

A Survey of Operating Systems
Infrastructure for Embedded

Systems

Luís Fernando Friedrich

 DI-FCUL TR–09–3

Fevereiro 2009

Departamento de Informática
Faculdade de Ciências da Universidade de Lisboa

Campo Grande, 1749-016 Lisboa
Portugal

 Technical reports are available athttp://www.di.fc.ul.pt/tech-reports. The files
are stored in PDF, with the report number as filename. Alternatively, reports are
available by post from the above address.

A Survey of Operating Systems Infrastructure for Embedded Systems

Luís Fernando Friedrich 1

Departmento de Informática e Estatística
 - Centro Tecnológico

Universidade Federal de Santa Catarina, Brazil
fernando@inf.ufsc.br

Abstract

Since early applications in the 1960s, embedded systems have come down in price and
there has been a dramatic rise in processing power and functionality. In addition,
embedded systems are becoming increasingly complex. High-end devices, such as
mobile phones, PDAs, entertainment devices, and set-top boxes, feature millions of
lines of code with varying degrees of assurance of correctness. Nowadays, more and
more embedded systems are implemented in a distributed way, a wide range of high-
performance distributed embedded systems have been designed and deployed. As a
lot of aspects of embedded system design become increasingly dependent on the
effective interaction of distributed processors, it is clear that as much effort needs to be
focused on software infrastructure, such as operating systems, with respect to how to
provide functionality in order to fulfill these requirements. This technical report
presents some of the approaches associated to operating systems that have been used in
order to fulfill these needs.

1. Introduction

Embedded systems can be defined as a combination of any device that includes a
programmable computer and perhaps additional parts, either mechanical or electronic,
designed to perform a dedicated function, but is not itself intended to be a general
purpose computer. The word embedded reflects the fact that these systems are typically
a fundamental part of a larger system. Typically, embedded systems are also called
embedded real-time systems. We can find a large variety of applications where
embedded systems play an important role, from small stand-alone systems, like a
network router, to complex distributed real-time embedded systems (DRE) supporting
several large scale mission-critical domains as avionic applications.

All embedded systems have a dedicated functionality and are therefore dedicated
systems. Dedicated functionality means that the system has been designed for a specific
purpose and pre-defined tasks. Moreover, the system functionality is predefined in the
hardware and software.

The variety of applications implies that the properties, platforms, and techniques on
which embedded systems are based can be very different. The hardware needs can

1 This work was supported by CAPES / MEC – Brazil through Project BEX3342/08-5 developed at
Department of Informatics – FCUL, Lisbon – Portugal.

sometimes be achieved with the use of general purpose processors. For instance, high-
end devices, including mobile phones, PDAs, and consumer electronics (entertainment
devices such as TVs and DVD players, set-top boxes, etc.), have incorporated
microprocessors as a core system component, instead of using specific hardware. But in
many systems specific processors are required, for instance, specific DSP devices to
perform fast signal processing. In exceptional cases where reaction times are extremely
small, microprocessor technology cannot always deal with the timing constraints and
the microprocessor technology is then replaced by hard cabled electronic logic devices.

The functionality can be modified or adjusted through software changes. It is possible to
add functionality to the devices via a software upgrade as long as the hardware doesn’t
need a modification, or the available memory space is large enough to accommodate the
changes. For instance, high-end devices feature millions of lines of code with varying
degrees of assurance of correctness. They might incorporate third party components,
and even complete operating systems (such as Linux) that can be installed by the
manufacturer, suppliers and even the end user. In such cases, it becomes impossible for
embedded system vendors to provide guarantees about the behavior of the device, when
supporting such devices using traditional real-time executive unprotected approach.
Failure or malicious behavior of a single software component on the device will affect
the whole device.

It is also possible to modify (part of) the hardware functionality, using technology such
as FPGA for example. Today these modifications are limited and can only be done
when the device is not performing its normal tasks. However in the future, this might
change, and such modifications are going to be executed while the device continues to
perform other of its functions.

Memory management capabilities are necessary in some systems to provide memory
protection and virtual memory. Special purpose interfaces are also needed to support a
variety of external peripheral devices, energy consumption control, and so on.

In mission-critical systems besides having to meet deadlines, tasks are said essentially
critical and require special real-time responsiveness. However, beyond survivability
mission-critical systems must also satisfy the same rigid dependability requirements of
reliability and fault tolerance. A high amount of adaptability of system functions is
demanded when dealing with such requirements.

Nowadays, the use of processor-based devices has increased dramatically for most of
our activities, both professional and leisure. This trend is expected to grow
exponentially in the near future. The rapid progress in processor and sensor technology
combined with the expanding diversity of application fields is placing enormous
demands on the facilities that software infrastructure like operating systems must
provide.

This paper surveys the current state of embedded systems from small stand-alone to
distributed real-time looking at some of the software infrastructure used to provide the
functionality they need. Software infrastructure is referring to what is usually called
standard software and include: embedded operating systems, real-time operating
systems and other forms of middleware. First we present concepts and characteristics of
embedded systems and propose a classification. Then, it is presented some requirements

that usually are very useful for embedded systems. Next, we present software
infrastructure alternatives which are intended to provide the necessary functional and
non-functional requirements for embedded system software to execute. Finally, we
conclude with some tendencies of software infrastructure for the next generations
embedded applications.

2. Characterization of Embedded Systems

An embedded system is hidden inside a system or environment, performing some
dedicated function. The word embedded indicates that the system or device is part of
another (larger) system. The hosting system may be a specific system such as a car or an
aircraft, a machine or a factory, but it may also be a person in the case of an intelligent
pace maker or some hearing device, where the embedded system replaces or extends the
human capabilities. In some types of embedded systems or devices, the term ubiquitous
is sometimes used to point out that the computation is integrated in the environment.
Embedding computation into the environment and everyday objects (also called
pervasive computing) would enable people to cooperate with information-processing
devices in a more informal way than they currently do, and independent of their location
or situation they find themselves.

As there is an enormous variety of embedded systems from small intelligent sensors to
vast aircraft control systems and vehicle simulators, the functions they performed may
vary a lot. Some of the categories these functions can be put in are: Computation
(giving the intelligence to the overall system); Measurement via sensors; Control of the
environment via actuators after decisions made during the computation; Communication
(including data, music, video etc..); Human interface (via a display and some buttons or
a (limited) keyboard or touch screen). Different embedded systems will need different
functions, not all functions are necessary on an embedded system. For instance, a robot
will not always have a human interface.

Examples of how real-time and embedded systems provide us with services are in our
daily life when we go from one place to another we have services of Automotive or
Avionics, when we take care of our health in the hospital or medical office we may use
services of Health and Medical Equipment, when we decide to relax at home we
probably use services of Consumer Electronics and Intelligent Homes, and even when
we are taking care of our future investing on stock exchange we are using services of
Telecommunications. The following describes a bit more some of the domains of
embedded systems:
Automotive: It includes electronic control units in chassis systems power train
electronics, body electronics/security systems, information and computing systems, e.g.
for traffic control.
Avionics/Aerospace: It schedules and monitors the takeoff and landing of planes, make
it fly, maintain its flight path, and keep it out of harm’s way. It includes commercial
aircraft, military aircraft, and satellite systems.
Industrial Automation: It includes manufacturing and process controls, motion
controllers, intelligent Homes, operator interfaces, robotics, HVAC and other controls,
e.g. for energy distribution.
Telecommunications: It provides us with up-to-date information, such as stock quotes. It
includes infrastructure, services and end services.

Consumer Electronics and Intelligent Homes: It entertains us with electronic games and
joy rides. It includes set-top boxes, Internet access devices, home audio/video, and
household appliances.
Health and Medical Equipment: It includes patient monitoring equipment, medical
therapy equipment, diagnostic equipment, imaging equipment, and surgical systems.

Unlike PCs and workstations that execute regular non-real-time general purpose
applications, such as our editor and network browser, the computers and networks that
run embedded real-time applications are often hidden from our view.

Actually, embedded systems are heading more and more towards networked. Rapid
advances in microelectronic technology coupled with integration of microelectronic
radios on the same board or even on the same chip has been a powerful driver of the
proliferation of a new kind of Networked Embedded Systems (NES) over the last
decade.

Concurrently, embedded systems are becoming smaller and smaller. In reality, while
previously sensors were directly connected to the central computing elements (mostly in
an analogue way), today, they are becoming embedded systems themselves. Sensors
have a processor included and do some preprocessing of the measured physical property
(like temperature, displacement, pressure, etc.) sending the results of this preprocessing
to a central management subsystem via a digital network.

We are not intended to establish a new embedded systems taxonomy, but in order to be
coherent our philosophy is one of defining embedded systems which in turn can be
subdivided in 2 categories: Stand-alone embedded systems, networked embedded
systems.

2.1 Stand-alone embedded systems (SES):

Work in a stand-alone mode taking input and producing the desired output. The last two
decades have witnessed a significant evolution of stand-alone embedded systems from
being assembled from discrete components on printed circuit boards, even if, they still
are, to systems being assembled from Intellectual Property (IP) components which are
assembled onto silicon of the system on a chip (SoC). SoCs offer a potential for
embedding complex functionalities, and to meet demanding performance requirements
of applications such as DSPs, network, and multimedia processors.
Most of Consumer Electronics (CE) devices are classified as SES. For instance, the
explosion of the CE market over the past decade has generated products mainly in three
categories:
Low-end devices generally are built around application specific hardware like ASICs or
System-on-Chip (SoC) with small amounts of program memory (ROM), usually around
256 kbytes. They normally use an inexpensive processor, are manufactured in high
volumes, and are in general developed by a single programming team. Representative
examples of this type of device include many digital cameras and inkjet printers.
Mid-range consumer devices, such as video cameras, are characterized by moderate
amounts of program memory like 1 to 2 Mbytes and multiple programming teams.

High-end devices, such as smart phones and set-top boxes, usually have much more
memory, up to 32 Mbytes. In most cases, they use powerful processors and are
developed by large programming teams.

2.2 Networked embedded systems (NES)

Networked embedded systems may come in many different forms. These systems have
been variously referred as EmNets (Network Systems of Embedded Computers) [1],
NEST (Networked Embedded System Technology) [2], and DRE (Distributed Real-
Time Embedded) [3]. Fundamentally, networked embedded system is a collection of
spatially and functionally distributed embedded nodes interconnected by means of
wireline or wireless communication infrastructure and protocols, with some sensing and
actuation elements interacting with the environment, and, maybe, a master node which
is responsible for some control and coordination functions, to organize computing and
communication in order to achieve certain goal(s) [1]. The networked embedded
systems appear in a variety of application domains such as, automotive, train, aircraft,
office building, and industrial — mainly for monitoring and control.
In order to be in accordance to the different forms that Networked Embedded Systems
may come, in this survey we consider four types of networked embedded systems,
based on what is proposed in [4]: Embedded Systems, Sensor Systems, and Distributed
Real-Time and Embedded.

Embedded Systems are systems where the computing components are embedded into
some other purpose built device (an aircraft, a car, or a home). Here the characteristic is
that these systems are usually not mobile and often not all devices are connected,
usually with only one other server machine and most of the time not to external
networks. The type of the connection is often wired.

Sensor Systems are most of the time composed by a large number of possibly tiny
devices having a single task which is monitoring some conditions within an
environment and report back to a central server. The most widespread sensor networks
are usually not mobile but the sensors are connected through a wireless network.
Wireless sensor networks are a widely deployed example of networked embedded
systems. There is a great interest from both the industry and academia in wireless sensor
networks technologies that enable deployment of a wide range of applications, such as
military, environmental monitoring, e-health applications, etc.

Distributed real-time and embedded systems play an increasingly important role in
modern application domains, including military command and control, avionics and air
traffic control, and medicine and emergency response. Distributed real-time and
embedded (DRE) outline a computational infrastructures of many large scale mission-
critical domains where are used to control a variety of artifacts across a number of sites.
DRE systems can be characterized by the fact that the right answer delivered too late
becomes the wrong answer. In life-critical military DRE systems, such as those
defending ships against missile attacks or controlling unmanned combat air vehicles
through wireless links [5], to provide the right answer at the right time is crucial.

3. Requirements of Embedded Systems

In software engineering, functional requirements specify specific behavior or functions
of a software system or its component. In general, functional requirements define what a
system is supposed to do. They are supported by non-functional requirements, which
specify criteria that can be used to judge the operation of a system, rather than specific
behaviors. In general, non-functional requirements define how a system is supposed to
be. Non-functional requirements are often called qualities of a system. A system for
Cardiac tele-monitoring may be required to present the medical center with a display of
data such as heart rhythm. This is a functional requirement. How recent this data needs
to be is a non functional requirement. If the data needs to be updated in real time, the
system architects must ensure that the system is capable of updating the displayed data
within an acceptably short interval of the data changing.

Traditional, embedded software can be quite complex and have a number of
requirements. These have implications both for the application and for the software
infrastructure, such as the operating system. According to [6], and Computer Science
and Telecommunications Board [1] embedded software have several common features
such as the following:

(i) Resource-constrained computing. They are frequently rigorously constrained
regarding available resources. Especially because of the constraints of cost and size
which are duo to mass production and strong industrial competition, resources such as
CPU, memory, devices have been designed to meet these requirements. In addition,
especially for mobile or autonomous embedded systems energy is a priceless resource.
As a result of these restrictions, the system needs to efficiently use its computational
resources. For instance, the operating system must be able to operate in resource-
constrained environments.
(ii) Real-time requirements. Because many embedded applications interact deeply with
the real world, they often have strict real-time requirements. These applications require
functionalities such as process control, multimedia processing, instrumentation, and so
on, where the system has to fulfill a temporal requirement, or deadline. Deadlines are
qualified as soft, firm, or hard. Depending on the kind of deadline, the methods to
guarantee that a certain deadline is met are different. Occasionally, preemption points
need to be inserted in critical execution paths in order to reduce scheduling latency.
(iii) Portability. Many different types of CPUs, peripheral chips, and memory
architectures may be used in embedded systems. Thus, for low cost, any embedded OS
or other reusable component that is meant to be used on multiple applications should be
commonly portable to custom hardware platforms.
(iv) High reliability. Embedded systems are deployed remotely, often in infrastructure-
critical applications. Software faults are thus very problematic and are extremely
expensive or even impossible to fix.
Stand alone (SES) high-end devices in general use relatively expensive high-end
processors, and frequently also coprocessors, that deliver high throughput. As these
high-end devices usually have a high degree of human interaction, and users are slow
enough, high-end processors in these devices usually have no problem keeping up. For
that reason, the real-time requirements are not particularly demanding. In contrast, SES
lower-end devices in general have relatively little human interaction and on the contrary
consist largely of processes whose timing needs to be tightly controlled. For example,
pressing the Digital Camera(DC) shutter starts a series of threads that might involve

tasks such as measuring the ambient light, focusing the camera, capturing the image on
the charge-coupled device (CCD), moving the image to memory, etc. These tasks all
must be completed before the exposure period calculated by the DC has elapsed and the
shutter closes. High-end devices often have special-purpose hardware, such as the
Digital Signal Processors (DSP) used in Set Top Boxes (STB). In contrast, lower-end
devices do not allow having dedicated hardware in order to complete tasks such as IP
routing and video decoding. As they can not remove the responsibility for that tasks
from the OS, they must rely on the Operating System real-time performance.

As embedded systems get networked like NES, the scenario gets a little more complex
and while some common requirements become more stringent other new requirements
also become very important to provide, particularly regarding some qualities the system
must attend. Now, support for many of the important attributes for mobile, embedded,
sensor and distributed real-time embedded systems are extremely important. Such
attributes include requirements that are common in distributed systems as listed in [7].
Also includes other requirements that are relevant to NES [1,3,4,6]. Based on those, it is
presented a description of the non-functional requirements which we think represent
qualities that are very important to be supported on NES systems. This means that it is
important to software infrastructure (operating system, middleware, or else) be able to
provide these qualities in order to support these systems. The list includes the following
requirements: dependability, robustness, stability, failure handling, safety, security,
privacy, scalability and upgradability.

(a) Dependability, Robustness and System Stability
The notion of dependability includes aspects of reliability and availability. Reliability
and availability relate to the probability of working continuously for a given duration
and the percentage of uptime, respectively. For safety critical real-time applications,
reliability is a key concern. This means that the software infrastructure needs to provide
built-in support for redundancy management to guard against component and link
failures. Robustness is the ability of the system to perform acceptably when the system
operates outside of nominal conditions. For example, the ability to create disjoint
routing paths may improve robustness by eliminating certain common failure modes.
Stability is concerned with the system’s ability to keep disruptions contained. Both of
these quality attributes are critical to the success of software infrastructures that support
networked and distributed real-time and embedded applications. How to specify,
identify and validate these attributes is an important research topic, particularly when
disruptions are caused by software faults or malicious attacks. The rate of software
faults has far exceeded the rate of hardware faults.

(b) Failure handling
In a network embedded system, nodes may fail or experience problems due to several
reasons including physically broken, environmental obstruction, unreliable transmission
medium, presence of undetected collisions, increased and unpredictable delay, high
packet loss, etc. The failure of individual nodes should not affect the overall task of the
network embedded system, thus leading to an increased need for providing mechanisms
to ensure fault tolerance to the applications. In addition, after deployment of a network
embedded system topology changes are likely to occur because of changes in the
location of the sensor nodes. Also, extra nodes can be added at any time to replace
other nodes and some nodes can stop functioning due to lack of power. Even in a
continuously changing network topology, the software infrastructure such as operating

system or middleware system should be able to perform its tasks and provide reliable
services to the application.

(c) Safety
This property is concerned with the prevention of the loss of life and/or serious damage
to people, property or the environment. This is straightforward for medical devices, but
the characteristic is also valid for an aircraft, a car, etc. For example, many medical
dispensing devices are safety critical. They are currently certified as stand alone devices
under a specific set of application contexts. Sharing of resources in the network
compounds the challenges of safety. When we connect systems with different degrees
of criticality together and let them share resources, the development of a certifiably safe
software infrastructure becomes a serious challenge. If we connect several of them
together and something goes wrong, how can we define and identify which device is
responsible? Technologies for isolation and protection across all the layers, including
software infrastructure like OS, along with controlled graceful degradation of service
can arise as an important research topic.

(d) Security
This property is concerned with the capability to prevent information and system
resources from being used or altered by unauthorized users. A secure system is one
where only intended use of the system will be permitted. This also means avoiding
unpermitted access or modification. In addition to cyber attacks, there are unique
challenges from the perspective of embedded systems. Unlike office computers,
embedded monitoring devices are often left unattended for long periods of time in
remote areas and may be subject to tampering. For example, compromised unattended
physical sensors may feed the system with false data while the device remains
authenticated and the transmitted data encrypted properly. It is also easy to manipulate
the environment to fool many forms of sensors such as temperature, chemical
concentration, electromagnetic and acoustic sensors.

(e) Privacy
Privacy is concerned to the ability of an individual or group to isolate themselves or
information about themselves and thereby reveal selectively. Privacy is sometimes
related to anonymity, the wish to remain unnoticed or unidentified in the public realm.
The pervasiveness of networked and distributed real-time embedded systems brings the
difficult issue of providing privacy. Privacy policies are and will be increasingly
specified at different levels of detail and have different semantics for different systems.
Techniques for specifying and checking the consistency of policies across separate
systems are needed. It is very important to consider the impact of privacy solutions on
the software infrastructure, including services such as addressing, routing, time-
stamping, encryption and avoidance of communication patterns that can reveal private
information.

(f) Scalability
This property indicates the system ability to either handle growing amounts of work in a
graceful manner, or to be readily enlarged. Compared to existing typical distributed
systems, whose components communicate either with fixed or with mobile connections,
the number of nodes in a network embedded system can be several orders of magnitude
higher than the nodes in a traditional distributed system. In the future, sensor and
embedded devices will be used at ultra-large scales, including millions of devices

connected over the Internet. For example, world-wide weather monitoring based on
millions of new sensor devices is being contemplated. As a consequence, it is important
that new software infrastructure approaches are designed to support such a large number
of devices that interact across large geographic areas. In addition, be able to manage
such a large-scale network embedded system that spans multiple administrative
domains becomes a major challenge. Also, with scalability, the issues of self-
calibration, self-configuration and “self-healing” become crucial.

(g) Upgradability
This property is concerned with the degree to which a computer may have its
specifications improved by the addition or replacement of components. Traditionally,
most embedded devices, once deployed, have rarely been upgraded. In a world of
networked embedded systems, upgrades will be more frequent and often far more
invisible to end users of the systems. For instance, an NES may be in service for many
years, and the environment to which they are connected and the functionality
requirements for the device may change considerably over that time. In some cases,
such upgrades are driven by a knowledgeable user, who purchases a new component of
functionality and installs it, a nearly automatic procedure. In other cases, updates or
upgrades may be invisible to the end user, such as when protocols or device addresses
change. Most system designers will expect the operating system to make the task easier
and to handle some difficult problems like upgrade policy, verification, and security.
Furthermore, in some cases the operating system itself may need to be field upgraded, a
process that almost certainly requires operating system cooperation and that extends
beyond the device being updated. There is no consensus on how online field upgrade
will work for the billions of networked embedded systems components that will be
deployed. Field upgrade is likely to become an important focus of research and
development work over the next several years as numerous systems are deployed that
challenge the ability of simple solutions to scale up to adequate numbers and reliability.

EmS/Req. (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
SES
Low-end M M M M W W M W O O W
Med-end W W M M W W W W O O W
High-end O W M M W W W W W O W
NES

Embedded M M M M M M M W W W W
Sensor M W M M M W W M W M M
Distributed W M M M M M M M M M M

Table 3.1 Requirements for different categories of Embedded Systems

Table 3.1 summarizes the different categories of embedded systems and what properties
(requirements) are wish to be found in each of them. In order to establish the
importance of the requirements to the various embedded systems they are classified as
mandatory (M) in case you must fulfill the requirement, wanted (W) when it is
advantageous to have it, optional (O) when have it or not is not a big issue.

4. Software infrastructure for embedded systems

Embedded systems have been around at least as long as the microprocessor. The
software for these systems has been built, more or less successfully, using several
different paradigms. Some systems are built from scratch by the manufacturer with all
software being created specifically for the device in question. This software may be
written in assembly language or may use a higher-level language. Not all components
of embedded systems need to be designed from scratch. Instead, there are standard
components that can be reused. Software infrastructure, especially standard software
components such as operating systems (OS), are examples of these reusable software
components. Such components are available from independent software vendors and in
some cases as open source software.
Operating systems, interface with hardware to provide the necessary services for
application software. Software infrastructure is responsible for providing application
software with services that allow them to fulfill the requirements.

The rapid progress in processor and sensor technology combined with the expanding
diversity of application fields is placing huge demands on the facilities that an
embedded operating system must provide. The variety of applications where embedded
systems are being important also implies that the properties, platforms, and techniques
on which embedded systems are based can be very different. All the types of embedded
systems, from stand-alone embedded systems-SES, including the variety of devices and
applications such as digital camera, set-top boxes, and smart phones, to Networked
embedded systems-NES, including mobile systems, embedded systems, sensor systems
and distributed real-time and embedded system, need some specific type of service from
software infrastructure such as operating system or middleware. For instance, these
services are supposed to be prepared to attend to functional and non-functional
requirements. In this section we give an overview of presently available software
infrastructures for embedded systems, particularly regarding operating systems.

4.1 Operating Systems for Embedded Systems

Not all embedded systems need to be supported by operating system functionality the
simplest embedded systems are usually built without an explicit operating system. Such
systems do not have behaviors that require complex mechanisms or real-time
scheduling of concurrent tasks, and can therefore be implemented using a simple main
loop or executive cyclic approaches. Also, dedicated networked embedded systems can
usually be implemented without an operating system, but only with a stand-alone
protocol stack. One example of a networked system that does not require an operating
system could be a networked temperature controller that supplies temperature data over
TCP/IP. The controller will only be running a single application and there is no need to
have an operating system for dealing with multiple threads of control. For instance,
many embedded TCP/IP stacks such as uIP [8], lwIP [9] and OpenTCP [10], have the
ability to run either with or without a supporting operating system.

Embedded systems typically have requirements that are a lot different from the ones for
desktop computers, and hence operating systems for embedded systems are diverse
from general purpose operating systems (GPOS). Operating systems for embedded
systems usually are designed to be tailored for a specific application and therefore are
more static than GPOS. Many embedded systems require real-time guarantees to

function correctly, and most operating systems for embedded systems has real-time
properties such as guaranteed response times, deterministic computations, and real-time
scheduling algorithms. Due to the huge variety of embedded systems, there is also a
huge variety of requirements for the functionality of embedded OSes. However, it is not
effective to have an OS providing all the required functionalities. Besides, as most
embedded systems are application specific, we need operating systems which can be
flexibly customized towards the application at hand. So, configurability is one of the
main characteristics of embedded OSes. In OS, configurability deals with kernel
extension, as well as kernel customization and kernel adaptation [11]. In addition, (re)
configuration can be related to fine-grain or coarse-grain components.

Conventionally, existing operating systems for embedded systems are divided into two
categories: embedded operating systems and real-time operating systems [12]. In this
report we assume that the purpose of the OS can be divided in two categories: real-time
embedded systems that can also be called general embedded systems, and domain
specific embedded systems which somehow provide specific characteristics for different
domains of embedded systems like automotive, avionics, mission critical systems and
wireless sensor networks systems, without loosing OS functionality.

4.1.1 Embedded and Real-Time Operating Systems

In many embedded systems there is effectively no device that needs to be supported by
all versions of the OS, except maybe the system timer. Hence, it makes sense to handle
relatively slow devices such as discs and networks by using special tasks (drivers)
which are not integrating the kernel of the OS. Protection mechanisms are not always
necessary, since embedded systems are typically designed for a single purpose and there
is no well defined separation between application and OS functionality. For instance,
in contrast to desktop applications, there is no desire to implement I/O instructions as
privileged instructions and tasks can be allowed to do their own I/O. This matches
nicely with the previous item and reduces the overhead of I/O operations. There is no
need to go through an OS service call, which would create a lot of overhead for saving
and restoring the task context (registers etc.). In addition, taking into account that
embedded programs can be considered to be thoroughly tested, protection is not
necessary, and it is required efficient control over a variety of devices, it is possible that
interrupts can be employed to directly start or stop tasks. This is substantially more
efficient than going through OS services for the same purpose. Moreover, many
embedded systems are real-time (RT) systems and, hence, the OS used in these systems
must be a real-time operating system (RTOS). After all, it is possible to say that
features such as configurability, portability, real-time and reliability are very desirable
in embedded OS.

Traditional embedded operating systems like VxWorks [13], WinCE [14], QNX
[15,16], PalmOS [17], OS-9 [18], LynxOS [19], Symbian [20], are typically large
(requiring hundreds of KB or more of memory), general-purpose systems consisting of
a binary kernel with a rich set of programming interfaces. Such OSes target systems
with greater CPU and memory resources, and generally support features such as full
multitasking, memory protection, TCP/IP networking, and POSIX-standard APIs that
are undesirable (both in terms of overhead and generality) for sensor network nodes.
For example, a QNX context switch requires over 2400 cycles on a 33MHz 386EX

processor, and the memory footprint of VxWorks is in the hundreds of kilobytes. They
provide memory protection given the appropriate hardware support. This becomes
increasingly important as the size of the embedded applications grow. In addition to
providing fault isolation, memory protection prevents corrupt pointers from causing
seemingly unrelated errors in other parts of the program allowing for easier software
development. VxWorks, WinCE and QNX are well ranked in the 2005 survey by
Embedded System Design [21].

The VxWorks commercial RTOS from Wind River is the most widely adopted in the
embedded industry (e.g., it is used on the International Space Station). VxWorks was
first released in the early 1980s and provides a flexible API with more than 1800
methods, including network support, file system and I/O management. VxWorks
provides the Wind River Workbench which is a collection of Eclipse-based tools that
accelerates time-to-market for developers building devices with VxWorks. It is
available on all popular CPU platforms. The development host can be Red Hat Linux,
Solaris, SuSE Linux, Windows 2000 Professional, or Windows XP and provides a
visual development environment. The kernel supports preemptive priority scheduling
with 256 priority levels and round-robin scheduling. VxWorks is a multithreading
RTOS that provides deterministic context switching and supports semaphores and
mutual exclusion with inheritance. It can be set up so that each task has a private virtual
memory upon request. This RTOS also provides message queues and Open-standard
Transparent IPC for high-speed communications between threads. VxWorks
architecture is showed in Figure 4.1.

Figure 4.1 Architecture of VxWorks
http://www.windriver.com/products/product-notes/General-Purpose-Platform-ve-Note.pdf)

QNX is based on the idea of running most of the OS as a number of small tasks, known
as servers. This differs from the more traditional monolithic kernel, in which the
operating system is a single very large program composed of a huge number of "parts"
with special abilities. QNX Neutrino (2001) has been ported to a number of platforms
and now runs on practically any modern CPU that is used in the embedded market. It
also provides QNX System Tools with a System Builder for offline and online
configuration of the system, and some analysis tools. The QNX kernel contains only
CPU scheduling, inter-process communication, interrupt redirection and timers.
Everything else runs as a user process. QNX Real-time capabilities include priority-
based preemptive scheduling with 256 priorities, aperiodic scheduling with sporadic
server, nested interrupts and inheritance protocol. Figure 4.2 shows the Architecture of
QNX OS.

http://www.windriver.com/products/product-notes/General-Purpose-Platform-ve-Note.pdf

Figure 4.2 QNX Neutrino Architecture
http://www.qnx.com/download/feature.html?programid=8483

The Windows CE RTOS is a commercial RTOS developed in the late 1990s by
Microsoft. Windows CE is a modular, portable real-time embedded OS developed
especially for small memory, mobile 32-bit devices. There exist three main
development platforms (Windows Mobile, SmartPhone, and Portable Media Center)
that allow developers to use feature-rich tools to develop applications for x86 and other
architectures. Windows CE can have up to 32 processes active with multiple threads in
each process. The scheduler supports round-robin or priority-based preemptive
scheduling with 256 priority levels, and uses the priority inheritance protocol for
dealing with priority inversion. Windows CE supports OS synchronization primitives
such as critical sections, mutexes, semaphores, events, and message queues to allow
thread to control access to share resources. Architecture of Windows CE is showed in
Figure 4.3.

Several embedded systems have taken a component-oriented approach for application-
specific configurability [22]. eCos [23][24] and icWORKSHOP [25] have a goal of
lightweight, static composition. These systems consist of a set of components that are
wired together (either manually or using a composition tool) to form an application.
Components vary in size from fine-grained, specialized objects (as in icWORKSHOP)
to larger classes and packages (eCos). VEST [26] is a proposed toolkit for building
component-based embedded systems that performs extensive static analyses of the
system, such as schedulability, resource dependencies, and interface type-checking.

http://www.qnx.com/download/feature.html?programid=8483

Figure 4.3 Architecture of Windows CE
http://msdn.microsoft.com/pt-br/library/aa924061.aspx

The most widely adopted free, open source RTOS, eCos (embedded Configurable
operating system) was released in 1986. eCos provides a graphical-configuration tool
and a command line-configuration tool to customize and adapt the RTOS to meet
application-specific requirements. This feature allows the user to set the OS to the
desired memory footprint and performance requirements. Development hosts are
Windows and Linux and the supported target processors are various. The eCos kernel
can be configured with the bitmap scheduler or the multilevel queue (MLQ) scheduler.
Both schedulers support priority-based scheduling with up to 32 priority levels. The
bitmap scheduler is somewhat more efficient and only allows one thread per priority
level. The MLQ scheduler allows multiple threads to run at the same priority. First in,
first out (FIFO) or round-robin is used to schedule threads with the same priority. The
eCos RTOS supports OS primitives such as mutexes, semaphores, mailboxes, and
events for synchronization and communication between threads. eCos architecture is
showed in Figure 4.4.

Figure 4.4 Architecture of eCos [24]

http://msdn.microsoft.com/pt-br/library/aa924061.aspx

There is also systems that are specially design for smaller embedded systems. family of
smaller real-time executives, such as CREEM [27], pSOSystem [28], OSEKWorks [29],
and Ariel [30], that while providing support for preemptive tasks, they have severely
constrained execution and storage models.

Contemporary OS such as Linux, also have extensions that enable them to support real-
time applications: RTAI [31], and RT-Linux [32]. These RTOSs are based on the same
principle of operation which is through interrupt control between the hardware and the
operating system. Interrupts needed for deterministic processing are processed by the
real-time core, while other interrupts are forwarded to the non-real time operating
system. These systems are only suitable for large real-time systems due to footprint
required and their architecture are similar as in Figure 4.5.

Figure 4.5 RTAI Architecture [31]

Other Linux extensions like Embedded Linux [33] and µClinux [34] are more
embedded compliant but do not support real-time. These extensions have an
architecture which is very much like the Linux architecture in Figure 4.6 except they do
not have to deal with memory management units (MMU).

Figure 4.6 Linux architecture

As embedded systems are getting more and more complex, dynamic, and open, while
interacting with a progressively more demanding and heterogeneous environment, the

reliability and security of these systems have become major concerns. An increasing
number of external security attacks as well as design weaknesses in operating systems
have resulted in large economic damages, which results in difficulties to attain user
acceptance and getting accepted by the market. Consequently, there is a growing request
from stakeholders in embedded systems to make available execution platforms which
address both integrity and security concerns. Recently, we have seen some proposals
which are really concern with security, reliability, dependability and resilience of
operating systems [35,36,37,38]. Basically, they propose to use micro-kernel based
operating systems [73, 74] to provide security and dependability for embedded system
application. One of the proposals is based on L4 OS [36, 38] which architecture is
showed in Figure 4.7. Another proposal is based on Minix OS [35, 37]. Figure 4.8
shows the architecture of Minix OS.

Figure 4.7 L4 based Architecture [35]. The resulting system comprises a microkernel that also
provides for virtual machines and a microkernel-based system on top that includes components

for maintaining the virtual machines.

Figure 4.8 Minix Architecture [35].The microkernel handles interrupts, provides the
basic mechanisms for process management, implements interprocess communication,

and performs process scheduling.

Table 4.1 summarizes some operating systems for embedded systems and what
properties (requirements) they provide. The table refers to the same set of requirements
we have introduce earlier at chapter 3. In this table we want to give you a view of how
the systems provide and enforce a certain property: adequately (A) in case the system
provides and enforces the property, poorly (P) when the system provides the property
but not as required (for example, when the system is said to be real-time but do not
support hard real-time behavior), and non (N) when the system does not provide the
requirement.

OS/Req. (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
VxWorks P P A A P P P A P A P
QNX P P A A P P P A P A P
Windows CE P P A P N N N P P P N
eCos A P A P N N P P P A N
pSOS A P P P N N P P N P N
RTAI N A P P N N N P N P N
uClinux A N A P N N N P N P N
L4 P P P A A A P A A A P
Minix P N P A A A P A A A P

Table 4.1 Embedded Systems Requirements provided by OSes for EmS

Most of the OSes for embedded systems provide the necessary functionalities such as
multitasking, memory management, file system, network, etc., through its API. They
provide various architecture approaches such as monolithic kernel, micro-kernel based,
components based, and library based. However, they do not provide and enforce a lot of
non-functional requirements that are necessary in embedded systems, specially the
properties usually required in networked embedded systems. Also, most of the OS we
listed required large amount of memory to run and do not deal with low power
consumption. According to [21], the type of operating system that embedded systems
developers pick in almost half the cases (44%), is one of the many commercial
operating systems or RTOS products for their current project. The remainder was about
equally divided among internally developed operating systems, open-source operating
systems, and no operating system at all.

4.1.2 Domain Specific Embedded Operating Systems

This section presents three domains, Avionics, Automotive and Embedded Sensor
Networks which needs specific requirements.

Avionics
Significant work has been performed within the avionics domain to achieve the stated
objectives. The main body of work has been performed under the banner Integrated
Modular Avionics (IMA) [39,40,41].

The ARINC 653 [42,43] is a standard that specifies a programming interface for a
RTOS. In addition, it establishes a particular method for partitioning resources over
time and memory. The ARINC 653 specification for system partitioning and scheduling
is often required in safety- and mission-critical systems, particularly in the avionics
industry. ARINC 653 defines an APplication EXecutive (APEX) for space and time

partitioning that may be used wherever multiple applications need to share a single
processor and memory, in order to guarantee that one application cannot bring down
another in the event of application failure. Each partition in an ARINC 653 system
represents a separate application and makes use of memory space that is dedicated to it.
Similarly, the APEX allots a dedicated time slice to each, thus creating time
partitioning. Each ARINC 653 partition supports multitasking. Applications that use the
ARINC 653 application programming interface (API) can be more easily ported from
one ARINC 653 operating system to another than those which do not.
ARINC standards allow aircraft manufacturers to ensure that new installations are
compatible and interchangeable. A study called "The Economic Impact of Avionics
Standardization on the Airline Industry," from Georgia State University's Aviation
Policy Research, Aviation and Transport Studies, estimates annual savings by the
airlines industry of more than $291 million annually through the use of ARINC
standards.

The MILS –Multiple Independent Levels of Security and Safety [44] approach is
proposed to provide a reusable formal framework for high assurance system
specification and verification. Separation of kernel is the big issue. The traditional
monolithic kernel is intended to provide as many services as possible to the application.
Kernels compete with each other based upon the richness of the API that they offer to
the programmer. In the MILS architecture, the separation kernel only does four very
simple things. A MILS kernel is responsible for enforcing data isolation, control of
information flow, periods processing and damage limitation policies, and nothing else.
Each of these policies counters one or more of the basic foundational threats to system
assurance.
The MILS separation kernel, Figure 4.9, has two special characteristics. First, it is the
only code that runs in supervisor or privileged mode. No other code, not even device
driver code, has the ability to affect the processor’s protection mechanisms, particularly
the MMU.

Figure 4.9 MILS Architecture [44]

The second characteristic is that because the separation kernel is so simple it can be
very small, approximately 4,000 lines of C language source code. That is small enough
to be mathematically modeled so that we can trust this code to rigorously enforce the

four MILS policies. This code will have been proven to be correct under all conditions.
Mathematical proof by formal methods is arduous and expensive, but it only needs to be
done once for each separation kernel. That investment can be leveraged over again
many times.
As examples of MILS compliant OS we have LynxSecure [45] and PikeOS [46]. They
have been used especially in military and avionics industries. Another system, RTEMS
[47] which is not MILS compliant is also used for military and avionics projects.

LynxSecure addresses this issue on all fronts by providing a robust environment within
which multiple secure and non-secure operating systems can perform simultaneously—
with no compromise of security, reliability or data. LynxSecure expands on the proven
real-time capabilities of the LynxOS® real-time operating system (RTOS) with time-
space partitioning and operating-system virtualization. It conforms to the Multiple
MILS architecture, with strict adherence to data isolation, damage limitation and
information flow policies identified in this architecture. Unlike a traditional security
kernel that performs all trusted functions for a secure operating system, a separation
kernel's primary security function is to partition data and resources of a system and to
control information flow between partitions. Partitions and information-flow policies
are defined by the kernel's configuration. This provides a robust foundation for the
creation of multi-level secure systems. To fulfill the separation kernel concept of MILS
architecture, it utilizes virtualization. LynxSecure uses a hypervisor to create a
virtualization layer that maps physical system resources to each guest operating system.
Each guest operating system is assigned certain dedicated resources, such as memory,
CPU time and I/O peripherals. Figure 4.10 shows the architecture of LynxSecure.

Figure 4.10 LinxSecure Architecture with Guest Operating Systems [45]

PikeOS is a microkernel-based real-time operating system made by SYSGO AG. It is
targeted at safety and security critical embedded systems. It provides a partitioned
environment for multiple operating systems with different design goals, safety
requirements, or security requirements to coexist in a single machine. It was initially
modeled after the L4 microkernel [48] and has gradually evolved over the years of its
application to real-time, embedded systems space. The goal of Pike OS is to provide
partitions that comprise a subset of the system’s resources. Processing time is one of
those resources. It is expected the partitions to host a variety of guest operating systems
with different requirements regarding timely execution. PikeOS combines resource
partitioning and virtualization, in order to fulfill the MILS separation kernel concept. Its
virtual machine environments are able to host entire operating systems, which need to
be adapted in order to run in one of its virtual machine environments, along with their
applications that can run unmodified. A number of different operating systems have
been adapted to run in a PikeOS virtual machine. Among them are Linux, several
popular real-time operating system APIs including POSIX and ARINC-653. PikeOS
provides a build-in Health Monitoring Feature which implements all features described
in the ARINC-653 standard. Failures like address- and timing violations, illegal
instruction will be intercepted by the OS and handled as specified in the system
configuration. This adds another layer of determinism without additional application
code. The PikeOS system can be configured using PIK, the graphical configuration
editor within CODEO. PIK includes a powerful integrity checker that makes it almost
impossible to create an invalid configuration. PikeOS supports PowerPC, x86, and
MIPS platforms. Examples of projects using PikeOS are DIANA[49] and Airbus for the
FSA-NG (Fly Smart with Airbus New Generation). Figure 4.11 shows the architecture
of PikeOS.

Figure 4.11 PikeOS Architecture

RTEMS (Real-Time Executive for Multiprocessor Systems) is a free open source real-
time operating system (RTOS) designed for embedded systems. The acronym RTEMS
initially stood for Real-Time Executive for Missile Systems, then became Real-Time
Executive for Military Systems before changing to its current meaning. RTEMS
development began in the late 1980s with early versions of RTEMS available via ftp as
early as 1993. OAR Corporation is currently managing the RTEMS project in
cooperation with a Steering Committee which includes user representatives. Space and
On a conceptual level RTEMS can be characterized by three layers: hardware support,
kernel and APIs. The user then develops his application by using the available APIs.

The hardware support layer encompasses the processor and board dependent files as
well as a common hardware library. RTEMS provides a notion of executive which
encapsulates the API layer and the kernel. The kernel layer is the heart of RTEMS and
encompasses the super core, the super API and several portable support libraries. The
super core is organized into handlers and provides a common infrastructure and a high
degree of interoperability between APIs. It is worth reminding that there is a small part
of the super core that is target dependent. The super API contains the code for services
that are beyond any standardization, such as API initialization and extensions support.
The API layer makes the bridge between the kernel and the application. APIs are
implemented in terms of super core services. The Classic API, provides basic features
such as multitasking, priority-based pre-emptive scheduling and optional rate-
monotonic scheduling, inter-task communication and synchronization, priority
inheritance, etc. POSIX and ITRON APIs are also supported. There is also an interface
for ARINC 653 specification [50]. Aviation projects supported by RTEMS include
Dawn [51] and THEMIS [52] . Figure 4.12 shows the architecture of RTEMS.

Figure 4.12 RTEMS Architecture

Table 4.2 summarizes some operating systems for avionics domain embedded systems
and what properties (requirements) they provide. The table refers to the same set of
requirements we have introduce earlier at chapter 3. In this table we want to give you a
view of how the systems provide and enforce a certain property: adequately (A) in case
the system provides and enforces the property, poorly (P) when the system provides the
property but not as required (for example, when the system is said to be real-time but do
not support hard real-time behavior), and non (N) when the system does not provide the
requirement.

GUIs

SAPI

Board Support PackageSuperCore

SuperCore CPU
LibCHIP

Hardware

LibCPU

Classic API POSIX Threads µ ITRON API

BSD TCP/IP Stack

POSIX Compliant
Filesystem

RPC/
XDR

tftp ftpd

PPP

SNMP

Ada95

CORBA

Performance
Monitoring API

Remote
Debugging

httpd

DHCP BOOTPICMP

MicroWindows

NanoX

OpenGUI

FLTK

picoTk

Add-on Libraries

Tcl
ncurses

libavl
readline

zlib

IMFS TARFSGNAT

Classic
API

Bindings

FAT
TFTP
client

NFS
client

telnetd

OS/Req. (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
LynxSecure P P A A A P A A A A A
PikeOS P P A A A P A A A A P
RTEMS P A A A A P A A P P P

Table 4.2 Embedded Systems Requirements provided by OSes for Avionics Domain
All systems tend to be compliant to ARINC and MILS specifications, where the big
issue is Security and Safety. However, some basic requirements for embedded systems
such as resource constrains and real-time are not adequately handled. Also, it seems that
failure handling is not an important concern for these systems.

Automotive
In the automotive domain, the embedded systems are distributed; hence the
communications play a key role in the development process all the way from the design,
to implementation and integration.

OSEK/VDX [53], which is a collection of widely used standards for automotive
systems, specifies a scalable real-time operating system OSEK/VDX OS [53],
communications with transparent communication services OSEK/VDX COM [54], and
a network manager OSEK/VDX NM [55] allowing for easy integration of subsystems
developed by different OEMs. OSEK/VDX provides reusability and portability of
software by using abstract high level interfaces. OSEK/VDX COM allows for
communications on a high level abstraction, without detailed knowledge on
communication transmitters and recipients locations.

The latest automotive software standard is AUTOSAR [56], by the AUTOSAR
consortia. The goal of AUTOSAR is to create a global standard for basic software
functions such as communications and diagnostics. From an integration point of view,
AUTOSAR provides a Run-Time Environment (RTE) routing communications between
software components regardless of their locations, both within a node and over
networks. Tools allows for easy mapping of software onto the existing architecture of
nodes (Electronic Control Units - ECUs). AUTOSAR is working towards integration of
standardized tools relying on, e.g., operating system standards such as, e.g.,
OSEK/VDX OS, and various communication standards as, e.g., OSEK/VDX COM,
FlexRay, CAN, LIN and MOST.

OSEK/VDX OS [53], describes the concept of a real-time operating system, capable of
multitasking, which can be used for motor vehicles. It also specifies the OSEK
operating system API. Figure 4.13 shows the architecture of an OSEK OS.

The objective of the standard is to describe an environment which supports efficient
utilization of resources for automotive control unit application software. This standard
can be viewed as a set of API for real-time operating system (OSEK) integrated on a
network management system (VDX) that together describes the characteristics of a
distributed environment that can be used for developing automotive applications.
Typical automotive applications are characterized by stringent real-time requirements
and high criticality (for example, a power-train application). In addition, these
applications have to be made in a huge number of units, therefore there is a need to
reduce the memory footprint to a minimum enhancing as possible the OS performance.

The following are some features that help to better characterize the philosophy that
drove the main architectural choices of the OSEK Operating System:

Figure 4.13 OSEK/VDX OS Architecture

Scalability - the operating system is intended for use on a wide range control units
(either system require only a minimum of hardware resources RAM, ROM, CPU time
and runs even on 8 bit microcontrollers). To support a wide range of systems the
standard defines four conformance classes that tightly specifies the main features of an
OS. Different conformance classes, various scheduling mechanisms and the
configuration features make the OSEK operating system feasible for a broad spectrum
of applications and hardware.
Portability of software - the standard specifies an ISO/ANSI-C interface between the
application and the operating system that is identical in all the implementations of the
OS. The aim of this interface is to give the ability to relocate the application software
from one ECU to another ECU without bigger changes inside the application. Due to
the wide variety of hardware where the OS has to work in, the standard does not specify
any interface for the Input/Output subsystem. Note that this fact reduces (if not
prohibits) the portability of the application source code, since the I/O system is one of
the main software part that impacts on the architecture of the software. We can say that
the prime focus is not to achieve 100% compatibility between the application modules,
but to ease their direct portability between compliant operating systems.

Configurability - another requirement needed to adapt the OS to a wide range of
hardware is a high degree of modularity and configurability. This configurability is
reflected by the tool chain proposed by the OSEK standard, where some configuration
tools help the designer in tuning the system services and the system footprint.
Moreover, a language called OIL (OSEK Implementation Language) is proposed to
help the definition of a standardized configuration information.
Reliability - the OSEK operating system is configured and scaled statically. The user
statically specifies the number of tasks, resources, and services required. This approach
ease the implementation of an OS capable of running on ROM, and moreover it is

completely different from a dynamic approach followed in other OS standards like for
example POSIX.
Real-Time capability - the specification of the OSEK operating system provides a
predictable and documented behavior to enable operating system implementations,
which meet automotive real-time requirements.
Support for time triggered architectures - the OSEK Standard provides the specification
of OSEKTime OS, a time triggered OS that can be fully integrated in the OSEK/VDX
framework.

OSEKtime operating system (OSEKtime OS) [57] is the specification of a time-
triggered operating system with a fault-tolerant communication layer as a standardized
run-time environment for highly dependable real-time software in automotive electronic
control units. The operating system must implement the following properties:
predictability (deterministic, a priori known behavior even under defined peak load and
fault conditions), clear, modular concept as a basis for certification, dependability
(reliable operation through fault detection and fault tolerance), support for modular
development and integration without side-effects (composability), and compatibility to
the OSEK/VDX.

The OSEKtime operating system supports static scheduling and offers all basic services
for real-time applications, i.e., interrupt handling, dispatching, system time and clock
synchronization, local message handling, and error detection mechanisms. All services
of OSEKtime are hidden behind a well-defined API. The application interfaces to the
OS and the communication layer only via this API. For a particular application the
OSEKtime operating system can be configured such that it only comprises the services
required for this application. Thus the resource requirements of the operating system are
as small as possible. OSEKtime also comprises a fault-tolerant communication layer
that supports real-time communication protocols and systems and is described in
FTCom [58] specification.

The following systems are examples of operating systems OSEK/VDX OS compliant.
Most of them are from small companies.

Erika Enterprise [59] is a minimal real-time kernel for single and multicore embedded
systems. It is a free, open-source implementation of the OSEK/VDX API, implementing
conformance classes BCC1, BCC2, ECC1, ECC2, with an OSEK OIL compiler
integrated into Eclipse.

PICOS18 [60], is an operating system based on OSEK/VDX standard. It is designed by
Pragmatec Inc. for the PICmicro microcontrollers from the Microchip PIC18 family and
is totally free and distributed under the GPL license.

Trampoline [61] is an open source RTOS which, once certified, could be compliant with
the OSEK/VDX specification. Currently it is not the case, so while Trampoline has the
same API as OSEK/VDX, it is not officially compliant. Trampoline is available under
the GNU Lesser General Public License V2.

OSEKturbo [62] is a small, scalable Real-Time Operating System (RTOS) that provides
a set of RTOS services that can be leveraged by your embedded application. Developed
in accordance with the Software Engineering Institute's (SEI) highest Capability

Maturity Model (CMM) rating and fully compliant to the latest OSEK/VDX
specifications, the operating system is designed to occupy very little memory, provide
fast context switching times and increase reusability of your embedded application.

RTA-OSEK [63] provides a production real-time operating system suitable for
applications in all areas of automotive ECU design. It implements the AUTOSAR-OS
V1.0 (SC-1) and OSEK/VDX OS V2.2.3 standard and is fully MISRA compliant. An
extremely small and fast runtime kernel is supplied for more than 20 popular
microcontrollers, together with the Planner and Builder tools that are used to configure
and analyze the operating system.

The Systems listed here are all OSEK/VDX OS compliant and so they tend to be very
concern with the features listed above. As the information on these systems are very
poor we are assuming they provide and enforce the features we have listed above.

Embedded Sensor N etworks

Recently, the availability of cheap and small tiny sensors and low power wireless
communication allowed the large-scaled deployment of sensor nodes in Embedded
Sensor Networks (ESN). An embedded sensor network is a network of embedded
computers placed in the physical world that interacts with the environment. These
embedded computers, or sensor nodes, are often physically small, relatively inexpensive
computers, each with some set of sensors or actuators [64]. Their nodes communicate
wirelessly and each node consists of: processing capability (one or more
microcontrollers, CPUs, or DSP chips), may contain multiple types of memory
(program, data, and flash memories), have an RF transceiver, have a power source
(batteries and solar cells), and accommodate various sensors and actuators. Sensor
nodes have evolved into two broad categories. The first one consist of small devices
with 8-bit microcontrollers CPUs, 10/100KB of working memory, and 100/1000KB of
flash secondary storage, such as motes [65]. The second one consist of larger devices
with 32-bit CPUs and megabytes each of working memory and secondary storage, such
as Cerfcube[66]. The nodes often self-organize after being deployed in an ad hoc
fashion. Systems of 1,000s or even 10,000 nodes are anticipated. Such systems can
revolutionize the way we live and work, it is not irrational to expect that in a decade the
world will be covered with wireless sensor networks with access to them via the
Internet [5].
To be usable a sensor networking system must provide several services, further than the
lower-level networking primitives. When sensor network programmers make a program
for sensor network applications, without any middleware or operating system, the
development of application is very difficult. Many services, such as operating systems,
are also found in traditional wired and wireless networks. The sensor networking
community typically uses embedded (and, possibly, real-time) versions of existing
operating systems such as Linux for the larger devices. These embedded versions
provide largely the same programming support as their regular counterparts, but with
additional device-level support for embedded controllers, flash memory, and other
peripherals specific to these devices. As such, not much research has been required on
new operating systems support for these larger devices. On the other hand, the smaller
devices (such as the motes) have required novel directions in operating system design.

In order to attend these novel directions the following requirements generally shape the
design of network sensor systems [67], affecting directly the design of operating
systems support for network sensor systems:

Small physical size and low power consumption: At any point in technological
evolution, size and power constrain the processing, storage, and interconnect capability
of the basic device. The current trend of low-end embedded processors is toward larger
ROM sizes (64KB to 128 KB) and smaller RAM sizes (2KB to 8KB). The OS
architecture should be compliant with this trend by optimizing for RAM with a higher
priority than ROM and optimizing for runtime efficiency. If limits on the usage of
energy can be enforced, lifetime guarantee requirements of the system as a whole can
likely be provided (under reasonable assumptions about operating conditions such as
network connectivity). The OS can also ensure that the system energy is apportioned in
a manner corresponding to the importance of the tasks so that critical tasks are
guaranteed their energy budget. True preemptive multitasking becomes necessary in a
system where multiple inputs to the system must be serviced at different rates within a
required period.
Concurrency-intensive operation: What is crucial in mode of operation for these devices
is to flow information from place to place having a modest amount of processing on-
the-fly, in order to accept a command, stop, analize, and respond. For example, it is
possible to simultaneously capture information from sensors, manipulate them, and put
then onto a network. The OS should provide a simple and intuitive programming
paradigm for easy use by application developers. It is desirable to retain the traditional
multitasking paradigm familiar to both desktop and embedded system programmers.
Application developers should be able to concentrate on application logic rather than
low-level system issues such as scheduling, and networking.
Diversity in Design and Usage: Typically networked sensor devices are application
specific, rather than general purpose. They carry only the available hardware support
actually needed for the application. There is a wide range of potential applications, so
the variation in physical devices is likely to be large. In order to provide functionality
on any particular device, it is important to easily assemble just the software components
required to synthesize the application from the hardware components. As a result, we
need an unusual degree of software modularity that must also be very efficient to
provide what these devices require. Providing a unified and simple abstraction for
accessing sensor readings and actuating responses would greatly benefit the end-user. In
particular, low-level details associated with sensor/actuator configurations should be
abstracted away from the user. Sensors should be supported using device drivers that
can return real-world units as well as raw ADC values. Moreover, it should be natural to
migrate components across the hardware/software boundary as technology evolves.
Robust Operation: These devices will be numerous, largely unattended, and expected to
form an application which will be operational a large percentage of the time. The
application of traditional redundancy techniques to enhance the reliability of individual
units is limited by space and power. Since sensor nodes are resource-constrained,
precious CPU cycles, network buffers and bandwidth should be apportioned to
application needs. OS support for guaranteed, timely and limited access to system
resources is necessary for supporting application deadlines and balanced apportioning
of system slack (residual unused resources). This mechanism can also be used to place
some limits on the impact of faulty or malicious tasks on system operation.
Timeliness and Schedulability: Most sensor applications such as surveillance tend to be
time sensitive in nature where packets must be relayed and forwarded on a timely basis.

While outing and network link scheduling are important components in ensuring that
packets meet their end-to-end delay bounds, timing support on each node in the network
is also essential. In order to honor end-to-end deadlines, local tasks on each node have
deadlines associated with the completion of their local data relaying and processing.
Managing the deadlines of these tasks requires support of a real-time operating system.

One such direction has been the development of a number of OSes for embedded sensor
networks and networked low-power systems. TinyOS [67], an operating system for the
motes and widely used by many research groups as well as in some segments of
industry, deviates significantly from the traditional multi-threaded model of modern
operating systems. MantisOS [68] and Contiki [69] are two recent projects providing
multithread support. Other OSes like Nano-RK [70], and Pixie [71] , provide different
approaches in order to support embedded sensor networks.

TinyOS is a tiny, flexible operating system built from a set of reusable components that
are assembled into an application-specific system. It supports an event-driven
concurrency model based on split-phase interfaces, asynchronous events, and deferred
computation called tasks. TinyOS has a component-based programming model, codified
by the NesC language, a dialect of C, which supports the TinyOS component and
concurrency model as well as extensive cross-component optimizations and compile-
time race detection. TinyOS is not an OS in the traditional sense; it is a programming
framework for embedded systems and set of components that enable building an
application-specific OS into each application. A typical application is about 15K in size,
of which the base OS is about 400 bytes; the largest application, a database-like query
system, is about 64K bytes.
A TinyOS program is a graph of components, where each of the components is an
independent computational entity that exposes one or more interfaces. The components
provide three abstractions: commands, which is typically a request to a component to
perform some service (such as initiating a sensor reading); events, which are typically
used to signal the completion of that service, and tasks, which is a function executed by
the TinyOS scheduler at a later time. While commands and events are mechanisms for
inter-component communication, tasks are used to express intra-component
concurrency.
TinyOS uses a two level scheduling hierarchy that lets high-priority events pre-empt
low priority tasks. It supports a cyclic-executive model wherein interrupts can register
events, which can then be acted upon by other non-blocking functions. Events are
invoked because of external input such as incoming data or sensor input. Events can
post tasks for later processing. Both events and tasks must run to completion after being
invoked. This precludes the use of blocking statements. Events are implemented using
hardware interrupts, and tasks are implemented using a linear FIFO dispatcher. The
dispatcher has a queue of tasks, where each task is represented by a pointer to a
function.
The current version of TinyOS provides a large number of components to application
developers, including abstractions for sensors, single-hop networking, ad-hoc routing,
power management, timers, and non-volatile storage. A developer composes an
application by writing components and wiring them to TinyOS components that provide
implementations of the required services.
TinyOS is open-source software, published under a 3-clause BSD license. It has been
under development for several years and is currently in its third generation involving

several iterations of hardware, radio stacks, and programming tools. Over one hundred
groups worldwide use it, including several companies within their products.

Contiki is an operating system designed for networked and memory-constrained
systems. Contiki, like TinyOS, is based around an event-driven kernel but has additional
support for dynamically loadable programs. Unlike TinyOS, Contiki includes the uIP[8]
stack for TCP/IP communication. It also allows applications to be written in a multi-
threaded fashion. Multi-threading is implemented as a library that is optionally linked
with those applications that specifically requires a threaded model of execution. The
event-driven nature of the kernel makes the system compact and responsive, whereas
the multi-threading makes it possible to run programs that perform long-running
computations without completely blocking the system. Additionally, Contiki provides a
third execution model called protothreads. A protothread is an extremely lightweight
stack-less thread-like construct that provides linear execution on top of the event-driven
kernel.
A Contiki system is composed by the kernel, libraries, the program loader, and a set of
processes. It is partitioned into two parts: the core and the loaded programs as shown in
Figure 4.14, and partitioning is made at compile time and is specific to the deployment
in which Contiki is used. Typically, the core consists of the Contiki kernel, the program
loader, the most commonly used parts of the language run-time and support libraries,
and a communication stack with device drivers for the communication hardware.
The core is compiled into a single binary image that is stored in the devices prior to
deployment. The core is generally not modified after deployment, even though it should
be noted that it is possible to use a special boot loader to overwrite or patch the core.

Figure 4.14 Contiki OS Core

A process may be either an application program or a service which is the
implementation of functionality used by more than one application process. All
processes, both application programs and services, can be dynamically replaced at run-
time. In addition, processes share the same address space and do not run in different
protection domains. The definition of a process contains an event handler function and
an optional poll handler function. Communication between processes always goes
through the kernel, and it is done by posting events. The kernel does not provide a
hardware abstraction layer, but lets device drivers and applications communicate

directly with the hardware. A process is defined by an event handler function and an
optional poll handler function.

The MANTIS open source RTOS (MOS) as being adapted to the additional requirements
imposed by sensor networks, e.g. the development of a power-efficient scheduler to
reduce energy consumption and the implementation of advanced sensor specific features
like remote dynamic reprogramming of micro sensor nodes. MANTIS OS provides
lightweight memory footprint as well as energy-efficient operation. At present, the
MOS kernel is able to achieve multithreaded preemptively scheduled execution with
standard I/O synchronization and a network protocol stack, all for less than 500 bytes of
RAM, not including individual thread stack sizes.
MOS is also designed to provide advanced remote management capabilities for in-situ
sensor networks. Towards this end, the goals of MOS are to support useful yet
sophisticated features, including dynamic reprogramming of sensor nodes via wireless,
remote debugging of sensor nodes, and multimodal prototyping of virtual and deployed
sensor nodes. The goal of the MOS kernel design is to implement familiar services such
as POSIX threads, binary (mutex) and counting semaphores in a manner efficient
enough for the resource-constrained environment of a sensor node. The design of the
MOS kernel resembles classical, UNIX-style schedulers, most notably priority-based
thread scheduling with round-robin semantics within a priority level. The scheduler
receives a timer interrupt from the hardware to trigger context switches; switches may
also be triggered by system calls or semaphore operations. The timer interrupt is the
only one handled by the kernel–other hardware interrupts are sent directly to the
associated device drivers. Upon an interrupt, a device driver typically posts a semaphore
in order to activate a waiting thread, and this thread handles whatever event caused the
interrupt. The time slice is configurable, and is currently set to about 10 ms. They claim
that automatic preemption, provided by time-sliced multithreading, is important in
sensor systems, since blocking certain time-critical tasks from executing, such as
network packet processing, can result in overflow of network buffers when tasks are
sufficiently long-lived and a sensor node’s RAM buffers are sufficiently small.
The MANTIS multithreaded OS provide a structure, figure 4.15, where the main
components of MOS are the MOS Kernel, COM Layer, DEV Layer, and NET Layer.

Figure 4.15 MOS architecture (http://mantis.cs.colorado.edu/tikiwiki/tiki-index.php)

The MOS Kernel, which is responsible for system management, provides a preemptive
multi-threaded environment including power modes and timing. The DEV layer
provides a consistent interface for accessing peripheral devices such as sensors, flash,
and so on. The COM Layer provides a consistent interface to communications devices,
such as the the radio and serial lines. The NET Layer allows network protocols to be
abstracted away from program logic; multiple routing protocols can be registered and
implemented using the NET interface.

Nano-RK is a fully preemptive reservation-based real-time operating system (RTOS)
from Carnegie Mellon University with multi-hop networking support for use in wireless
sensor networks. It includes a light-weight embedded resource kernel (RK) with rich
functionality and timing support using less than 2KB of RAM and 18KB of ROM.
Nano-RK supports fixed-priority preemptive multitasking for ensuring that task
deadlines are met, along with support for CPU, network, as well as, sensor and actuator
reservations. It provides explicit support for periodic task scheduling with support for
real-time task sets that have deadlines associated with their data delivery.

It uses the novel mechanisms of CPU and network reservations to enforce limits on the
resource usage of individual tasks. With respect to networking it is provided a rich API
set for socket-like abstractions, and a generic system support for network scheduling
and routing. NanoRK is power-management and provides several power-aware APIs
that can be used by the system. Tasks can specify their resource demands and the
operating system provides timely, guaranteed and controlled access to CPU cycles and
network packets. Together these resources form virtual energy reservations that allows
the OS to enforce system and task level energy budgets.

Nano-RK uses a static design-time framework, consistent with sensor networking
assumptions, where the OS and the applications are co-located in a single address space.
In order to guarantee timeliness and enforce temporal isolation Nano-RK uses the
reservation paradigm, allowing applications to specify timeliness and resource
requirements, and the OS enforces guaranteed access to system resources and schedules
tasks so that the application timeliness requirements are satisfied.

The system uses priority-based preemptive scheduling and while providing explicit
support for periodic tasks, it also supports aperiodic and sporadic tasks in its framework.
The highest priority task that is eligible to run in the system is always scheduled by the
operating system. A periodic task can suspend itself after the completion of its current
instance using a system call. Real-time synchronization is supported in Nano-RK,
through priority ceiling protocol emulation (Highest Locker Priority protocol).

Figure 4.16 shows the architecture of Nano-RK. It provides an API which includes task
management functions, signals and semaphores functions, general device drivers
management functions and resource reservation functions.

http://www.cmu.edu/

Figure 4.16 Nano-RK Architecture [83]

Pixie is an operating system for sensor networks that enables resource-aware
programming, a model in which applications receive feedback on, and have explicit
control over, resource usage. Pixie is designed to support the needs of data-intensive
applications. These applications, which include high-resolution monitoring of acoustic,
seismic, acceleration, and other signals, involve high data rates and extensive in-
network processing. Given the fundamentally resource-limited nature of sensor
networks, a pressing concern for such applications is their ability to receive feedback
on, and adapt their behavior to, fluctuations in both resource availability and load. The
Pixie architecture consists of three components, as showed in Figure 4.17. The
Application Dataflow layer implements application logic, the Resource Manager
allocates and manages resources for the application, and the Scheduler schedules and
executes application stages.

Figure 4.17 An example Pixie application for limb monitoring using wearable sensors. Resource
allocators and brokers are components of the Pixie OS [71].

The Pixie OS is based on a dataflow programming model and is based on the concept of
resource tickets, a core abstraction for representing resource availability and
reservations which means a right to consume a given amount of a resource type within a
time window. To shield application programmers from the burden of managing these

details, Pixie provides a suite of resource brokers, which mediate between low-level
physical resources and higher-level application demands. For example, Pixie’s energy
broker implements a policy for the system to achieve a target lifetime. In this case, the
energy broker will trickle the amount of energy the application can use at a specific rate.
Pixie is implemented in NesC and supports limited backwards compatibility with
TinyOS.

Table 4.3 summarizes some operating systems for sensor networks domain embedded
systems and what properties (requirements) they provide. The table refers to the same
set of requirements we have introduce earlier at chapter 3. In this table we want to give
you a view of how the systems provide and enforce a certain property: adequately (A)
in case the system provides and enforces the property, poorly (P) when the system
provides the property but not as required (for example, when the system is said to be
real-time but do not support hard real-time behavior), and non (N) when the system
does not provide the requirement.

OS/Req. (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
TyniOS A P A P P N N N A A N
Contiki A P A P P N N N A A P
MantisOS A P A P P N N N P A A
Nano-RK A A A P P N N N P P P
Pixie A P A P P N N N P P A

Table 4.3 Embedded Systems Requirements provided by OSes for Sensor Networks Domain

One of the characteristics of OSes for sensor networks is to be adequately able to deal
with resource constraints such as memory and low power. They all provide and ensure
this particular requirement. However, most of the systems does not provide an
adequately real-time behavior. Regarding some of the important requirements for
distributed embedded systems these OSes perform very poorly. Therefore, it seems that
those requirements have to be supported in a different level than operating system.

Conclusion

We have presented various operating systems that are supposed to be tailored for
different types of embedded systems, from stand alone embedded systems (SES) such
as a digital camera to distributed real-time embedded systems (DRE) such as a military
defense system. It is possible to say that for SES systems the requirements that are
important for these systems are basically supported by the existing OSes. However,
regarding most of networked embedded systems requirements there is no OS that
provide and enforce all the requirements.

For instance, the many types of DRE systems all have one thing in common: to deliver
the right answer at the right time. Providing the right answer at the right time is crucial
for, life-critical military DRE systems, such as those defending ships against missile
attacks or controlling unmanned combat air vehicles through wireless links as well as
for safety-critical civilian DRE systems, such as those regulating the temperature of
coolant in nuclear reactors and maintaining the safe operation of steel manufacturing
machinery. It is hard to design DRE systems that implement their required quality of

service (QoS) capabilities, are dependable and predictable, and are cost-conscious in
their use of computing resources, being supported by only operating system software
infrastructure. It is even harder to build them on time and within budget.

As a result, distributed real-time and embedded systems are built using a common layer
of software infrastructure, called middleware, which serves two purposes. The first goal
is to ease the development of applications by abstracting away the particular details of
the hardware and operating system that executes in each computational site. The second
purpose is to provide a family of services that are common to many applications,
simplifying component design and increasing reusability while allowing specific
optimizations for a particular deployment.

Network Embedded Systems, especially DRE systems can span a variety of network
types, topologies and scales (e.g., ranging from next-generation local sensor/actuator
networks, to large scale traffic or power grid management systems). A single real-time
and embedded system could also span multiple networks with significantly different
characteristics. A general theme of these systems is that independent of the
characteristics of the networks, the constraints of stringent application-specific must be
enforced by all infrastructure software service including OS, middleware and the
application as much as enforced end-to-end by the network. Also, applications with
different constraints will share the networking and other physical and logical resources.
How to provide different service classes and ensure the proper allocation and protection
of shared resources across all the layers, including operating systems, consistently is
another important challenge. Still, creating the proper interfaces between the network
infrastructure and the applications is an open research issues for operating systems.

References

[1] Embedded, Everywhere: A Research Agenda for Networked Systems of Embedded
Computers. Committee on Networked Systems of Embedded Computers, National
Research Council, 2001

[2] DARPA IXO, “Networked Embedded Software Technology
(NEST).” http://www.darpa.mil/ixo/.

[3] Report of NSF Workshop on Distributed Real-time and Embedded Systems
Research in the Context of GENI (October 2005 and February 2006) –
(http://www.geni.net/GDD/GDD-06-32.pdf).

[4] FP6 IP "RUNES" - D5.1 Survey of Middleware for Networked Embedded Systems,
January 2005 – (http://www.ist-runes.org/docs/deliverables/D5_01.pdf).

[5] Handbook of real-time and embedded systems / Insup Lee, Joseph Y-T. Leung and
Sang H. Son. Chapman & Hall/CRC computer & information science series, 2008.

[6] Alfons Crespo, Ismael Ripoll, Michael González-Harbour, and Giuseppe Lipari,
Operating System Support for Embedded Real-Time Applications, EURASIP
Journal on Embedded Systems, Volume 2008 , 2 pages.

[7] Distributed Systems: Concepts and Design, second edition, George Coulouris,
Jean Dollimore, and Tim Kindberg, Addison-Wesley 1994.

[8] A. Dunkels. The uIP TCP/IP Stack for Embedded Microcontroller.
http://www.sics.se/~adam/uip/

[9] A. Dunkels. lwIP, a Lightweight TCP/IP Stack. http://www.sics.se/~adam/lwip/,
http://savannah.nongnu.org/projects/lwip/

[10] Viola Systems Ltd. OpenTCP. http://www.violasystems.com/opentcp.php

[11] G. Denys, F. Piessens, and F. Matthijs, A Survey of Customizability in Operating
Systems Research, ACM Computing Surveys, Vol. 34, No. 4, December 2002, pp.
450-468.

[12] Frank Engel, Gernot Heiser, Ihor Kuz, Stefan M. Petters and Sergio Ruocco
Operating systems on SoCs: a good idea? , Embedded Real-Time Systems
Implementation (ERTSI 2004) Workshop, Lisbon, Portugal, December, 2004

[13] VxWorks, http://www.windriver.com.

[14] Microsoft Corporation. Microsoft Windows CE.
http://www.microsoft.com/windowsce/embedded/

[15] Dan Hildebrand. An Architectural Overview of QNX. Proceedings of the
Workshop on Micro-kernels and Other Kernel Architectures, 113–126, 1992.

http://www.microsoft.com/windowsce/embedded/
http://www.windriver.com/
http://savannah.nongnu.org/projects/lwip/
http://www.sics.se/~adam/uip/
http://www.ist-runes.org/docs/deliverables/D5_01.pdf
http://www.geni.net/GDD/GDD-06-32.pdf

[16] QNX Software Systems Ltd. QNX Neutrino Realtime OS.
http://www.qnx.com/products/os/neutrino.html.

[17] Palm, Inc. PalmOS Software 3.5 Overview.
http://www.palm.com/devzone/docs/palmos35.html.

[18] Microware. Microware OS-9.
http://www.microware.com/ProductsServices/Technologies/os­91.html.

[19] LynuxWorks. LynxOS 4.0 Real-Time Operating System.
http://www.lynuxworks.com/.

[20] Symbian. Symbian OS - the mobile operating system. http://www.symbian.com/.

[21] Jim Turley, Embedded systems survey: Operating systems up for grabs,
Embedded Systems Design, 2005.
http://www.embedded.com/columns/surveys/163700590?_requestid=50912

[22] L. F. Friedrich, J. Stankovic, M. Humphrey, M. Marley, and J. J.W. Haskins. A
survey of configurable component-based operating systems for embedded
applications. IEEE Micro, May 2001.

[23] eCos - Embedded Operating System. http://ecos.sourceware.org/

[24] A. Massa. Embedded Software Development with eCos. Prentice Hall, 2003.

[25] Integrated Chipware, Inc. Integrated Chipware icWORKSHOP.
http://www. chipware.com/ .

[26] J. A. Stankovic, H. Wang, M. Humphrey, R. Zhu, R. Poornalingam, and C. Lu.
VEST: Virginia Embedded Systems Toolkit . In IEEE/IEE Real-Time Embedded
Systems Workshop, London, December 2001.

[27] B. Kauler. CREEM Concurrent Realitme Embedded Executive for
Microcontrollers. http://www.goofee.com/creem.htm.

[28] Wind River Systems, Inc. pSOSystem Datasheet.
http://www.windriver.com/ products/html/psosystem_ds.html .

[29] Wind River Systems, Inc. OSEKWorks 4.0.
http://www.windriver.com/ products/osekworks/osekworks.pdf .

[30] Microware. Microware Ariel RTOS.
http://findarticles.com/p/articles/mi_m0EIN/is_/ai_20862996.

[31] L. Dozio, P. Mantegazza, Real Time Distributed Control Systems Using RTAI,

Sixth IEEE International Symposium on Object-Oriented Real-Time Distributed
Computing, Hakodate, Hokkaido, Japan, 14-16 May 2003.

[32] V. Yodaiken, M. Barabanov, A Real-Time Linux.

http://findarticles.com/p/articles/mi_m0EIN/is_/ai_20862996
http://www.windriver.com/products/osekworks/osekworks.pdf
http://www.windriver.com/products/html/psosystem_ds.html
http://www.goofee.com/creem.htm
http://www.chipware.com/
http://ecos.sourceware.org/
http://www.embedded.com/columns/surveys/163700590?_requestid=50912
http://www.symbian.com/
http://www.lynuxworks.com/
http://www.microware.com/ProductsServices/Technologies/os-91.html
http://www.palm.com/devzone/docs/palmos35.html
http://www.qnx.com/products/os/neutrino.html

http://www.soe.ucsc.edu/~sbrandt/courses/Winter00/290S/rtlinux.pdf

[33] Embedded Linux - http://www.linuxdevices.com/.

[34] uClinux – Embedded Linux Microcontroller Project – http://www.uclinux.org/.

[35] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos, Can we Make
Operating Systems Reliable and Secure?, IEEE Computer, May 2006, pp. 44-51.

[36] Gernot Heiser, Kevin Elphinstone, Ihor Kuz, Gerwin Klein, and Stefan M. Petters.
Towards trustworthy computing systems: taking microkernels to the next level ,
ACM SIGOPS Operating System Review, 41(4), July 2007, pp. 3-11.

[37] Jorrit N. Herder, Herbert Bos, Ben Gras, Philip Homburg, and Andrew S.
Tanenbaum. Construction of a Highly Dependable Operating System, Proceedings
of the Sixth European Dependable Computing Conference (EDCC’06), 2006.

[38] Gernot Heiser, Secure Embedded Systems Need Microkernels. The USENIX
Magazine, 30(6), December 2005, pp. 9-13.

[39] ARINC. ARINC 653: Avionics Application Software Standard Interface
(Draft 15). Airlines Electronic Engineering Committee (AEEC), June 17th, 1996.

[40] R. A. Edwards. ASAAC phase I harmonized concept summary. In Proceedings
ERA Avionics Conference and Exhibition, London, UK, 1994.

[41] D. Field and J. Kemp. The ASAAC Programme, NATO HQ, Brussels, July 20th,
2000. Available from: http://www.safsec.com/safsec files/resources/nato p 1.ppt.

[42] Airlines electronic engineering committee (AEEC), avionics application software
standard interface - ARINC specification 653 - part 1 (supplement 2 - required
services). ARINC, Inc., 2006.

[43] Airlines electronic engineering committee (AEEC), avionics application software
standard interface - ARINC specification 653 - part 2 (extended services).
ARINC, Inc., June 2007.

[44] Jim Alves-Foss, W. Scott Harrison, Paul Oman, and Carol Taylor, The MILS
Architecture for High-Assurance Embedded Systems. International Journal of
Embedded Systems, 2006, 2, pp. 239-247.

[45] Rance J. DeLong, LynxSecure Separation Kernel – a High-Assurance Security
RTOS, LynuxWorks, San Jose, CA, 2007. http://www.lynuxworks.com.

[46] Robert Kaiser and Stephan Wagner, The PikeOS Concept History and Design,
SYSGO, 2007. http://www. sysgo .com .

[47] RTEMS - Real-Time Operating System for Multiprocessor Systems,

http://www.rtems.com/.

http://www.rtems.com/
http://www.sysgo.com/
http://www.lynuxworks.com/
http://www.safsec.com/safsec files/resources/nato p 1.ppt
http://www.uclinux.org/
http://www.linuxdevices.com/
http://www.soe.ucsc.edu/~sbrandt/courses/Winter00/290S/rtlinux.pdf

[48] Sergio Ruocco, A Real-Time Programmer’s Tour of General-Purpose L4
Microkernels. EURASIP Journal on Embedded Systems, Volume 2008 , 14 pages.

[49] DIANA Project - http://diana.skysoft.pt/

[50] J. Rufino, S. Filipe, M. Coutinho, S. Santos, and J. Windsor. ARINC 653 interface
in RTEMS. In Proceedings of the DASIA 2007 .DAta Systems In Aerospace.
Conference, Naples, Italy, June 2007. EUROSPACE.

[51] Dawn Mission - http://dawn.jpl.nasa.gov/

[52] THEMIS Mission -
http://www.nasa.gov/mission_pages/themis/main/index.html

[53] OSEK/VDX. Open Systems and the Corresponding Interfaces for Automotive
Electronics. http://www.osekvdx.org/.

[53] OSEK/VDX-Operating System. Version 2.2.2, July 2004.
http://www.osek-vdx.org/mirror/os222.pdf.

[54] OSEK/VDX-Communication. Version 3.0.3, July 2004.
http://www.osek-vdx.org/mirror/OSEKCOM303.pdf.

[55] OSEK/VDX-Network Management. Version 2.5.3, July 2004.
http://www.osek-vdx.org/mirror/nm253.pdf.

[56] AUTOSAR. Specification of Operating System — Version 2.0.1. Technical report,
AUTOSAR GbR, 2006.

[57] OSEKtime OS. http://portal.osekvdx.org/files/pdf/specs/ttos10.pdf.

[58] OSEKFT Com. http://portal.osek-vdx.org/files/pdf/specs/ftcom10.pdf.

[59] Erika Enterprise. http://www.evidence.eu.com/content/view/27/254/ .

[60] PICOS18. http://www.picos18.com/index_us.htm .

[61] Trampoline. http://trampoline.rts-software.org/ .

[62] OSEKturbo. http://www.metrowerks.com .

[63] RTA-OSEK. http://www.etas.com/en/products/rta_osek.php .

[64] John Heidemann and Ramesh Govindan, A n Overview of Embedded Sensor
Networks, in Handbook of Networked and Embedded Control Systems, D. Hristu-
Varsakelis and W.S. Levine, editors, Springer-Verlag, 2004.

[65] J. L. Hill and D. E. Culler. Mica: A wireless platform for deeply embedded
networks. IEEE Micro, 22(6):12{24, Nov/Dec 2002.

[66] Intrinsyc. http://www.intrinsyc.com/.

http://www.intrinsyc.com/
http://www.etas.com/en/products/rta_osek.php
http://www.metrowerks.com/
http://trampoline.rts-software.org/
http://www.picos18.com/index_us.htm
http://www.evidence.eu.com/content/view/27/254/
http://portal.osek-vdx.org/files/pdf/specs/ftcom10.pdf
http://portal.osekvdx.org/files/pdf/specs/ttos10.pdf
http://www.osek-vdx.org/mirror/nm253.pdf
http://www.osek-vdx.org/mirror/OSEKCOM303.pdf
http://www.osek-vdx.org/mirror/os222.pdf
http://www.osekvdx.org/
http://www.nasa.gov/mission_pages/themis/main/index.html
http://dawn.jpl.nasa.gov/
http://diana.skysoft.pt/

[67] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. E. Culler, and K. S. J. Pister. System
architecture directions for networked sensors . In Architectural Support for
Programming Languages and Operating Systems, pages 93–104, Boston, MA,
USA, Nov. 2000.

[68] S. Bhatti, J. Carlson, H. Dai, J. Deng, J. Rose, A. Sheth, B. Shucker, C.
Gruenwald, A. Torgerson, R. Han, MANTIS OS: An Embedded Multithreaded
Operating System for Wireless Micro Sensor Platforms, ACM/Kluwer Mobile
Networks & Applications (MONET), Special Issue on Wireless Sensor Networks,
vol. 10, no. 4, August 2005, guest co-editors P. Ramanathan, R. Govindan and K.
Sivalingam, pp. 563-579.

[69] A. Dunkels, B. Grönvall and T. Voigt. Contiki – a Lightweight and Flexible
Operating System for Tiny Networked Sensors. In Proceedings of the First IEEE
Workshop on Embedded Networked Sensos, Tampa, Florida, USA, November
2004

[70] A. Eswaran, A. Rowe and R. Rajkumar, Nano-RK: An Energy-Aware Resource-
Centric Operating System for Sensor Networks, IEEE Real-Time Systems
Symposium, December 2005.

[71] Konrad Lorincz, Bor-rong Chen, Jason Waterman, Geoff Werner-Allen, and Matt
Welsh, Pixie: An Operating System for Resource-Aware Programming of
Embedded Sensors, Fifth Workshop on Embedded Networked Sensors
(HotEmNets'08), June, 2008

[72] J. Liedke, On µ-Kernel Construction, In Proceedings of 15th ACM Symposium on
Operating Systems Principles, December 1995, pp. 237-250.

[74] H. Härtig, M. Hohmuth, J. Liedke, S. Schonberg, and J. Wolter. The Performance
of On µ-Kernel based Systems, Proceedings of 16th ACM Symposium on
Operating Systems Principles, October 1997, pp. 66-77.

40

	Traditional, embedded software can be quite complex and have a number of requirements. These have implications both for the application and for the software infrastructure, such as the operating system. According to [6], and Computer Science and Telecommunications Board [1] embedded software have several common features such as the following:
	4.1.1 Embedded and Real-Time Operating Systems
	4.1.2 Domain Specific Embedded Operating Systems

