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Abstract

Since early applications in the 1960s, embedded systems have come down in price and 
there  has  been  a  dramatic  rise  in  processing  power  and  functionality.  In  addition, 
embedded  systems  are  becoming  increasingly  complex.  High-end  devices,  such  as 
mobile  phones,  PDAs,  entertainment  devices,  and set-top boxes,  feature  millions  of 
lines of code with varying degrees of assurance of correctness. Nowadays, more and 
more embedded systems are implemented in a distributed way, a wide range of high-
performance distributed embedded systems have been designed and deployed.   As   a 
lot  of  aspects  of  embedded  system  design  become  increasingly  dependent  on  the 
effective interaction of distributed processors, it is clear that as much effort needs to be 
focused on software infrastructure, such as operating systems, with respect to how to 
provide  functionality  in  order  to  fulfill  these  requirements.  This  technical  report 
presents some of the approaches associated to operating systems that have been used in 
order to fulfill these needs.   

1. Introduction

Embedded  systems  can  be  defined  as  a  combination  of  any  device  that  includes  a 
programmable computer and perhaps additional parts, either mechanical or electronic, 
designed to  perform a dedicated  function,  but  is  not  itself  intended to  be a  general 
purpose computer. The word embedded reflects the fact that these systems are typically 
a fundamental  part  of a  larger system.  Typically,  embedded systems  are also called 
embedded  real-time  systems.  We  can  find  a  large  variety  of  applications  where 
embedded  systems  play  an  important  role,  from  small  stand-alone  systems,  like  a 
network router, to complex distributed real-time embedded systems (DRE) supporting 
several large scale mission-critical domains as avionic applications. 

All  embedded  systems  have  a  dedicated  functionality  and  are  therefore  dedicated 
systems. Dedicated functionality means that the system has been designed for a specific 
purpose and pre-defined tasks. Moreover, the system functionality is predefined in the 
hardware and software. 

The variety of applications implies  that  the properties,  platforms,  and techniques  on 
which  embedded  systems  are  based  can  be very different.  The  hardware  needs  can 
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sometimes be achieved with the use of general purpose processors. For instance, high-
end devices, including mobile phones, PDAs, and consumer electronics (entertainment 
devices  such  as  TVs  and  DVD  players,  set-top  boxes,  etc.),  have  incorporated 
microprocessors as a core system component, instead of using specific hardware. But in 
many systems specific processors are required,  for instance,  specific DSP devices to 
perform fast signal processing. In exceptional cases where reaction times are extremely 
small,  microprocessor technology cannot always deal with the timing constraints and 
the microprocessor technology is then replaced by hard cabled electronic logic devices.

The functionality can be modified or adjusted through software changes. It is possible to 
add functionality to the devices via a software upgrade as long as the hardware doesn’t 
need a modification, or the available memory space is large enough to accommodate the 
changes. For instance, high-end devices feature millions of lines of code with varying 
degrees of assurance of correctness. They might incorporate third party components, 
and  even  complete  operating  systems  (such  as  Linux)  that  can  be  installed  by  the 
manufacturer, suppliers and even the end user. In such cases, it becomes impossible for 
embedded system vendors to provide guarantees about the behavior of the device, when 
supporting  such  devices  using  traditional  real-time  executive  unprotected  approach. 
Failure or malicious behavior of a single software component on the device will affect 
the whole device.

It is also possible to modify (part of) the hardware functionality, using technology such 
as FPGA for example.  Today these modifications are limited and can only be done 
when the device is not performing its normal tasks. However in the future, this might 
change, and such modifications are going to be executed while the device continues to 
perform other of its functions.

Memory management capabilities are necessary in some systems to provide memory 
protection and virtual memory. Special purpose interfaces are also needed to support a 
variety of external peripheral devices, energy consumption control, and so on. 

In mission-critical systems besides having to meet deadlines,  tasks are said essentially 
critical  and  require  special  real-time  responsiveness.  However,  beyond  survivability 
mission-critical systems must also satisfy the same rigid dependability requirements of 
reliability  and fault  tolerance.  A high amount  of  adaptability  of  system functions  is 
demanded when dealing with such requirements. 

Nowadays, the use of processor-based devices has increased dramatically for most of 
our  activities,  both  professional  and  leisure. This  trend  is  expected  to  grow 
exponentially in the near future. The rapid progress in processor and sensor technology 
combined  with  the  expanding  diversity  of  application  fields  is  placing  enormous 
demands  on  the  facilities  that  software  infrastructure  like  operating  systems  must 
provide.

This paper surveys the current state of embedded systems from small  stand-alone to 
distributed real-time looking at some of the software infrastructure used to provide the 
functionality they need. Software infrastructure is referring to what is usually called 
standard  software  and  include:  embedded  operating  systems,  real-time  operating 
systems and other forms of middleware. First we present concepts and characteristics of 
embedded systems and propose a classification. Then, it is presented some requirements 



that  usually  are  very  useful  for  embedded  systems.  Next,  we  present  software 
infrastructure alternatives which are intended to provide the necessary functional and 
non-functional  requirements  for  embedded  system  software  to  execute.  Finally,  we 
conclude  with  some  tendencies  of  software  infrastructure  for  the  next  generations 
embedded applications. 

     
2. Characterization of Embedded Systems

An embedded  system  is  hidden inside  a  system  or  environment,  performing  some 
dedicated function. The word embedded indicates that the system or device is part of 
another (larger) system. The hosting system may be a specific system such as a car or an 
aircraft, a machine or a factory, but it may also be a person in the case of an intelligent 
pace maker or some hearing device, where the embedded system replaces or extends the 
human capabilities. In some types of embedded systems or devices, the term ubiquitous 
is sometimes used to point out that the computation is integrated in the environment. 
Embedding  computation  into  the  environment  and  everyday  objects  (also  called 
pervasive computing)  would enable  people to cooperate  with information-processing 
devices in a more informal way than they currently do, and independent of their location 
or situation they find themselves. 

As there is an enormous variety of embedded systems from small intelligent sensors to 
vast aircraft control systems and vehicle simulators, the functions they performed may 
vary  a  lot.  Some  of  the  categories  these  functions  can  be  put  in  are:  Computation 
(giving the intelligence to the overall system); Measurement via sensors; Control of the 
environment via actuators after decisions made during the computation; Communication 
(including data, music, video etc..);  Human interface (via a display and some buttons or 
a (limited) keyboard or touch screen). Different embedded systems will need different 
functions, not all functions are necessary on an embedded system. For instance, a robot 
will not always have a human interface.

Examples of how real-time and embedded systems provide us with services are in our 
daily life when we go from one place to another we have services of  Automotive or 
Avionics, when we take care of our health in the hospital or medical office we may use 
services  of  Health  and  Medical  Equipment,  when  we  decide  to  relax  at  home  we 
probably use services of Consumer Electronics and Intelligent Homes, and even when 
we are taking care of our future investing on stock exchange we are using services of 
Telecommunications.  The  following  describes  a  bit  more  some  of  the  domains  of 
embedded systems:
Automotive:   It  includes  electronic  control  units  in  chassis  systems  power  train 
electronics, body electronics/security systems, information and computing systems, e.g. 
for traffic control.
Avionics/Aerospace: It schedules and monitors the takeoff and landing of planes, make 
it fly, maintain its flight path, and keep it out of harm’s way.  It includes commercial 
aircraft, military aircraft, and satellite systems.
Industrial  Automation:  It  includes  manufacturing  and  process  controls,  motion 
controllers, intelligent Homes, operator interfaces, robotics, HVAC and other controls, 
e.g. for energy distribution.
Telecommunications: It provides us with up-to-date information, such as stock quotes. It 
includes infrastructure, services and end services.



Consumer Electronics and Intelligent Homes: It entertains us with electronic games and 
joy rides.  It  includes  set-top  boxes,  Internet  access  devices,  home  audio/video,  and 
household appliances.
Health  and  Medical  Equipment:  It  includes  patient  monitoring  equipment,  medical 
therapy equipment, diagnostic equipment, imaging equipment, and surgical systems.

Unlike  PCs  and  workstations  that  execute  regular  non-real-time  general  purpose 
applications, such as our editor and network browser, the computers and networks that 
run embedded real-time applications are often hidden from our view. 

Actually,  embedded systems  are  heading  more and more  towards  networked.  Rapid 
advances  in  microelectronic  technology  coupled  with  integration  of  microelectronic 
radios on the same board or even on the same chip has been a powerful driver of the 
proliferation  of  a  new kind  of  Networked  Embedded  Systems  (NES)  over  the  last 
decade. 

Concurrently,  embedded systems are becoming smaller  and smaller. In reality,  while 
previously sensors were directly connected to the central computing elements (mostly in 
an analogue way),  today,  they are becoming embedded systems themselves.  Sensors 
have a processor included and do some preprocessing of the measured physical property 
(like temperature, displacement, pressure, etc.) sending the results of this preprocessing 
to a central management subsystem via a digital network. 

We are not intended to establish a new embedded systems taxonomy,   but in order to be 
coherent our philosophy is one of defining embedded systems which in turn can be 
subdivided in  2  categories:  Stand-alone  embedded  systems,  networked  embedded 
systems. 

2.1 Stand-alone embedded systems (SES): 

Work in a stand-alone mode taking input and producing the desired output. The last two 
decades have witnessed a significant evolution of stand-alone embedded systems from 
being assembled from discrete components on printed circuit boards, even if, they still 
are, to systems being assembled from Intellectual Property (IP) components which are 
assembled  onto  silicon  of  the  system  on  a  chip  (SoC).  SoCs  offer  a  potential  for 
embedding complex functionalities, and to meet demanding performance requirements 
of applications such as DSPs, network, and multimedia processors.
Most of Consumer Electronics (CE) devices are classified as SES. For instance,  the 
explosion of the CE market over the past decade has generated products mainly in three 
categories: 
Low-end devices generally are built around application specific hardware like ASICs or 
System-on-Chip (SoC) with small amounts of program memory (ROM), usually around 
256 kbytes.  They normally use an  inexpensive  processor,  are  manufactured  in  high 
volumes, and are in general developed by a single programming team. Representative 
examples of this type of device include many digital cameras and inkjet printers.
Mid-range consumer  devices,  such as video cameras,  are characterized  by moderate 
amounts of program memory like 1 to 2 Mbytes and multiple programming teams. 



High-end devices, such as smart phones and set-top boxes, usually have much more 
memory,  up  to  32  Mbytes.  In  most  cases,  they  use  powerful  processors  and  are 
developed by large programming teams.

2.2 Networked embedded systems (NES)

Networked embedded systems may come in many different forms. These systems have 
been variously referred as EmNets (Network Systems of Embedded Computers)  [1], 
NEST (Networked Embedded System Technology)  [2],  and DRE (Distributed Real-
Time Embedded) [3]. Fundamentally,  networked embedded system is a collection of 
spatially  and  functionally  distributed  embedded  nodes  interconnected  by  means  of 
wireline or wireless communication infrastructure and protocols, with some sensing and 
actuation elements interacting with the environment, and, maybe, a master node which 
is responsible for some control and coordination functions, to organize computing and 
communication  in  order  to  achieve  certain  goal(s)  [1].  The  networked  embedded 
systems appear in a variety of application domains such as, automotive, train, aircraft, 
office building, and industrial — mainly for monitoring and control. 
In order to be in accordance to the different forms that Networked Embedded Systems 
may come,  in  this  survey we consider  four  types  of  networked embedded systems, 
based on what is proposed in [4]: Embedded Systems, Sensor Systems, and Distributed 
Real-Time and Embedded.   

Embedded Systems are systems where the computing components are embedded into 
some other purpose built device (an aircraft, a car, or a home). Here the characteristic is 
that  these  systems  are  usually  not  mobile  and  often  not  all  devices  are  connected, 
usually  with  only  one  other  server  machine  and  most  of  the  time  not  to  external 
networks. The type of the connection is often wired.

Sensor  Systems are  most  of  the time composed by a  large number  of  possibly tiny 
devices  having  a  single  task  which  is  monitoring  some  conditions  within  an 
environment and report back to a central server. The most widespread sensor networks 
are  usually  not  mobile  but  the  sensors  are  connected  through  a  wireless  network. 
Wireless  sensor  networks  are  a  widely  deployed  example  of  networked  embedded 
systems. There is a great interest from both the industry and academia in wireless sensor 
networks technologies that enable deployment of a wide range of applications, such as 
military, environmental monitoring, e-health applications, etc.

Distributed  real-time  and  embedded  systems  play  an  increasingly  important  role  in 
modern application domains, including military command and control, avionics and air 
traffic  control,  and  medicine  and  emergency  response.  Distributed  real-time  and 
embedded (DRE) outline a computational infrastructures of many large scale mission-
critical domains where are used to control a variety of artifacts across a number of sites. 
DRE systems can be characterized by the fact that the right answer delivered too late 
becomes  the  wrong  answer.  In  life-critical  military  DRE  systems,  such  as  those 
defending ships against  missile  attacks  or controlling unmanned combat  air  vehicles 
through wireless links [5], to provide the right answer at the right time is crucial. 



3. Requirements of Embedded Systems

In software engineering, functional requirements specify specific behavior or functions 
of a software system or its component. In general, functional requirements define what a 
system is supposed to  do. They are supported by non-functional requirements, which 
specify criteria that can be used to judge the operation of a system, rather than specific 
behaviors. In general, non-functional requirements define how a system is supposed to 
be. Non-functional requirements are often called qualities of a system. A system for 
Cardiac tele-monitoring may be required to present the medical center with a display of 
data such as heart rhythm. This is a functional requirement. How recent this data needs 
to be is a non functional requirement. If the data needs to be updated in real time, the 
system architects must ensure that the system is capable of updating the displayed data 
within an acceptably short interval of the data changing.

Traditional, embedded  software  can  be  quite  complex  and  have  a  number  of 
requirements.  These have implications  both for the application  and for the software 
infrastructure, such as the operating system. According to [6], and Computer Science 
and Telecommunications Board [1] embedded software have several common features 
such as the following:

(i)  Resource-constrained  computing.  They  are  frequently  rigorously  constrained 
regarding available  resources.  Especially because of the constraints  of cost  and size 
which are duo to mass production and strong industrial competition, resources such as 
CPU, memory,  devices have been designed to meet  these requirements.  In addition, 
especially for mobile or autonomous embedded systems energy is a priceless resource. 
As a result of these restrictions, the system needs to efficiently use its computational 
resources.  For  instance,  the  operating  system  must  be  able  to  operate  in  resource-
constrained environments.
(ii) Real-time requirements. Because many embedded applications interact deeply with 
the real world, they often have strict real-time requirements. These applications require 
functionalities such as process control, multimedia processing, instrumentation, and so 
on, where the system has to fulfill a temporal requirement, or deadline. Deadlines are 
qualified  as  soft,  firm,  or hard.  Depending on the kind of deadline,  the methods  to 
guarantee that a certain deadline is met are different. Occasionally,  preemption points  
need to be inserted in critical execution paths in order to reduce scheduling latency.
(iii)  Portability.  Many  different  types  of  CPUs,  peripheral  chips,  and  memory 
architectures may be used in embedded systems. Thus, for low cost, any embedded OS 
or other reusable component that is meant to be used on multiple applications should be 
commonly portable to custom hardware platforms.
(iv) High reliability. Embedded systems are deployed remotely, often in infrastructure-
critical  applications.  Software  faults  are  thus  very  problematic  and  are  extremely 
expensive or even impossible to fix.
Stand  alone  (SES)  high-end  devices  in  general  use  relatively  expensive  high-end 
processors,  and  frequently  also coprocessors,  that  deliver  high throughput.  As these 
high-end devices usually have a high degree of human interaction, and users are slow 
enough, high-end processors in these devices usually have no problem keeping up. For 
that reason, the real-time requirements are not particularly demanding. In contrast, SES 
lower-end devices in general have relatively little human interaction and on the contrary 
consist largely of processes whose timing needs to be tightly controlled. For example, 
pressing the Digital  Camera(DC) shutter starts a series of threads that might involve 



tasks such as measuring the ambient light, focusing the camera, capturing the image on 
the charge-coupled device (CCD), moving the image to memory,  etc. These tasks all 
must be completed before the exposure period calculated by the DC has elapsed and the 
shutter  closes.  High-end  devices  often  have  special-purpose  hardware,  such  as  the 
Digital Signal Processors (DSP) used in Set Top Boxes (STB). In contrast, lower-end 
devices do not allow having dedicated hardware in order to complete tasks such as IP 
routing and video decoding. As they can not remove the responsibility for that tasks 
from the OS, they must rely on the Operating System real-time performance.

As embedded systems get networked like NES, the scenario gets a little more complex 
and while some common requirements become more stringent other new requirements 
also become very important to provide, particularly regarding some qualities the system 
must attend. Now, support for many of the important attributes for mobile, embedded, 
sensor  and  distributed  real-time  embedded  systems  are  extremely  important.  Such 
attributes include requirements that are common in distributed systems as listed in [7]. 
Also includes other requirements that are relevant to NES [1,3,4,6]. Based on those, it is 
presented a description of the non-functional  requirements which we think represent 
qualities that are very important to be supported on NES systems. This means that it is 
important to software infrastructure (operating system, middleware, or else) be able to 
provide these qualities in order to support these systems. The list includes the following 
requirements:   dependability,  robustness,  stability,  failure  handling,  safety,  security, 
privacy, scalability and upgradability. 

(a) Dependability, Robustness and System Stability
The notion of dependability includes aspects of reliability and availability. Reliability 
and availability relate to the probability of working continuously for a given duration 
and the percentage of uptime,  respectively.  For safety critical  real-time applications, 
reliability is a key concern. This means that the software infrastructure needs to provide 
built-in  support  for  redundancy  management  to  guard  against  component  and  link 
failures. Robustness is the ability of the system to perform acceptably when the system 
operates  outside  of  nominal  conditions.  For  example,  the  ability  to  create  disjoint 
routing paths may improve robustness by eliminating certain common failure modes. 
Stability is concerned with the system’s ability to keep disruptions contained. Both of 
these quality attributes are critical to the success of software infrastructures that support 
networked  and  distributed  real-time  and  embedded  applications.  How  to  specify, 
identify and validate these attributes is an important research topic, particularly when 
disruptions  are  caused by software faults  or malicious  attacks.  The rate  of software 
faults has far exceeded the rate of hardware faults.

(b) Failure handling
In a network embedded system, nodes may fail or experience problems due to several 
reasons including physically broken, environmental obstruction, unreliable transmission 
medium,  presence  of  undetected  collisions,  increased  and  unpredictable  delay,  high 
packet loss, etc. The failure of individual nodes should not affect the overall task of the 
network embedded system, thus leading to an increased need for providing mechanisms 
to ensure fault tolerance to the applications. In addition, after deployment of a network 
embedded  system  topology  changes  are  likely  to  occur  because  of  changes  in  the 
location of the sensor nodes.  Also, extra nodes can be added at any time to replace 
other  nodes  and some nodes  can stop functioning  due  to  lack  of  power.  Even in  a 
continuously changing network topology, the software infrastructure such as operating 



system or middleware system should be able to perform its tasks and provide reliable 
services to the application.

(c) Safety 
This property is concerned with the prevention of the loss of life and/or serious damage 
to people, property or the environment.  This is straightforward for medical devices, but 
the characteristic is also valid for an aircraft, a car, etc.  For example, many medical 
dispensing devices are safety critical. They are currently certified as stand alone devices 
under  a  specific  set  of  application  contexts.  Sharing  of  resources  in  the  network 
compounds the challenges of safety. When we connect systems with different degrees 
of criticality together and let them share resources, the development of a certifiably safe 
software  infrastructure  becomes  a  serious  challenge. If  we connect  several  of  them 
together and something goes wrong, how can we define and identify which device is 
responsible? Technologies for isolation and protection across all the layers, including 
software infrastructure like OS, along with controlled graceful degradation of service 
can arise as an important research topic.

(d) Security 
This  property  is  concerned  with  the  capability  to  prevent  information  and  system 
resources from being used or altered by unauthorized users. A secure system is one 
where only intended use of the system will  be permitted.  This also means avoiding 
unpermitted  access  or  modification.  In  addition  to  cyber  attacks,  there  are  unique 
challenges  from  the  perspective  of  embedded  systems.  Unlike  office  computers, 
embedded  monitoring  devices  are  often  left  unattended  for  long  periods  of  time  in 
remote areas and may be subject to tampering. For example, compromised unattended 
physical  sensors  may  feed  the  system  with  false  data  while  the  device  remains 
authenticated and the transmitted data encrypted properly. It is also easy to manipulate 
the  environment  to  fool  many  forms  of  sensors  such  as  temperature,  chemical 
concentration, electromagnetic and acoustic sensors.

(e) Privacy
Privacy is concerned to the ability of an individual or group to isolate themselves or 
information  about  themselves  and  thereby  reveal  selectively.  Privacy  is  sometimes 
related to anonymity, the wish to remain unnoticed or unidentified in the public realm. 
The pervasiveness of networked and distributed real-time embedded systems brings the 
difficult  issue  of  providing  privacy.  Privacy  policies  are  and  will  be  increasingly 
specified at different levels of detail and have different semantics for different systems. 
Techniques  for  specifying  and  checking  the  consistency  of  policies  across  separate 
systems are needed. It is very important to consider the impact of privacy solutions on 
the  software  infrastructure,  including  services  such  as  addressing,  routing,  time-
stamping, encryption and avoidance of communication patterns that can reveal private 
information.

(f) Scalability
This property indicates the system ability to either handle growing amounts of work in a 
graceful  manner,  or to be readily enlarged.  Compared to  existing typical  distributed 
systems, whose components communicate either with fixed or with mobile connections, 
the number of nodes in a network embedded system can be several orders of magnitude 
higher  than  the  nodes  in  a  traditional  distributed  system.  In  the  future,  sensor  and 
embedded  devices  will  be  used  at  ultra-large  scales,  including  millions  of  devices 



connected  over  the  Internet.  For  example,  world-wide  weather  monitoring  based on 
millions of new sensor devices is being contemplated. As a consequence, it is important 
that new software infrastructure approaches are designed to support such a large number 
of devices that interact across large geographic areas. In addition, be able to manage 
such  a  large-scale  network  embedded  system  that  spans  multiple  administrative 
domains  becomes  a  major  challenge.  Also,  with  scalability,  the  issues  of  self-
calibration, self-configuration and “self-healing” become crucial.

(g) Upgradability 
This  property  is  concerned  with  the  degree  to  which  a  computer  may  have  its 
specifications improved by the addition or replacement of components. Traditionally, 
most  embedded  devices,  once  deployed,  have  rarely  been  upgraded.  In  a  world  of 
networked  embedded  systems,  upgrades  will  be  more  frequent  and  often  far  more 
invisible to end users of the systems. For instance, an NES may be in service for many 
years,  and  the  environment  to  which  they  are  connected  and  the  functionality 
requirements for the device may change considerably over that time. In some cases, 
such upgrades are driven by a knowledgeable user, who purchases a new component of 
functionality and installs  it,  a nearly automatic procedure.  In other cases, updates or 
upgrades may be invisible to the end user, such as when protocols or device addresses 
change. Most system designers will expect the operating system to make the task easier 
and to handle some difficult problems like upgrade policy,  verification, and security. 
Furthermore, in some cases the operating system itself may need to be field upgraded, a 
process that  almost  certainly requires operating system cooperation and that extends 
beyond the device being updated. There is no consensus on how online field upgrade 
will  work for the billions  of networked embedded systems components  that  will  be 
deployed.  Field  upgrade  is  likely  to  become  an  important  focus  of  research  and 
development work over the next several years as numerous systems are deployed that 
challenge the ability of simple solutions to scale up to adequate numbers and reliability.

EmS/Req. (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
SES 
Low-end M M M M W W M W O O W
Med-end W W M M W W W W O O W
High-end O W M M W W W W W O W
NES

Embedded M M M M M M M W W W W
Sensor M W M M M W W M W M M
Distributed W M M M M M M M M M M

Table 3.1 Requirements for different categories of Embedded Systems

Table 3.1 summarizes the different categories of embedded systems and what properties 
(requirements)  are  wish  to  be  found  in  each  of  them.  In  order  to  establish  the 
importance of the requirements to the various embedded systems they are classified as 
mandatory (M)  in  case  you  must  fulfill  the  requirement,  wanted (W)  when  it  is 
advantageous to have it, optional (O) when have it or not is not a big issue.



4. Software infrastructure for embedded systems

Embedded  systems  have  been  around  at  least  as  long  as  the  microprocessor.  The 
software  for  these  systems  has  been  built,  more  or  less  successfully,  using  several 
different paradigms. Some systems are built from scratch by the manufacturer with all 
software being created specifically for the device in question. This software may be 
written in assembly language or may use a higher-level language.  Not all components 
of embedded systems  need to  be designed from scratch.  Instead,  there  are  standard 
components  that  can be reused.  Software infrastructure,  especially standard software 
components such as operating systems (OS), are examples of these reusable software 
components. Such components are available from independent software vendors and in 
some cases as open source software. 
Operating  systems,  interface  with  hardware  to  provide  the  necessary  services  for 
application  software.  Software infrastructure  is  responsible  for  providing application 
software with services that allow them to fulfill the requirements.  

The rapid progress in processor and sensor technology combined with the expanding 
diversity  of  application  fields  is  placing  huge  demands  on  the  facilities  that  an 
embedded operating system must provide. The variety of applications where embedded 
systems are being important also implies that the properties, platforms, and techniques 
on which embedded systems are based can be very different. All the types of embedded 
systems, from stand-alone embedded systems-SES, including the variety of devices and 
applications  such as  digital  camera,  set-top boxes,  and smart  phones,  to  Networked 
embedded systems-NES, including mobile systems, embedded systems, sensor systems 
and distributed real-time and embedded system, need some specific type of service from 
software  infrastructure  such  as  operating  system or  middleware.  For  instance,  these 
services  are  supposed  to  be  prepared  to  attend  to  functional  and  non-functional 
requirements.  In  this  section  we  give  an  overview  of  presently  available  software 
infrastructures for embedded systems, particularly regarding operating systems. 

4.1 Operating Systems for Embedded Systems

Not all embedded systems need to be supported by operating system functionality the 
simplest embedded systems are usually built without an explicit operating system. Such 
systems  do  not  have  behaviors  that  require  complex  mechanisms  or  real-time 
scheduling of concurrent tasks, and can therefore be implemented using a simple main 
loop or executive cyclic approaches. Also, dedicated networked embedded systems can 
usually  be  implemented  without  an  operating  system,  but  only  with  a  stand-alone 
protocol stack. One example of a networked system that does not require an operating 
system could be a networked temperature controller that supplies temperature data over 
TCP/IP. The controller will only be running a single application and there is no need to 
have an operating system for dealing with multiple  threads of control.  For instance, 
many embedded TCP/IP stacks such as uIP [8], lwIP [9] and OpenTCP [10], have the 
ability to run either with or without a supporting operating system. 

Embedded systems typically have requirements that are a lot different from the ones for 
desktop  computers,  and  hence  operating  systems  for  embedded  systems  are  diverse 
from general  purpose  operating  systems  (GPOS).  Operating  systems  for  embedded 
systems usually are designed to be tailored for a specific application and therefore are 
more  static  than  GPOS.  Many  embedded  systems  require  real-time  guarantees  to 



function  correctly,  and  most  operating  systems  for  embedded  systems  has  real-time 
properties such as guaranteed response times, deterministic computations, and real-time 
scheduling algorithms.  Due to the huge variety of embedded systems, there is also a 
huge variety of requirements for the functionality of embedded OSes. However, it is not 
effective to have an OS providing all  the required functionalities.   Besides, as most 
embedded systems are application specific, we need operating systems which can be 
flexibly customized towards the application at hand. So, configurability is one of the 
main  characteristics  of  embedded  OSes.  In  OS,  configurability  deals  with  kernel 
extension, as well as kernel customization and kernel adaptation [11]. In addition, (re) 
configuration can be related to fine-grain or coarse-grain components.   

Conventionally, existing operating systems for embedded systems are divided into two 
categories: embedded operating systems and real-time operating systems [12]. In this 
report we assume that the purpose of the OS can be divided in two categories:  real-time 
embedded  systems  that  can  also  be  called  general  embedded  systems,  and  domain 
specific embedded systems which somehow provide specific characteristics for different 
domains of embedded systems like automotive, avionics, mission critical systems and 
wireless sensor networks systems, without loosing OS functionality. 

4.1.1   Embedded and Real-Time Operating Systems   

In many embedded systems there is effectively no device that needs to be supported by 
all versions of the OS, except maybe the system timer. Hence, it makes sense to handle 
relatively  slow devices  such  as  discs  and networks  by using  special  tasks  (drivers) 
which are not integrating the kernel of the OS.  Protection mechanisms are not always 
necessary, since embedded systems are typically designed for a single purpose and there 
is no well defined separation between application and OS functionality. For instance, 
in contrast to desktop applications, there is no desire to implement I/O instructions as 
privileged instructions  and tasks can be allowed to  do their  own I/O.  This  matches 
nicely with the previous item and reduces the overhead of I/O operations. There is no 
need to go through an OS service call, which would create a lot of overhead for saving 
and  restoring  the  task  context  (registers  etc.).  In  addition,  taking  into  account  that 
embedded  programs  can  be  considered  to  be  thoroughly  tested,  protection  is  not 
necessary, and it is required efficient control over a variety of devices, it is possible that 
interrupts can be employed to directly start or stop tasks.  This is substantially more 
efficient  than  going  through  OS  services  for  the  same  purpose.  Moreover,  many 
embedded systems are real-time (RT) systems and, hence, the OS used in these systems 
must  be  a  real-time  operating  system (RTOS).  After  all,  it  is  possible  to  say  that 
features such as configurability, portability, real-time and reliability are very desirable 
in embedded OS. 

Traditional  embedded  operating  systems  like  VxWorks  [13],  WinCE  [14],  QNX 
[15,16],  PalmOS  [17],  OS-9  [18],  LynxOS  [19],  Symbian  [20],  are  typically  large 
(requiring hundreds of KB or more of memory), general-purpose systems consisting of 
a binary kernel with a rich set of programming interfaces. Such OSes target systems 
with greater CPU and memory resources, and generally support features such as full 
multitasking, memory protection, TCP/IP networking, and POSIX-standard APIs that 
are undesirable (both in terms of overhead and generality) for sensor network nodes. 
For example,  a QNX context switch requires over 2400 cycles on a 33MHz 386EX 



processor, and the memory footprint of VxWorks is in the hundreds of kilobytes. They 
provide  memory  protection  given  the  appropriate  hardware  support.  This  becomes 
increasingly important as the size of the embedded applications grow. In addition to 
providing  fault  isolation,  memory protection  prevents  corrupt  pointers  from causing 
seemingly unrelated errors in other parts of the program allowing for easier software 
development.  VxWorks,  WinCE  and  QNX  are  well  ranked  in  the  2005  survey  by 
Embedded System Design [21].

The  VxWorks commercial RTOS from Wind River is the most widely adopted in the 
embedded industry (e.g., it is used on the International Space Station). VxWorks was 
first  released  in  the  early  1980s  and provides  a  flexible  API  with  more  than  1800 
methods,  including  network  support,  file  system  and  I/O  management.  VxWorks 
provides the  Wind River Workbench which is a collection of  Eclipse-based tools that 
accelerates time-to-market  for  developers  building devices  with  VxWorks.  It  is 
available on all popular CPU platforms. The development host can be Red Hat Linux, 
Solaris,  SuSE Linux,  Windows 2000 Professional,  or  Windows XP and  provides  a 
visual development environment.  The kernel supports preemptive priority scheduling 
with  256  priority  levels  and  round-robin  scheduling.  VxWorks  is  a  multithreading 
RTOS  that  provides  deterministic  context  switching  and  supports  semaphores  and 
mutual exclusion with inheritance. It can be set up so that each task has a private virtual 
memory upon request.  This RTOS also provides message queues and Open-standard 
Transparent  IPC  for  high-speed  communications  between  threads.  VxWorks 
architecture is showed in Figure 4.1.

Figure 4.1 Architecture of VxWorks 
http://www.windriver.com/products/product-notes/General-Purpose-Platform-ve-Note.pdf)

QNX is based on the idea of running most of the OS as a number of small tasks, known 
as  servers.  This  differs  from  the  more  traditional  monolithic  kernel,  in  which  the 
operating system is a single very large program composed of a huge number of "parts" 
with special abilities. QNX Neutrino (2001) has been ported to a number of platforms 
and now runs on practically any modern CPU that is used in the embedded market. It 
also  provides  QNX  System  Tools  with  a  System  Builder  for  offline  and  online 
configuration of the system, and some analysis tools. The QNX kernel contains only 
CPU  scheduling,  inter-process  communication,  interrupt  redirection  and  timers. 
Everything else runs as a user process. QNX Real-time capabilities  include priority-
based preemptive scheduling with 256 priorities,  aperiodic  scheduling with sporadic 
server, nested interrupts and inheritance protocol. Figure 4.2 shows the Architecture of 
QNX OS.

http://www.windriver.com/products/product-notes/General-Purpose-Platform-ve-Note.pdf


Figure 4.2 QNX Neutrino Architecture
http://www.qnx.com/download/feature.html?programid=8483

The  Windows  CE RTOS  is  a  commercial  RTOS  developed  in  the  late  1990s  by 
Microsoft.  Windows  CE  is  a  modular,  portable  real-time  embedded  OS  developed 
especially  for  small  memory,  mobile  32-bit  devices. There  exist  three  main 
development  platforms  (Windows Mobile,  SmartPhone,  and Portable  Media  Center) 
that allow developers to use feature-rich tools to develop applications for x86 and other 
architectures. Windows CE can have up to 32 processes active with multiple threads in 
each  process.  The  scheduler  supports  round-robin  or  priority-based  preemptive 
scheduling  with  256  priority  levels,  and  uses  the  priority  inheritance  protocol for 
dealing with priority inversion. Windows CE supports OS synchronization primitives 
such as critical  sections, mutexes,  semaphores, events, and message queues to allow 
thread to control access to share resources.  Architecture of Windows CE is showed in 
Figure 4.3.  

Several embedded systems have taken a component-oriented approach for application-
specific  configurability [22].  eCos [23][24] and icWORKSHOP [25] have a goal  of 
lightweight, static composition. These systems consist of a set of components that are 
wired together (either manually or using a composition tool)  to form an application. 
Components vary in size from fine-grained, specialized objects (as in icWORKSHOP) 
to larger classes and packages (eCos). VEST [26] is a proposed toolkit  for building 
component-based  embedded  systems  that  performs  extensive  static  analyses  of  the 
system, such as schedulability, resource dependencies, and interface type-checking.

http://www.qnx.com/download/feature.html?programid=8483


Figure 4.3 Architecture of Windows CE
http://msdn.microsoft.com/pt-br/library/aa924061.aspx

The  most  widely  adopted  free,  open  source  RTOS,  eCos (embedded  Configurable 
operating system) was released in 1986. eCos provides a graphical-configuration tool 
and  a  command  line-configuration  tool  to  customize  and  adapt  the  RTOS to  meet 
application-specific  requirements.  This  feature  allows  the  user  to  set  the  OS to  the 
desired  memory  footprint  and  performance  requirements.  Development  hosts  are 
Windows and Linux and the supported target processors are various. The eCos kernel 
can be configured with the bitmap scheduler or the multilevel queue (MLQ) scheduler. 
Both schedulers support  priority-based scheduling with up to 32 priority levels.  The 
bitmap scheduler is somewhat more efficient and only allows one thread per priority 
level. The MLQ scheduler allows multiple threads to run at the same priority. First in, 
first out (FIFO) or round-robin is used to schedule threads with the same priority. The 
eCos  RTOS  supports  OS  primitives  such  as  mutexes,  semaphores,  mailboxes,  and 
events for synchronization and communication between threads.  eCos architecture is 
showed in Figure 4.4. 

Figure 4.4 Architecture of eCos [24]

http://msdn.microsoft.com/pt-br/library/aa924061.aspx


There is also systems that are specially design for smaller embedded systems. family of 
smaller real-time executives, such as CREEM [27], pSOSystem [28], OSEKWorks [29], 
and Ariel [30], that while providing support for preemptive tasks, they have severely 
constrained execution and storage models. 

Contemporary OS such as Linux, also have extensions that enable them to support real-
time applications: RTAI [31], and RT-Linux [32]. These RTOSs are based on  the same 
principle of operation which is through interrupt control between the hardware and the 
operating system. Interrupts needed for deterministic processing are processed by the 
real-time  core,  while  other  interrupts  are  forwarded  to  the  non-real  time  operating 
system. These systems are only suitable  for large real-time systems due to footprint 
required and their architecture are similar as in Figure 4.5.  

Figure 4.5 RTAI Architecture [31]

Other  Linux  extensions  like  Embedded  Linux  [33]  and  µClinux  [34]  are  more 
embedded  compliant  but  do  not  support  real-time.  These  extensions  have  an 
architecture which is very much like the Linux architecture in Figure 4.6 except they do 
not have to deal with memory management units (MMU).  

Figure 4.6 Linux architecture

As embedded systems are getting more and more complex, dynamic, and open, while 
interacting with a progressively more demanding and heterogeneous environment, the 



reliability and security of these systems have become major concerns.  An increasing 
number of external security attacks as well as design weaknesses in operating systems 
have resulted in large economic damages,  which results in difficulties  to attain  user 
acceptance and getting accepted by the market. Consequently, there is a growing request 
from stakeholders in embedded systems to make available execution platforms which 
address both integrity and security concerns.  Recently, we have seen some proposals 
which  are  really  concern  with  security,  reliability,  dependability  and  resilience  of 
operating  systems  [35,36,37,38].  Basically,  they  propose  to  use  micro-kernel  based 
operating systems [73, 74] to provide security and dependability for embedded system 
application.  One of the proposals  is  based on L4 OS [36,  38] which architecture  is 
showed in Figure 4.7.  Another proposal is based on Minix OS [35, 37]. Figure 4.8 
shows the architecture of Minix OS. 

Figure 4.7 L4 based Architecture [35]. The resulting system comprises a microkernel that also 
provides for virtual machines and a microkernel-based system on top that includes components 

for maintaining the virtual machines.

Figure 4.8 Minix Architecture [35].The microkernel handles interrupts, provides the
basic mechanisms for process management, implements interprocess communication,

and performs process scheduling.



Table  4.1  summarizes  some  operating  systems  for  embedded  systems  and  what 
properties (requirements) they provide. The table refers to the same set of requirements 
we have introduce earlier at chapter 3. In this table we want to give you a view of how 
the systems provide and enforce a certain property:  adequately (A) in case the system 
provides and enforces the property,  poorly (P) when the system provides the property 
but not as required (for example, when the system is said to be real-time but do not 
support hard real-time behavior), and  non  (N) when the system does not provide the 
requirement. 

OS/Req.   (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
VxWorks P P A A P P P A P A P
QNX P P A A P P P A P A P
Windows CE P P A P N N N P P P N
eCos A P A P N N P P P A N
pSOS A P P P N N P P N P N
RTAI N A P P N N N P N P N
uClinux A N A P N N N P N P N
L4 P P P A A A P A A A P
Minix P N P A A A P A A A P

Table 4.1 Embedded Systems Requirements provided by OSes for EmS

Most of the OSes for embedded systems provide the necessary functionalities such as 
multitasking, memory management, file system, network, etc., through its API. They 
provide various architecture approaches such as monolithic kernel, micro-kernel based, 
components based, and library based. However, they do not provide and enforce a lot of 
non-functional  requirements  that  are  necessary  in  embedded  systems,  specially  the 
properties usually required in networked embedded systems. Also, most of the OS we 
listed  required  large  amount  of  memory  to  run  and  do  not  deal  with  low  power 
consumption. According to [21], the type of operating system that embedded systems 
developers  pick  in  almost  half  the  cases  (44%),  is  one  of  the  many  commercial 
operating systems or RTOS products for their current project. The remainder was about 
equally divided among internally developed operating systems, open-source operating 
systems, and no operating system at all. 

4.1.2 Domain Specific   Embedded Operating Systems   

This section presents three domains, Avionics, Automotive and Embedded Sensor 
Networks which needs specific requirements.

Avionics
Significant work has been performed within the avionics domain to achieve the stated 
objectives.  The main body of work has been performed under the banner Integrated 
Modular Avionics (IMA) [39,40,41].

The ARINC 653  [42,43]  is  a  standard  that  specifies  a  programming  interface  for  a 
RTOS. In addition,  it  establishes  a particular  method for partitioning resources over 
time and memory. The ARINC 653 specification for system partitioning and scheduling 
is  often required  in  safety-  and mission-critical  systems,  particularly  in  the avionics 
industry.  ARINC 653 defines an APplication EXecutive (APEX) for space and time 



partitioning  that  may be used wherever multiple  applications  need to  share a single 
processor and memory,  in order to guarantee that one application cannot bring down 
another  in the event of application failure.  Each partition in an ARINC 653 system 
represents a separate application and makes use of memory space that is dedicated to it. 
Similarly,  the  APEX  allots  a  dedicated  time  slice  to  each,  thus  creating  time 
partitioning. Each ARINC 653 partition supports multitasking. Applications that use the 
ARINC 653 application programming interface (API) can be more easily ported from 
one ARINC 653 operating system to another than those which do not. 
ARINC  standards  allow  aircraft  manufacturers  to  ensure  that  new  installations  are 
compatible  and interchangeable.  A study called  "The Economic  Impact  of Avionics 
Standardization  on  the  Airline  Industry,"  from  Georgia  State  University's  Aviation 
Policy  Research,  Aviation  and  Transport  Studies,  estimates  annual  savings  by  the 
airlines  industry  of  more  than  $291  million  annually  through  the  use  of  ARINC 
standards.

The  MILS  –Multiple  Independent  Levels  of  Security  and  Safety [44]  approach  is 
proposed  to  provide  a  reusable  formal  framework  for  high  assurance  system 
specification  and  verification.  Separation  of  kernel  is  the  big  issue.  The  traditional 
monolithic kernel is intended to provide as many services as possible to the application. 
Kernels compete with each other based upon the richness of the API that they offer to 
the programmer. In the MILS architecture, the separation kernel only does four very 
simple  things.  A MILS kernel  is  responsible  for enforcing data isolation,  control  of 
information flow, periods processing and damage limitation policies, and nothing else. 
Each of these policies counters one or more of the basic foundational threats to system 
assurance. 
The MILS separation kernel, Figure 4.9, has two special characteristics. First, it is the 
only code that runs in supervisor or privileged mode. No other code, not even device 
driver code, has the ability to affect the processor’s protection mechanisms, particularly 
the MMU.

Figure 4.9 MILS Architecture [44]

The second characteristic is that because the separation kernel is so simple it can be 
very small, approximately 4,000 lines of C language source code. That is small enough 
to be mathematically modeled so that we can trust this code to rigorously enforce the 



four MILS policies. This code will have been proven to be correct under all conditions. 
Mathematical proof by formal methods is arduous and expensive, but it only needs to be 
done once for each separation  kernel.  That  investment  can be leveraged over  again 
many times.
As examples of MILS compliant OS we have LynxSecure [45] and PikeOS [46]. They 
have been used especially in military and avionics industries. Another system, RTEMS 
[47] which is not MILS compliant is also used for military and avionics projects. 

LynxSecure addresses this issue on all fronts by providing a robust environment within 
which multiple secure and non-secure operating systems can perform simultaneously—
with no compromise of security, reliability or data. LynxSecure expands on the proven 
real-time capabilities of the LynxOS® real-time operating system (RTOS) with time-
space  partitioning  and  operating-system  virtualization. It conforms  to  the  Multiple 
MILS  architecture,  with  strict  adherence  to  data  isolation,  damage  limitation  and 
information flow policies  identified in this  architecture.  Unlike a traditional  security 
kernel that performs all trusted functions for a secure operating system, a separation 
kernel's primary security function is to partition data and resources of a system and to 
control information flow between partitions.  Partitions  and information-flow policies 
are  defined  by the  kernel's  configuration.  This  provides  a  robust  foundation  for  the 
creation of multi-level secure systems. To fulfill  the separation kernel concept of MILS 
architecture,  it  utilizes  virtualization.  LynxSecure  uses  a  hypervisor  to  create  a 
virtualization layer that maps physical system resources to each guest operating system. 
Each guest operating system is assigned certain dedicated resources, such as memory, 
CPU time and I/O peripherals. Figure 4.10 shows the architecture of LynxSecure. 

Figure 4.10 LinxSecure Architecture with Guest Operating Systems [45]



PikeOS is a microkernel-based real-time operating system made by SYSGO AG. It is 
targeted  at  safety  and  security  critical  embedded  systems.  It  provides  a  partitioned 
environment  for  multiple  operating  systems  with  different  design  goals,  safety 
requirements, or security requirements to coexist in a single machine. It was initially 
modeled after the L4 microkernel [48] and has gradually evolved over the years of its 
application to real-time, embedded systems space. The goal of Pike OS is to provide 
partitions that comprise a subset of the system’s resources. Processing time is one of 
those resources. It is expected the partitions to host a variety of guest operating systems 
with  different  requirements  regarding  timely  execution.  PikeOS  combines  resource 
partitioning and virtualization, in order to fulfill the MILS separation kernel concept. Its 
virtual machine environments are able to host entire operating systems, which need to 
be adapted in order to run in one of its virtual machine environments, along with their 
applications  that can run unmodified.  A number of different  operating systems have 
been  adapted  to  run  in  a  PikeOS virtual  machine.  Among  them are  Linux,  several 
popular real-time operating system APIs including POSIX and ARINC-653. PikeOS 
provides a build-in Health Monitoring Feature which implements all features described 
in  the  ARINC-653  standard.  Failures  like  address-  and  timing  violations,  illegal 
instruction  will  be  intercepted  by  the  OS  and  handled  as  specified  in  the  system 
configuration.  This adds another layer  of determinism without additional  application 
code.  The PikeOS system can be configured using PIK, the graphical  configuration 
editor within CODEO. PIK includes a powerful integrity checker that makes it almost 
impossible  to  create  an  invalid  configuration.  PikeOS supports PowerPC,  x86,  and 
MIPS platforms. Examples of projects using PikeOS are DIANA[49] and Airbus for the 
FSA-NG (Fly Smart with Airbus New Generation). Figure 4.11 shows the architecture 
of PikeOS.

Figure 4.11 PikeOS Architecture

RTEMS (Real-Time Executive for Multiprocessor  Systems) is a free open source real-
time operating system (RTOS) designed for embedded systems. The acronym RTEMS 
initially  stood for  Real-Time Executive  for  Missile  Systems,  then became  Real-Time 
Executive  for  Military  Systems before  changing  to  its  current  meaning.  RTEMS 
development began in the late 1980s with early versions of RTEMS available via ftp as 
early  as  1993.  OAR  Corporation  is  currently  managing  the  RTEMS  project  in 
cooperation with a Steering Committee which includes user representatives. Space and 
On a conceptual level RTEMS can be characterized by three layers: hardware support, 
kernel and APIs. The user then develops his application by using the available APIs. 



The  hardware support layer encompasses the processor and board dependent files as 
well  as  a  common hardware  library.  RTEMS provides  a  notion  of  executive  which 
encapsulates the API layer and the kernel. The kernel layer is the heart of RTEMS and 
encompasses the  super core, the  super API and several  portable support libraries. The 
super core is organized into handlers and provides a common infrastructure and a high 
degree of interoperability between APIs. It is worth reminding that there is a small part 
of the super core that is target dependent. The super API contains the code for services 
that are beyond any standardization, such as API initialization and extensions support. 
The  API  layer makes  the  bridge  between  the  kernel  and  the  application.  APIs  are 
implemented in terms of super core services. The Classic API, provides basic features 
such  as  multitasking,  priority-based  pre-emptive  scheduling  and  optional  rate-
monotonic  scheduling,  inter-task  communication  and  synchronization,  priority 
inheritance, etc. POSIX and ITRON APIs are also supported. There is also an interface 
for  ARINC 653 specification  [50].  Aviation  projects  supported  by RTEMS include 
Dawn [51] and THEMIS [52] . Figure 4.12 shows the architecture of RTEMS.

Figure 4.12 RTEMS Architecture

Table 4.2 summarizes some operating systems for avionics domain embedded systems 
and what properties (requirements)  they provide. The table refers to the same set of 
requirements we have introduce earlier at chapter 3. In this table we want to give you a 
view of how the systems provide and enforce a certain property: adequately (A) in case 
the system provides and enforces the property, poorly (P) when the system provides the 
property but not as required (for example, when the system is said to be real-time but do 
not support hard real-time behavior), and non (N) when the system does not provide the 
requirement. 
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OS/Req.   (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
LynxSecure P P A A A P A A A A A
PikeOS P P A A A P A A A A P
RTEMS P A A A A P A A P P P

Table 4.2 Embedded Systems Requirements provided by OSes for Avionics Domain
All systems tend to be compliant to ARINC and MILS specifications, where the big 
issue is Security and Safety. However, some basic requirements for embedded systems 
such as resource constrains and real-time are not adequately handled. Also, it seems that 
failure handling is not an important concern for these systems. 

Automotive
In  the  automotive  domain,  the  embedded  systems  are  distributed;  hence  the 
communications play a key role in the development process all the way from the design, 
to implementation and integration.

OSEK/VDX  [53],  which  is  a  collection  of  widely  used  standards  for  automotive 
systems,  specifies  a  scalable  real-time  operating  system  OSEK/VDX  OS  [53], 
communications with transparent communication services OSEK/VDX COM [54], and 
a network manager OSEK/VDX NM [55] allowing for easy integration of subsystems 
developed  by  different  OEMs.  OSEK/VDX  provides  reusability  and  portability  of 
software  by  using  abstract  high  level  interfaces.  OSEK/VDX  COM  allows  for 
communications  on  a  high  level  abstraction,  without  detailed  knowledge  on 
communication transmitters and recipients locations.

The  latest  automotive  software  standard  is  AUTOSAR  [56],  by  the  AUTOSAR 
consortia.  The goal  of  AUTOSAR is  to  create  a  global  standard  for  basic  software 
functions such as communications and diagnostics. From an integration point of view, 
AUTOSAR provides a Run-Time Environment (RTE) routing communications between 
software  components  regardless  of  their  locations,  both  within  a  node  and  over 
networks. Tools allows for easy mapping of software onto the existing architecture of 
nodes (Electronic Control Units - ECUs). AUTOSAR is working towards integration of 
standardized  tools  relying  on,  e.g.,  operating  system  standards  such  as,  e.g., 
OSEK/VDX OS,  and various  communication  standards  as,  e.g.,  OSEK/VDX COM, 
FlexRay, CAN, LIN and MOST.

OSEK/VDX OS [53], describes the concept of a real-time operating system, capable of 
multitasking,  which  can  be  used  for  motor  vehicles.  It  also  specifies  the  OSEK 
operating system API. Figure 4.13 shows the architecture of an OSEK OS. 

The objective of the standard is to describe an environment which supports efficient 
utilization of resources for automotive control unit application software. This standard 
can be viewed as a set of API for real-time operating system (OSEK) integrated on a 
network  management  system (VDX) that  together  describes  the  characteristics  of  a 
distributed  environment  that  can  be  used  for  developing  automotive  applications. 
Typical automotive applications are characterized by stringent real-time requirements 
and  high  criticality  (for  example,  a  power-train  application).  In  addition,  these 
applications have to be made in a huge number of units, therefore there is a need to 
reduce the memory footprint to a minimum enhancing as possible the OS performance. 



The following are  some features  that  help to better  characterize  the philosophy that 
drove the main architectural choices of the OSEK Operating System: 

Figure 4.13 OSEK/VDX OS Architecture

Scalability -  the operating system is  intended for use on a wide range control  units 
( either system require only a minimum of hardware resources RAM, ROM, CPU time 
and  runs  even  on  8  bit  microcontrollers).  To  support  a  wide  range  of  systems  the 
standard defines four conformance classes that tightly specifies the main features of an 
OS.  Different  conformance  classes,  various  scheduling  mechanisms  and  the 
configuration features make the OSEK operating system feasible for a broad spectrum 
of applications and hardware.
Portability of software -  the standard specifies an ISO/ANSI-C interface between the 
application and the operating system that is identical in all the implementations of the 
OS. The aim of this interface is to give the ability to relocate the application software 
from one ECU to another ECU without bigger changes inside the application. Due to 
the wide variety of hardware where the OS has to work in, the standard does not specify 
any  interface  for  the  Input/Output  subsystem.  Note  that  this  fact  reduces  (if  not 
prohibits) the portability of the application source code, since the I/O system is one of 
the main software part that impacts on the architecture of the software. We can say that 
the prime focus is not to achieve 100% compatibility between the application modules, 
but to ease their direct portability between compliant operating systems. 

Configurability -  another  requirement  needed  to  adapt  the  OS  to  a  wide  range  of 
hardware is  a  high degree of  modularity  and configurability.  This  configurability  is 
reflected by the tool chain proposed by the OSEK standard, where some configuration 
tools  help  the  designer  in  tuning  the  system  services  and  the  system  footprint. 
Moreover,  a  language  called  OIL (OSEK Implementation  Language)  is  proposed to 
help the definition of a standardized configuration information. 
Reliability - the OSEK operating system is configured and scaled statically.  The user 
statically specifies the number of tasks, resources, and services required. This approach 
ease the implementation  of an OS capable of running on ROM, and moreover  it  is 



completely different from a dynamic approach followed in other OS standards like for 
example POSIX.
Real-Time  capability -  the  specification  of  the  OSEK  operating  system  provides  a 
predictable  and  documented  behavior  to  enable  operating  system  implementations, 
which meet automotive real-time requirements. 
Support for time triggered architectures - the OSEK Standard provides the specification 
of OSEKTime OS, a time triggered OS that can be fully integrated in the OSEK/VDX 
framework. 

OSEKtime  operating  system  (OSEKtime  OS)  [57]  is  the  specification  of  a  time-
triggered operating system with a fault-tolerant communication layer as a standardized 
run-time environment for highly dependable real-time software in automotive electronic 
control  units.  The  operating  system  must  implement  the  following  properties: 
predictability (deterministic, a priori known behavior even under defined peak load and 
fault  conditions),  clear,  modular  concept  as  a  basis  for  certification,  dependability 
(reliable  operation  through fault  detection  and fault  tolerance),  support  for  modular 
development and integration without side-effects (composability), and compatibility to 
the OSEK/VDX.

The OSEKtime operating system supports static scheduling and offers all basic services 
for real-time applications, i.e., interrupt handling, dispatching, system time and clock 
synchronization, local message handling, and error detection mechanisms. All services 
of OSEKtime are hidden behind a well-defined API. The application interfaces to the 
OS and the communication layer  only via this  API.  For a particular  application  the 
OSEKtime operating system can be configured such that it only comprises the services 
required for this application. Thus the resource requirements of the operating system are 
as small  as possible.  OSEKtime also comprises a fault-tolerant communication layer 
that  supports  real-time  communication  protocols  and  systems  and  is  described  in 
FTCom [58] specification.

The following systems are  examples of operating systems  OSEK/VDX OS compliant. 
Most of them are from small companies.

Erika Enterprise [59] is a minimal real-time kernel for single and multicore embedded 
systems. It is a free, open-source implementation of the OSEK/VDX API, implementing 
conformance  classes  BCC1,  BCC2,  ECC1,  ECC2,  with  an  OSEK  OIL  compiler 
integrated into Eclipse. 

PICOS18 [60], is an operating system based on OSEK/VDX standard. It is designed by 
Pragmatec Inc. for the PICmicro microcontrollers from the Microchip PIC18 family and 
is totally free and distributed under the GPL license.

Trampoline [61] is an open source RTOS which, once certified, could be compliant with 
the OSEK/VDX specification. Currently it is not the case, so while Trampoline has the 
same API as OSEK/VDX, it is not officially compliant. Trampoline is available under 
the GNU Lesser General Public License V2. 

OSEKturbo [62] is a small, scalable Real-Time Operating System (RTOS) that provides 
a set of RTOS services that can be leveraged by your embedded application. Developed 
in  accordance  with  the  Software  Engineering  Institute's  (SEI)  highest  Capability 



Maturity  Model  (CMM)  rating  and  fully  compliant  to  the  latest  OSEK/VDX 
specifications, the operating system is designed to occupy very little memory, provide 
fast context switching times and increase reusability of your embedded application.

RTA-OSEK  [63]  provides  a  production  real-time  operating  system  suitable  for 
applications in all areas of automotive ECU design. It implements the AUTOSAR-OS 
V1.0 (SC-1) and OSEK/VDX OS V2.2.3 standard and is fully MISRA compliant. An 
extremely  small  and  fast  runtime  kernel  is  supplied  for  more  than  20  popular 
microcontrollers, together with the Planner and Builder tools that are used to configure 
and analyze the operating system.

The Systems listed here are all OSEK/VDX OS compliant and so they tend to be very 
concern with the  features listed above. As the information on these systems are very 
poor we are assuming they provide and enforce the features we have listed above.  

Embedded Sensor N  etworks  

Recently,  the  availability  of  cheap  and  small  tiny  sensors  and  low power  wireless 
communication  allowed  the  large-scaled  deployment  of  sensor  nodes  in  Embedded 
Sensor  Networks  (ESN).  An  embedded  sensor  network  is  a  network  of  embedded 
computers  placed  in  the  physical  world  that  interacts  with  the  environment.  These 
embedded computers, or sensor nodes, are often physically small, relatively inexpensive 
computers, each with some set of sensors or actuators [64]. Their nodes communicate 
wirelessly  and  each  node  consists  of:  processing  capability  (one  or  more 
microcontrollers,  CPUs,  or  DSP  chips),  may  contain  multiple  types  of  memory 
(program,  data,  and  flash  memories),  have  an  RF transceiver,  have  a  power  source 
(batteries  and  solar  cells),  and  accommodate  various  sensors  and  actuators.  Sensor 
nodes have evolved into two broad categories. The first one consist of small devices 
with 8-bit microcontrollers CPUs, 10/100KB of working memory, and 100/1000KB of 
flash secondary storage, such as motes [65]. The second one consist of larger devices 
with 32-bit CPUs and megabytes each of working memory and secondary storage, such 
as  Cerfcube[66].  The  nodes  often  self-organize  after  being  deployed  in  an  ad  hoc 
fashion.  Systems of 1,000s or even 10,000 nodes are  anticipated.  Such systems  can 
revolutionize the way we live and work, it is not irrational to expect that in a decade the 
world  will  be  covered  with  wireless  sensor  networks  with  access  to  them  via  the 
Internet [5].
To be usable a sensor networking system must provide several services, further than the 
lower-level networking primitives. When sensor network programmers make a program 
for  sensor  network  applications,  without  any  middleware  or  operating  system,  the 
development of application is very difficult.  Many services, such as operating systems, 
are  also  found  in  traditional  wired  and  wireless  networks.  The  sensor  networking 
community  typically  uses  embedded  (and,  possibly,  real-time)  versions  of  existing 
operating  systems  such  as  Linux  for  the  larger  devices.  These  embedded  versions 
provide largely the same programming support as their regular counterparts, but with 
additional  device-level  support  for  embedded  controllers,  flash  memory,  and  other 
peripherals specific to these devices. As such, not much research has been required on 
new operating systems support for these larger devices. On the other hand, the smaller 
devices (such as the motes) have required novel directions in operating system design. 



In order to attend these novel directions the following requirements generally shape the 
design  of  network  sensor  systems [67],  affecting  directly  the  design  of  operating 
systems support for network sensor systems:  

Small  physical  size  and  low  power  consumption:  At  any  point  in  technological 
evolution, size and power constrain the processing, storage, and interconnect capability 
of the basic device. The current trend of low-end embedded processors is toward larger 
ROM  sizes  (64KB  to  128  KB)  and  smaller  RAM  sizes  (2KB  to  8KB).  The  OS 
architecture should be compliant with this trend by optimizing for RAM with a higher 
priority  than ROM and optimizing  for  runtime efficiency.  If  limits  on the  usage  of 
energy can be enforced, lifetime guarantee requirements of the system as a whole can 
likely be provided (under reasonable assumptions about operating conditions such as 
network connectivity). The OS can also ensure that the system energy is apportioned in 
a  manner  corresponding to  the  importance  of  the  tasks  so  that  critical  tasks  are 
guaranteed their energy budget. True preemptive multitasking becomes necessary in a 
system where multiple inputs to the system must be serviced at different rates within a 
required period.
Concurrency-intensive operation: What is crucial in mode of operation for these devices 
is to  flow information from place to place  having  a modest amount of processing on-
the-fly, in order to  accept a command, stop, analize, and respond. For example,  it is 
possible to simultaneously capture information from sensors, manipulate them, and put 
then onto  a  network. The  OS  should  provide  a  simple  and  intuitive  programming 
paradigm for easy use by application developers. It is desirable to retain the traditional 
multitasking  paradigm familiar  to both desktop and embedded system programmers. 
Application developers should be able to concentrate on application logic rather than 
low-level system issues such as scheduling, and networking.
Diversity  in  Design  and Usage:  Typically  networked sensor  devices are  application 
specific, rather than general purpose. They  carry only the available hardware support 
actually needed for the application.  There is a wide range of potential applications,  so 
the variation in physical devices is likely to be large.  In order to provide functionality 
on any particular device, it is important to easily assemble just the software components 
required to synthesize the application from the hardware components. As a result,  we 
need  an  unusual  degree  of  software modularity  that  must  also  be  very  efficient to 
provide  what  these  devices  require.  Providing  a  unified  and  simple  abstraction  for 
accessing sensor readings and actuating responses would greatly benefit the end-user. In 
particular,  low-level  details  associated  with sensor/actuator  configurations  should be 
abstracted away from the user. Sensors should be supported using device drivers that 
can return real-world units as well as raw ADC values. Moreover, it should be natural to 
migrate components across the hardware/software boundary as technology evolves.
Robust Operation: These devices will be numerous, largely unattended, and expected to 
form an  application  which  will be  operational  a  large  percentage  of  the  time.  The 
application of traditional redundancy techniques to enhance the reliability of individual 
units  is  limited  by  space  and power.  Since  sensor  nodes  are  resource-constrained, 
precious  CPU  cycles,  network  buffers  and  bandwidth  should  be  apportioned  to 
application  needs.  OS  support  for  guaranteed,  timely  and  limited  access  to  system 
resources is necessary for supporting application deadlines and balanced apportioning 
of system slack (residual unused resources). This mechanism can also be used to place 
some limits on the impact of faulty or malicious tasks on system operation.
Timeliness and Schedulability: Most sensor applications such as surveillance tend to be 
time sensitive in nature where packets must be relayed and forwarded on a timely basis. 



While outing and network link scheduling are important components in ensuring that 
packets meet their end-to-end delay bounds, timing support on each node in the network 
is also essential. In order to honor end-to-end deadlines, local tasks on each node have 
deadlines associated with the completion of their local data relaying and processing. 
Managing the deadlines of these tasks requires support of a real-time operating system.

One such direction has been the development of a number of OSes for embedded sensor 
networks and networked low-power systems.  TinyOS [67], an operating system for the 
motes  and  widely  used  by  many  research  groups  as  well  as  in  some  segments  of 
industry,  deviates  significantly  from the  traditional  multi-threaded  model  of  modern 
operating systems. MantisOS [68] and Contiki [69] are two recent projects providing 
multithread support. Other OSes like Nano-RK [70], and Pixie [71] , provide different 
approaches in order to support embedded sensor networks. 

TinyOS is a tiny, flexible operating system built from a set of reusable components that 
are  assembled  into  an  application-specific  system. It  supports  an  event-driven 
concurrency model based on split-phase interfaces, asynchronous  events, and deferred 
computation called tasks. TinyOS has a component-based programming model, codified 
by  the  NesC language,  a  dialect  of  C,  which  supports  the  TinyOS  component  and 
concurrency model as well as extensive cross-component optimizations and compile-
time race detection. TinyOS is not an OS in the traditional sense; it is a programming 
framework  for  embedded  systems  and  set  of  components  that  enable building  an 
application-specific OS into each application. A typical application is about 15K in size, 
of which the base OS is about 400 bytes; the largest application, a database-like query 
system, is about 64K bytes.
A TinyOS program is  a graph of components,  where each of the components is  an 
independent computational entity that exposes one or more interfaces. The components 
provide three abstractions:  commands,  which is typically a request to a component to 
perform some service (such as initiating a sensor reading); events, which are typically 
used to signal the completion of that service, and tasks, which is a function executed by 
the TinyOS scheduler at a later time. While commands and events are mechanisms for 
inter-component  communication, tasks  are  used  to  express intra-component 
concurrency.
TinyOS uses a two level scheduling hierarchy that lets high-priority events pre-empt 
low priority tasks. It supports a cyclic-executive model wherein interrupts can register 
events,  which  can  then  be  acted  upon by  other  non-blocking  functions.  Events  are 
invoked because of external input such as incoming data or sensor input. Events can 
post tasks for later processing. Both events and tasks must run to completion after being 
invoked. This precludes the use of blocking statements. Events are implemented using 
hardware interrupts,  and tasks are  implemented using a linear  FIFO dispatcher.  The 
dispatcher  has  a  queue  of  tasks,  where  each  task  is  represented  by  a  pointer  to  a 
function. 
The current version of TinyOS provides a large number of components to application 
developers, including abstractions for sensors, single-hop networking, ad-hoc routing, 
power  management,  timers,  and  non-volatile  storage.  A  developer  composes an 
application by writing components and wiring them to TinyOS components that provide 
implementations of the required services. 
TinyOS is open-source software, published under a 3-clause BSD license. It has been 
under development for several years and is currently in its third generation involving 



several iterations of hardware, radio stacks, and programming tools. Over one hundred 
groups worldwide use it, including several companies within their products.

Contiki is  an  operating  system  designed  for  networked  and  memory-constrained 
systems. Contiki, like TinyOS, is based around an event-driven kernel but has additional 
support for dynamically loadable programs. Unlike TinyOS, Contiki includes the uIP[8] 
stack for TCP/IP communication. It also  allows applications to be written in a multi-
threaded fashion. Multi-threading is implemented as a library that is optionally linked 
with those applications that specifically requires a threaded model of execution. The 
event-driven nature of the kernel makes the system compact and responsive, whereas 
the  multi-threading  makes  it  possible  to  run  programs  that  perform  long-running 
computations without completely blocking the system. Additionally, Contiki provides a 
third execution model called protothreads. A protothread is an extremely lightweight 
stack-less thread-like construct that provides linear execution on top of the event-driven 
kernel. 
A Contiki system is composed by the kernel, libraries, the program loader, and a set of 
processes. It is partitioned into two parts: the core and the loaded programs as shown in 
Figure 4.14, and partitioning is made at compile time and is specific to the deployment 
in which Contiki is used. Typically, the core consists of the Contiki kernel, the program 
loader, the most commonly used parts of the language run-time and support libraries, 
and a communication stack with device drivers for the communication hardware.
The core is compiled into a single binary image that is stored in the devices prior to 
deployment. The core is generally not modified after deployment, even though it should 
be noted that it is possible to use a special boot loader to overwrite or patch the core.

Figure 4.14 Contiki OS Core

A  process  may  be  either  an  application  program  or  a  service which  is  the 
implementation  of  functionality  used  by  more  than  one  application  process.  All 
processes, both application programs and services, can be dynamically replaced at run-
time. In addition, processes share the same address space and do not run in different 
protection domains. The definition of a process contains an event handler function and 
an  optional  poll  handler  function.  Communication  between  processes  always  goes 
through the kernel,  and it is done by posting events. The kernel does not provide a 
hardware  abstraction  layer,  but  lets  device  drivers  and  applications  communicate 



directly with the hardware. A process is defined by an event handler function and an 
optional poll handler function. 

The MANTIS open source RTOS (MOS) as being adapted to the additional requirements 
imposed by sensor networks, e.g. the development  of a power-efficient  scheduler to 
reduce energy consumption and the implementation of advanced sensor specific features 
like  remote  dynamic  reprogramming  of  micro sensor  nodes. MANTIS OS provides 
lightweight  memory  footprint  as  well  as  energy-efficient operation. At  present,  the 
MOS kernel is able to achieve multithreaded preemptively scheduled execution with 
standard I/O synchronization and a network protocol stack, all for less than 500 bytes of 
RAM, not including individual thread stack sizes. 
MOS is also designed to provide advanced remote management capabilities for in-situ 
sensor  networks.  Towards  this  end,  the  goals of  MOS  are  to  support  useful  yet 
sophisticated features, including dynamic reprogramming of sensor nodes via wireless, 
remote debugging of sensor nodes, and multimodal prototyping of virtual and deployed 
sensor nodes. The goal of the MOS kernel design is to implement familiar services such 
as  POSIX  threads,  binary  (mutex)  and  counting  semaphores in  a  manner  efficient 
enough for the resource-constrained environment of a sensor node. The design of the 
MOS kernel resembles classical,  UNIX-style  schedulers, most notably priority-based 
thread  scheduling with  round-robin semantics  within  a  priority  level.  The scheduler 
receives a timer interrupt from the hardware to trigger context switches; switches may 
also be triggered by system calls or semaphore operations. The timer interrupt is the 
only  one handled  by  the  kernel–other  hardware  interrupts  are  sent  directly to  the 
associated device drivers. Upon an interrupt, a device driver typically posts a semaphore 
in order to activate a waiting thread, and this thread handles whatever event caused the 
interrupt. The time slice is configurable, and is currently set to about 10 ms. They claim 
that  automatic  preemption,  provided  by  time-sliced  multithreading,  is  important  in 
sensor  systems,  since  blocking  certain  time-critical  tasks  from  executing,  such  as 
network packet processing, can result in overflow of network buffers when tasks are 
sufficiently long-lived and a sensor node’s RAM buffers are sufficiently small. 
The  MANTIS  multithreaded  OS provide  a  structure,  figure  4.15,  where  the  main 
components of MOS are the MOS Kernel, COM Layer, DEV Layer, and NET Layer. 

Figure 4.15 MOS architecture (http://mantis.cs.colorado.edu/tikiwiki/tiki-index.php)



The MOS Kernel, which is responsible for system management, provides a preemptive 
multi-threaded  environment  including  power  modes  and  timing.  The  DEV  layer 
provides a consistent interface for accessing peripheral devices such as sensors, flash, 
and so on. The COM Layer provides a consistent interface to communications devices, 
such as the the radio and serial lines. The NET Layer allows network protocols to be 
abstracted away from program logic; multiple routing protocols can be registered and 
implemented using the NET interface.

Nano-RK is a fully preemptive reservation-based real-time operating system (RTOS) 
from Carnegie Mellon University with multi-hop networking support for use in wireless 
sensor networks. It includes a light-weight embedded resource kernel (RK) with rich 
functionality  and timing support  using less than 2KB of RAM and 18KB of ROM. 
Nano-RK  supports  fixed-priority  preemptive  multitasking  for  ensuring  that  task 
deadlines are met, along with support for CPU, network, as well as, sensor and actuator 
reservations. It provides explicit support for periodic task scheduling with support for 
real-time task sets that have deadlines associated with their data delivery.

It uses the novel mechanisms of CPU and network reservations to enforce limits on the 
resource usage of individual tasks. With respect to networking it is provided a rich API 
set for socket-like abstractions, and a generic system support for network scheduling 
and routing.  NanoRK is power-management and provides several  power-aware APIs 
that  can  be  used by the  system. Tasks  can  specify their  resource  demands  and the 
operating system provides timely, guaranteed and controlled access to CPU cycles and 
network packets. Together these resources form virtual energy reservations that allows 
the OS to enforce system and task level energy budgets.

Nano-RK  uses  a  static  design-time  framework,  consistent  with  sensor  networking 
assumptions, where the OS and the applications are co-located in a single address space.
In  order  to  guarantee  timeliness  and  enforce  temporal  isolation  Nano-RK  uses  the 
reservation  paradigm,  allowing  applications  to  specify  timeliness and  resource 
requirements, and the OS enforces guaranteed access to system resources and schedules 
tasks so that the application timeliness requirements are satisfied.

The system  uses  priority-based  preemptive  scheduling  and while  providing explicit 
support for periodic tasks, it also supports aperiodic and sporadic tasks in its framework. 
The highest priority task that is eligible to run in the system is always scheduled by the 
operating system. A periodic task can suspend itself after the completion of its current 
instance  using a system call.  Real-time  synchronization  is  supported  in  Nano-RK, 
through priority ceiling protocol emulation (Highest Locker Priority protocol).  

Figure 4.16 shows the architecture of Nano-RK. It provides an API which includes task 
management  functions,  signals  and  semaphores  functions,  general  device  drivers 
management functions and resource reservation functions. 

http://www.cmu.edu/


Figure 4.16 Nano-RK Architecture [83]

Pixie is  an  operating  system  for  sensor  networks  that  enables  resource-aware 
programming,  a model  in which applications receive feedback on, and have explicit 
control over, resource usage. Pixie is designed to support the needs of data-intensive 
applications. These applications, which include high-resolution monitoring of acoustic, 
seismic,  acceleration,  and  other  signals,  involve  high  data  rates  and  extensive  in-
network  processing.  Given  the  fundamentally  resource-limited  nature  of  sensor 
networks, a pressing concern for such applications is their ability to receive feedback 
on, and adapt their behavior to, fluctuations in both resource availability and load. The 
Pixie  architecture  consists  of  three  components,  as  showed  in  Figure  4.17.  The 
Application  Dataflow  layer  implements  application  logic,  the  Resource  Manager 
allocates and manages resources for the application, and the Scheduler schedules and 
executes application stages.

Figure 4.17 An example Pixie application for limb monitoring using wearable sensors. Resource 
allocators and brokers are components of the Pixie OS [71]. 

The Pixie OS is based on a dataflow programming model and is based on the concept of 
resource  tickets,  a  core  abstraction  for  representing  resource  availability  and 
reservations which means a right to consume a given amount of a resource type within a 
time window. To shield application programmers from the burden of managing these 



details, Pixie provides a suite of  resource brokers, which mediate between low-level 
physical resources and higher-level application demands. For example, Pixie’s energy 
broker implements a policy for the system to achieve a target lifetime. In this case, the 
energy broker will trickle the amount of energy the application can use at a specific rate. 
Pixie  is  implemented  in  NesC  and  supports  limited  backwards  compatibility  with 
TinyOS. 

Table 4.3 summarizes some operating systems for sensor networks domain embedded 
systems and what properties (requirements) they provide. The table refers to the same 
set of requirements we have introduce earlier at chapter 3. In this table we want to give 
you a view of how the systems provide and enforce a certain property:  adequately (A) 
in  case the system provides  and enforces  the property,  poorly (P)  when the system 
provides the property but not as required (for example, when the system is said to be 
real-time but do not support hard real-time behavior), and  non  (N) when the system 
does not provide the requirement. 

OS/Req.   (i) (ii) (iii) (iv) (a) (b) (c) (d) (e) (f) (g)
TyniOS A P A P P N N N A A N
Contiki A P A P P N N N A A P
MantisOS A P A P P N N N P A A
Nano-RK A A A P P N N N P P P
Pixie A P A P P N N N P P A

Table 4.3 Embedded Systems Requirements provided by OSes for Sensor Networks Domain

One of the characteristics of OSes for sensor networks is to be adequately able to deal 
with resource constraints such as memory and low power. They all provide and ensure 
this  particular  requirement.  However,  most  of  the  systems  does  not  provide  an 
adequately  real-time  behavior.  Regarding  some  of  the  important  requirements  for 
distributed embedded systems these OSes perform very poorly. Therefore, it seems that 
those requirements have to be supported in a different level than operating system.
 

Conclusion

We have  presented  various  operating  systems  that  are  supposed  to  be  tailored  for 
different types of embedded systems, from stand alone embedded systems (SES) such 
as a digital camera to distributed real-time embedded systems (DRE) such as a military 
defense system. It  is possible  to say that  for SES systems the requirements that  are 
important  for these systems  are basically  supported by the existing OSes.  However, 
regarding  most  of  networked  embedded  systems  requirements  there  is  no  OS  that 
provide and enforce all the requirements. 

For instance, the many types of DRE systems all have one thing in common: to deliver 
the right answer at the right time. Providing the right answer at the right time is crucial 
for, life-critical  military DRE systems, such as those defending ships against  missile 
attacks or controlling unmanned combat air vehicles through wireless links as well as 
for safety-critical  civilian DRE systems,  such as those regulating the temperature of 
coolant in nuclear reactors and maintaining the safe operation of steel manufacturing 
machinery.  It is hard to design DRE systems that implement their required quality of 



service (QoS) capabilities,  are dependable and predictable,  and are cost-conscious in 
their use of computing resources, being supported by only operating system software 
infrastructure. It is even harder to build them on time and within budget. 

As a result, distributed real-time and embedded systems are built using a common layer 
of software infrastructure, called middleware, which serves two purposes. The first goal 
is to ease the development of applications by abstracting away the particular details of 
the hardware and operating system that executes in each computational site. The second 
purpose  is  to  provide  a  family  of  services  that  are  common  to  many  applications, 
simplifying  component  design  and  increasing  reusability  while  allowing  specific 
optimizations for a particular deployment.

Network Embedded Systems,  especially DRE  systems can span a variety of network 
types,  topologies and scales (e.g.,  ranging from next-generation local sensor/actuator 
networks, to large scale traffic or power grid management systems). A single real-time 
and embedded system could also span multiple networks with significantly different 
characteristics.  A  general theme  of  these  systems  is  that independent  of  the 
characteristics of the networks, the constraints of stringent application-specific must be 
enforced  by  all  infrastructure  software service including  OS,  middleware  and  the 
application  as much as  enforced  end-to-end by the network. Also, applications  with 
different constraints will share the networking and other physical and logical resources. 
How to provide different service classes and ensure the proper allocation and protection 
of shared resources across all the layers, including operating systems,  consistently is 
another important challenge.  Still, creating the proper interfaces between the network 
infrastructure and the applications is an open research issues for operating systems.
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