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ABSTRACT 

The performance of graphene-based (opto)electronic devices depends critically on the 

graphene/metal interface formed at the metal contacts. We show here that the interface 

properties may be controlled by topological defects, such as the pentagon-heptagon (5-7) 

pairs, because of their strongly enhanced bonding to the metal. To measure the bond energy 

and other key properties not accessible for the embedded defects, we use azulene as a 

molecular model for the 5-7 defect. Comparison to its isomer naphthalene, which 

represents the regular graphene structure, reveals that azulene interacts more strongly with 

a Pt(111) surface. Its adsorption energy, as measured by single-crystal adsorption 

calorimetry (SCAC), exceeds that of naphthalene by up to 116 kJ/mol (or up to 50%). Both 

isomers undergo hybridization of their frontier orbitals with metal states, as indicated by 

photoelectron (XPS/UPS) and near-edge X-ray absorption fine structure (NEXAFS) 

spectroscopy combined with MO-projection analysis through dispersion corrected, 

periodic density functional theory (DFT) calculations. Based on the NEXAFS/DFT 

analysis, the stronger bond of the 5-7 system is attributed to the different energetic response 

of its unoccupied frontier orbitals to adsorption. Adsorption-induced bond-length changes 

show substantial topology-related differences between the isomers. Electron transfer 

occurs in both directions through donation/back-donation, resulting in the partial 

occupation (deoccupation) of formerly unoccupied (occupied) orbitals, as revealed by 

energy decomposition analysis for extended systems (pEDA). Our model study shows that 

the topology of the -electron system strongly affects its bonding to a transition metal and 

thus can be utilized to tailor interface properties.  
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INTRODUCTION 

Graphene as one of the most prominent two-dimensional (2D) materials is known for the 

exceptional electronic and mechanical properties of its ideal lattice.1 Large-scale graphene 

samples, however, are always polycrystalline and contain topological defects, such as 

pentagons, heptagons and pentagon-heptagon (5-7) pairs (Figure 1a),2 especially at grain 

boundaries.3-8 These defects, which are induced by rearrangement of carbon-carbon (C-C) 

bonds, strongly influence the chemical and physical properties of graphene, including 

chemical reactivity,9-10 mechanical strength,7-8, 11-12 electron transport,3, 5 and magnetism.13 

Their utilization for tailoring the properties of graphene through topological design has 

been proposed.14  

Interfaces between graphene and metals are formed during the epitaxial growth of the 2D 

material on metallic substrates.15 They also play a prominent role in graphene-based 

electronic devices, where metal contacts are necessary.16 The properties of the resulting 

graphene/metal interfaces control important performance-determining parameters such as 

the contact resistance.17 Considering the substantial influences of defects on the properties 

of graphene, it is likely that they also affect the interfacial interaction, as indicated by the 

reduced resistances observed for contacts to graphene edges.16 However, the bonding of 

intrinsic graphene defects to metals is largely unexplored, mainly due to the experimental 

challenges arising from the investigations of embedded defects in low concentrations. 

Expanding on a recently introduced approach,18 we use here a molecular model system to 

study the bonding of 5-7 graphene defects to the reactive Pt(111) surface. In this model, 

azulene with its 5-7 ring structure represents the defect, whereas its isomer naphthalene is 

the reference molecule representing the hexagonal rings of defect-free graphene (Figure 

1b,c). The 5-7 motif was chosen because it is the most abundant building block for 

topological defects. It occurs in isolated 5-7 defects, in pairs as Stone-Wales defects, or in 

chains at grain boundaries. In addition, the 5-7 motif represents a class of defects for which 

a molecular model can be contrived, unlike vacancies.  The model system approach allows 

for the application of laterally integrating techniques and thus provides unique access to 

parameters that cannot be measured for the real embedded defects, such as bond energies. 

Even though naphthalene is strongly chemisorbed on Pt(111),19 we find here that azulene 

binds even stronger with adsorption energies that are up to 50% higher.  

To concisely describe the topological properties of the defect, we use here the established 

concept of alternant versus non-alternant topology.20 In the alternant conjugated system of 

naphthalene (and regular graphene), the carbon atoms can be labeled in an alternating 

fashion (e.g. red and green as in Figure 1b,c), while this is not possible for a non-alternant 

system like azulene (or the 5-7 defect). The non-alternant topology leads to the violation 

of the Coulson-Rushbrooke pairing theorem and thus to a distinctly different valence 

electronic structure.21 In our model molecules, this electronic difference is manifested in 

the large dipole moment (0.8 D)22 and intense blue color of azulene, whereas naphthalene 

has no dipole moment and is colorless. 
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The importance of non-alternant aromatic structures extends far beyond their role as 

graphene defects. Recently, they have found attention for application as molecular or 

polymeric organic semiconductors in organic (opto)electronic devices, because of their low 

band gaps and high charge carrier mobilities.23 Their interfaces to metal electrodes, which 

are known to strongly influence the properties of the device,24-25 have only rarely been 

studied, unlike interfaces to alternant aromatic systems.26 Comparative studies of azulene 

and naphthalene on Pt(111) have not been reported. Limited work for the isolated systems 

was done with low-energy electron diffraction (LEED)27-30, temperature-programmed 

desorption (TPD)28-29 and scanning tunneling microscopy (STM).31-33 Work function (WF) 

measurements,30 adsorption calorimetry19 and density functional theory (DFT) 

calculations34-35 were until now only performed for naphthalene on Pt(111). For the more 

weakly interacting Cu(111) surface, it was recently shown that naphthalene is physisorbed, 

while azulene is chemisorbed,18 raising the question whether differences in the interaction 

strength persist when both molecules are strongly chemisorbed. 

In this study, we present a comprehensive multi-method comparison of the bonding of 

naphthalene and azulene to Pt(111). Using SCAC, we measure the first reliable adsorption 

energies for any non-alternant aromatic molecule on any metal surface and show that it 

bonds stronger than its alternant isomer. Temperature-programmed desorption (TPD) 

cannot be applied here, because the molecules do not desorb intact from Pt(111). Details 

of the chemical bond and the electronic structure are clarified using X-ray and ultraviolet 

photoelectron spectroscopy (XPS/UPS), near edge X-ray absorption fine structure 

(NEXAFS) spectroscopy, and WF measurements. DFT calculations including a dispersion-

correction scheme (PBE-D3) and applying periodic boundary conditions are used to 

interpret the experimental data and to gain detailed insight in the underlying mechanisms 

of the enhanced bonding at the defect/metal interface.  

 

Figure 1. (a) Graphene sheet with embedded pentagon-heptagon (5-7) defect (blue). 

Molecular structures of (b) azulene and (c) naphthalene. The different topologies of the 

two isomers are illustrated by the color schemes: naphthalene has an alternant topology 

(only alternating or differently-colored C centers are connected), whereas azulene has a 

non-alternant topology (two atoms with the same color are connected). As shown in (a), 

the 5-7 defect locally interrupts the alternant topology of regular graphene. 

 

 

RESULTS AND DISCUSSION 

Heat of Adsorption Measurements. The most important single parameter in this study is the 

heat of adsorption as a direct quantitative measure for the strength of the adsorbate-

substrate bond. It is defined here as the negative of the differential standard molar enthalpy 

change for the adsorption reaction, −ΔHads, with the gas having the same temperature as 

the surface. "Standard" here implies only an ideal gas at 1 bar pressure. Figure 2 shows the 
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molar heat of adsorption of azulene on Pt(111) at 150 K as a function of coverage. These 

heats were calculated from the measured absolute calorimetric heats by averaging over five 

individual measurements, dividing by the number of moles adsorbed in each pulse (given 

by flux times pulse duration times sticking probability), and adding RTsource/2, as described 

previously.36 No detectable mass spectrometer signal was present due to any non-sticking 

fraction of the azulene molecular beam, indicating that its sticking probability is always 

≥0.995. Consequently, both the short and long term sticking probabilities were concluded 

to be unity. 

As described previously, a small enthalpy correction on the measured heat is necessary, 

because the standard enthalpy of a gas at the temperature of the surface differs slightly from 

that of the actual experimental molecular beam’s gas at this surface temperature.37 

Specifically, the temperature of the source, Tsource, and thus the temperature of the 

molecules impinging on the sample, is 382 K, which deviates from the sample temperature 

of 150 K. Therefore, we had to take the additional contribution from the extra thermal 

energy of the gas molecules into account. We estimated this heat contribution by 

integrating the experimental heat capacity of the gas (Cp) vs. T curve38 between sample and 

source temperature. The resulting heat, 29 kJ/mol, was subtracted from the directly 

measured heat. The thus corrected heat of adsorption is plotted versus coverage in Figure 

2. It is equal to the standard (1 bar) molar enthalpy of adsorption and the isosteric 

differential heat of adsorption. Figure 2 shows that the heat of adsorption decreases with 

coverage. We attribute this decrease to repulsive lateral interactions between the adsorbed 

azulene molecules. The solid line is a second-order polynomial fit of the experimental data 

and is described by the equation: 

( )2

adsΔ 416 1370 13100 kJ molH  = − −   (1)  

where  is the coverage in ML (given as molecules per surface atom, see methods section 

for a detailed explanation). 

The heat of adsorption of naphthalene on Pt(111) was already measured in previous work 

with the same instrument.19 To provide a direct comparison with the new data, the old 

measurements for naphthalene were also fitted with a second-order polynomial and follow 

the equation:  

( )2

adsΔ 300 330 18758 kJ molH  = − −   (2)  

As can be seen, azulene has a substantially higher heat of adsorption than naphthalene over 

the whole coverage range, close to that expected for the larger anthracene.19 

Also shown in Figure 2 is the heat of sublimation of bulk azulene at 150 K. The literature 

value for the sublimation enthalpy of azulene is 74.2 ± 2.2 kJ/mol at 298 K.39 This was 

adjusted to account for the lower temperature of the Pt(111) sample at 150 K by integrating 

the heat capacities (Cp) for gaseous and solid azulene over this temperature range. For 

gaseous azulene, values are available between 200 and 1000 K.40 The third-order 

polynomial fit relating Cp to temperature was extrapolated to 150 K and integrated between 
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150 and 298 K. The only available value for Cp of solid azulene is given at 298 K.41 To 

determine the Cp of solid azulene at a lower temperature, we assessed the solid Cp values 

for the similar molecules naphthalene and benzene. The heat capacities for each molecule 

showed a linear relationship for the entire temperature range of interest, with an average 

decrease of 50 % ± 5 % from 298 to 150 K. Consequently, the heat capacity of solid azulene 

at 298 K was assumed to decrease by 50 % between 298 and 150 K. The resulting linear 

relationship was integrated over this range. The correction to the sublimation enthalpy of 

azulene between 150 and 298 K is +3.92 kJ/mol, resulting in a sublimation enthalpy of 78.1 

± 2.2 kJ/mol at 150 K. 

The heat of adsorption of azulene on Pt(111) at 150 K decreased to a relatively constant 

value of 92.7 kJ/mol between 0.12 and 0.17 ML, when the second layer is growing (with 

an average heat in this range that varied by ±3.4 kJ/mol between runs). Above 0.2 ML, the 

heat of adsorption reached a nearly constant value which averaged 80.6 ± 1.6 kJ/mol, within 

error bars of the bulk sublimation enthalpy at 150 K of 78.1 ± 2.2 kJ/mol. The higher heat 

at coverages in the second layer (~0.1 to 0.2 ML) indicates that the Pt(111) surface is still 

close enough to interact with the azulene, in spite of the presence of an intervening layer 

of adsorbed azulene. 

 

Figure 2. Heat of adsorption of azulene on Pt(111) at 150 K as a function of coverage. 

Blue dots, experimental data; solid black line, fit function of the differential heat; dashed 

black line, integrated fit function. The dotted line shows the sublimation enthalpy (ΔHsub = 

78.1±2.2 kJ/mol) reported in the literature39 adjusted for the temperature of 150 K. 

Unoccupied electronic states: NEXAFS. The unoccupied frontier orbitals are expected to 

contribute substantially to the interfacial chemical bond and are probed here with NEXAFS 

spectroscopy at the carbon K-edge. The resulting spectra for multilayers and monolayers 

of both molecules on Pt(111) are displayed in Figure 3. In the multilayer regime, the 

prominent π* resonance between 283 and 286 eV can be attributed to the 1s → LUMO and 

1s → LUMO+1 transitions of the (almost) unperturbed molecules. The energy difference 

between these two transitions is larger for naphthalene than for azulene, according to 

previous experimental and theoretical work.18 As a result, the π* resonance of naphthalene 

is split into two peaks, whereas that of azulene only shows one peak with a distinct shoulder 

on the high-energy side.  

In the multilayer, the adsorption edge of azulene appears at a 0.65 eV lower photon energy 

than that of naphthalene, in line with the lower-lying LUMO of azulene (see below). In the 

monolayer, this energy difference is reduced to 0.15 eV, because the two isomers respond 

differently to the presence of the Pt surface: the edge shifts by +0.13 eV for azulene 

and -0.37 eV for naphthalene. The same edge shifts are also visible in the NEXAFS 

calculations and can be traced back to the different responses of the unoccupied frontier 

orbitals to the interaction with the Pt surface (see below).  

In the monolayer regime, the broad π*-resonances of both molecules exhibit a strong 

dichroism, with a high intensity for grazing incidence of the X-rays (25°), an intermediate 
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intensity for magic angle incidence (53°), and a low residual intensity for normal incidence 

(90°). As the π* orbitals are oriented perpendicular to the molecular plane, it can be 

deduced that the molecules are lying flat on the surface. The residual intensity of the π* 

peaks at normal incidence can be attributed to partial sp2-to-sp3 rehybridization (see 

below).42 

The broad π* resonance shows two maxima in the monolayer spectra of both molecules. In 

the case of azulene, the first maximum has the higher intensity and the maxima are farther 

apart (2.4 eV), whereas for naphthalene the second maximum is slightly higher and they 

are less separated (1.6 eV). How this signal shape arises from a superposition of the various 

transitions can be seen in the molecular orbital projected NEXAFS calculations (Figure 3c-

f) provided by DFT. The details of these calculations will be discussed later. 

Occupied electronic states: Photoelectron spectroscopy. Further insight into the 

molecule/metal interface is obtained by probing the occupied electronic states with 

photoelectron spectroscopy. The core level C 1s spectra for the monolayers of both 

molecules are shown in Figure 4a. The peaks of the monolayers are shifted by less than 0.1 

eV relative to their multilayer positions as indicated by the dotted lines (see Figure S1 in 

the SI for the multilayer spectra). As can be seen, the monolayer signals show an 

asymmetric peak shape. The asymmetry of the peaks is an indication for the hybridization 

of the molecular orbitals with the surface and the presence of molecular electron density 

around the Fermi edge.43 In previous work, a similar asymmetric shape of the C 1s peak 

was observed  for azulene on Cu(111),18 which forms a chemisorptive bond, while it was 

not found for naphthalene on Cu(111), which is physisorbed.18 The asymmetry is also 

absent from the corresponding multilayers peaks (see Figure S1 in the SI).  

 

Figure 3. Carbon K-edge NEXAFS data for azulene and naphthalene on Pt(111). Top: 

experimental spectra of azulene (blue) and naphthalene (red): (a) multilayers, (b) 

monolayers. The multilayer spectra were taken with the electric field vector oriented 53° 

relative to the surface normal, the monolayer spectra with the angles indicated by the color 

scheme (25°, bold color; 53°, intermediate color; 90°, faint color). Center and bottom: MO 

projection analysis of the DFT calculated NEXAFS spectra of (c,d) the free molecules18 

and  (e,f) the monolayers on Pt(111).  Contributions of the LUMO in dark red and of the 

HOMO in dark blue, higher/lower orbitals in incrementally lighter colors, total spectrum 

in black. The calculated spectra were rigidly shifted by -6 eV to match the experimental 

energy scale. 

 

The differences between the two monolayer peaks are highlighted in the difference 

spectrum in Figure 4a (bottom). The azulene peak appears at a slightly higher binding 

energy and has a larger width. After careful normalization, the intensity of the azulene 

signal was found to be larger by 7 to 15% depending on the method of background 

correction. This difference is due to the higher adsorption energy and a more favorable 

packing of the azulene molecules (see Figure S2 in the SI). 
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Figure 4. Photoemission spectra for azulene and naphthalene on Pt(111). (a) C 1s XP 

monolayer spectra of azulene (Az, blue) and naphthalene (Nt, red) together with a 

difference spectrum (Az minus Nt, black). The peak positions and the shifts from the 

multilayer positions (see multilayer spectra in Figure S1 in the SI) are indicated by dotted 

lines above the peaks. (b) He-I UP spectra: Top, monolayers and clean Pt(111) surface 

(black); bottom, multilayers and DFT orbital energies (vertical lines). The orbital energies 

from DFT were modified to match the experimental energy scale as described in detail in 

the SI and in the literature.44-45 

 

UPS was used to probe the occupied valence states. In Figure 4b, the multilayer and 

monolayer spectra of both molecules are compared to the spectrum of clean Pt(111). The 

orbital energies indicated by vertical lines were obtained by gas phase DFT calculations 

(PBE/def2-TZVPP) and can be found in Table S1 in the SI. The energy axis of these DFT 

results was shifted and scaled by a factor of 1.2 to match the experimental peaks of the 

multilayer spectra, a procedure that as was already reported for similar systems.44-45 The 

orbital energies are then in good agreement with the experimental peaks and literature 

values obtained using a more sophisticated theoretical method.46  

In the multilayer spectra, the energetic positions of the orbitals reflect the different 

electronic structures of the (approximately undisturbed) molecules. The HOMO related 

UPS signal of azulene appears 0.63 eV higher in energy (2.49 eV below EF) than that of 

naphthalene (3.12 eV below EF). These HOMO energies determine, together with the 

LUMO energies, the electronic band gaps of the molecules. The absolute LUMO energies 

are experimentally not directly accessible with our methods. However, the NEXAFS 

spectra in Figure 3a provide the difference between the LUMO energies of the two 

molecules. This is possible because of the almost identical multilayer C 1s peak positions 

of both molecules (Figures 4a and S1), which indicate that the energy difference of the π*-

resonances is exclusively caused by the different LUMO energies. The LUMO related 

feature of azulene appears here at 0.65 eV lower photon energy than that of naphthalene. 

The energy differences of the HOMOs and LUMOs directly show that the electronic gap 

is 1.28 eV smaller for azulene than for naphthalene. This value is in excellent agreement 

with the electronic band gap difference obtained from ionization energy and electron 

affinity of the gas-phase molecules, which is also 1.3 eV.47 The difference of the orbital 

energies of HOMO and LUMO as calculated by DFT is 1.37 eV, which additionally 

supports our approach. Note that this electronic gap is quite different from the optical gap. 

The optical gaps of naphthalene and azulene have a much larger difference of 2.37 eV.48-

49 The reason for this deviation is the non-alternant character of the azulene molecule. It 

causes not only the reduced HOMO-LUMO gap, but also leads to a stronger localization 

of the frontier orbitals, resulting in reduced electron-electron repulsion in the excited state 

and thus in a smaller optical gap.47  
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In the monolayer spectra, various molecule-induced features can be identified, although 

most are strongly superimposed by the Pt d-band between the Fermi edge (EF) and 6 eV 

below EF. Naphthalene shows a higher intensity close to EF, which may be due to weaker 

attenuation of the Pt d-band by this less strongly interacting molecule. Azulene has a higher 

intensity around 4 eV at the second peak of the Pt d-band. Both molecules induce enhanced 

intensity between 2 and 3 eV and a distinctive pattern of lower lying molecular orbitals 

from 7 to 11 eV, which are shifted by 0.7 eV relative to their multilayer positions.  

A molecular orbital (MO) projection scheme for the DFT calculated density of states (DOS; 

discussed in detail below) shows a considerable contribution of the carbon states to the 

DOS between 2 and 3 eV. It is even possible to identify the mainly contributing orbitals in 

this energy range. These orbitals are the LUMO and LUMO+1 for naphthalene and the 

HOMO, LUMO and LUMO+1 for azulene. 

He-I UP spectra for a wide coverage range of both molecules on Pt(111) are shown in 

Figure 5a,b. It can be seen how the d-band of the metal surface is quickly attenuated 

(downward arrows) and that the molecular states of the multilayers appear at higher 

coverages (upward arrows). The shift of the secondary electron cut off indicates the 

lowering of the work function with increasing coverage. The resulting WF changes are 

plotted in Figure 5c and will be discussed in detail below.  

Work function changes. In Figure 5c, the experimental WF changes as extracted from the 

He-I UPS data are plotted as functions of the coverage. Adsorption-induced changes of the 

electronic WF of the surface are related to the vertical dipole moment of the adsorbate-

substrate complex. The WF data were analyzed using the Topping model,50-51 which 

provides the unattenuated dipole moment per molecule μ0 and the polarizability volume α 

of the adsorbate complex. The results of these fits are summarized together with the WF 

changes at a coverage of 0.11 ML in Table 1 and compared to the values calculated by 

DFT. The DFT-calculated WF changes at several other coverages are presented in Figure 

S3 in the SI. 

 

 

Figure 5. Coverage dependent He-I UPS data for (a) azulene and (b) naphthalene on 

Pt(111). The spectra are colored according to their coverage with a scale from red (clean 

surface) to purple (0.45 ML) in the order of the spectral colors. The downward arrows 

indicate the attenuation of the substrate signals, while the upwards arrows indicate the 

growing of the molecule-related multilayer signals. (c) Coverage dependence of the 

experimental work function (WF) changes Φ (symbols) and fits with the Topping model 

(solid lines). Blue and open circles, azulene; red and open diamonds, naphthalene. 

 

Table 1. Experimental (Expt.) and theoretical (DFT) work function (WF) data for azulene 

and naphthalene on Pt(111): ΔΦ, WF changes for a coverage of 0.11 ML; |μ0|, unattenuated 

dipole moment per molecule; α, polarizability volume. The experimental |μ0| and α values 
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were extracted from the WF change data using the Topping equation.50-51 |μ0| (DFT) was 

obtained by fitting a modified Topping equation directly to the DFT calculated dipole 

moments of the six investigated coverages. Details of the fitting procedures can be found 

in the SI. 

 azulene/Pt(111) naphthalene/Pt(111) 

ΔΦ (Expt.) / eV -2.09 -2.08 

ΔΦ (DFT) / eV -2.43 -2.52 

|μ0| (Expt.) / D 6.80 6.30    

|μ0| (DFT) / D 5.99 6.03 

α (Expt.) / 10-29 m3 3.62 3.23 

 

The work function change at monolayer coverage is almost the same for both molecules (-

2.09 and -2.08 eV). The result for naphthalene is in reasonable agreement with a previous 

reported value of ΔΦ = -2.0 eV on Pt(111).30 Azulene shows a slightly steeper trace in the 

first few points of the work function change, thus the Topping fit yields slightly larger 

values for |μ0| (6.80 vs. 6.30 D) and α (3.62 vs. 3.23·10-29 m3). 

The lowering of the work function and the extracted dipole moment cannot be attributed to 

the charge transfer between surface and molecule. The DFT calculations presented below 

show that there is a complicated system of bonding and back-bonding, but the net charge 

transfer is from the surface to the molecule, as also visible in the NEXAFS measurements 

and calculations. The resulting charge transfer dipole therefore has the negative end at the 

molecule and would lead to an increased work function. Instead, the lowering of the work 

function and the build-up of the dipole moment are due to the so called Pauli-pushback 

effect52-53, which describes the redistribution of electron density near the surface due to the 

Pauli-repulsion with the electrons in the molecule. 

 

Density-functional theory (DFT) calculations. DFT calculations were performed on the 

generalized-gradient approximation level of density functionals (PBE) using periodic 

boundary conditions (PBC) and a dispersion-correction scheme (DFT-D3). To account for 

coverage-dependent effects, six different supercells were chosen. The smallest was the 

(3×3) structure (highest coverage, 0.111 ML) and the largest was the (7×7) structure 

(lowest coverage, 0.020 ML). 

Structures. The optimized (3×3) structures of azulene and naphthalene on Pt(111) are 

shown in Figure 6. Both molecules favor adsorption with the bridging bond on top of a Pt 

atom. The long molecular axis of naphthalene is aligned with the [110]  direction of the 

surface (Figure 6b), whereas azulene is azimuthally rotated by 11° with respect to this axis 

(Figure 6a). The adsorption site of naphthalene agrees with that in previous theoretical 

studies,34-35 while there is no related previous work for azulene. 
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The overall adsorption height, i.e., the vertical distance of the carbon atoms above the 

relaxed Pt(111) surface plane, is quite similar for azulene and naphthalene with 2.09 Å and 

2.08 Å, respectively. This similarity is quite remarkable, considering the different 

adsorption energies and the fact that a height difference of 0.62 Å was calculated on 

Cu(111) using the same method.18 For naphthalene, previous DFT studies (without 

dispersion correction schemes) reported larger adsorption heights of 2.25 Å35 and 2.15 Å34. 

The adsorption height is nearly independent of the coverage and is constant within ±0.01 

Å for all coverages mentioned above (see Figure S4 and Table S3 in the SI).  A coverage 

dependence of the adsorption height is often observed for weakly bonded systems,54 for 

which the molecule-surface potential is soft and thus an elongation of the adsorption bond 

with increasing coverage can alleviate the lateral intramolecular repulsion.  The potentials 

of the vertical and lateral interaction are therefore coupled and influence each other. In the 

strongly chemisorbed systems of azulene and naphthalene on Pt(111), however, the vertical 

potential is steep and couples less with the lateral repulsion potential. Therefore, the 

vertical distances are more stable and less affected by the lateral repulsion (and thus by the 

coverage). A detailed of discussion of the adsorption heights with respect to the chosen 

reference system can be found in the SI.  

The strong interaction with the Pt(111) surface leads to a drastic deformation of molecule 

and surface (Figure 6c,d). The deformation follows different patterns for azulene and 

naphthalene, which can be understood as different manifestations of the balance between 

two bonding mechanisms: (1) the formation of a delocalized bond between surface and the 

π-electron system of the molecule (π-bonding case) and (2) the formation of localized 

bonds between surface atoms and single carbon atoms in the molecule (-bonding case).  

Both molecules undergo in-plane (Figure 6e,f) and out-of-plane deformation (Figure 6c,d). 

The out-of-plane tilting of the C-H bonds is pronounced for both molecules, indicating the 

rehybridization from sp2 to sp3. The tilt angle is dependent on the - or -positioning of 

the hydrogen atoms for naphthalene, while for azulene the hydrogen atoms at the 5-

membered ring show a larger tilt. A more detailed analysis of the bond lengths and angles 

in the adsorbate structure is presented in the SI.  

Adsorption of naphthalene on Pt(111) leads to an elongation of all C-C bonds, in agreement 

with the transition from conjugated bonds between sp2 carbon atoms in the free molecule 

towards single bonds between sp3 carbon atoms in the adsorbed state (Figure 6f). In the 

case of azulene, however, the bridging bond gets shorter by -4.1 pm upon adsorption, 

indicating its increased double-bond character (Figure 6e). The unusual shortening of this 

bond can be explained by the donation of charge into the former LUMO of the molecule, 

which is π-bonding with respect to the bridging bond, as was previously discussed for 

adsorption on Cu(111).18  

The out-of-plane deformation of the adsorbed molecules limits their suitability as model 

systems for structural motifs of graphene, because the rigid 2D structure of the graphene 

sheet makes a distortion similar to the one observed for the molecules impossible. This 

rigidity hinders the rehybridization to sp3 and limits the charge that can be transferred 
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between graphene sheet and surface. The rigidity therefore may also be the reason behind 

the large adsorption height of the graphene sheet on Pt(111), which is 3.1 to 3.2 Å.55 

Nevertheless, because the azulene molecule shows a larger adsorption energy than 

naphthalene, while having the same adsorption height, an enhanced interaction of the 5-7 

defects with the Pt(111) surface is still likely. Another difference between the molecules 

and a graphene sheet is the registry with the Pt(111) surface, which leads to different 

adsorption sites for different parts of the graphene sheet and also different possible 

adsorption sites for the defects. However, we calculated structures and energies of the 

molecules adsorbed on several adsorption sites and azulene always showed the stronger 

interaction (Table S4 of the SI). 

 

 

Figure 6. DFT optimized structures of the (3×3) supercell of azulene (left) and naphthalene 

(right). (a,b) Top view, (c,d) side view and average (avg.) out-of-plane angles as indicated 

by the color scheme (see the text for further details). (e,f) Changes of the bond lengths 

relative to the gas phase-optimized structure (in pm), (g,h) vertical displacements (in pm) 

of the platinum atoms in the topmost layer, compared to the relaxed surface without a 

molecule. Positive values mean a displacement towards the molecule. 

 

The adsorption-induced in-plane bond-length changes can also be discussed in the context 

of aromaticity. The aromatic character of a molecule can be quantified by the harmonic 

oscillator model of aromaticity (HOMA),56 which is based on the molecular geometry. The 

detailed HOMA analysis for azulene and naphthalene on Pt(111) can be found in the SI 

(see Figure S5). In short, the hybridization between molecular orbitals and electronic states 

of the surface lifts the distinction between the annulenoid aromaticity of azulene and the 

benzenoid aromaticity of naphthalene present in the gas phase structures.  

The adsorption-induced deformation of the first Pt surface layer is visualized in Figure 

6g,h. Both molecules push the atom beneath the bridging bond deeper into the surface. 

Naphthalene pulls the six neighboring atoms uniformly above the plane, whereas azulene 

exerts a stronger pull on the four atoms parallel to its long axis and a lesser pull on the 

atoms in coaxial positions. The overall range of the surface deformation (vertical distance 

between highest and lowest surface atom) is larger for azulene (31 pm) than for naphthalene 

(24 pm), in line with its stronger bond to the surface. 

Charge density difference plots. The adsorption of azulene and naphthalene on Pt(111) is 

accompanied by massive charge redistribution, as revealed by the charge density difference 

plots in Figure 7. The depletion of charge (red) in the first surface layer and the 

accumulation of charge (blue) between molecule and surface as well as on the molecule 

are clearly visible.  
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Figure 7.  Charge density difference plots of azulene (left) and naphthalene (right) on 

Pt(111). (a,b) Top views, (c,d) side views. The isosurface value is 0.007 e-/Å3 for all plots, 

blue, electron accumulation; red, electron depletion.  

 

Electron depletion in the first Pt surface layer is visible as dumbbell-shaped regions (red) 

centered at the surface Pt atoms. These shapes suggest that the transfer of electron density 

to the molecule may be mediated by the Pt p-orbitals. This assumption seems reasonable, 

considering the presence of an occupied 6p-related surface state close to EF.57 The p-orbital 

type features and the corresponding spatial regions of electron accumulation in the 

molecule have the overall shape of a localized -type bond, as would be expected for a sp3 

hybridized carbon atom. Depending on the position of a surface Pt atom relative to the C 

atoms in the molecule, the C-Pt bonds show different types of localization and different 

influences on the molecular geometry. If a surface atom is close to a C atom, the bond is 

directed at this atom, the nearby C-C bonds are elongated, and the tilt of the C-H bond 

indicates substantial sp3 character. In contrast, if the surface Pt atom is close to a C-C bond, 

electron density is accumulated close to the bond, while out-of-plane C-H tilt and C-C bond 

elongation are less pronounced. 

Charge Transfer. The charge transfer between molecule and substrate was quantified using 

several different charge portioning schemes, including Hirshfeld charge analysis,58 

iterative Hirshfeld charge analysis,59-61 Bader’s atoms in molecules (AIM) charge 

analysis,62 and integration of the molecular DOS up to EF. The results obtained by the 

different methods vary substantially (see Table S5 in the SI). Even the direction of the total 

charge transfer is not the same for all methods, but the majority of the methods predicts 

surface-to-molecule charge transfer. The conflicting results are hinting towards a charge-

transfer mechanism involving donation from the surface to the molecule as well as from 

the molecule back to the surface, resulting in partial compensation. Using the pEDA 

method, we will further investigate this mechanism below. 

 

Work function changes and dipole moments. Comparison of the calculated WF changes 

ΔΦ at monolayer coverage with the experimental results in Table 1 shows that theory 

overestimates ΔΦ by 0.34 eV for azulene and 0.44 eV for naphthalene. The calculated data 

for all other coverages are compiled in Figure S3 in the SI and show better agreement for 

smaller coverages. The slightly larger WF change induced by naphthalene may result from 

its smaller adsorption height, because the WF change is partly caused by the Pauli-push 

back effect, which is known to depend on the adsorption height.18  

Independently of the WF changes, DFT also yields coverage-dependent vertical dipole 

moments μ, which were fitted with a modified Topping equation to obtain theory values 

for the unattenuated dipoles μ0 (see the SI for details). Comparison with the experimental 

μ0 values (Table 1) shows deviations of only 12% for azulene and 4% for naphthalene. The 

substantial vertical dipole moments may partly result from the out-of-plane deformation of 
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the molecules, but it is not possible to quantify this contribution (see detailed discussion in 

the SI, Table S2). 

Molecular-orbital projection scheme. Analysis of the valence electronic structure of the 

adsorbed molecules by a MO-projection scheme reveals substantial adsorption-related 

broadening and changes of the energetic position of the frontier orbitals (Figure 8). Both 

molecules engage in massive hybridization of unoccupied and occupied orbitals with metal 

states. As a result, occupied (unoccupied) orbitals of the free molecules contribute to the 

DOS  above (below) EF in the adsorbed state, leading to a partial occupation of both types 

of orbitals. For example, the HOMOs of azulene and naphthalene are filled by only 1.8 

electrons in the adsorbed state (instead of 2), whereas the former LUMOs are occupied by 

1.6 electrons in both adsorbed molecules. 

 

Figure 8. Total density of states (TDOS) and MO-projected density of states of the 

adsorbed molecules on Pt(111) for (a) azulene and (b) naphthalene. Contribution of the 

LUMO in dark red and of the HOMO in blue; higher/lower orbitals in incrementally lighter 

colors, total DOS (scaled for better presentation) in black. The lines in the center denote 

the gas-phase orbital energies, which have been shifted to maximally align the lowest-lying 

states of the gas phase and the adsorbed molecule. 

 

NEXAFS calculations. The theoretical analysis of the NEXAFS spectra shown in Figure 

3a and 3b is based on MO-projections for the DFT calculated transitions. The first π∗ 

resonance of the free molecules comprises contributions from the C1s → LUMO and C1s 

→ LUMO+1 transitions, as shown in Figure 3c and 3d. In the adsorbed state, all MO 

contributions are reduced, because hybridization of the molecule with metal bands makes 

states with dominant metallic character also contribute. In addition, the contributions of 

LUMO and LUMO+1 are attenuated compared to the other orbitals and shifted in energy.  

The onsets of the π∗ peaks shift by +0.29 eV (azulene) and -0.41 eV (naphthalene), in good 

agreement with the experimental values of +0.13 and -0.37 eV, respectively. The MO-

projections, however, reveal that the LUMOs of both molecules are elevated to higher 

energies. The downshift of the onset of the naphthalene spectrum is caused by the 

emergence of the new C1s → HOMO transition and the broadening of all peaks. The 

LUMO peak shift for azulene is larger and overcompensates the effect of the broadening. 

The better accessibility of the low-lying LUMO of azulene may be the key for the 

understanding of its stronger bond to the metal surface, in line with previous observations 

for adsorption on Cu(111).18 In addition to intensity stemming from the unoccupied 

orbitals, contributions from the formerly fully occupied HOMO and HOMO-1 appear, in 

accord with the reduced occupation of these orbitals as deduced from the MO-projected 

DOS. The broad spectral features of the first transitions of both molecules include now 

transitions belonging to a multitude of final-state orbitals, in contrast to the free-molecule 

or multilayer cases, where the first transition is related only to the LUMO and LUMO+1. 

In the case of adsorbed azulene, the first peak comprises contributions of the HOMO-1, 
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HOMO, LUMO and LUMO+1, while the second peak stems from LUMO+2 and LUMO+3 

contributions. Both peaks contain additional contributions from metallic conduction bands. 

For adsorbed naphthalene, the LUMO+2 peak shifts to lower energies, reducing the dip 

between the peaks as seen in the experimental spectra (Figure 3b). 

Adsorption energies. DFT calculations of adsorbed large organic molecules are often 

performed for only one, rather high coverage to reduce the unit cell size and thus the 

computational effort. This restriction ignores the coverage dependence of many properties, 

including the adsorption energy. For comprehensive comparison with the coverage-

dependent SCAC data, we calculated six different adsorbate structures in wide range of 

coverages.   

The DFT adsorption energies for the lowest calculated coverage ((7×7) structure, coverage 

of 0.020 ML) are -389 kJ/mol for azulene and -345 kJ/mol for naphthalene. These values 

decrease to -308 kJ/mol and -258 kJ/mol at the highest coverage ((3×3) structure, 0.111 

ML). The adsorption energies for all calculated structures are compared to the experimental 

SCAC values in Figure 9. The SCAC data for naphthalene are taken from the literature.19 

For a meaningful comparison of the integral electronic adsorption energies from theory 

with the differential experimental energies, the second order polynomials obtained by 

fitting the experimental data were integrated. For a coverage of 0.083 ML, harmonic zero-

point vibrational energy (ZPVE) and harmonic thermodynamic corrections for the DFT-

derived values were performed, yielding the adsorption enthalpy in addition to the 

electronic adsorption energy directly produced by DFT. 

For azulene, the calculated and measured adsorption energies agree remarkably well and 

deviate by an average of only 8 kJ/mol over the coverage range. In contrast, the adsorption 

energy of naphthalene is overestimated by an average of 53 kJ/mol. An overestimation by 

theory is expected, since the D3 dispersion correction is known for this shortcoming.18, 63-

64 In previous work, DFT-D3 overestimated the adsorption energies of azulene and 

naphthalene on Cu(111) by 28 kJ/mol and 45 kJ/mol, respectively.18 Considering the finite 

temperature of the measurements, neglecting anharmonicities in the calculations may 

additionally contribute to this overestimation: The vertical potential of  the molecule on the 

surface is strongly anharmonic, resulting in an increased adsorption height and decreased 

adsorption energy at elevated temperatures.65 The literature SCAC data for naphthalene 

were measured at 300 K,19 whereas the SCAC data for azulene in this work were measured 

at 150 K. Therefore, the lowering effect of the elevated temperature on the adsorption 

energy by should be stronger for naphthalene. It is, however, impossible to distinguish 

between these effects and the inherent limitations of DFT-D.   

 

Figure 9. Integral adsorption energies for azulene (blue) and naphthalene (red) on Pt(111). 

Experiment (Expt., dashed lines): Second-order polynomials for the measured integral 

heats of adsorption taken from Figure 2 (azulene) and the literature (naphthalene).19 

Theory: Adsorption energies for the six coverages calculated on the PBE-D3 level (open 
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circles). Also included are previous DFT results for naphthalene (triangles35 and 

diamond34). The corrected DFT values for the coverage of 0.083 ML (ZPVE and 

enthalpies) are plotted in progressively lighter colors (filled circles, overlapping).  

 

The calculations correctly reproduce the higher adsorption energy of azulene and the 

general coverage dependences for both isomers. Considering their almost identical 

adsorption heights, it may be concluded that the latter (and the WF changes) are mainly 

determined by Pauli-repulsion, whereas the extra adsorption energy of azulene is 

structurally mainly expressed in the larger deformations of the molecule and the surface. 

However, the theoretical adsorption energies of the two isomers differ by 37 to 50 kJ/mol 

over the whole coverage range, which is distinctively smaller than the experimental 

difference of 85 to 116 kJ/mol. The harmonic zero-point vibrational and thermodynamic 

corrections change the adsorption energy only slightly to larger values (ZPVE: 1-2 kJ/mol, 

thermodynamic corrections 5-7 kJ/mol). As shown in the bottom part of Figure 9, previous 

theoretical studies without dispersion corrections strongly underestimated the adsorption 

energy of naphthalene on Pt(111).34-35 These deviations illustrate that dispersion 

corrections are also necessary in the case of chemisorption.64 In our case, the dispersion 

attraction accounts for approximately one third of the interaction energy, as discussed in 

the SI. 

 

Energy decomposition analysis: The energy decomposition analysis for extended systems 

(pEDA) interprets the adsorbate-substrate bond by quantifying the various contributions to 

the adsorption energy. For this purpose, the system is split up into two fragments 

representing the molecule and the surface. The total interaction energy between these 

fragments can then be divided into different terms to obtain detailed information on the 

surface chemical bond.66-67 The complete pEDA data set for azulene and naphthalene on 

Pt(111) can be found in Table S6 of the SI. Using the natural orbitals for chemical valence 

(NOCV) extension to the pEDA, it is possible to subdivide the orbital interaction into 

deformation densities ∆i, each being a specific charge rearrangement with an assigned 

energy term.67-68 As one fragment is a metal surface, the situation is more complex than for 

molecular systems and many NOCVs contribute to the overall orbital interaction. However, 

the fundamental bonding situation can be traced back to few dominant contributions. 

The overall bonding mechanisms are similar for both molecules, including pronounced 

contributions from surface-to-molecule and molecule-to-surface flows of electron density, 

in analogy to the Dewar-Chatt-Duncanson model.69 Exemplary deformation densities for 

both bonding and back-bonding are presented in Figure 10 for azulene. The full data set of 

the NOCV analysis is presented in the SI. The ten most important NOCV deformation 

densities for both molecules are shown in Figures S6 and S7, while the corresponding 

energies are compiled in Tables S7 and S8.  
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Figure 10.  Selected representative NOCV deformation densities for azulene on Pt(111). 

Red, electron depletion; blue, electron accumulation. (a) Deformation density showing 

electron transfer from the molecule to the surface, isosurface value: 0.003 e-/Å3. (b) 

Deformation density showing electron transfer from the surface to the molecule, isosurface 

value: 0.001 e-/Å3. Eigenvalues  in units of e, energies in units of kJ/mol.  

 

CONCLUSIONS 

The isomers azulene and naphthalene constitute a versatile molecular model system to 

study interfacial interactions of the topological pentagon-heptagon (5-7) defects in 

graphene. The experimental and theoretical analysis reveals that both molecules are 

chemisorbed on Pt(111), but azulene forms the stronger bond. Its differential adsorption 

energy, as measured by SCAC, is larger by 68 to 116 kJ/mol, depending on the coverage, 

and reaches 416 kJ/mol at zero coverage, compared to 300 kJ/mol for naphthalene. The 

stronger bond of azulene and the coverage dependencies of the adsorption energies are 

qualitatively correctly predicted by dispersion-corrected DFT calculations. DFT reveals 

rehybridization towards sp3 and a partially localized -character of the molecule-metal 

bond. The interfacial electron transfer occurs in both directions through donation and back-

donation, resulting in the partial occupation (deoccupation) of orbitals that are unoccupied 

(occupied) in the free molecules, as shown by pEDA. Interpretation of the UP and 

NEXAFS spectra with an MO-projection analysis supports the occupation/deoccupation 

mechanism of the surface chemical bond. It also reveals that the molecular orbitals of 

azulene and naphthalene respond differently to adsorption. This observation connects the 

topology-related differences in the electronic structure (especially the HOMO-LUMO gap) 

with the different bonds to the surface. Our analysis shows that the -topology of an 

aromatic ring system substantially influences its interaction at a metal/organic interface in 

the regime of strong chemisorption. Topology-related effects are therefore relevant for 

various applications, including metal/organic interfaces in organic (opto)electronic devices 

or catalytic reactions of aromatic hydrocarbons on transition-metal surfaces.  

 

METHODS 

Experimental Methods. The adsorption of azulene and naphthalene on Pt(111) was studied 

under ultra-high vacuum (UHV) conditions at base pressures below 2 × 10−10 mbar.  

Azulene (Sigma-Aldrich, purity >99.0 %) and naphthalene (Sigma-Aldrich, purity >99.7 

%) were introduced into the vacuum systems through leak valves after initial pump-freeze-

thaw cycles of the reservoirs, or (for calorimetry) by extensive pumping of the vapor to 

remove impurities. The polished Pt(111) single-crystal surface (purity >99.999 %, 

roughness < 0.01 µm, orientation accuracy < 0.4°, from MaTecK/Germany) was prepared 

by iterated cycles of sputtering with Ar+ ions (1 keV, 15 µA, 30 min), O2 treatment (5·10-7 

mbar, 750 K, 30 min), and flash annealing (1100-1300 K). Surface cleanliness and structure 

were confirmed by XPS, LEED and STM. Sample temperatures were measured with a type 
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K thermocouple directly mounted to the single crystal. Coverages are given in the unit 

monolayer (ML) defined as the number of molecules per platinum atom in the Pt(111) 

surface (atomic density of the Pt(111) surface: 1.50·1019 m-2). If a “full monolayer” is 

mentioned, this corresponds to one complete layer of molecules on the surface (which 

corresponds to 0.111 ML for azulene). 

XPS and UPS were performed with a PHOIBOS 150 electron energy analyzer equipped 

with an MCD-9 multi channeltron detector. For XPS, monochromatic Al-Kα radiation from 

a SPECS XR 50 M X-ray anode with a FOCUS 500 monochromator was employed. He-I 

UP spectra and work functions were measured with a UVS 10/35 gas discharge lamp. 

NEXAFS spectroscopy was performed at the synchrotron radiation facility BESSY II 

(Helmholtz-Zentrum Berlin) using the HE-SGM dipole beamline, which provides linearly 

polarized radiation with a polarization factor of 0.91 and an energy resolution of 300 meV 

at the carbon K-edge. The partial electron-yield (PEY) mode was used with a retarding 

field of -150 V and a channeltron detector voltage of 2.2 keV. Further information on the 

data treatment can be found in the SI.  

The SCAC experiments were performed in a UHV chamber equipped with facilities for 

XPS, LEED, Auger electron spectroscopy (AES), and low-energy ion scattering 

spectroscopy (LEIS). The apparatus and procedures for SCAC have been described in 

extensive detail previously.38, 70-71 Briefly, the Pt(111) samples used in the SCAC 

experiments are 1 μm thick single-crystal foils and were provided by Jacques Chevallier at 

Aarhus University. The sample was cleaned by gentle Ar+ sputtering followed by repeated 

cycles of O2 treatment at 10-6 mbar and 873 K and annealing at 1123 K in UHV. After this 

treatment, impurities were below the Auger and XPS detection limits, and LEED showed 

the spots expected for Pt(111). The heats of adsorption and sticking probability were 

measured simultaneously as a pulsed molecular beam of azulene was dosed onto the Pt 

surface. The molecular beam was created by expanding azulene vapor (0.2 – 0.9 mbar) 

through a glass capillary array, collimating it through a series of five orifices that are cooled 

with liquid nitrogen, and then chopping into 102 ms pulses. The heats were measured with 

a pyroelectric ribbon gently pressed on the backside of the Pt crystal. The sticking 

probabilities were measured with a quadrupole mass spectrometer (QMS) using the King 

and Wells method.72  

Density Functional Theory Calculations. DFT calculations applying periodic boundary 

conditions were performed using the Vienna Ab Initio Simulation Package (VASP)73-76 

with the generalized gradient approximation (GGA) proposed by Perdew, Burke, and 

Ernzerhof (PBE)77 for the exchange-correlation functional in combination with the D3 van-

der-Waals correction scheme with Becke-Johnson-type damping,78-79 and the projector-

augmented wave (PAW) ansatz80-81 for the atomic cores. A plane-wave cutoff energy of 

350 eV and a vacuum layer of 30 Å were chosen. For all calculations a 24×24×1 

Monkhorst-Pack k-point mesh was adjusted to the supercell of the 4-layer slab, leading to 

an 8×8×1 k-mesh for the (3 × 3) supercell. 
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X-ray absorption spectra were calculated using the pseudopotential plane-wave code 

CASTEP-18.1.82 For the XPS shifts the delta self-consistent field (DeltaSCF) method of 

constraining electronic occupations to resemble full core-hole excitations was used. 

NEXAFS spectra were calculated using on-the-fly generated USPPs and the CASTEP 

module ELNES83 and the transition-potential approach.84-85 For more details on the 

computational settings and analysis see the SI and Diller et al.86 For more details on the 

implementation of the molecular orbital projection method, see Maurer and Reuter.87 

The energy decomposition analysis using periodic boundary conditions (pEDA) was 

performed in ADF-BAND 2018.105 using the PBE functional and the DFT-D3 dispersion 

correction scheme,77-78, 88 a TZ2P basis set89-90 and considering relativistic effects with the 

zeroth order regular approximation (ZORA),80-81, 91 with the pEDA as implemented in the 

ADF-BAND package 201866, 92-93. The optimized (2√3 × 2√3)R30º structures were taken 

from the PBE-D3 calculations in VASP, in ADF-BAND a 7×7 k-grid and 2-dimensional 

periodic boundary conditions were used.  

The pEDA method allows to decompose the bond energy into several physically well-

defined terms, thus permitting a more detailed interpretation of the character of the 

chemical bond between two fragments.67 In our case the fragments are chosen to be the 

molecule and the surface in their respective singlet electronic states. The convergence of 

the pEDA values with the k-space sampling density is non-trivial for metal surfaces66 and 

has been checked thoroughly (see Table S9 of the SI). The NOCV extension of the pEDA 

method also allows to decompose the orbital interaction term ∆Eorb into its constituent 

subterms. In this scheme the electron density difference ∆ caused by the orbital interaction 

can be expressed by a set of fragment orbitals. All of these fragment orbitals are paired 

according to their matching eigenvalues of ±i. They can be discussed very instructively in 

the form of their deformation densities ∆i. Each deformation density shows the electron 

flow caused by the formation of the interaction between the corresponding pair of fragment 

orbitals and can be connected to the energy gained and the charge transferred (which equals 

the eigenvalue i of the deformation density). Because of technical restriction of the 

method, the calculations for the NOCV extension of pEDA were performed only for the -

point, the difference in the regular pEDA terms is small and discussed in Table S10 of the 

SI. Further details for all DFT calculations can also be found in the SI. 
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