
Proof Nets as Processes

Dimitris Mostrous

DI–FCUL–TR–2012–07

DOI:10455/6890

(http://hdl.handle.net/10455/6890)

October 2012

Published at Docs.DI (http://docs.di.fc.ul.pt/), the repository of the
Department of Informatics of the University of Lisbon, Faculty of Sciences.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Universidade de Lisboa: Repositório.UL

https://core.ac.uk/display/32330671?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Proof Nets as Processes

Dimitris Mostrous

Department of Informatics, University of Lisbon, Portugal
dimitris@di.fc.ul.pt

Abstract. We present delta-calculus, a novel interpretation of Linear
Logic, in the form of a typed process algebra that enjoys a Curry-
Howard correspondence with Proof Nets. Reduction inherits the qualities
of the logical objects: termination, deadlock-freedom, determinism, and
very importantly, a high degree of parallelism. We obtain the necessary
soundness results and provide a propositions-as-types theorem. The ba-
sic system is extended in two directions. First, we adapt it to interpret
Affine Logic. Second, we propose extensions for general recursion, and
introduce a novel form of recursive linear types. As an application we
show a highly parallel type-preserving translation from a linear System
F and extend it to the recursive variation. Our interpretation can be seen
as a more canonical proof-theoretic alternative to several recent works
on pi-calculus interpretations of linear sequent proofs (propositions-as-
sessions) which exhibit reduced parallelism.

1 Introduction

Linear Logic has had a profound impact in both programming and proof theory,
and has been the subject of many computational interpretations starting from
Abramsky’s seminal work [2]. Proof Nets [21,23], the canonical proof objects
of Linear Logic, are an abstract, geometrical representation of sequent proofs
that is inherently parallel due to locality, or context-independence, of many nor-
malising steps. They enjoy several important properties, in particular determin-
ism (semantic confluence), termination (strong normalisation), and consequently
deadlock-freedom. Such characteristics are highly desirable, and can inform the
compilation of functional programs for multicore execution, without running the
risk of returning the wrong result, of deadlock, or of unintended divergence. In
many domains, such as code mobility, operating systems, and critical software,
these facets are of paramount importance.

In a recent development, Caires and Pfenning [11] presented an interpretation
of sequent proofs of (dual) intuitionistic linear logic as typed terms of the syn-
chronous π-calculus, and proved termination [37]. Their system was subsequently
adapted to a classical linear logic setting by Wadler [41]. However, π-calculus
imposes sequentiality that impedes parallelism, so is not the best choice as a
language for linear proofs. For example, in x(y).z(k).P | x〈a〉 | z〈b〉, z may be
safe to reduce, but is blocked under x(y). Even if x(y).z(k).P ≡ z(k).x(y).P was
allowed, x would be guarded, so the two redices cannot be performed in parallel.

We developed an interpretation of proofs of the (classical) linear sequent
calculus into a new process language, called δ-calculus, that corresponds to proof
nets, and is typed with linear formulas. The multiplicative (⊗/`) fragment,
derived directly from a process interpretation of proof nets, can be seen as a
linear variation of Solos [31] with a twist: axioms are interpreted as explicit
substitutions. Specifically, an axiom ab behaves like an explicit fusion [20] a=b,
e.g., (νx) (ax | xb) 2 ab. Such a term cannot reduce in Solos (see [31]).

δ-calculus can be utilised to study proof theory in a process setting, for par-
allel compilation of functions and (functional) objects, and for programming in
the style of sessions (as in [11], but with more asynchrony). We interpret full
Second-order Linear Logic (with Mix), omitting the uninteresting additive units
which are, computationally, of limited use (Section 2). Two useful extensions
are detailed, that go beyond the results of the aforementioned systems. First,
we present an adaptation that interprets Affine (Linear) Logic (Section 2), and
second, we extend proof net exponentials (i.e., the terms than can be reused)
to facilitate general recursion, adding an original form of linear recursive types
(Section 3). Affine terms, used at most once, allow more liberal implementations
of typed interactions where protocols can be safely cancelled at any point. Re-
cursion allows to encode more realistic programming idioms at the expense of
logical consistency. Nevertheless, even the strongly normalising fragment sup-
ports primitive recursion and the definition of the usual data types [21].

We state the basic soundness properties, followed by a Curry-Howard corre-
spondence and a progress theorem for recursive nets (Section 4). To illustrate
the practical aspects of our formulation, we provide a remarkably parallel, type-
preserving translation from a Linear System F into δ-calculus nets, allowing pro-
grams (or proofs) to be written in a more traditional syntax (Section 5). With
recursion, we can also encode fixpoints, leading to more powerful programming
facilities (also in Section 5). We conclude by discussing related work (Section 6).

2 Proof Nets as Processes

A proof net consists of a collection of links, connectives which have premises and
conclusions. The links are wired together, for example a conclusion of one can
be a premise of another, and the whole composition forms a graph called a proof
structure. When a proof structure corresponds to a sequent derivation, it is called
a proof net, and the link conclusions which are not wired as premises to other
links provide the conclusions of the sequent derivation. The correctness crite-
rion, a purely geometrical method by which this correspondence is checked, was
originally defined by Girard [21] and simplified later by Danos and Regnier [14]
(for a fragment of the logic). In this work we check correctness by typing, but
note that the complexity of the criterion and that of type-checking may be re-
lated. Proof net normalisation [21,22] amounts to the (deterministic) re-linking
of the uniquely (but implicitly) identified parts of a net: once we assign names
to logical connectives, we obtain a process algebra which we call δ-calculus.

Types and Duality We begin by presenting the syntax of linear logic types:

A,B,C ::= A⊗B | A`B | 1 | ⊥ | A&B | A⊕B | !A | ?A | ∀X.A | ∃X.A | X | X⊥

for tensor, par, tensor and par units, with, plus, of course, why not, for all, exists,
type variables. Duality (negation) is defined as follows, playing a role familiar
from session types: it allows complementary communications to take place.

1⊥
def
= ⊥ ⊥⊥ def

= 1 (!A)⊥
def
= ?A⊥ (?A)⊥

def
= !A⊥ (A⊗B)⊥

def
= A⊥ `B⊥

(A`B)⊥
def
= A⊥ ⊗B⊥ (A&B)⊥

def
= A⊥ ⊕B⊥ (A⊕B)⊥

def
= A⊥ &B⊥

(∀X.A)⊥
def
= ∃X.A⊥ (∃X.A)⊥

def
= ∀X.A⊥ (X⊥)⊥

def
= X

The Multiplicative Fragment We start by presenting the fragment corre-
sponding to Multiplicative Linear Logic (MLL), to elucidate the main concepts
upon which the remaining extensions towards (and beyond) full Linear Logic can
be understood easily. The language is explicitly typed, but for brevity we omit
types in the reduction semantics. The syntax of terms π, ρ . . . is shown below:

π, ρ ::= (net)
L(a) (link)
(νa : A)π (scope)
∼a (clean)
π | ρ (parallel)
ε (nil)

L(a) ::= (link)
ab (axiom)
a(b, c) (tensor ?)
a(b, c) (par)
a (one ?)
a (bottom ?)

(?)marks a link as protected,
defining the set of ?-links.

We assume a countable set of names a, b, x, y etc., the usual notions of free and
bound names, and α-conversion. L(a) stands for a link (i.e., a logical connective)
with conclusion a. We mark some links with (?): these are called protected, for
reasons explained later. All names appearing in links are free, and are only made
bound with scope restriction or one of the other forms which we subsequently
explain. Parallel composition is n-ary commutative with unit ε (to avoid confu-
sion with the additive unit 0 of Linear Logic). Association priority is given by
�, ν, |, +, noting that boxing (�) and summation (+) appear later. The unitary
links a and a have one conclusion and no premise, the axiom ab has two distinct
conclusions and no premise, and the tensor and par links, a(b, c) and a(b, c), have
one conclusion (a) and two premises (b and c). The choice of writing a in ⊗-links
and a in `-links, and similarly throughout, is a mnemonic for polarity [5].

The reduction relation π ρ corresponds to the axiom and symmetric nor-
malisation steps of proof nets [21], and uses evaluation contexts [18]. Although
there are no labels, we make use of the convenient notation: π a

 ρ
def
= π ∼a | ρ.

(νa) (∼a | π) π L(a) | ab a
 L(b) (∼ν, Link− Ax)

a | a a
 ε a(b, c) | a(d, e) a

 bd | ce (⊥− 1, `−⊗)
G[·] ::= (νa) (·) (extended later)
C[·] ::= · | (C[·] | π) | G[C[·]]

π ρ

C[π] C[ρ]

π ≡ π′ ρ′ ≡ ρ
π ρ

(CR, CC)

A normalisation step takes place when two links react, generating new links
so as to preserve the correctness of the structure. There is no cut link as in proof

nets, but following Abramsky’s π-calculus translation (see Bellin and Scott [9]),
a cut is implicitly defined between actions that share a name as their conclusion.
Thus, in a well-typed proof structure, each name appears once (as conclusion)
or twice (when two conclusions cut, or a conclusion is wired to a premise).

An axiom can be seen as an explicit fusion [36], or a symmetric adap-
tation of a linear forwarder [19], and contracts with any link with which it
shares a conclusion, using (Link− Ax) which defines a family of rules for all
L(a). For example, using (CR), (Link− Ax), and (∼ν) we obtain the reduction
(νx) (ax | xc) (νx) (∼x | ac) ac. Notice how this has the effect of a local
substitution, since there is no irrelevant context, which immediately increases
the parallelism that can be attained. Recall also that this term cannot reduce
in Solos (see the introduction to [31]) since monadic communication is not sym-
metric (i.e., ab | ax→ but xa | ab 6→). The residual ∼x is released so as to interact
(and this may be seen as another kind of cut) with the enclosing scope of (νx),
using (∼ν), in order to destroy it, since x is never reused in a linear setting.
This can be understood as an asynchronous deallocation, decoupling reductions
from their enclosing context. The symmetric contraction between a tensor and
par link, with rule (`−⊗), produces two new axioms that turn the (passive)
premises to (active) conclusions, which may now react. This reduction is com-
pletely local, and therefore can be performed in parallel to any other redex that
may be enabled. We now define a useful abbreviation, used throughout the work:

π{a/x}
def
= (νx) (ax | π) for example: xc{a/x}

def
= (νx) (ax | xc) 2 ac

As a logical system, proof nets enjoy cut-elimination (strong normalisation),
which is achieved with commutative contractions [21], subsumed by ≡ (cf. (CC)).

π ≡ ρ
C[π] ≡ C[ρ]

ab ≡ ba π | ρ ≡ ρ | π π ≡ π | ε
(νa)(νb)π ≡ (νb)(νa)π

(Standard,≡ νν)

G[(νa) (π | ρ)] ≡ G[(νa)π | ρ] a 6∈ fn(ρ) π n ρ (≡ Splitν)
(νa) (π | L(b)) ≡ (νa)π | L(b) a 6∈ fn(L(b)) π ∝ L(b) (≡ Resν)

We take as ≡ the equivalence relation generated by the above rules and α-
conversion. A detail is that L(c) = ca ≡ ac = L(a). We also define:

conclusion(a, π)
def
= π ≡ C[L(a)] ∧ a 6∈ bn(π) premises(L(a))

def
= fn(L(a))\a

π n ρ
def
= fn(π) ∩ fn(ρ) = ∅ ∨ (fn(π) ∩ fn(ρ) = a ∧ conclusion(a, π))

π ∝ L(a)
def
= a 6∈ fn(π) ∧ L(a) 6∈ ?-links ∧ b ∈ premises(L(a))⇒ conclusion(b, π)

With conclusion(a, π) we denote that π has a free conclusion a (actually, there
could also be another occurrence of a in π, but this is excluded by other condi-
tions in ≡). With πnρ we denote that either π and ρ are completely independent
(i.e., do not communicate, in which case fn(π) ∩ fn(ρ) = ∅), or that there is a
“splitting” cut on some a between π and ρ, or that some L(a) in π acts as a
premise for some link in ρ (in these two cases fn(π) ∩ fn(ρ) = a). Hence, when
π n ρ holds, π does not depend on ρ. In π ∝ L(a), we require that all premises
of L(a) occur in π as conclusions, so π does not depend on L(a), and that L(a)
is not a ?-link. These conditions, and our rules, are heavily inspired by Girard’s

empires method [21,22]. We delay the explanation of (≡ Splitν,≡ Resν) since
they are best understood in the context of linear typing.

Typing: ` π . Γ Interface: Γ ::= ∅ | Γ, a : A | Γ, a : [A]

` ∼a . a : [A] ` ε . ∅ ` ab . a : A, b : A⊥ (Open, Nil, Ax)

` π . Γ, a : [A] or ` π . Γ, a : [A⊥]

` (νa : A)π . Γ

` π . Γ ` ρ . ∆
` π | ρ . Γ,∆ (New, Mix)

` π . Γ σi is a permutation
` σ1(π) . σ2(Γ)

` π . Γ, a : A ` ρ . ∆, a : A⊥

` π | ρ . Γ,∆, a : [A] (Ex, Cut)

` π . Γ, b : A ` ρ . ∆, c : B
` a(b, c) | π | ρ . Γ,∆, b : [A], c : [B], a : A⊗B ` a . a : 1 (⊗, 1)

` π . Γ, b : A, c : B

` a(b, c) | π . Γ, b : [A], c : [B], a : A`B ` a . a : ⊥ (`, ⊥)

The typing system ensures correctness of proof structures, i.e., it validates
that a process is a proof net. Judgements ` π . Γ denote that term π can be
assigned the interface Γ . Also, with Γ,∆ it is always implied that the domains
of Γ and ∆ must be disjoint. The rules are easy to understand from Linear
Logic (with Mix [21]): the interfaces of (1,⊥,⊗,`,Cut,Ax,Ex,Mix) match the
corresponding sequent rules, if we ignore discharged occurrences a : [A]. These
denote that “a has been used as A,” and are eliminated using (New). Since we
don’t know whether [A] or [A⊥] was recorded for (νa : A) (e.g., since cuts are
symmetric), in (New) we allow either. The introduction of discharged occurrences
takes place through several rules. In (Open), to type the residue ∼a of a cut on
a. In (Cut), to discharge a which is active. In (⊗/`), to discharge a name used
in a suspended cut, i.e., a wiring between a conclusion and a premise. Finally, in
(Ex) we use σ(π) to denote a permutation of any top-level parallel terms.

We now return to the equivalence rules, noting that they are only sound in
the presence of (Mix), by which there is no need for “jump” contexts [22].

(≡ Splitν) The condition a 6∈ fn(ρ) ensures that a does not escape its scope,
and by πnρ we have that π does not depend on ρ, therefore ρmay leave the scope
(νa). For example, (νdb) (cb | ba | y(a, d) | dz) 6≡ (νd)((νb) (cb | ba | dz) | y(a, d)),
since the r.h.s. would be unsound, because (νb) (cb | ba | dz) cannot be sepa-
rated; see type rule (⊗). This is avoided since the separated terms have two
free names in common, so (cb | ba | dz) n y(a, d) does not hold. Similarly,
(νdb) (cb | ba | y(a, d) | dz) 6≡ (νd)((νb) (cb | ba | y(a, d)) | dz), because the axiom
dz, which is needed as premise to y(a, d), would be out of context. Again,
(cb | ba | y(a, d)) n dz does not hold, because d appears as premise on the
left. Still, we allow: (νdb) (cb | ba | y(a, d) | dz) ≡ (νd) ((νb) (cb | ba) | y(a, d) | dz)
because dz remains at the same level as y(a, d), and (cb | ba) n (y(a, d) | dz).
Note that (νxz) (kx | xy | (νa)(ya | az) | zr) ≡3 (νxza) (kx | xy | ya | az | zr),
although the initial context contains two splitting cuts, on y and z. Thus, our
restriction π n ρ is general enough. For the direction of entering the scope, we

must ensure that ρ is not needed outside. For this reason we only apply the rule
within some G[·], here (νd) (·), where the last type rule is unique, so we have an
independent sub-proof: nothing necessary can be left out. Without this restric-
tion, (νb) (cb | ba) | dz | y(a, d) ≡ (νb) (cb | ba | dz) | y(a, d), by applying (≡ Splitν)
on (νb) (cb | ba) | dz, i.e., in C[·] | y(a, d), where (cb | ba) n dz holds. The rule
(≡ Splitν) is extensible with other G[·] contexts, introduced later.

(≡ Resν) By π ∝ L(b), the expelled link is not a ?-link: ⊗-links split contexts;
for units, (νa)(ea | ad) | c(d, b) | b 6≡ (νa)(ea | ad | b) | c(d, b), but if b 6∈ ?-links,
(da | ae) ∝ b. Also by π ∝ L(b), b 6∈ fn(π), for example (νa) (ea | ab | cd | bc) 6≡
(νa) (ea | ab | cd) | bc, since the r.h.s. cannot be typed (bc was “linking” two cuts
in the scope). On the other hand, (νa) (ea | ab | cd | bc) ≡ (νa) (ea | ab | bc) | cd is
sound. If b ∈ fn(π), then under appropriate contexts we may apply (≡ Splitν).
Typically, scopes “swallow” unprotected links such as (`) when both premises
are inside, the case of just one premise in the scope is handled by (≡ Splitν),
and we forbid the case where both premises are outside. For example, with both
premises x, y, of b(x, y) in (νa): (νa) (xa | ay) | b(x, y) ≡ (νa) (xa | ay | b(x, y));
with only x in (νa): (νa) (xa | az) | b(x, y) | yc 6≡ (νa) (xa | az | b(x, y)) | yc; with
both x, y, outside of (νa): (νa)π | b(x, y) | xy) 6≡ (νa) (π | b(x, y)) | xy. In the last
two cases, the r.h.s. is untypable even if the l.h.s. was well-typed. However, using
(≡ Splitν) we allow (νx) ((νa) (xa | az) | b(x, y) | yc) ≡ (νxa) (xa | az | b(x, y) | yc).

As parallel composition is n-ary, to match linear sequents, we shall not worry
with associativity which in general does not hold. It can be recovered with
G[(π1 | π2) | π3] ≡ G[π1 | π2 | π3] ≡ G[π1 | (π2 | π3)] whenever (π1 | π2) n π3

and (π2 | π3)n π1, taking G[·] def
= · · · | (·), i.e., with parentheses in the syntax.

Although there are no prefixes, we can obtain a familiar π-calculus notation:

a(x)·π def
= (νx) (ax | π) a(x, y)·π def

= (νxy) (a(x, y) | π)

We omitted a(x, y)·π which similar to a(x, y)·π. Observe that π{a/x} = a(x)·π,
thus: (π{b/c}){a/b} 2 π{a/c} 2 (νb) (ba | b(c)·π). Using (New) and (Ax,`,⊗):
` π . Γ, x : A

` a(x)·π . Γ, a : A

` π . Γ, x : A, y : B

` a(x, y)·π . Γ, a : A`B

` π . Γ, x : A ρ . ∆, y : B

` a(x, y)·(π | ρ) . Γ,∆, a : A⊗B

Abramsky’s cut rule (see [9]) is similarly derived with an application of (New)
under a (Cut). We can thus encode a linear π-calculus with internal mobility
(the Private π-calculus [38]), enjoying the deadlock-freedom of proof nets.

It is worth noting that the standard presentation of typed π-calculus (includ-
ing sessions [39,26]) employs a rule similar to (`) for both input and output, so
it allows to type: (νa) (a(x, y).x〈y〉 | a〈b, c〉 | c〈b〉)→ b〈c〉 | c〈b〉, which is undesir-
able if b and c are linear, i.e., b〈c〉 | c〈b〉 ∼= 0 but the term’s derivation is not “cut-
free.” In untyped δ-calculus this translates to: (νa) (a(x, y) · xy | a(b, c) | cb) ∗
cc | ∼b, where cc is what is known as a vicious circle in proof nets [22]. Type
rule (⊗) rejects a(b, c) | cb, and such problematic situations never take place.

The Additive Fragment The extension to Multiplicative Additive Linear
Logic (MALL), which allows to define conditionals, is obtained by adding the
following productions. We ignore the units (>/0) which are of little interest [22].

L(a) ::= as before, adding:
al(νc : A)�π + ar(νd : B)�ρ (with ?)

al〈b〉 (plus left)

ar〈b〉 (plus right)

Summations are protected: (νa) (ea | ab | zl(νx) � (bc | x) + zr(νy) � (bc | y) | cd) 6≡
(νa) (ea |ab |cd) | zl(νx)�(bc |x) + zr(νy)�(bc |y), since bc must not leave the scope.

al(νc)�π + ar(νd)�ρ | al〈b〉
a
 π{b/c} (&−⊕1)

al(νc)�π + ar(νd)�ρ | ar〈b〉
a
 ρ{b/d} (&−⊕2)

G[·] ::= · · · | al(νc)�G[·] + ar(νd)�π | al(νc)�π + ar(νd)�G[·]

With additives there is a phenomenon of superposition, as exactly one of
the sides will be chosen, left with al〈b〉 or right with ar〈b〉. An example of the
left case is: al〈b〉 | al(νc) �cz + ar(νd) �ρ

a
 cz{b/c} 2 ∼a | bz. Both summands

are prefixed (proof theoretically: boxed), marking a moment of sequentiality, or
laziness. Once a side is chosen, applying (⊕1 −&), the bound name c is extruded
and wired to b, becoming a scope (νc) (bc | cz) which is abbreviated as before
to cz{b/c}. The other side, ar(νd) �ρ, vanishes, which is why additives are the
natural choice for if-then-else constructs, or objects as summations of methods.

(νb) (al(νx)�π1 + ar(νy)�π2) ≡ al(νx)�(νb)π1 + ar(νy)�(νb)π2 (≡ ν&)

al(νx)�(bl(νc)�π1 + br(νd)�π2) + ar(νy)�(bl(νc)�π3 + br(νd)�π4) (≡ &&)
≡ bl(νc)�(al(νx)�π1 + ar(νy)�π3) + br(νd)�(al(νx)�π2 + ar(νy)�π4)

G[al(νx)�(π1 | ρ) + ar(νy)�(π2 | ρ)] (≡ Split&)
≡ G[al(νx)�π1 + ar(νy)�π2 | ρ] a, x, y 6∈ fn(ρ) πi n ρ

al(νx)�(π1 | L(b)) + ar(νy)�(π2 | L(b)) (≡ Res&)
≡ al(νx)�π1 + ar(νy)�π2 | L(b) a, x, y 6∈ fn(L(b)) πi ∝ L(b)

As before, the new contexts G[·] define complete sub-proofs, facilitating safe
commutations; see (&). With (≡ &&) we capture the commutation (&)-(&) of
Linear Logic. Using (≡ Split&) with G[·] = (νc)(·) and ρ = yc, then (≡ ν&):

(al(νb)�bc+ar(νd)�dc){y/c}≡al(νb)�bc{y/c}+ar(νd)�dc{y/c} 4al(νb)�by+ar(νd)�dy

For correctness, anything that enters these boxes is duplicated, which is not
efficient but it’s needed for cut-elimination, even if in a practical language it
would be applied selectively. A possible utility is for speculative execution, by
reducing under both terms of a summation using terms from the outside, even
if half will eventually be thrown away. This is not unreasonable in a parallel
world. Another feasible optimisation is to reduce all multiplicative cuts during
compilation, eliminating some of the the indirections that arise from linking,
since the ⊗/` fragment normalises in a polynomial number of steps [21].

The additional typing rules match the corresponding logical rules:
` π . Γ, b : A ` ρ . Γ, d : B

` al(νb : A)�π + ar(νd : B)�ρ . Γ, a : A&B
(&)

` π . Γ, b : A

` al〈b〉 | π . Γ, b : [A], a : A⊕B
` π . Γ, c : B

` ar〈c〉 | π . Γ, c : [B], a : A⊕B (⊕1,2)

The Exponential Fragment The exponential links are responsible for the
expressive power of Linear Logic and embody stored terms, !a(νc)�π, and the op-
erations of dereliction (to use or dereference) ?a(b), contraction (to copy) ?a(b@c),
and weakening (to delete) ?a(∗). Stored terms resemble π-calculus replication,
and in fact inspired the familiar notation !P [32].

L(a) ::= as before, adding:
!a(νc : A)�π (stored term ?) ?a(b@c) (contraction)
?a(b) (dereliction) ?a(∗) (weakening ?)

We extend the reductions writing
−−−→
?e(∗) to mean ?e1(∗) | · · · | ?en(∗), similarly

for ?
−−−−→
e(x@y), and c~e for the set {c, e1, . . . , en}. Taking fn(π) = c~e:

?a(b) | !a(νc)�π a
 π{b/c} (?D− !)

?a(∗) | !a(νc)�π a

−−−→
?e(∗) (?W − !)

G[·] ::= · · · | !a(νc)�G[·]

?a(b@c) | ?b(∗) b
 ac (?C− ?W [28])

(ν~e : ~A) (?a(b@d) | !a(νc)�π | ρ) (?C− !)
a
 (ν~e : ~A)(ν~x : ~A)(ν~y : ~A)

(
?
−−−−→
e(x@y)

∣∣∣ !b(νc)�π{~x/~e} ∣∣∣ !d(νc)�π{~y/~e} ∣∣∣ ρ)
Using dereliction, (?D− !), we have: ?a(b) | !a(νc)�π ∼a | (νc) (bc | π). The
stored term opens into a scope, extruding (νc) to encompass b, so that bc can be
wired, providing access to π; thus the exponential becomes linear. Now consider
a weakening reduction, using (?W − !):

?a(∗) | !a(νb)�
(
?c(∗) | (νx) (?d(x) | x)

)
| !c . . . | !d . . . ∼a | ?c(∗) | ?d(∗) | !c . . . | !d . . .

In order to preserve linearity, i.e., that names are used exactly once, !c . . . and
!d . . . must be also deleted. When there are no dependencies, i.e., free names, the
term is simply deleted: ?a(∗) | !a(νx)�x ∼a. The rule (?C− ?W) is by Kesner
and Lengrand [28], and constitutes a nice optimisation: if a is copied as b and c,
but b is to be deleted, we can avoid the potentially expensive copy and directly
link a and c. By ≡, the same can be done for the symmetric case of c deleted.

Copying is implemented with (?C− !): from !a(νc)�π we obtain !b(νc)�π{~x/~e}
and !d(νc) � π{~y/~e}. For each of the free names ~e of π, we add contractions
?e1(x1@y1) | · · · |?en(xn@yn), with each xi appearing in !b . . ., and each yi in !d . . .,
since the same ei cannot appear in both. We resort to a contextual rule, since
(ν~e : ~A) recovers the types for ~x and ~y. This is also necessary in an interpretation
without (Mix); otherwise, in a type-free reduction the context can be removed.

(νx) (!a(νb)�π | !x(νd)�ρ) ≡ !a(νb)�(νx)(π | !x(νd)�ρ) (≡ ν!)
b 6∈ fn(ρ) conclusion(x, π)

(νy) (!a(νb)�π | ?x(y)) ≡ !a(νb)�(νy)(π | ?x(y)) π ≡ C[?y(−)] y 6∈ bn(π) (≡ ?D!)
(νyz) (!a(νb)�π | ?x(y@z)) ≡ !a(νb)�(νyz)(π | ?x(y@z)) (≡ ?C!)

G[!a(νb)�π | ?x(∗)] ≡ G[!a(νb)�(π | ?x(∗))] (≡ ?W!)
?x(y@z) ≡ ?x(z@y) ?a(b@c) | ?b(d@e) ≡ ?a(b@e) | ?b(d@c) (≡ ?CM, ≡ ?AS)

The rules (≡ ?C!,≡ ?CM,≡ ?AS) are adapted from the AC Congruence of Di
Cosmo and Guerrini [13]: (≡ ?C!) captures the commutation of contraction and

promotion, and (≡ ?CM,≡ ?AS) turn contraction into a commutative-associative
operation. The right-to-left direction of (≡ ?W!) is based on a contraction rule
by Kesner and Lengrand [28], but here we make it symmetric and also place it
under a context G which guarantees that ?x(∗) is not needed outside the box,
e.g., as premise to some link; (≡ ?C!) needs (νyz), from which we also have
y, z ∈ fn(π), and similarly for y in (≡ ?D!). Note that in (≡ ?D!,≡ ?C!,≡ ?W!),
we have x 6∈ fn(π) by typing: on the left the term would be untypable, and on the
right some x : [A] would appear in the interface, which is forbidden in (P). Rule
(≡ ?D!) is our contribution, and allows a dereliction to cross a box boundary as
long as its premise is also a ?-link; the condition y 6∈ bn(π) is needed as we do
not assume the variable convention. It is easy to see why this rule is sound, as
in this special case promotion (P) and dereliction (D) commute:

?x(y) | ?y(−) induces x : ??B

` ?Γ, ?B,A

` ?Γ, ??B,A
(D)

` ?Γ, ??B, !A
(P)

` ?Γ, ?B,A

` ?Γ, ?B, !A
(P)

` ?Γ, ??B, !A
(D)

Above, ?y(−) stands for any ?-link. The equivalence (≡ ν!), whose left-to-right
direction is standard from proof nets [21], brings one box into another, enabling
a cut on x even if !a . . . is never opened. If x appears in π as premise then the
right-to-left direction is unsound, so we require that x is a conclusion in π.

` π . ?Γ, b : A

` !a(νb : A)�π . ?Γ, a : !A

` π . Γ, b : A

` ?a(b) | π . Γ, b : [A], a : ?A
(P, D)

` π . Γ, b : ?A, c : ?A

` ?a(b@c) | π . Γ, b : [?A], c : [?A], a : ?A ` ?a(∗) . a : ?A (C, W)

When typing a term that can be copied (resp. deleted) using the promotion
rule (P), it must only refer to other such terms, which are copied (resp. deleted)
accordingly during reduction. This is ensured by typing under ?Γ , meaning that
all elements of Γ are of the form a : ?A. The weakening rule (W) needs no context
as it has no premise and by the use of (Mix) it needs no default jump [22].
Stored terms are protected: e.g., in (νa)(ra |ab | !e(νz)�(νxy)(z(x, y) |xb |yc) |cd) 6≡
(νa)(ra | ab | cd) | !e(νz)�(νxy)(z(x, y) |xb | yc) the r.h.s. is incorrect. Also, ?a(∗) is
protected, like the units, because it has no premise to guide ≡.

The Second-Order Fragment Second-order features are responsible for con-
siderable expressive power, and (in combination with exponentials) allow to de-
fine polymorphic data types and primitive recursion.

π, ρ ::= as before, adding:
(νX)π (type variable scope)
X=B (type alias)

L(a) ::= as before, adding:
a[X, b] (forall)
a[B, b] (exists)

The logical connectives are forall: a[X, b] and exists: a[B, b]. Type substitution is
defined in the usual way: A[B/X] stands for A with B for X, and B⊥ for X⊥ [21],

and can also be applied to terms with π[B/X], substituting all free occurrences
of X in type annotations and aliases. The type variable X is bound in (νX)π.

a[X, b] | a[B, c] a
 X=B | bc (∀ − ∃)

(νX) (X=B | π) π[B/X] (∼X=)
G[·] ::= · · · | (νX)G[·]

The reduction (∀ − ∃) releases a type alias X=B, which may cross the bound-
ary of names by ≡. Eventually, X=B may reach the binder of X and disappear
with (∼X=), effecting the type substitution. There is an alternative, very eli-
gible possibility for this fragment. Forget about type aliases X=B and the rule
(∼X=), and define (∀ − ∃)′ as: (νXa) (C[a[X, b] | a[B, c]]) C[bc][B/X], assum-
ing a is not bound in C. Like (∼X=), (∀ − ∃)′ can increase the size of a term
drastically, since B can substitute multiple occurrences of X, and it may contain
free type variables which proliferate and cause size explosion after iterated sub-
stitutions. This is undesirable, especially in light variations of proof nets (see [6])
where reduction must respect tight bounds. However, unlike (∀ − ∃)′, the rule
(∼X=) can be delayed, or even ignored (reduction modulo), because the alias is
enough for typing. In implementations the types may be erased, which works fine:
erase(a[X, b])) = erase(a[B, b]) = ab. In that case, instances of (∀ − ∃) become
axiom cuts. The presence of bound type variables induces new equivalences:

(νX)(νY)π ≡ (νY)(νX)π (≡ XX)
(νa : A)(νX)π ≡ (νX)(νa : A)π X 6∈ ftv(A) (≡ νX)

(νX) (al(νx : A)�π1 + ar(νy : B)�π2) (≡ X&)
≡ al(νx : A)�(νX)π1 + ar(νy : B)�(νX)π2 X 6∈ ftv(A,B)

G[(νX) (π | ρ)] ≡ G[(νX)π | ρ] X 6∈ ftv(ρ) π n ρ (≡ Split X)
(νX) (π | L(b)) ≡ (νX)π | L(b) X 6∈ ftv(L(b)) π ∝ L(b) (≡ Res X)

Typing is extended with (∀,∃) rules and the bookkeeping (NewX, SubX1, SubX2).

` π . Γ, b : A

` a[X, b] | π . Γ,X, b : [A], a : ∀X.A

` π . Γ, b : A[B/X]

` a[B, b] | π . Γ, b : [A[B/X]], a : ∃X.A
(∀, ∃)

` π . Γ,X X 6∈ ftv(Γ)

` (νX)π . Γ

` π[B/X] . Γ [B/X]

` X=B | π . Γ,X ` X=B . X
(NewX, SubX1/2)

(SubX2) is needed for (νX)X=B, and (SubX1) is for when a type has been in-
stantiated with an alias, but no substitution has taken place, as below:

` bc . b : B⊥, c : B
(Ax)

` a(b, c) | bc . a : B⊥`B, b : [B⊥], c : [B]
(`)

` X=B | a(b, c) | bc . a : B⊥`B, b : [X⊥], c : [X],X
(SubX2)

` (νX)(νb : X)(νc : X⊥) (X=B | a(b, c) | bc) . a : B⊥`B
(New,NewX)

The above is in fact a reduct of the translation J(ΛX.λxX.x)BKa; see Section 5.
Similarly, we can obtain ` (νX)((νb : X)(νc : X⊥) (a(b, c) | bc) | X=B) . a : B⊥`B.

The Interpretation of Affine Logic The &-links induce boxes (i.e., prefixes),
which are useful as a lazy feature but ultimately impede parallelism. Proof-
theoretically, this constitutes a defect of proof nets, which are meant to abstract
the bureaucratic commutations that belong in the sequent world, however the ex-
isting solutions for removing boxes [22,27], albeit ingenious, are too complicated
for our purposes. Affine Linear Logic [6] solves this problem by cutting the knot:
it allows unrestricted weakening, so anything can be discarded, which leads to
multiplicative encodings of &-links since it now holds that ` (A⊗B)((A&B).
We add a deletion ?-link a(∗) (cf. weakening link of Affine proof nets [6]; ε-link
of Interaction Nets [29]), typed with (AW). (W) and ?a(∗) are removed.

` a(∗) . a : A (AW)

` π . Γ

` π . Γ,X
(XW)

a(∗) | L(a)
a

−−→
b(∗) fn(L(a)) = a~b (AW − Link)

(νX)π π X 6∈ ftv(π) (∼AX=)

Deletion eliminates anything it cuts with, and propagates, preserving typabil-
ity. For example, a(∗) | a(∗) ∼a. As another example, a(∗) | a(b, c) | π | ρ
b(∗) | c(∗) | ∼a | π | ρ. Assume that a(b, c) is typed with π in the left premise
and ρ in the right; then the contractum is typed with (Open), (Mix), and two
instances of (Cut) for π | b(∗) and ρ | c(∗), respectively.

Conditionals can be encoded reasonably with multiplicatives, e.g., instead of
ar〈y〉 | π, we may write a(x, y) | x(∗) | π which will delete whatever is linked to x.
In order to simulate the superposition in (&), we may use contractions to obtain
?Γ1 and ?Γ2 from some ?Γ ; this is not the same as sharing some (possibly linear)
Γ in the two sides of (&), but it works. Thus, there is a trade-off: more parallelism
at the cost of duplication of resources when choice is encoded, but perhaps with
careful stratification in the ordering of reductions (delay of contractions, priority
to deletions), the effects can be minimised.

Complications arise with affinity and second-order features. For example,
with a[X, b] | a(∗) ∼a | b(∗), there is no X=B in the contractum, and typing
would fail without (XW). For the same reason, we added (∼AX=).

3 Fixpoint Constructions and Recursive Linear Types

We introduce replicated stored terms that are as before, but contain a self-
reference (exactly one for well-typed terms). Taking fn(π) = ac~e:

?a(b) | !a(νc)�π ?
−−−−→
e(x@y)·(π{b~x/c~e} | !a(νc)�π{~y/~e}) (?D− µ!)

?a(∗) | !a(νc)�π a

−−−→
?e(∗) (?W − µ!)

(ν~e : ~A) (?a(b@d) | !a(νc)�π | ρ) (?C− µ!)
a
 (ν~e : ~A)(ν~x : ~A)(ν~y : ~A)

(
?
−−−−→
e(x@y)

∣∣∣ !b(νc)�π{b~x/a~e} ∣∣∣ !d(νc)�π{d~y/a~e} ∣∣∣ ρ)
Dereliction, (?D− µ!), replicates the stored term, inducing a linear unfolding,
which resembles the π-calculus equation !P ≡ P | !P . It follows that (νa) is only
deallocated by weakening and contraction (vs. a

).

Without any modification of types, we can replace promotion (P) with (recP):

Typing (for disambiguation): ` π .µ Γ
` π .µ ?Γ, a : ?A⊥, b : A

` !a(νb : A)�π .µ ?Γ, a : !A
(recP)

In (recP), the (free) name a appears in π with a type that allows to perform a
cut with (the copy of) !a . . .; now names may appear three times, but only one
pair forms a cut at any moment. This kind of rule appears in the Polarised proof
nets of Montelatici [33] but is not associated to exponentials, and in the linear
λ-calculus Lily of Bierman et al. [10] where a similar approach to ours is taken
(self-referencing !-terms), but in an intuitionistic setting.

The standard exponentials can be simulated, since the (unfolded) copy can
be deleted after the box is opened for the first time: !a(νx)�(?a(∗) | π). However,
this comes at the cost of some useless copying, so it’s not efficient. This extension
integrates very well with the standard system, as a new execution device [21].

Recursive Types The previous solution is not perfect: once opened, repli-
cated exponentials can only be internally reused but not returned. For example,
!a(νx : 1⊗ !A)�x(y, z)·(y | za) is not typable, as can be easily verified. In order
to type such terms, reminiscent of objects with methods that return self [1], we
introduce an original form of recursive linear types. Conveniently, the syntax of
terms and the reduction relation need not change. Interfaces and types remain
the same except that !A and ?A are replaced by:

A,B,C ::= · · | X | !X .A | ?X .A , (!X .A)⊥ def
= ?X .A⊥ (?X .A)⊥ def

= !X .A⊥ X⊥ def
= X

First, X is bound in !X .A and ?X .A. Moreover, there is no effective negation for
X (in contrast to X), as it induces nonsensical dualities such as (!X .A⊗X)⊥ def

=
?X .A⊥`X⊥. Type !X .A⊗X would unfold to A⊗ (!X .A⊗X) and ?X .A⊥`X⊥
to A⊥ ` (!X .A ⊗ X), due to the negative occurrence X⊥, so the types would
not be dual any more. Also, we shall assume that recursive types are always
guarded, which means that every occurrence of a type variable is separated by
its binder by at least one non-recursive constructor, e.g., !X .?Y.X is not guarded,
but !X .A⊗X is. The isomorphism !X .(A&B) ≡ !X .A⊗ !X .B does not hold; in
fact the definability of one side does not imply that of the other, e.g., !X .(1&X)
is well-formed but !X .1⊗ !X .X is clearly not, as !X .X is not guarded.

Our formulation follows the iso-recursive approach, with folding performed
in promotion and dereliction, and (simultaneous) unfolding effected with every
cut as it connects the premises. The rules follow, recalling that there are no
negative occurrences of X , since X⊥ is by definition equal to X , so unfolding
substitutions have the intended effect. We omit the obvious (µW,µC).

` π .µ ?Γ, a : ?X .A⊥, b : A[!X .A/X]
` !a(νb : A[!X .A/X])�π .µ ?Γ, a : !X .A

` π .µ Γ, b : A[?X .A/X]
` ?a(b) | π .µ Γ, b : [A[?X .A/X]], a : ?X .A

(νP, µD)

When diverging terms can be defined, the system may be logically inconsistent,
but we could introduce the recursive types in the language without replicated
terms, and we conjecture that this preserves strong normalisation: all terms of
recursive type will necessarily be finite approximations; see Baelde’s work [7].

4 Soundness, Propositions-as-Types, and Progress

Due to space limitations, proofs are delegated to online appendices. Sound-
ness (Theorem 1) holds for both the Linear/Affine Logic interpretations and
for the recursive extension. With recursion, Static Correspondence (Theorem 2)
becomes irrelevant, and Cut-elimination (Theorem 3) does not hold, but we ob-
tain the weaker property of Cut-Progress (Theorem 4). To avoid confusion, we
write ` π .? Γ to indicate that a theorem holds for both ` π . Γ and ` π .µ Γ .

Theorem 1 (Soundness of ≡,). (a) If ` π .? Γ and π ≡ ρ then ` ρ .? Γ
(b) If ` π .? Γ and π ρ then ` ρ .? Γ

Proof. By induction on the typing, and case analysis on the last rule applied.
The absence of substitution is a simplifying factor, however, the presence of
non-splitting links [21] — and note that in proof nets, cuts are actual links
that we could denote with cut(b, c) — means that the last rule in a derivation
cannot always be (Cut). For example, in the following the only reduction is a cut
xa | ay a

 xy but the last rule cannot be (Cut), so the cut on a is non-splitting.

` xa . x : A⊥, a : A (Ax) ` ay . a : A⊥, y : A (Ax)

` xa | ay . x : A⊥, y : A, a : [A] (Cut)

` z(x, y) | xa | ay . z : A⊥ `A, x : [A⊥], y : [A], a : [A]
(`)

Similar situations arise with non-splitting instances of (⊗). Our proof utilises
several auxiliary definitions and lemmas that allow to conclude that there is an
eventual subderivation with (Cut) even if it is not the last rule applied, without
having to consider cases for each type rule within each case of (same for ≡).

Let ` Γ denote a proof in Linear Sequent Calculus. The function L · M takes
an interface Γ and returns the corresponding multiset of formulas Γ , omitting
discharged occurrences, e.g., La : A⊗B, c : [B], b : CM = A⊗B,C. Then:

Theorem 2 (Static Correspondence). (a) If ` π . Γ then ` LΓ M; and (b) if
` Γ then there exists π and Γ such that ` π . Γ and LΓ M = Γ .

Proof. For part (a), we proceed by induction. For (b), we construct the δ-term
(hence a proof net) that corresponds to a sequent proof Π of Γ , by induction,
as in Theorem 2.7 of the original article on Linear Logic [21].

Definition 1 (Cut-closed Typing). An interface Γ is cut-closed when it does
not contain discharged types or type variables, i.e., Γ = {ai : Ai | i ∈ I} where
each Ai is a closed type. Let ` π .c Γ mean that ` π . Γ can be derived s.t. Γ
is cut-closed, and similarly, let ` π .cµ Γ when ` π .µ Γ s.t. Γ is cut-closed.

Theorem 3 (Cut-Elimination). If ` π .c Γ , then there exists ρ s.t. ` ρ .c Γ ,
π ∗ ρ, and there are no links in ρ (pairwise) sharing the same name as their
conclusion (hence, there is no reducible cut in ρ). This is equivalent to stating
that ` ρ .c Γ is obtained without using the (Cut) rule.

Proof. A complete proof of strong normalisation (sN) is beyond the scope of
this work, but we can be confident since reduction is modelled precisely as cut-
elimination in proof nets, and the equivalence ≡ subsumes commutative con-
tractions, i.e., it allows links that may react to be brought at the same level.
Crucially, interfaces must be cut-closed: for every nested cut there is an outer
scope (providing G[·]) to drive ≡ using (≡ Split_) rules. Moreover, in this case
(≡ Res_) are only needed for `-links; other cases are subsumed by (≡ Split_).

For the system with recursion, we obtain a guarantee that cuts can always
be effected even if it may be impossible to speak of cut-elimination.

Theorem 4 (Cut-Progress). If ` π .cµ Γ and π 6 , then there are no links
sharing the same name as their conclusion in π, except of the form !a(νc : A)�ρ
with some L(a) in ρ. Equivalently, in the typing derivations of irreducible terms,
only these lazy self-references may induce uses of (Cut) (i.e., within ` ρ .µ ∆).

An open question We suspect that, with G[·] def
= · · · | (·), reduction mod-

ulo ≡ is confluent, since normal forms that differ in the nesting structure of
boxes, scopes, and parentheses can be equated. For example, with (≡ Splitν),
((νbc)(a(b, c) | bc | e)) ≡ ((νbc)(a(b, c) | bc) | e), knowing that (·) contains an
independent sub-proof. For boxes, the result is suggested by the inclusion of
(≡ ?C!,≡ ?CM,≡ ?AS) from Di Cosmo and Guerrini [13], and for the system
with additives with our proposal of rule (≡ &&); see Pagani and de Falco [35].

5 Parallel Translation of Polymorphic Functions

As an application, we define λ2δ , a linear variation of System F [24], and provide
a sound, type-preserving translation to δ-calculus. This is of high interest since
it allows to combine functional and process notations in the same programs (or
proofs), and ultimately, to inform the compilation of functions into the highly
parallel δ-calculus. The syntax is as follows, where p denotes argument patterns:

t, u ::= x | λp.t | t u | 〈t, u〉 | !t | ΛX.t | tB

p ::= xA | 〈x〉Al | 〈x〉Ar | !xA | x@yA | ∗ | () let p = u in t
def
= (λp.t)u

The notation is an obvious adaptation of δ-calculus, with a unit value (). We
mostly omit type annotations, and do not consider multiplicative pairs, since
A(B (C

iso
= (A⊗B)(C. Reduction applies in any context C [18].

(λ().t) ()→β t (λx.t)u→β t[u/x] (ΛX.t)B →β t[B/X]

(λ〈x〉l.t) 〈u1, u2〉 →β t[u1/x] (λ〈x〉r.t) 〈u1, u2〉 →β t[u2/x] (λ!x.t) !u→β t[u/x]

(λ∗.t) !u→β (λ∗.(· · · (λ∗.t)x1 · · ·))xn with fv(u) = x1, . . . , xn

(λx@y.t) !u→β (λmn@kn.(· · · (λm1@k1.t[!u1/x][!u2/y]) z1 · · ·)) zn
with fv(u) = ~z (= z1, . . . , zn) u1 = u[~m/~z] u2 = u[~k/~z]

The exponential rules correspond closely to the reductions at the proof net/δ-
calculus level. For example, (λ∗ .t) !u induces weakenings for the free variables

of !u; similar exponential rules appear in λlxr, by Kesner and Lengrand [28]. In
contraction, the type annotations of λmi@ki can be recovered from the bindings
of zi on the surrounding context C (omitted here for brevity), as in δ-calculus.

Our original classical typing system for λ2δ is established on one-sided sequents
of the form ` [t]a . Γ such that a 6∈ fv(t), where [·]a is the focus, playing the
role of the distinguished conclusion in intuitionistic typing. Interfaces and types
remain as in δ-calculus, except for discharged conclusions which are not needed.
For brevity, we do not show type annotations, and we freely use: A(B

def
= A⊥̀ B.

` [x]a . x : A, a : A⊥
` [t]b . Γ, b : A(B ` [u]c . ∆, c : A

` [t u]a . Γ,∆, a : B
(Ax, Cut)

` [t]b . Γ, x : A⊥, b : B

` [λx.t]a . Γ, a : A(B

` [t]b . Γ, b : A ` [u]c . Γ, c : B

` [〈t, u〉]a . Γ, a : A&B
(`, &)

` [t]b . Γ, y : B⊥, b : C

` [λ〈y〉l.t]a . Γ, a : (A&B)(C

` [t]b . Γ, x : A⊥, b : C

` [λ〈x〉r.t]a . Γ, a : (A&B)(C
(⊕1,2)

` [t]b . Γ, x : A⊥, b : B

` [λ!x.t]a . Γ, a : (!A)(B

` [t]b . Γ, b : B

` [λ∗.t]a . Γ, a : (!A)(B
(D, W)

` [t]b . Γ, x : ?A⊥, y : ?A⊥, b : B

` [λx@y.t]a . Γ, a : (!A)(B

` [t]b . ?Γ, b : A

` [!t]a . ?Γ, a : !A
(C, P)

` [t]b . ?Γ, b : A

` [λ().t]a . ?Γ, a : 1(A ` [()]a . a : 1
(⊥, 1)

` [t]b . Γ, b : A X 6∈ ftv(Γ)

` [ΛX.t]a . Γ, a : ∀X.A

` [t]b . Γ, b : ∀X.A

` [tB]a . Γ, a : A[B/X]
(∀I, ∀E)

An example is ` [λ!x.x]a . a : !A (A. Observe that !x always induces
` [!x]a . x : ?A⊥, a : !!A, so ` [λx.!x]a . a : !A(!!A; this is called digging.

The located translation J·Ka from λ2δ to δ is defined ignoring types, which can
be recovered easily if we record the type of the location; also, in JtKa, a 6∈ fv(t).

JxKa = xa J()Ka = a J!tKa = !a(νc)�JtKc Jt uKa = (νbcd) (JtKb | b(c, d) | da | JuKc)

Jλ().tKa = (νxb) (a(x, b) | x | JtKb) Jλx.tKa = (νxb) (a(x, b) | JtKb)
Jλ〈x〉l.tKa = (νxbz) (a(z, b) | zl〈x〉 | JtKb) J〈t, u〉Ka = al(νb)�JtKb + ar(νc)�JuKc
Jλ〈x〉r.tKa = (νxbz) (a(z, b) | zr〈x〉 | JtKb) Jλ∗.tKa = (νzb) (a(z, b) | ?z(∗) | JtKb)
Jλx@y.tKa = (νxyzb) (a(z, b) | ?z(x@y) | JtKb) Jλ!x.tKa = (νxyb) (a(y, b) | ?y(x) | JtKb)

JΛX.tKa = (νX)(νb) (a[X, b] | JtKb) JtBKa = (νbc) (JtKb | b[B, c] | ca)

The translation is remarkably parallel, e.g., in Jλp.tKa, JtKb is not prefixed,
with the exception of J〈u, t〉Ka and J!tKa, but this is exactly when laziness is useful.
For example, Jλx.!xKa = (νxb) (a(x, b) | J!xKb) and J(λx.x) yKa ∗ JyKa. Translations
of normal forms may be reducible: Jx yKa 2 (νcd) (yc | x(c, d) | da). It is easy to
verify that both ` [x y]a . Γ and ` (νcd) (yc | x(c, d) | da) . Γ , where Γ = x : A⊗
B⊥, y : A⊥, a : B. Similarly, (λx@y.t) z 6→β but J(λx@y.t) zKa ∗ (νxy)(?z(x@y) |JtKa),
and JtKa may reduce further. (We used the proposition JtKc |ca

c
 JtKa, which is

trivial by induction on t.) As a last example: (λx@y.t) !z →∗β (λz1@z2.t[!z1, !z2/x, y]) z

and we obtain J(λx@y.t) !zKa ∗ (νxyz1z2)(?z(z1@z2) | J!z1Kx | J!z2Ky | JtKa).

Recursion The syntax is extended with the new term fixxA t. The main novelty
of reduction is an unfolding dereliction, where u1 is obtained from fix y u.

fv(u) \ y = ~z (= z1, . . . , zn) (λ∗.t) fix y u→β (λ∗.(· · · (λ∗.t) z1 · · ·)) zn

(λ!x.t) fix y u→β (λmn@kn.(· · · (λm1@k1.t[u1/x]) z1 · · ·)) zn
with u2 = u[~k/~z] u1 = u[~m/~z][fix y u2/y]

(λx@y.t) fix y u→β (λmn@kn.(· · · (λm1@k1.t[fix y u1/x][fix y u2/y]) z1 · · ·)) zn
with u1 = u[~m/~z] u2 = u[~k/~z]

The system can be adapted as before, both with and without recursive types,
omitting (µλW,µλC) which are trivial adaptations of (W,C):

Translation: Jfixx tKa = !a(νb)�Jt[a/x]Kb
Below: (νλP,µλD)

` [t]b .µ ?Γ, x : ?A⊥, b : A

` [fixx t]a .µ ?Γ, a : !A
(recλP)

` [t]b .µ ?Γ, x : ?X .A⊥, b : A[!X .A/X]
` [fixx t]a .µ ?Γ, a : !X .A

` [t]b .µ Γ, x : A⊥[?X .A⊥/X], b : B
` [λ!x.t]a .µ Γ, a : (!X .A)(B

Theorem 5 (Subject Reduction). If ` [t]a . Γ and t→β u then ` [u]a . Γ .

Theorem 6 (Correctness of J · Ka). If ` [t]a . Γ, then ` JtKa . Γ .

Theorem 7 (Soundness of J · Ka). If ` [t]a . Γ and t→β u then JtKa ∗ JuKa.

Proof (Outline). From JtKa[B/X] = Jt[B/X]Ka, we obtain J(ΛX.t)BKa ∗ Jt[B/X]Ka.
Another typical case is: J(λx.t)uKa ∗ (νx) (JuKx | JtKa) ∗ Jt[u/x]Ka, where JuKx
resembles an explicit substitution. The second sequence follows by induction on
t, cases on the occurrence of x, (≡ Splitν) to restrict the scope of x, then J · Ka.

Example 1 We can define lists of type ListA, adapting System F idioms [24]:

ListA
def
= ∀X.!(A(X(X)(X(X nil

def
= ΛX.λx!(A(X(X).λyX.let ∗ = x in y

cons u t
def
= ΛX.λx!(A(X(X).λyX.let x1@x2 = x in (let !x3 = x1 in x3 u (tXx2 y))

(u1, u2)
def
= ΛX.λx!(A(X(X).λyX.let x1@x2 = x in (let !x3 = x1 in x3 u1 (x2 u2 y))

A 2-element list: (u1, u2) (ListA) cons nil →∗β cons u1 (cons u2 nil)

The cons function is copied (see x1@x2) and one copy (x1) is derelicted (see !x3) to
build the inductive list with self-application. For ` [ui]bi .Γi, bi : A, we can obtain
` [consu1 (consu2nil)]a .Γ1, Γ2, a : ListA. The translations to δ-calculus are typed
with the same interfaces, by Theorem 6, and are sound, by Theorem 7. It is an
easy (albeit tedious) exercise to verify that Jconsu1(consu2nil)Ka contains no !/&-
links, hence is completely parallel. Details are omitted due to space limitations.

Example 2 Let Ω def
= fix y (λ().let !z = y in z ()). Then let !z = Ω in z () →β

(λ().let !z = Ω inz ()) ()→β let !z = Ω inz ()→β · · · , and ` [Ω]a .µ a : !X .1(X .
Similarly, ` [let !z = Ω in z ()]b .µ b : !X .1(X . JΩKa is left as an easy exercise.

Related work A System F encoding into Proof Nets has already been outlined
in [21], using the graphical syntax. Abramsky [2] was the first to define a linear
λ-calculus with explicit syntax for exponentials, but its big-step reduction does
not directly match proof nets. The first-order languages closest to λ2δ are the
linear λ-calculus of Ohta and Hasegawa [34], which uses explicit operators for
exponentials, and λlxr of Kesner and Lengrand [28], that uses explicit substi-
tutions and is sound and complete for the intuitionistic fragment of proof nets.
The correspondence of λlxr is stronger than our own, since explicit substitutions
allow a finer decomposition of β-reduction that enjoys completeness wrt proof
net contractions [21]. Nevertheless, we believe that λlxr has a direct translation
to δ-calculus enjoying the same properties, and in particular we expect that the
commuting conversions of λlxr would arise naturally from ≡. For linear λ-calculi
with recursion see Bierman et al. [10] and Alves et al. [4]. Toninho et al. [40]
translated λ-calculus into πDILL [11] (which we discuss in related work). Wadler
translated CP [41] into a functional language with session types, where expo-
nentials are restricted to function types (stable functions). In both [40,41] the
translations are less parallel due to prefixes, e.g., in [41], 〈〈λx.t〉〉a = a(x).〈〈t〉〉a.

6 Related Work and Conclusions

Abramsky [2] was the first to study the relationship between Linear Logic and
processes, in the parallel language of proof expressions (PE). In this original in-
terpretation the syntax is not π-calculus, and the constructs are close to proof
net links, but the logical relationship is not as strong as in δ-calculus. For exam-
ple, there are no commutative contractions, so reduction evaluates to canonical
(i.e., lazy) and not normal forms, from which it follows that it does not enjoy
cut-elimination, but the weaker property of convergence. Also, there is no scope
restriction and therefore no bound names. Axioms are interpreted as variables,
which explains why substitution is needed in PE, via rule (Cleanup), but not
in δ-calculus. In PE there are explicit cut-links (co-equations) t⊥u, where t, u
are terms. A tensor link a(b, c) is written as a⊥(b ⊗ c), and can interact with
a⊥(x`y) resulting in b⊗c⊥x`y and then b⊥x, c⊥y. The ⊕-link a⊥inl(t) defines
a prefix on t, but in δ-calculus it maps to al〈b〉 | Jb⊥tK, which is more parallel.

Bellin and Scott [9] studied a π-calculus translation of linear proofs, de-
fined in unpublished lectures by Abramsky; in fact, Milner had also obtained a
similar translation, albeit never published [3]. In this interpretation each con-
nective translates to a composition of binding, sequencing, and input (resp.
output). For instance, a sequent proof with a ⊗-conclusion maps to a term
(νxy) a〈x, y〉.(P | Q), one with a`-conclusion becomes a(x, y).P , and axioms are
forwarders, a(x).b〈x〉. Therefore, it represents a regression wrt parallelism due
to π-calculus sequentiality and non-local substitution. Still, Abramsky’s transla-
tion identified a canonical process-algebraic correlate for the symmetric cut, in
the form of parallel composition under name restriction. The exponentials were
given a complicated encoding using summation, which indicates that typing with
Linear Logic would be problematic, as summation would also map to the &-rule.

Recently, Honda and Laurent formalised a close correspondence between Po-
larised Proof Nets and π-calculus [25]. However, the variety of proof nets that
they used consist solely of exponentials and the type system is not Linear Logic.
Nevertheless, they illuminate the relationship with the non-deterministic be-
haviours of π-calculus, which may inform extensions of δ-calculus. Ehrhard and
Laurent [17] presented a very close correspondence between the Acyclic Solos cal-
culus and the Differential Interaction Nets of Ehrhard and Regnier [16], which
is not typed with Linear Logic, but shares with δ-calculus the notion of binary
actions (solos) corresponding to the multiplicative links; however, it does not
cover additive, exponential, and quantification connectives. In preliminary work
by Laneve, Parrow, and Victor [30], Solo diagrams were briefly shown to be
related to untyped, multiplicative proof nets. Indeed, at this level Solos is our
closest relative, due to the absence of prefix, but it does not support summation,
it lacks explicit axioms, and it employs a standard structure congruence that, as
we discussed, would not preserve soundness in a linear typing.

Caires and Pfenning [11] (with Toninho in [12]) interpreted sessions [39,26] in
a variation of Intuitionistic Linear Logic, and obtained a propositions-as-types
correspondence, using an almost standard π-calculus (πDILL) as the representa-
tion of sequent proofs. In this system the output x〈y〉.P induces x : A⊗B. This
interpretation is sequential: first send some A on x, then do some B on x. Oper-
ationally, whenever sessions are interleaved only one of them can immediately re-
duce. For example, the πDILL term: (νxy) (x〈a〉.(y〈b〉.P | x〈m〉.Q) | x(c).R | y(k).S)

must first react on x, after which both x, y may have independent redices. Session
variables are not strictly linear, e.g., here x〈·〉 appears twice, which is another
manifestation of a causal relationship that cannot be safely broken: in typing
the output x〈a〉 . . ., x is not only a conclusion, but also a premise (along with a)
from the usage x〈m〉.Q under the prefix, and likewise for any x in Q. Parallelism
is limited since every action (a prefix) forces a sequentialisation (a box), and
reduction corresponds to proof normalisation of intuitionistic sequent proofs.
Also, in [12] axioms a↔ x are interpreted as forwarders (in [11] axioms are not
interpreted). Specifically, (νx) (P | a↔ x)→ P [a/x], which requires substitution.

Recently Wadler [41] presented CP, an adaptation of πDILL that interprets
sequent proofs of Classical Linear Logic. Reduction is defined as cut-elimination
at the sequent proof level, prefixes (hence boxes) are preserved, and therefore
there is not benefit wrt parallelism. The second-order quantification which is
missing from [11,12] is added, under an interpretation in which a type is com-
municated, following the tradition of System F. Commutations are defined on
type derivations and not on terms, which seems a highly inefficient method dur-
ing reduction. As in πDILL, axioms are forwarders, and substitution is required.

Very recently, DeYoung et al. [15] developed a variation of πDILL based on
asynchronous π-calculus, using a binary output a〈b, c〉 (⊗-typed), and prefixed
input a(b, c).P (`-typed), together with constructs for additives that are simi-
lar to those of δ-calculus. This work was developed independently from ours,
and we briefly explain some differences. First, it interprets intuitionistic se-
quent proofs and not proof nets, although in a sense it seems to go half-way

towards them, by allowing an asynchronous interpretation of ⊗, but it does not
allow the same for `. As a result, parallelism is still limited: in δ-calculus the
term a(b, c) | bx | cy | z(x, y) has a non-splitting ⊗-link, which means that we
cannot obtain a type derivation (or sequent proof) with (⊗) as the last rule,
and we are forced to start with the `-link. Still, a reduction on a can be per-
formed in parallel to one on z. In [15], the input z(x, y) necessarily appears as
a prefix: z(x, y).(a〈b, c〉 | b ↔ x | c ↔ y), and cannot react at the same time as
a〈b, c〉, although it would be perfectly safe. Moreover, no commutation can bring
the output before the input, as this would be untypable (non-splitting), even if
other terms can enter under the prefix. Beffara [8] also presented a synchronous
π-calculus with (⊗/`) type rules for binary prefixes.

Beyond the issues regarding parallelism, none of the above works have provi-
sions for affine typing or recursion. We plan to characterise correctness [23] and
proof net equality using process-algebraic techniques, and to investigate concur-
rency extensions, e.g., sharing, in order to encode references and full π-calculus.

Acknowledgements The author would like to thank Vasco T. Vasconcelos for his
extensive comments, as well as the reviewers of previous versions.

References

1. Martín Abadi and Luca Cardelli. A Theory of Objects. Springer-Verlag, 1996.
2. Samson Abramsky. Computational interpretations of linear logic. Theoretical Com-

puter Science, 111:3–57, 1993.
3. Samson Abramsky. Proofs as processes. In Theoretical Computer Science, 1994.
4. Sandra Alves, Maribel Fernández, Mário Florido, and Ian Mackie. Linearity and

recursion in a typed lambda-calculus. PPDP ’11, pages 173–182. ACM, 2011.
5. Jean-Marc Andreoli. Logic programming with focusing proofs in linear logic. Jour-

nal of Logic and Computation, 2:297–347, 1992.
6. Andrea Asperti and Luca Roversi. Intuitionistic light affine logic. ACM Transac-

tions on Compututational Logic, 3(1):137–175, January 2002.
7. David Baelde. Least and greatest fixed points in linear logic. ACM Trans. Comput.

Logic, 13(1):2:1–2:44, January 2012.
8. Emmanuel Beffara. A concurrent model for linear logic. ENTCS, 2006.
9. G. Bellin and P.J. Scott. On the pi-calculus and linear logic. Theoretical Computer

Science, 135(1):11 – 65, 1994.
10. G. M. Bierman, A. M. Pitts, and C. V. Russo. Operational properties of Lily, a

polymorphic linear lambda calculus with recursion. In HOOTS, September 2000.
11. Luís Caires and Frank Pfenning. Session types as intuitionistic linear propositions.

In Proceedings of CONCUR’10, pages 222–236. Springer-Verlag, 2010.
12. Luís Caires, Frank Pfenning, and Bernardo Toninho. Towards concurrent type

theory. In TLDI ’12. ACM, 2012.
13. Roberto Di Cosmo and Stefano Guerrini. Strong normalization of proof nets mod-

ulo structural congruences. RtA ’99, 1999.
14. Vincent Danos and Laurent Regnier. The Structure of Multiplicatives. Archive for

Mathematical Logic, 28:181–203, 1989.
15. H. DeYoung, L. Caires, F. Pfenning, and B. Toninho. Cut Reduction in Linear

Logic as Asynchronous Session-Typed Communication. In CSL’12, 2012.

16. T. Ehrhard and L. Regnier. Differential interaction nets. Theoretical Computer
Science, 364:166–195, November 2006.

17. Thomas Ehrhard and Olivier Laurent. Acyclic solos and differential interaction
nets. Logical Methods in Computer Science, 6(3), 2010.

18. Matthias Felleisen and Robert Hieb. The revised report on the syntactic theories of
sequential control and state. Theoretical Computer Science, 103(2):235–271, 1992.

19. Philippa Gardner, Cosimo Laneve, and Lucian Wischik. Linear forwarders. Infor-
mation and Computation, 205(10):1526–1550, 2007.

20. Philippa Gardner and Lucian Wischik. Explicit fusions. In MFCS 2000, volume
1893 of LNCS, pages 373–382. Springer-Verlag, 2000.

21. Jean-Yves Girard. Linear logic. Theoretical Computer Science, 50:1–102, 1987.
22. Jean-Yves Girard. Linear logic: its syntax and semantics. In Advances in Linear

Logic, pages 1–42. Cambridge University Press, 1995.
23. Jean-Yves Girard. Proof-nets: The parallel syntax for proof-theory. In Logic and

Algebra, pages 97–124. Marcel Dekker, 1996.
24. Jean-Yves Girard, Paul Taylor, and Yves Lafont. Proofs and types. Cambridge

University Press, New York, NY, USA, 1989.
25. Kohei Honda and Olivier Laurent. An exact correspondence between a typed pi-

calculus and polarised proof-nets. Theoretical Comp. Science, 411:223–238, 2010.
26. Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. Language Primitives and

Type Disciplines for Structured Communication-based Programming. In ESOP’98.
27. D.J.D. Hughes and R.J. van Glabbeek. Proof nets for unit-free multiplicative-

additive linear logic. ACM Trans. on Computational Logic, 6(4):784–842, 2005.
28. Delia Kesner and Stéphane Lengrand. Resource operators for λ-calculus. Infor-

mation and Computation, 205(4), April 2007.
29. Yves Lafont. Interaction combinators. Inf. and Computation, 137:69–101, 1995.
30. Cosimo Laneve, Joachim Parrow, and Björn Victor. Solo diagrams. In TACS ’01,

volume 2215 of LNCS, pages 127–144. Springer-Verlag, 2001.
31. Cosimo Laneve and Björn Victor. Solos in concert. Mathematical Structures in

Computer Science, 13(5):657–683, October 2003.
32. Robin Milner. Functions as processes. Mathematical Structures in Computer Sci-

ence, 2(2):119–141, 1992.
33. Raphaël Montelatici. Polarized proof nets with cycles and fixpoints semantics.

TLCA’03, pages 256–270, Berlin, Heidelberg, 2003. Springer-Verlag.
34. Yo Ohta and Masahito Hasegawa. A terminating and confluent linear lambda

calculus. RTA’06, 2006.
35. Michele Pagani and Lorenzo Tortora de Falco. Strong normalization property for

second order linear logic. Theoretical Computer Science, 411(2), January 2010.
36. Joachim Parrow and Björn Victor. The fusion calculus: Expressiveness and sym-

metry in mobile processes. In LICS ’98. Computer Society Press, 1998.
37. Jorge A. Pérez, Luís Caires, Frank Pfenning, and Bernardo Toninho. Linear logical

relations for session-based concurrency. In ESOP ’12, pages 539–558, 2012.
38. Davide Sangiorgi and David Walker. The pi-calculus, a theory of mobile processes.

Cambridge University Press, 2001.
39. Kaku Takeuchi, Kohei Honda, and Makoto Kubo. An Interaction-based Language

and its Typing System. In PARLE ’94, pages 398–413. Springer-Verlag, 1994.
40. Bernardo Toninho, Luís Caires, and Frank Pfenning. Functions as session-typed

processes. In FoSSaCS ’12, pages 346–360, 2012.
41. Philip Wadler. Propositions as sessions. In Proceedings of the International Con-

ference on Functional Programming (ICFP ’12). ACM, 2012.

	Proof Nets as Processes

