instant (measured on the local clock) for the
observation;

• spec - specifies the duration allowed for the execution, counted from Ti (in
scenario A);

• spec’ - specifies the duration allowed for the execution, counted from Ti (in
scenario B);

• func - indicates the function that should be timely executed if a timing failure
occurs;

• deadline - the deadline for the execution of func.

39

In scenario A, a timing failure occurs at instant Ti +spec (measured on the local
clock). However, just like with the timely execution service, the drift of the clock
must by taken into account in order to provide a timely timing failure detection. In
concrete, it must be assumed that the clock runs at the lowest speed (i.e. has a drift
of −ρ), which means that at real time instant ti + spec the clock will have drifted
−specρ towards the expected value. Hence, in order to provide a timely detection,
pc(ti + spec − specρ) must be internally used as the bound for the detection (see
Figure 18).

safe

ti

spec . ρ

ti + spec

Figure 18: Guaranteeing timely timing failure detection.

At real time instant ts the request is processed by the TCB, which checks if
the execution has already failed (i.e. if Ts > Ti + spec3), in which case the request
is rejected (in the two scenarios presented in the figure the service is accepted).
The timely execution service is invoked to ensure the execution4 of func at instant
Ti + spec (the timing failure instant) with a deadline received in deadline. At this
point, unless the timely execution request is cancelled (e.g. if the action terminates
on time), the function func will be executed by the timely execution service.

At instant te the application calls endLocalDetection in order to signal the end
of the observed execution and to stop the failure detection operation. At instant
tf the TCB processes the request, asking the timestamping service for a timestamp
to mark the end of the execution. In scenario A, provided that Tf is smaller than
the deadline, meaning that no timing failure occurred, the TCB calls the timely
execution service to cancel the execution of func. The value of Tf is returned to the
application, as well as the duration Tf − Ti and a boolean to indicate if the action
was timely.

On the other hand, in scenario B, by tf (when the TCB processes the
endLocalDetection request) there has already been a failure (which occurred at
Ti + spec′) and therefore func has already been executed.

In what follows we will show that the timing failure detection service just de-
scribed preserves properties TCB 4 and TCB 5.

Property TCB 5 specifies the accuracy of the detector (TTFDmin
). As mentioned

earlier, due the drift of the local clock it is necessary to assume that clocks are slow
in order to ensure that timing failure detection is done correctly, that is, completely
and timely. However, when the clock is perfect and a drift of −ρ is assumed, the
detection deadline will be anticipated by specρ time units. This imprecision provides
an upper bound for the accuracy of the detector, hence we will have TTFDmin

= specρ.

Property TCB 4 imposes a bound on the latency of the detector (TTFDmax).

3The terms resulting from the influence of the clock drift rate are omitted for the sake of
simplicity.

4Recall that this execution may be refused by the timely execution service.

40

Provided that the timing failure detection service recursively uses the timely execu-
tion service, this bound can be immediately derived from property TCB 2 (eager
execution), and we will have TTFDmax = deadline.

4.1.6 Communication Module and the Control Channel

In essence, the communication module must be implemented in a manner that sat-
isfies property TCB Ps 3. Therefore, since this module operates over the TCB
control channel, it is obviously necessary to use a control channel with real-time
properties. The protocols used to transmit and receive messages must then preserve
these real-time properties.

The module provides a well-defined interface to upper modules, namely to the
distributed timing failure detection service. Basically, the following two operations
are defined in this interface:

← send (message)

message, Tevt reception, delivery delay ← receive ()

The function send is used to disseminate a message on the control channel,
addressed to all other TCB components. The service ensures that the message is
delivered on time, that is, at most in TD3

max
units (TCB Ps 3).

The function receive can be used to explicitly request a new received message

from the communication module. Besides the message itself, the function returns
a timestamp corresponding to the instant when the message was received by the
module (Tevt reception), as well as the estimated upper bound for the message
delivery delay (delivery delay). This upper bound is estimated using some internal
measurement procedures, based on round-trip durations.

The communication module also provides a detector of remote nodes crashes
(which is, in fact, a perfect crash failure detector, using the terminology of Chandra
and Toueg [11]). This detector is used by the distributed timing failure detection
protocol, which will be described in the next section, to deal with crashes of remote
nodes.

In order to guarantee the desired properties for the services provided by this
module, several parameters must be bounded a priori. This includes bounding the
maximum number of TCB modules (hence communication modules) and bounding
the total amount of information to be transmitted during a certain time period.
Consequently, this restrictions will have to be taken into account when defining the
protocols that use the communication module, as will be seen later on.

4.1.7 Distributed Timing Failure Detection Service

By using the distributed timing failure detection service, applications have guaran-
tees that the TCB will promptly undertake safety procedures if the observed timed
actions do not execute on time.

Although a distributed action is started in a singular process, it can nevertheless
terminate in several receivers processes (for instance, if a message is broadcast to
the network). The distributed computations observed by this service must always
include at least one message transmission on the generic communication channel.

41

Therefore, a distributed action can always be associated to some message transmit-
ted on the payload communication channel.

An operation can be started either by calling sendMessageTFD or
sendMessageWRemoteTFD, depending on the desired behavior in terms of reaction
to a timing failure. If the objective is to execute the timing failure handler on the
sender side, then the first function must be used. Otherwise, to execute the handler
on the receivers side, sendMessageWRemoteTFD must be used. A call to one of these
functions does two things: it activates the necessary procedures internally to the
TCB in order to detect the timing failure and it sends the message to the payload
channel.

A distributed action may involve multiple processes, which means that the
receiveMessage function may be called by several processes for the same message.
However, a distributed action only finishes when a receiving process executes the
endDistAction function. This function requires the specification of an id, obtained
from a receiveMessage call, which identifies the specific distributed action that is
being terminated.

Besides detecting timing failures in a timely manner, the service also provides
information concerning the delays of observed executions. The function waitInfo

is used to obtain this information. Moreover, it is guaranteed that all processes
involved in a certain distributed action receive this information consistently.

The algorithm that implements the distributed timing failure detection service
operates in synchronous rounds through the execution of two periodic real-time
tasks: the read task and the send task. The read task is responsible for processing
messages received on the control channel and the send task disseminates information
concerning timed actions. For that, they use the communication primitives (send,
receive) supplied by the communication module.

Since the impact of physical clock drifts has already been discussed when ex-
plaining the local duration measurement service, and since we have shown that these
effects can be taken into account deterministically, in the remainder of the text we
will simply assume, for simplicity and without loosing the generality, that these ef-
fects can be treated at another level of abstraction. Hence we do not discuss them
again.

In Figure 19 it is possible to observe a run of a distributed action executed
using the timing failure detection service. The service is invoked by a process that
executes in node P , and the message associated to the operation is addressed to
two processes that execute in nodes Q and R. This example will be used in the
discussion below, to illustrate the description of the algorithm that implements the
timing failure detection service.

The execution of the timing failure detection protocol is done in several steps,
and involves a few issues, namely:

• processing service invocations;

• dissemination of timing failure detection requests;

• processing timing failure detection requests;

• verification of the timeliness of executed actions;

• dissemination of failure detection results;

42

TCB P

TCB Q

TCB R

P

Q

R

1 2

3

4
3

5

4
8

8

9

9 9

9

9’

9

7

Tevt_start
spec

te func

sendTFD
(Tevt_start,
spec,...)

(ID:fail)

(ID:ok)

Send Task
Receive Task

ID
Q:fail,
R: ok

ID

T
C
B

*a) Trequests= Trequests ∪ {id:ID, init:Tevt_start, delay:spec}
Tinfo= Tinfo ∪ {ID, Q (fail=?, ...), R(fail=?, ...)}

*b) ∀ Reg ∈Trequests: Reg.delay = Reg.delay – (Te – Reg.init)

*a *b

m (spec’)

spec –
(Te – Tevt_start)

spec’ –
delivery_delay (m)

*A

*A)

*c
*c

P
A
Y
L
O
A
D

*d

*d

*d

*c) Texecutions= Texecutions ∪ {id:ID, time_of_failure = *A}
Tinfo= Tinfo ∪ {ID, Q (fail=?, ...), R(fail=?, ...)}

*d) Tinfo < ID> ={Q (fail=true, ...), R(fail=?, ...)}
*e) Tinfo < ID> ={Q (fail=true, ...), R(fail=false, ...)}

*e

*e

*e

10

10

10
ID = receiveMessage()

endDistAction (ID)

message (ID)

waitInfo (ID)

6

5

1’

Figure 19: Example of a distributed failure detection run.

• processing failure detection results;

• handling crash failures.

These issues will be discussed in the following sections.

Processing Service Invocations

A service invocation occurs when an application uses one of the supplied
primitives (sendMessageTFD or sendMessageWRemoteTFD)

to request a message transmission with timing failure detection. In the scenario
depicted in Figure 19 the service was invoked with the sendMessageTFD primitive,
meaning that the timely detection should be performed only on the sender.

The initialization of an operation is performed in two stages. In the first one, a
timing failure detection operation is requested to the TCB (point 1 in the figure),
to which the TCB replies with a sequence number (ID) that uniquely identifies
the started operation. In the second stage, the message associated to the action is
relayed on the generic communication channel, along with the ID for the operation
(point 1′ in the figure).

The requests are stored in an internal table (TRequests) until being disseminated
on the control channel. This table records the delays (spec), counted from the
reference instants Tevt start, which define the instants at which timing failures
occur (i.e., at instants Tevt start+spec).

43

The state of the ongoing operations, that is, the result of each distributed exe-
cution (failure status, lateness degree, etc.) is stored in table TInfo.

For each active execution there is a active entry in TInfo, which will only be
removed after the information it contains is delivered to the interested application.

Dissemination of Timing Failure Detection Requests

The dissemination of the timing failure detection requests is done by the
send task (represented in the figure by 2). This task is executed at instant te,
which will be used as a reference instant to detect timing failures of messages
referenced in the TRequests table. Therefore, the relevant bound that must be
observed for timing failure detection is no longer spec (counted from Tevt start),
but spec’=spec-(Te-Tevt start), since the time that has already elapsed since
Tevt start (Te-Tevt start) will not be taken into account for the detection. This
new bound spec’ must therefore replace spec in every TRequests table record.

The content of TRequests is disseminated on the control channel with the previ-
ously calculated values (spec’). After the transmission the content of the table is
deleted. Of course, in order to establish a detection bound in a remote site it will
be necessary to measure the delivery delay of this control message, as will be seen
below.

Processing Timing Failure Detection Requests

The requests for timing failure detection operations received from the control
channel are processed by the protocol read task (represented in the figure by 3).

Given the specified delay included in each transmitted record (spec’), the value
calculated for the control message delivery delay (delivery delay) and the recep-
tion instant of this control message (Tevt reception), the timing failure instants
can be calculated at the receivers as follows:

time of failure=Tevt reception+spec’-delivery delay

Recall that delivery delay is an upper bound for the real delivery delay, which
means that the instants estimated for timing failures will always occur before the
real timing failure instants. This ensures a safe detection and the preservation of
the completeness property of the detector (TCB 4).

The estimation error of the control message delivery delay has an impact on
the accuracy of the timing failure detector. However, given that this error can be
bounded (see section 4.1.6) the accuracy property of the detector (TCB 5) can also
be preserved. In fact, the detection accuracy (TTFDmin

) corresponds to the upper
bound of the estimations of message deliver delays.

The requested operations are saved in table TExecutions. This table contains
the information regarding all ongoing operations in that site, namely the estimated
timing failure instants (time of failure) for those actions. There is also a record
in the TInfo table which keeps the state of the execution.

Verification of the Timeliness of Executed Actions

After receiving a message from the payload channel (point 5 in the figure)

44

using the function receiveMessage, an application will obtain the ID associated
to that message. With that ID it will be able to terminate the distributed action,
using the function endDistAction.

An execution is considered timely if it is terminated before the estimated timing
failure instant (6 in the figure). Otherwise, if the action is terminated after the
timing failure instant (7) the execution is considered faulty.

Dissemination of Failure Detection Results

The results of the observed executions are disseminated on the control chan-
nel by the send task (8). These results are only available when one of the following
conditions is verified:

• a distributed action has finished on time;

• a distributed action has not yet finished, but when the send task executes a
timing failure for that actions has already been detected.

The known results, which include measured durations, failure status and lateness
degrees, are disseminated on the control channel and the corresponding information
is removed from the TExecutions table.

Processing Failure Detection Results

The results of the timing failure operations are processed by the read task

(9). For each incoming result the information that reflects the state of its associ-
ated execution, presented in TInfo, is updated. This means that all information
concerning the execution of a certain distributed action (lateness degree, failure
status, etc.) will be available when all involved sites finally transmit the local result
of that action.

In the scenario depicted in Figure 19, the service was invoked using the
sendMessageTFD primitive, which means that any reaction to a timing failures has
to be done at the sender side. When this primitive is used, the execution on the
sender side is sightly different than on the other nodes. If a timing failure occurs in
one of the receivers, the timely execution service is called on the sender side when
it receives the first failure notification. Hence, a certain function func is promptly
executed (9′). On the other hand, would sendMessageWRemoteTFD have been used
instead of sendMessageTFD and the function would have been executed on node Q
instead of node P .

When the results of a distributed action are all available, the TCB will be able
to send them to the proper applications. To receive these results, applications must
call the primitive waitInfo (10).

Handling Crash Failures

In the protocol described above, a TCB node waits for the completion of a
distributed action before being able to provide information concerning that action
to the application. However, because some nodes may crash (accordingly to

45

the assumed failure model), it is necessary to include a mechanism to prevent a
receiving TCB to wait forever for the missing information.

Fortunately this is a quite simple problem to solve, since the communication
channel has synchronous properties. It suffices to construct a perfect crash fail-
ure detector (which is feasible in synchronous systems) which provides information
about the nodes that are crashed. When a TCB is detected to be crashed, all the
distributed actions involving that node are considered to have failed.

4.2 Example of the use of the resource and task models

As an example of resource reconfiguration consider a cooperating cars scenario in
which cars are sentient objects capable of automatically moving on the roads. Cars
communicate with each other by using a publish/subscribe middleware system. The
resources system is partitioned into two different tasks: drive car and Assisted
Terrestrial Transportation (ATT). The former is in charge of carrying out actions
that allow cars to avoid colliding by detecting other car positions and obeying traffic
lights. The latter is then responsible for receiving information related to traffic jams,
weather forecast, and accordingly perform calculations for optimal routes. The task
drive is associated with vtmdrive whereas the task assisted terrestrial transportation
is related to vtmATT. As an example of resource reconfiguration consider that the
number of events generated in heavy traffic jams is considerably higher than in
normal conditions. As a result the task vtmdrive becomes overloaded. The system is
using an EDF scheduling policy [49] which optimises the use of CPU up to 100%.
However, during transient overload the algorithm clearly behaves unpredictable.
The QoS manager of a car system entering the traffic jam zone has detected such an
overload and has opted to change the policy to rate-monotonic [49]. This algorithm
provides a lower bound of CPU utilisation than that offered by EDF but behaves
better in overload conditions [54, 68]. Thus, the following operations are performed:

pIVtmFactory->getVtm(’drive’, &pIJob vtmdrive);

pIVtmFactory->getVtm(’ATT’, &pIJob vtmATT);

pIJob vtmdrive->setSchedParam(schedParamdrive);

pIJob vtmATT->setSchedParam(schedParamATT);

pIVtmFactory->getVtmScheduler(&pIScheduler vtmSched);

pIScheduler vtmSched->setPolicy(’rate-monotonic’);

Pointers to the interfaces IJob of the VTMs associated with each task are first
obtained. This is followed by two operations in charge of setting the appropriate
scheduling parameters to the VTMs. Afterwards, the VTM scheduler is accessed
and its policy is changed.

Consider now the case whereby there are certain geographical areas in which
cars experiment a shortage of network bandwidth, i.e. communication is difficult
due to the obstruction caused by physical objects such as buildings, hills and trees.
This situation is tackled by suspending non-critical tasks on behalf of critical ones.
The tasks associated with the VTM with the lowest criticality would be suspended.
The QoS control mechanism would proceed as follows, after finding out which is the
lowest critical VTM, which happens to be vtmATT:

46

pIVtmFactory->getVtmScheduler(&pIScheduler vtmSched);

pIScheduler vtmSched->suspend(pIJob vtmATT)

As a result, the VTM scheduler will suspend the corresponding VTM. The
operation of suspending this VTM encompasses the suspension and liberation of
their underlying resources, i.e. threads, network connections and memory.

4.3 TBMAC protocol messages and inaccessibility

4.3.1 TBMAC protocol messages

TBMAC uses a number of different protocol messages to manage the CFP slots in
a cell. These messages include:

1. Data

2. Null

3. Slot Allocation Request

4. Slot Deallocation Request

5. Inter-cell OUT Slot Request

6. Inter-cell IN Slot Request

7. Inter-cell INOUT Slot Request

8. Inter-cell Deallocation Request

9. Slot Failure

When a slot in the CFP is allocated to one mobile host in the cell, a mobile host
sends a Null message in its slot even if it does not have a message to send.

If a mobile host does not have a CFP slot allocated to it, it then transmits a
Slot Allocation Request to other mobile hosts to allocate a CFP slot to it. This
request results in an atomic broadcast being executed by the other mobile hosts in
the cell. Information related to the atomic broadcast is included in the header of
CFP packets. Upon completion of the atomic broadcast, the allocation of CFP slots
is updated to include the new CFP slot allocated to the original mobile host. A CFP
slot is deallocated in a similar way by atomically broadcasting a Slot Deallocation
Request.

To allow TBMAC to manage the inter-cell slots, a number of different protocol
messages are used. As described in 2.4.2, in each CFP, there is at least one static
CFP slot allocated for communication from one cell to another. In Figure 20, cell
A would have a static CFP slot allocated for communication from mobile hosts in
cell A to mobile hosts in adjoining cell B. Cell A would also have a static CFP slot
allocated for communication from mobile hosts in cell B to mobile hosts in cell A.

To allow dynamic inter-cell slots to be allocated and deallocated between two
adjoining cells, then agreement between these two cells is needed. This agreement
is achieved by adapting the atomic broadcast protocol so that the execution time

47

of the atomic broadcast protocol is increased. This increase in the execution time
reflects the increase in the number of cells (or the increase in the number of potential
mobile hosts) where agreement is sought.

With this adapted atomic broadcast protocol in place, then allocating and deal-
locating inter-cell slots in the CFP is relatively simple. TBMAC has three different
types of requests for inter-cell slots. These three types of requests reflect the dif-
ferent possibilities for communication between two adjoining cells. Referring again
to Figure 20, the three different inter-cell requests are for a CFP slot for commu-
nication from cell A to cell B (OUT), cell B to cell A (IN) and two CFP slots for
communication between cell A and cell B (INOUT).

Cell A

Cell B

Figure 20: Two adjoining cells.

Finally, when a mobile host fails to use their allocated CFP slot (after a number
of CFPs), then other mobile hosts transmit information about this failure by using
a Slot Failure message. When a mobile host receives failure information about a slot
from a majority of mobile hosts with CFP slots, then this mobile host atomically
broadcasts a request to deallocate the failed CFP slot.

4.3.2 TBMAC protocol inaccessibility

In a computer system, inaccessibility [71] is when certain components are temporar-
ily unresponsive without having actually failed. A classic example of inaccessibility
in wired networking is token loss and recovery in a Token Ring network [65]. In
TBMAC, an important aspect of inaccessibility occurs when a mobile host moves
from one cell to another.

Time bounds (and associated probabilities) for this aspect of inaccessibility will
now be derived in the following sections. Obviously, since the number of mobile hosts
entering the cell is unknown a priori, this time bound is not certain (probability equal
to 1) and therefore we derive the probability of this time bound being obtained.

4.3.2.1 Modelling arrival/departures We model the arrival and departure of
mobile hosts into a cell using a self-service model (M/M/∞):(GD/∞/∞) (variation
of a simple birth-death process [69]). Let λ be the arrival rate of mobile hosts into
the cell and let µ be the service rate.

In our case, λ includes both mobile hosts arriving into the cell and mobile hosts
powering on in the cell. Similarly, µ is the average time that a mobile host spends
in the cell before leaving the cell or powering off. Note that µ would be related to

48

the average speed of and the average distance travelled by mobile hosts in the cell
and to the size of the cell.

Let ρ = λ/µ, then the probability of k mobile hosts being in the cell in the time
interval [0, t] is given by

Prob(k hosts present) =
(ρt)k

k!
e−ρt (1)

The time bound for an arriving mobile host acquiring a CFP slot depends on
whether the cell, that the mobile host is entering, is empty or not. We will first
consider the case of the cell being non-empty and then address the case when the
cell is empty.

4.3.2.2 Non empty cell When a mobile host enters a non-empty cell, the worst
case time bound, in the absences of collisions, occurs when a mobile host enters the
cell just as the CFP begins. The mobile host must then wait until the end of this CFP
and the following CP before listening at the beginning of the next CFP. The mobile
host then broadcasts a request resulting in an atomic broadcast being transmitted
that takes 2∗(CFP +CP) to be delivered. Therefore the time bound before a mobile
host has a CFP slot allocated to it equals CFP +CP +CFP +CP +2∗(CFP +CP).

By choosing a random slot in the CP, two or more mobile hosts could choose
the same slot and therefore collide. We would now like to derive the probability of
avoiding these collisions.

Let the number of slots in the CP be NCP , then a mobile host randomly chooses
a slot with probability 1

NCP
. Given k mobile hosts arriving in the cell, the probability

of these k mobile hosts choosing different slots equals

Prob(k distinct slots chosen) = (NCP)(NCP−1)···(NCP−k)

NCP
k = NCP !

(NCP−k)!NCP
k (2)

Therefore, combining probabilities (1) and (2) we get,

Prob(k hosts in cell and no collisions occur) =
Prob(k hosts present) ∗ Prob(k distinct slots chosen)

Finally in this section, the probability that the time bound is obtained is equiv-
alent to there being no collisions in the cell and is given by

Prob(time bound is obtained) =∑∞
k=1 Prob(k hosts in cell and no collisions occur) (3)

4.3.2.3 Empty cell Again, when a mobile host enters an empty cell, the worst
case time bound, in the absence of collisions, occurs just as the CFP begins. The
mobile host must then wait until the end of this CFP and the following CP before
listening at the beginning of the next CFP.

On realising that no mobile hosts have been allocated slots in the CFP, the
mobile host generates a list of random CFP slots (as described in [20]) and executes
the collision detection steps described in Section 2.4.3 for a number of CFPs.

49

The time bound before a mobile host has a CFP slot allocated to it equals CFP+
CP + CFP + CP (4). However, the mobile host will not have a consistent view
of the allocation of CFP slots until M CFPs later. Therefore, the more important
time bound is CFP + CP + CFP + CP + M ∗ (CFP + CP) (5).

Now the probability of time bound (5) being obtained equals the probability
of time bound (4) being obtained multiplied by the probability of the mobile hosts
having a consistent view of the allocation of CFP slots after M CFPs.

We would now like to derive the probability of time bound (4) being obtained.
Let NCFP be the number of slots in the CFP and let j be the number of slots that
each of the k mobile hosts generate.

Then, the probability of at least one of the j generated slots of each of the k
mobile hosts not colliding with any other slot of the other mobile hosts is

Prob(All k hosts generate at least 1 distinct slot)

= jk (NCFP)···(NCFP−k)

NCFP
k

(
(NCFP−k)···(NCFP−k−(j−2))

NCFP
j−1

)k

= jk NCFP !
(NCFP−k)!NCFP

k

(
(NCFP−k)!

(NCFP−k−(j−1))!NCFP
j−1

)k
(6)

The second term of the above formula represents the probability of k mobile
hosts choosing different slots. Once these k collision free slots have been allocated
out of the available NCFP slots, there are NCFP − k CFP slots remaining. The
third term represents the probability of the k mobile hosts choosing their remaining
(j − 1) slots in the NCFP − k slots and thus not colliding with the first k slots.

The first term represents the number of possible ways the k mobile hosts can
choose a slot, out of their list of size j, to be collision free. The first mobile host has
j possible choices for its collision free slot the second mobile host also has j choices,
etc.

Note that the above formula for the probability of k mobile hosts generating at
least 1 collision free slot from a generated list of j slots corresponds to formula (2)
when j is set to 1.

Similar to before, the probability of k mobile hosts being in an empty cell at
time t and each of these k hosts generating at least one collision free slot is

Prob(k hosts present and each has a distinct slot) =
Prob(k hosts present at time t) ∗ Prob(k hosts generate 1 distinct slot)

The probability of the time bound being obtained in the empty cell is

Prob(time bound (4) being obtained) =∑∞
k=1 Prob(k hosts in cell and each has a distinct slot) (7)

In addition to the above probability, we would also like to calculate the proba-
bility of all the mobile hosts having a consistent view of the allocation of CFP slots
after executing the collision detection steps for M CFPs.

Let Ppkt be the probability of a packet being corrupted. As in [24], let pi be the
probability of a mobile host, after the ith CFP, remaining unaware of an update to
the allocation of slots. Then, the probability, pi+1, the mobile host remains unaware
of this update after the i + 1st CFP is

pi+1 = pi (Ppkt)
k(1−pi) (8)

50

where k, from before, is the number of mobile hosts in the cell. Note that
p1 = Ppkt and pM is the probability of the mobile hosts having a consistent view of
the allocation of CFP slots after M CFPs. Note that pi+1 converges rapidly to 0
when Ppkt is small (less than 0.1).

The final term in formula (8) corresponds to the probability that the transmis-
sions of mobile hosts, that know about the update, are all corrupted. This formula
differs from the push anti-entropy in [24] due to the fact that communication is
point-to-point in [24] while every mobile host in the TBMAC protocol processes the
CFP header of a correctly received packet.

4.4 Content and Cell based Predictive Routing (CCPR)
protocol for mobile Ad Hoc networks

This paper proposes a Content and Cell based Predictive Routing (CCPR) protocol
to provide predictability in mobile ad hoc environments as envisaged in CORTEX.
CCPR is based on main models and mechanisms developed in CORTEX. It exploits
the subject-based publisher/subscriber model in the route discovery procedures and
benefits from TBMAC’s predictability properties. Exploiting TBMAC’s cell struc-
ture for routing path construction instead of individual nodes provides a more reli-
able and predictable routing paths. Proactive and local route maintenance in CCPR
can further improve the stability of a path in the presence of mobile entities.

4.4.1 Introduction

Mobile ad hoc networks are dynamically self-organized, rapid deployable networks
without a fixed infrastructure or an access point [37]. Compared to wired net-
works, the mobile ad hoc networks have unique characteristics, such as the dynamic
changing network topology, the variable link capacity, the scarce bandwidth and
the constrained energy. In a mobile ad hoc network, nodes move arbitrarily, and
due to their limited transmission range, nodes need to cooperate autonomously to
construct multi-hop communication paths.

Because of the dynamic nature of the mobile ad hoc networks, it is a tough
challenge to design robust, scalable and effective routing protocols which can adapt
to the un-predictive and frequent network topology changes [66].

The publisher/subscriber model is an anonymous, scalable, inherently asyn-
chronous communication paradigm and can quickly adapt to environment changes [3,
2, 31, 19]. The publisher/subscriber model has many benefits in dynamic cooper-
ative applications compared to the traditional point-to-point communication, and
it seems to be well suited for the mobile ad hoc networks [31, 35, 36]. In [2, 45], a
subject based scheme of publisher/subscriber model is introduced, in which the con-
tent of a message is related to a unique subject identifier. A subject has one-to-one
relationship with a logical event channel which disseminates information from the
publishers to the subscribers. Therefore, in a multi-hop network, an event channel
is made up of the routing paths from the publishers to the subscribers which are
interested in the same kind of events.

The publisher/subscriber model in routing avoids the addressing problem. In
mobile ad hoc networks, normally there is no central server from which the mobile
nodes can query their network layer addresses [7]. The auto-configuration procedure

51

in address-based ad-hoc networks incurs extra overhead in time and bandwidth and
can not guarantee the address uniqueness when network partitions exist. Using the
subject based routing protocols, nodes can join and leave a network autonomously.
Additionally, the subject based routing protocol is suitable for anonymous many-
to-many communication, in which the subjects represent different multicast groups.
In contrast to this, explicit membership management is needed in an address based
multicast routing protocol.

In mobile environments, it is difficult or even impossible to exploit the pub-
lisher/subscriber model with a central event broker as proposed in [44]. This will
only work satisfactorily in a network restricted in size. Also, a scheme utilizing spe-
cific distributed brokers may suffer from significant maintenance overhead when the
network topology changes rapidly. When utilizing the publisher/subscriber model in
a mobile environment, a major challenge is to develop an efficient scheme which can
take advantage of the merits of the publisher/subscriber model without incurring
extra overhead.

With an increasing interest for mobile applications, active research work in re-
cent years has developed a variety of routing protocols [6] for mobile ad hoc networks.
But, most of the existing protocols work in ”best effort” way, and can not provide
support for safety-critical applications. Safety-critical applications, such as disaster
search and rescue operations, cooperating autonomous robots, and traffic manage-
ment are typical application scenarios of mobile ad hoc networks. One unique fea-
ture of safety-critical applications is the need of high predictability and reliability.
Hence, providing network layer predictability and reliability is an important pre-
requisite. Compared to wired networks, reliability and predictability requirements
impose additional challenges on protocol design in mobile ad hoc networks.

In order to improve network layer predictability and reliability, the following
issues should be addressed in routing protocol design for mobile ad hoc networks:

1. A MAC layer protocol should reduce the time uncertainty of the access to
wireless communication channels and support resource reservation.

2. The time uncertainty introduced by the nodes which may cause single point
of failures, e.g. the unpredictable re-election procedures of the clusterheads in
a cluster based routing protocol, should be omitted.

3. The routing protocol should choose the routing paths which can provide the
predictability and reliability during the routing path construction and main-
tenance.

4. A wireless link has constantly changing capacity and may disconnect unpre-
dictably. Hence, it is necessary to provide redundant routing information and
construct robust communication paths.

5. Frequent routing path rediscovery and maintenance procedures following path
disconnection may cause dissemination of a large mount of control packets
and introduce time uncertainty. Therefore, a mechanism is needed to extend
the life-span of the routing information and decrease the frequency of route
re-discovery and maintenance operations.

52

6. It is obvious that the local path recovery or maintenance operation provides
a better predictability than constructing a new path from scratch. Hence, a
global path recovery should be used only when a local approach does not work.

In this paper, we propose the Content and Cell based Predictive Routing proto-
col (CCPR) in order to improve the routing predictability and reliability in mobile
ad hoc networks. Support for QoS needs to be provided at different system levels.
Without loss of generality, we assume that there is a middleware layer above CCPR,
which provides the subject of messages and the timeliness, proximity or reliability
requirements specifications for the communication. TBMAC, a predictive MAC
protocol, is selected as the MAC layer protocol of CCPR. The remainder of this
text is organized as follows. Section 4.4.2 gives a short introduction for TBMAC.
Section 4.4.3 provides the basic operations of CCPR. In section 4.4.4, we present
the related work, and section 4.4.5 gives the conclusion and future work.

4.4.2 TBMAC

In general, it is hard to guarantee the network layer predictability and reliability
without support from the MAC layer. This is even harder in a mobile ad hoc
network. TBMAC is selected as the MAC layer protocol for CCPR because it
provides a predictable access to the wireless medium for mobile nodes (see Section 3.4
and [17]).

We will only give a short introduction of TBMAC here. In TBMAC, we assume
that every node can assess its geographical position. The entire geographical area
is statically divided into a number of cells. The size of the cells is related to the
transmission range of the radio equipment, i.e., a cell and all of its adjacent cells are
within the transmission range. Orthogonal spreading codes are allocated to cells to
omit collisions and the hidden terminal problem.

For intra-cell communication, the access to the medium is divided into two time
periods, the Contention Free Period (CFP) and the Contention Period (CP). The
additional Inter-cell Communication Period (ICP) is used for the message exchanges
between adjacent cells. Each period has a well-known duration, and is divided into
time slots. A communication round comprises one CFP, one CP and one ICP.
The communication rounds are synchronous in all cells. Figure 21 illustrates the
structure of a communication round. In TBMAC, the protocol to allocate and de-
allocate time slots is similar with the PCF (Point Coordination Function) in IEEE
802.11 standard, but it is fully distributed and has no dependence on the access
points. The Synchronous Atomic Broadcast protocol [18] is exploited to achieve
consistent agreement.

To facilitate the inter-cell communication, we made minor changes to the inter-
cell time slots assignment scheme of TBMAC. As specified in TBMAC [17], when
a node wants to send packets across cell boundaries, it issues a request for time
slot assignment in the ICP. After the requested time slots being allocated to the
node, it begins its inter-cell transmission. This scheme is flexible because within a
cell, every node can apply for the time slots in the ICP when it wants to perform
inter-cell communication. However, this scheme may cause packet collisions. Before
a node can transmit packets to another cell, it needs to wait a certain time due to
the atomic broadcast algorithm used for time slots allocation. Additionally, because
the ICP time slots assignment is consistent only for nodes within a cell, collisions

53

Figure 21: The structure of a communication round.

will happen when nodes in different cells use the same ICP time slot and transmit
packets to the same cell. To avoid transmission collisions, adjacent cells should have
coordinating time slots assignment in the ICP. Obviously, this coordination will
introduce extra overhead and complexity. To deal with this problem, we statically
assign time slots in ICP to each adjacent cell, and gateway nodes are dynamically
elected to use these time slots and perform inter-cell communication. If a node wants
to send a packet to an adjacent cell, it sends the packet to the gateway node which is
responsible for the inter-cell communication with that cell. In a sparsely populated
cell, a node may have the responsibility to communicate with multiple adjacent
cells. We propose a gateway node election scheme which extends the time slots
allocation and de-allocation requests of TBMAC by including an extra field which
represents the power level or computing resource level information of the sending
node. After a node moves in or out, these requests will be atomically broadcasted,
and all nodes in a cell will receive the respective information. A node can decide if
it is a gateway node or not according to this consistent information. Because the
procedure is combined with the time slots allocation and de-allocation procedures,
it adapts to the membership changes of cells and incurs very little overhead.

4.4.3 Content and Cell based Predictive Routing (CCPR) protocol

In CCPR, nodes are organized based on the geographically divided cells as in TB-
MAC. To improve the robustness of the routing paths, cells are used to construct
routing paths instead of individual nodes. Therefore, mobile nodes within a cell
need to maintain some consistent information.

Obviously, in CCPR, nodes in a cell should maintain the same routing informa-
tion. So, the movement of a single node and the disconnection of a single link will
not result in a complete routing path disconnection. Consequently, the hop number
is calculated using the number of cells a packet traverses along the routing path,
and not in a node-to-node style. When a routing information change occurs, all the
nodes within an related cell update their routing tables according to the change.
Because of the shared routing information, each node in a cell has the capability
to act as a gateway node. The consistency of the routing information in a cell is
guaranteed by the atomic broadcast.

In CCPR, the cells are addressed to reflect their geographical relationship. Be-
cause the cell structure is static, the number of hops between any two nodes can be
pre-calculated and remains unchanged as long as the respective cells are populated.
With the predictive MAC layer protocol and resource reservations, the time needed

54

for packet transmission from one cell to another can be calculated from the number
of cells it will traverse.

In a publisher/subscriber protocol, the subscriber subscribes to a certain subject
of information rather than to an explicit publisher. Among the many possibilities
to solve this problem, we propose a dynamic discovery protocol which we think
is the most appropriate way in a network lacking any infrastructure and which is
exhibiting a high degree of mobility. The discovery protocol is supported by Cell
Resource Tables (CRT), which maintain information about the publishers and the
respective subjects provided in a cell. A CRT is available in each node in the cell and
the consistency of the information is maintained by the respective update protocol.
Once discovered, the discovery protocol binds the subject requested by some sub-
scriber to the network identifiers of a node hosting the respective publisher. Because
this is a local activity of the cell, it supports fast adaptation if a publisher moves
and therefore, reflects the needs in a mobile environment. During the information
discovery procedure, every node within a cell can decide on the basis of the CRT
whether a request can be satisfied by this cell. A CRT entry includes the subject
(channel ID) and the IDs of nodes which host publishers belonging to the channel.
When the membership of a cell changes, the content of the CRT will be updated
accordingly. This update procedure can be combined with the time slot allocation
and de-allocation operations when a node moves in or out of a cell.

CCPR has three phases, namely, the route discovery phase, the routing path
construction phase and the route maintenance phase. In the following subsections,
we give description of these phases.

4.4.3.1 The route discovery phase To reflect the dynamic nature of the mo-
bile ad hoc network, a subscriber floods discovery requests to the network in or-
der to search for the publishers providing the requested subject. The search area
information, such as the maximum hop number, the proximity, the direction or
cell addresses restricts the flooding of the discovery requests. Therefore, the route
discovery procedure in CCPR is tightly coupled with the resource discovery of the
publisher/subscriber model. After a publisher is discovered, a routing path construc-
tion procedure is initiated to connect a publisher with the requesting subscriber. A
similar scheme is used in Directed Diffusion [39] exploited in the sensor networks.

In the route discovery phase, firstly, a route discovery (RDIS) is issued by a
subscriber. The RDIS packet includes the cell address of the subscriber node, the
subject, the sequence number, the maximum hop number, the search area, and the
current hop number. The structure of the RDIS is given in Table 2. The sequence
number is used to distinguish different RDIS packets issued by the same subscriber.
The search area gives the constrained flooding area of the RDIS packets.

Requesting
Cell Address

Subject Maximum Hop
Number

Current Hop
Number

QoS
attribute

Search
Area

Sequence
Number

Table 2: The route discovery packet (RDIS) packet.

According to the cell division method used in CCPR, all gateway nodes of the
subscriber residing cell will receive the RDIS. After receiving an RDIS packet, a
gateway node checks the subject field and sequence number field of the packet. If
the same packet has been received recently, the packet is dropped. Otherwise, it

55

checks the search area field of the RDIS, increases the current hop number field
in the RDIS by one, and selectively forwarding RDIS to the adjacent cells. The
same operation will continue until the search area is covered or the current hop
number equals the maximum hop number. In Appendix A, the flow chart of the
route discovery algorithm is given.

Flooding is a crucial limitation for the scalability of routing protocols. In CCPR,
only the gateway nodes are involved in the route discovery procedure. Moreover,
the maximum hop number and the search area constraints effectively reduce the
flooding overhead.

Figure 22: The flooding of the route discovery packets.

Figure 22 depicts a simple example to illustrate the route discovery procedure.
A subscriber S issues the RDIS packets which have the maximum hop number of
2 and the direction information is northwest. After the route discovery procedure,
publishers P1, P2 and P3 are found within the search area. Publishers which are
out of the flooding area will not be discovered because of the maximum hop number
and the search area constraint.

4.4.3.2 The routing path construction phase After receiving a new RDIS
request, a gateway node checks the Cell Resource Table (CRT). If the CRT includes
the same channel information as the subject field in the RDIS, the gateway node
checks the routing table. In CCPR, a routing table entry includes the subject of
an event channel, the destination cell address, the maximum hop number to the
destination cell, the current hop number to the destination cell, the next hop cell
address, and the Time-To-Live (TTL) field. The maximum hop number is defined
according to the channel’s temporal requirement. If a routing table entry is not
updated within TTL time period, this entry will be assumed as obsolete and be
deleted. The structure of a routing table entry is given in Table 3.

Subject Dest.
cell

addr.

Source
cell

address

Maximum hop
number to dest.

cell

Current hop
number to
dest. cell

Previous
hop cell
addr.

Next
hop cell
addr.

TTL

Table 3: Routing table entry

If there is no routing table entry for the subject and the requesting cell, a
new path has to be constructed. To do this, the gateway node forwards a route

56

reply (RREP) packet back to the subscriber’s cell. During this packet forwarding
procedure, a routing path is constructed. The proper adjacent cells can be selected
to construct the routing path according to the subscriber specified QoS requirements.

The structure of the RREP is given in Table 4. A RREP packet includes the
cell address of the publisher node, the cell address of the requesting subscriber, the
subject of the channel, the maximum hop number, the current hop number, the QoS
attribute used for routing path construction and a time stamp.

Reply Cell
Address

Requesting Cell
Address

Subject Max. Hop
Number

Current Hop
Number

QoS
attribute

Time
Stamp

Table 4: The Route REPly packet (RREP).

During this backward path construction, the QoS attribute field must be ad-
dressed. The geographical information obtained from cell addresses is used to assist
this procedure. The gateway node selects the next hop cell based on the QoS at-
tributes and the geographical information. The gateway node increases the current
hop number field in the RREP packet by one and forwards the RREP packet to
the selected next hop cell. Before that, it creates a new routing table entry using
the subject and destination cell address fields in the RDIS packet. Then a routing
table consistency procedure is initiated within the cell. The operation described
above will continue until the RREP arrives the subscriber residing cell or the cur-
rent hop number equals the maximum hop number. The algorithm of routing path
construction is given in Appendix B.

Figure 23: Routing path construction.

Metrics such as the bandwidth, the reliability or the shortest path can be used to
select the next cell along the routing path. From the header of the MAC messages,
nodes in a cell know the time slots assignment and node number information of its
adjacent cells. Generally, this information can be used as criteria to indicate the
bandwidth and reliability level of the adjacent cells. The densely populated cells
are more reliable, but have less bandwidth resource than the sparsely populated
cells. If the reliability is used as the metric for routing path construction, the node
density information should be used to select the next hop cell to the requesting
cell. Figure 23 shows the routing path construction procedure from the publishers
(P1 and P2) residing cell to the subscriber (S) residing cell using node number as
metric for routing path construction. In this figure, the squares represent gateway

57

nodes. For simplification reason, only nodes which directly related to routing path
construction are given.

4.4.3.3 The route maintenance phase The main challenges of the routing
protocol design for the mobile ad hoc networks originate from the node mobility
and the dynamic network topology changes. One advantage of CCPR is that the
influence from the node mobility is reduced. Compared to the routing protocols
which use individual nodes as routers, the cell based approach provides redundant
routing information. Because all nodes within a cell maintain the same routing and
channel information and all of them have the capability to act as gateway nodes.
Only in the following three cases, node movement will initiate the route maintenance
procedures:

Case 1: a publisher moves out;

Case 2: a subscriber moves out;

Case 3: an intermediate cell along the routing path becomes empty when the last
node moves out.

The effect of node movement may be compensated by a local adaptation of the
routing path. Thus, it may be possible to find a local solution to connect the moving
node to the already established path. In this case, most of the existing path is still
be used. The alternative would be a complete reconstruction of the path including
the flooding of the network of the route discovery protocol. It is obvious, that the
local solution is by far more efficient. It also can be performed proactively. If a
node, which is aware of its position, speed and direction of movement, detects that
it will soon move to a particular adjacent cell, it initiates a route maintenance pro-
tocol, which already prepares the local route adaptation. This leads to an improved
predictability of communication because now, the latency of the path in number of
hops can either be preserved or it changes at most by one hop. This sharply con-
trasts to the temporal uncertainty of a complete route reconstruction. Only in cases
of a very sparsely populated environment, i.e. most of the adjacent cells are empty,
a complete reconstruction will be inevitable. The following subsections describe the
route maintenance operations in more detail for different cases pointed out above.

Dealing with the publisher movement When a node, hosting a publisher,
detects that it will leave a cell soon, it sends a maintenance request to the adjacent
cell which it has identified as target. A gateway node in the target cell then checks
its routing information to determine whether the cell is already part of the path or
not. If there already exists a routing table entry which can be used, there is not
much to do because the cell already was part of the path. If there is no such routing
table entry for this publisher, the gateway node must create a new routing table
entry to connect the cell of which the publisher is moving out. In fact, this operation
constructs a local routing path segment and connects it to the existing routing path.
The changes of the route path, such as the hop number change and the source cell
change, need to be sent explicitly along the routing path or be piggybacked with
the next data packet to the cells along the routing path and the subscriber’s cell.

58

Dealing with the subscriber movement A similar approach is used for a
subscriber movement. Before a subscriber moves across a cell boundary, it proac-
tively sends a route maintenance request to the cell it moves in. The request includes
the routing information currently used by the subscriber. As in 4.4.3.3, the mainte-
nance operation is confined to the cell which the subscriber is leaving and the target
cell. The routing path update message will be sent explicitly to the nodes along the
routing paths of the event channel.

Dealing with the empty intermediate cells The mobility of the nodes
may lead to the situation that an intermediate cell along a multi-hop path becomes
empty. In CCPR, an alternate routing path proactively is constructed before the
last node moves out of the cell. This requires two steps. Firstly, a node must be
able to detect that it is the only node in a cell. This is achieved through the time
slot assignment vector which always comprises all nodes in a cell. Let’s call the cell
with only one node inside an unstable cell. The second step is the local adaptation
of the path which has an unstable cell. The node in the unstable cell tries to find
an alternate routing path segment in the adjacent cells. In principle, this proceeds
like the maintenance protocols described above. However, there are two differences
which can be seen as optimizations for this special case. Firstly, because the last
node in a cell acts as the gateway node for all adjacent cells, it knows their time
slots assignment, the bandwidth and the reliability information. Secondly, there is
not only one target cell as in the case above, but there are more options. Thus a
route maintenance request is sent to all target cells which can provide enough QoS
support for the routing path. After receiving the request, the nodes in the selected
adjacent cells update their routing table entries respectively. As in the final part of
the maintenance operation, the routing information in the unstable cell is deleted.

The full path route maintenance It is possible that an alternate routing
path segment can not be found because the requirements of the subscriber, such as
the maximum hop number, the bandwidth or the reliability can not be satisfied.
In this case, the full path route maintenance is needed, and a new routing path
construction procedure will be performed. As pointed out previously, this happens
only in the case when no adequately populated cells are in reach. We assume that
this will be a rare case.

4.4.3.4 Keeping the routing tables consistent When a mobile node is mov-
ing into a populated cell, it sends a routing table consistency request. After receiving
the request, the first node which gets its time slots in CFP sends a route consistency
update. The update comprises the routing information shared within the cell. The
new comer updates its routing table using the information.

During the routing path construction phase, after a next hop cell being selected
for a new routing path, a gateway node sends a routing table update. This update
includes the routing table entry for the new routing path. During the route mainte-
nance procedures, a routing table update will be sent to a cell for proactive and local
maintenance purpose. This update may include the routing information used by a
publisher moving in, a subscriber moving in or the node is an unstable cell. Because
of the broadcast nature of the wireless channels, all nodes will receive these routing

59

table updates. Nodes will change their routing tables according to these updates.
The atomic broadcast is used to guarantee the consistency of routing information.

4.4.4 Related work

Many routing protocols have been proposed for the mobile ad hoc networks in recent
years. The most commonly used classification method divides routing protocols for
mobile ad hoc networks into the proactive routing, the reactive routing and the
hybrid routing according to the approaches used to acquire and maintain routing
information. The proactive routing protocols proposed for mobile ad hoc networks
were adopted from widely used approaches for wired networks with modifications
adapting to the features of mobile ad hoc networks. For proactive routing protocols,
nodes need to maintain routing information for all reachable nodes in the network
by continuously exchange topology or link information. The Destination Sequenced
Distance-Vector routing protocol (DSDV) [61] exploits the sequence number to dis-
tinguish stale routes from new ones and thus avoid the formation of loops. The
Adaptive Distance Vector Routing Algorithm [5] adapts to the changing network
load and node mobility by varying the size and frequency of updates dynamically.
The Optimized Link State Routing protocol (OLSR) [40] uses link state routing
approach with modification addressing the convergence problem.

With the presence of node mobility and frequent network topology changes,
large amount of control packets are disseminated to maintain the updated routing
information for the proactive routing protocols. Therefore, the proactive routing
protocols are suitable for the small networks or networks with slow node movement
and network topology change. The advantage of proactive routing protocols is, when
a node wants to send packets it can use the already existing routing information
immediately. Furthermore, the link state based proactive routing protocols can be
exploited to support QoS routing [??].

In an reactive routing protocol, nodes do not need to maintain the up-to-date
topology information of the whole network. A routing path is constructed only
when it is needed, and normally a route query flooding is exploited to find the
destination node. The Ad hoc On-demand Distance Vector Routing (AODV) [62] is
an reactive routing protocol based on the similar mechanism with DSDV algorithm,
and it minimizes the number of required broadcasts by creating routes on demand.
For Dynamic Source Routing Protocol [21], every packet has a list of all the hops
the packet will traverse on its way to the destination. A node maintains route
caches containing the source routes that it is aware of. The Temporally Ordered
Routing Algorithm (TORA) [60] is based on the link reverse algorithm, and limits
the propagation of control information about the topology change only to a small
number nodes near the event.

The main advantage of the reactive routing protocols is they have better scal-
ability compared to the proactive routing protocols because nodes only store the
routing information about the active routing paths. Although the reactive routing
protocols omit the overhead for maintaining the whole view of the network topol-
ogy, they also have intrinsic shortcomings. Firstly, when utilizing reactive routing
protocols, a node may wait for a long time for route discovery and routing path
construction before it can really send data packets. This substantially will affect
predictability. Additionally, the flooding operation in route discovery procedure

60

may incur heavy traffic overhead.

An hybrid routing protocol tries to incorporate aspects from proactive routing
and reactive routing. The Zone Routing Protocol (ZRP) divides the network into
several routing zones [33]. The proactive Intra-zone Routing protocol (IARP) is
used inside the routing zones and the reactive Inter-zone Routing Protocol (IERP)
is used between the routing zones, respectively.

From the view point of the hierarchy, most of the routing protocols mentioned
above can be thought as flat routing protocols, in which nodes have the same function
and importance and routing paths are constructed on the basis of individual nodes.
In flat routing, because of the unpredictable node mobility and the variable link
state, a single node mobility and a single link breakage may cause a routing path
disconnection. The frequent routing path re-discovery or maintenance procedures
following the path disconnection may exacerbate the time uncertainty. Additionally,
the flat routing approaches can not provide scalability for large networks. The
cluster-based routing protocol are proposed to solve these problems.

The Clusterhead Gateway Switch Routing protocol (CGSR) [13] is a proactive
hierarchical routing protocol in which nodes are grouped into clusters. Different
spreading codes used across clusters and clusterhead controlled token protocol is
used inside cluster. Clusterheads maintain shared routing tables similar to the
DSDV. Packets are forwarded in two steps, firstly from one clusterhead to another
clusterhead, then from clusterhead to the destination node. Gateways are used to
forward packets between two clusterheads. In CGSR, the clusterhead-token infras-
tructure is exploited to provide QoS support.

For the Cluster Based Routing Protocol (CBRP) [42], a clusterhead is elected
to manage the membership information of the nodes inside each cluster. Inside a
cluster, membership information is used for route discovery. Request flooding is used
to find routes between clusters in the same way as in a reactive routing protocol.

The cluster based routing protocols can improve the reliability by selecting the
stable nodes as clusterheads, but they can not provide satisfying predictability guar-
antees. Firstly, for a cluster based routing protocol, the movement of a clusterhead
may cause the unpredictable cluster merging and splitting. Secondly, the temporal
property of the clustering algorithms not only depends on their computing complex-
ity, but also the context information, such as the number of nodes and clusters in
the neighborhood. Additionally, the clusterheads or the gateway nodes introduce
single point of failure, and normally they suffer from heavy traffic overhead and need
more computing resources.

With geographical information obtained from GPS or similar equipment, the
location based routing protocols make routing decisions according to the position
relationship between the packet forwarding node and the destination node and the
mobility feature of the nodes. In [47], the Location-Aided Routing (LAR) proposes
using position information to improve the route discovery procedure of reactive rout-
ing protocols. The Distance Routing Effect Algorithm for Mobility (DREAM) [4]
also use the location and mobility information for routing, but the location informa-
tion is used to constrain the data packets flooding into a small region. The existing
location based routing schemes reduce the amount of control packets for the routing
path discovery, but do not provide predictability and reliability supports.

In addition to the topology based routing and the location based routing, some
content based routing schemes are proposed for the mobile ad hoc networks. In [72],

61

the Content Based Multicast (CBM) routing model is proposed for military and
emergency applications. The content of the multicast data determines the receiver
set for the data in CBM. Source nodes using push protocol broadcast warning mes-
sage to a certain push area. The pull protocol is used by the receivers to get infor-
mation from the block leader of expected area it will be after certain time period.
The block leaders are needed to maintain the membership of nodes in one area. In
CBM, the timeliness and proximity are supported. But it still exploits a cluster
like structure, and does not provide the reliability support. In [36], the problem
to construct an explicit publish/subscribe tree from a publisher to corresponding
subscribers is addressed, and a greedy algorithm is proposed for tree building. In
general, a tree structure is fragile in a mobile environment, so it is not suitable for
networks with fast moving nodes.

QoS routing is an active research area for the mobile ad hoc networks. In
CEDAR [67], a set of nodes are elected to form a backbone of the network. The
backbone is called ”core” and covers the whole network. Bandwidth information of
the stable links is propagated among the core nodes. The route discovery operation
utilizing broadcasting along the core to find a routing path P to the destination
node, then the routing path which can guarantee the bandwidth requirement is
find with the help form P and the core nodes. In [12], a ticket based scheme is
proposed. Multiple routing paths are searched in parallel and the tickets are used
to constraint the route discovery packets flooding. These protocols are proposed for
multimedia applications, and links are selected according to their bandwidth and
stability for routing path construction. Some routing protocols are developed to
support multimedia applications [64, 13] by exploiting cluster based approaches.

4.4.5 Conclusion and future work

Safety-critical applications are an important and emerging application domain of
mobile ad hoc networks. They have high predictability and reliability requirements.
Such requirements add tough challenges for the routing protocol design which in-
cludes the discovery of communication paths meeting QoS requirements and, par-
ticularly important, the maintenance of the paths, i.e., preserving the QoS under
mobility constraints.

The Content and Cell based Predictive Routing (CCPR) protocol is proposed to
support safety-critical applications in mobile ad hoc environments. To improve the
predictability of the routing paths, mobile nodes are organized by cells. Cells are
exploited as the basic units for multi-hop routing construction instead of individual
nodes. This has the advantage that it allows to calculate the latency of a path
by simply adding the latency in the cells and preserve this latency of the path in
the presence of a constantly changing node population inside the cells. Of course,
this requires that cell latency is predictable and secondly, that the cells are stable,
i.e. there is enough redundancy in a cell to assure stable routing in spite of the
mobility of individual nodes. Replication of routing information and proactive route
maintenance strategies are used to meet this goal. If possible, a route is actively
reconfigured to preserve the specified properties

For route discovery, the subject based addressing of the publisher/subscriber
model is exploited. Cell Resource Tables are provided to quickly determine whether
a requested event channel is available in a cell. This search style reduces the control

62

packet flooding and saves the valuable bandwidth of the wireless channels. Only a
fraction of nodes are involved in control packets flooding, and the search areas of
route discovery packets are constrained.

Our future work includes investigation of redundant routing information to in-
crease the robustness of the routing paths, the information aggregation for the con-
tent based routing in mobile ad hoc networks, the publisher/subscriber model in
QoS routing for mobile ad hoc networks, and the performance simulation work.

4.5 A real-time event channel model for the CAN-Bus

The text provided in this section describes a real-time event channel model in a pub-
lisher/subscriber communication scheme. The model specifically considers temporal
and reliability attributes and suggests an API that integrates the real-time aspects
in the event, channel model. According to the need in most real-time systems, we
support event channels with different timeliness and reliability classes. Hard real-
time event channels are considered to meet all temporal requirements under the
specified fault assumptions. The resource requirements for this type of channel are
statically assigned by an appropriate reservation scheme. Soft real-time event chan-
nels are scheduled by their deadlines, but they are not guaranteed under transient
overload conditions. Non real-time event channels are used for events without any
specified timeliness requirements in a best-effort manner. The last part of the text
presents how the different channel classes are mapped to the mechanisms necessary
to implement the model on the CAN-Bus.

4.5.1 Introduction

The publisher/subscriber (P/S) model has been recognized as an appropriate high-
level communication scheme to connect autonomous components in large distributed
control systems [63, 2]. Particularly, P/S supports autonomy of components by an
asynchronous notification mechanism omitting any implicit control transfer coupled
with the exchange of information. This is in contrast to other high-level interaction
models as remote procedure calls or remote invocations which create global depen-
dencies and side effects which require complex mechanisms to handle temporal and
functional fault situations. Secondly, P/S relies on a content-based communication
scheme. This means that the content of a message is used to route a message rather
than an address. A subscriber, which is interested in particular information, e.g.
the temperature data of some sensor, subscribes to the particular information rather
than to a specific sensor. This has the advantage that the subscriber does not have
to know any specific sensor name or address and thus, a content-based addressing
mechanism substantially encourages dynamic adaptability and extensibility require-
ments. Moreover, it may be the basis of transparent fault-tolerance mechanisms in
which multiple redundant sources provide the same information. In our P/S pro-
tocol we adopted a slightly less general variant of content-based addressing which
maps an arbitrary content to a subject field. Subject-based addressing supports
our event channel concept and is more suited in a real-time environment because of
predictability reasons. Additionally, subject-based addressing can be optimized to
meet the requirements of the restricted computational resources found in a control
system composed from smart sensors and actuators [44]. A more detailed discussion
of the P/S model is beyond the scope of this paper and can be found in [58, 53].

63

In this paper we will describe our P/S model which is based on event channels and
particularly intended for real-time control applications. We will briefly review the
specific problems when implementing the P/S model in a system composed from
smart sensors and actuators which usually have only limited computational perfor-
mance. The focus of our paper is the description of different real-time event channel
classes and their programming interface. Finally, we will show, how to map this
model to lower level mechanisms of the CAN-Bus to enforce the required real-time
guarantees.

4.5.2 Events and event channels

Events and the associated event channels are central conceptual constructs in our
system. An event is related to an occurrence in the real world, e.g. observed by a
sensor, or an in the control system itself, e.g. generated by some control program.
Subscribers, which have stated their interest in an event, are asynchronously noti-
fied when this event occurs. An event is an instance of an event type, which is
characterized by a subject, attributes and content.

event := <subject, attribute list, content>

According to the subject-based addressing in the P/S protocol, the subject is a
tag related to the content of an event. In our system, a subject is represented by
a unique identifier. The attributes are related to the context, in which an event is
generated like location, time, mode of operation, etc. and to quality aspects like a
validity interval (expiration time) and a deadline5. They represent non-functional
properties of the event. The content of an event carries the data and is represented
as a structured set of functional parameters. The fields of the content are accessible
by specific methods.

An event channel is an architectural component of the middleware which
disseminates all events of a certain subject. Publishers and subscribers interact
with the event channel to publish events or receive notifications. An event channel
is an instance of an event channel type. It comprises the subject of events which
can be disseminated by the channel and attributes.

event channel := <subject, attribute list >

In contrast to the attributes of an event which describes the properties of a
single individual occurrence of an event, the attributes of the event channel abstract
the properties of the underlying communication network and dissemination scheme.
Therefore attributes include e.g. latency, dissemination constraints and reliability
parameters. An event channel is dynamically created whenever a publisher makes an
announcement for publication or a subscriber subscribes for an event notification.
For every event type there is at most one event channel. An event channel may
handle multiple publishers and multiple subscribers, thus, representing a many-
to-many communication channel. When a publisher announces publication, the
respective data structures of an event channel are created by the middleware. When
a subscriber subscribes to an event channel, it may specify attributes of the event
and the event channel. As described later, these attributes are used for type checking
and filtering.

5 Note that for a soft real-time event, the deadline may be missed. In this case the expiration
time defines the interval after which the event may be dropped entirely.

64

4.5.2.1 Routing, filtering and binding Implementing the pub-
lisher/subscriber model requires to map the abstractions of that model like
events and event channels to the elements provided by the technical infrastructure
of the system such messages and addresses. In the publisher/subscriber scheme,
events are routed by their content from a publisher to an interested subscriber.
Therefore the issue of how to map this to a network includes the problem of 1.
getting a message to the right destination (routing) and 2. that the destination
should only receive those messages which it is interested in (filtering). A purely
content-based communication scheme [9, 56] seems to be not appropriate in a
real-time control system. This is mainly because of the temporal unpredictability
related to this approach. Firstly, the routing task just uses a broadcast or some
central server facility to disseminate every message to every potential destination
and leaves the selection of the right event to the local filtering task. This obviously
will create a high overhead and a large degree of unpredictability. Secondly, the
complex filter mechanism, which has to work on arbitrary message length and many
formats, creates another source of temporal uncertainty. Additionally, if the nodes
are smart sensors and actuators, the content-based scheme is hardly feasible simply
because of the usually limited computational resources of these components. Also
approaches that reduce the network traffic by confining the flooding of events [1]
still need the filtering capabilities in the nodes and thus are too heavy weight for
the envisaged scenario.

A subject-based mechanism will primarily ease the routing and filtering func-
tions. Now, the evaluation of arbitrary predicates on the content of an event can be
confined to a dedicated subject field in the message. This quite perceptibly leads to
the notion of event channels, which exclusively disseminate events carrying a specific
type of information. Because event channels are objects of the architecture, addi-
tional attributes can be assigned to them as it was introduced above. These event
channel attributes then may be used for additional filtering. As a further benefit,
the knowledge about which publishers and subscribers exist for a specific channel
can be exploited for a more economic routing mechanism. In our system, a subject
is specified by a unique identifier [44].

We introduce an additional optimisation for routing events in a subject-based
model trading the degree of flexibility against improved routing performance and
filtering overhead. It has to be noted that even in the subject-based scheme, every
event message has to be examined by the respective subscriber because the subject
identification is in the body of the message. The idea now is to dynamically bind
a subject of an event to an address of the underlying network. Then, the network
hardware automatically takes on the job of routing the message to the respective
destinations. The local communication controller filters all messages that don’t
match the subject out of the message stream. Hence, the subject filtering does not
put any burden to the embedded computational component of a smart sensor or
actuator. The details of this approach, particularly for a CAN-Bus have first been
presented in [45] and later extended in [44].

The middleware architecture that supports our event system is completely dis-
tributed. It is composed from local event channel handlers, which maintain the data
structures for the local channels and provide services as attribute filtering event no-
tification and exception handling. This contrasts to the centralized server solutions
of event systems as described in [34, 30]. The event channel handlers perform the

65

dynamic binding protocol transparently for the application. Therefore, publishers
and subscribers just need to know the subject of an event channel to communicate.

In this paper we will focus on the definition of real-time event channels, their
API and the mechanisms to enforce the specified temporal and reliability properties
on the CAN-Bus.

4.5.2.2 Real-time event channels According to the need in most real-time
systems, event channels with different timeliness and reliability properties should
be supported. Therefore, we distinguish three event channel classes: hard real-time
event channels (HRTEC), soft real-time event channels (SRTEC) and non real-time
event channels (NRTEC). A HRTEC offers rigorous guarantees for discrete control
based on sporadic events as well as for continuous control requiring periodic events
like sensor readings and control feedback. For sporadic events a maximum latency
will be guaranteed while for periodic events the goal is to achieve a low period-
and latency-jitter. The guarantees are maintained under an anticipated number
of network failures. Events published to a SRTEC are scheduled according to the
earliest deadline first (EDF) algorithm. As outlined below, deadlines may be missed
in situation of transient overload or due to the arbitrary arrival times of messages.
Finally, a NRTEC disseminates events that have no timeliness requirements.

The transport of events through a hard real-time event channel (HRTEC) is
synchronous and reliable. The properties of a HRTEC are defined by: 1.) a known
upper bound for the transport latency, i.e. the interval between the point in time
when an event message becomes ready and its delivery; 2.) a known upper bound
for the latency jitter, i.e. the variance of the transport latency; 3.) a known upper
bound of the period jitter for periodic events, i.e. the variance on the period;
4.) a fault assumption under which the properties 1.)- 3.) are valid. In order to
offer such properties, a HRTEC transparently handles redundant transmissions of
events and guarantees that the respective publisher has a privileged access to the
communication network. Access is based on the reservation of network resources
according to a TDMA mechanism (TDMA: Time Division Multiple Access) similar
to the time-triggered protocol [48]. It means that events published to the HRT C
have to be ready at the start of the assigned TDMA time-slot. As explained below,
in contrast to most TDMA schemes, we exploit the specific priority mechanisms of
the CAN-Bus to enforce the temporal guarantees in a more flexible way.

A SRTEC has timeliness requirement which are expressed by deadlines and va-
lidity intervals (expiration time). Different from HRTCs, SRTECs do not use reser-
vations. Soft real-time event messages become ready at any time and are scheduled
according to their transmission deadlines by an earliest deadline first (EDF) algo-
rithm. The transmission deadline is defined as the latest point in time when a
message has to be transmitted. As described later, the priority mechanism of CAN
is exploited for this purpose. However, because a message can not be interrupted
during its transmission and messages may become ready at arbitrary points in time,
EDF will not always take the right scheduling decisions (only a clairvoyant sched-
uler [43] would be able to do so) and situations of temporal conflicts and transient
overload may occur. In theses situations, messages will still be transmitted at a later
time in a best effort manner. An SRT event message eventually will be discarded if
its transmission time is delayed beyond its temporal validity. The expiration time
is an application specific parameter, which may be defined according to some value

66

function [41].

NRTCs are used for events that do not have timeliness requirements. They are
primarily intended for configuration and maintenance purposes. While HRTC and
SRTC disseminate events of restricted length to meet the responsiveness require-
ments of real-time systems, NRTC may transfer bulk data in a sequence of message
fragments.

Subsequently, we will describe the application-programming interface of the dif-
ferent event channel types in more detail.

Hard real-time event channels The transfer of events through a HRTC
is certain, i.e. all the necessary resources are reserved to transmit event messages
timely under specified fault assumptions. The API for a HRTC is presented in
Figure 24. HRTCs need to set up the infrastructure before communication in com-
pliance with the required guarantees. This is initiated by an application through
calling the announce method:

channel.announce(subject,attributeList,eHandler);

The announce method enables the local middleware components to set up the
data structures representing the respective event channel and performing the binding
of the event channel subject to a network address. Three arguments are specified for
the method: The subject, represented by the unique identifier of the event channel,
the attributeList, and an exception handler. The attributeList describes the specific
attributes of the channel, e.g. whether the publication is periodic or aperiodic,
reliability requirements and data rates. This information is used to allocate and
reserve the respective resources. For a hard real-time channel it is not common to
provide exception handling because it usually is based on fault masking and worst-
case assumptions about temporal properties. However, it should be noted that in
a distributed system, local exception handling may contribute to an early detection
of a fault and thus may increase the safety of the system. The lower levels of the
communication system may detect a failure, which cannot be handled by the fault
masking mechanism, and propagate this information through the middleware to the
respective subscribers of a channel.

class hrtec {
private:
subject subject uid;
public:
// constructor and destructor of the class
hrtec(void);
∼hrtec(void);
// methods used for publishing
int announce(subject, attribute list, exception handler);
int publish(event);
// methods used for subscribing
int subscribe(subject, attribute list, event queue, not handler, exception handler);
int cancelSubscription(void);
}

Figure 24: Declaration of a HRTEC class in C++.

67

When the HRTC is established, the application can publish events to the channel
using the method:

channel.publish(event);

For subscribers the following methods are provided:

channel.subscribe(subject, attributeList, eQueue, nHandler, eHandler);

channel.cancelSubscription();

The subscribe method establishes the necessary channel data structures and cre-
ates the binding of the subject to a network address. It corresponds to the announce
method for publishers. The attributeList specifies a list of attributes used for allo-
cating the respective resources and for filtering. For instance, we generally assume
that publishers and subscribers are connected by a channel which spans multiple
networks, e.g. a field bus, a wireless network and a wired wide area network6. In
such a scenario, a subscriber may be interested in receiving events only from pub-
lishers in the same network, i.e. those connected to the same field bus. In such
a case, the respective attribute can be set accordingly and any event, which has
been generated outside the field bus, will be filtered out and will not trigger a local
event notification. It should be noted, however, that the HRT-channels are stati-
cally assigned to time-slots and have predefined temporal and reliability attributes.
Therefore, the filtering is usually less important for this channel class because only
a particular publisher is allowed to publish in a certain time-slot (see chapter 4).
The subscriber to such a channel is thus always aware which entity is expected to
transmit. The known time of transmission itself therefore will be exploited as a filter
for a HRT-channel.

Because events can be aperiodic, the event notification service of the middleware
provides an asynchronous notification mechanism for applications. When an event
has passed the filters, the middleware stores the event in some predefined memory
area and calls the application’s notification handler nHandler. The notification han-
dler comprises application code that is executed when an event is received. Thus,
the notification handler retrieves the event from memory using the getEvent primi-
tive and then proceeds performing the respective operations. As for the publisher of
a HRTC, an exception handler is also specified for the subscriber. Because a HRTC
is based on reservations, the time when a message is expected is known and thus,
the event channel handler on the subscriber side can detect a missing message.

Finally, the cancelSubscription method removes a subscription. Note that a
cancel subscription is a strictly local operation and releases the resources in the local
event handler. Only subscribers can dynamically cancel subscription to a HRTC.

Soft real-time event channels SRTC do not use reservations. In SREC
transmission deadlines are used to dynamically schedule the event traffic. Figure 25
depicts the declaration of the SRTC class. Although the structure looks similar
to the HRTC, the differences are substantial and primarily are substantiated in
the different attributes defined for SRTCs. Events published to a SRTC specify a
transmission deadline and an expiration parameter in the attribute list of the event.
As already discussed, events are scheduled by the EDF algorithm which may lead to
missed deadlines because of the non-preemptive nature of the message transmission
and because of overload situations. This situation requires notifying the application

6An example is described in [44].

68

for awareness reasons. Two exceptional situations may occur: A missed deadline
and an expired validity. In both cases, the local exception handler is called. This
local notification allows the application to react and adapt to such situations. When
the validity interval is expired, the event is completely removed from the local send
queue.

class srtec {
private:
subject subject uid;
public:
// constructor and destructor of the class
srtec(void);
∼srtec(void);
// methods used for publishing
int announce(subject, attribute list, exception handler);
int cancelPublication();
int publish(event);
// methods used for subscribing
int subscribe(subject, attribute list, event queue, not handler, exception handler);
int cancelSubscription(void);
}

Figure 25: Declaration of a SRTEC class in c++.

The announce method also establishes the local data structures and initiates
the binding mechanism but no reservations are made. Chapter 3 provides further
details about the realisation on the specific CAN network infrastructure. Another
difference to a HRTC is that a publisher can stop its publications to a SRTC and
release the local resources by a cancelPublication method.

Non real-time event channels Non real-time event channels are used for
events that do not have timeliness requirements. The declaration of a NRTEC class
in c++ is shown in Figure 26. A NRTEC has a fixed priority. The priority is
specified by the application during the announcement of the channel. However, as
further discussed in the next chapter, only priorities within a predefined range are
accepted by the middleware. The announce method has the format:

channel.announce(subject,attribute list, fixedPriority);

NRT-channels are particularly used to configure and maintain the smart net-
worked devices of the system. This may require to send a considerable amount
of data over the network, like memory images, electronic data sheets, or test pat-
terns. Because message frames on the CAN-Bus are limited to a payload of 8 data
bytes, a mechanism to chain individual CAN messages to a larger application spe-
cific message is needed. Such a ”fragmentation” mechanism for NRT channels which
publishes long event messages in multiple fragments is provided by the middleware.
Fragmentation is an inherent attribute of a NRT-channel and therefore, on the pub-
lisher side, fragmentation is defined during the announcement of the event channel
as an entry in the attributeList.

69

class nrtec {
private:
subject subject uid;
fixed priority fixedPriority;
boolean fragmentation;
public:
// constructor and destructor of the class
nrtec(void);
∼nrtec(void);
// methods used for publishing
int announce(subject, attribute list, fixed priority);
int cancelPublication();
int publish(event);
// methods used for subscribing
int subscribe(subject, attribute list, event queue, not handler, exception handler);
int cancelSubscription(void);
}

Figure 26: Declaration of a NRTEC class in c++.

4.5.3 Event channels on a CAN-Bus network

We now present a mapping of the described abstractions to a field bus network. We
will first describe the reservation scheme for the HRTCs which is similar to a scheme
used in time-triggered protocols like TTP [48], TTP/A [32], and TT-CAN [27].
However, a substantial advantage over a TDMA scheme is that due to CAN-bus
properties, bandwidth which was reserved but is not needed by a HRTC can be
used by less critical traffic. Because of the conservative worst-case assumptions
of a HRTC, this can be a large share of the overall bandwidth. For SRTC the
priority-based message dispatching of the CAN-Bus is exploited to realize an EDF-
based scheduling of messages. Constraints on the priority level of SRTC prevent
any interference with reserved HRTCs. Finally, the low fixed priorities of NRTCs
enable the use of any free bandwidth for non-critical bulk data transfer.

4.5.3.1 The reservation scheme Hard real-time communication is organized
in rounds. A round is divided into time slots that are assigned to HRTCs. A round
specifies the cycle in which the schedule of the communication medium is repeated.
The data structure which stores the schedule of a round is called a calendar and
corresponds to the Round Descriptor List (RODL) in the TTP protocol [48]. The
intention of the reservation-based scheme is to avoid collisions by statically planning
the transmission schedule. Multiple slots may be reserved for an individual node
within a round. The correctness of the reservations regarding timing conflicts and
temporal overlap are checked by an admission test. We assume that this is done
before any new reservation is confirmed and that the reservations are made off-line.
Figure 27 depicts the organization of a communication round composed from the
reserved time-slots and contention periods (CP) in which soft real-time and non-
real-time messages are scheduled. A gap ∆Gmin between reserved slots has to be
inserted to prevent any temporal conflict between reserved HRT slots because of the

70

time-skew of the synchronized clocks.

The event channel approach of the P/S protocol leaves open which publisher
provides the respective information to a subscriber. However, when defining a HRT
event channel, the slot reservation has to be done according to a specific node, which
is allowed to exactly send a message within this time interval. Hence, if multiple
publishers provide input to the same channel, multiple slots have to be reserved. As
it becomes clear later, the specific handling of reserved slots on the CAN-Bus allows a
flexible treatment and reuse of reserved slots. Thus, if a node has already successfully
published a certain event in a hard real-time channel, subsequent publications of the
same subject can possibly be suppressed and the slot can be used by less critical
traffic.

Figure 27: Organization of a Round.

4.5.3.2 Structure of the time-slots Hard real-time messages use time-slot
reservations. This mechanism is based on a global time which, in our protocol,
is provided by synchronized clocks. The length of the time-slot is defined by the
worst-case transmission time of a HRT message. The worst-case transmission time
considers the length of a message and includes assumptions about the failure modes
during message transmission. We use time redundancy and forward error recovery
to cope with network omission faults and temporary node faults. An analysis of
the worst-case transmission times under fault assumptions is published in [50]. To
deliver a message at its predefined deadline, the transmission has to be launched
at the Latest Start Time (LST) (see Figure 28). We exploit the CAN priority
mechanism to enforce that a HRT message will definitely be sent at this point in
time. The highest priority is exclusively reserved for HRT messages. When the
LST is reached this priority is assigned to the message. The priority mechanism
of the CAN-Bus will then assure that this message will win the bus arbitration.
Thus, our scheme exploits the global time to avoid any conflicts between HRT
messages. The priority mechanism of the CAN-Bus enforces the reservations and
omits any interference with less critical messages. To guarantee that SRT- and NRT-
messages do not interfere with HRT-messages, we additionally have to consider that
an ongoing message transfer cannot be preempted. It may happen that messages
(SRT or NRT), which can be sent at any time, will be started just before the HRT-
message becomes ready, i.e. at the LST. In this case, it would steel reserved time
from the HRT-message and jeopardize HRT guarantees. Therefore, the slot for HRT
has to be extended and HRT-messages must be ready for transmission at the latest
ready time (see Figure 28) which is: LST - ∆Twait. The time ∆Twait corresponds
to the transmission time of the longest CAN-message (154 µsec at 1Mbit/sec). The
actual successful transmission of the HRT-message can then occur at any time inside

71

the time-slot which introduces the problem of jitter. To avoid the jitter for the
application, HRT messages are always delivered by the middleware at the predefined
transmission deadline.

Figure 28: Structure of a time-slot.

Thus, our reservation mechanism differs from other time-triggered approaches
in many substantial points. Firstly, we exploit time and the priority mechanism to
enforce HRT guarantees. Time is used to separate HRT-messages which all have
the same maximum priority in the system. This guarantees that they are sent
when they become ready. However, the CAN-Bus allows to determine, without
any additional overhead, whether all operational nodes including the sending node
have received a message successfully. Observing that we included time redundancy
to tolerate transmission faults, this redundancy is not needed any more if all nodes
have correctly received the message. Therefore, the sending node will stop to further
transmit the message in this case. Now, if there are pending SRT- or NRT-messages,
the priority mechanism of CAN will automatically schedule the message with the
highest priority for transmission. Thus time redundancy only costs bandwidth if
faults really occur, which, compared to the overall traffic, may be relatively rare.
Therefore, very conservative fault assumptions are possible because the penalty is
low in the average. This is not possible in schemes which only use global time to
enforce reservations.

Secondly, most TDMA schemes as TTP [48] and TT-CAN [27] enforce the con-
straints on jitter on the network level by sophisticated and expensive mechanisms
to guarantee start times of messages. In the time-triggered CAN-Bus protocol (TT-
CAN [27]) there are extra slots to prevent that an ongoing message transfer interferes
with a reserved slot, thereby wasting additional bandwidth. In our protocol, jitter is
prevented by defining a precise delivery deadline of a message and the event channel
handler which has access to the global clock assures that the message is delivered
at that point. Thus, jitter is handled on the middleware layer rather than on the
network layer. It also should be noted that a HRT-message will be correctly received
at some time within the slot, which cannot be predicted because faults may occur
or not. In TTP and TT-CAN, messages are just resend up to a certain number of
times which corresponds to a specified omission degree. This of course fills up the
reserved slot and avoids jitter but for the price of valuable bandwidth. To reuse the
remaining slot time means that a message transfer is successfully completed within
the slot and the delivery has to be handled independently of the network at a higher
system layer.

72

4.5.3.3 Scheduling soft real-time- and non-real-time-messages One of
the most important properties of the CAN-Bus is its priority-based distributed
arbitration mechanism. This mechanism is exploited to schedule SRT messages
according to the EDF scheme. NRT messages use a low fixed priority. Table 7 sum-
marizes the priority assignment. We use an 8-Bit explicit priority field in the CAN
message identifier (see Figure 30) which result in 256 priority levels. As described
in 4.5.3.2, HRT-messages reserve the highest priority 0. Scheduling SRT-messages
requires a range of priorities which reflect the deadlines in time. This is outlined in
4.5.3.4. NRT messages are assigned to fixed low priorities. The relation between the
priorities of HRT, SRT and NRT messages can be expressed by the relation7: PHRT

< PSRT < PNRT . The assignment avoids that NRT and SRT messages ever gain
access to the bus against any pending HRT message. The middleware rigorously
has to enforce the above relation.

Priority Message Type
0 HRT
1 SRT
... SRT
NSRT SRT
1 + NSRT NRT
. . . 28-1 NRT

Table 5: Priority mapping.

4.5.3.4 Soft real-time messages SRT messages are scheduled according to an
EDF scheme which means that the assigned priorities reflect the deadline order of
message transmissions. Mapping deadlines to priorities is outlined in Figure 29. We
assume that we have 250 priority levels for SRT messages (this can be flexibly
determined by application needs. In this example we define 1 priority level to
HRT-messages and 5 levels to NRT-messages). These 250 priority levels have to be
mapped on a time scale to express the temporal distance of a deadline. The closer the
deadline, the higher is the priority (see Figure 29). Mapping deadlines to priorities
will cause two problems. The first problem is that static priorities cannot express the
properties of a deadline, i.e. a point in time. A priority corresponding to a deadline
can only reflect this deadline in a static set of messages. When time proceeds
and new messages become ready, a fixed priority mechanism cannot implement the
deadline order any more. It is necessary to increase the priorities of a message when
time approaches the deadline, i.e. with decreasing laxity. Therefore, the priority
of a message is dynamically increased with a granularity of ∆tp which defines a
priority slot (see Figure 29). The priority of a SRT message will reach the highest
possible priority at its transmission deadline. Secondly, there is a trade-off between
the length of a priority slot and the quality of the derived schedule. When mapping
a transmission deadline for a message to a priority slot, two deadlines which are close
may be mapped to the same slot and thus, to the same priority. The order between
the deadlines is then arbitrary determined by the other fields of the CAN identifier.
This would motivate a very small slot length, which decreases the probability of
equal priorities. However, this raises the problem of a tight time horizon. The

7 On CAN-Bus the highest priority corresponds to the lowest binary value.

73

time horizon is given by ∆H = (Pmax - Pmin) * ∆tp. Any deadlines, which are
beyond this value are mapped to the same priority and thus may be scheduled
incorrectly. Figure 29 depicts this situation. The described trade-off is particularly
a problem when the number of priority levels is low (e.g. in [73]). Considering the
250 priority slots provided in our scheme and a priority slot length of approximately
one CAN-message, we can accommodate 250 message transfers within the time
horizon. Because the number of nodes connected to a CAN-Bus is usually in the
range of 32 to 64, the time horizon seems to be sufficiently large. A decision about
the trade-off has also to consider specific application requirements.

Figure 29: Mapping deadlines to priorities.

4.5.3.5 Structuring the CAN message identifier The transport mechanism
for CAN-Bus uses the basic communication mechanisms described in [45] to support
different event channel classes on the CAN-Bus. An event channel class (HRTEC,
SRTEC, NRTEC) is mapped to the respective message class on the CAN-Bus. The
CAN 2.0B standard with 29-bit identifiers is used to express the priority of the
message as well as to identify the channel. The identifier is structured into multiple
fields to represent the priority and the subject of an event channel.

On the bus level the CAN message identifier is used to identify the event chan-
nel (subject) and to express the priority of the event message. Figure 30 outlines
the format of a CAN message. The priority of the message is expressed in an 8-bit
priority field providing 256 priority levels. A 7-bit field TxNode is used to ensure the
uniqueness of the CAN-ID. This is a requirement of the CAN-Bus protocol [28] be-
cause after the arbitration phase, a consistent decision has to be derived which node
is allowed to use the bus. The TxNode is dynamically assigned during the configu-
ration phase [44]. The etag field (14-bit) represents the subject of the event channel.
Whenever a new channel is created in a node (by an announce or a subscribe), the
binding protocol assigns an etag to the respective unique subject identifier of the
channel. A detailed description of both protocols can be found in [45].

4.5.4 Comparison with related higher level CAN protocols

On the CAN-Bus [28], schemes using message priority and time have been explored
to achieve predictability of communication. Standard protocols based on CAN-Bus

74

Figure 30: CAN-Bus event message.

such like CAL [14], SDS [38], and DeviceNet [22] are based on fixed priority schemes
which are not able to reflect temporal requirements. To overcome this problem, the
deadline-monotonic priority assignment [70] uses an off-line feasibility test to meet
the deadlines of periodic and sporadic messages. However, it supports only static
systems and does not distinguish hard and soft deadlines. More flexible protocols
like the dual priority scheme [23] or the schemes proposed in [8, 73] support the use
of both hard and soft real-time communication on the CAN-Bus. However, they
have the disadvantage of providing a time horizon that is too short.

A protocol that uses time-slot reservation on CAN-Bus is the TT-CAN proto-
col [27]. As already mentioned, TT-CAN does not fully exploit the CAN-Bus facili-
ties and therefore, uses bandwidth less efficiently. Secondly, non real-time messages
can only be sent in the respective contention slots. This is less flexible compared to
our approach. Moreover, it is based on a master-slave mechanism which we wanted
to avoid in our system because the master constitutes a single point of failure. 8The
TTP/A protocol [32] aims to the same application area as TT-CAN and uses similar
mechanisms. Here, the master always initiates the communication with the slaves
sending their own messages in a predefined manner.

4.5.5 Concluding remarks and future work

In the paper we presented an event channel model that supports functional and
non-functional attributes. Three types of channels are provided for applications:
HRTEC, SRTEC, and NRTEC. The concept of event channels represents a high level
programming interface for real-time communication. It provides the abstractions to
ease the programming and enables the programmer to reason about non-functional
attributes like temporal and reliability characteristics without being involved in low
level network details. Communication via HRT channels is certain, i.e. it guaran-
tees timely delivery under the specified fault assumption. SRT channels constitute
a versatile and flexible way to express deadlines as timing constraints but provide
awareness if the constraint is violated. It also allows specifying an expiration at-
tribute, which is used to discard an event when the temporal validity is expired.
Again, the application will be notified to enable corrective application related ac-
tions. Finally, NRT channels are established to transport non real-time traffic. Here,
we allow arbitrary long messages to support configuration and maintenance data like
ROM-images or electronic data sheets, describing a device.

The paper also shows how these channel abstractions are represented on a CAN-
Bus, which is a popular field-bus in the area of industrial automation and particularly
in the automotive area. On the CAN-Bus, the channel classes are directly mapped
to respective message classes. The protocol for CAN-Bus provides three types of
messages: hard real-time, soft real-time, and non real-time. Hard real-time messages
use a reservation scheme to avoid any conflicting requirements between them. The

8This protocol is not based on CAN-Bus.

75

slot reservation mechanism also allows using time redundancy to tolerate omissions
and crash failures. The priority mechanism of CAN is exploited to enforce the
bus access in the asserted time-slot. For less stringent timeliness and reliability
requirements, SRT messages are provided. In this type of communication deadlines
are considered and flexible mechanisms to handle deadline violations are introduced.
Finally, messages that do not have timeliness requirements will exploit the basic
priority and fault handling mechanism of the CAN-Bus.

An additional advantage of our protocol compared to other time-triggered
schemes is a better utilization of bandwidth. Firstly, when a reserved slot is not
used, the priority mechanism of CAN will automatically assign this slot to some
other (lower priority) message. This may occur when a sporadic HRT message has
a reservation but is not sent. Secondly, the CAN-Bus provides a unique technique
to determine when all nodes correctly receive a message. This property is exploited
to reduce the overhead of time redundant message transfer. If all receivers have
received the message correctly, the sender can detect this and skip the redundant
message transmission.

A first prototype of the P/S protocol is available. Presently, it provides the
API for a single event channel class without non-functional attributes. It allows the
automatic network configuration of the attached devices and supports the dynamic
binding protocol. The middleware has a low memory footprint, which enables the
use on various 16- and even 8-Bit micro controllers. A Linux and an RT-Linux
version have also been realized. Future work includes the integration of the different
event channel classes presented in this paper.

76

A Flowchart of the route discovery algorithm

77

B Flowchart of the routing path construction al-

gorithm

78

References

[1] D. S. Rosenblum A. Carzaniga and A. L. Wolf. Interfaces and algorithms
for a wide-area event notification service. Technical Report CU-CS-888-99,
Department of Computer Science, University of Colorado, October 1999.

[2] A. Seigel B. Oki, M. Pfluegl and D. Skeen. The information bus - an architecture
for extensible distributed systems. Operating Systems Review, 27(5):58–68,
1993.

[3] G. Banavar, T. Chandra, B. Mukherjee, J. Nagarajarao, R. E. Strom, and D. C.
Sturman. An efficient multicast protocol for content based publish/subscribe
systems. In Proceedings of the 19th International Conference on Distributed
Computing Systems, pages 262–272, 2000.

[4] S. Basagni, I. Chlamtac, V. Syrotiuk, and B. WoodWard. A Distance Routing
Effect Algorithm for Mobility (DREAM). In Proc. 4th MOBCOM, 1998.

[5] R.V. Boppana and S.P. Konduru. An adaptive distance vector routing algo-
rithm for mobile ad hoc networks. INFOCOM 2001, 3:1753–1762, 2001.

[6] J. Broch, D.A. Maltz, D.B. Johnson, Y.C. Hu, and J. Jetcheva. A performance
comparison of multi-hop wireless ad hoc network routing protocols. In Proc.
MOBICOM, pages 85–97, 1998.

[7] S. R. Das C. E. Perkins, E. M. Royer. IP address autoconfiguration for ad hoc
networks. IETF MANET, Internet draft, draft-perkins-manet-autoconf-00.txt.

[8] H. Thane C. Eriksson and M. Gustafsson. A communication protocol for hard
and soft real-time systems. In Proceedings of the EURWRTS’96, 1996.

[9] N. Carriero and D. Gelernter. Linda in context. Communications of the ACM,
32(4):444–458, apr 1989.

[10] A. Casimiro, P. Martins, P. Veŕıssimo, and L. Rodrigues. Measuring distributed
durations with stable errors. In Proceedings of the 22nd IEEE Real-Time Sys-
tems Symposium, pages 310–319, London, UK, December 2001.

[11] T. Chandra and S. Toueg. Unreliable failure detectors for reliable distributed
systems. Journal of the ACM, 43(2):225–267, March 1996.

[12] S. Chen and K. Nahrstedt. Distributed quality-of-service routing in ad hoc
networks. IEEE Journal on Selected Areas in Communications, 17(8), August
1999.

[13] C.C. Chiang, T. C. Tsai, W. Liu, and M. Gerla. Routing in clustered multihop,
mobile wireless networks with fading channel. In The Next Millennium, The
IEEE SICON, 1997.

[14] CiA. CAN Application Layer (CAL) for Industrial Applications, May 1993.
CiA Draft Standards 201..207.

[15] Definition of application scenarios. CORTEX project, IST-2000-26031, Deliv-
erable D1, October 2001.

[16] Preliminary definition of the interaction model. CORTEX project, IST-2000-
26031, Deliverable D3, March 2002.

[17] Preliminary specification of the system architecture. CORTEX project, IST-
2000-26031, Deliverable D4, April 2002.

79

[18] Flaviu Cristian. Synchronous atomic broadcast for redundant broadcast chan-
nels. In Journal of Real-time Systems, pages 195–212. Kluwer Academic Pub-
lishers, 1990.

[19] G. Cugola, E. Di Nitto, and G. P. Picco. Content-based dispatching in a mobile
environment. In Proceeding of WSDAAL 2000, Ischia, Italy, September 2000.

[20] Raymond Cunningham and Vinny Cahill. “Time Bounded Medium Access
Control for Ad Hoc Networks”. In The Second Workshop on Principles of
Mobile Computing, pages 1–8, September 2002.

[21] D. A. Maltz D. Johnson. Dynamic source routing in ad hoc wireless networks.
In T. Imielinski and H. Korth, editors, Mobile Computing. Kluwer Acad. Publ.,
1996.

[22] S. Siegel D. Noonen and P. Maloney. Devicenet application protocol. In Pro-
ceedings of the 1st International CAN Conference, 1994.

[23] R. Davis. Dual priority scheduling: A means of providing flexibility in hard
real-time systems. Technical Report YCS230, University of York, UK, May
1994.

[24] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis,
D. Swinehart, and D. Terry. “Epidemic Algorithms for Replicated Database
Maintenance”. In The Sixth Symposium on Principles of Distributed Comput-
ing, pages 1–12, August 1987.

[25] H. A. Duran-Limon and G. S. Blair. Reconfiguration of resources in middleware.
In 7th IEEE International Workshop on Object-oriented Real-time Dependable
Systems (WORDS 2002), January 2002.

[26] C. Fetzer and F. Cristian. A fail-aware datagram service. In Proc. of the 2nd
Workshop on Fault-Tolerant Parallel and Distributed Systems, Geneva, Switzer-
land, April 1997.

[27] Th. Führer, B. Müller, W. Dieterle, F. Hartwich, R. Hugel, and M. Walther.
Time Triggered Communication on CAN (Time Triggered CAN-TTCAN). In
7th international CAN Conference, 2000.

[28] Robert Bosch GmbH. Can specification version 2.0. Technical report, Septem-
ber 1991.

[29] Object Management Group. Corba 3.0 new components chapters. Technical
Report CCM FTF Draft ptc/99-10-04, 1999.

[30] Object Management Group. Corbaservices: Common object services specifica-
tion - notification service specification, version 1.0. Technical report, 2000.

[31] G. Gugola and E. Di Nitto. Using a publish/subscribe middleware to sup-
port mobile computing. In Advanced Topic Workshop Middleware for Mobile
Computing, Heidelberg, Germany, November 2001.

[32] M. Holzmann H. Kopetz and W. Elmenreich. A universal smart transducer
interface: Ttp/a. International Journal of Computer System, Science Engi-
neering, 16(2), March 2001.

[33] Z. J. Haas. The Zone Routing Protocol (ZRP) for ad hoc networks, November
1997. Internet Draft.

[34] T. Harrison, D. Levine, and D. Schmidt. The design and performance of a
real-time corba event service. In Proceedings of the 1997 Conference on Object
Oriented Programming Systems, Languages and Applications (OOPSLA’97),
pages 184–200, Atlanta, Georgia, USA, 1997. ACM Press.

80

[35] Yongqiang Huang and H. Garcia-Molina. Publish/subscribe in a mobile envi-
ronment. In Proceedings of the Second ACM International Workshop on Data
Engineering for Wireless and Mobile Access, 2001.

[36] Yongqiang Huang and H. Garcia-Molina. Publish/subscribe tree construction
in wireless ad hoc networks. Technical report, Stanford University, November
2001. http://dbpubs.stanford.edu:8090/pub/2001-54.

[37] Ietf manet charter. http://www.ietf.org/html.charters/manet-charter.html.

[38] Honeywell Inc. Smart distributed systems, application layer protocol version 2.
Technical report, 1996. Micro Switch Specification GS 052 103 Issue 3.

[39] C. Intanagonwiwat, R. Govindan, and D. Estrin. Directed diffusion: A scalable
and robust communication paradigm for sensor networks. In Sixth Annual In-
ternational Conference on Mobile Computing and Networks (MobiCOM 2000),
Boston, Massachusetts, USA, August 2000.

[40] P. Jacquet, P. Muhlethaler, and A. Qayyum. Optimized Link State Routing
Protocol, 1998. IETF MANET, Internet draft.

[41] E. D. Jensen and J. D. Northcutt. Alpha: A non-proprietary os for large,
complex, distributed real-time systems. In Proceedings of the IEEE Workshop
on Experimental Distributed Systems, pages 35–41, Huntsville, Alabama, USA,
October 1990. IEEE Computer Society Press.

[42] Mingliang Jiang, Jinyang Li, and Y. C. Tay. Cluster Based Routing Protocol
(CBRP). Internet draft,draft-ietf-manet-cbrp-spec-01.txt.

[43] J.W.Liu. Real-Time Systems. Prentice Hall, Upper Saddle River, New Jersey,
USA, 2000.

[44] J. Kaiser and C. Brudna. A publisher/subscriber architecture supporting inter-
operability of the can-bus and the internet. In IEEE Int. Workshop on Factory
Communication Systems, Västeras, Schweden, August 2002.

[45] J. Kaiser and M. Mock. Implementing the real-time publisher/subscriber model
on the CAN-Bus. In Proceedings of the 2nd IEEE International Symposium
on Object-oriented Real-time Distributed Computing (ISORC’99), Saint-Malo,
France, May 1999. IEEE Computer Society Press.

[46] J. des Rivieres Kiczales, G. and D. G. Bobrow. The Art of the Metaobject
Protocol. MIT Presss, 1991.

[47] Y. B. Ko and N. H. Vaidya. Location aid routing (lar) in mobile ad hoc net-
works. In Proc. ACM/IEEE MOBICOM, October 1998.

[48] H. Kopetz and G. Grünsteidl. Ttp - a time-triggered protocol for fault-tolerant
real-time systems. Technical Report rr-12-92, Institut für Technische Infor-
matik, Technische Universität Wien, Treilstr. 3/182/1, A-1040 Vienna, Austria,
1992.

[49] C. Liu and J. W. Layland. Scheduling algorithms for multiprogramming in a
hard real time environment. Journal of the ACM, 20(1):46–61, 1973.

[50] M.A. Livani and J. Kaiser. Evaluation of a hybrid real-time bus scheduling
mechanism for can. In 7th Int. Workshop on Parallel and Distributed Real-
Time Systems (WPDRTS’99), San Juan, Puerto Rico, April 1999.

81

[51] N. Parlavantzas M. Clarke, G. Coulson and G. S. Blair. An efficient component
model for the construction of adaptive middleware. In IFIP/ACM Middle-
ware’2001, November 2001.

[52] P. Maes. Concepts and experiments in computational reflection. In Proc. ACM
Conference on Object-Oriented Programming, Systems, Languages and Appli-
cations (OOPSLA’87), pages 147–155, October 1987.

[53] R. Meier and V. Cahill. Taxonomy of distributed event-based programming
systems. Technical Report TCD-CS-2002, Dept. of Computer Science, Trinity
College Dublin, Ireland, March 2002.

[54] S. Savage Mercer, C. W. and H. Tokuda. Processor capacity reserves: Operating
system support for multimedia applications. In IEEE International Conference
on Multimedia Computing and Systems, May 1994.

[55] Microsoft. Com: Delivering on the promises of component
technology. Technical report, Microsoft Corporation, 2000.
http://www.microsoft.com/com/default.asp.

[56] Sun Microsystems. Javaspace specification. Technical report, March 1998.
http://java.sun.com/products/jini/specs.

[57] Sun Microsystems. Enterprise javabeans technology. Technical report, 2001.
http://java.sun.com/products/ejb/.

[58] R. Guerraoui P. Th. Eugster, P. Felber and A.-M. Kermarrec. The many
faces of publish/subscribe. Technical Report DSC ID:200104, EPFL, Lausanne,
Switzerland, 2001.

[59] G. Parado-Castellote, S. Schneider, and M. Hamilton. Ndds: The real-time
publish subscribe network. In IEEE Workshop on Middleware for Distributed
Real-Time Systems and Services, San Francisco, CA, USA, 1997.

[60] V.D. Park and M.S. Corson. A highly adaptive distributed routing algorithm for
mobile wireless networks. Proceedings of the Sixteenth Annual Joint Conference
of the IEEE Computer and Communications Societies (INFOCOM’97), 3:1405–
1413, 1997.

[61] C. E. Perkins and P. Bhagwat. Highly dynamic destination-sequenced distance-
vector routing (dsdv) for mobile computers. ACM Comput. Commun. Rev.
(ACM SIGCOMM’94), 24(4):234–244, October 1994.

[62] C.E. Perkins and E.M. Royer. Ad hoc on demand distance vector routing. In
Proceedings of the Second IEEE Workshop on mobile computing systems and
applications (WMCSA’99), pages 90–100, 1999.

[63] M. Gagliardi R. Rajkumar and L Sha. The real-time publisher/subscribe inter-
process communication model for distributed real-time systems: Design and
implementation. In IEEE Real-time Technology and Applications Symposium,
June 1995.

[64] R. Ramanathan and M. Steenstrup. Hierarchically-orangized, multihop mobile
wireless networks for quality-of-service. ACM/Baltzer Mobile Networks and
Applications, 3(1):101–119.

[65] J. Rufino and P. Veŕıssimo. A study on the inaccessibility characteristics of ISO
8802/4 Token-Bus LANs. In Proceedings of the IEEE INFOCOM’92 Conference
on Computer Communications, Florence, Italy, May 1992. IEEE Computer
Society Press.

82

[66] Corson S. and Macker J. Mobile Ad Hoc NETworking (MANET): routing
protocol performance issues and evaluation considerations. Technical Report
RFC 2501. Internet draft, draft-ietf-manet-issues-01.txt.

[67] P. Sinha, R. Sivakumar, and V. Bharghaven. Cedar: a core-extraction dis-
tributed ad hoc routing algorithm. IEEE INFOCOM, March 1999.

[68] J. Stankovic. Implications of classical scheduling results for real-time systems.
IEEE Computer, 1995.

[69] Hamdy A. Taha. “Operations Research: An Introduction”. Prentice Hall, 1997.

[70] K. Tindell and A. Burns. Guaranteeing Message Latencies on Controller Area
Network (CAN). In Proceedings of the 1st International CAN Conference, 1994.

[71] P. Veŕıssimo, J. Rufino, and L. Rodrigues. Enforcing real-time behaviour of
LAN-based protocols. In Proceedings of the 10th IFAC Workshop on Distributed
Computer Control Systems, Semmering, Austria, September 1991.

[72] Hu Zhou and S. Singh. Content Base Multicast (CBM) in ad hoc networks. In
Workshop on Mobile Ad Hoc Networking and Computing (MobiHoc), August
2000.

[73] K.M. Zuberi and K.G. Shin. Scheduling messages on controller area network for
real-time cim applications. IEEE Transactions On Robotics And Automation,
13(2):310–314, April 1997.

83

	Introduction
	Overview of basic services and protocols
	TCB services
	Coverage awareness
	Resource and Task model
	TBMAC Basic Services
	Basics
	Inter-Cell Communication
	Entering an Empty Cell

	CAN
	Adaptable Timed Event Service (ATES)

	Service interfaces
	TCB API
	Resource Management framework
	Resource model
	The Resources Meta-object protocol

	The Task model
	Overview
	Tasks and VTMs
	Task graph configurations

	TBMAC API
	Initialisation
	Slot Management
	Communication
	Higher layer issues

	ATES API

	Definition of Services and Protocols
	TCB services and protocols
	Timestamping Service
	Local Measurement Service
	Distributed Measurement Service
	Timely Execution Service
	Local Timing Failure Detection Service
	Communication Module and the Control Channel
	Distributed Timing Failure Detection Service

	Example of the use of the resource and task models
	TBMAC protocol messages and inaccessibility
	TBMAC protocol messages
	TBMAC protocol inaccessibility
	Modelling arrival/departures
	Non empty cell
	Empty cell

	Content and Cell based Predictive Routing (CCPR) protocol for mobile Ad Hoc networks
	Introduction
	TBMAC
	Content and Cell based Predictive Routing (CCPR) protocol
	The route discovery phase
	The routing path construction phase
	The route maintenance phase
	Keeping the routing tables consistent

	Related work
	Conclusion and future work

	A real-time event channel model for the CAN-Bus
	Introduction
	Events and event channels
	Routing, filtering and binding
	Real-time event channels

	Event channels on a CAN-Bus network
	The reservation scheme
	Structure of the time-slots
	Scheduling soft real-time- and non-real-time-messages
	Soft real-time messages
	Structuring the CAN message identifier

	Comparison with related higher level CAN protocols
	Concluding remarks and future work

	Flowchart of the route discovery algorithm
	Flowchart of the routing path construction algorithm

