A Thesis Submitted for the Degree of PhD at the University of Warwick

Permanent WRAP URL:

http://wrap.warwick.ac.uk/137345

Copyright and reuse:

This thesis is made available online and is protected by original copyright.
Please scroll down to view the document itself.
Please refer to the repository record for this item for information to help you to cite it. Our policy information is available from the repository home page.

For more information, please contact the WRAP Team at: wrap@ warwick.ac.uk

THE DESIGN OF CONTROL SYSTEMS

FOR AUTOMATED TRANSPORT

BY

LAURENCE DOWNTON BURROW

A thesis submitted at University of Warwick
for the degree of
Doctor of Philosophy

Abstract

The design of control systems for automated transport has been discussed in two parts. Part one covers the influence of system structure on the properties of the system.

In it, the relative merits of centralised and decentralised controllers are discussed. It is concluded that decentralised, probably hierarchical structures, are most appropriate for transport control. Particular attention has been paid to the design of complex systems to ensure a good service dependability. A 'fail-soft' design is required, that is, one in which there is a planned, gradual degredation of a system following a failure. The design features necessary for such a characteristic are discussed in detail. Also discussed are the particular measurement and communication requirements for automated transport.

Part two of the thesis examines in detail three of the necessary control functions, namely the longitudinal control of venicles, emergency control and junction control. There are two broad categories of automated control, synchronous and asyachronous. The former has been the subject of considerable research, the latter has been completely ignored. It is shown that, contrary to the stated views of many researchers, asynchronous control can achieve better

Abstract

The design of control systems for automated transport has been discussed in two parts. Part one covers the influence of system structure on the properties of the system.

In it, the relative merits of centralised and decentralised controllers are discussed. It is concluded that decentralised, probably hierarchicsl structures, are most appropriate for transport control. Particular attention has been paid to the design of complex systems to ensure a good service dependability. A 'fail-soft' design is required, that is, one in which there is a planned, gradual degredation of a system following a failure. The design features necessary for such a characteristic are discussed in detail. Also discussed are the particular measurement and communication requirements for automated transport.

Part two of the thesis examines in detail three of the necessary control functions, namely the longitudinal control of vehicles, emergency control and junction control. There are two broad categories of automated control, synchronous and asyachroncus. The former has been the subject of considerable research, the latter has been completely ignored. It is shown that, contrary to the stated views of many researchers, asynchronous control can achleve better
performance levels than synchronous controllers, for example, the capacity of junctions can be almost doubled by using asynchronous control. Asynchronous systems have other important advantages over syachronous systems, for example, stations and junctions can be made more compact, thus minimising track costs (which comprise a major fraction of system costs), and failures are much less likely to cause major disruftion.

Asynchronous control is usually associated with vehiclefollower systems. However a novel form of asynchronous controller has been devised and is presented in this thesis. This scheme, the asynchronous marker-follower control combines the advantages of synchronous controllers (simple processing and low communication requirements) with the advantages of a synchronous controller (an efficient use of track and a good response to failures). The normal performance of this scheme is as good as for vehicle-follower control. It does not have as good fault charscteristics but offers much lower communication costs and simpler control.

CONTENTS

Preface 3
Introduction 5
Chapter 1 The Structure of Complex Control Systems
1.1 The Importance of System Structure 17
1.2 Types of System Structure 16
1.3 Fossible Control Structures for
Automated Transport 19
1.4 The Choice of Subsystems 26

1. 5 Structure \& Subsystems for Automated Transport Control 28
Chapter 2 The Design of 'Fail-Soft' Systems
2.1 Introduction 34
2.2 The Definition of the 'Fail-Soft'
Characteristic 37
2.3 Potential Performance, Disruption and
Operational Performance 41
2.4 The Control of Unanticipated Faults 42
2.5 The Control of Anticipated Faults 43
2.6 Types of Faults 44
2.7 Sources of Faults 45
2. 8 The Fropagation of Faults 45
2.9 Classes of Fault Control 46
2.10 Monitoring 49
2.11 The Requirements of a Monitor 49
2.12 Fault Location 51
2.13 Error Detection Techniques 52
2.14 Fault Recovery 55
2.15 Vital Functions 57
2.16 Safety 57
Chapter 3 Measurement and Communication inAutomated Transport
3.1 Introduction 60
3.2 System Features 61
3.3 The Degree of Automation Sought 62
3.4 Comrunications involved in Ofen-Loop, Closed Loop and Fault Control 62
3.5 Methods of Directing Information to the Correct Recipient 56
3.6 Multiple Use of a Single Channel 66
3.7 Addressing 72
3.8 Measuring 77
Chapter 4 Longitudinal Control
4.1 Introduction 83
4.2 Fundamental Performance Measures 84
4.3 Intermediate Performance Measures and Desirable Control System Attributes 91
4.4 Worst-Case Versus Probabalistic Criteria 93
4.5 Safety, Headway and Capacity 98
4.6 Choice of Normal and Emergency Headway 101
4.7 Control of Vehicle Movements 109
4.8 Network Management of Vehicle Fleet 109
4.9 Performance Characteristics of Fleet Management Techniques 117
4.10 Synchronous Control 122
4.11 Quasi-Synchronous Control 137
4.12 Asynchronous Vehicle-Follower Control 141
4.13 Actual Vehicle Controllers 171
Chapter 5 The Emergency Backuo to the Longitudinal
Control
5.1 Introduction 194
5.2 The 'Fail-Soft' Emergency Backup 195
5.3 The 'Two-Part' Emergency Backup 202
5.4 Recovery Strategies 203
Chapter 6 Junction Control
6.1 Introduction 215
6.2 Measures of Junction Performance 216
6.3 Geometric Constraints of Junction Layout 217
6.4 Quasi-Synchronous Control of Junctions 223
6.5 Asynchronous Control of Junctions 228
6.6 The Performance of Intersection Control
Strategies 240
Chapter 7 The Computer Simulations
7.1 Introduction 257
7.2 Simulation Models 268
7.3 Intersection Under Vehicle-Follower
Control 258
7.4 Network Under Vehicle-Follower Control 271
7.5 Intersection Under Marker-Follower Control 284
7.6 Monte Carlo Simulation of Merging
Strategies 286
7.7 Cther Programs 287
Conclusion 288
Appendices
1 Simulation of Asynchronous Sincle Channel
Commaications2 Survey of Measurement and CommunicationTechniques3 Derivation of Formula to Calculate Inter-mediate Speed
4
Sumnary of Lane Change Conditions forAlternate Priority
5
Mean Platoon Size for the Negative
Exponential Distribution
6
Bibliography
7
Published Papers
8
Conputer Programe

Preface

In this thesis, the design of control systems for automated transport is approached from a systems point of view. The first section discusses general aspects of control system desizn, namely, system structure, design for reliability and communication requirements. The treatment of the subject is novel and in particular, Chapter 2 - 'The Design of 'Fail-Soft' Systems', is completely original. The second section of the thesis discusses in detail, the longitudinal control of vehicles, emergency control and junction control. In all a novel viewpoint is adopted.

There are two broad categories of transport control, synchronous and asynchronous. The former has been the subject of considerable research, the latter has been completely ignored. This thesis concentrates on asynchronous control. Contrary to the views stated by many researchers, it is shown that asynchronous control can achieve a very much better performance than synchronous controllers. In addition, a completely new form of asynchronous control has been devised, and is presented in this thesis. This scneme, the asyncnronous marker-follower control, combines the advantages of synchronous controllers (simple processing and low commanication requirements) with the advantages of asynchronous
controllers (an efficient use of track and a good response to failures).

In the last section of the thesis, the computer simulation models, used to examine the control scnemes, are described. The interactions between automated vehicles are farticularly complex, consequently clear presentation is imvortant. To this end a number of graph plotting routines were written and a moving picture display technique develofed.

Each Chapter is supported by a bibliography of references particularly relevant to the chapter. In addition a comprehensive bibliography is contained in the Appendices.

It is appropriate at this point to acknowledee the many people who have helped me in this work. Foremost is my tutor Dr T H Thomas without whose criticism and insight little would have been achieved. Also Alan futme who helped with the many tricky computing problems, my sister who typed the work, and the Science Research Council who financed the work.

Introduction

The continuously rising social and economic costs of current transport systems have stimulated considerable interest in alternative transport methods.

Automated transport systems are the particular interest of this thesis. These are characterised by small unmanned automatic vehicles operating along a fixed reserved track. These vehicles may carry from two to a hundred passengers at speeds ranging from $15 \mathrm{~km} / \mathrm{hr}$ to $70 \mathrm{~km} / \mathrm{hr}$. Vehicles may ply a single route, stopping at each station, or operate in a network and offer an origin-to-destination, no-stops service. Vehicles may run with time headways (time separations) varying from $/ 2$ a second up to 2 minutes.

Such systems potentially offer the speed and comfort of private vehicles combined with the economy and freedom from stress of public transport. The faster, more predictable, response of automatic controllers, compared with the human operator, may also give increased capacity and better safety.

Much of the early work in automated transport was directed at establishing the particular role and qualities such systems could offer. Many hypothetical schemes were propounded most of which are now conaidered to be unrealistic, both economically and technically. (1-6) More recent work has concentrated on less demanding projects, for example, thirty
vehicles to controi rather than two thodsand, five kilometres of track rather than several hundred, vehicle headvays of $1 / 2-1$ minute rather than one second and shuttle-locp services instead of dedicated orisin to destination services.

There has been considerable interest in the optimal control of particular operations in automated transcort, for example, longitudinal controllers, merging controllers, vehicle dispatching. However few researchers have taken account of the difficulty of implementing algorithrs, the costs of measurement and communications, the constraints imposed by the rest of the system, all of which inevitably reduce the effectiveness of their schemes. (7-10)

There is little operational experience of automated transport. Only a few systems have been built, notably at Morgantown, west Virginia, AIPTRANS at Dallas/Fort :Worth airport and BART at San Francisco. None have been running sufficiently long for much useful data to emerge. Hovever recent analyses of automated transit have been produced by the United states' Office of Technology asseasment. These publications have emphasised the need for substantial further research in number of fields, (11-12) namely

* System reliability - all the systems so far built have suffered from poor reliability.
- System integration - the increasing complexity of automated systems requires that the entire system design is carefully controlled, with specific design goals and a cleэr urderstanding of the interactions between subsystems.

Abstract

= Longitudinal control - automated systems need to operate at close headways. Better normal and emergency controllers and strategies have to be developed to allow these close headways to be achieved safely.

The Layout of the Thesis

The discussions which follow are divided into three main parts.

Part one covers the influence that the system structure has on the properties of the system. Thus chapter one considers likely structures for automated transport controllers; chapter two discusses in detail the design of 'fail soft' systems; chapter three identifies the particular measurement and communcation requirements of an automated transport control network. These particular features have been chosen because they are fundamental factors in all transport control schemes, and must figure in any cost function related to the 'whole' system.

In part two (chapters four to six) are examined in detail three of the necessary control functions in automated transport. These are:

Chapter Four - The Longitudinal control of the Vehicle The amount of information transfer required for track/venicle comunication is an important parameter. To comminicate less is cheaper but requires substantial onboard computation. To communicote more may allow a better overall control to be achieved but reduces the autonomy of the vehicle and possibly
reduces the resistance of tne system to faults. The design of control algorithms with limited information transfer is discussed in detail and related to control schemes already in existence.

Chapter Five - The Emergency Backup to the Longitudinal Controller - In addition to the normal control another is required, the independent safety control. This oversees tne normal controller. It is generally a very sinple, reliable system monitoring only the vehicle separation, capable of issuing only one command (typically to brake at an emergency rate to zero velocity). Autonomy from the normal control system is essential to ensure that failures in the normal control system are independent of failures in the safety system. This reduces the likelihood of a joint and possibly catastrophic failure. The normal and emergency control systems will interact, particularly when the track is being operated near maximum capacity. There are costs associated with both unnecessary emergency manoeuvres and undetected unsafe situations. The satisfactory balance of these two costs will be an important design consideration.

Chapter Six - The Junction Controller - Junctions are usually the capacity limiting elements of a transport system. Control policies must be developed that allow high flows through the intersections, yet limit delays and the distances required for preparatory manoeuvres. A number of alforithms for ordering vehicles througn the junction are presented. Their performance is analysed and compared.

Finally in part three of the thesis the modelling techniques, used to examine the contrsi 3lforithms devised, are explained.

Automation of Transport

An automated transport system is a highly complex organisation involving many interacting operations. People have to be informed; vehicles have to be manoeuvred, directed and dispatched; failures must be identified and rectified; safety must be ensured.

Automation commits to hardware functions previously carried out by humans. The designer encodes the functions into a system as regetitive, preprogrammed, routine strategies which govern the response of the system to its environment. However flexibility is reduced since automation cannot build In responses to novel unforseen events. Nhen these occur the automated controller must refer control back to a human operator. A totally unmanned transfort system is consequently unlikely ever to be achieved. Staff will still be required at stations, for maintainance, and for ensuring the safety and security of passengers.

- Automation has been applied to the vehicle, to many station functions and to the centralised strateaic control of vehicle movements. The value of such autcmation has yet to be conclusively established. Mony aspects of it have been
extensively studied, often with optimisation in mind, yet those syatems that have been built bove not performed well. They have been costly to build and oyerate, have not achieved significant reductions in staffing and have not provided the quality of service that had been expected of them.

Control schemes are required which will eqable the system to operate well under all foreseeable conditions. Their design is challenging. A system has to be created that has few precedents and where the scale of capital outlay precludes iterative (evolutionary) design rethods. In these complex systems, governed by cost functions embracing economic, social and technical factors, design policies must find the best operating regions. Design is an optimisation proceedure. Its purpose is to select, from the group of all the possible systems, the one which most effectively satisfies the problem specification.

This thesis discusses some aspects of the design of the control system for an automated transport network. A 'systems' approach has been used. This approach is particularly applicable to complex systems (systems which require substantial effort and time for their appreciation and understanding). In a complex system, future states cannot be easily predicted, particularly winen the system is subject to randor events. There are two main reasons for this.

- The complexity of chenomena for which a complete analysis is very costly.
- The limited ability of humans to cone with analysis. As a result the miscessful desiza of large scale systems has
invariably been done by decomposing the system into a numbe: of simpler sub-systems, each with its own goals and constraints.

The systems viewpoint assumes that it is both feasible and useful to breakdown the oribinal design problem into 9 number of independent sub-problems (or sub-systems). Only the outputs of each sub-system are considered as relevant $=0$ the analysis of overall system behaviour. The functionirs of each sub-aystem is only defendent on its inputs. Of central importance is whether an arranement of sub-systems can be designed to act in an overall system optimal manner and how all the units, acting according to their own goals, can be made to achieve the overall goal. To optimise a single suosystem contained within a large system without regard to the effects of interactions can lead to such a degraded performance elseihere in the system, that the overall performance is worse than without any optimisation. Coordination is requized, that is, a suitable balancing factor from the rest of the system must be made visible to the designer of a particular sub-system. Then he, in minimising his own cost function, will be able to apfroximate the total system oftimisation. - The process of design comprises the following activities.

Specification
(1. Definition of objectives
(2. Formulation of measures of effectiveness

Search for	
an optimal	(3. Generation of alternatives
solution	(4. Evaluation of alternatives

Finalising
(5. Selection
(ó. Documentation

The design specification is a fundamental stage. All the influences, ranging from variations in physical variables to political conditions, that will act upon the system and its constituent sub-systems, must be detailed. The designer works to this specification; the inaccurate definition, or the designer's incorrect interpretation of it, will eventually result in faulty operation.

In his search for the optimum solution the designer needs measures of effectivness, both for the system and the individual sub-systems comprieing it. All the features of the proposed solution are evaluated in terms of these common. measures. Possible system configurations will compare differently according to the measures chosen, consequently their definition will determine the final choice of design. All optimal searches take time. To optimise or improve a design requires that understanding be increased. To obtain the knowledge necessary for that understanding takes time. Large scale systems change as processes change and as technology advances. If these changes take place faster than the control system can be designed and implemented, then the 'optimal' desipns produced will no longer be optimal. There is a dilemma between needing to act withcut delay and understanding the situation better. Also the depth of analysis chosen, should depend on the likely benefits to be reaped. In complex design situations the dilemma is resolved by decomposing each major problem into several simpler problems.

Finalising

> (5. Selection
> (ó. Documentation

The design specification is a fundamental stage. All the influences, ranging from variations in physical variables to political conditions, that will act upon the system and its constituent sub-systems, must be detailed. The designer works to this secification; the inaccurate definition, or the designer's incorrect interpretation of it, will eventually result in faulty operation.

In his search for the optimum solution the designer needs measures of effectivness, both for the system and the individual sub-systems comprieing it. All the features of the proposed solution are evaluated in terms of these common. measures. Possible system configurations will compare differently according to the measures chosen, consequently their definition will determine the final choice of design.

All optimal searches take time. To optimise or improve a desisn requires that understanding be increased. To obtain the knowledge necessary for that understanding takes time. Large scale systems change as processes change and as technology advances. If these changes take place faster than the control system can be designed and implemented, then the 'optimal' desipns produced will no longer be optimal. There is a dilemma between needing to act withcut delay and understanding the aituation better. Also the depth of analysis chosen, should depend on the likely benefits to be reaped. In complex desion situations the dilemma is resolved by decomposing each major problem into several simpler problems.

Local optima are then somght and combined to form an overali 'good' system. This sperds up the design process at the cost of some loss of potential system performance.

The evaluation of design alternatives reauires models as it is only rarely that designs can be built, tested and rebuilt during the course of a desizn. Models are abstractions (hypotheses, theories, simulations) about the sybtem under consideration. They have to be sufficiently simple to be comprehensible, yet complex enough to yield useful information when extrapolated into unknown repions. :Aodels are recessarily distortions of the real world. Trey must be tested and validated with known data to establish their significance and region of use. Measurements are then made on them in the hope that the results may be used to predict the reactions of the real-world system. However any extrapolation from a model is prone to unforeseeable error. Optimal decisions in the afproximated world may not necessarily even be good decisions in the real world. Models say nothing about the effects of what is excluded and prevent the recognition that what is excluded may have some effect. A variety of models may be required each illuminating different aspects of the subject, so that understanding of the subject is increased.

In the design process, selection follows analysis. Selection is the art of balancing all the features of the various candidate solutions. It is not primarily a technical problem, the analyst removes as many of the tecnuical uncertainties $9 s$ possible. He defines the issues and

Automated Highway Systems
TRW Report 06818-W006 RO-00
Prepared for US Dept Transportation Contract C-353-66(NEG)
Nov $1969 \mathrm{M} / \mathrm{F}$ PB-191696
Chestnut H
Communication \& Control for Transportation IJEE PRUC, Vol 56 NO PP 544-555, 1968

3 Godfrey M B
On the Operation of Automated Ground Transportation Systems
Part 1: Urban Problems and Perspectives
Trans. IEEE, VT-22,1,PP 1-6, February 1973
4 Hamilton William F 11
Automated Performance Requirements for Advanced Urban
Transportation systems
Advanced Urban Transportation Systems TRI 5
Carnegie-Mellon University, 1970
5 Com R
Personal Rapid Transit - A Case for Small Vehicles
Proc 2nd Symp on Advanced Transport Systems in British
Cities
Urban Transport GP, Warwick University, 1974, PP 65-76
Smith D B and Yormark J S
PRTPerformance Requirements and Allocstion
Personal Rapid Transit (Ed J E Anderson et al) lst
Naticnal Conference on P R T, Minneapolis. Nov 1971
Chu K
Optimal Decentralised Resulation for a String of Coupled Systems
IEEE Trans Automatic Control Vol AC-19 No 3 PP 243-246, 1974

Garrard W L, Gregory, et al
Suboptimal Feedback Control of a String of Vehicles Moving in a single Guideway Transportation Research Vol 6, PP 197-210, 1972

Robertson D \& Bretherton $E D$
Cptimal Control of an Intersection for any Known Sequence of Vehicle Arrivals
AFCET, Proc. Conf. 'Traffic Control \& Transportation
Systems'
Monte Carlo, sept 1974. Published by North Hollaid Fub Co

10 Sarachic Kai Chuing Chu
Real Time Merping of High Speed Vehicular Strings
Trensportation science vol 9, No 2, PP 122, May 1975
11 Automated Guideway Transit
An Assessment of PRT and Other liew systems
United States Office of Technology Assessment June 1975

12 Automatic Train Control in Rail Rapid Transit United States Office of Technology Assessment May 1976

13 De Neufville R, Stafford J H
Systems inglysis for Engineers and Managers McGraw Hill 1971

14 Gosling w
The Destign of Engineering Systems Heywood and Co Ltd London 1962

15 Hall A D
A Methodology for Systems Engineering Van Nostrand 1962

16 Loasby B J
Choice Complexity and Ignorance
Cambridge University Press 1976
17 'ismer D A
Optimisaticn Methods for Large Scale Systems with Applications McGraw Hill, New York 1971

1. The Structure of Complex Control Systems

1.1 The Importance of System Structure

The designer of an automated transport network must choose which functions are to be automated and select an appropriate control structure. He must determine how the various control tasks will be distributed between the vehicle, the trackside, and any central controller. His design should minimise cost, ensure reliability, localise breakdowns, and facilitete maintainance and repair.

The choice of structure will determine the communications that will be required (communication links contribute substantially to both the cost and unreliability of a system). A suitable structure will allow the system to have a fail soft' character, that is, the system degrades gently as nonessential but useful information is lost.

The benefits which accrue from a judicious design of the control structure far outweigh those that can be achieved by optimisation at a detailed level. Fet system atructure is rarely explicitly considered.(1)

The first stage of system design should be the specification of the subsystems and the structure of interconnections. The choice of a structure for a system is not amenable to formal techniques of analysis. Although some
work has been done concerning the theory of structure, the choice of an appropriate structure is usually made on the basis of a comparison with other systems exhibiting desirable properties. (1-2)

1.2 Types of System Structure

Two distinct structures can be identified in a system.

* The physical or hardware structure: The distribution of system hardware around the geographical region and the communication links supplied to interconnect them.
* The information or software structure: The definitien of functions required to perform the necessary control decisions and the information flows that must pass between them.

[^0]cheacer relative to commaications. These trends favour the use of local autonsmous dedicated processors having low communication requirements. (3)

1. 3 Possible Control Structures for Automated Transport

The most common control structures that are proposed for automated transport systems are:-

- Centralised
* Distributed network
* Distributed hierarchical

Centralised Structures - In centralised control structures, all measurement data is supplied to a central controller, and all control actions emanate from the central controller. All information about the state of the system is freely available for use anywnere in the system so maximising the potential performance the system can offer. (Dia 1)

Centralised control systems use a large digital
computer, time shared between a large number of functions. The use of a single resource (the central processor) shared by many users is governed by queuing type phenomena. Delays rise non-linearly with derand; near to saturation (about 80\% capacity of the machine) delays rise rapidly and are highly variable. This sharing causes strong interactions between users which have therefore to be carefully organiged
and controlled to ensure satisfactory operation. The performance of centralised sustems is limited by the sfeed of response of the central processor. (4)

In situations where the sueed of response is not critical, well understood centralised control structures may be sble to offer a hish level of performance. This is because all the system information can be used, even where its benefit is marginal.

Several features of centralised systems militate against their use, esvecially the following.

* Communication costs are inign as wide bandwidth channels to the processor are required. This effect is particularly marked if long distance channels are used to link all parts of an extended network to the central processor, as, for example, would be the case in an autorated transport network.
- The concentration of control activity into one closely connected area makes the system very vulnerable to faults. A single fault can easily affect many functions simultaneously. Isolation of a fault is difficult because of the high connectivity between functions, via the memory and CPU of the computer.
- The complexity of interactions between subsystems makes the system oferation difficult to understand. As a result it becomes more prone to software faults. An incomplete knowledge of the possible system states is more likely and may lead to undesirable and possibly unsafe conditions.
- The greater number of system states makes fault monitoring and rectification difficult and costly.
* There is an increased possibility of unforeseen feedback loops occuring which ray lead to unstable behaviour.

Distributed Networks - An array of locally sited dedicated processors, each performing particular tasks are connected together. The characteristics of such systems depend on the style of system organisation chosen. The most common arrangement is the 'bus-bar' type in which all the system units are multiplexed onto a high-capacity communication link (the ous-bar). (Dia 2)

Bus-bar control structures are particularly suited to digital systems. Indeed they closely resemble centralised computing systems but with the increased speed and flexibility that distributed parallel processing allows. The capacity of the bus-bar limits syster performance as it is governed by queuing phenomena similar to those experienced by centralised computing systems.

Bus-bar systems have a number of useful features. (5)

- - Interconnections between functions are created by wessage addressing, consequently the system organisation is totally controlled by software. This can give great flexibility.
- Costs are reduced as there is only one communication link, although a higher bandwidth will be required of it.
- The simplicity of the bus-bar fermits standardisョtion of the communications hardware. This reduces the costs $0=$ fault diapnosis, repair and maintainance, and facilitates the use of fail-safe circuitry and high reliability desian.
- As duplicate standby equiprent can easily be connected to the bus, redundancy can be very flexibly incorporated, particularly if one standioy unit may be used to replace any of several similar ones.
- Bus-bar systems can be easily reconfigured. जhis allows the system to change easily as requirements change, so reducing the costs of obsolescence.

Bus-bar systems suffer from one major disadvantage. The multiplexed communication link is very vulnerable to both hardware and software fallures. Both can easily cause a rapid system shutdown. There is no inbuilt protection against fauits causing incorrect nddressing equivalent to a random connection between subsystems. To locate and diagnose such a fault is likely to be very difficult, particularly if it were an intermittent fault. Some protection con be grovided against hardware faults by the use of redundant comanication links. However this substantially increases installation and material costa particularly if each cable is housed in a separate conduit.

Hierarchical Distributed Svatems. - A hierarchy is malti-
layer control organisation. It can be considered as a filter.
each processing layer being associated with a range of frequencies or band of time scales. Together the layers cater for the entire renge of frequencies apparent ir the system. Only at the first layer are found the actual physical measurement and control variables. Data is progressively condensed as it moves up the structure. Decision times become longer, control action is more general and information has a more global context. (Dia 3) Each unit ia a hierarchy operates semi-autonomously in a specialised role. It receives limited strategic commands from its superior node. It passes on delegated commands to its subordinate units. In the absence of new commands the unit has a regulating function that it can execute using stored earlier commands. Feedback loops are closed locally, thus minimising the difficulty of controlling complex functions and corrpensating for long time lags.

Information is only selectively directed up a hierarchy. Consequently not all the system information is available everywhere in the network. Information of marginal value from elsewhere in the system cannot be used. This has several consequences. ($2,4-9$)

- Hierarchies may use more equipment than similar centralised systems since individual functions are not shared. However this also allows functions to run in parallel and simplifies their design.
- The ultimate performance of a hierarchical system may be less than an equivalent centralised system.

Greater generality Longer timescales

Greater detail Shorter timescales

DIA. 3 Decentralised hierarchical network

* As only essential information is transmitted around the system, communcation costs are minimised.
- The system can expand or contract locally without strongly affecting the rest of the system.

The most important characteristic of hierarchies is the autonomy of the subsystems within the structure. The decoupling and isolation of subsystems simplifies their design. As a result their operation can be more confidently predicted and fewer desiẹn faults result.

The strong control of communication provision minimises the likelihood that faults will create informal information paths along which to propogate. This simplifies fault isolation, diagnosis and repair. It also increases the resistance of the system to disturbances, changes in the operating environment and failures.

The three important features of hierarchical systems, their intrinsic resistance to faults, their relative ease of design, and their flexibility, all favour their use in large scale systems where reliability is important.

Bus-bar systems probably offer greater flexibility than the hierarchical equivalent. However their vulnerability to faults constrains their use except in very predictable environments and for syatems requiring only moderate amounts of communication.

Centrolised systems offer an efficient use of equipment. However against this must be set their complexity, vulnerability to faults and high commanication coste.

1.4 The Choice of Subsystems

There are many ways of partitioning a system into a set of interconnected subsystems. The decomposition depends not only on the choice of system structure but also on a number of other factors. Of these the most important is the need to partition the system into sections of manageable complexity. A unit too large to be understood is likely to be inadequately specified, to perform badly and when it fails to be tite consuming to repair or expensive to replace. A unit that is too small will incur unnecessary desien overheads and will increase the problem of interconnection and coordination between units.

A simple measure of complexity could be - the number of significant states a device can adopt. However this takes no account of the evolution of the device (previous generations of a device give operational experience which allows the new generation to be more readily understood) or of the skill of the designer (his training and previous experience accelerate his understanding of new device). such factors alter the way in which complexity is perceived. A better understanding of how complexity is perceived and of the human approach to problem solving would allow design effort to be more effectively deployed. (10-15)

Subsystems should correspond to local concentrations of activity in the system. These are areas in which cheap local information is available and to and from which relatively little communication is required. This limitation
on the number of inputs and outfuts is also a limitation on the number of states a subsystem can adopt, and hence on its complexity.

The new design effort can be minimised by choosing subsystems that correspond closely to already developed systems. This is an evolutionary design process. However where sygtem requirements have changed and substantial modificョtions are required, it is often better to incorporate the desion experience into a new custom-made device.

Timescales - A property of major importance is the tirescale of a subsystem. Any system will respond to a range of timescales or band of sibnal frequencies. (2) The measurement transducers at the systers interface with its environment will generate raw signals containing all these system frequencieb. A system comprises function subsystems which process input information and generate outputs accordingly. Associated with these processors is the property of 'decision tiae' or 'processor speed'. This is related to the maximum bandwidth the processor can handle (analogue processes) or to the computing time required to process a sample of input information (digital processes). Each function in a system thus has a minimum time or maximum frequency it can respond to. Only information changing slower than the processor limit can be accepted from the input or transmitted from the output. Furthermore there will be a time delay before a change at an input can affect an output. This delay will be at least a decision time (or the bandwidth limit equivalent).

This 'time-scale' feature has several effects:

* The longer the time delays inherent in a system loop, the more autonomous a subsystem must become. The degree of autonomy of a subsystem is related to the time interval over which the subsystem must function independantly and satisfactorily.
- Upper level units concerned with the oftimisation of lower level processes must have a longer time scale than those lower level processes, since to collect the necessary information to reduce uncertainty several decision periods of the process must be observed. To evaluate the effect of an input to the lower level process, the upper level unit cannot work faster than the lower unit it is optimising. (1-2)
1.5 Structure and Subsystems for Automated Transcort Control

The control system for an automated transport network has to perform the following activities.

* Supervisory control: - Dispatching, scheduling and routing of both full and empty vehicles, start-up and shut down and possibly long term optimisaticn.
- Longitudinal track-side control: - Transmitting commands to vehicles (The control commands allow the vehicle to be manoeuvred at stations, through junctions and along the open track).
- Vehicle control: - Regulating vehicle speed, position and acceleration according to information from the trackside.

[^1]

DIA. 4 Two tier localised control

DIA. 5 Three tier localised control

DIA. 6 Two tier centralised control
all the system. This arrangement incurs very hesvy communication costs. (Dia 6)

Whichever organisation is adopted, the controller must take account of the changing fhysical structure of the system, as vehicles move alon the track and cross the boundaries between track sectors. There will always be some difficulty at the change over: Either the vehicle will be controlled by both controllers simultaneously, or by neither, both options involve some hazard. (16)

1 Langefors B
Theoretical Analysis of Information Systems
Studentlitteratur, Auerbach pub Philadelphia, 1973
2 Mesarovic M D, Macko D, Takahara Y
Theory of Hierarchical Multilevel Systems. Academic Press, New York, 1970

3 Lala J H
A Cost and Reliability Model of Partitioned Digital Systems
M.Sc. Thesis, Dept of Aeronautics, Massachusetts Institute of Technology, Feb 1973

4 Houkins A L
Hierarchical Autoncmy in Spacebourne Information Processing
IFAC 6th Congress, Boston/Cambridge, Mass, Aug 1975
Smith TE
Networking of Computers in Todays Industry
ISA Annual Conference - Advances in Instrumentation, vol 30, Pr 1, Oct 6-9 1975

6 Conant R C
Information Flows in Hierarchical Systems
Int Jral Gencral Systems, Vol 1, PP 9-18, 1974
7 Schoeffler J D, Lasdon L S
Decentralised Plant Control
ISA Trans. vol 5 No 2, PP 175-183, April 1966
Steel Industry Project Staff
Hierarchical Control Systems in the Steel Industry
IFAC 6 th Congress, Boston/Cambridge Mass, Aug 1975
9 Wismer D A
Optimisation Methods for Larfe Scale Systems with
Applications.
McGraw Hill, New York, 1971
10 Diskstra E W
Notes on Structured Programming in: Structured
Programming
(ed Dahl O J et al), Academic Press, London, 1972
11 Jacobson H
Informational Content of Mechanisms and circuits Information and control, Vol 2. PP 285-296, 1959

12 Johnson D M
The Psychology of Thought and Judgement Harper and Brothers, New Yo:k, 1955

13 Loasby B J
Choice, Complexity and Ignorance
Cambridge University Fress, 1970
14 Newell A, Simon H A
Human Problem Solving Prentice Hall, 1972

15 Weinberg G
The Psychology of Computer Programming Van Nostrand Rhinhold Co, 1971

16 Black I G et al
Advanced Urban Transport
Saxon House, Farnborough, 1975

2. The Design of 'Fail-Soft' Systems

2.1 Introduction

Reliability is an important parameter in the design of all systems. The larger and more complex the system, the higher is its potential benefit but so also is the cost of faulty running. Faults inevitably occur and more complex systems have correspondingly more faults. The use of extra complexity in a system may allow potentially higher performance levels. It may also prevent them being attained if the greater complexity leads to a reduction in system reliability. To maximise the operational effectiveness of a system the balancing of system performance against system cost must take account of the effects of unreliability. ${ }^{(1)}$ Any system can be characterised by ita performance before failure, its performance after failure, and its probability of surviving without a failure. Within a particular cost budget, the system designer manipulates these three characteristics to achieve an acceptable operational performance.

There are three approaches to this manipulation.

The Perfectionist Approach - Components and operating proceedures are chosen so that the probability of a failure
in service is reduced to a negligible level. Design techniques of this tyfe include; the use of higher quality components, 'burn in', derating and planned replacement to reduce in-service failures, and the avoidance of novel, unproven technology. Typical of this approach is the norepair design of consumer items, such as refri serators, and large vehicle components. A failure, when it occurs, is total, the only redress is replacement.

The perfectionist approach is inapplicable to complex systems for two reasons. Firstly, the complex sysiems have a large number of components, all of which are 'vital' (that is the failure of any one causes a total system failure). Thus, for an adequate system life, impossibly high reliabilities are required for individual components. Secondly, the design of complex systems is difficult. The designer being human, will be unable to anticipate all the modes of use and consequently the likelihood of fallure due to misuse increases. (7)

The Fail-operational Approach - Levels of redundancy and repair strategies are choaen to give a very low probability of in-service system failure. Commonly known as duplication or triplication, the fail-operational technique incorporates spare equipment into the system at strategic points. As faults occur, this is progressively substituted for the failed equipment. The original system performance is maintained until, at some point in the structure, the spare capacity is exhausted, whereupon the system fails completely.

Abstract

Fail-operational design is appropriste where any sianificant loss in performance is costly and imuediate repair is difficult or impossible, eg, in aircraft control equipment.

For systems where loss of performance is not critical, the fail-operational design philosophy usually results in unnecessarily expensive scremes.

The Fail-soft Approach - A fail-soft' system is a system where the degree of degredation following some failure has been consciously planned. Systems, so designed, attenuate the consequences of a failure, not necessarily by preventing a fault affecting system performance, but by cinoosing a compromise between the degredation of system ferformance and the cost of extra fault proofing equipment. A common, though simple example of a 'fail-soft' system is a vehicle with power steering, power brakes, or active suspension. These are usually designed so that in the event of a failure In the servo mechanism some steering, braking or suspension is retained albeit with a poorer performance.
'Fail-soft' should be the normal design philosophy, since the perfectionist cannot be used with complex systens and the fail-operational is too expensive. However it is rarely explicitly employed, and has never featured in the published literature.

The discussion that follows presents some techniques by which a fail soft system may be achieved.

Fail-soft Systems - A system is a profitable enterprise created and run by an operator and providing a service to the user. Its performance can be defined thus:-

```
PERFORMANCE = (VALUE OF SYSTEM) - (COST OF SYSTEM)
FOR SUPPLUS = BENEFIT - COST_7
```

The way the surplus, value and cost are distributed between the user and the operator is not important to the argu ments which follow. The units of each term are money/unit time. Effective design and operation of the system maximises the surplus; ie, maximises the system performance.

$$
s=\sum_{\text {all }} \sum_{\text {states }} \bar{S}_{i} P_{i}
$$

where
S - expected value of surplus
$\bar{S}_{i}-$ mean value of surplus when in state i
P_{i} - probability of being in state i
Alternatively, equation 1 can be stated:-

$$
\begin{aligned}
& S=S o-\sum_{\text {allincidents }} R_{k} C_{k} \\
& S=S_{0}-C
\end{aligned}
$$

where

$$
\begin{aligned}
& S_{0}- \text { the 'perfect operation' surplus } \\
& C_{k} \quad- \text { the cost of the } K^{t h} \text { incident } \\
&(\text { ie, the change in surplus resulting from an } \\
& \text { incident) } \\
& R_{k} \quad-\quad \text { irequency of } K^{t h} \text { incident }
\end{aligned}
$$

The fail-soft approach is to maximise S for a given budget, either by increasing the potential performance S_{0} at the expense of a larger loss term \cup or vice versa. The frequency term R_{k} is infiuenced only by the reliabilities of the components that might produce the particular incident. The prediction of R_{k} is well covered in a copious literature spanning many years. By contrast, the incident cost C_{k} has rarely been considered, nor have methods of controlling it been developed (although some related topics have been studied in isolation). (2-8)

Disruption - The incident cost C_{k} will be termed the 'disruption'. It comprises any increase in costs and any decrease in benefit resulting from an incident. (Dia 7)

Degree - The 'degree' of a fault is a measure of the importance of the failed component to the system. It is the loss in performance as a function of time. Consequently DISRUPTION $=\int$ (DEGREE) $d t$
over the incident duration
Degree is therefore (Δ cost $+\Delta$ benefit) per unit time The cost term is the cost of the incident incurred by the operator for repair and replacement. The Δ benefit term is the loss of service resulting Iron the incident. It is asumed to be much bigger than Δ cost and therefore more important. In the discuesions which follow only the Δ benefit tern is aoneidered.

A component anywnere in the system contributes in some degree to the performance of the system. During aormal running this contribution is a maximum. Failure reduces the value of the contribution. The worst-case failure will give the lowest possible system performance, usually lower than would have been achieved had the system been designed without the component at all. The maximum degree of fault corresponds to this warst case.

Lessening the degree of a fault implies a reduction in the importance of some function and hence its associated worst-case error. This reduction might be achieved by simplification of the system, (with a corresponding reduction in its normal performance S_{0}) or by partitioning the system into smaller sections whose individual importance is thus reduced.

For many extensive systems, degree can be conveniently divided into 'intensity' and 'extent'.

The 'intensity' is the value of the function to each of its users. The extent' is the number of users. Thus:incident duration
DISRUPTION $=\int \operatorname{fn}($ INTETISITY, EXTENT) $d t$ For example, a typical structure for a transport control system has a local area controller dispatching regular commands to the individual vehicles within its zone. The degree of a failure in this area controller is strongly dependent on the number of vehiclea being controlled (ie, its extent) as well as the loss in value of the information put out to cach vehicle (ie, its intensity).

Duration - Systems intended to have a useful life that is long with respect to the mean time between failures, must be repaired. The disruption caused by a fault is dependent on its 'duration'. However any change on the system output cannot be faster than the signal producing that change. Consequently the information output by a rate-limited function, even if it is faulty, will not change the system faster than that limit will allow. This sugrests that it is not only the absolute duration of the fault which is important, but also its duration in units of the failed processor's decision time. A fault in a high speed processcr will become noticeable more rapidly than if the processor were low speed. (Dia 9)

Repair times however depend on the complexity of the function involved. (Dia 8) For functions of a similar complexity, repairs will take a similar time. As a result, a failed high speed furction of similar complexity to a failed low sreed function will cause a proportionately greater disruption, unless particular measures are taken to reduce its repair time. (Dia 10) (6)

2.3 Potential Ferformance, Disruption and Operational

Performance

To achieve the highest potential performance of a system, each item of information should be used to its maximum value ie, the information should be accepted as valid, used as fast as possible and everywhere possible.

However, if the information is in error, the resultant disruptizn will also be a moximum. The operational performance then achieved may well be lower than if the information had not been used. Thus increased system complexity, aimed at extracting the maximum value from information will incresse the potential system performance but may decrease the actual operational performance.

If, as an alterrative, the incressed complexity is used to improve reliability, the potential jerformance will not be improved, but the actual performance may.

THE CONTROI OF DISRUPTION FOLLC:IIIG A FAULT

2.4 The Control of Unanticipated Faults

A designer can only explicitly design for faults that he has anticipated. His ability to foresee and evaluate their consequences depends on the complexity of the system. He will not be able to forecast all faults and consequently will not devise a comprehensive set of contingency plans.

Action taken to compensate for unexpected faults can .only be taken at the time of failure. The action is the sequence of 'on-line' design decisions made by the system operator invol.ed with the falt. He is a part of the system and can be considered as a flexible, unspecialised, decision maker. In many systems he is the most important control of disruption resulting from a system failure.

Methods for dealing with anticipated fauls are intro-
duced into the system design from the outset. Each stratey can be considered as the oftimal use of a new system, (the new system being the original system changed by having a faulty component).

Three running states can be identified:-

- Normal - the system is operating along its most profitable, maximum performance, trajectory through systera state-space; a path previously anticipated by the designer.
- Faulty - the system is cperating below its maximum performance trajectory but on a trajectory optimal for the system with a failed component. Again the path is one anticipated by the designer.
* Extraordinary - the system is being guided along a path in its state-space by the real-time design decisions of an operator. He covers for all unanticipated situations. His success depends on his ability, knowledge (training) and whatever system functions are accessible. He takes direct control of these functions via man-machine interfaces. Effective operator control depends on the good design of these interfaces.

2.5 The Control of Anticipated Faults

Action taken to control a fault is directed against the disruption caused by the fault. This control action will modergte the degree of the fault as a function of time and/or duration. More control will reduce diaruction but at greater expense. A balance has to be sought.

2.6 Tynes of Fsult

A failure is an event, after whose occurrence the output state of a device shifts outside permissable limits. It is sometimes exceedirogly difficult to formulate the sfecification of a failure, where for example, there are subjective characteristics involved.

Failures may be:-

- Instantaneous - There is a sudden loss of function.
* Gradual - A prolonged deterioration of equiprent leads finally to a failure.
- Permanent - Failed equipment is inoperative until repaired.
* Intermittent - Failures last for a short time. The system is momentarily disturbed. The faulty equipment then resumes normal running possibly leaving observable transient conseauences in the system. where a component 10 wearing out, fingl failure is often preceded by a series of intermittent faults.
- Independent - Each failure occurs independently of any other. Failures are usually assumed to be indegendent events even though a fault in one component varies the . operating conditions of other components and consequently the probability of their failure.
* Dependent - The failure is caused by the failure of another component.
- Common mode - Faults in different pieces of equirment, which all result from a common source failure. The frevention of common-mode fallures is particularly important where indefendence is assumed or required. ${ }^{(6,7)}$

2.7 Sources of Faults

There are two phases in the life of a system. Tiney are the design phase, in which all actions prior to running take place. (The design and specification of the syster hardware, system software and forecasted operating environment, including maintainance and operating proceedures), and the onerational phase, in which the system runs in its actual environment, is subject to incuts and produces outputs. Faults can arise in either phase but their consequences will be observed only during the operation phase.

Faulte in the design phase result if equipment, algorithms and the system environment differ from those intended or forecast. Design faults are likely to be systematic, that is, similar faults arise in related equipment; the same equifment always fails under the same conditions. Design faults are frequently the source of commonmode failures. As design faults are necessarily unanticipated all systems are vulnerable to them. Techniques such as standardisation, simplification and evolution may reduce incidence of design faults. The use of independent designers reduces the risk of common failures in separate devices.

Faults arising from incorrect data supplied as input to the system, or from a component failure, are amenable to systematic fault control techniques.

2.8 The Propagation of Faults

Erroneous information will propacate along any available path through a system. Most paths will be the formal
channels comprising the information structure of the systea. The remainder will be informal routes, resulting from causal-chain interaction of system components that has no part in normal running. For the predictable operation of systers these informal routes must be identified: Often, for successful fault control tiney must be eliminated. These informal links are often created by the fault itself. For example, in a computer, an incorrect processor operation can easily destroy data totally unconnected with the failed function.

The speed at which faults propogate is limited by the delays that are introduced by operations along the path followed by the fault. Increasing the time delays caused by these operations will reduce the rate at winch a fault can affect the system output. Operations should therefore be designed to work at the lowest speed consistent with their fulfilling their roles satisfactorily during normal running.

2.9 Classes of Fault Control

Fault control systems can be either open-loop or closed-loop.

Open-loop - Open loop fault control is sometimes called
'built-in' redundancy. Equifment is used which is more elaborate than the minimum necessary to achieve the desired function. Every component is active all the time, but the configuration is such that when one fails, the function as a whole does not fail. The construction and effectiveness of these systers relies uron the fault modes of a device being known.

Two approaches are possible. The first aims to ma天e any fiailed unit transparent to the rest of the system, ie, the transfer function [G_] with m components is the same as the transfer function with one component.

$$
G_{m}(s)=G_{m-1}(s)=G_{1}(s)
$$

This approach can be used with relays or diodes with which the likely faults are either open-circuit or shortcircuit.

Under the second approach, failures are permitted to cause some change in the transfer function of a unit, but the redundancy is used to place a limit on this change. Queuing systems are of this type. (7)

Closed-loop - Closed-loop fault control is more important. Although greater expense is involved, in principle any fault can be controlled.

A monitor measures the actual system state and compares it with a prediction generated from a model. The detection of a discrepancy initiates action designed to counteract or remedy the failure. The output of the monitor may be continucus or discrete. The design of fault controllers having continuous error signals can make use of the well developed theory of feed-back control. Usually, however, fault protection is carried out using diacrete fault moaitoring; the detection of a falt causing a specific strategy to be selected from a smill number of alternatives. (Dia 11) (7)

A system has a set of realiaable states. The states that correspond to normal operation are defined by the system siecification. All other states correspond to faulty operation.

In practice, often only the intended running states of a device are closely defined, as the complete definition of all failure states would be very time consuming and costly.

Four techniques are in common use.

- Equipment is designed to have only a few conceivable failure states, for example, fail-safe equipment. (This is only feasible for very simple, usually mecnanical, devices).
- Cnly important failure states of a device are detailed. (Unfortunately the importance of a device state may depend on the application of the device. In some situations, a particular failed state might be unimportant, In others it might be very important).
* Only the most unreliable parts of a device are considered in an analysis.
- Dependent and simultaneous faults are not analysed.

2.11 The Requirements of a Monitor

A failure generates errors which propogate away from the fillure site. These errors are detected by the monitor. There are thus three sets of function states.

- The states which correspond to the function specification and are therefore the correct states.
- The actual states generated by the function (including its error states).
* The states interpreted by the monitor as correct ones.

In a perfect system these states are all the same; in practice, limitations in both the function and the monitor ensure that they are not. As a measure of this, two parameters may be defined.

The 'coverage' of the monitor is the fraction of errors that the monitor detects. The 'restrictiveness' is the fraction of normal states classified as faulty. Inadequate coverage is expensive as many faults are not detected. Excessive restrictiveness is expensive because there are many false alarms. Usually a trade-off can be made between the two.

Only a limited number of monitors can be deployed in a system. These will test the most important variables, those which, if faulty, would cause maximum disruption. The information yielded by the monitors is the only information available for locating and controlling failures. Thus more monitors allow a more comprehensive check on system operation, a better identification of the failure site and a more appropriate selection of control strategies. However extra expense is involved and as the error detecting transducer is in series with the processor being checked, the system reliability may be reduced and the system reaponse slowed.
2.12 Fault Location

Most fault analysis and cortrol assumes that faults oceur randomly, each fault is independent of any other and there is a negligible probability of simultaneous faults.

However monitors detect the errors resulting from a failure, not the failure itself. Although the failures may be random, the errors detected frequently will not be, for the following reasons.

* Monitor coverage of the system states is not complete. Consequently multiple deperdent errors may be recorded some distance from the failure site, possibly at several different parts of the structure and not necessarily at the same time.
* Systematic design faults may cause a similar fault to occur simultaneously in a number of functions or monitors.
- There is a delay between the occurrence of a fault and its detection. The longer this time delay is, the higher . is the probability of more faults occurring, all of which would have to be considered as arising simultaneously.

For effective fault location, monitors must detect all important faults. Each monitor must have a hifh coverage and low restrictiveness. Monitors must be closely spaced, thus fartitioning the system into areas of low complexity (and high reliability).

If these conditions are satisfied, then the unambiquous lorical location of some faults may be feasible. (For

```
example, by using cause-consequence analysis to identify
the signэture of monitor outputs resulting from a particular
fault).(13-15) If not, automatic fault location is not
fossible, and fault control measures must attack errors
rather than identify and isolate the orioinating failure.
```

2.13 Error-Detection Techniaues

Redundant Parallel Processors - Operating on the sare input data, two or more independent processors can be used to carry out a function. If corresponding results disagree, at least one computation is faulty. The use of more than two resources enables voting to identify the faulty unit.

Independent processes can be interpreted as:

* The same process on the same hardware at different times (time redundancy to detect intermittent faults).
* The same process on different hardware at the same time (hardware redundancy to detect hardware faults).
- The eame frocess based on different algorithms in the same hardware (software redundancy to detect softiare faults).
* Combinations of the above (these offer protection against all faults including design faults).

Common-mode failures render redundancy moritoring Ineffective. Important common-modes are the input data, systeratic desion faults and environment changes.

Abstract

Redundancy is the only mears of simultaneously achievine himh coverage and minimum restrictiveness. Redundancy is expensive and because of the necessary comparison operation, speed of operation is limited to that of the slowest processor.

Abstract

Other Error-Detection Techniques - Non-redundant monitoring is a check on the reasonableness of the information at the monitored point. Coverage is lower, restrictiveness is hisher, but costs are much reduced. Nonitors may check for particular vital states (either normal or faulty) to whose absence or presence a high system cost is attached. The boundary between normal and faulty running corresponds to the point at which system running costs are deemed unacceptable. (Dia 12)

Error Detection IJsinE Information Redundarcy - Using coding, redundancy can be incorporated into data signals. Many sophisticated error detection and correction codes inave been devised which are effective for a wide range of possible fault situations. They are used in communication links and data storage/retrieval systems. It may be extendable to other functions, for example by incorporating into the input data a condition that is unaffected by the function and can be verified from the output data. $(9-12,16)$

DIA. 13 The controller and plant

The objective of the fault recovery phase is to restore normal system operation with the minimum of disruption, following a failure. This requires the location and repsir of the failed unit and the use of standby control to limit the disruption incurred in the interim.

Rerair Times - The overall time to restore the original service defends on the repair arrangements. Plug-in replacement modules restore service rapidly at a high cost. Remove, refair and replace strategies give a high system downtime but are cheaper to operate. The exact balance chosen between the two depends on the time scale of the failed function, faster functions will generally have to be repaired faster.

The provision of on-line monitoring allows a faster response to failures. Off-line monitoring by maintainance men improves system reliability and makes better use of test equipment, so reducing costs that way. (0)

Standby Control of System Disruption - In place of the failed function, standby equifment provides an alternative that has the best possible system value given available resources.

Standby measures are selected by switching, that is, the system structure is reorganised. The rearrangement may maintain the original system ferformance or provide a reduced performance. The wore closely the original
performance is to be maintained, the more expensive is the provision of substitute standby processors.

There are several techniques of standby control:-

* The failed unit can be replaced by another similar unit. For fast acting important functions, the switching must be on-line and automatic.

Direct function replacement depends for its effectiveness upon the failure being located in the replaced functicn. Otherwise faulty information will be input to the replacement function and system disruption will not be controlled.

Direct function replacement, an example of the failoperational technique, is expensive.

* The failed function can be isolated and the downstream structure modified so that the information lost is no longer required by the remainder of the sustem. This feed-forward type of control necessarily entails some loss of system performance. It is much less expensive, as precise fault location is no longer necessary.

In some cases it is possible to substitute standardised. information for the signal that has failed. The standardised signal is chosen to minimise subsequent disruption, and coulc be

- an average value command
- the last correct command
- a predetermined value
- a hurian operator input.

Although a hierarchy of fault protection strategies can be incorporsted into a system to attenuate the conseauences of most faults, some vital functions will remain unprotected. It is at these points that a perfectionist appreach should be apslied, that is, comconents with a hish intrinsic reliability should be used.
2.16 Safety

Reliability and safety are closely connected. A correctly functionirg system is never unsafe (provided the system is correctly designed). The cost of unsafe operati=ns is very high, consequently any failure, which may lead to an unsafe mode, is attributed a quasi-infinite system cost. In these situations system realisations are reguired which minimise the probability of these failures. very often this requires the use of perfectionist or fail-operational techniques.

3I 3LIOGRA?HY

1 Herwald S
Reliability as a Parameter in the Systems Concept
Chapter 11 of Systems: Research and Design,
Editor Echman D R, Wiley
2 Misra K B
On Optimal Reliability Design
IFAG 6th Triennial horld Congress, Boston/Cambridge, Massachusetts, Aug 1975

3 Avizienis A
Fault Tolerant Computing - An Overview
IEEE Trans on computers, C-20
Jan - Feb 1971
4 Jensen PA
Bibliography on Pedundancy Teciniques
in: Redundancy Techniques for Computing Systems, Editor Wilcox R H et al, Spartan Books, :lashington D δ

5 Short R A
The Attainment of Reliable Digital Systems Through the use of Redundancy - A svey
IEEE Group News, Nar 1968
6 Polovko A M
Fundamentals of Reliability Theory Academic Press, 196 と

7 Shooman M L
Probabilistic Reliability - An Engineering Approach McGraw Hill, N York, 1958

8 Goldman A S, Slattery 2 B
Maintainability - a Major Element of System Effectiveness Wiley \& Sons, N York, 1964

9 Avizienis A et al
The STAR (Self Testing and Repairing) Computer -
An Investigation of the Theory and Practice of Fault
Tolerant Computer Lesign
IEEE Trans on Computers, C-20, FP 1312-1321, Nov 1971
10 Chandy K M, Ramamorthy C V
Rollback and Recovery Strategies for Computer Promians
IEEE Trans on Computers, C - 21, PP 540-558, June 1972

BI 3LIOGRA?HY

1 Herwald s W
Reliability as a Parameter in the Systems Concept Chapter ll of Systems: Research and Design, Editor Echman D R, Wiley

Misra K B
On Optimal Reliability Design
IFAC 6th Triennial horld Congress, Boston/Cambridge, Massachusetts, Aug 1975

Avizienis A
Fault Tolerant Computins - An Overview
IESE Trans on computers, $C-20$
Jan - Feb 1971
nsen P A
Bibliography on Redundarcy Teciniques
in: Redundancy Techniques for Computing Systems,
Editor Wilcox R H et al, Spartan Books, :Jasnington $D C$
5 Short R A
The Attainment of Reliable Digital Systems Through the use of Redundancy - A Survey
IEEE Group News, Mar 1968
Polovko A M
Fundamentals of Reliaioility Theory Academic Press, 1906

7 Shooman M L
Probabilistic Reliability - An Engineering Approach McGraw Hill, N York, 1958

Goldman $A S$, Slattery $A B$
Maintainability - a Major klement of System Effectiveness Wiley \& Sons, N York, 1964

9 Avizienis A et al
The STAR (Self Testing and Repairirg) Computer -
An Investigation of the Theory and Practice of Fault
Tolerant Computer Design
IEEE Trans on Computers, C-20, FP 1312-1321, Nov 1971
10 Chandy K M, Raramorthy C V
Rollback and Recovery Strategies for Computer Prorrams IJIE Trans on Computers, C - 21, PP 546-558, June 1972

11 Kopetz H
Systematic Error Treatment in Real-time Software
IFAC 6th Triennial そorld Congress
Boston/Cambridge, Massachusetts, Aup 24-30, 1975
l? Reid R A
An Integrated Aproach to System Failure Effects ItAC 6th Triennisl World Congress
Boston/Cambridge, Massachusetts, Aug $24-30,1975$
13 Fussel J B
A Review of Fault-tree Analysis with Emphasis on Limitations
IFAC 5 th Triennial World congress,
Boston/Cambridge, Massachusetts, Aug 24-30, 1975
14 Neilson D S et al
A Cause-Consequence Chart for a Redundant Protection System
IEEE Trans on Reliability, R - 24, ppô - 13, fyril 1975
15 Shooman M L
The Equivalence of Reliability Diagrams and Fault-tree Analysis
IEEE Trans on Reliability, R - 19, pp 74 75, May 1970
16 Cattermole K $\quad \begin{aligned} & \text { Frinciples of Pulse Code Modulation } \\ & \text { Iliffe Bocks, London, } 1969\end{aligned}$

3. Measurement and Communication in Automated Transport

3.1 Introduction

Communication in automated transport is characterised by the regular transfer of information between moving vehicles and fixed control centres distributed over a wide area. Bidirectional commanications between venicle and vehicle, vehicle and control centre, control centre and control centre may all be necessary.

The control system engineer would like to have independent communication channels for each information flow. Such provision would however be wasteful, being excessively expensive and under-utilised, although a more precise control might be achieved. Communication facilities have to be chosen. in balance with the rest of the system, enabling adequate information flows to take place whilst minimising capital and running costs. As with all commanication systems, time delay information rate and error rate are important parameters. All can be improved by supplying additional bandwidth, signal power or less noisy channels at an increased cost.

In automated transport, certain tasks of the human operator have been replaced. Extenaive measurement and monitoring is required, both to relay information enabling controllers and algorithms to work effectively, and to provide checks designed to ensure the safety of the system.

Abstract

The state variables of most interest are position and its time derivatives of velocity, acceleraticn and jerk. The ability of a vehicle controller to minimise absolute position errors directly influences the maximum vehicle flow a system can achieve. Precise ozerations at merges and stations defend upon both position and speed control. Accurate speed control is required to satisfy safety constraints, for example speed limits on bends and headway constraints when approaching other vehicles. Passenger comfort is determined by the quality of acceleration and jerk control. Frecise acceleration control is difficult to achieve. closed loop jerk control may not even be attempted, althou jh venicle response characteristics can be designed to ensure that jerk stays within acceptable limits.

The coordinated operation of a complete transport network requires the systemwide generation of time. Clocks can be easily manufactured to hirh accuracy but methcds have to be incorporated to ensure that all are synchronised. Ihis creates additional communication requirements. (1)

3.2 SYSTERA FEATURES

Abstract

In this section are discussed the general features of transport commuications wnich determine the overall behaviour and capabilities of the transport scheme.

3.3 The Degree of Automation Soucht

The ability of a human operitor to make fast overall assessments of unusual situations ensures that the total automation of systems as complex as transport networks is most unlikely. At some stage it becomes a more effective solution to employ somebody rather than attempt to devise appropriate equipment and strategies. The creation of schedules, maintainance and recovery from severe failures, are examples of activities not yet amenable to full automation.

Of paramount importance is the provision of an efective interface between the autcmatic equifment and the operator. Humans are particularly effective at identifying patterns of behavisur but are easily overloaded with data. Communication techniques have to be devised which display primary information in easily recognised forms. Safeguards have to be incorporated to reject unsafe or incorrect operator decisions yet allow him adequate flexibility. ${ }^{(2)}$

3.4 communications Involved in Cpen-Loow, Closed-Loop

and Fault Control

The system structure chosen for the controller will have the most profound impact on the amount of communication required in the system. (See chapter 1)

Within the control structure, pairs of interconnecting subsystems can be analysed in terms of 'controller' and a 'plant'. The role adopted by each subsystem depends on tree

```
primary direction of information flow: the 'controller'
is the upstream element and sup=lies mppropriate inputs to
the 'plant' which responds with an output.(Dis 13)
The relationship between the controller and the plant can be either open-loop or closed-loop.
```

Open-loop - Conceptuslly the controller holds a model of the plant. Using this model and knowing the desired system output, the controller generates the necessary plant inputs. The accuracy of the system output is totally dependent on the fidelity of the model. As no measure of the actual Flant output is used by the controller, random disturbances and unforeseen incidents cannot be compensated. Incorrect operations resulting from equipment or stratery failures will go undetected.

Oten-loop systems require only one-way communication links. They may be appropriate where the system is predictable, that is, it is reliable, well known and subject only to minor random disturbances, or where the cost of two-way communications is excessive. (Dia 14)

Abstract

Closed-loop - In a closed-loop system, the controller has access to measures of the actual plont cerformance. This feedback infcrmation allows compensation for minor disturbances such as noise, hardware and environmental variations. More sophisticated controllers may use the feedback information to track the optimal orerating point of the system. (adaptive control)

In closed-loop systems the controller may not nesessarily hold a conceptual plant model. However the use of a plant model by the controller improves its ability to compensate for disturbances and enables oftimum seeking methods to proceed faster. Such an arrangement is commonly called feedforward control or model-reference control.

Closed-loop control schemes require substantial investment in two-way communications, measurement transducers and control equipment. They are essential for good performance in poorly defined, noisy environments with many randon disturbances. (Dia 15)

Fault-Control - Fault-control systems are usually closedloop. Measures of actual system states are compared with predicted values of the states. The detection of abnormal discrepancies initiates standby strategies designed to counteract the effects of the failure. (See Chapter 2)

Extra transducers, circuitry and communications are required for fault-control.

Within a closed-loop system, elements may be operatins locally in an open-loop manner. (Dia ló) If measurement activities are moved further downstream, they will monitor a wider range of system states. is single transducer will tap information output by several preceering elements. However the informstion yielded is more general and its interpretation becomes more difficult: Feedbicik control

DIA. 16
B is part of a closed loop but is itself operating open loop. C is part of the system and operating open loop.


```
becomes more complex to design and delicite to adjust:
Fault detection becomes less precise and correspendine
strategies more clumsy. A balance must be struck between
the ineffectiveness of monitoring too few activities and
the high cost of monitoring all. This balance funda-
mentally influences the measurement and communication
equipment provided.
```

\qquad

There are two classes of information routing. The 'many to one' where several units may wisn, possibly simulteneously to commancate with one unit. The 'one to many' where a single unit ray wish to communicate selectively with any one of a number of units. The former reauires the organised multiple use of a single channel. T:le latter is concerned with addressing techniques. These classes arise In all communication systems and have been extensively studied perticularly for telefhone and computer networks. Consequently only specific situations associated with transport networks are discussed here.

3.6 Multiple Use of a Single Channel

The large number of links reauired and the physical secaration of network elements dictates the use of control structures and strategies requiring limited information flows.

In many situations a single channel has to be shared between several users. The added requirement for moving point to fixed foint communication introduces further complexity, as messages must intercept the desired recipient in time and position.

With an uncontrolled channel serving several independent users, there is a finite probability of two or more simultaneous transmissions. Although errors caused by such a collision can be identified using coding tecnniques, strategies to ensure that the correct message is retrieved are hard to devise.

The use of the channel must be organised so that transmissions from independent users cannot take place simultaneously that is, the channel is exclusively dedicated to one user for the duration of its transmission, it then becomes available to other users.

Interrupt type systems offer a method of channel synchronisation. However they require the use of parallel lines, one from each user, to a priority resolving unit controlling the message channel. In most situations arising in transport systems this arrangement is not possible. d variety of arrangements are feasible:-

The channel can be captured by a user in two ways; either directly, (requiring each user to listen to the channel), or indirectly, (via a central controller). with direct channel organisation either, a demand-responsive or fixedsenuence service can be operated.

- A user, wishing to send a message, transmits immediately if it finds the line clear. If a busy line is encountered, the user continues to test the line at fixed intervals until an idle state is found. It then transrits. (If the user transmits immediately a previsus transmission firishes, there is an increased frobability that two or more users, all delayed by the same previsus user, will transmit simultaneously).

Direct-Channel Orpanisation with a Fixed-Sequence Strategy

- For a fixed-sequence type of operation, each user is allocated the channel in sequence. The rota must be grearranged and therefore cannot respond to local variations in demanded information flows. Each user must know and be able to identify its position in the sequence. Complications arise where the potential users of the channel can change (eg where vehicles enter a new communcation zone, the appropriate new signalling schedule must be loaded into them).

Synchronisation of individual users to the message stream can be achieved in two ways. If messages are fixed length - that is, all users are allocated the channel for a fixed time slot even if they have no information to transmit - then 'flywheel' type synchronisation is possible. Each vehicle takes its timing information from the received message stream. The failure of any individual user does rot halt the message stresm.

He use of stof-start codes to define the messafe boundaries allows vehicles, with no information to output, to use the channel less. The start of each trynsmission relies upon the end of the grevisus sne. If one user falls to transmit, backup proceedures are required to restart transmission.

Characteristics of Direct-Chanrel Orranisation - Directchannel organisation needs little equipment. Demandresponsive schemes give no indication of failed users, a check which is fossible in a fixed sequence scheme. whe demand-responsive service is however the more effective where information flows are highly irregular and ungredictable.

In the demand-responsive mode users experience a mean delay which rises steeply when the demand rate exceeds 75% of the channel capacity. Below this demand rate the mean delay is substantially less than for fixed-sequence systems. If vehicles have only limited storage for messages pendirg transmission, both schemes show sifnificant reject rates, that for the demand - responsive system being lower than that for a fixed sequence system. (Dia 17-19)

Fixed sequence systems offer the advantare that delays are bounded, although this is only significant near chanael saturation

Notes A survey of the literature did not reveal much information such as has been fresented above. Reference 3

does however contain a wide ranging discussion of the state-of-the-art in distributed computer networks.

* The direct-channel demand-responsive acheme descrived above would appear to be novel suggestion.
* The results presented above were produced by simulation. A descriftion of the program is fiven in Appendix 1. The results are only valid for systems where the demands to transmit can be modelled by a Poisson process. If the times that the user will want to transmit can be predicted, then a carefully designed fixed-sequence system may give better service.

Indirect Channel Organisation (Using a Central Controller)

- A control unit can be used to organise a communication channel. If only one channel is available between controller and users, the only policy that can be operated is fer the controller to poll each user in turn. A demand-responsive service cannot be operated (as any user initiated message would be independent and therefore uncontrolled).

A link organised by means of a central controller might employ two communication channels between the controller and users. If both channels are of identical design and have the some characteristics then a variety of strategies can be operated. (NB, this is a simplifying assumption, not a requirement) - One channel can be designated an addressing line, the other the message line. These channels could be Interchangeable, enabling some degree of standby service to
be operated in the event of a failure. Any mix of fixedsequence and demand-responsive folicies can be operated enabling the advantages of both to be incorporated.

Apainst these benefits must be balanced the alternative gains that would have been achieved by operating each of the two channels indejendently for the same link. This provides lower delays and reject rates as a consequence of the lower usage of each channel.

3.7 Addressing

The succesaful transmission of information from one place to another in a system requires routing to the correct location, and timing to ensure that it will be received.

In transport networks a channel may serve a number of physically separated users, which may be fixed or moving. If the addressee is moving the channel routing system must be organised to direct the message to the track segrent adjacent to the vehicle. Should the segment be able to encompass more than one vehicle at a time, then messages must include vehicle identity in their code. Advance messages can be sent if track segments have storage buffers from which the information will eventually be relayed to the vehicle. (Dia 20)

Communcation systems linking fixed points have been extensively studied, particularly with respect to distributed computing systems, telephones etc. The extra refinement necessary to cormunicate correctly and efficiently with moving venicles is the main concern of this paper.

The Geograchical Addressint Problem - Information must be directed to intercept the desired vehicle, that is, it nust be available at an appropriate track-side position and time.

A message can be displayed over the whole track, a track segment, or a fixed point. If the venicle does not act immediately on tre received information its storage on the vehicle is required. If the track does not immediately relay the information to the vehicle then track storage is required. (If the track/venicle link is available over an extended distance, the venicle and the track can share the same store).

Reference to the position-time trajectories of the vehicles yields the following possibilities.

- A message is available over the whole track for an extended time; all vehicles receive the same message. The information changes infrequently and the transmitter may be effectively the track store. (Dia 2l)

An example is the system-wide transmission of system status, signals such as, normal or emergency, service option, fare scale, etc.

* A message is available over the whole track at a particular time; all vehicles are contacted. vehicles store the message if necessary. (Dia 22)
- A message is available over a portion of track for an extended time; not all vehicles are contacted, only those passing that portion of track. (Dia 23)

DIA.2lc Messoge displayed over a portion of track for on extended time

DIA. 2le Message displayed ot a fixed position for on extended time

DIA. 2 lf Message displayed at fixed position and lime

Abstract

- A messape is available over a portion of track at a particular time; only venicles within the zone recieve the information. Information can be made vehicle specific if their trajectories are known. Tine number of vehicles to be contacted and the tolerance on venicle position determine the length of the zone. (Dia 24) - A message is available at a point on the track for an extended time; information is position dependent and reaches all vehicles passing by. Information can be made vehicle specific by controlling the display time according to the number of vehicles to be contacted and the tolerance on the scheduled time of arrival. (Dia 25) - A message is available at a coint on the track at a particular time; vehicles are uniauely contacted but the exact vehicle location is required. (Dis 26)

Geographical Addressing by a centralised Unit - The central unit requires accurate knowledge of vehicle position. This can be derived either by measurement or from predetermined schedules. Successful communications depend totally on the correct working of the controller and the system. Disordered, misplaced or undetected venicles will cause faults as messages become misdirected or lost.

Geoqrachical Addressing Operated by the Vehicle - Some
degree of protection against communication failures, caused by local running ancmalies, is provided by using the actual
vehicle movements to control both the position and duration of message display.

Occasionally even the message contents are generated by the vehicles, in which case, no intervention is required from a central controller.

Messare Addressing - Coding added to a message enables labelled recipients to recognise messages intended for them. Message addressing allows the easy addition or removal of communication units from the network. The security and religbility of message addressing are strongly dependent on the codinfs techniques used. (4)

Geographical and message addressing can be provided siuultaneously. The duplication of addressinf information will engble some faults to be detected. The effectiveness of the fault detection depends on the independence of the two systems.
If the recipient of a message acknowledges it with its
own identity (and/or a copy of the message), a closed-loop
communication results, enabling the message transfer to
be checked and errors corrected. (5)

3.0 MEASUREMENT

The Influence of Measurement on Communications - To control and operate numbers of vehicles, the control centres must have information from all the vehicles in the system.

Essential signals are meacurements of position, velocity acceleration and venicle status (iaentity, destination, etc). Some or all of this information will be required by both the control centre and the vehicle. Information needed at the trackside and measured or stored on the vehicle, or vice versa, therefore requires communication from one to the other. If tnis ie not economic, then the information must be duplicated on the vehicle and at the trackside. For example, information about own velocity or acceleration is readily available on-board a vehicle, but is difficult to measure from the trackside. Conversly position is more easily determined from the treckside. Track speed limits are fixed and easily stored at the trackside, whereas their storage on-board vehicle requires a complex interpretation according to vehicle position.

Measurement techniques can be associated with the particular form of commancation used across the vehicletrack interface. Often a physical property of the sienal is modified, for example, its phase or its amplitude, in a way that does not interfere with the message already being carried by the signal.

Measurements can be made either discreetly or continuously in time; the output information may be presented either as a digital or analogue signal. Usually, but not necessarily, discrete measurement techniques generate digital signals and continuous measurea generate aralogue signals. The falling cost of digital processing increasingly favours
dirital sifngl forme, particularly in harsh environmertg (ie, noisy channels, und low sirnal strenths) provided adequate bardwidth is available. However cortinuous gignals are usually cheaper to generate and simpler to use. Fer example, analorue trassducer signals are directly useable in control loops, whereas in difital systems both analofue to digital and digital to andague conversions are generally required.

The irformation in digital signals is not affected by signal attenuation over distance (unless the signal strength falls below a certain threshold). Digital signals do not drift, an important consideration wnere measurements are made over a long period of time.

Fosition Neasurerents - Vehicle positions are measured along the track relative to some fixed point. They must be known sufficiently accurately to allow both successful communications and safe manoeuvres.

Trackside cosition measurement systems will locate a vehicle to the fixed resolution of the transducers. They are expensive unless precise measurements are required only at a few key points, for example, at junctions or station approaches.

Cn-vehicle position measurement requires instrumentation in each vehicle. The resultant measures must be periodIcally updated to the track standard to remove any accumulated errors. The frequency of this updating defends on
the transducer accuracy ard the maximum error allowable.
Position measurement techniques are either absolute or incremental. With the former the full precision of the device is used all tre tire. No memory is required but the sifnals are wide band-width. With the latter, in which Fosition increnents are counted, memory is required, signals are of narrow band-width, and the measurement is subject to accumulated error, similar to drift in analogue systems. Incremental devices tend to be used for measurements made over long distances.

Velocity Measurements - Analogue signals proportional to specd are given by Doppler shift methods or devices relying on electromagnetic induction. Both are ineffective at slow sceeds. The differential of a position measurement can also by used as a velocity signcl but it is likely to be noisy and restricted in bandwidth.

Position based speed measurements are made by timing the transit time of a vehicle between two markers. This yields a discrete measure. Alternatively the rate at which markers are passed can be measured, yielding a continuous (though lagging) measure.

Correlation methods can also be used to measure speed, this also yields a continuous lagging measure.

The first scheme is more appropriate where markers are widely sfaced, the second where they are closely spaced. The third method does not require markers but requires
the transducer accuracy and the maximum error allowable. Position measurement techniques are either absolute or incremental. Vith the former the full precision of the device is used all ti.e time. Io memory is required but the sifnals are wide band-width. With the latter, in which Fosition increriente are counted, memory is reuuired, signals are of narrow band-width, and the measurement is subject to accumulated error, similar to drift in analogue systers. Incremental devices tend to be used for measurements made over long distances.

Velocity R:easurements - Analogue signals proportional to speed are given by Doppler shift methods or devices relying on electromapnetic induction. Both are ineffective at slow sceeds. The differertial of a position measurement can also by ueed aE a velocity signal but it is likely to be ncisy and restricted in bandwidth.

Position based speed measurements are made by timing the transit time of a vehicle between two markers. This yields a discrete measure. Alternatively the rate at which markers are passed can be measured, yielding a continuous (though lagfing) measure.

Correlation methods can also be used to measure speed, this also yields a continuous lagging measure.

The first schene is more appropriate where markers are widely bpaced, the second where they are closely spaced. The third method does not require markers but requires
distinctive track irregulurities ir oraer to rroduce a sicnil suitable for correlaticr. kll three are ineffective at zers or low sceeds.
cceleraticn Measurements - A sienal proforticnal to acceleration can be pererated usin the relationship

Force $=$ Mass x Acceleration.
sry component of lateral acceleration can be removed by constraining the instruaent to respond only to accelerations in a vertical plane alifned along the vehicle axis. On slopes however, it is difficult to dissociate the vertical gravitational componer. Fortunately this is not usually necessary as the acceleration perceived by passengers is the measured acceleration.

Rate of change of acceleration (jerk), although an important measure of paseenger comfort is not usually measured. (6)

Time - To ensure synchronisa througnout a system, all users must have access to the same time standard. Either local clocks have to be feriodically updated from a master clock, or continuous system-wide transmission of time is required.

A comprehensive catalogue of techniques for measuring position, velocity, and acceleration, and techniques of communication is given in Appendix 2 .

BIBLICGRAFHY

1 Chesnut H et al
Communication and Control for Transportation Proc IEEE No 56 190́ O p 544-555

2 Pierick K
Men - Machine System in the Control of Trarisport Processes
Rail Int vol 4, No 10, Oct 1973 pp 1073 - 1077.
3 Wihitby - Strevens C
Current Research in Operating Systems and Computer Networks
Report No 10 Dept of Corputer Science, Harwick University, Coventry, July 1975

4 Cottermole K
Princirles of Pulse Code Nodulation
Iliffe Books, London 1969
5 Edwarde J R
Adaptive Digital Communication Systems for Mobile Applications
Paper - IERE Conf 'Civil Land Mobile Radio', NPL Teddington, Middx, 18 - 20
Nov 1975, IERE Conf proc No 33
6
Black I G et al
Advanced Urban Transport
Saxon House, Farnborough 1975

4. Longitudinal Control

DESIGN CRITERIA FOR LONGIMYDIFAL CONTROL

4.1 Introduction

The accurate and reliable control of vehicle speeds and spacings is critical to the success of any automated transport system. The choice of longitudinal control technique will determine the system structure, most of the commanications required and the operational performance that can be achieved. The longitudiral controller chosen will essentially determine the quality of service that can be offered and the cost of providing that service.

The objectives of the longitudinal control system are easily summarised; feople should be moved to their destination quickly, safely and dependably at reasonable cost. A particular combination of service type, vehicle size, vehicle performance, running frequency and station spacing must be established that most favourably balances the value of the service provided and the cost of its provision. A wide spectrum of solutions have been proposed. One extreme is the auto taxi: small high performance vehicles carrying individual parties of $1-\sigma^{\text {p }}$ people, running at very small time separations ($1 / 2-10$ seconds) provide a service akin to
the conventional taxi. A fine mesh of track covers tine whole city and stations are frequent, so that accessability and convenience of travel are high. fiajor technical difficulties with such systers still remain to be solved. It is certain that the neavy costs of outo taxi, botn capital and environmental, will severely limit its applicatior for the foreseeable future. A less ambitious proposal is the auto-tram; vehicles are larger than auto-taxis holdine 10 - 100 passenpers and run at time separations of greater than lo seconds. A service sinilar to the bus or tram is offered and is less convenient for the traveller than that of auto taxi, however the control requirements are much less demanding. At the other end of the epectrum, the automation of metro sustemg is well advanced with examples in many parts of the korld. In such systems a minimum headway of 90 seconds is typical.

Much of the early interest ir automated transport was directed at auto taxi. Recently though, there has been a growing interest in auto tram systems reflecting their simpler control problems and lower costs. (1)
4.2 Fundamental Ferformance Measures

Potential travellers will only choose a farticular mode of transport if the performance it provides is sufficiently good. This performance can be gauged by the factors:Ride comfort

Journey time

Journey dependability
Sufetv

Cost

Bide Comfcrt - The ride comfcrt experienced by o passencer depends f rimarily on two factors - the noise and vibration transmitted within the vehicle, and the levels of acceleration and ierk (rate of change of acceleration) used during vehicle manoeuvres.

Vertical vibration depends on the suspension chosen for the vehicle anc the cuality of the track. Suspension, propulsion and braining apparatus are usually interdependent and conseouently a choice of suspension method may also determine the braking and accelerating characteristics of the vehicle, thus indirectly influencing the control of the vehicle.

Lateral vibration derends on the choice of steering mechanisx. This choice will also influence longitudinal control by determining the time to switch a vehicle and by setting the minimum radius a vehicle can negotiate.

Noise levels are controlled frimarily by the detail design of the vehicle, they have no significant effect on Iongitudinal control. (2-4)

Studies of subjective reactions of passengers have established approximate values for acceleration that should not be exceeded for a comfortable ride. Furthermore, to avoid discomfort the level of acceleration should not fluctuate
continuously (tnus requiring an overdamped venicie resfonce to cnanginf infuts or disturbances).

Limitine values for jerk have not been reliably estaolished \<hough trere is sone evidence to sugrest that, if cnly low levels of jerk are used, limits on acceleration car be raised. is comronly proposed rule is that any change in acceleration snould take at least one second. In practice, jerk is unlikely to be controlled explicitly but will be limited to acceptable levels by toe dynamice of the vehicle. (4-7) mypical values of accleration and jerk considered for automated transfort are:-

Limit vith seated passengers - accn $2 \mathrm{~m} / \mathrm{s}^{2}$ jerk $2 \mathrm{~m} / \mathrm{s}^{3}$
Limit with starding passengers - " $1.2 \pi / s^{2} " 1.2 \pi / s^{3}$ with energency deceleration rates of thice the normal rate.

This compares with
Normal acen $1-2 \mathrm{~m} / \mathrm{s}^{2}-1 i f t s$
$1-1.5 \mathrm{~m} / \mathrm{s}^{2}$ - netros
Emergency $2.5-3 \pi / s^{2}-1 i f t s$
Decelerations $1.4-3.6 \mathrm{~m} / \mathrm{s}^{2}$ - metros
Jerk $\bullet 5-.7 \mathrm{~m} / \mathrm{s}^{3}$ - lifts and metros.
Acceleration and jeri limits directly affect system performance. Eipher limits allow the vehicle to achieve higher average sfeeds and carry out manoeuvres in shorter distances. This, for example, will then allow a shorter sfacing between stations.

The geometry of curved track and the speed at which it is negotiated is deterained oy acceleration/jerk comfort
levels. Thus for exarfie, to effect a sidestep of $2 m$ at a speed of $12 \mathrm{~m} / \mathrm{s}$ with a jeris constrairt of $1.2 \mathrm{r} / \mathrm{s}^{3}$ requires 45 of track. A bend taken at the same epeed must have an afproximate radius of 130 m . (Dis $22-23$) It will only be possible to fit complex structures such as iunctions or stations into the existine city streets if mest curves are regotiated at reduced speeds. This in turn reduces track capacity and increases control costs. Acceleration/ferk comfort levels also influence the desigr of the track in the vertical plane, when the track changee level.

Journey Time - The total journey time (Tj) for a passenger to go from origin to destination is the principle parameter measuring the quality of service provided by a transport syster. It is made up of a number of components.

$$
T j-T w+T s+T v
$$

where
Tw - walk time to and from the station
Ts - station wait time
$T v$ - in-venicle time.
Eech of these compenents is a random auantity, that is, it will have mean value and a distribution.

Decreasing station spacing reduces the average passenger walk time. However, if vehicles stop at every station, invehicle time increases as vehicles stop more often. Skipstop or non-stop services counteract this at the expense of initial station wait time.

Gor a diven service psttern ird fasseneer demand, smalier veilicies running at storter time neadways reauce the mean passencer wait time at the exrense of more complex control and higher costs per passenger. (c)

In-vehicle time has three componerts:-
$T v-m b+T c+T d$
where

Tb - base trip time
Tc - speed change delay

Td - queuilig delay.
The base trip tive is the time a journey would take if the vehicle travelled its whole iourney as fast as speed restrictions allow. All tre while a vehicle is travelling at a speed lower than the track limit it is accumulating delay. The sceed-change delay is the time, extra to the base time, taken to travel a section of track. It defends on acceleration/jerk limits and the vehicle manoeuvres required by the control policy. rueuing delays occur in any system where vehicle mo.ements are not completely determined before a vehicle starts its journey. Queues form at junctizns when individual vehicles are delayed to resolve a conflict. Delays due to queuing are verv defendent on controller desien and tend to rise rapidly when the system is being operated near to its maximum capacity.

The weighting of each component of journey time so as to reflect its relative importance to the passenger is the
subject of same debate. (s - 11) the final choice of system operating point is very dependent on this weiphtinp.

However, a general rule oferates; for a given travel aemasa, hieher service frequencies (implying smaller vehicles) and higher performance vehicles pive a better quality of service at a corresponding increase in equipment costs, running costr and control complexity.

Service Devendability - Service dependability is a measure of how close the service quality of the actual system approaches the design service. Low dependability means erratic, poor service to travellers and will not attract patrons. Good derendability irplies a 'fail-soft' system characteristic as discussed in Chapter 2. In the event of a failure the system should continue to run, albeit at a lower performance.

Safety - The level of afety required of an automated transit system must be at least as high as the best conventional transport systems. Moreantown is designed such that the probebility of two vehicles colliding is less than cnce in 28 years. Safety, reliarility and service are strongly linked. Inadequate component reliability gives poor service and may reduce safety. High levels of safety can be achieved at the expense of service or at the expense of dependability. (1)

Abstract

Soste - Tine costs of ari aidomated transport system are dorinated by the civil engineering costs of station and track (affsex 6́c.) ; the control systems contribute lC of total costs. Cf the control costs approximately half are for develoument of software, the remainder for tre measurement, commancetion, rocessing and actuation equiprent.

Juncticn and station costs can be substantiflly reduced by Eirplifying their layouts, for example, by the use of on-line stations, low speed turns and the elimination of grade separation at junctions. liowever such designs reduce syster capacity, a loss that can be only partially recouped by the use of sophisticated control algorithms. (1, 12-15)

4.3 Intermediate Performance Measures and Desirable Control

System Attributes

In the analysis presented below, three intermediate performance measures are used to describe the performance of a longitudiral control system. These measures reflect in a condensed form the fundamental performance measures discussed above. They are - the minimum time separation at which vehicles can run (which determines the track's capacity to carry people), the delays imparted to vehicles during a journey, and the distances required to effect necessary manoeuvres (which will influence the geometry of the system and hence its cost). Two constraints are taken to apply, one is safety, the other is the comfort limits on acceleration and jerk.

In addition to the quantitative evaluation of ferformance vielded by the measures listed above, a number of desirable syster, attributes are considered. Cnly a qualitative treatment of these attributes is feasible, however their inclusion in a control scheme will allow better system performance to be achieved. These attributes reflect trade-offs made elsewhere in the system design. Thus:-

- There is a big incentive to develop longitudinal controllers that allow the use of simple compact civil engineering structures. This primarily affects junctions and stations (since straight track costs are fairly insensitive to vehicic control). (16) Thus control strategies should be able to operate successfully with tight radii curves, at-grade crossovers and on-line stations.
- Good longitudinal control performance is necessary both when operating normally and when faults have occured. This requires firstly that safety is ensured and secondly that adequate flexibility and a suitable structure are built into the controller to enable the system to cope with failures in a fail soft manner. The principle reguirements for a fail-soft system can be summarised from Chapter 2.
- The structure should be decentralised and preferably hierarchical.
- Control should be divided into function modules.
- Each function module should be located near the subiect of control and require only local information for rinute $t=$ rinute running.
- Coordination with the rest of the system, to erasure snooth rumning and oftimisation, shoula be on a parameter Edjustment' priseiple so that irtervention from the hisher level improves the ferformance of, but is not essertial to, the lower level. The local module should thus be semiautonorious.
- Nodule complexity should be limited, for example, where a process is required in several places, it is preferable to duplicate equipment rather than share it, aleorithms should be chosen for understandability, ratner than oftimal ferformance.
* System management alroritnms must be fleaible and able to respond easily to local anomalies in running.
* Failure states should be chosen to maximise syetem performance whilst in the failed state.
- Communication reouirements should be minimised and safety status information confined to very reliable liniss.

DESIGN: FOR SAFETY

```
4.4 'Horst-Case' versus Probabalistic Criteria
        Safety can be assured by one of two design approacnes.
In the first or 'worst-case' approacn, safety is ensured
by a combination of; engineering to much higher standerds
than normal, any component whose failure might conceivably
```

lead to en accident; so desirninr the s:'stem that tne failure of a component leade directly to a safe (usually low performance) state, that is, fili-safe design; using redundancy where the first tecnnique is not fossible and the second does not achieve adequately hiph reliabilities.
mhe design sfecification is deterrined by considerinf the 'worst-case' combinaticn of events (even if it is anticipated that the probability of the worst case corbination arisine is very low).

Traditionally tne very high standards of safety on the railways have been easured by the use of fail-safe desigh. Fail-safe desirn relies, for its effectiveness, upon using systems and componerts whose modes of failure are few and well-knowin. This is only possible because, long oferating, experience has revealed a catalogue of failure modes, the simplicity of key components allows them to be overdesigned to make failure improbable, and a safe system-state is available. However, even train control is not intrinsically safe, for safe running is heavily dependent on the driver correctly remembering and interpreting his rule book.

A completely fail-anfe system probably cannot be designed, particularly if the control equipment is in any way complex. Note for example, that it was the unsafe failure of a vital 'fail-safe' speed-control component on a BART train which caused it to leave the track at Fremont. (17)

The alternative to fail-safe deaign is redundant design, in which continuing system operation is assured in the event
lead to en cocident; so desirninf the sistem that the failure of a component leads directly to a safe (usually low performance) state, that is, fail-Bafe design; using redundancy where the first tecnnique is not fossible and the second does not achieve adequately hiph reliabilities.

The design specification is determined by considering the 'worst-case' combiratica of events (even if it is anticipated that the frobability of the worst case corabination arisine is very low).

Traditionally tne very high standards of safety on the railways have been ensured by the use of fail-safe design. Fail-safe design relies, for its effectiveress, upon using systems and components whose modes of failure are few and well-known. This is only possible because, long oferating experience has revealed a catalogue of failure modes, the simplicity of key components allows them to be overdesigned to make failure improbable, and a safe system-state is available. However, even train control is not intrinsically safe, for safe running is heavily dependent on the driver correctly remembering and interpreting his rule book.

A completely fail-safe system probably cannot be designed, particularly if the control equipment is in any way complex. Note for example, that it was the unsafe failure of a vital 'fail-safe' speed-control component on a BART train which caused it to leave the track at Fremont. (17)

The alternative to fail-safe design is redundant design, in which continuing system operation is assured in the event

Abstract

of a sincle failure. In additicn to tne extra equipment required, extensive maintainance and repair facilities are needed to ensure that the redundarcy is maintained. Fedundancy is used farticularly on aircraft where safe systeri states are not available. Apain rot all unsafe failures can be eliminated by redundant desion. ($1,6, I 6$)

The probabalistic (or fail-soft) design process yields the second and more controversial approach to safety. Referring to Chepter 2, section 2.2, equation 2 , the cost term C is chosen to maximise S for a given budget. This means chossing an optimal balance between the frequency term RV. (which depends on the reliabilities of corponents) and the incident cost $C k$ (which depends on system design). For unsafe failures (that is, failures that cause human injury or death), the incident cost Ck is so high that the designer can reduce the frequency of such events to extrenely low levels before cost of the measures approaches the expected incident cost. An extensive reliability analysis is required to identify all possible faults, and associate with each its probability of occurring and an expected cost. Such an analysis leads then to the 'best. system syecification. However, in practice a number of difficulties arise.

- The hish costs of the reliability analysis of complex systems vil freclude a comprehensive identification
of all fossible states, consequently there is no gurantee that all possible unsafe states will have been found.
- Both the low probabilities and the himh cost of an unsafe system state are difficult to evaluate. Consequently in a system where safety considerations place a limit on system ferformance (such as in transfort) an oftimistic choice of system specification may have a very costly outcome if the choice proves incorrect. Thus the choice of specification must take account of the potential errors in the assessment process. As a result, it is unlikely that the 'fail-soft' approach vill yield a substantially different result, when safety is at risk, tnan the conventional, conservative 'worst-case, analysis. Howe jer it is interesting to note that reference 19 advocates an approach to transport safety similar to the fail-soft one outlined above. (Dia 24)

With automated transport systems, it is likely that the complexity of equipment, the use of electronics in safety systems, and the lack of operating exferience for much of the new technology required will force designers to use a combination of worst-case and fail-soft design.

In ary system, however carefully designed, unsafe failures will eventually occur and result in a collision. The cperating speeds of urban transport systems are likely to be modest, so reducing the likelihood of serious injury or death. However vehicles must still be designed to protect the passengers inside them. This aspect of safety

csn draw substantially on current desipn tecnniques for other modes of transport, particularly the motor car. $(5,20,21)$
4.5 Safetv, Headwav ard Capacity

Safety - Two conflicting factors influence the choice of minimum vehicle separation during normal rurning, the track capacity which increases as the minimum vehicle separation decreases, and the safety hazards which increase as the minimum separation decreases.

Two principle accidents can result from a failure in the longitudinal control system; collision with another vehicle or obstruction on open track and collision with track structure or another vehicle at a junction. In both cases, an effective protection can be provided by ensuring that there is always sufficient unoccupied track extending in front of each vehicle. Thus the vehicle may slow down safely if an abnormal situation is detected. The length of this zone, the variables that should be monitored and the strategies to be used when an emergency is detected, have been the subject of much debate. It is generally agreed that two types of controller are required - a longitudinel controller that normally has control of the vehicle, and an efergency controller whose function is to decide whether an emergency situation exists and to take appropriate action. A more detailed discussion of emergency proceedures is contained in Chapter 5. However, invariably one function of
the emergency control is to emergency brake the vehicle to zero seed should the distance between the vehicle and another venicle (or obstacle) fall below the scecified free zone. It is the length of the safety zone which places an ultimate limit on the track capacity of a system. In the section which follow, the irteraction between an emergency controlier as outlined above and the normal controller is discussed and is used as an example to illustrate the tio approaches to safety.

Capscity - The capacity of a system measures its ability to transfort people. For a given passenger demand, shorter headways reduce waiting time and the associated smaller vehicles allow faster services to be operated. However costs per cussenger increase, with the increase in the vehicle numbers, the required reliability of each (to maintain the same system dependatility) and the complexity of control. Consequently the overall benefit of operating at a particular headway might look as in diagram 25. (Dia 25)

In an autotaxi system the curve is shifted towards low headways, with rescect to autotram and automatic trains, reflecting the different weighting attached to perfcrmance measures in the system sfecification.

Capacity can be formally defined as the maximum flow of vehicles that can pass along the track. For constantspeed track this can be directly calculated from the safety criterion. Throuph speed changes capacity is very difficult

```
to calculate exflicitly but can be found by simulation.
At junctions an alternative definition of capacity is some-
times required - it is that venicle flow above which service
becomes unacceftable. (That is, delays become too large,
manoeuvres require too much room etc)(Dia 26)
```

Definitions

Mean time neadway $-\quad-\frac{l}{\text { Flow }}$

Minimum time headway
$-\frac{1}{\text { Capacity }}$

It should be noted that capacity is essentially a tire quantity.

Headway - The 'distance headway' between two vehicles is the distance between the tails of two successive vehicles travelling along the track. It is this distance which is directly constrained by the safety criterion, since it wust not fall below the epecified affe minimum, if an emergency stop is to be avoided. (Dia 27) The sfecified minimum is termed the 'emergency headway'. It sets a switching boundary; venicle spacings less than the boundary result in emergency
stofe. The degigner must choose a suitable value for tisis boundary and alec decide tie minimum headway at which vehicles normally run such that the emerency monitor does rot interfere with the oleration of the normal control.
4. 5 Ghoice of liormal and Emer zency fieadway

Forst-case' Approach - Any ccllisien may result in injury or death and, under this approach, is attributed a quasiinfinite system cost. Thus the control system is designed to make the frobability of a collision as small as can realistically be achieved. (22)

Whe erergency headway is chosen so that even under the worst-case conditions the vehicle can stop without a collision. Consequertly the braking distance is calculated vith tne minimum guaranteed value of braking rate. It is assumed that; the weather is bad; the vehicle is on a down grade; it is heavily loaded; there is a following wind; at the instant of the emergency the vehicle is travelling at the maximum sreed allowed by the tolerance of the sneed measurement; it is accelerating and the longest detection and actuation delays apply. The calculation of braking distance and its sensitivity to changes in parareters is well covered in the literature, see for example references 6,22 and 24.

Probahilistic Aprroach - A number of costs have to be considered when choosing the size of the emergency headway. - The cost of a collision. If the minimum vehicle headway is set at less than the ernergency stopfinf distance, a vehicle encountering an obstacle will be unable to stop without a collision. The energy dissipated in the impact can be used as a measure of the severity of the collision. In safety research on conventional motor vehicles, the equivalert brick-wall irpact speed (EBIS) is used as a measure. This is the speed at which the vehicle would have to collide with a brickwall to dissipate the same energy. The EBIS defends on the circumstances of the collision. For exarrfle:-

Collision with an immovable object	EBIS
Collision with another free-moving vehicle	velocity of
Collision with another vehicle with its brakes applied	EBIS

The siBI can be related to the probability of death or injury via statistics collected for conventional transport.
(A small automated transport vehicle may be assumed to provide a similar protection to passengers as conventional vehicles). $(6,25,26,27)$ (Dia 28)

The cost of injury or death is not easy to establish, for example in a paper by Morag (28) in 1975, a figure is quoted of $\$ 64000$ per death. The Road Research Lab (29) in 1971, suggest the cost of motorway death to be $£ 25,000$.

,

In neither case is it clear what is included, however it is likely that inflation and increasinz compensation awards will have substantially increased these estimates by today.

The cost of equipment damage is much smaller than the cost of injury. The worst collision might destroy \& 30,000 of equipment (one vehicle and some track), (30) the same accident could severely injure or kill many of the passengers, say $\mathfrak{E} 200,000$ + at today's prices.

If damage and injury is proportional to the energy dissipated, that is EBIS ${ }^{2}$ a typical cost curve would look as in Diagram 29. The maximum system speed gives the maximum impact speed possible. The maximum assumed depends on whether vehicles can collide head-on or not.

- The cost of emergency braking. This cost is primarily a nuisance cost with components corresponding to passenger discomfort, energy wasted and resultant service disruption. It is probably nearly constant and very small compared with the collision cost.
- The cost of braking at too high a rate. If there is a fault in the emergency braking apparatus and the brakes are too effective, the vehicle stops too rapidly. There is no collision but passengers may fall and be injured, or hit by dislodged lugkage. A cost must tnerefore be included to take this eventuality into account.

For each velocity, an average emergency storping distance can be siecified, this will be termed tine nominal stopping distance. Consider a vehicle that starts emergency braking at a headway defined thus:-

Headway $=q$ nominal stoppinp distance and define

$$
r=\frac{\text { actual stoppins distance }}{\text { nominal stopping distance }}
$$

Diagram 30 shows the distribution of stopeing distance about the nominal.

Diagram 51 shows the cost of collision as a function of collision velocity.

is monotonically increasing and depends on initial velocity and the behaviour of the vehicle ahead.

Combining all these factors together for a given initial velocity gives the cost of stopping $U(r, q)$ as a function of r. This is snown in Diagram 32.

Thus, eiven that an emergency stop is required, a cost can be associated with a decision to make emergency headway equal to the nominal stopping distance $(q=1)$. The cost is reduced if the headway is made larger ($0>1$). For all possible choices of emergency headway a cost can be calculated
$\operatorname{Cost}(q)=\int_{a 11} P(r) C(r, q) d r$

This is shown in Diagram 33.

Expected cost
DIA. 31

DIA. 33 Cost of using a headway 9

DIA. 34 Comparative operating costs of two sorts of brakes

The use of closed-loop emergency braking gives a better control of stopping distance so reducing the gread of the distribution $P(r)$. Consequently the cost (q) as a function of q will be sharper and enable a staller value of q to be used for a given operating cost. (Dia 34)

In practice emergency braking will not start exactly at the design switching boundary but will take place at some point randomly distributed about it. The distribution $P(q)$ will depend on factors such as measurement precision and decision and actuation time lags. The effect is to spread the distribution of stopping points (the stopping point distribution is a convolution of the switching and stopping distance distributions).

The actual vehicle state will lie in the vicinity of the normal operating roint unless a failure occurs. The distributions are shown on diagram 35 where

$$
\begin{aligned}
R= & \text { actual headway under normal control } \\
& \text { during close following }
\end{aligned}
$$

nominal stopping distance
The convolution of the 'normal control' distribution $P(k)$ with the monitor distribution $P(q)$ sives the probability of emergency braking. The probability of false alarms is the convolution of the monitor distribution with that part of the normal running distribution corresponding to correct operation. The cost of these falbe alarms is the nuisance value of eaergency braking.

Probability

DIA. 35

DIAS.36-38 The trapezoidal manoeuvre: full acen. reached

Control of venicle movements is a two stafe process. Firstly a desiraole trajectory (exrressed as values of jerk. acceleration, velocity and position as functions of time) 1s determined. Then this trajectory is made the infut to a vehicle controller desifned to ensure that the actual vehicle state stays near the demanded state in the face of disturbances etc.
4.8 Network Management of Vehicle Fieet

Vehicle management is the most slobal level of venicle control. Inputs such as passenger travel demands, the recycling of empty vehicles and fault status are put torether to froduce sfecific vehicle moverents around the network.

Vehicle management techniques can be classified according to the amount of risedetermined, synchronous vehicle movement in the system. Synchronous vehicle movement is movement wherehy each vehicle follows the same velocity profile along the track, for example, vehicles run at a fixed time headway. Conversely through asynchronous track sections each vehicle follows a velocity-position profile that varies from one vehicle to the next.

Any system con be conveniently catesorised into three areas, namely the stations, the open track and junctions. Each may be operated synchronously or asynchronously.

Table 1 summarises the style of operation for some commonly frocosed fleet manasement techniques.

Table 1

Technique	Station	Track	Junction
1 - iveverstop	S	S	S
2 - Synchronous Slot	A	S	S
$3-$ quasi-synchronous slot	A	S	A
$4-$ Asynchronous	A	A	A

S - synchronous
A - asynchronous

Neverstop Control - Neverstops are of little commercial importance but are included here for completeness. Fach vehicle follows the same velocity-position profile along the whole track. The time headway is fixed, consequently, the slower vehicles travel, the closer they become. The minimum speed is set by the vehicles closing up completely (minimum speed = vehicle length/time hesdway).

Some mechanical neverstop systems have been built. In one desimn, vehicles are all coupled to a variable pitch screw driven by a stationary engine. In stations, the screw pitch becores finer, vehicles clese up together and travel. slowly so enabling passengers to embark or disembark. Between stations the venicles accelerate and travel at a hioher speed. As all vehicles are mechanically coupled
together, it is not considered necessary to have an inderendent safety system. High mechanical efficiencies and an inherent energy regeneration keep running costs low.

Neverstop systems without mechanical coupling lose most of the advantages, as energy regeneration is complex, indefendent safety monitoring is essential and reliabiliむy is lower. However, vehicles can be arranged to actually stop in stations (although only for a rigidly specified time).

Neverstop systems are completely centralised. The service offered is inflexible. Any fault imobilising a vehicle, including a failure to load passengers in the specified time must halt the entire system. Consequently it is unlikely that such systems will be used in any network application. (31)

Synchronous-Slot Control - Cne of the earliest proposala for vehicle manggement in automated systems was the 'synch-ronous-slot' concept. On the main-line track and through junctions, conceptual fointers (or slots) are moved along the track, each following the sume velocity-poaition profiles. At junctions, the pointers are in synchronism and merge together. At the start of its journey each vehicle is assigned to a pointer by a central control. This central control has previously profected forward the system state to identify the earliest path (fointer) throush the system that does not conflict with other prearranged venicle movements.

A passenfer using the system, experiences a random wait a: the station of origin, but onse on-board a vehicle, has a fixed journey time. Stations are operated asynchronously and, so that stoping vehicles do not interfere with venicles that are not, stations are off-line. To enter the station, venicles are diverted from the main-line. To leave the station, the vebicle is accelerated up to line sjeed and synchronised with its pointer before rejoining the main-line.
synchronous-slot has the following characteristics.

- Stations are expensive, as long approach and departure lenes are required. If vehicles are queued at the station more track is required. Station size can be reduced by using low-speed turnouts from the main-line, however this reduces main-line capacity. $(5,7,32,33)$
- Trackside control is relatively simple. In one implementation, the velocity profile is written onto the track using closely spaced track markers. The central control. broadcasts a stream of pulses to every venicle. Each pulse is interpreted as an instruction to advance one marker. The spacing of the markers defines the sueed of the vehicle. (Speed $=$ marker spacing x pulse rate)
- Synchronous slot is highly centralised and has not the flexibility to react to abnormal running conditions. If a vehicle fails, other vehicles cannot be routed around the failure, as there is no guarantee that a conflict free alternative route will exist. Similarly, if for any reason, a station cannot accept a vehicle intending to enter, there
is no wəy of re-routing the vehicle elsewhere. Conteruently any failure will cause an immediate shutdoxn of the entire system, with the attendant problems of sudden changes in power demand, alternative travel provisicn for travellers and restart.

The passenger is likewise limited by the irflexibility of the system. He cannot for example change his destination en route except by stopping at the next station he passes and rebooking his journey.

* Safety monitoring can in frinciple de carried out relatively simply. As the venicle paths are known, the monitcr need only check that vehicles are attached to a pointer (that is, there should be no vehicle between pointers). However this does not checis that the pointers are moving correctly. To do this requires the monitor to check intervehicle spacing.

The high cost of stations, the large amount of communication to the central control and the impossibility of incorporating a graceful degredation of service after failures all combine to make synchronous slot an unattractive control scheme. (34)

गuasi-synchronous Control (วSC) - Quasi-synchronous cortrol was developed to increase the flexibility of the basic synchronous-slot technique. venicles are dispatched from stations without the quarantee of a conflict-free fourney.

On open track and through junctions, marikers follow the same velocity-position profiles. However junctions are lecally controlled, and impendinp conflicts are resolved by dynamically transferring vehicles from one marker to another. This point transfer manoeuvre is called slot-slipping. If the number of pointers that can be slipqed is limited, then the appropriate speed profiles can be built into the vehicle control loric as stored manoeuvres. The necessary trackside control can then be limited to the control of the ordering of vehicles through the junction.

- Journey times under 2SC are no longer deterministic, as random delays are introduced at each merge. However waiting time at the station is reduced as vehicle departures can take place immediately a spare pointer passes the station.
- QSC allows a decentralised control structure to be used. This reduces communication costs and allows the system to respond flexibly to fault conditions. As the vehicle route no longer needs to be predetermined, a network link, disabled for some reason, can be isolated and vehicles rerouted around the fault (provided that an alternative route .exists).
* QSC has one principle disadvantage. When operating near capacity, occasionally it becomes impossible to resolve a merge conflict (because too many slots must be slipped). Special measures then have to be taken to ensure safe operation. Usually the vehicle is routed in the wrong
direction, or onto special reserved track. Similarly at stations, access may be denied oscasionally as a conseruence of confestion or fault and the vekicle must po to ansther station cr returr for another attempt.
- Vehicles under ©St are not necessarily close to a marker, consequently safety monitorine must check intervehicle syacing. $(34,35,36)$

Asynchrorous Control - In asynchrorous venicle control no attempt is made to predetermine vehicle mavenents. Junctions, stations and open track can all be controlled locally with venicles being nanded on from one section to anothor. Detailed information about particular vehicles is not necessarily required. A central controller is not essential but one can be used to improve the performance of the systeg (for example by coordinating function operations and modifying routing commands to contzin the effects of a fault, or congestion). Some asynchronous systems allow a trade off to be made oetween line speed and cofacity. mo take advantare of this sroperty the control system must communicate to vehicles, commands dependent on the individial situation of the vehicles. Synchronous schemes which simmlify control requirements so that all vehicles have tine same trajectories could not make use of this croperty.

Asynchronous vehicle management can be realised usins two control teciniques. In the first, the vehicle-foliower method, 9 or-board vehicle controller maintains safe
venicle-spacings by using venicle-to-vehicle ranging. The inter-vehicle spacing is made some function of venicle own speed and apeed and position relative to one or more preceeding vehicles.

On open track where there is no preseding vehicle in range, the venicle travels at the track speed limit or at a skeed commarded from the trackside. The venicle controlier can be considered as having four censtraints, safe following sfeed, track sreed limit, control speed, and comfort limits. It chocses the most restrictive as its command input.

When vehicles are running in a group under headway control they form a platoon. A particular requirement of the headway controller is that such platoons are spatially stable, that is, disturbances to the leading vehicle are attenuated as they pass down the venicle string. It has been shown that provided
$\left|\frac{V_{n+1}(j w)}{V_{n}-(j w)}\right| \quad \leqslant \quad 1 \quad$ for all $\quad \mathrm{w}$
this condition is satisfied, (38) where

$$
\begin{aligned}
& v_{n} \quad \text { - velocity of } \mathrm{N}^{\text {th }} \text { vehicle } \\
& V_{n+1} \text { - velocity of } N+1^{\text {th }} \text { vehicle }
\end{aligned}
$$

If this condition is not satisfied any disturbances become

 multiflied by the cascaded control action of the following vehicles so that the last vehicle underfoes large fluctuations in speed etc.In the second method of asynchronous control, markerfollower control, inter-vehicle ranging is removed. Instead, individual vehicle trajectories are designed to ensure that

Abstract

sэfety constraints will not be violated (frovided the system is working normally). Trajectories are then communicated to vehicles as a time-varying position set-point to the vehicle propulsion control. Such an arrangement decoucles the motion of one vehicle from the next so removing the string-stability constraint. As no ranfing is required measurement and communicaticn requirements are reduced. However, accurate measurements of vehicle position and complex calculations must be made instead.

4.9 Performance Characteristics of Fleet Manacement Techniques

Tracezoidal speed Change Profile - All vehicle trajectories can be viewed as a sequence of speed changes induced by commands from the trackside. The trackside calculates the desired trajectory using the fundamental equations of motion. It is usually desirable tinat the speed-change manoeuvre is completed in minimum time (and distance), that is, the venicle realises its limits on jerk, acceleration and velocity where feasible. This minimum-tire speed-change manoeuvre is effected using the trajezoidal acceleration profile.

Assuming that tae same limitins values on jerk and acceleration are used for both acceleration and decelerstion, the trajezcidal frofile is described by the followinf equations in confunction with diarrams 36-41.

DIAS.39-4I The trapezoidal manoeuvre: full accn. not reached

DIA. 42 Velocity profile of headwoy changing manoeuvre

$$
\left(V_{7}-V_{1}\right)>A T 1 \quad \text { ie, maximum acceleration } \begin{gathered}
\text { is realised }
\end{gathered}
$$

$$
T_{1}=\frac{A}{J}
$$

and

$$
\left(V_{2}-V_{1}\right)=A\left(T_{1}+T_{2}\right)
$$

$$
D=\left(\frac{v_{2}+v_{1}}{2}\right)\left(T_{2}+2 r_{1}\right)
$$

or
$D=\left(\frac{v_{2}^{2}-v_{2}^{2}}{2 A}\right)+\frac{\left(v_{2}+v_{1}\right) \cdot A}{2 J}$

If

$$
\left(v_{2}-V_{1}\right) \leqslant A I_{1} \text { ie, maximum acceleration }
$$

$A_{L}=T_{I} J$
and $\left(V_{2}-V_{1}\right)=J N_{1}^{2}$
and
$D=\left(V_{2}+V_{1}\right) T_{1}$
or
$D=\left(V_{2}+V_{1}\right) \frac{\left(V_{2}-V_{1}\right)^{1 / 2}}{J}$
where
V_{1} - initial velocity
v_{2} - final velocity
A - maximum acceleration
A_{L} - acceleration limit reached
T_{1} - acceleration application time
T_{2} - period of constant acceleration
D - manoeuvre distance
J - jerk value

Headway Chanting Manoeuvre - A second type of manoeuvre
is frequently used, namely a manceuvre to charge the spacings between vehicles. This is achieved by using a three stage operation. Stage 1 charges the speed of the vehicle from the initial V_{1} to an intermediate level V_{i}, stage 2 is a constant speed section and stage 3 is another speed change from the intermediate speed V_{i} to the final speed V_{2} (Dial 42) If the manoeuvre must take a time T and use a distance X then it can be snow that the necessary intermediate speed is

$$
\begin{aligned}
v_{i}= & \left(\frac{1}{a_{1}-a_{2}}\right)\left\{a_{1} v_{2}-a_{2} v_{1}-a_{1} a_{2}\left\{z \pm\left(a^{2}+\frac{1}{a_{1} a_{2}}\right.\right.\right. \\
& \left.\left(\left(v_{2}-v_{2}\right)^{2}+\left(a_{2}-a_{2}\right)(y-2 x)+2\left(v_{1} a_{2}-v_{2} a_{1}\right)\right)^{2}\right)
\end{aligned}
$$

where

$$
\begin{aligned}
& z=T-\left(\frac{\left.Q_{1}+\partial_{2}\right)}{1}\right) \\
& Y=Q_{1} v_{1}+\partial_{2} v_{2} \\
& \partial_{1}=\frac{a}{J} \\
& \partial_{2}=\frac{a_{2}}{J} \\
& J=\text { jerk limit used } \\
& \partial_{1}=\text { acceleration reached in stage } 1 \\
& a_{2}=\text { acceleration limit reached in stage }
\end{aligned}
$$ safety criterion can be summarised thus:-

- There are negligible actuation and detection delays
* Jerk constraints during energency braking are not applied
* A guaranteed rate of emergency braking is available (ae)
* Collisions at any speed are not allowed
* The minimum distance headway during normal funning must not be less than $K x$ emerpency headway where K is a safety factor.

This specification yields an emercency distance headway $H_{e}(v)=\frac{v^{2}}{2 \cdot a e}+L$ where
V - venicle speed
L - vehicle length
ae - emergency braking rate
and a minimum distance headway for normal running of $H_{D}(v)$
$H_{D}(v)=K \times H_{e}(v)$
(NB Each vehicle has a tolerance zone about its commanded position. With vehicle-follower systems only one such zone need be included in the headway, with marker-following two must be included. This consideration is reflected in the choice of K)

The Capacity of Open Traci - The capacity of constantspeed open track, $C(v)$ is limited by the minimum normal distance headway.

$$
C(v)=\frac{V}{H_{D}(v)}=\frac{1}{H_{T}(v)}=\frac{2}{\left(\frac{V}{2 a e}+\frac{L}{V}\right) K}
$$

where
$H_{T}(v)$ - time headway between vehicles
Plotting $C(v)$ against V yields the familiar hump shaped curve. (Dia 43) The speed at which capacity is a maximum is denoted by $V_{\text {sat }}$. This maximum occurs when the emergency stopping distance $x \quad K=$ vehicle length $x K$

$$
v_{\text {sat }}=\sqrt{2 \mathrm{ae} \cdot \mathrm{~L}}
$$

The capacity of constant-sceed open-track cannot be exceeded. It is an upper limit on vehicle flows. Diagrams 44 and 45 show the distance headway and time headways respectively as functions of velocity.
4.10 Synchronous Control

The capacity of synchronous track is constant because the time headway is fixed. This means that the safety criterion will be violated both above a maximur sceed and below a minimum sfeed. Consequently vehicles must travel between these speeds. (Dia 46)

If speed charges are required anywhere on synchronous track, for example because of small track radii at corners or station turnouts, the time headway between vehicles must be increased from the constant speed minimum. The increased

headway is necessary because vehicles close up as they fo through a speed reduction.

Consider the position-time trajectory of a vehicle and the locus of its associated minimum headway as shown in Diagram 47.

The closest that the vehicle may aproach a previous vehicle is controlled by the locus of the minimum headway, since no other venicle trajectory must pass throurh the shaded zone. (If it did the safety criteria would be violated). On synchronous track, the soeed reduction always starts at the sare point, therefore a sejuence of venicles looks as shown in Diagram 4o, where $H(t)$ is the locus of headway, $S(t)$ is the trajectory of venicle, and t critical, P critical is the time, position coordinate of the critical point.

The minimum time headway on synchrenous track is T_{c}, where T_{c} is the maximum time separation of the venicle trajectory $S(t)$ and its associated headway locus $H(t)$. Diagram 49 shows the plot of time separation (T) between $H(t)$ and $S(t)$ against position through the manoeuvre.

An alternative approach is to consider the safety factor K plotted through the manoeuvre as a function of time. At the critical time K must not be less than the value specified for minimum normal running. The Diagrams 50 - 51 show the appropriate plot of K against time througif the manoeuvre. D is the distance separation of two vehicles passing through the speed change manoeuvre, D_{c} is the critical separation.

$K-\frac{D}{H_{e}(t)}=\frac{\text { separation of vehicles }}{\text { emergency headway }}$
There is no simple way of specifying exactly where
during the speed-change manoeuvre the critical vehicle separation will occur of what the value of the separation will be.

A reasonably accurate assumption can be wade, namely that the critical separation occurs at a point whose position, time coordinates are H_{D}, H_{T} from the start of the manoeuvre. This allows an estimate of the critical separation to be made. (Via 52)

$$
T_{c}=-\left(\frac{V_{1}}{a}\right)-\frac{1}{a} V_{1}^{2}+2 u_{a} a+\frac{a^{4}}{3 J^{2}}
$$

provided

$$
\left(\frac{v_{1} a}{J}+\frac{a^{3}}{6 J^{2}}\right)<H_{d}<s_{m}
$$

where

$$
\begin{aligned}
& T_{c} \text { - critical headway } \\
& J \text { - jerk used } \\
& \text { a - acceleration } \\
& V_{1} \text { - start velocity } \\
& V_{2} \text { - end velocity } \\
& \mathrm{H}_{d} \text { - distance headway at } \because=10 c i t y \mathrm{~V}_{1} \\
& H_{T} \text { - time headway at velocity } V_{1} \\
& S_{m}-\frac{v_{1} a}{J}+\frac{1}{6} \frac{a^{3}}{J^{2}}+v_{1}\left(\frac{\left(v_{2}-v_{1}\right)}{a}-\frac{a}{J}\right)+\frac{v}{J}\left(a\left(v_{2}-v_{1}\right)-\frac{a}{a}\right)^{2}
\end{aligned}
$$

Notes
i The estimate gives a slifhtly ottimistic ralue for the critical headway and does not apply for firal sceeas that are either close to the initial seeed or ver low.
ii The estimate devends only on the initial speed V.
iii The use of lower jerk values increases the capacity through the manoeuvre but at the expense of a Ionger manoeuvre zone.

Diagram 53 shows the variation in the catacity of a syeed change manoeuvre accoriing to initial speed. (For a final speed satisfying Note $\underset{i}{i}$ above)

Diagram 54 shows the variation in the capacity of a speed change manoeuvre according to final sceed (with a constant initial sped). The region of constant capacity corresponds to the estimate proposed above.

Diagrams 55,56 show the effect of limiting jerk on the time seqaration and safety factor curves plotted as functions of distance and time respectively.

Diagram 57 shows the plot of time separation against position through the manoeuvre for different speed changes (from constant initial speed $\left(V_{1}\right)$ to a variable final speed $\left(v_{2}\right)$).
Diagram 58 shows the same curves but for a speed-up manouvre from a variable start sceed $\left(V_{1}\right)$ to a fixed final speed ($V_{\text {? }}$).

These diagrams show the variation of time separation through a manoeuvre as a function of position. Each picture is comprised of a set of speed changes.

Diagram 57 a,b,c
$\mathrm{n}_{1} \quad$ Speed change from $12 \mathrm{~m} / \mathrm{s}$ to $11.5 \mathrm{~m} / \mathrm{s}$ in steps of $0.25 \mathrm{~m} / \mathrm{s}$
n_{44} Speed change from $12 \mathrm{~m} / \mathrm{s}$ to $1 \mathrm{~m} / \mathrm{s}$

Diagram 58 a,b
n_{1} Speed change from $1 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$
in steps of $0.25 \mathrm{~m} / \mathrm{s}$
n_{44} Speed change from $11.5 \mathrm{~m} / \mathrm{s}$ to $12 \mathrm{~m} / \mathrm{s}$

DIA 57a Slowing down:
jerk $=\infty$

Sreed-up manoeuvres are much simpler than slowing-
down manoeuvres since the critical separation occurs always at one or other end of the manoeuvre and has a value equal to the steady-state time headway. (Dia 59,60)

4.11 Juasi-Synchronous Control

The performance of quasi-synchronous controllers differs from synchronous controllers because, at some points on the track, headway changing (slot-slipping) can take place. Headway changing is acnieved by delaying a venicle by an integer number of time headways. vehicles could siso be made to advance slots, but, as long distances ani hien sueeds are required to complete the manoeuvre, it is rarely attempted. There are a number of schemes for slipping slots -

- The vehicle stores only a manoeuvre to slip one slot. This must be used repatediy if a number of slots are to be slipped. (Dia 61)

Notes

i The vehicle motion is uncomfortable
ii The length of the manoeuvre zone depends on the number of slots slipyed
iii Simple vehicle control
iv Allowance must be made in the headway for the speed change.

- The vehicle has a fixed intermediate speed. The manoeuvre is continued for differing lencthe of time gccording to the number of slots to be slipped. (Dia 62)

DIA. 61 Manoeuvre to slip single slots

DIA. 62 Slot slipping with fixed intermediate speed
f.otes
i Manoeuvre is more comfortable
ii The length of the manouvre zene depends on the number of slots sliped but is less than in the previous case.
iii vehicle controller needs only one intermediate speed but must store the timines for each manoeuvre to slip a set number of slots.
iv Allowance must be made in the headwyy for the speed change.

* Vehicle has a fixed maroeuvre distance. Ihe intermediate speeds are varied according to the number of slots to be slipred. (Dia 63)

Notes

i Manoeuvre length is fixed
ii vehicle controller must store the speeds and probably the timings for each manoeuvre. If the manoeuvre distance can vary from location to location in the system, on-board or tracksiae processing will be required.
iii Allowance must be made in the headway for the worst case speed change. (That is, minimum maroeuvre distance $\mathrm{g}_{\mathrm{n}} \mathrm{d}$ moximum number of slots slipped).

[^2]

DIA. 63 Slot slipping with fixed manoeuvre zone

the track. The achievable capacity of the track is not increased because gacs must be left in the traffic flow to prevent the manoeuvre backing up too far. However, shortterm transient overloading can be tolerated. (Dia 64)

Notes

\underline{i} The control of slot-slipping is made much more complex
ii Commaicaticn requirements are increased as there must be continuous communication in the control zone.
4.12 Asynchronous vehicle-Follower Control

The capacity of constant speed track under vehiclefollower control depenas on the vehicle-following law used. There are three laws commonly used.

1 Fixed-Spacing - a fixed minimum inter-vehicle spacing is probably the easiest to instrument and control. Diagrams 65 to 68 show the headway, capacity and safety factor as a function of velocity.

2 Constant-Capacity - vehicle headway is proportional to velocity. (Dia 69-72)

3 Square Law - venicle spacing is proportional to the stopping distance. It is only with a square law spacing that capacity can be traded for speed. (Dia 73-76)

Platoon-Controlled, Vehicle-Follower Systems

- The trackside controller divides the vehicle stream into groups of vehicles. The trajectory of the leading vehicle in each group is controlled from the trackside, the

DIAS. 65-68 The fixed spacing DIA. 65

remaining vehicles in the group run behind the leader under vehicle-follower control. Each platoon resembles a loosecoupled train but, because individual vehicles are not mechanically coupled, it can be split and reformed without slowing down.

There are two styles of platoon control. In one, the group of vehicles follow very close together and for longitudinal control and safety purposes are considered as cne long vehicle (individual vehicles are so close together that should one vehicle decelerate sharply, the following vehicles develop only a stall relative velocity before the inevitable collision). At diverges, the vehicle group becones split up as individual vehicles take their own routes. After the diverge the vehicles coalesce into new groups:

The advantage of such a control scheme is that the benefits of a small-vehicle type of service can be provided, Whilst retaining some of the simplicity of control associated with long-headway systems. This apparent simplicity is however illusory, due to the severe safety and control problems associated with the making and braking of vehicle groups. For example - at the instant after a vehicle has left a group, the two remaining groufs of vehicles will be separated by a gap which must either be closed up or expanded. During either transition there will be a period of high risk. This vulnerable state could only be tolerated if the vehiclef were travelling slowly, or if both track and vehicles were engineered to very high standards and a probabalistic safety
criterion were used. Furthermore, as inter-venicle spacings of any size can arise during normal operation, an independent safety monitor cannot use intervehicle spacing as a safety criterion. As a consequence a much more complex and expensive safety system must be used which checks for the faulty operation of each section of vehicle equipment.

Notwithstanding the difficulties, two organisations have proposed using this form of control, PLYDA, and MATRA in their ARAMIS system. MATRA built a test track but it seems likely that they have now abandoned the enterprise.

In the second style of platoon control, vehicles always travel safe distance apart. Platoons can no longer be considered as one vehicle, as the effect of the follower control is to make each vehicle follow a different trajectory from the next. In particular, the further down the string a vehicle lies, the more gentle will its manoeuvre be. (Dia 77-79)

Consequently to change the speed of a platoon takes a long time and requires a considerable distance.

The time and distance can be reduced by making the lead vehicle execute a very exaggerated manoeuvre such as shown in Diagrams $80-82$, where the front vehicle is slowed to a low-speed before accelerating to the final speed.

All vehicles in a platoon passing through a speed restriction and then returning to normal line speed experience the same delay as the front vehicle. However, the front vehicle must commence its manoeuvre some distance before the restriction in order that the last vehicle in the platoon

also complies with the restriction. This results in extra average delay.

Models of the vehicle system carried in the trackside controller cannot easily be made to take account of tine disturbances acting on the real venicles. Consequently, the accurate prediction of the effect a demanded manoeuvre will have on a vehicle string, prior to its being executed, is difficult. This makes it impossible to use junctions and speed restrictions efficiently.

As a result platoon-controlled vehicle-follower systems are not attractive. Although they offer a highly decentralised control system with low track-to-vehicle communication requirements, the performance that can be achieved is severely limited.

Vehicle-Follower Systems with Supplementary Trackside Control
of Individual Venicles - Vehicles operate under vehiclefollower control, that is they select the most restrictive constroint in force at the time. However when secific manoeuvres are required, every vehicle receives trackside control commands (unlike the platoon-controlled scheme in which only the front vehicle of a group receives commands from the tracisside).

There are two important types of manoeuvre - speed restrictions and the close-packing of vehicles.

For a speed restriction, vehicles are required to be travelling at a set low sped after a certain point on the
track has been passed. The front venicle of a platosn can be commanded to follow the approfriate tratezoidal groifle. Simultaneously the remaining vehicles in the platoon start to slow down according to following law characteristics. If left uncorrected, each vehicle would pass the start of the speed restriction at proeressively higher speeds.

Therefore at some point each vehicle must transfer from irs vehicle-following trajectory to the trapezoidal trajectory. (That ia, the demands of the traciside control become more restrictive than those of the venicle-follower contral). If vehicles are to be delayed only the minimum amount they must switch trajectories at a goint which varies from venieIe to vehicle. (Dia 63) mo do this each vehicle carries a processor enabling it to calculate winen to join tine trapezoidal profile. Communication from the trackside is a fixed point ressaze conveying the new sfeed limit and sited a suitable distance in front of tne restriction. Alternatively, the processor can be placed at the trackside and trarsmits to the vehicle, using a continuous communcation link, the commend to switch.

In both cases good measures of vehicle position, velocity and acceleration are required if an accurate jerk limited transition is to be made.

A simpler but lower performance speed restriction can be achieved by commanding all vehicles to slow down at the " same point on the track. The command yost must be located so that tne fastest venicle can slow down before the start

of the sped restriction, slower vehicies will consequently be delayed by more than is necessary. (Dia ©4)

When a vehicle switches from a vehicle-follower trajectory to the trapezoidal trajectory the enforced slowing down introduces gaps into the vehicle platoon, that is, the flatoon spreads out. The extent of this platoon elongation is of interest since it is related to the cafacity that can be achieved through speed restrictions or junctions.

In the simplest form of sfeed restriction, all venicles are commanded to change to the new speed at a fixed point on the track. A platoon encountering such a speed restriction becomes very syread out. Diagram 85 shows the time separation of venicles before and after such a speed restriction. It can be seen that the worst case is inferior to what could have beer achieved had a syncnronous type speed change been carried out (that is, the incoming vehicle spacings have been increased to allow for the speed change. All vehicles carry out the same manoeuvre at the same point. See section 4.10)

At the other extreme a seed restriction could be operated by slowing down the front vehicle of a flatoon sufficiently far in front of the restriction so that by the tire the back vehicle of the group has reached the restriction, it too has reached the new speed. A long manoeuvre distance" is required, the length of which depends on the platoon size. (Dia 86) (NiB, A theoretical analysis, if it could be

carried out, may well show that an infinite manoeuvre distance is required. The data presented here have been produced by a simulation in which the manoeuvre is considered as finished When ell the vehicles of a platoon are within l\% of their final speed). However, venicles remain close packed at the end of the manoeuvre. A reduction in the manoeuvre distance can be traded for a decrease in the jacking of the vehicle platoon by the following technique. With reference to Diagram 87, at point B there is a mandatory mpeed restriction, all vehicles must pass this point at the new low speed. At point A a syeed reduction command is given to the front vebicle of the platoon. Distance X is the manoeuvre zone. After the front vehicle has passed point A all vehicles start to slow down under vehicle follower control. As they come close to point B they are forced to slow down from what ever speed they have, to tie final speed. Diagram ôठ shows the trade-off between the length of the manoeuvre zone X and the packing that can be achieved for a particular speed reduction.

Once past the speed reduction zone vehicles travel at the speed limit on a constant speed section of track. They maintain the spacings that were created at the start of the section. This is because to change the time spacings between vehicles requires vehicles to travel at different speeds, (In a practical system, inaccuracies in the vehicle speed measurement would tend to make vehicles move apart or close up slowly).

Abstract

Vehicles are released from the speed restriction at a fixed point on the track. Front vehicles in a platoon execute a trapezoidal transition to the new high apeed. The behaviour of subsequent vehicles depends on the spacings between the vehicles on the low speed section.

Supgose the time spacing between two vehicles is greater than the minimum time headway at the new higher speed. Then, if the first vehicle accelerates on a trapezoidal profile, the second vehicle will do so also. The vehicle following controller will not be activated and the time spacing between the two vehicles will be the same at the high speed as it was at the low sfeed.

If the low speed time-spacing between the two vehicles is less than the minimum time headway at the higher speed then, under the same conditions for the front vehicle, the second venicle will initially accelerate on a trapezoidal profile. At Eome point its vehicle-following control will be activated and delay the following vehicle. Finally when both vehicles are travelling at the high speed they will be separated by the minimum time headway for that sfeed.

Abstract

A packing manoeuvre has the following specification groups of vehicles travelliag at one sfeed, not necessarily close gacked are manoeuvred so that by the time they reach the end of the manoeuvre zone tney are travelling as closepacked as zosaible at a second speed. Packinp manceuvres of this type are essential for the efficient use of junctions.

The manoeuvre is carried out in three staces. mhe first stage is a speed change to an interaediate 3peed. Ihis intermediate speed is different for each vehicle. During the second stape, vehicles run at their intermediate speeds. In the third stage each vehicle canges sfeed to the final speed.

The interaediate speeds are calculated so that by the time vehicles have reached the end of the second stage they have closed up any gaps. The closer the intermediate speeds are to the final speed the better is the pscking achieved on the output. With reference to Diagram 89, the intermediate speeds dejend primarily on the delay time T and the length of the manouvre zone D. Both increasing T or decreasing D will reduce them. Increasing D reduces the spread of intermediate speeds between the front and back vehicles of a platoon and therefore helps improve packing, (but T must be increased to compensate).

The effects of the vehicle-following constraint on the manoeuvre are two-fold. Firstly, the start of the manoeuvre backs upstream, to a degree defendent on the packing of the incoming stream of vehicles. Secondly near the end of the second stage of the manoeuvre the vehicle-following controller takes over control of vehicles in an unpredictable manner and delays vehicles by small amounts. This makes the packing less effective. This unpredictability makes the efficient operation of junctions difficult to achieve. (For a more detailed discussion of the paciang manoeuvre and its effects

DIX. 89 Schematic of packing manoeuvre showing principle parameters
on junction control refer to Chapter 6). Diagram $9 d^{8}$ shoris the cosition-time curves of vehicles in a packing maroeuvre.

Abstract

ABynchronous Point-Follower Control - The combination of asynchronous vehicle management with point-follower controi has not been considered in the literature. The scneme offers some of the simplicity of marker-following with the imyroved performance allowed by asynchronous sceration. Markerfollowing uncouples vehicle movements, so removing some of the unpredictability of vehicle-follower control. The design of the vebicle controller is also simplified as the condition for platoon stability is no longer relevant.

With asynchronous point-follower control a traciside controller computes an individual trajectory for each venicle. This trajectory is chosen so that vehicles travel as clesepacked as safety criteria allow. Thus unlike vehiclefollower systems, in winch the venicle-follower controller ensures the safe spacing of vehicles, in marker-iollower systems vehicles are always given safe trajectories. The computational requirements are much increased, but actual vehicle movements are more fredictable.

In mariker-follower control, the trackside comfutes the desired trajectory and transmits it to the venicle in a convenient form. The vehicle decodes the transmissions it: a position-time profile, which is infut to the vehicle controller

As for vehicle-follower control, there ere two important manoeuvres, speed changing and packing. There are two ti=e

Position

spacints of importance; the minimum tine spacinp of runicles travelling at constant speed Tmin, and tne minimum time spacing (Tsp) reg̣ired for vehicles to travel safely throuzh a fixed point speed change manoeuvre. Tsp is greater thar Tmin because it includes a corponent for the speed chagge (Section 4.10). Vehicles arriving at the speed-chanee zone With spacings between Tmin and Tsp will start their manouvre further and further upatream. Conversely if theis time scacings are greater than Tsp the manoeuvre start point will move downstrean. The rarge of start points is set by the stochastic froperties of the gaps in the incomilig venicle flow. If the start Foint moves too far up the track so that it moves out of the control zone then safe control is not possible ans the emersency controller will operate. (Dia 91, 92, 93)

The trackside controller must determine the location of the manoeuvre start point. To do this it must have available to it sufficiently accurate knowledge about the behaviour of the previous vehicle, in order to make safe predictions about future vehicle movements. This requires good measurements around the control zone ana/or highly predictable vehicle movements, which in turn requires a very high quality of vehicle controller.

Packing manoeuvres are carried out in a similar way to that described under vehicle-follower syste.s. Each vehicle. passes through a sqeed change to an intermediate speed. This intermediate sfeed is chosen to close up gars in the

- 157 -


```
vehicle stream. A second speed change to a fiöed firal
speed completes the manoeuvre with venicles leaving more
closely nacked and at a different speed to when they arrived.
(Dia gCb)
The trackside controller must adjust the start points for each of the two syeed changes ard simultaneously choose the intermediate speed. These three operations interact, consequently an iterative procedure must be used to determine the complete trajectory. The algorithm does not present any problems of convergence and is discussed in more precise detail in Chapter Seven.
```

Comparison of Asynchronous Venicle-follower, and Marker-
Follower control - Asynchronous vehicle management allows amuch more flexible control of venicle movements than synchronous control. In particular, asynchronous systems can operate for short feriods with vehicle flows higher tian the system capacity, although queues will propagate steadily and delays increase accordingly.

In steady state operation the capacity of asynchronous systems is no better than synchronous systems. (Except in vehicle-follower schemes, where the headway needs to incorporate a smaller allowance for the tolerance of the vehicle's actual position about its commanded position; this effect would be small).

If a stopping distance headway law is used better juncticn performances can be achieved because line cajacity can be
traded for speed. This may improve the network performasce markedly as junctions are usually the capacity limiting elements.

Vehicle-follower control is better than asynchronous marker-follower control in its response to failures. In many situations the emergency controller will not be activated as many common faults can be tolerated by the normal controller, for example, failures which cause a venicle to run slowly or cosst to a rest, or even use full service braking, since the 'normal' vehicle-following control will adjust the speed of the following vehicle accordingly. This advantage is offset ty the difficulty of providing inter-vehicle ranging aevices that are safe, accurate and inexpensive. Marker-follower control does not have such capabilities and any failure in the normal control system will probabiy result in emergency control action.

Marker-follower control is better than vehicle follower control in that vehicle movements are decoupled. This makes vehicle trajectories more predictable and may therefore improve junction ferformance. The difficulties of intervehicle ranging are removed, but other problems are introduced. In particular, high quality vehicle controllers are required, or alternatively substantial track to venicle communications. With both formats, accurate position, velocity and acceleration measurements are essential.

The previous discussicas presented in this cnapter have concentrated on the design of ideal vehicle trajectories. The characteristics of the vehicle and its controller were taken account of by a suitable siecification of the noraalrunaina, safety factor. These ideal trajectories have been considered as being infut to the vehicle controller whose task is to maintain the actual vehicle trajectory near to the desired trajectory. The accuracy with which the vehicle tracks its inputs defends on the size of the disturbsaces, the control inputs and the dynamics of the vehicle and controller. The better this accuracy, the smaller the headways that vehicles can be allowed to run at and the higner the maximum track capacity that can be achieved.

A simple block diagram of the vehicle is shown in Diagram 94. The differential equation describing the longitudinal motion of the vehicle is

$$
M(t) \frac{d v}{d t}=-F a(V, V w)+F-F r(v)-M(t) \sin \theta-B
$$

where

```
M(t) - mass of the vehicle which varies accoraing to
                passenger loading
                    V - vehicle velocity
Vw - wind velocity (relative to the track)
F - propulsion force
0 - gradient of the track
B - braking forcu
```


Fa - aerodynamic drag force
Fr - rolling resistance
an apfroximation to the aerodynamic drag force is given by
$F a \bumpeq v_{2} \mathrm{pACd}(V-V w)^{2}$
where
A - frontal area of the vehicle
Ud - coefficient of drag
p - density of air
and to the rolling resistance is
$F I \bumpeq\left(\mathrm{CB}_{s}+\mathrm{CrV}\right) M(t)$
where Cs and Cr are constants.
'She propulsion force F is typically modelled by a
first order lap (representing for example, a separately excitud DC motor).
that is
$\frac{d F}{d t}=-\frac{1}{2}^{F}+G i$
where
τ - time constant
1 - motor input
G - gain constant
Modelling of the braking force B is more difficult
as it deponds on the type of brakes (for example, reconerative, mechanical fixed-force, closed loopetc)

It is evident that even this simplified representation of the vehicle dynamics is nighly non-linear. Two approaches have been used by researchers. In one, the equations are Inearised about the vehicle operating point. That is, the
vehicle is assumed to be running in a quasi-steady state and the controller is designed using classical linear or modern control theory to limit perturbetions about the operating point. (39-54, 56-62) some researchers have also considered the sensitivity of controller gains, derived by such techniques, to changes in the nominal operating point, vehicle mass, etc. $(50,54,62)$

In the other approach, sinulation ${ }^{(55)}$ or full scale experimentation is used. $(63,64)$

In all cases the control system should provide a satisfactory performance in eeveral basic modes of operation, for example, constant speed, and speed transitions. For each mode of operation the controller must meet the usual design criteria on control-loop stability, transient response, bandwidth, and steady state error. In addition the vehicle trajectory must be insensitive to external forces such as wind gusts, variations in friction, and track gradient, yet the controller must not fermit the vehicle to exceed specified bounds on acceleration and jerk. Vehicle-follower controllers must in addition, ensure that disturbances decrease in amplitude at successive vehicles, as the disturbance propagates along the vehicle string, that is a platoon of vehicles must be string, stable.

There are many papers concerned with the design of vehicie controllers. A survey of the most important is presented below, however, no attempt is mode to analyse in detail the conclusions of the papers surveyed.

The literature covers three classen of veibicle controller.
1 The control of a group of vehicles running in a platoon (string controllers).

2 Control of a vehicle following a track marker.
3 Control of a single vehicle following another vebicle.

1 Controllers of Vehicle Strings - A larje number of papers have been written on the optimal design of controllers for strings of cascaded venicles travelling along a track.

To formulate the problem, the vehicle equations are Iinearised and a quadratic cost function defined. Fron this the optimal linear regulator can be derived. (66) To effect control in such a syster all the states of all the vehicies must be measured and transmitted to the controller, and the control signals retransmitted to the vehicles. It is usually assumed that the means of data commaication between venicles and trackside control presents no problems.

Typical of such an analysis are a series of papers produced by anderson and Powner et al. In references 39 and 41 a cost function taking account of velocity and spacing errors is used. In reference 40 the regulator incorforates Kalman filtering to take account of noisy measurements and random disturbsnces. Reference 42 extends this work to examine the effectiveness of several different multi-variablé controller designs. A controller is derived which combines Kalman filtering with integral compensation and model-
reference control. This controller remcves steady-state errors and is claimed to effectively regulate the vehicles over a wide range of operating conditions.

Other researchers have carried out similar analyses, notably Athans and Levine ${ }^{(43)}$, and Feppard and Gourisnankar. (45) The latter froposes the use of jerk as a controlled variable and includes a (ferld ${ }^{2}$ tera in the quadratic performance index. This has the effect of reducing jerk during transients and so increasing the ride comfort.

The difficulty of supplying adequate communications for such controllers has been recognised by a number of people. Chu(4.j) develops an oftimal decentralised controller that requires only limited information transfer. He demonstrates that information about all vehicles is not required to control each vehicle, as the interactions between the vehicles diminish rapidly as more and more intermediate vehicles come between them.

A different approach is used by Porter and Crossley ${ }^{(40,40)}$ and Hetrakul and Fortman.(47) They use modal control techniques to produce a controller requiring fewer communication links than previous controllers.

A model-reference adaptive control policy is described by Powell! (50) Fixed-gain control laws require a detailed knowledge of the venicle characteristics under all operating conditions. For system responses to be satisfactory over even a small range of system farameter variations, control gains have to be precisely chosen. However br using the
adaptive arrangement described, the controller is made insensitive to vehicle loading, wind drap and friction. However, computation of the controller gains requires the real-time solution of a set of simultaneous differential equations.

Although many researchers have tackled the control of vehicle strings, the problem has little fractical significance. A bibliography and detailed revue of early work is contained in Tabak. (65)

2 Controllers for Vehicles Following Moving Track Markers

 Of much rore practical application are controllers designed for marker-follower use.In one implementation of synchronous slot, a number of track markers are placed along the track. vehicles receive regular pulaes instructing them to advance one track marker. (Vehicles therefore travel separated by an integer nuraber of markers at a speed which depends on the marker sjacing and the pulse rate). A vehicle travelling faster than it should be will arrive early, if slower it will be late. An error in arrival time can be converted to approximate position error by multiplying by velocity. This is a ampled data control system where the actual sampling rate varies about the standard pulse rate according to the error in the vehicle arrival time.

This type of controller has been investigated by Whitney and Tomizuka. (44) They show that, a froportional controller
is unsatisfactory (there is a conflict between adequate damping and small steady state error), proportional plus derivative control is feasible but the gains appropriate for small steady state errors give an uncomfortable motios, and proportional plus integral plus derivative can give a Rood performance.

Brown (56) also discusses the PID controller and sinows that it will track an acceleration limited moving pointer, with small errors and low sensitivity to disturbances. Smith (58) covers the optimal sampled data controller. His scheme requires a measurement of position error and uses state estimation to construct an approximate state vector that allows the oftimal control to be implemented. An alternative implementation of marker-following requires continuous track-to-vehicle communication links. The trackside computer polls each vehicle in turn to effect control. A number of papers discuss the design of such longitudinal controllers, using both continuous and sampleddata theory, for example Wilkie (51) and Kornhauser (53) The latter derives, for the continuous case, an optimal controller incorporating jerk into the performance index. In (52) he extends this work to take accourt of finite data rates, sampling and noise in communication links.

In a series of papers, Garrard et al $(54,57,53)$ derive optimal linear regulators for marker follower control. They" show that, in the continuous case, the performance of the control system ie very insensitive to variations in vohicle
mass. This allows the gain matrices to be pre-computed ani stored on-board the vehicle. In reference 54, Kalman filtering is used to estimate measurement signals corrupted by noise. Using simulation they conclude that the jerk component of the ferformance index is the critical term for determining acceptable levels of ncise and minimum sampling intervals.

Cre paper by Ishii et al ${ }^{(55)}$ reports tne simulation of a proportional plus derivative controller. They have included in their simulation a complex braking model, a non-linear drag function and quantization of the measurement signals. They propose a control techniyue to reduce position errors, whereby the commands that are transmitted to the vehicle have been shaped to take account of the expected vehicle reaponse. By tinis means, the vehicie can be made to follow a path winch is closer to the desired trajectory. The resilts presented show the effects of varying degrees of measurement quantization but do not consider disturbances or the effect of vehicle loading.

In a notable paper, Hinman and pitts ${ }^{(59)}$ investigate the distribution of control function between the vehicle and trackside. They discuss the closing of feediack loops either locally on-board the vehicle or via sampled data links to the trackside, and the use of stored profiles on the venicle to reduce communication requirements. They concluded that, " even with full trackside control, sampling rates are relatively low. However, if an on-board profile tracking control
is used sample rates can be very aubstantially reduced for a given peak position error.

3 Vehicle-Follower Controllers - A number of constrainta particular to vehicle-follower control have to be considered. Firstly, a platoon of venicles running under headway control must be strigg stable, that is, a disturbance is attenuated as it propagates down the line of vehicles. Cosgriff(30) has shown that string stability is ensured provided

$$
G(j w) \quad=\left|\frac{v_{2}(j w)}{V_{1}(j w)}\right| \quad \leqslant \quad 1 \quad \text { for all } w
$$

where
$V_{1}(t)=$ velocity of front vehicle
$V_{2}(t)=$ velocity of following venicle and $V_{1}(j w)$ and $V_{2}(j w)$ are their respective rourier transforms.

Satisfying this condition also ensures that a vehicle will have the overdamped response required for passenger comfort.

Secondly vehicle-follower controllers must be designed for two modes of operation, namely, for velocity control when the venicle is travelling along open track and for headway regulation when the vehicle is followinf another vehicle at minimum headway. The transition between the two modes is usually achieved by closing a position feedback loop when the two vehicles are sufficiently close together. The switchover is difficult to carry out smosthly without
acceleration and jerk constraints being excetded, y feature Which is usually glossed over in discussions of follower control.

The cioice of vehicle follower-law has a strong influeace on the design of controllers. Three laws have been discussed earlier, constant stacing, constant cazacity and stopfing distance. Nearly all the controllers described in the literature use a constant capacity law, as this is easy to implement, (a simple feedback of velccity to the positien summing point will achieve tise necessary offset). in exce:tion is the control scheme for ABE's CABININTAKI. (37) In this an approximate stopping distance law results from the type of vehicle ranging used, however no details of the design of the control system are availabl. As a result it is not ciesr what effect the use of the more useful, but non-inear stopping distance law would have on controller desicn. Hinmann and Pitts ${ }^{(57)}$ describe a control scheme based on fixed black technique for measuring vehicle spacing. They describe initially a simple losic screme for extracting the spacing information from the received siहnal aspect. The measurement is sampled data, the sampling rate defends on the sfeed of the preceding vehicle and juideway blocis length. This measurement is input to a controller similar to that described by Brown(see below) and is shown to give good results. This scheme is intereating as it allows proven conventienal railw y signalling techniques to be
adafted for close-headway vehicle oreration. (In another paper Pitts discusses in detail the choice of block lenetn). ("o) Brown (50, 51) describes a vehicle-follower control which permits accurate speed and spacing control, whilst being insensitive to vehicle weight variations and wind gusts. The controller incorporates proportional plus integral compensation in the forkard fath, and a feedback compensator. Input velocity commands are aljowed to change stepwise in tine, but are prefiltered by a second order filter to ensure that acceleration and jerk comfort levels are not exceeded, (provijed speed cranges do not exceed a specified maximum magnitude). The block diagram of the controller is shown in Diagram 95. In the requiation mode, two additional loops are closed; to include velocity and spacing error in the control scheme, as snown in Diagram 96.

In a subsequent paper ${ }^{(25)}$ Brown discusses the transition between velocity control and headway control. He notes that short headway operations require fast acting controllers. These result in a high sensitivity to the initial conditions and errors at the switch-over point. The use of limiters to constrain the maximum values of acceleration and jerk has a destabilising effect, consequently Brown investigated the use of controller with tine varying gains. At large vehicle spacinfs relatively low gains are used so that large initial spacing errors can be accepted. The gains are then sradually increased to those required for small perturbation

operation at short headways. The controller develöed has been showr to be effective for ε rumber of manoeuvres.
 may be more tolerant of the non-linearities inherent in any practical system. Their system is conveniently described using a two-dimensional thase plane. (Dia 97) Tris plane is divided into a number of regions, a certain mode of control being associated with each region. Each region is separated by a switchins boundary. Fenton proposes the followiag:-

Qegion 1 - headway is sufficiently large for the vehicle to operate under velocity control.

Region 2 - the following vehicle brakes at a constant rate: This brings the vehicle into Region 3.

Region 3 - a linear regulator control maintains minimum vehicle sfacing.

Region 4 - a collision could occur and the following vehicle decelerates at a peak rate.

Fegion 5 - control depends on how the zone is entered. If it is entered from the linear Region 3 the vehicle accelerates at a fixed rate (to close a gap before it becomes too large). If it is entered from Region 4 the vehicle coasts so oringing it into Region 6.

Region 6 - the vehicle accelerates at a fixed rate.

Other control arrangements can be made, reflecting different safety policies, running headways and controller characteristics.

BIBLIOGRAPHY

1 Black I G et al
Advanced Urban Transfort
Saxon Ilouse, Lexingtion Books, 1975
2 Reason J
Man in Motion - The Fsychology of Travel
Weidenfeld \& Nicolson, Iondon 1974
3 Moore J E
Design for Noise Reduction
Architectural Press, London 1966
4 Mount R W
Passenger molerance Levels for Fixed Guideway
Transportation Systems
WY 7, U T R G, A'arwick University, Coventry 1973
5 Cabtrack Studies
Assessment of Autotaxi Urban Transfort Syatems -
mppendices A - 0
RA E Tech ret 608207, Fart 2, Farnborough January 1959
6 McGean T
Urban Transportation Technology
Lexington Books, 1976
7 Dais J L
Geometric Design of PRT Network Elements
2nd International Conference on ERT, Minnesota May 2973
8 Black I 3
Optimisation and System Parameters
UTR T Symposium 'Advanced Transport Systems in
British Cities'
Coventry 1973
9 Navin F P D
Time Costs in Personal Rapid Transit
2nd International Conference on PRT, op cit (7)
10 Chapman R A
Bus Reliability - Definition and Measurement
W P 18, T O R G, University of Newcastle, Newcastle 1976
11 Knight T
An Approach to the Evaluation of Changes in Travel
Unreliability - A Safety Margin' Hypothesis
Transportation, Vol 3, No 4, pp 393-407, 1974

12 Bordass 'NT
The History of Mini-tram in Sheffield
Srd International conference on PRT, Denver Colorado, September 1975

13 Elias S E G
Experience with the West Virginia - Morgantown
Personal Rapid Transit System
U T R G Symposium, 1975, op cit (c)

14 Frospecte for Advanwed Urban Transport
W P 28, U T R G, Warwick University, coventry 1976
15 Computer Automated Reserved Track Systems - Track Costa W P 16, $\quad T$ R G, Warwick University, Coventry 1973

16 Prestegaard E
The Cost Aspects of Elevated Guideway Design
3rd International Conference on PrT, op cit (12)
17 Friedlander G D
Bigger Bugs in BART?
Systems/Transportation, IEE5 Spectrum, March 1973
1४ Gosling W
The Design of engineering Systezs Heywood, London 1902

19 Special Study, Safety Methodology in Rail Rapid Transit system Development
NFSB - RSS - 73 - 1, Nation Transportation Safety Board (USA), 1973

20 Grant B E
The British View of Urban hutomatic Transport systens U T R G Syap. 1973, op cit (ぐ)

21 Garrard WLet al
Crashworthiness and Crasin Survivability for Personal
Rapid Transit vehicles
Srd Int Conf on FRT, op cit (12)

22 Konakovaky R
A New Method to Investigate the safety of Control Systems
IFAC 6th Triennial world Congress, Boston/Cambridge Massachussetts, August 1975

23 Lobsinger D J
An Analysis of Minimum Safe Headway for no Collisions and int conf on PRT, op cit (7)

24 Hinman E J, Pitts G L
Practical Headway Limitations for Personulised
Automated Transit Systems
IEA Conference 'Control Aspects of liew Forms oi Guided Land Transport', London, August 1974

25 Hadju L P et al
Design and Control Considerations for Automated Ground Transportation Systems
PROC IEEE, Vol 56, No 4, April 1958
26 Hamilton W F
Automated Performance Requirements for advanced Urban Transportation Systems
Advanced Urban Transportation Systems, TRIS, Carnegie - Mellon University 1970

27 Morag D, RcGean T J
Safety Estimates for Urban Transit Systems 35d Int Conf on PRN. op cit (12)

20 Lenard M
Safety Considerations for a High Jensity Automated Vehicle System
Transportation Science, Vol 4, No 2, May 1970
29 Dawson R F F
Current Costs of Road Accidents in Great Britain L R 3yó, R R L, Dept of Environment, Crawthorne Berkshire 1971

30 Prospects for Advanced Urban Transport W P 28, U T R G, Warwick University, Coventry 1976

31 Gillie R F
Continuous and Neverstop Transport
N P 22, U T R G, Warwick University, Coventry 1970
32 Liopiros K J
PRT Station Operational Strategies and Capacities 2nd Int Conf on PKT, op cit (7)

33 Cabtrack Studies, Assessmert o: Autotaxi Urban Transport Systeme
T R 60207, fart 1, RA玉, Farnborough, Hante, Jan 1969
34 Munson A V
Zuasi-Synchronous Control of High - Capacity PRT Networks
lst International Conference on rPT, Minneapolis, Minnesota, Nov 1971

35 Kornhauser A L, McEvaddy P
A Quantitative Analysis of Synchronous VS QuasiSynchronous Network Operations of nutomated Transit Systems
Transportation Kesearch, Vol 9, pp 241-24\%, 1975
35 Roseler J et al
Comparisons of Synchronous and wuasi-Synchronous PRT Vehicle Management and Some Alternative Routing Algorithms.
2nd Int conf on PRT, op cit (7)
37 Hesse R
Normal and Energency Control of Automated Vehicles at Short Headways, in Particular the Develomment, Testing and Dynawic Simulation of the Cabintaxi System grd Int Conf on PRT, op cit (12)

38 Cosgriff R I
Dynamics of automatic Longitudinal Control Systems for Automobiles
In 'Theory and Design of Longitudinyl Control systems for Automobiles', Control and Commanications Lab Ohio State University, Columbus, Rpt EES 202A September 1965

39 Anderson J H, Pavner 5 T, Bergman N The Automitic Digital Computer Control of Vehicles in Rapid Transit Systems for Urban Transportation Proc I Mech engrs, Vol ld4, Part 35, $1909-70$

40 Anderson J H, Pavner E T
Optimal Digital Computer Control of Cascaded Vehicles in High-Speed Transportation Systems in the Presence of Measurement Noise and Stochastie Input Disturbances Transportation Research, Vol 4, 1970

41 Pavner $\mathrm{E}_{\mathrm{T}} \mathrm{T}$, Anderson J H, Qualthrough G H
Optimal Digital Comjuter Control of Vehicles in HighSpeed Transportation Systems
Transportation Researci, Vol 3, 1969
42 Anderson J H, Gadzinski F
Multivariable Control System Design Methods for Transit Vehicles

43 Levine W S, Athans M
On the Oftimal Error Regulation of a String of Hoving Vehicles
IEEE Trans on Automatic Control, $A C-11$, No 3, 1906

Whitney D E, Tomizuka M
Normal and Emergency Control of a String of Vehicles by Fixed-Feference, Samplet-Data control IEEE Trans on vehicular Technology, VI - 21, No 4 November 1972

45 Peppard L E, Gourishankar V Optimal Control of a String of Moving Vehicles IEEE Trans on Automatic Control, AC - 15, June 1970

46 Kai-ching Chu
Optimel Decentralised Regulation for a String of Coupled Systems
IEEE Trans on Automatic control, AC - 19, June 1974
47 Hetrakul P, Fortmann T E
Decoupling Control of string of Moving vehicles
IREE, Australia, Proc vol 3, Part 5, 1972
48 Porter B, Crossley T P
Modal Control of ciascaded venicle Systems
Int J Systems Science, vol 1, 1970
49 Crossley T R, Porter b
Direct Digital Modal Control of Cascaded Vehicle Systems
Int J Systems Science, Vol l, 1971
50 Powell B K
Adaptive Regulation of Multi-vehicle Guideway Transit Bendix Technical Journal, Spring 1973

51 Wilkie D F
A Moving Cell Control Scheme for Automated Transport Systems
Transportation Science, vol 4, No 4, Nov 1970
52 Kornhauser A L, Lion P M, Mcevaddy P J, Garrard W L Optimal Sampled Data Control of r RT Venicles 2nd Int Conf on PRT, op cit (7)

53 Garrard w L, Kornhauser A L
Design of Optimal Feedback Systems for Longitudinal
Control of automated Transit vehicles
Transfortation besearch, vol 7, 1979
54 Garrard W L, Yang S C
Design of Longitudinal Controllers for Automated Transit vehicles
7th Princeton Conf on Information, Sciences and Systems 1973

55 Ishif Tet al
The control System of UVS using the Two-Target Tracking Scheme
2nd Int Conf on PET, op cit (7)
56 Erown S J
Design Considerations for Point-Follower Tyfe vehicle State Control
2nd Int Conf on PRT, op cit (7)
57 Garrara w L, Kornhauser A L
Use of State Cbservers in the Optimal Feedback control of Autcmated Transit Vehicles
J Dynaric Systems, Measurement, ard Control
Trans ASME, Vol 95, No 2, June 1973
58 Smith PG
Discrete Time Longitudinal Control of Lual Mode Automobiles
Inter Society Conference on Transfortation, Denver, Colorado, Sept 1973

59 Pitts G L, Hinman e J
Control Function Distribution in Automated Transit
Systems
IEE COnf CANFGLI, op cit (24)
60 Brown S J
Characteristics of a Linear Regulation Control Law for Vehicles in an Autowatic Transit System AIAA pacer wo 71 - 941, presented at AIAA
Guidance, Control and Flight Hechanics Conference Hexpstead, lew York, August 1971

61 Brown S J
Design of Car-Followar Type Control Systems with
Finite Bandwidth Plagts
Froc Princeton Conf, op cit (54)
62 Chiu H Y, Stupp G B, Brown S J
Venicle Follower Control with Variable-Gains for Short Headway AGT Systema
To be published in Journal of Dynamic Systems, Measurement and Control

63 Fenton R E et al
One Approach to Highway automation
Proc IEEE, vol 56, No 4, April 1968
64 Ives AP et al
Vehicle Headway Control
I Mech engrs, Automabile Division Conference volume Autonotive Electrical Equipment 1972

65 Tabak D
Application of Modern Control and Cptimisation Techniques to Transportation Systems Control and Dynamic systems Vol 10 Academic Press, New York, 1973

66 Planning for PRT
Task Force on New Concepts in Urban Transportation, University of Minnesota, Dec 1972

67 Pitts G L, Hinman E J
Aupmented Block Guidance for Short-Headway Transportation Systems
Inter Society Conference on Transfortation, op cit (50)
68 Pitts G L
A Collision Avoidance Control Law for Fixed Block, Short Headway, Transportation Systems
AIAA paper 71-942, op cit (61)

5. The Emergency Backup to the Longitudinal Control

5.1 Introduction

The public is at risk to some degree anywhere in a transport system. For example, faulty door operations, fire, collisions and falling on the track are all possible hazards. Any practical automated transport schene will have a series of safety systems and procedures designed stecifically to control each of the major hazards. One of the more important safety systems, the one associated with longitudinal control, is discussed in this chapter.

The role of the emergency backup to the longitudiral controller is to provide protection for the system against fallures of the normal control system, or unanticipated changes in the environment, particularly those which might lead to death or injury. This emergency backup runs parallel with the normal controller, continuously checking its operation. If a fault is detected, the sufety system initiates emergency strategies that override the normal controls and which are designed to ensure passenger safety. The emergency systems as described in the literature are often very simple. Two variables are monitored, intervehicle spacing and vehicle speed. If either variable violites specified constraints (too close, too fast) emergency brakes are applied
to halt the vehicle. By this mesns colifsions are avoided. (1,2,3) (In some proposals, collisions of a limited severity are considered acceptable ${ }^{(4)}$, althougn such a criteria is most unlikely to be adopted for a fublic transport scheme (z),

The use of a binary control scheme of this sort
(rormal/stop) is not compatible with the fail-soft principle of gradual desredation following a failure. Certainly the primary task of the 'fail-soft' emersency backup would remain, the prevention of collisions, these being much the most costly form of system operation. However additional strategies are included which improve the post-fault system ferformance without significantly reducing safety or reliability or increasing costs substantiall.
5.2 The Fail-Soft Emergency Backuy

The design of the emergency backup divides into three areas of concern, the level of reliabiljty required, the choice of monitors to establish when tie normal control system is malfunctioning, the choice of control stratefies to limit the consequences and duration of the failure.

Reliability - If unsafe situations are to be avoided, the availability of the safety backup system must be sufficiently high for there to be neglizible protability of the normal and the backup system jointly failing. This can oniy be ensured if:-

* The backup syster is iririnsically very reliaoie, it is therefore likely to be simele and well understsod. The backup system does not ensure complete security, as it may fail occasionally. Consequently the emerency system should be 'fail-safe', a requirement which further emphasises the need for system simplicity. A 'fail-soft' emergency controller requires extra comconents and more corplex structures, in order to achieve the necessary variety of resconse. This extra equiprent should not reduce the safety of the system.
* Failures in the safety system are indefendent of failurps in the normal control syster, that is sefarate equipment is used for the normal and the emergency controls even if this entails duplicating functions. Thus typically emergency battery power supplies, a separate braking system and independent monitors would te supplied. (Some sources of common-mode failure such as the vehicle itself, cannot however be removed).
* The safety systen is rezularly maintained and frequently excercised to discorer any incipient malfunctions. This latter could be achieved in part by diagnostic tests to check vital functions (motor, brake and communications) used before a vehicle leaves the station or starts a day's work. (5-9)

Monitors - The control loop for the normal vehicle controller is represented by a simplified block diaeram in Diagram 98.

Each block in the diagran denotes a functional urit which can be made more reliable by standard techriages of redundancy and reliability engineering, whose inputs and outcuts could be monitored to identify faulty oferations and which is treated as a fundamental unit in any reliability analysis. The finer the partitioning of the system, the more complex these analyses become; however the diagnosis (identification and location) of faults can be made more precise, ând in principle, a better fail-soft characteristic should result since strategies can be more closely tailored to the exact circumstances of the fault.

Fundamental variables that must be monitored in any scheme are inter-vehicle spacing and vehicle speed. Tinese two variables directly indicate the safety status of the venicle. If there is not sufficient distance between two vehicles, the following vehicle will not be able to stop without a collision if the leading vehicle should stop suddenly. A vehicle travelling too fast mignt leave tne track at a corner. In the text which follows, intervehicle spacing' has been intergreted broadly, as meaning, the spacing from the vehicle to any obstacle which mignt prevent a venicle travelling safely. Thus the spacing monitor should be able to detect and measure the distance, not only to tie next vehicle, but also to debris on the track, missing or damaged track, track switches incorrectly set etc: Very few monitoring techniques can provide such versatility and in general suecial arrangements have to be made for each
hazard, for example, by designing the system so that the particular fault is very unlikely or by installing special detectors.

These fundamental safety checks can be made eitner onboard the vehicle or by equipment at the track-side sufervising a zone of track. Each trackside monitor is responsible for several vehicles, consequently its failure is more serious than the failure of an equivalent vehicle-based monitor. However, vehicle-based equipment will be more unreligble, both because of the more demanding enviromment and because more sets of equipment are required. Both tre track and the vehicle need to know the safety status of the vehicle (the vehicle, so that it can take the necessary emergency action, the track, so that it can initiate recovery action). Consequently communications will be required. mis communcation is usually venicle specific, that is, a vehicle based system must transmit its status and identity to the track so that it knows which vehicle is faulty (or every venicle uses a dedicated channel - an unlikely solution): a track-based system must transmit to each venicle its Individual status, which requires eacn message to be addressed (see Chapter 3). For lonw-headway systems geographical addressing can be used, the track bein? divided into zones each of which can only contain one venicle. For short headway systems, zone addressing cannot be made sufficiently precise to only address one vehicle, consequently, reasare addressing is required. In this latter case tne communication
channel must have a relatively high bandwidtn to give the necessary combination of sceed of response and reliability.

Fixed-block headway monitorine is invariably proposed for the long-headwizy systems. It has the advantages of being simple, fail-safe, and in current use on all railway systems. (10-12) However as headways decrease two factors affect the practicality of fixed-block measurement.

- Costs increase as the block length decreases. (Approximately the trackside costs are proportional to 1/block length)
- Engineering difficulties increase as the block length decreases since the precise location of the installed block boundaries is uncertain due to electrical and constructional overlap and tolerance.

For short headway ocerations, very small blocks must be installed to protect slow-moving vehicles at small sefarations; however a large number of signal aspects are required to provide adequate protection at higher sfeeds and correspondingly larger spacings. Thus higher data rates are needed which reduce reliability and increase costs. It is usually considered that fixed-block signalling cannot be used at headways less than six seconds.

There are very severe problems in providing suitable, safe, reliable and accurate spacing meanurements by any technijue for headways less then $5-6$ seconds.

The choice of block-size is discussed at lenzth by Pitts ${ }^{(12)}$. Pitts (11) suggests that fixed-block signalling
can be rearranged to frovide neasurement cata for both normal and emereency control in a vehicle-fcllower tyfe system. Althougn this introduces a degree of interjependence between the two systems, that may be allowable because of the inherent safety of fixed-block signalling.

In addition to the fundamental safety states, other system variables may be monitored, but the extent to which this is done depends on the benefits which can be realised by having the extra information. Useful sumplementary ronitors might be; on the vehicle, detectors of brake failura, motor fault, communicaticn error, power supply failure, and unusial venicle accelerations; and on the track, detection of missing, damaged, or icy track, fau亡ty switch operations, debris, hioh winds, rain etc. The inforraticn from these checks is predictive in that they indicate that the vehicle night in the near future become unsafe and so trigper one of the fundamental safety monitors. The information provided by these supplementary monitors may also help to determine which venicle is the faulty one when the vehicle separation monitor has detected a fault. (Inter-vehicle spacing depends on the movements of two vehicles, either of which mi-ht be faulty). It is these supplementary monitors which provide the extra information that allows appropriate strategies to be deployed and a fail-soft' characteristic to be achieved. They also provide an early warning of impending disruption.

5. 3 The Two-Part Emer xency Backup

The emergency control system can be divided into two parts. Part one operates wher one of the fundamental safety variables (inter-vehicle spacing or velocity) shows a fault. The simplest, safe strategy that can be operated is to brake the vehicle at an emergency rate to a halt. Provided the vehicle siacings are sufficient, this will prevent the vehicle colliding. (See Chapter 4) More complex strategies can be devised but these are unlikely to provide the necessary security. (See for example reference 5 or reference 13) Part two of the controller monitors the supplementary variables and activates strategies which are less severe than emergency braking, and designed for those situations where the vehicle has become faulty but is still in a safe state (although the longer the venicle is faulty and the greater the severity of the fault, the more quicirly the vehicle will become unsafe).

This division of roles isolates the fundamental safety assurance from the provision of fail-aoft strategies. By this means the vital safety monitoring and braking system is kept simple, can be made independent of the rest of the vehicle equipment and can probably be made fail-safe. The non-vital 'fail-soft' part can be added to the aystem independently in a controlled and cost effective manner. It does not have to be very reliable and can make use of some * of the functions of the normal controller, for example, the normal braking system, the normal measurement and communications equifment.

5.4 Recovery Strateries

Strategies are required to control the system after a fault in such a way that the overall disruption is minimised. The performance of the system deteriorates in two ways following a fault. Firstly the faulty vehicle may be subject to an uncomfortable ride and its passengers delayed. Secondly, the faulty vehicle may interfere with the manoeuvres of other vehicles possibly causing them to be delayed and carry out uncomfortable manoeuvres. Tine longer the fault persists the greater the disruption. Fault control strategies are therefore concerned with limiting the number of vehicles involved, attenuating the consequences of the fault for those vehicles involved and returning the system to normal oferation in the shortest time possible. (7)

A variety of general strategies can be used.
Rerouting - In some networks the spread of a fault can be contained by rerouting the venicles which would normally use the faulty link. This strategy can only be used in networks where alternative routes are available, if these alternatives are not congested, and if junctions are operaied asynchronously. Rerouting may be started even before a faulty Vehicle hus blocked a link, in anticization of the likely consequences of the fault, esiecialiy where there is little syster cost attached to the route change (journeys are a similar length etc). Morse Wade in reference 14 describes a simulation of a number of rerouting stratepies.

Removino the Fialty Vehicle - A faulty vehicle ceases to have any imnediate deleterious effect on the system once it has been removed from the normal track and its passengers sent on their journeys by another means. The area controller must make the necessary arrangements, for example, to divert the faulty venicle into the next station, sidine or layby, where repairmen and alternative transport can be provided. The shorter the distance between sucin turnouts and tre faster the area controller can be notified and react to the fault, the quicker can the track be restored to normal service.

A vehicle which actually stojs on the main-line tracis is likely to cause the maximum disruption. consequently if the vehicle is safe when a fault is reforted (that is, only a supflementary monitor indicates a fault) thea to stop the vehicle immediately may well be premature. In many circumstances, a less costly strategy would be to allow the vehicle to continue moving (although probatly subject to a soeed limit that would be safe no matter where the vehicle was in the system). If the vehicle must be braked then a normal braking rate is used and the vehicle slowed to a crawl rather than a halt. The vehicie is then allowed to travel until it can be switched from the main-line track or until a safety constraint is violated and the energency brakes stop the vehicle. If these procedures are adopted a falty vehicle may frequently be prevented from interfering with the manoeuvres of other non-faulty vehicles.

Qemovin the Faulty Vehicle - A faulty vehicle ceases to have any immediate deleterious effect on the system once it has been removed from the normal track and its passengers sent on their journeys by another means. The area controller must make the recessary arrangements, for example, to divert the faulty venicle into the next station, siding or layby, where repairren and alternative transport can be provided. The shorter the distance between such turnouts and tne faster the area controller csn be notified and react to the fault, the quicker can the track be restored to normal service. A vehicle which actually stops on the main-line track is likely to cause the maximum disruption. consequertly if the vehicle is safe when a fault is reported (that is, only a supplementary monitor indicates a fault) then to stop the vehicle immediately may well be premature. In many circurstances, a less costly strategy would be to allow the vehicle to continue moving (although probably subject to a seeed limit that would be safe no matter where the vehicle was in the system). If the vehicle must be braked then a normal braking rate is used and the vehicle slowed to a crawl rather than a halt. The vehicle is then allowed to travel until it can be switched from the main-line track or until a safety constraint is violated and the energency brakes stop the vehicle. If these procedures are adopted a faulty vehicle may frequently be grevented from interfering with the manoeuvres of other non-faulty vehicles.

Vehicles will horever from time to time come to a hale on the main-line as the result $o f$ a failure. The procedure then adopted depends on whether the vehicle can move under its own cower, is free to move but not motor, or is immovable. In the first case a possible strategy is to allow the vehicle to crawl forward at a low sceed onee the emergency state has been reset. This will allow the venicle to reach a switch off from the main-line track. In the second case, a number of researchers (5) have suggested that a vehicie from behind the failed vehicle be instructed to move up, engage the faulty venicle softly, and push it to the next exit from the tracir. This stratery has a number of froblems; the pusher vehicle must have sufficient oower to nove the stopjed vehicle, but rust be designed so that it will not damare itself, particularly if the failed venicle does not nove freely, also safety constraints must ie relaxed to allow the pusiner to contact the faulty venicle and thus the question. How and under what circumstances should safety monitoring be susfenaed ${ }^{\prime}$ must be answered. In the third case of failure the immovable vehicle, repair men are required to clear the track and restart the system.

Althoush such strategies can be devised to automatically clear the track, it is not certain whether the class of failure can be reliably established automatically. Also It is possible that the complexity of the operations, particularly in class 2, will preclude total automation.

Tulty vehicles are likely to travel more slowly ins. is demanded by the normal controller. Consezuently following Vehicles that have not been rerouted will eventually catan up the failing vehicle (unless it is removed from the trave before this harfens).

The response of the overhauling vehicie in vehiciefollower type control depends on the circumstnnces of the fault and the design of tne controllen. If the two rehicaes were initially widely sezarated (that is, the followirg vehicle was usder velocity sontrol) then, when the $£=5 \pi t$ vehicle stofs due to a fault, the normal control actian o: the second vehicle srould bring it to a halt behird the failed vehicle, without trigrering the energency brainss. If, however, the two venicles were travelling separated by the mirinum normal headway (that is, the following vehicle was runninz under regulator control) then the resporse of the second vehicle to the sudden stop of the front vehicle devenas on the design of the controller. where the normal controller is designed to accept an emerpency stop by the preceding vehicle ag a "normal' manoeuvre tien the foinowi:s vehicle will stop without activating its emergency brakes (althourh comfort limits on acceleration and jerik may be exceeded). \therefore here the vehicle follower control is desiznez only to acceft normal manoeuvres by the preceding vehicle then wher the preceding vehicle executes an emerreney stos, the following vehicle will also ve forced to emergency soop, (althourh after a deluy nnd from a lower initial speed
because the normal controller of the followirf venicle will start to slow down the vehicle before the inter-venicle spacing limit is violated. Thus an erergency stop by tre front vehicle of a vehicle string will be successively attenuated for each subsequent vehicle, until eventually, the normal control system carries out all the braking and the emergency system does not operate).

Restart of a vehicle-follower systcm is relatively simple. Once the faulty vehicle has been removed from the main-line the queue of vehiclascan be released to continue their fourney and no further trackside control is reeessary,

Asynchronous point-follower scinemes are more complex to control. Following the failure of one vehicle, the trackside controller must compute the following vehicle
trajectories that bring them to a halt in a queue behind the failed venicle. Restarting the queue is more difficult because each vehicle in turn must be brought in range of a control post so that it can receive the necessary commands to return the vehicle to a normal trajectory. One way in which this might be achieved is for the trackside control to instruct the queue of vehicles to crawl forwards oree the emergency situation has been cleared. Eventually the vehicles will reach a command post and rejoin the normal control regime.

Synchronous marker-follower schemes are very difficult to control in a fail-soft' manner. In totally synchronous systems (synchronous slot) rerouting cannot be used. Also
as eafety at junctions is only quararteed by the prebocking of journeys a faulty vehicle must shut down the whole system immediately. It is not clear how the sistem can be restarted under such circumstances.

Some degree of control can be achieved in quasisynchronous networks. In the aiosence of any other control action from the trackside, a vehicle behind a failed venicle will steadily overhaul it until the inter-vehicle spacins constraint is infrinped and the vehicle carrics out an emerzency stop. (Dia 99) Conse?uently whether or not the failed vehicle has stopped eventually following vehicles will be forced to stop and as time frogressea a quede of stationary close-spaced vehicles will form. After the faulty vehicle has been removed from the main-line this quede is restarted by commanding each vehicle in turn to accelerate up to the line speed. The start time is selected so that at the erd of the manoeuvre, the vehicle will have joined the desired marker trajectory. Control is then transferred to the normal control system. This techrique requires each venicle to be uniquely contacted by the trackside, via a continuous link. Some vehicles in the stopfed queue will be close to the junction at the end of the link. These vehicles will not nave synchronised with their markers before reachinf the junction and must therefore continue straicht on (even if this is not their intended route). Vehicles intendina to meree into the faulty link probably will alao have to be restricted.

ith sorie topes of marker-tollower 3yster, tae syeni of a synchronous section of track can be readily chanseri. This facility can be used to reduce tre rate of formation of the stopeed vehicle queue (by slowirs the tracte s=eed). However sll venicles on the lirk boti in from of and behins the failed vericle will ce slowed (and also the faulty vehicle if it still responds partialiy to trackside sionals). Firthermore, the frosedure interferes with the svnchronism of the markers at junctions, consequently the entire system must be sloved down rather than 3 single ink alone. Thisz is a severe limitation and will frobably preclude the use of such a strateラy in nost networks.

The requirement for a separate emerpency conmunicuticn link to each vehicle is en onerous one. It is not needed provided vehicles when stationarg on the trach after their emergency stops are spaced $3 t$ the separations they would have when travelling normally. All venicles can tinen restant at one time, accelerate to line speed and synchronise with their respective mariers. However, to achieve this spacing rejuirement all vehicles on s section of synchronous tracin must simultaneously execute an emeraeney stop, that is, winen any one vehicle corries out an emersency stop ill other venicles must do so too. (After tins operation all tine venicles will be sraced along tne tracir at the approximste spucings they had wrior to the emergency). (Dia loC) The removal of the faulty vehicle is il vemplex speration as it will usually be sandwiched between stopped non-faultv


```
vehicles. One unlikely strategy which may be feasitle is
for all venicles to crawl forvard after erergercy braking.
The failed venicle would be pusned by the vehicle behind it
until it can be switched from tne main-line. The remaining
venicles are then commonded to return to the normal line
sreed.
    During the whole sequence from emergency braking to
restart the operation of the junctions at each end of the
faulty link must be suscended.
```

1 Evans R R, Whitten R P
Analysis and Demonstration of Position-Error Headway
Protection for PRI Systems
2nd International Conference on PrT, Rinnesota, May 1973
2 Lobsinger D J
Analysis of Minimum Safe Headway for no Coliisions
2nd International Conference on PRm, Op Cit
3 McGean T
Urban Transportation Technology
Lexington Books, D C Heath \& Co, 1975
4 Leonard 4
Safety Considerations for a High Density Automated
venicle System
Transportation Science, Vol 4, No 2, po 130-150
Hay 1970
5 Bernstein H, Schnitt A
Emergency Strategies for Safe Close-Headway Operation
of PRT vehicles
lst International Conference on PRT, Minneapolis Nov 1971
E Ems A Fet al
Service Dependability, Evaluation and Design Considerations
for Automated Transit Systems
3rd International Conference on PRT, Denver, Colorado Sept 1975

Some Reliability, Depenability and Safety Considerations
for High Capacity PRT Systems
3rd International Conference on PRT, Cp Cit
Smith D B, Yormark J S
PRT Performance Requirements and Allocation
lst International Conference on PPT, Op Cit
9 Hadju Let al
Design and Control Considerations for Automated fround
Transportation Systems
Proc IEEE, Special Issue on Transportation, Vol 56. No 4, pp 493-513, April 1968

Lukas M P
Current Control Problems in Automated Transportation
Proc IERE Fall Electronic Conference, Chicago, Illinois
Cct 1971

11 Pitts G L, Hirman Ξ J
Augmented Block Guidance for Short Headway Dransportaticn Systems
Intersociety Conference on Transportation
Denver, Colorado, Sept 1973

12 Pitts $;$ L
A Collision Avoidance Control Law for Fixed Block, Short Headway, Transportation Systens AIAA Guidance, Control and Flight Nechanics Conference, Herpstead, New York, Aug 1971

13 Anderson J E
Theory of FRT Systems for safe operation
2nd International Conference on DPT, Op Cit
14 Morse *ade R
Network Dynamics in a Large Personal Rafio Transit System Fallure
3rd International Conference on PRT, Op Cit

6. Junction Control

6.1 Introduction

Junctions are usually the capacity limiting elements of a transport system. Consequently, there is a need to develop control policies that allow high flows through the junction yet limit the delays experienced by vehicles and the distances required for the preparatory manoeuvres.

In synchronous systems, junction performance has little meaning. The only parameter of any importance is the average occupancy of the merge points (or fraction of slots passing the merge that are occupied). This depends on the centralised journey booking ard routing algorithms, and are therefore outside the scope of this research. (Many references discuss such control schemes in detail, see for example, Yap, Roesler (1,2)).

The research reported in this chapter is concerned with the design of asynchronous junction controllers which form elements of a decentralised control structure. The junction is treated as a processor converting streams of infut traffic (heving particular stochastic properties) into output struara. Its controller is a device designed to minimise some cost function using information jathered solely from within its zone of influence. In the discussions presented, the junction

Abstract

is considerea to operate independently from the rest of the network of which it is a part, that is, the jurctice always presents an open dose to incoming traffic, and can rely upon its exits always being clear.

6.2 lieasures of Junction Performance

Delay - The primary task of the junction controller is to resolve cotential conflicts between opposing vehicle streams intending to use a common section of track. To do this, vehicles are delayed by sfecific amounts, the size and variability of which depend on the stochastic procerties of the incoming vehicle stream, the control policy and the lavout of the junction. These delayed vehicles form queues precedirg the conflict point.

Secondary tasks of the junction controller are to ensure that speed constraints are satisfied and that switches are correctly operated. These operations will also delay vehicles but by smaller amounts than are required for conflict resolution.

Mean delay is the most commonly used measure of junction performance, howaver, some researchers ${ }^{(3,4)}$ consider the variance is an equally important measure. In the work reported below, mean delay is used as the princifle measure of junction performance and the coeflicient of variation (standard deviation/mean) as aupporting information.

Caracity - Closely connected with delay is capacity. For junctions, the maximum theoretical capacity can only be realised if infinite queues and delays are allowed. For a more realistic neasure, capacity is defined as being that level of vehicle flow above which service (delay, variance or some combination) becomes unacceptable'.

Distance Peauired for Prefaratory Manoeuvres - The distances available for vehicle manoeuvres will be primarily determined by such factors as street width, station and cross road spacings et cetera. Control schemes which require relatively long manoeuvre zones to achieve desired characteristics $0:$ capacity and delay will be at a disadvantage as they may make it impossible to incorporate desirable layouts in restricted urban environments without major modifications to surrounding buildings.

6.3 Geometric Constraints on Junction Layout

New urban transport schemes must generally be built within the confines of the existing city fabric. This may often severely limit the range of junction layouts that can be used and consequently the performance that can be achieved.

In conventional traffic engineering, a junction between two two-way roads is common-place, with one extreme layout being exemplified by the cloverleaf design in which all crossf overs are replaced by a network of bridges and merges. At the other extreme, lies the at-ßrade crossing whose satisfactory
performance depends on sophisticated control. In the latter case some potential capacity is lost.

Proposers of automated transport schemes are usually more concerned with the simpler junctions between two unidirectional traffic streams, in which any crossovers are replaced with bridges. (Dia l01)

All junction layouts can be synthesised by interconnecting elements comprising diverges (switches), merges and crossovers. These last two have similar control characteristics; a crossover being equivalent to a merge followed by a diverge, consequently, in the text which follows the term intersection' is used to indicate either a merge or crossover.

The interaction between junction elements determines the performance of the junction and is primarily set by the geometry of a particular layout.

Diverges - The characteristics of the diverge are determined by the type of switching mechanism used. Switch mechanisms can be track-based or vehicle-based. Typical of the former are railway points and of the latter motor-car steering. Track-based switches are more suitable for switching trains as there is little risk of one vehicle being diverted in a different direction to the remainder, a risk which is always present with vehicle-based switches.

Track-based switches can be placed as close together as* geometric track layout considerations allow, since all the awitches can be set in advance of the vehicle arriving at the

first switch. Forks with vehicle-tased switching, on the other hand, must be scaced sufficiently far apart to permit repositioning, locking and verification of the mechanism, and for the vehicle to stop safely should any of these actions prove faulty.

The time required to operate the switching uechanism must be incorporated into the headways separating vedicles. This time allowance can be added to all vehicle headways or only to the headway of those vehicles travelling a different route to their predecessor through a junction. In the latter case, the headways between vehicles must be adjusted before a diverge, according to the routes they will follow.

Vehicle-based switches have an advantage for closeheadway oferations since the mechanisms are usually smaller, lighter and consequently tend to have faster switching times than track-based systems, (although this is not necessarily true, for example, see reference 5). ($0,7,8,9$)

Comonly one of the branches of a diverge is straight on, the other curved. As the curved part cannot be banked within the switch, it will often have a speed limit slower than straight on. In this circumstance turning vehicles must slow down prior to the switch, and sufficient extra time allowed in the vehicle headway for the manoeuvre to be executed safely.

```
Intersections - At an intersection, vehicles on opposing streams of traffic compete for a limited resource, namely
```

line capacity, on the section of jointly used track. effective control prior to the point of intersection $1 s$ essential as this is a frimary factor determining the overall junction ferformance that can be achieved.

Control prior to an intersection comprises two distinct Fhases, firstly the order that the vehicles pass through the intersection has to be decided, secondly the manoeuvres required of vehicles to safely merge in the desired order must be determined. In some strategies these two phases may be resolved iterativel.y.

The length of track required to effect the desired manoeuvres determines the minimum distance which must separate junction elements. Intersecticns which are spaced closer than this minimum must be considered as part of the same merging procedure.

In common with diverges, curved track at an intersection may impose speed restrictians and must be taken account of in the control strategy.

Track Links - Connecting merges, diverges and intersections are track links which add their own constraints to the control of a junction. Comfort limits will define the geometry and speed limits of any curved track. In addition, the length of links will determine the range of manoeuvres that can be carried out along them.

All manoeuvres (speeding-up, slowing-down, cornering, gaining or losing height) are subject to comfort limits. A
constraint sometimes adofted ty researchers is that each such manseuvre must be carried out in sequence, as there is no information on passenger tolerance to combined manoeuvres. (For example, slowing down superimposed on cornering). This is a severe limitation particularly where complex manoeuvring is to be carried out in a confined space. The limitation is probably unnecessary, although if a number of superimposed operations are used, each operation may have to be less severe than if it were executed alone.

Emergency Monitoring - Emergency monitoring at junctions is primarily concerned with detecting the two unsafe conditions:-

* the switching of mechanism at a diverge is incorrectly set
* conflicting vehicle movements at an intersection have not been resolved (that is, the preceding venicle through the intersection has not cleared the conflict point in time). The consequences of both these faults could be the collision of a vehicle either with the track structure or with another vehicle.

The detection of a faulty state can be used to triz-er the standard emergency braking equipment carried on-board the vehicle. Consequently to ensure that the vehicle is able to stop safely, the decision (to brake or not), must be made at least an emergency stopping distance before the fork or intersection.
6.4 Suasi-Synchronous control of Junctions

Constraints on Junction Layout - In quasi-syncinronous control ($\because S C$), manoeuvring is achieved by the process of slot slipping. In any practical junction control strategy, situations will occasionally arise where the solution to a merging conflict requires manoeuvres that cannot be carried out within the distance available. If a manoeuvre cannot be carried cut then one of the offending vehicles must be rerouted onto an alternative safe path. This however constitutes a routing failure and places a number of constraints on design. Merges are tarticularly difficult to organise. In the event of a routing failure, either the junction must be stopped, a highly disruptive operation, or one of the offending vehicles must be directed onto an abort lage. (Dia 102) This abort lane must reconnect with the main line at a point further downstream. If the abort lane is operated synchronously with the main line there ia no guarantee that an unresolvable conflict will not arise again at the second merge although the probability of this happening will be very low. Only if the failed vehicle is temporarily stored in the abort lane and accelerated from rest into a vacant slot when it appears at the second merge, can safety be ensured at reasonable cost.

A crossing junction with an at-grade intersection is similarly vulnerable to unresolvable conflicts. However the layout complexity is much increased, and makea such junctions uneconomic.

Grade-separated junctione do not require supplementary abort lanes to ensure safety as one of the two conflictirg vehicles can be routed in the wrong direction, (either the vehicle wishing to turn must be directed straight on, or the vehicle intending to po straight on must be forced to turn).

Review of Research into the Performance of DSC Nereing
Strategies - Junction control in quasi-synchronous systems has been extensively discussed in the literature. The first work on the subject was carried out by Godfrey. (3) He analysed in great detail the operation of a merge under QSC and considered six strategies.

1 Lane 1 has priority, lane 2 vehicles meree into natural gaps in the lane 1 flow.

2 Priority is switched to the opposing lane if it has a delayed vehicle in it and there are none in the present lane.

3 Priority is switched to the opposing lane if all vehicles on the present lane have been served.

4 First-come first-served with the same lane always having priority in the event of simultaneous arrivals.

5 First-come first-served with simultaneous arrivals resolved randomly.

6 First-come first-served with simultaneous arrivala resolved by giving friority to the lane not served last.

Godfrey studied these strategies both in the steady state and with transient changes in demand. He concluded that scheme 1 was the worst and scheme 3 the best, using

```
variance of delay as his cost function and takinp no account
of manoeuvre costs.
    Whitney(10) developed a useful state diagram notation
Which allows the designer considerable freedom to choose now
vebicles are to be manoeuvred. He divides the problem of
optimal junction control into a two-stage process wrereby the
merged state and the manoeuvres required to achieve trat state
are considered independently. costs are chosen for the merged
state, which for example, penalise the creation of large
platoons (as they may reduce the performance of downstream
junctions). Manoeuvre costs are cnosen to cenalise the
simultaneous movements of a large group of venicles (which
may increase the problem of ensuring safety), or to encourage
the use of manoeuvres requiring the fewest number of trans-
itions (which tends to minimise manoeuvre times).
    Optimisation then procedes by choosing merged states
according to the merging costs and manoeuvre strategies based
only on the manoeuvre costs. Alternatively both the meree
costs and manoeuvre costs can be considered together to cmoose
the merged state. Whitney uses the first technique but does
not consider such factors as the length of tracic required.
    Brown(11) discussed the control of a one-way fuli-
turning junction as shown in Diagram l03. He presenta a
stratepy designed to minimise routing failures, given that
a venicle can only slif o specified maximum number of slots.*
Using a Monte Carlo simulation he demonstrates that, using
his stratery, less than 5% of vehicles at o0% occupancy need
```


to be re-routed, if vehicles are allowed to slip up to 11 slots. However his algorithm tends to kunch vehicles torether, which may degrade the performance of downstream junctions.

Caudill and Youngblocd ${ }^{(12)}$ examined the same problem as Brown. They investigated a number of simple strategies which allowed vehicles to slip or advance small numbers of slots. The best strategy, a 'cycles' strategy that allowed vehicles to move anywhere within a ranse of slots (the cycle), ferformed best. A 5 slot cycle gave a miss rate of about 20% at 80% occupancy but does reauire vehicles to be able to advance up to two slots.

It is apparent, from both these papers that many vehicles will be re-routed in quasi-synchronous systems operated rear the maximum track capacity. Indeed Caudill and Youngblood note that, while the decision, of which vehicle to re-route, does not affect the assessment of algorithm performance (because the important event is that the conflict was not resolved), it is fundamental to the operation of an actual system. They suggest that instead of always forcing the merging vehicle to re-route, overall network efficiency can be improved by re-routing that vehicle which would be least delayed.

A detailed report on the operation of GABTRACK junctions was produced by the cabtrack tear at RAE. (13) In thia, a simple function (two main lines, cross grade-separated, and " are linked by a transfer lane) is anglysed, using theory and simulation. Several queuing strategies combined with a number
of merging policies are discussed. The results presented show for each combination, mean delay, fercentage vehicles re-routed and manoeuvre distances as functicns of flcw.
6.5 Asynchronous Control of Junctions

The control of functions in asynchrcnous systems bas been almost entirely overlooked in the literature. The only faper on the subject is by Athans. (14) He casts the problem of controlling a merge into a linear optimal regulator problem, using the same approach as used in his paper on optimal venicle follower control. (15) The two incoming streame of traffic are treated as one, in which vehicles are allowed to 'move over' one another before the merge. The merging sequence is chosen by finding the control cost for each possible sequence and choosing the one with the minimum. Provided the manoeuvres start sufficiently far in front of the merge the vehicles are able to adjust their positions so that when they reach the merge, the two streams combine sarely in the desired merged sequence.

By far the most important aspect of junction control in asynchronous systems is the control of merges and crossovers, as it is at these points that capacity is severely limited. Consequently the remainder of this chapter concentrates on this particular problum.

Caracity - The capacity of merges and crossovers is liwited since the cafacity of the intersection point (or common section of track) cannot exceed the canacity of a single line. Conseauently the sum of the incoming flows may not exceed this either.

A vehicle plus its normal headway jassing a point on the track will occupy the point for the time headway associated with the speed of the vehicle. That is for

$$
H_{t}(v)=\left(\frac{v}{2 a e}+\frac{L}{v}\right) \cdot K
$$

where
$V-v e l o c i t y$ of the vehicle
ae - emergency braking rate
L - length of the vehicle
K - safety factor.
The occupancy of the point can be defined as the fraction of time that the point on the track is occupied, it indicates how near the track is to saturation.
OCCUPANCY (Occ) $=\frac{\text { time the track is occuried }}{\text { total time }}$
Occ $=\frac{n H_{t}}{T}(v)$

Occ $=F H_{t}(\nabla)$
where the mean flow rate is

$$
F=\frac{n}{T}
$$

n - number of vehicles passing in time T.
The occupancy at the interaection point (Dia 104) of a . merge or crossover can be similarly defined, except that now the vehicles passing are being supplied from a number of

incoming lanes. The sequence of lane allocation, or alternatively the order in which vehicles pass througia the intersection point is termed the merging order.

Often a change-over cost applies at the intersection point. This cost is an extra time that must be allowed when the lane allocation of the intersection point changes. This extra time takes account of the oferating time for switching mechanisms. Also it is an allowance for safety that taices account of firstly, the increased control tolerances that must be allowed and secondly the greater difficulty of safety monitoring when vehicles merge (or cross paths) rather tham follow from the same lane.

Control of single line working of a track section very closely resembles the control of a crossover. In this case a large change-over cost must be used equal to the time needed to clear the common section of track, before the direction of working can change over. (Dia 105)

In the discussions which follow, the change-over cost has been incorporated into the vehicle headways by using different values for the safety factor K. When one venicle follows another vehicle from the same lane through the intersection a following factor is applied, and when a vehicie follows one from another lane, the crossinf factor is used. Thus at a secifled speed the working time headways for the following and crossing cases can be evoluated.
$f=\left(\frac{v}{2 a}+\frac{L}{v}\right) \cdot K f$
$c=\left(\frac{v}{2 a}+\frac{L}{v}\right) \cdot K c$
where
C - crossing time headway
f - following time headway
v - venicie speed
Kf, Ke - safety factors - following and crossing respectively
L - vehicle length
ae - emergency braking rate
The maximum flow through the intersection point wnen both strears of vehicles travel at the same speed and have tine same mean
flow is
$F s=\frac{n}{(n-1) f+c}$
where
n - mean platoon size passing the intersection from
either lane
Fs - maximum vehicle flow
The occupancy is therefore
Occ - F.(average headway)
Occ - F. $\frac{(n-1) f+c}{n}$
As n increasea from 1 FB increasea from $\frac{1}{c}$ to $\frac{1}{f}$
that is, capacity increases with mean platoon size (as f f) .
The absolute maximum junction capacity at a piven speed is therefore $\frac{1}{f}$. No junction controller can handle indefinitely, an intersection when the sum of the mean ingut flows exceed this figure.

Abstract

The values of f and c depend on the speed at wich the intersection is nesotiated. They will be a minimum when the intersection speed equals the saturation speed (Vsat) as defined in section 4.9 of Chapter 4.

Any good intersection control stratery will optimise its performance by varying both the platoon size and the intersection speed.

Slowing Down and Conflict Delay - Individual vehicles are subject to two sorts of delay. They lose time in slowing to the intersection sceed and they are delayed by further random amounts in order to resolve conflicts with other vehiclea at the intersection. (This assumes that vehicles can only ke comanded to drop back relative to other vehicles, that is venicles are only allowed to travel slower than the main-line speed).

Lowering the intersection speed will increase the delay due to alowing down but will decrease the conflict delay (provided that the intersection speed exceeds the saturation speed, in which case, reducing the intersection speed reduces headways and hence the extent of potential vehicle conflicts). Thus for a given merging order, there will be some optimum speed that minimises total delay. In more conplea strategies It may be possible to vary the target speed from vehicle to vehicle, each vehicles target time and speed being chosen simultaneously to minimise delay. However the computational

requirements of such a scheme are severe and the reduction in mean delay that can be realized is small.

Delay Due to Manoeuvres - In addition to the slowing down and conflict delays discussed above, vehicles are delayed by an extra amount whilst carrying out speed changes necessary to safely merge the vehicles at the intersection point.

The primary task of the intersection controller is to determine the times that each vehicle is due to arrive at the intersection, and its target speed. These times are chosen so that, given their corresponding speeds, vehicles do not violate their working headways at the intersection. Cnce the target values have been establisined, the formula presented in Chapter 4, Section 9 can be used to calculate the speed changes required of the venicle so that it arrives at the correct speed and time.

However as the vehicle progresses along the track, in many cases, it will be prevented from following the trajectory demanded from the tracicside because of the effects of headway infringement.

In the manoeuvre zone prior to the intersection the headways between vehicles are being adjusted. Vehicles are being bunched together into the platoons that will pass through the intersection. The front vehicle of such plotoons will not experience any headway infringement, but the subsequent vehicles following close behind will be delayed by amounts that are hard to predict. The larger the platoon and the
bigger the sfeed changes involved, the bigger will be these delays.

Any vebicle experiencing such delay will reach the intersection later than its target time, and the glatoon will pass through the intersection less closely packed than was desired and so reduce junction capacity. Vehicles following one another from the same lane through the intersection will be safe (this being ensured by the normal vehicle controllers). However, when the lane allocation changes over, in the absence Of any corrective action, the first vehicle from the new lane will arrive too soon after the last vehicle and will consequently be unsafe (since it will arrive at its target on time, being the front vehicle of a platoon).

The timetable of targets must therefore be reqularly updated. By comparing the desired vehicle trajectory with the actual vehicle trajectory, either continuously or at particular points, the amount of 'slip' or extra delay experienced by each venicle can be measured. This slip is used to adjust the timetable (by making all the targets later by the measured amount) and has the effect of slowing all subsequent vehicles.

This adjustment will never be completely accurate and there will always be some degree of unpredictability in the arrival time of the vehicle at the intersection. This unpredictability being greater the further from the front vehicle of the platoon the vehicle lies. The crossing factor in the* headway must be chosen to include the worst case of this error in vehicle arrival time. Clearly, the greater the frequency
of correction, the more fredictable will be the venicle fath and the smaller will be the value of the crossing factor required to take account of the errors.

The preceding discussion has been couched in terms of vehicle-follower control, however asynchronous marker-follower schemes are subject to the same sort of delays. In this form of control the venicle trajectory must be chosen so that the venicle will not violate safety constraints en route to the intersection. Therefore in the process of deternining the best s3fe trajectory the controller must choose target times that are later than pure close packing consideration demand. The resultant time-table is then very similar to the vehiclefollower timetable corrected for the 'slip' components.

Marker-follower control offers some advantage over veinicie follower control in that the unpredictability of the vehicie arrival time at the intersection depends only on the ability of the vehicle controller to follow a demanded trajectory. It does not, for example, depend on the vehicle's position in a platoon.

Merging Strategies - There are a very large number of possible merginf strategies. Four have been selected for examination. These are

1 First-come first-served (FCFS) - This is one of the simplest policies. Vehicles pass through the intersection in the order that they arrive at predefined control boundary. Vehicle detectors are required, one to each lane.

2 Fixed time cycle (FPS). The intersection is allocated to each incoming lane for a set pericd of time. If the period is fixed then no specific vehicle information is needed by the controller, however performance is low. A FTC policy is a very suitable backup to other more sophisticated policies for when they fail because of a hardware fault.

The performance of FmC can be improved by measuring the mean flow of vehicles and adjusting the cycle time according to a stored table of signal settings.

3 First-come Iirst-served with hold (FCFS + H) - The Intersection remains allocated to the same lane provided each subsequent vehicle arrives within a set 'hold' time after the previous vehicle. Once the hold time has elapsed, the intersection is allocated on a first-cone first-served basis. By a suitable choice of hold time the delay characteristics of the intersection can be optimised. In heavy vehicle flows under FCFS $+H$ the intersection would remain allocated to one lane for a very long feriod. Consequently a fixed maximum cycle time must be imposed to ensure the allocation changes to the other lane within a reasonable time.

In operation FCFS + H allows vehicles from one lane to pass through the intersection until vehicles that have not been delayed start passing through, the allacation then changes to the other lane.

The policy is somewhat similar to the strategy used by many vehicle-operated traffic lights in conventional traffic systems.

[^3] A vehicles in lane 1 and B vehicles in lane 2 , all of winch are contained within the zones of influence upstream of the intersection. An optimal control policy must evaluate $\frac{(A+S)!}{A!B!}$ different merging sequences to determine the optimal sequence. (14) This will then determine the next venicle to pass through the intersecticn. The merging sequences must then be re-evaluated anew for each subsequent vehicle, taking account of any vehicles to have meanwinile entered the zone of influence. This policy becomes time consuming to compute as the number of vehicles ouserved increases. Consequently a limited version of the optimal strategy has been assessed, namely/alternate priority scheme, which considers only the next vehicle in each lane.

In the AP scheme the order of the vehicles through the intersection is determined from a comparison of two ordering policies.

Case 1 Lane 1 vehicle followed by lane 2 vehicle
Case 2 Lane 2 vehicle followed by lane 1 vehicle The comparison is carried out using the next vehicle in each lane to be allocated an intersection target. The total delay that would be incurred in each case is compared and the policiy offering the lowest delay is the one adopted. This determines the next vehicle through the intersection. The vehicle not
allocsted a target participates in the next contest.
In practical junction control s vehicle enterins the manoeuvre zone must have a target which is safe and useable. With AP this causes some problems. After a comparison, one vehicle has been allocated an optimal target, the other must be given a frovisional target (a target appropriate to it being the next vehicle through the intersection). At the next and subsequent comparisons a vehicle with a provisional target will be given a new target, either an optimal one if it wire the contest or another frovisional target. A vehicle with a Erovisional target therefore experiences several changes in manoeuvre. This may be uncomfortable.

Eventually a vehicle with a grovisional target will be too close to the junction to carry out any further manoeuvre changes. Consequently it will pass through the intersection at a non-optimal time.

This distance constraint effectively places a linit on the maximum platoon size that can be formed through the intersection. The longer the observation zone the larger the maximum platoon size.

In operation AP forms platoons according to the mean flows, up to the maximum noted above. At low flow rates it operates similarly to PCFS $A P$ and FCFS $+H$ operate in a very siailar manner. They differ in the detail conditions required to make the lane allocation change. (A summary of the lane allocatifn conditions for AP is contained il. Appendix 4)

The data presented below has been generated from a number of simulations.

A simple Monte Carlo simulation was used to investigate the trade off between conflict delay and slowing down delay for each of the merging policies described above. A second, more detailed simulation was used to examine the interaction between a vehicle-follower tyre controller and three of the merging stratefies (FCFS, FTC, and AP). This simulation modelled a cross-over junction with no turning traffic.

A third simulation also modelled a crossover junction but employs a marker-follower type of vehicle control, operated in conjunction with two merging strategies (FCFS, FCFS + H).

More detalls of these simulations and other supforting work are contained in Chapter 7 and various Appendices.

The Effect of Headway Distribution - The delay due to conflict experienced by vehicles passing through an intersection depends on the flow rate, the speed, and the platoon formation characteristics of the merging policy employed.

For the FCFS policy the platoon size of the merged stream is totally determined by the distribution of headways in the incoming vehicle streams. At low flow rates AP and FCFS + H are similar to FCFS. At higher flow rates $A P, F C F S+H$ and FCT all increase the mean platoon size according to the vehicie flow rate, in a fashion that depends on the policy.

The ferformance of all the policies also depends to some extent on the distribution of tre input headways. To exanine the sensitivity of the simulation results to the choice of distribution used to model tine input flow headways, two policies FCFS and AP were compared usins four different headway distributions.

I Fixed sfacing - all vehicles travel at the same time headway

2 Herative exponential $\operatorname{Prob}\left(H_{t}=t\right)=\lambda e^{-\lambda_{t}} \quad$ where $\lambda=$ mean flow rate

3 Shifted nesative exponential -
$\operatorname{Prob}\left(\mathrm{I}_{t}=t<\operatorname{Hmin}\right)=0$
$\operatorname{Prob}\left(H_{t}=t \geqslant H r i n\right)=Q e^{-2(t-M m i n)}$
4 Truncated negative exponential -
$\operatorname{Prob}\left(R_{t}=\operatorname{Hmin}\right)=\int_{0}^{\operatorname{Hn} 1 n_{R}} e^{-P t} d t$
$\operatorname{Prob}\left(\mathrm{H}_{t}=t>\operatorname{Hmin}\right)=R e^{-R e}$
(D1a 105)

The last two distributions are more likely to reflect the distributions of headways in practical autometed transfort systems, since in normal conditions vehicles will not run at spacings less than the minimum headway. The truncated negative exponential distribution has been used in all the simulation studies, as it reflects ar intuitive feeling that there will be a high probability of vehicles travelling in platoons, (that is, vehicles are either at minimum headway or large headways). The choice of distribution is however somewhat arbitrary, as there is no foundation of relevant experimental evidence on which to base a decision. Such evidence, when it
is available, may well show that none of the distributions suggested above are a good representation. A recent reference by McGinley (10) discusses in some detail the choice of distribution and their effect on a simulation of quasisynchronous PRT systems.

The FCFS policy preserves the order in which vehicles arrive at the junction, consequently the platoon size defends on the distributions, for the negative exponential distritution a mean platoon size of 2 is predicted, and for a fixed spacing platoon size is always 1. (Appendix 5)

At high flow rates the truncated negative exponential looks like a fixed sfacing and at low flows tends towards the negative exponential. Consequently, a mean platoon size that tends from 2 to 1 as the flows increase would be expected. Such a trend has been shown in simulation experiments. (Dia 107)

The effect of different distributions on the delay characteristics for FCFS are shown in Diagram 103. It is demonstrated that small differences result, mostly at the higher flows. Similar observations apply to AP. (Dia 109)

Conflict Delay

FCFS - The platoon size is set by the input distribution and is small. Consequently FCFS has a low saturation flow. (Lia 110)
$A P$ - At low flows, AP has the sume delay as for FCFS. At higher flows the mean platoon size increases accordinjly.. The saturation flow can approach the theoretical maximum,

(that is, infinitely lons platoons) but at the exuense of lone queues forming. (Dia lll)

FCFS + H - This policy operates very similarly to AP. At very hign flows it has a lower delay than Ap. (Dia 112)

The 'hold' time is a parameter which can be varied according to flow so as to minimise the mean delay. However it does not vary much over the full range of flows. Consequently a single greset value could be used which will give a near optimum performance over the whole range of flows. (Dia 113)

FTC - The fixed time cycle policy is the least effective policy. The maximum platoon size and therefore the saturation flow is limited by the cycle time, the longer the cycle time the higher the saturation flow.

However, the mean delay experienced by venicles is at least a quarter cycle time and therefore at low flow rates and with long cycle times vehicles will be unnecessarily delayed. Consequently for an efficient operation the cycle time must be varied according to the mean vehicle flow rate. In practica this may be difficult to do if the flow rates change rapidly. (Dia 114, 115)

Diagram 116 shows the four policies together for comparison.

Slowine Down Delay - Delay due to the vehicle slowing down to the intersection target speed is simple to calculate. It is the difference between the time the vehicle actually takes to slow down, minus the time the vehicle would have taken to

travel the same distance at full sfeed. The curve is shown on Diagram 117.

The Choice of Intersection Syeed - For all policies the conflict delay is a mininum when the intersection is run at the saturation speed, since the time headways are a minimum at this speed. (Dia 116) However the delay incurred by slowing down to the intersection sfeed and speeding up after it increases as the intersection speed is reduced.

An optimum speed exists for each flow rate and merging strateg.y, at which the sum of the slowing down and conflicts delay is a minimum. (Dia 118)

Diagram 119 shows the optimum flow delay curves for FCFi, FCFS +4 and $A P$.

It would be very difficult to chosse oferating points at which the jerformance of a FTC strategr is an optimum, as both the cycle time and the junction speed must be adjusted simultaneously. Furthermore, the delay characteristics as functiors of speed or cycle time are discontinuous reflecting the fact that one cycle time can only hold an integer number of vehicles.

Although an optimum intersection speed can be found for any particular flow rate, for vehicle flows other than the very low the optimum speed is only slightly above the saturation speed. Consequently there is only a small benefit to be gained by varying the junction speed according to flow, and" that with the penalty of increasinf the compleaity of junction controller. (Dia 122)

DIA. 116 Comparison of ordering policies conflict delay at junction speed of 4.5 s

Manoeuvre Delays - Delays due to headway infringement can be divided into two parts. The part which is accumulated as a vehicle approaches an intersection and the part accumulated as the vehicle accelerates away from the intersection. Delays after the intersection result when a close-cacked platoon of vehicles accelerates to the line speed from the intersection speed. The front vehicle is not delayed but subseguent vehicles are progressively delayed by increasing amounts as they drop back, relative to the front vehicle, to the longer headways appropriate at the higher speed. The larger the platoon, the greater the occupancy at the intersection, and the lower the intersection speed, the bigger the delays. The merging policy used also has a small influence on the delay component but only at high flows. In all cases the component is small by comparison with the conflict delay. (Dia 120) The mechanism by which delays are accumulated by vehicles manoeuvring prior to the intersection has already been described. These delays are also a function of platoon size and flow rate. They are rather more serious than the speeding up delays discussed above. This is because a delay accumulated on one lane is transferred to the other lane via the timetable, which effectively couples the two lanes together. As a consequence the delays accumulated before the intersection are similar in magnitude to the conflict delay. (Dia 121)

Size of the Manoeuvre Zone - Both increasing the flow rate and decreasing the size of the manoeuvre zone have the effect of reducing the mean soeed of venicles through the zone. This has the effect of improvint the packing of vehicles throush the conflict point and therefore reducing the conflict delay by a small amount. However delays due to manoeuvres, both before and after the intersection increase. The net result is that reducing the manoeuvre zone slightly increases delays at the highest flow rates. Diagrans 123-128 show a variety of position/time curves that sinow the effect of varying the ordering policies, on the manoeuvres that vehicles carry out.

As the manoeuvre zone is reduced in length, the incoming flows tend to back further ufstream. However the effect is small unless the incoming vehicle flows exceed the junction capacity, in which case a queue srows steadily. In this situation, the longer the manoeuvre zone, the loner can a junction tolerate transient overloads.

Practical Junction Performance - The performance of practical
junction layouts can be estimated by appropriately combining all the components of delay deacribed above. For example:-

The aimplest junction, a cross-over has a performance characteristic as shown in Diagram 121. The same characteristic will describe a merge-diverge junction, (Dia 129) if thé extra delay incurred by running at the intersection sped along the common section $x-x$ is added.

Abstract

A crossins junction with low speed turns is similar to a cross-over with no turning, because all the conflict points must be considered as one, there being no room to manoeuvre between them. (Dia 130) However the time headways must be increased to take account of the transit time of the venicle through the set of conflicts.

A crossing junction with high speed turns can be operated differently as each conflict point is sufficiently spaced to allon manoeuvres between them.

The Comparative Porformance of Vehicle-Follower and Marker-Follower Control

A simple intersection was modelled in two ways. In one, vehicle-follower control was simulated, in the other markerfollower control. The performance of the two was compared for a FCFS merging policy. The results are shown in Diagram 131. The marker-follower control is only slightly inferior to the vehicle-follower one, and this difference may reflect imperfections in the optimisation routine used rather than any intrinsic lower ferformance. Both types of controller make very much better use of junctions than quasi-synchronous or synchronous controllers can. (Dia 132)

Marker-follower control achieved a level of performance virtually the same as vehicle-follower control but at a very much lower cost. Whereas vehicle-follower control requires * costly and technically difficult, inter-vehicle ranging, marker-follower control can achieve the same manoeuvre

DIA. 132 Comparative performonce of junction control strategies
a) Asynchronous control, junction operated at the saturation speed with infinite platoon size
b) As for a) but with a platoon size of one
c) As for al but with a junction speed equal to the line speed
d) As for b) but with a junction speed equal to the line speed
e) Synchronous slot capacity for junction run at the saturation speed
capabilities with very limited communication raquirements.
The most complex maroeuvre in asynchronous systems is the packing manoeuvre. The asynchronous marker-follower can carry out this manoeuvre by transferring only four pieces of information to the vehicle. These are a speed command and an offset diatance, for each speed change. The speed commana becomes active when the vehicle has travelled the offset distance from the command post. In marker-follower systems, precise control of the venicle is essential. It must accurately measure its position (this is not a difficult technical problem, see Appendix 2), and carry a simple micro-processor to generate the required position-time profile. Its controller must be able to follow pasition commands with sall or zero steady state errors, this again is not difficult to achieve. (See Chapter 4)

Vehicle-follower control has better fault control characteristics than marker-follower control. Consequently it has been suggested that a less expensive emergency backup system can be used in vehicle-follower systems, in which the necessary ranging information, required for both the emergency monitor and the normal longitudinal controller, is supplied by the same equipment. (17)

BIBLIOGRAPHY

1 Yape L
Deterministic Synchronous Control in Personal Rapid Transit vetworks
M Sc Thesis, Harwici University, Coventry, 1973
2 Roseler \mathfrak{N} J
Comparisons of Synchronous and Juasi-synchronouw PRT
Vehicle Manarement and Some Alternative Pouting Algorithms
2nd International Conference on PRT
Minneapolis, Minnesota, May 1973
s Godfrey M B
Merging in Automated Transportation Systems
Ph D Thesis, M I T, 1958
4 Knight T E
An Approach to the Evaluation in Changes in Travel
Unreliability, a 'Safety' Margin Rypothesis
Transportation, Vol 3, no 4, 1974
5 Huber B
Novel Arrangement of Switchinp PRT Vehicies
2nd Internationsl Conference on PRT, op cit (2)
6 Black I Get al
Advanced Urban Transport
Saxon House, 1975
7 Barnard R, Rossignol P J
Practical Problems in Switching, Guidance and Headway
Control of Minitram
IEE Conference Control Aspects of New Foris of Guided Land Transport, London, August 1974
(Conference Proc No 117)
8 Mc Gean T J
Urban Transportation Technology
Lexington Books, 1976
9 Thomas T T
The Control and pouting of Vehicles
lst J T R G Symposium, Warwick University, Coventry 1975
10 Whitney D E
A Finite State Approach to vehicle Mergir.g
Journal of Dynamic Systems, Measurement and Control
June 1972

11 Brown S J
Merge Control in Autcmated Transit System Hetworks
Intersociety conference on Transportation
Denver, Colorado, September 1973
12 Caudill R J, Youngblood J N
Intersection Merge Control in Automated Transrortation
Systems
Transportation Research, vol 10, No 1, February 1976
13 Cabtrack Studies
The Operation and Control of Cabtrack Junctions Technical Refort ivo RAE Farnborougn 1970

14 Athans M
A Unified Approach to the Vehicle Merging Problem
Transportation Research, Vol 3, No 1, April 1969
15 Levine $火$ S, Athans M
On the Optimal Error Regulation of a Strinf of Moving Vehicles
IEEE Trans, on Automatic Control, Ac-1l, No 3, 1966
15 Mesinley F J
A Zuantitive Analysis of Zuasi-Synchronous PRT Flow Characteristics
High Speed Ground Transportation Journal, Vol 11, No 2 Summer 1977

17 Hinman E J, Pitts G L
Augmented Block Guidance for Short-Headway Transportation Systems
Intersociety Conference, op cit (11)
7. The Computer Simulations

7.1 Introduction

A number of simulations have been written to examine the operation of vehicle controllers and jurction control strategies. All these simulations have been designed with a modular structure to allow an evolutionary development. Each important module has been predeveloped using purpose written small prograns. These are then incorporated into the more demanding larger scale simulation, for further development. This approach to simulation offers several useful charac-teristics:-

```
    speed - small programs are rarely complex and therefore
easy to develop and quick to run.
    identificatiod - the discipline of writing small
programs forces an early identification of the important
phenomena. This in turn leads to modular simulation structures
which tend to be easier to develop.
    reliability - a repertoire of expected behaviour
patterns is built up in a 'programmed learning' manner. This
accelerates understanding of the overall system.
```


7.2 Simulation Models

The main siaulation models that have been written were:-

- intersection under vehicle-follower control.
- network under vehicle-follower control.
- intersection under marker-follower asynchronous control.
- Monte Carlo models of the four merging strategies discussed in Chapter 6.

7.3 Intersection Under Vehicle-Follower Control

The junction is split into several regions. (Dia 133)
Zone of influence - this is the region of the junction where no direct control is exercised over the vehicle. However the results of control action applied to other vehicies may have an effect on the motion of vehicles in this region because of the vehicle-follower control.

Region of control - this is the region of the junction where decisions have been made about a specific vehicle and it is controlled so as to arrive at the intersection correctly.

After the intersection there is another zone of control and influence.

The manoeuvre zone can be further broken down into, a deceleration zone, where vehicles change sped from their incoming speed to the intermediate speed, a nueuing buffer, where vehicles travel at their intersection speed, and a further deceleration zone where the vehicle changes speed to the intérsection speed.

DIA. 133 Schematic of junction layout

Abstract

Two streams of traffic are simulated refresenting the two lanes of traffic passing through the intersection. Vehicles are generated at the intersection boundary with time spacings determined according to the headway distribution. The vehicles are integrated forward each tine step, according to control requirements until they reach the boundary of influence at the other side of the intersection. There they cease to exist.

In the space between the boundary of influence and the boundary of control normal intervehicle headway control operates. When a vehicle passes the control boundary its target time at the intersection is calculated according to the merging rule. An average speed is calculated for the vehicle and the appropriate accelerations applied to the vehicle. If the control calls for a manoeuvre causing headway infringement, then the signal reaulting from the headway controller takes precedence.

When vehicles approach the intersection they are accelerated as required to the intersection speed.

After the intersection the venicles are accelerated up to the line speed. After the control boundary on the far side of the intersection junction control ceases and the venicles are subject only to the normal headway control.

The emergency headway monitor overlays the normal control system. This detects unsafe vehicle spacings and stops the . vehicle.

Throughout the journey of the vehicle various parameters are measured and stored for processing and printing.

The occurrence of particular events is marked by messagea output to a line printer. Also at set times all the data pertaining to the simulation is output. All or any of this data can be suppressed by the appropriate setting of flags at the start of a run.

7. 4 Network under Vehicie-Follower Control

The network simulation has a very similar desiga to the intersection simulation. The network is specified as a directed graph having links (each with an associated control strategy), entrances (with traffic generators) and exits. This general description can encompass an arbitrarily complex network. Hithin the simulation arrays hold the geometric details of the network (to enable the layout to be reproduced for display purposes), the lengths of links, their speed limits and inter-connections. A further metrix specifies possible entrance-to-exit routes for vehicles traversing the network.

In operation, vehicles are created at each entrance gecording to the random generator modelling the desired input stream characteristics. Each vehicle is allocated an exit and is transferred from link to link according to the route matrix until that exit is reached.

The amount of information transfer required for trackvehicle and vehicle-to-track communications is a particularly

Throughout the journey of the vehicle various parameters are measured and stored for processing and printing.

The occurrence of particular events is maried by messages output to a line printer. Also at set times all the data pertaining to the simulation is output. All or any of this data can be suppressed by the appropriate setting of flags at the start of a run.

7.4 Network under Vehicle-Follower Control

The network simulation has a very similar desimn to the Intersection simulation. The network is specified as a directed graph having links (each with an associated control strategy), entrances (with traffic generators) and exits. This general description can encompass an arbitrarily complex network. Within the simulation arrays hold the geometric details of the network (to enable the layout to be reproduced for display purposes), the lengths of links, their speed limits and inter-connections. A further matrix specifies possible entrance-to-exit routes for vehicles traversing the network.

In operation, vehicles are created at each entrance according to the random generator modelling the desired input stream characteristics. Each vehicle is allocated an exit and is transferred from link to link according to the route matrix until that exit is reached.

The amount of information transfer required for trackvehicle and vehicle-to-track communications is particularly

Abstract

important parameter in the assessment of a control atrategy. hithin the simulation information transfer points are positioned on the track; the passing of a vehicle calls a servicing routine attached to that particular point. Such an arrangement is sufficiently flexible to allow most strategies to be simulated. It has the particular programming advantages that the necessary information transfer can be explicitly identified and a sub-routine performing a particular control task can be used to service any number of communication points.

Headway Generation - A random number generator produces numbers that have an equal probability of lying anywhere between o and 1. This generator is called as many times as is necessary for the numbers produced to lie above a specified level. (That is to generate an event). The number of times the random number generator is called, is multiplied by a specific fraction of the minimum headway to give the time separation to the next vehicle. If the time so produced is less than the minimum headway then the time returned by the routine is set to the minimum headway.

Control Routine - The main task of the control routine is to calculate the intermediate speed of the vehicle. In both the Junction and the network simulation the same technique was used, - namely a simple logical selection of the appropriate. velocity profile. (Dia 154, 135) For simplicity, jerk was not included in the calculations.
PI

Din. 135 flow chart of intermediate speed selection

Calculate time
to execute profiles
PI, PR

Find T, T_{1} $P_{i} U_{V}, U_{j}$

yes

Is TTTJ $>$ time to execute profile Pl
no
Calculate U_{i} according to
PL

Change target

 time according to profile P6

Dia.135 continuation of flow chart

The technique breaks down when a complex result is calculated for the intermediate speed, that is, the simultaneous constraints of time and distance cannot both be met. In the simple case the time constraint is relaxed and the vebicle is late at the junction. In the other cast, the required intermediate speed is too low and cannot be achieved in the distance available. Consequently the vehicle will arrive too early at the junction, which is unsafe. This event counts as a failure of the control folicy.

Storage of vehicle Queues - Each link of an intersecticn or network has an associated queue of vehicles. Within the simulation all the variables pertaining to the vehicles are stored in an array, the appropriate set of elements being marked by front and back queue pointers. A vehicle is entered by moving the back queue pointer, a vehicle is deleted by moving the front queue pointer.

Vehicles moving from one link to another are deleted from the old link queue and added to the new link queue. The target speeds and times for each intersection are stored in a table, one table for each intersection, again pointers are used to mark the front and back of the table.

Headway Controller - No attempt was made to model vehicle dynamics within the simulations. The detail simulation of . vehicle dynamics is a study in its own right and for the work reported, unnecesaary. Thus initial studies have assumed the

```
perfect response of a vehicle to demanded inputs. This is
clearly unrealistic, and it is commonly accepted that the
tolerance of the actual vehicle response about a demanded
input is unlikely to be better than 5%. Later simulation
studies will have to take this into account as performance
limitations of vehicle controllers are likely to have a
significant effect on control policies.
    The headway controller uses the relationship
    acceleration }(T+1)=\frac{\mathrm{ leeway (T)}}{\mathrm{ headway (T)}}\times\mathrm{ (T constant
```

(The leeway is the intervehicle separation minus the headway
apropriate to the vehicle speed.
$T+1$ denotes the value during the next time interval (ster)
T denotes the value during the current time
interval (step)).

Output of Information - With any complex simulation the clear and detailed presentation of information, such that important phenomena can be readily identified, is a formidable task.

Output can be divided into three groups.

- Monitoring system operation - The noting of events during the course of the simulation enables particular situations to be identified. Such output can be valuable but cannot show unforseen events.
- Performance Data - A detailed simulation generates large quantities of raw data, most of which requires processing to condense the important characteristics into an intelligible
form. Thus within the siculation simple averages and variances of delay and vehicle spacings are calculated. For more complex output, the relevant variables are saved on mapnetic tape for subsequent processing. This subsequent frocessing included the plotting of histograms and position-time graphs.

With the network simulation, the sets of variables that define the state of the simulation were regularly saved on tape. This allowed the simulation to be restarted anywhere in a Freviously saved record and allows the simulation to be stepped backwards or forwards to examine in detail, particular events.

- Overview of System Cperation - For complex simulations there are considerable problems associated with the 'bird's eye' View presentation of the overall system operation. Line printer outputs of relevant variables are useful for a quantitative survey of situations. However they are ineffective for a general overview and the detection of subtle ocerational anomalies. For this, a moving picture display is particularly. effective. Complex phenomena are clearly presented for which one has an intuitive feel, thus allowing an assessment of the effectiveness of algorithms and the detection of incorrect program operation.

Moving Picture Display - The simulations reported here use an interactive moving picture display as a communication medium. Suitably coded information is transmitted in character form," (that is, one atart bit, seven information bits, one parity bit, one stop bit) from the host computer (Rank Zerox Sigma 5)
containing the simulation, to the picture rrocessor (Digital Systems GT 40) via a full duplex 1200 baud asynchroncus line. A continuously refreshed picture is produced showing the motion of vehicles through the network or intersection.

At any point the display can be stopped and dialogue initiated with the host computer. Any portion of the picture can be ragnified to any scale. This coupled with the ability to restart the simulation at an earlier stage and to step backwards or forwards through the pictures enables close detail to be observed.

The picture displayed has the following properties:-

- The use of the display does not substantially slow down the simulation
- A network that can be simulated can also be displayed.
- Vehicles moving through the network are represented by an unambiguous symbol whose length represents headway and so varies according to the speed of the vehicle.

Initial attempts to produce the required display used the FOCAL GT graphics routines (supplied with the GT4O is a simple, flexible, interfretive, language, including some grayhics functions, similar to BASIC, and called FOCAL GT). Data transmitted from the Sigma 5 host was received by a FOCAL GT program and used to redraw the vehicle layout in the junction. Accumulation of data aimultaneously with drawing the picture output, was not possible and the resulting display was too slow to be effective. The best picture rate achieved was 1 picture/ 8 secs, (broken up as 3 seconds data transmission time,

5 seconds display time). The excessive display time, is the result of the very slow execution speeds of interpretive languages. The long data transmission time results from sending the ASCll character form of a decimal number rather than the more efficient binary form.

These two limitations were avoided in the second display produced. Specialist functions performing segments of the display process were written in assembly code and added to the FOCAL GT structure. This approach minimised the software written and retained the flexibility of prorramming in a high level language.

The functions correspond to four stages in the creation of a display

- The peneration, within the GT40, of a data tabie holding the XY coordinates (suitably scaled in screen units) of the network to be displayed. The display of the junctins layout requires a simple extension of the network representation used to describe the junction geometry. As only straight vectors can be displayed on the GT40 screen, curved network links bave to be approximated with a series of straight line segments. These segments are the same length for any given link, this facilitates subsequent display of vehicles. Thus the link identifying number, the length of individual segments and the XY coordinates defining the ends of each segment are transferred from the Sigma 5 to the GT40 data table.
- The display of each network link by referencing the coordinate data table.
- The display of vehicles in the function to produce the moving picture.

The vehicle display routine determines the picture speed. Provided all the necessary calculations can be carried out simultaneously with the receipt of data the picture rate is determined by the data transmission time. The design of the vehicle display therefore reduces to minimising the data required to define a picture and ensuring that algorithms are sufficiently fast. The least complex symbol that could be used to represent the vehicle and its stopping distance is a straight line of variable length. To position the line anywhere on the screen requires the $X Y$ coordinates of each end: these, directly transmitted from the Sigma 5 would require four items of data.

If the vehicle is identified as lying on a particular link of the network, then the end coordinates can be calculated knowing the displacement of each end of the vehicle symbol from the origin of the link. This reduces the number of data items required fer symbol to two.

The coordinates of a point on a link are calculated according to the algorithm. (Dia 136)

$$
\begin{aligned}
& x p=x_{n}+\left[x_{n-1}-x_{n}\right] \times g \\
& Y_{p}=Y_{n}+\left[Y_{n-1}-Y_{n}\right] \times g
\end{aligned}
$$

where
n - integer part of $[D / D]$
g - fractional part of $[D / p]$
D - displacement of point from origin
p - length of one link segment

$X, Y-x$ y coordinates cf link segment start
All the data except D are constants and held in the previously generated data table. To calculate the coordinatea of each point requires two multiplications and one division, consequently calculation times can be easily kept within the minimum feriod of lors secarating the arrival of data item.

The maximum binary number that can be transmitted from the Sigma 5 in a seven bit character is l27. If, each of the displacements necessary for the $X Y$ coordinates of the symbol can be generated using numbers less than 127 , then only a single character need be transmitted for each data item.

Three methods of generating the displacement are possible.

- The absolute displacement of a point from the link of orimin can be transmitted. As displacements can be considerably greater than 127 screen units (approx 1.25 inches) in Reneral, two characters would be required to define the point (the two characters holding the upper and lower parts of a 14 bit binary number).
- Each point is calculated as an increment on the corresponding point on the previous picture. The data increments are likely to be very small but rounding errors would accumulate from one picture to the next and probably would become unacceptably large.
- Along a given link, a set of points can be specified by sending the spacings of the points and defining the first point as being spaced relative to the origin of the link. For a set of points along a link errors can accumulate but are

Abstract

X, Y - $X \quad y$ coordinates cf link segment start All the data except D are constants and held in the previously generated data table. To calculate the coordinates of each point requires two multiplications and one division, consequently calculation times can be easily kept within the minimur period of loms sefarating the arrival of data items.

The maximum binary number that can be transmitted from the Sigma 5 in a seven bit character 1s 127. If, each of the displacements necessary for the $X Y$ coordinates of the symbol can be generated using numbers less than l27, then only a single character need be transmitted for each data item.

Three methods of generating the displacement are possible. - The absolute disglacement of a point from the link of orisin can be transmitted. As displacements can be considerably greater than 127 screen units (approx 1.25 inches) in Reneral, two characters would be required to define the point (the two characters holding the upper and lower parts of a 14 bit binary number). - Each point is calculated as an increment on the corresponding point on the previous picture. The data increments are likely to be very small but rounding errors would accumulate from one picture to the next and probably would become unacceptably large. - Along a given link, a set of points can be sfecified by sending the spacings of the points and defining the first point as being spaced relative to the origin of the link. For a set of points along a link errors can accumulate but are

not transferred from link to link. This scheme was imilemented for the picture display.

During the picture display communication is maintained with the Sigme 5 host. Any two characters tyjed from the keyboard terminates the picture display and initiates a dialogue enabling several options to be selected. Namely

- A specified portion of the network can be magnified to any scale. The facility is achieved by calculating and transmitting to the GT40 a new coordinate table holding only the coordinates of the links actually appearing in the display. During the picture display the Sigua 5 sends only data referencing the displayed links, all other is suppressed. To further aid the detail study of the individual vehicle movements, the simulation can be run in slow motion.
- During the simulation run, the variables defining the state of the simulation are regularly dumped onto magnetic tape. This records the aimulation results for future data processing. At the request of the operator the simulation can be restarted anywhere on the record. This enables simulation work to be carried on from where it was left off or for any particular event to be studied in depth.
- To assist particular studies a step operation can be selected. On restarting the display the operator can step bacikwards or forwards one picture at a time, or return to the main dialogue.
- A trace oftion records the prorress of a particular vehicle by printing all the variables pertaining to the vebicle.

Abstract

regularly to the line printer. To preveat the continuous printing of variables producing a confusing line printer record a message option can be selected and a heading transmitted to the line printer.

Performance of Picture_Display - A picture rate of about 2 pictures a second is achieved. (This is determined by the amount of data that needs to be transmitted, consequently the fewer the vehicles displayed, the faster the picture rate). If a picture is drawn for every second of simulated time (that is, the display runs at approximately a simulation time twice as fast as real time), a clear, moving, but slightly jerky picture is realised, also the display siows the simulation down a certain amount.

If the simulated time between each picture is increased so that the display does not hold up the simulation, there are unacceptably large changes between each picture making it appear jerky. This is because large changes can take place in vehicle position in the increased aimulation time between each picture.

7. 5 Intersection under Marker-Follower Control

The simulation operates in a different manner to the previous simulations described.

The time of arrival of each vehicle at the junction boundary is determined using the same techniques as described earlier. The time the vehicle passes through the intersection
is determined by the choice of vehicle ordering and intersection speed. This provides sufficient information to calculate the vehicle manoeuvre. The basic manoeuvre is a speed change carried out at SPI, (Dia 137) a constant speed secticn and a final sfeed change starting at SP2.

An iterative procedure is used, as follows:- Using a guess for the intermediate speed a trajectory is calculated for the vehicle using the most forward positions of SPl and SP2 possible. This trajectory is stored in a polynomial form, a different polynomial describing each phase of the manoeuvre. These phases are as follows.

1 Constant line speed input
ii Constant jerk transition
First
speed iij Constant acceleration
change
iv Constant jerk
v Constant speed
vi Constant jerk
Second
speed
vii Constant acceleration
change
viif Constant jerk
ix
Constant finel velocity (intersection speed)
The worst headway infringement during the first speed change manoeuvre is found by aubtracting from the position of previous vehicle, the position of the headway locus of the present vehicle. This infringement is used to move the start point $S P l$ upstream (so that the infringement is reduced to zero). A similar process is carried out for the second speed change. This second manoeurre adjustment is however more complex.

It may not be possible to remove headway infringement by moving the start point upstream. Consequently the intersection start time must be made later by a specific amount to remove the headway infringements. This corresponds to the 'slip' that must be added into the intersection target time table.

Once satisfactory start points have been determined for each manceuvre a second iteration loop recalculates the intermediate speed appropriate to the new manoeuvre start points. This slightly modifies SPl and SP2, consequently the iteration cycle must be repeated, until specified accuracy constraints are satisfied. Although the iteration cycle is rather crude it works well and only $5-3$ cycles are usually required to evaluate a manoeuvre.

```
7.6 Monte Carlo Simulation of Merging Strategies
            The Monte Carlo simulation of queuing strategies is very
simple. The arrival times of vehicles are determined according
to the appropriate headway distribution. The target time is
determined according to the merging sequence by taking which-
ever is later, the arrival time of the vehicle, or the earliest
time the vehicle can follow the previous vehicle through the
intersection, (that is, the crossing or following time headway
as appropriate). The difference between the arrival time and
the target time is the venicle delay.
```

It may not be possible to remove headway infringement by moving the start point upstream. Consequently the intersection start time must be made later by a specific amount to remove the headway infringements. This corresponds to the 'slip' that must be added into the intersection target time table.

Once satisfactory start points have been determined for each manceuvre a second iteration loop recalculates the intermediate speed appropriate to the new manoeurre start points. This slightly modifies SP1 and SP2, consequently the iteration cycle must be repeated, until sfecified accuracy constraints are satisfied. Although the iteration cycle ia rather crude it works well and only 5 - 8 cycles are usually required to evaluate a manoeuvre.

7.6 Monte Carlo Simulation of Merging Strategies

The Monte Carlo simulation of queuing strategies is very simple. The arrival times of vehicles are determined according to the appropriate headway distribution. The target time is determined according to the merging sequence by taking whichever is later, the arrival time of the vehicle, or the earliest time the vehicle can follow the previous vehicle through the intersection, (that is, the crossing or following time headway as appropriate). The difference between the arrival time and the target time is the vehicle delay.
7.7 Other Programs

Contained in the appendices are the listings of a number of support programs. These include - a program simulating a platoon of vehicles subject to varying types of speed-change operations, - a program to evaluate the changing safety factor and time headways through a jerk-limiting speed-change manoeuvre, - a program to plot position-time graphs from data stored on magnetic tape, - a program to plot the pseudo threedimensional graphs with hidden-line removal and a program (written in conjunction with Alan Hume) to assemble FALll (PDP-11 assembler code) programs into binary suitable for loading into the GT40.

Conclusion

The important conclusions of this thesis can be summarised as follows.

The fundamental choice in the design of control systems for autowated transport is between a centralised or decentralised system structure. Decentralised controllers by comparison with centralised controllers, offer the prospects of lower system costs, and better reliability, although with the penalty of a reduction in the ultimate performance available. Defendability of service is a vital characteristic in automated transport systems, and therefore for such systems, decentralised, hierarchical structures have considerable advantages.

There are two basic techniques of vehicle control, marker. following or vehicle-following. Marker-follower control can be either synchronous or asynchronous, vehicle-follower control is always asynchronous. Synchronous control tends to be centralised, and asynchronous is usually decentralised.

Previous researchers have only examined in detail the performance of synchronous marker-follower systems. Asynchronous controllers have always been dismissed as being incapable of providing a good eysten parformance, and being oxpensive to implement. The analysis of asynchronous systems presented in this theais has shown that these accepted views are
mistaken. Indeed asynchronous systems can make a substantialiy better use of track capacity than synchronous systems. This is particularly true for junctions, where a well chosen strategy can achieve nearly twice the capacity available under synchronous control. This, combined with the flexibility of asynchronous controllers allows significant reductions in the complexity and therefore the cost of the civil engineering structures.

The decentralised structure of asvnchronous systems ensures a good response to failures and leads to a better service dependability than the equivalent centralised systems. Within the class of asynchronous systems the vebicle-follower type of controller has a better response to failures than the asynchronous marker-follower controller. However the asynchronous marker-follower scheme can achieve as good a performance during normal running as the vehicle-follower scheme, but requires much less commuication. This significontly reduces systems costs.

Capacity in asynchronous systems is limited by the ability of the emergency backup systems to safely monitor intervehicle spacings. Of the techniques available today only fixed block signalling provides the necessary combination of reliability, 'fail-safe' and reasonable cost. However fixed block signalling cannot be used effectively for vehicle headways less than 6 - 10 seconds. If headways lower than this* are demanded a completely different and radical aproach to safety must be adopted. The concepts of 'fail-safe' and

APPENDIX 1 Simulation of abynchronous
sincle channel communcation
link
simulation of asynchreneus cemmunicatien link with cyclic strategy. cifertraith bots C:FERTRAIAR GOIO Tripol
EVEL, TELT topnom NAMELIST.
STHPNEW =.FALSE. C INITIA. ISATIEN. TIMESS 10
NUSER=10 INPUT (105)
IF (STOPNEW)

CaLCuIATE MESSAGF OENERATION RATE.

$$
\begin{aligned}
& \text { RLEVEL=10. } \\
& \text { BRLORNIOI }
\end{aligned}
$$

(I)

THII)
TIMIDLE
岂
\circ
CEH 1 I-S, NUSER
?
MESSAGE OEMANC AFTER SERVICE
IL.AG=ITIMIDIE-TTIII)/NUSER

$$
c+1
$$

$$
\begin{aligned}
& \text { IRC }+1 \\
& \text { ESSAG } \\
& \text { IUFC } \\
& \text { DLE TE } \\
& 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { IU CIDLECTIMIDLE +1。 } \\
& \text { GOTO I } \\
& \text { CREMENT NEXT TIME IOLE. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { GUTO } 1 \\
& \text { INCREMENT NEXT TIME IDLE, } \\
& 3 \text { DE,SUM=DELSUM }+ \text { TIMIDIE=T }
\end{aligned}
$$

$$
\begin{aligned}
& \text { INCREMENT NEXT TIME IULE: } \\
& 3 \text { DE-SUM=DELSUM + TIMIDIE TTII) }
\end{aligned}
$$

$$
\text { NCSUNT=NCOUNT }+1
$$

$$
\begin{aligned}
& \text { IDLE AT TIMIDLE. } \\
& \text { IMIDLE TIMIDLE }+1 \text {. }
\end{aligned}
$$

FINISH WHEN 1000 MESSAGES AVERAGED． CALCULATE NEXT MESSAGE REQUEST TIME． NEXII
＝TTII RN（II
NUE TINUE いのに

$\stackrel{\sim}{\sim}$
옹
generate rancor annual rate. FUNCTION RNII)
CUMMEN RLEVEL,TELT OIMENSION RNX(20) INTEGER RNX
\qquad $50+1$ く! !
$\div 2$ IIII
URN
TINUE
UNT=0
TINUE
LW,4
LW,9
MI,9
AND,9
STW,
RN

$*$
F (RN.GE..5.AND.RN.LT.1.5-RLEVEL) GETO

GOTO
RN=FLQAT(ICEUNT) *TELT
RETURN

(Appendix. 2)

Measurement f Communication in Automated Iransport

L Burrow \& T Thomas (oct '76)

Urban Transport Research Group

Abstract

This working paper discusses in detail the major aspects of communication and measurement in an automated transport system.

In part 1 are discussed the underlying system features determining the design and provision of communication and measurement systems in an automated transport network.

In part 2, there follows a catalogue of current communication and measurement techniques indicating their major properties and possible applications to automated systems.

Throughout transport there has been a growing interest in the use of automation to improve the quality of service. Part 3 reviews some examples of techniques that have been applied to metros, buses, and automated systems.

Introduction

Designs for new transport systems seek to improve the service offered to travellers. Better communications in stations and on vehicles enable passengers to understand and use the sybtem more effectively. Improved control strategies and circuits enable the system to respond faster and more accurately to demands made of it.

Increasingly automation is employed. The human content of complex tasks is replaced by automatic equipment, whose predictability, reliability and speed of operation enable a more regular and frequent service to be offered.

Common to all these developments is the more sophisticated use of information requiring fast, error-free commanication links, extensive and accurate measurement and monitoring equipment.

Communications in Automated Transport

Communication in an automated transport system is characterised by the need to transfer information regularly between moving vehicles and fixed control centres distributed over a wide area. Bidirectional communications between vehicle and vehicle, vehicle and control centre, control centre and control centre may all be necessary.

The control system engineer would like to have independent communication channels for each information flow. Such provision would however be wasteful, being excessively expensive and underutilised, although possibly, a more precise oontrol could be achieved. Communication facilities have to be chosen in balance with the rest of the aystem, enabling adequate information flows to take place whilst minimising capital and running costs. As with all communication systems, time delays, information rates and orror rates are important parsmeters. All can be improved by supplying additional bandwidth, signal power or less noisy channels at an increased cost. (Rofs -32)

Measurement in Automated Transport

In automated transport certain taske of the human operator have been repleced. Dxtenaive masurement and monitoring is required,
both to relay information enabling controllers and algoritime to work effectively and to provide checks designed to ensure the safety of the system.

The state variables of most interest are position and its time derivatives of velocity, acceleration and jerk.

The ability of a vehicle controller to minimise absolute position errors directly influences the maximum flow capacity a system can achieve. Precise operations at merges and stations depend upon both position and speed control. Lccurate speed control is required to satisfy safety conditions, for example speed limits on bends and headway constraints when approaching other vehicles.

Passenger oomfort is determined by the quality of acceleration and jerk control. Precise accoleration control is difficult to achieve. Closed loop jerk control may not even be attempted, although vehicle response characteristios can be designed to ensure that jerk stays within acceptable limits.

The coordinated operation of a complete transport network requires the systemwide generation of time. Clocks can be easily manufactured to high accuracy but methods have to be incorporated to ensure that all are synchronised, thus creating additional commenication requirements.

Part 1: Principles

Contents

1.A \quad| Whole system features governing the |
| :--- |
| communication and measurement facilities |
| provided |

1.A.1 - The degree of automation sought
1.A.2 - The etructure of control systems and its influence on information requirementa

- Centralized control
- Hierarchical control
1.A.3 - Commenications involved in open loop control, closed loop control and fault monitoring
- Open loop
- Closed loop
- Fault control
1.B - Methods of direoting information to the correot recipient
1.B.1 - Wultiple use of aingle ohannel
- Direot channel orgenisation with demand responsive etrategy
- Direot ohannel orgenisation with fixed sequance etrategy
- Delay ohareoteriatios with direot channel urgenisation
- Channel organisation using a central oontroller

1.A. System Features

In this section are discussed the general features of transport communications which determine the overall behaviour and capabilities of the transport scheme.

1.A.1 The Degree of Automation Sought

The ability of a human operator to make fast overall assessments of unusual situations ensures that the total automation of systems as complex as a transport network is most unlikely. At some stage it becomes a more effective solution to employ somebody rather than attempt to devise appropriate equipment and strategies. Examples are: the creation of schedules, maintenance and recovery from severe failures.

Of paramount importance is the provision of an effective interface between the automatic equipment and the operator. Humans are particularly effective at identifying patterns of behaviour but are easily overloaded with data. Communication techniques have to be devised which display primary information in easily recognised forms. Safeguards have to be incorporated to reject unsafe or incorrect operator decisions yet allow him adequate flexibility.

Modern railway practice is an illustration of the changing manmachine boundary as automation progresses.

Manual driving	Driver obeys optical signals
	at trackside.
Manual driving with	Driver obeys optioal signals
automatio warning	but is advised of signal
	aspeots ut an appropriate
	braking distance.
Manual driving with	Driver obeys optioal aignals
cab signalling	but is continuous ly advised
	of the aignal aspeots in the
	cab.

Automatic vehicle control	Driver obeys optical signals but cab signals automatically brake in the event of overspeed.
Automatic vehicle operation (fixed block)	Power and brake controls operated by cab sicnal equipment. Fixed block signalling. Driver not strictly necessary.
Automatic vehicle operation (variable and moving block)	Continuous twoway data communication facility allows safe headways to be calculated at all times to automatically operate power and brake equipment. Driver is not necessary. (Ref. 16, 229)

1.A.2 The Structure of Control Systems and its Influence on

 on Information RequirementsA transport control system is a structure of interconnected subsystems. These might include vehicle controller, station controllers, merge controllers, network controllers, safety monitors, passenger handling systems, power supplies etc., each communicating with some or all other units.

The broadest level of design defines the system organisation. The most appropriate sub-systems and structure are specified to achieve the desired 'whole' system properties. For example good reliability and high safety standards are funlamental factors in any transport scheme and should figure in any cost function relating to whole system operation.

Control structures for an automatic transport aystem are usually either centralised or hierarchical. Other structures can be devised, for example, mesh etruatures in whioh every unit direotly commanicates with every other. Communication costs are very high and logical fault detection is almost impossible.

Centralised control

In centralised control structures a central decision maker controls all the peripheral subsystems. Information from the subsystems passes to the central unit and is available for use in anv other subsystem. Communication costs are high as many long distance and expensive channelf are required to link all parts of the network to the central processor. The concentration of control activity and the quantity of communications passing through regions supporting many other activities makes the system very vunerable to damage and subsequent disruption. However better control may be possible as all the system information is available for processing.

Hierarchical control

The use o distribut tion link diminishe detection
1.A. 3 C C

A 1
terms of
sygtem

The
directio
element
with the
The
either o

The use of hierarchical structures with decision units physically distributed throughout the network reduces the demand for communication links, so reducing costs. The disruption caused by faults is diminished and the modular nature of such systems simplifies the detection and repair of faults. (Ref. 30, 96)

- greater understanding and generality
- longer time scales
- greater detail
- more specific information
- shorter time scales

Hierarchical structure

1.A. 3 Communications involved in open loop control, closed loop

 control and fault monitoring4 'system' of two interconnecting subsystems can be related in terms of a 'controller' and a 'plant'.

The role adopted by each eubsystem depends on the primary direotion of information flow. The 'controller' is the upatream element and supplies appropriate inputs to the 'plant' whioh reaponde with the 'aystem' out put.

The relationship between the 'controller' and the 'plant' oan be either open-loop or closed-loop.

Open loop

Conceptually the controller holds a model of the plant. Using this model and knowing the desired system output the controller generates the necessary plant outputs. The accuracy of the system output is totally dependent on the ability of the model to predict the plant action. As no measure of the actual plant output is used by the controller, noise and sther random disturbances cannot be compensated for. Undetected incorrect operations will result from equipment or strategy failures.

Open-loop systems require only one-way commenication links. They may be appropriate where the system is predictable, i.e. it is reliable, well defined and subject only to minor random disturbances, or where the cost of twoway communication is excessive e.R. where the communications are constrained to a narrow band long distance link.

Open loop syatem

Closed
C1
system input

TI
forman
distur
More si
track
plant
improv
common
C
two wa
ment.
noisy

Closed loop systems have the general form:-

The controller has access to measures of the actual plant performance. This feedback information allows compensation for minor disturbances such as noise, hardware and environmental variations. More sophisticated controllers may use the feedback information to track the optimal operating point of the system.

In closed-loop eystems the controller may not hold a conceptual plant model. However the use of a plant model by the controller improves its ability to compensate for disturbances and enables optimus seeking methods to proceed faster. Suoh an arrangement is commonly called feed-forward control.

Closed loop control schemes require subatantial investment in two way comanications, measurement transducers and control equipment. They are essential for good performanoe in poorly definad, noisy environnents with many rendom digturbances.

Fault control systems are always closed-loop. Measures of actual yritem states are compared with predicted values of the state. The etection of abnormal discrepancies initiates standby strategies esifned to counteract the effects of the failure. The identification f a system fault requires a system model as a reference afainst which he syritem orreation can be checked.

The model may be explicit or implicit, i.e. the fault monitoring an be integrated with a controller or supplied as independent equipent.

Extra transducers circuitry and communications are required. ystem disruption is reduced as a faster response to failures is ossible.

Within a closed-loop system, elements may be operating locally n an open-loop manner.

Jit B is part of a closed-loop but is itself operating open-loop. : is part of the system and operating open-loop.

Measurement activities placed further 'downstrea' will monitor a wider range of system etates. A single transducer can tap information created by several preceeding elementa. The information yielded is more general, its interpretation more diffioult.

Feedback control over several systems becomes more complex to design and delicate to adjust. Fault detection beoomes less precise and corresponding strategien more clumay. There is a balance between tim high cumb of muniluring every activity and the ineffentive memitorine of only a few. Thif balance fundemontally influences the mesuremont and communication equipment provided in a oomplex automatio syatem.

1.B. Methods of Directing Information to the Correct Recipient

There are two classes of information direction metheds. The 'many to one' where several units may wish, possibly simultaneously to communicate with one unit, and the 'one to many' where a single unit may wish to communicate selectively with one of a number of units. The former requires the organised, multiple use of a single channel. The latter is concerned with addressing techniques. These problems arise in all communication sygtems and have been extensively studied particularly for telephone and computer networks. Consequently only specific situations associated with transport networks are discussed here. (Ref. 137).

1.B. 1 Multiple use of a single channel

The large number of links required and the physical separation of network elements dictates the use of control structures and strategies requiring limited information flows.

In many situations a single channel has to be shared between several users. The added requirement for moving point to fixed point communication introduces further complexity, as messages must intercept the desired recipient in time and position.

With an uncontrolled channel serving several independent users there is a finite probability of two or more simultaneous transmissions. Although errors caused by the collision can be identified using coding techniques, strategies designed to ensure the correot message is retrieved cannot be easily devised.

The use of the channel must be organised so that transmissions from independent users cannot take place aimultaneously, ioe. the channel is exolusively dedicated to the user for the duration of its transmission, it then becomes available to other users.

Interrupt type aystems offer a method of channel synchronisation. However they imply the use of parallel lines one from each user to a priority resolving unit controlling a message ahannel. In most rituations arising in automatic tranaport ayetem thia is not possible.

A variety of schemes are possible. The ohannel can be captured by a user in one of two ways.
(a) Directly, requiring each user to listen to the channel
(b) Indirectly, via a central controller Nith each, a demand responsive or fixed sequence (time multiplexed) service can be operated.

Direct channel organisation with demand responsive strategy
A user wishing to send a message, transmits immediately if he finds the line clear. If a busy line is encountered the user continues to test the line at fixed intervals until an idle state is found, whereupon it transmits. (If the user transmits immediately a previous transmission finishes there is an increased probability that two or more users, all delayed by the same previous user, will transmit simultaneously.)

Direct channel organisation with fixed sequence strategy

For a fixed sequence type operation each user is allocated the channel in sequence. the fixed sequence must be prearranged and cannot respond to local variations in demanded information flows. Each user must know and be able to identify its position in the sequence. Complications arise where the potential users of the channel can change e.g. where vehicles enter or leave the zone of a link, as this requires the signalling schcdule to be loaded into the vehicle each time it enters a new zone.

Synchronisation of individual users to the message stream can be achieved in twn ways. If messages are fixed length i.e. all users are allocated the channel for a fixed time slot even if they have no information to transmit, then 'flywheel' type nynchroniaation is possible. Each vehicle takes itn timing information from the received message stream. The failure of any individual user does not halt the messach st, ream.

The use of stop-atart coles to define the message boundaries allows vehiclos with no information to transfor to use the ohannel less. The start of each transmission relies upon the ond of the previous one but if one ueer faile to transait, beckup procedures are required to restart tazunmiseiva.

Diroct channel organisation needs little equipment. Demand responsive syftems give no indication of failed users, a check which is possible in a fixed sequence syrtem.

Demand responsive services are more effective where information flows from each user are highly irrepular and unpredictable.

Delay characteristics with direct channel organisation

Demand responsive channel use gives a mean delay which rises steeply when the demand rate exceeds 75% of the channel capacity. Below this demand rate the mean delay is substantially less than for fixed sequence systems. If vehicles have only limited storage for messages pending transmission both systems show significant reject rates, that for the demand responsive system being lower than that for the fixed sequence system.

Fixed sequence systems offer the advantage that delays are bounded, although this is only significant near channel saturation. (Ref. 137)

- - - Asynchronous organisation - Gelic organisation (1) One storage buffer
(2) Two storage buffers

Demand Rate

A control unit can be used to organise a communication channel. If only one channel is available between controller and users, the only policy that can be operated is for the controller to poll each user in turn. A demand responsive scheme cannot be operated (as any user initiated messape will be independent and therefore uncontrolled).

A link organised using a central controller may however employ two communication channels between the controller and the users. If both channels are of identical design and have the same characteristics then a variety of strategies can be operated. (NB. This is a simplifying assumption, not necessarily a requirement).

One channel can be designated an addressing line, the other, the mesaage line. These channels could be interchangeable onabling some degree of standby service to be provided in the event of a failure.

Any mix of fixed sequence and demand responsive policies can be operated, enabling the advantages of both to be incorporated. Against these benefits must be balanced the alternative gains that would have been achieved by operating each channel independently for the same link. This provides lower delay and reject rates as a consequence of the lower usage of each channel.

1.B. 2 Addressing

The successful transmission of information from one place to another in a system requires routing to the correct location and timing to ensure that it can be received.

In transport networks a channel may serve a number of physically separated users. The range of possibilities is represented diagranmatically thus:

A destination may be fixad or moving. If moving the channel routing system must be organised to direct the message to the track segment adjacent to the vehicle. If the segment can encompass more than one vehicle at a time then messages must include vehicle identity in their code. Advance messafes can be sent if track segments have storape buffers from which the information will eventually be relayed to the vehicle.

Communication systems linking fixed points have been extensively studied, particularly with respect to distributed computing systems. The extra refinement necessary to correctly and efficiently commanicate with moving vehicles is the main concern of this paper.

The geographical addressing problem

Information must be directed to intercept the intended vehicle, i.c. it must be available at an appropriate track-side position and time.

Reference to time-position trajectories of the vehicles yields the following possibilities.

A message can be displayed over the whole track, a track segment or a fixed point. If the vehicle does not act immediately on the received information vehicle storage is required. If the track does not immediately relay the information to the vehicle then track storage is required. (If the track-vehicle link is available over an extended distance, the vehicle and the track can share the same store.)

- Message available over the whole track for an extended time: All vehicles receive the same message. The information changes infrequently and transmitter may be effeotively the track store. An example is the transmission of system status, i.e. normal/emergenoy, fare policy, service option.

- Message available over the whole track at a particular time: All vehicles are contacted. Vehicles store message if necessary.

- Message available over a portion of the track for an extended time: Not all vehicles are contacted, only those passing that portion of the track.

- Message available over a portion of the track at a particular time: Only vehicles within the sone receive the information. Informaltion can be made vehicle specific if their trajectories are predetermined. The number of vehicles to be contacted and the tolerance on vehicle position determine the length of the zone.

- Message available at a point on the track for an extended time: Information is position dependent and contacts all vehicles passing by. Information can be made vehicle apecific by controlling the display time according to the number of vehicles to be contacted and the tolerance on the scheduled time of arrival.

- Message available at a point on the track at a partioular time: Vehicles are uniquely contacted but the exact vehicle lacation is required.

Goopraphical addressing by a oentralised unit
The central unit requires eocurate knowledge of vehicle position. This can be derived either by measurement or from predetermined schedules. Sucoessful oommiontiong depend totally on the oorreot
 detected vohicles will canee fmilte mengeg become miedireoted or lost.

Geographical addressing operated by the vehicle

Some degree of protection against communication failures caused by local running anomalies is provided by using the actual vehicle movements to control both the position and duration of messages. Occasionally even the message contents are generated by the vehicles so requiring no central message controller.

Message addressing

Coding added to a message enables labelled recipients to recognise messages intended for them. Message addressing allows the easy addition or removal of communication units from the network. Security and reliahility are strongly dependent on the codine techniques used.

Geopraphical and message addressing can be provided simultaneously; this duplication of addressing information enables some faults to be detected. The effectiveness of the fault detection depends on the independence of the two systens. If a recipient acknowledges a message with its own identity, a closed loop communication results, enabling the message transfer to be checked and errors corrected.

- 23 -
1.C Measurement

This section introduces Part 2 of the working paper, with a discussion of the general festures of measurement systems. Part ? expands the discussion with detailed descriptions of both ourrently used and novel, measurement and communication techniques.

1.C.1 Measurement and Communication

To control and operate numbers of vehicles, the control centres must have information from all the vehicles in the system. Essential signals are measurements of position velocity, acceleration and vehicle identity. Some or all of the information will be required by both the control centre and the vehicle. Furthermore some measurements are most conveniently made on-board the vehicle, some at the trackside. Information used at the trackside and measured on the vehicle or vice-versa therefore requires either duplication of measurement or communication from one to the other. Measurement techniques can be associated with the particular form of communication used across the vehicle-track interface. Often a physical property of the signal is modified, e.g. its phase or its amplitude, in a way that does not interfere with the message already being carried by the signal.

Measurements can be made either discretely or contimuously in time. The output information may be presented either as a digital or analogue signal. Usually but not necessarily discrete measurement techniques generate digital signals and continuous measures generate analogue signals. The falling cost of digital processing inoreasingly favours digital signal forms partioularly in harah environments (i.e. noisy channels and low eignal etrengths) provided adequate bandwidth is available. However continuous signals are usually oheaper and simpler. Transducer aignals are directly usable in control loops, whareas in digital systems both analogue to digital and digital to anclogue conversione are generally required.

The information in digital signals is not affeoted by eignal attenuation over distance. This allows botter coourcoies to be achieved for long dietence mearuremonta. Digital signals do not drift - an importent consideration where measurements are made over a long period of time.

C.? Position

Vehicle positions are measured along the track relative to some xed point. They must be known sufficiently accurately to allow th successful communications and safe manoeuvres.

Trackside position measurement systems will locate a vehicle to ie fixed resolution of the transducers. They are expensive unless -ecise measurementis are only required at a few key points e.g. at unotions or station approaches.

On-vehicle position measurement requires instrumentation in each ahicle. Measures made locally on the vehicle must be periodically sdated to the track standard to remove any accumulated errors. The requency of this resetting depends on the transducer and the maximum llowable error.

Position measurement techniques are either ssolute - in which the full precision of the device is used all the time.) memory is required but signals are of wide bandwidth. They are used snerally for short range measurement. cremental - in which position increments are counted. Memory is squired, signals are narrow bandwidth but the measurement is subject , accumulated error, similar to drift in anslogue systems. Such sohemes re generally used for long range measurement.

.C. 3 Velocity

Analogue signals proportional to speed are given by dopplar shift ethods or those relying on electromagnetic induction. The rate of hange of a position measuroment can be used as a velocity signal. de output in likely to be noisy and restricted in bandwidth.

Position based speed measurpments oan be made by timing between wo markere yieldinf: a discrete measure, or by measuring the frequency f markers, yielding a continuous measure. The first in more approplate where markers are widely spaced, the second requires olose spaced arkers. Both are ineffective at low or sero speeds.
C.4 Acoeleration and ierk

A eignal proportional to acoeleration if generated using the releionship foroe $=$ maen $\times 20001$ oratim. Whe oomonent of latoral
acceleration can be removed by constraining the instrument to respond only to accelerations in a vertical plane aligned along the vehicle axis. On slopes it is very difficult to dissociate the vertical pravitational component. Usually this is not necessary for passenger comfort as perceived accelerations are the measured values. Jerk (rate of change of acceleration) is not commonly measured.

1.C. 5 Time

To ensure synchronism throughout a system, all users must have access to the same time standard. Either local olocks have to be periodically updated from a master clock or continuous, systen-wide transmission of time is required.

1.D. Modulation

In this section are outlined the more com on techniques of telecommunications and their important features compared. The section is not a comprehensive resume; it is included for the benefit of readers with no specific knowledge of communication principles and should be omitted by others. (Refs. 28, 31, 118)

1.D. 1 The need for modulation

Signals

The signal emanating from a source can be either continuous (and therefore analogue) or discrete (and usually digital). Contimous signals vary continuously over time. Discrete signals are discotinuous over time.

Digital signals occur where the information transmitted is defined by a sequence of signal levels, each drawn from a limited set of possible levels. The digital signals most commonly used are binary and have two levels corresponding to 0 and 1.

Using sampling, a continuous analogue signal can be represented to any degree of accuracy by a discrete signal. The Nyquist sampling the orem governs this replacement. It specifies the minimum sampling frequency necessary to allow a subsequent reconstruction of the original signal.

The minimum sampling rate (Nyquist rate) $\mathrm{f}=2 \times$ analogue signal bandwidth

The communication link
A block diagram of a typical communication link it thus:-

phys
cont
stan
form
amp

The information to be transmitted is contained in the sifnal output from a measurement transducer or other information generator.

The sending equipment converts this source signal (the baseband signal) into a form appropriate to the communication channel. The channel is the communication link established between two distant points via a physical path e.f. free space, line or waveguide. The reseiving equipment reforms the channel signal into the original baseband signal for use by the sink. An ideal communication medium would deliver to the sink an identical replica of the signal put out by the source.

For commanication purposes, the information attached to (or meaning of) the signal transmitted is unimportant. It is the frequency, amplitude and phase that are the important signal characteristics.

The message is the information to be transferred. The signal is the message modified for transmission.

Modulation

Usually the source signal is unsuitable for direct transmission and modulation is required. This technique
(a) enobles the source signal frequencies to be matched to the frequencies appropriate to the transmisaion medium
(b) enhances the resistance of the transmission to noise and disturbances
(c) permits the use of multiplexins

1.D. 2 Types of modulation

Modulation is achieved by having the source signal vary some physical characteristic of a carrier wave. This carrier may be a continuous sinewave or a train of identical pulses occuring at a constant rate.

The use of a sinusoidal carrier wave gives rise to two basic forms of modulation.

Amplitude modulation - where the source aignal varies the amplitude of the oarrier.

Angle modulation - where the source signal varies the phere of live uarrier.

Arsle modulation is further subdivided into phase modilation

- :here the phase varies in proportion to the signal and freşuncy modulation - ietare the phase varies as an integral function.

The m
sideb
infor
telle
neces

Doub:
A mis $\frac{2}{3}$ of signi Supp: All
sign
gene
sign plex Sing the
band

Angl
is u
have
mitt
gre:
Puli:
sche
dec:
Thil
so
ext
1.D
dep

The modulated signal contains two sorts of information.
The first is the time varying source signal contained in the two sidebands. Either of the upper and lower sidebands contains all the information of the orifinal modulating signal.

The recond, the synchonisation or carrier content of the sienal, tells the recejver what carrier has been employed, information that is necessary if the receiver ie to be able to demodulate the signal.

Three forms of transmiseion are commonly used.
Double sideband - in which the complete signal spectrum is transmitted. A minimum of equipment is required. However the carrier signal carries $\frac{f}{3}$ of the total signal power and only $\frac{1}{3}$ is affected by the modulating signal.

Suppressed carrier - transmissions have the carrier frequencies removed. All the signal power is contained in the side bands so enhancing the signal to noise ratio. The carrier component of the signal must be generated locally at the receiver and recombined with the received signal for demodulation. Consequently the equipment becomes more complex and costly.

Sinple sideband - only one of the sidebands is transmitted so reducing the bandwidth required to half that for double sideband. Single sideband is complicated to generate and decode.

Angle modulation - The power transmjtted by an angle modulated signal is unaffected by the modulation. In principle, angle modulated signals have an infinite frequency spectrum. In praotioe the signal is transmitted in a finite bandwidth. The nerrower the bandwidth used the greater the distortion introduced and the poorer is the noise rejection.

Pulse code modulation - is the most important class of pulse modulation schemes. Binary mignals are usually employed and the receiver must decide at particular time instants whether a palse is present or absent. This decision oan be reliably made even in the presence of heavy noise, so allowing the effective uasble bandwidth of a ohannel to be moh extended.

1.D. 3 Properties of modulation

The cisice of Exdelatinn technioue for a partioular application depends on a number of faotors. Some of these are
(a) The bandwidth and noise resistance required
(b) The bandwidth, interference and distortion characteristics of the channel
(c) The need for maltiplexing
(d) The a priori exictence of anelogue or digital signals in the system
(e) The allowable cost

Double side bend modulation requires the least eqquipment. The ; of suppressed carrier technigues enhances the signal to noise ratio the cost of preater complexity. Single side band transmissions imise the bandwidth required to transmit a signal but at the expense reduced noise immunity and extra cost.

Channels subject to fading (i.e. time varying attenuation) rerely distort A.M. signals. Provided adequate bandwidth is ailable frequency modulation can perform better. The use of wider idwidths with frequency modulation impreves noise rejection and stortion.

Pulse code modulated signals require more bandwidth, but are lective in poor quality channels. Bandwidth and signal to noise ;io can be traded for error rates. Purther improvements in the rebility of data tranamiasions are achieved by introducing redundancy ;o the coding. This redundancy enables transmission errors to be tected and with more complex codes allows correotions to be made. y different coding techniques exist each offering different tradels between noise rejection and bandwidth.

ltiplexing

It is often useful to arrange a number of ohannels to simultaneously are a single commanication link by the use of multiplexing. There are 0 methods
ecuency multiplexing - where each channel ie allooated a frequenoy band soked in the frequency epeotrun.
e division miltiplexing - where synchronised switches at each ond of communioation faoility enable samples to be tranalitted in turn from oh ohannel to the receiving and.

Banic analogue system are oheaper than the digital equivalont.
 favour digital myetems, partioularly as digital teohniques have
(a) The bandwidth and noise resistance required
(b) The bandwidth, interference and distortion characteristics of the channel
(c) The need for multiplexing
(d) The a priori exictence of anelogue or digital signals in the system
(e) The allowable cost

Double side band modulation requires the least equipment. The e of suppressed carrier techniques enhances the signal to noise ratio the cost of preater complexity. Single side band transmissions nimise the bandwidth required to tranamit a signal but at the expense reduced noise immunity and extra oost.

Channels subject to fading (i.e. time varying attenuation) verely distort A.M. signals. Provided adequate bandwidth is ailable frequency modulation can perform better. The use of wider ndwidths with frequency modulation impreves noise rejection and stortion.

Pulse code moriulated signals require more bandwidth, but are fective in poor quality channels. Bandwidth and signal to noise tio can be traded for error rates. Purther improvements in the reability of data transmiasions are achieved by introducing redundancy to the coding. This redundancy enables transmission errors to be tected and with more complex codes allows corrections to be made. ny different coding techniques exist each offering different tradefs between noise rejection and bandwidth.

Itiplexing

It is often useful to arrange a number of ohannels to similtaneousiy rare a single commanication link by the use of multiplexing. There are IO methods
eguency multiplexing - where each channel if allocated a frequenoy band ;acked in the frequenoy apectrum.
e division multiplexing - whore synchronised switches at each end of communication facility onable semples to be tranamitted in turn from wh channel to the receiving ond.

Banic analogue ayetom are oheaper than the digital equivalont. weref where mere =lshorate $=$ imnal procesing in manired conte tend - favour digital aystoms, partioularly as digital teohniques have
been much developed in recent years and costs are falling rapidly. Every conversion from analogue to digital and dipital to analogue introduces diatortion. This factor weights the choice between digital or analogue in favour of those that already exist in the system.

Part 2:
 Techniques

Contents

2.A $\begin{array}{ll} \\ & \\ & 2 . A .1\end{array}$		-	Introduction
		-	Classification headinga
		-	Measurement
		-	Communications
$2 . A_{0} 2$		-	Indexed Table of Techniques
		-	Abbreviations
		-	Point poaition
		-	Area position
		-	Continuous position
		-	Relative position
		-	Velocity
		-	Relative velooity
		-	Acceleration
2.B		-	Measurement techniques
	2.8 .1	-	Point poaition techniques
		-	Conteoting vehicle detectore
			1. Pnounstio tube
			2. Etdranlic tube
			3. Tribceleotrio somer
			4. Coavial tube
			5. manale

- 33

6. Contacting circuits
7. Mechanical lever

- Non-contacting vehicle detectors

8. Strain gauped bar
9. Seismic detector
10. Capacitance probe
11. Mapnetometer
12. Magnetic gradient vehicle detector

- Non-contacting point position methods

13. Magnetic
14. Beamed radiation
(Transverse, reflected, dopplar)
(Sound, light, rediation energy)
2.B. 2 - Area (block) vehicle detection
15. Inductive loops
16. Track circuit
17. Cheok-in, check-cut
2.B.3 - Continuous position methods
18. Free space techniques
(Propagation time, signal strength, direction finding, radar)
19. Guided radio techniques
(Propagation time, signal streneth)
20. Lincar synchro
21. Linear cam
22. Linear digitiser
23. Integration
24. Wheel revolution counter
25. Inoremental methods
26. Dead reokoning
27. Combinations of teokniques yielding better preaision

2.B.4	-	Relative position techniques
		28. Mechanical probe
		29. Capacitive, inductive, magnetic probe
		30. Fixed block methods
		31. 'Poupes track circuit'
		32. Differencing
		33. Pree space systems
		34. Guided radio systems
2.B.5	-	Velocity measurement
		35. Prequency rate
		36. Time interval
		37. Correlation
		38. 'Flicker rate'
		39. Inductive tachometer
		40. Dopplar
		41. Magnetic gradient vehicle detector
		42. Integration
		43. Differentiation
2.B.6	-	Relative velority measurement
		44. Dopplar
		45. Differencing
		46. Differentiation
		47. Pree space systems
		48. Ouided radio nystems
2.B.7	-	Acceleration
		49. Nocelerometers
		50. Differentiation
2.6	-	Commenication Techniquen
2.C. 1	-	Point comminications
		51. Coded mask
		52. Coded refleotor
-		(optical, conic, redio, indeotive)

- 35 -

53. Stimulated transmissions
54. Continuous transmissions
2.C.2 - Ares communications
55. Coded track circuits
56. Contacting circuits
57. Radiating cables ('leaky coax')
58. Inductive loops
59. Waveguides
60. Free space radio

2.A. Introduction

This section describes measurement and communication techniques that have applications in automated transport systems.

Rather than present detailed specifications of existing equipment, which rapidly become out of date, descriptions emphasise the general features of particular schemes. The classification chosen, groups devices according to these general features. It is intended not only to detail existing equipment but also to illuminate novel combinations which usefully blend particular attributes.

2.1.1 Classification headings

Position Measurement
Point - a vehicle detects or is detected at a point on the track (referred to as a track marker or vehicle detector respectively).

Area - a vehicle detects or is detected within a length of track.
Continuous - A vehicle can locate itself, or is located continuously over a length of track.

Relative - The separation between two vehicles is measured

Velocity measurement
Absolute - vehicle is measured either contimuously or at a point on the track.

Relative - The relative velocity of two vehioles is measured.

Acoeloration measurement

Absolute - Vehicle accelerations are measured either at a point or oontinuously.

Within each of these groups measurements may be either
Track based - where the sotive equipment and the measurement output is at the traok aide.

Vehiole besed - wher the sotive equipment and measurement output is on-board the vehiole.

This subdivision is not rigid. Many moneuremont dovions on be arranged to give a track-based or vohiole-besed mecouromont, eithor by exohanging the roles of the vehiole and the treak or by the addition of extre equippont.

The use of communication links further blurs the distinction between track-based and vehicle-based techniques. Measurement devices can be simply modelled thus

The three elements, transducer, processor and user, are often sited in one location. This is not necessary and makes the distinction between track based and vehicle based schemes difficult to define unequivocally.

Point communications

A message is transferred at a particular point on the traok.

Area communications

A message can be transferred anywhere along a section of track. Within these groups messages may have either a fired or variable information content and be transmitted either from the track to the vehicle, the vehicle to the traok, or both.

2.1.2 Indexed teble of techniques

The index table lists all the devices desoribed in this report. Their main applications are summarised in an abbreviated form using the code
w - widely used in this application
e - examples exiet of this applioation
f - feasible to use in this application
u - unlikely for use in this application
The table indicates the applications of dovice but does not imply that they can all be aohieved simultaneously. More detailed device descriptions follow the table and are indered using the refarence number in the table. A teohnique having several applications is dasoribed completely under onc beading. The entry is then orose-reforenced in the other appropriate seotion.

$$
-38-
$$

Abbroviations used

T/B	-	track based
V/B	-	vehicle based
V/T	-	vehicle to track
T/V	-	track to vehicle
F/M	-	fixed message
V/M	-	variable message

2.B. Measurement Techniques

2.B.1 Point Dosition techniques

Contacting vehicle detectors

All contacting systems are subject to mechanical wear. They have short lives and require frequent maintenance and replacement. 411 are inexpensive in equipment but are expensive to install and maintain. All are unaffected by climatic conditions. Only mechanical levers (no. 7) give direction of travel information. Only mechenical lever and contacting circuits (nos. 6, 7) can be used as track markers or for communications. (Refs. 39, 55, 63, 68, 69, 88, 89, 98, 126)

1) Pneumatic Tube

Wheel pressure of a passing vehicle on a soft walled tube, sends a pressure impulse to a pressure sensitive switch at one end. Pneumatic tube vehicle detectors have been extensively used for vehicle actuated traffic lights. They are now being superceded by inductive loop (see no. 15) and magnetometer devices (see nos. 11, 12)

- Stopped or slow moving vehicles are not detected.
- Fast or heavy vehicles and vehicles not perpendicular to the tube may generate spurious pulses.
- The number of axles passing are counted.
- Size is typioslly $2 \mathrm{~m} \times 15 \mathrm{~cm} \times 15 \mathrm{~cm}$.

2) Hydraulic tube

Wheel pressure of a passing vehicle on a liquid-filled soft walled tube displaces fluid (white spirit). This moves a float which is detected, usually optically.

- Slow or stationary vehicles stopped on the device are detected.
- Otherwise similar to pneumatic tube (no. 1)

3) Triboelectric sensor

The vibrations of a pasaing wheel cause the triboelectric element to develop a potential difference. The element is a flexible conductor covered with a dielectric. Shaking this produces a charge separation and hence a potential difference.

- As the device has a very high impedance, impedance matohing and amplification are required to extraot the signal.
- Was devised as an improveaent on the pnematic detector (no. 1)

It has similar oharacteristios to the pneumatic detector (no. 1) but is less nunerable to damage.
4) Coaxial oable sensor

Wheel pressure is transmitted to a coaxial oable. This produces a voltage across the device proportional to the presaure and length of squashed zone.

- Slow moving and vehicles atopped on the device are deteoted.
- Has eimilar properties to the triboeleotric sensor (no. 3)

5) Troadle

Wheel pressure on normally separated contacting strips, usually carried in a flexible tube, closes an electrical contact.

- Slow vehicles or etopped vehicles on the devioe are detected.
- Other characteristice are similar to the pneumatic deteotor.

Cross Seotion

6) Conteoting circuits

A conducting vehicle probe completes an electrical oircuit with a track mounted contact. Contacting circuits differ from track oircuits (no. 16) in that the current path of the signal through the vehicle is clearly defined (i.e. through the probe). The current path through a vehicle on a track cirouit is not so defined (being through the wheels and chassis of the vehicle).

- Contacting track circuits can be used for communications (see no. 56)
- detects stationary vohicles
- can be used as a track marker

7) Kechanical lever

The pasaage of vehicle operates a lever mechaniem.

- can be used either as a vehicle deteotor or traok marker
- yields direotion of travel information
- detects slow or etopped vehicles adjacent to the devioe
- variable hoight lever can be used to tranciait mimple messages (see fired point commanications no. 51-54)

Mop-conteoting vehiole deteoterre

Hon-conteoting vehicle doteotore are baried in the roadray and are consequentiy less prone to war and danage. How give direotion of travel information, none can be used for commanications, none oan be uead an track markerm. Apart from the oapsoitance probe (no. 10) none are affeoted by the weather. (Ref. 130)
8) Strain-gauged bar

A beam beneath the road is deflected by the vehicle. The resultant change in strain can be measured and used to give an output.

- Stationary or moving, wheeled or wheelless vehicles are detected
- sufficiently heavy obstacles are detected on the track
- with calibration it may be possible to approximately weigh
vehicles.

9) Seismic detector

Using geophones or acceleromoters, the ground vibrations generated by moving vehicles are deteoted and used to indicate a vehicle passing.

- Only wheeled vehicles are deteoted
- The system has been domonstrated as feasible. However the unpredictability of soismic propagation has impeded development. (Ref. 115)

10) Capscitance probe

A vehicle passing over a metal plate in the track ounees a change in capacitance. This is dotected using similar techniques to induotive loop detectors (no. 15)

- The device oan be arranged to provide short range relative position measuremonts (see no. 29)
- Rain and snow reduce the effectivenese of oapsoitanoe mohemes. (Ref. 64).

11) Maenotometer

Vehicles containing ferrous materials locally increase the earth's magnetic field. A track mounted detector indicates the disturbance. This detector comprises three windings on a magnetic core. The primary winding is excited with an A.C. signal that saturates the core twice a cycle. By magnetometer action an A.C. voltage is developed in the secondary coil, whose amplitude is proportional to the component of the earth's magnetic field parallel to the probe axis. 4 further coil supplied with a D.C. current adjusts the probe to its local magnetic environment.

- Detector is small (typically 6 cm long by 2 cm diaseter).
- Vohicles are detected in a ciroular zone approximately 1.5 m dia.
- Immune to radio frequencies but not to interference from nearby power supplies.
- Sensitive detection, an average road vehicle causes a 20% signal change. However correct operation depends critically on the initial adjustment.

transmitter frequency

Non-c|
and c
turns
vehic
field
vehis
diamı
call:
thre
be u
Comm
are
be t
note
 inetall than en induotive loop.

(Ref. 99)

Non-contaoting point position methods
Such schemes can be operated as vehicle detectors, track markers and communication links.

13) Magnetic

There are two arrangements
(a) Magnetic vehicle deteotor

The equipment consists of a single winding of a large number of turns of wire on a oore. \& remnant magnetio field is carried by a vehiole as a result of its prior movements in the earth's magnetic field. This induces a voltage in the detector coil.

- Detector signal varies according to the size and speed of the vehicle. Slow and stopped vehioles are not detected.
- The probe is typically 450 m long by 6 cm diamoter giving a 1.2 m diameter detection sone.
(b) Masmetic vehicle deteotor/track markor/commnioation link

Vehicle mounted magnets are deteoted at the trak using magneticelly biased relays which ohange atate when the local field resoher a threshold. Alternatively a detector $00 i 1$ as desoribed in (a) above may be used.
Commenioation link
Simple mossages can be tranaferred using magnote whose polaritiea are arranged to represent binary information. Variable meseages oan be tranaferred ueing electromagnets.

An alternative method of trmanferrinc a fized maseage uner a notahod eteel ber. The apacing of the notahes anooder the mencege.

Before reading a coil magnetises the bar leaving a remmant field that is non-uniform at the notches.

- Static magnetic fields cannot be precisely resolved. For reliable resolution between adjacent magnets there chould be approximately the same distance between then, as between the magneta and the deteotor. This restriots the amount of information that oan be tranminitted, as complex messages beoome either physiosily large or the track vehicle clearanoe unsooeptably mall.
- Modern permanent magote are unaffected by vibration, high temperatures, climetic conditions and A.C. fielde. Only forronagnotio dist (e.g. dust from onet iron brake shoes) affeote their performanoe.
- Vehicle deteotion using permanent magnota is nometines used for lent vehiole proving and vahiole deteotion on railway, as the method is very reliable. (Ref. 117)

14) Barmed Radiation

A narrow bean of energy tranemitted from the trackside oan be used to deteot vehicles, moasure their speed, and tranafor information.

Inframed or visible light, microwave radio and ultrasonios have all been used. α-particles and $\boldsymbol{\beta}$-rays have also been proposed.

The performance of light systems is reduced by high ambient light levels, rain, snow, fog and grime. Infre-red is less vunerable to such factors.

Ultrasonic systems are affected by strong winds which deflect the beam and heavy rain which attenuates it.

Microwave radio systems are unaffected by environmental faotors but are more expensive.
α-particles and β-rays are unaffected by the environment but in the intensities that are necessary would be a health hazard. (Refs. 22, 81, 105)
(a) Transverse methods

4 beam of energy is transmitted across the track to a detector mounted opposite, As the beam is focussed onto the receiver, good signal to noise ratios are achieved, giving reliable operation in adverse conditions.

1) Vehicle detector - passing vehicles intercept the beam
2) Position marker - vehicle mounted receiver intercepts the beam and identifies the position.
3) Communications - a mask, placed in the path of the bean can be used to transfor a fixed message from the vehicle to the trackside. This is only feasible with optical or radiation beams (see also point communications - section 2.C.1.)

- Transverse schemes, mounted horizontally, require two accurately aligned trackside mountings, vertical mounting requires a gantry. These considerations increase the installation costs of transverse schemes.
- Transverse schemes are very simple and have well defined detection zones.

15) Reflected Methods

Bnergy transmitted from the track side is reflected by the vehicle. A receiver mounted next to the transmitter detects the refleoted energy. The signal to noise ratio is generally poor and sophisticated techniques must be adopted to give reliable operation in adverse conditions. There are three possible schemes.

1) A carrier signal is transmitted continuously. The receipt of the echoed signal indicates vehicle presence. There is no diacrimination between echoes resulting from the vehicle and those from nearby structures or between the transmitted signal and others at the same frequencies.

Discrimination can be achieved in several ways.
Vehicles cen be equipped with specially coded reflectors which uniquely modify the characteristics of the returned energy. Thie allows the echoes resulting from a vehicle to be distinguished from others (see fixed point commenications - seotion 2.C.1).

Also the carrier can be modulated and the receiver designed to respond only to the modulation. This technique is oomanly adopted with optical systems. The beam of light is modulated using a mechanical shutter. The receiver responds only to the shutter frequenoy.

Better performance is whieved by inoreasing the signal to noise ratio at the receiver. 1 reflector is required oapable of returning a large proportion of the inoident energy from the tranalitter, baok to the receiver. This is poseible for optical and miorowave radio, by uning retromerleotive refleotors (1.e. Incident energ in refleoted beok on ite incouling path, e.g. a airror is rotromrefleotive only to normal light, whereas car refleotore are retro-refleotive to all light arriving within - cortain conical aceptanoe angle.

2) The time delay between a transmitted signal and the received signal is measured (see also free space techniques of continuous position location - section 2.B. 3 no. 18)

Only echoes corresponding to ranges in a certain band are accepted, thus discriminating between vehicle echoes and others.

In principle the time delay method can be used with optical, sonic and radio transmissions. However at the short ranges generally required for vehicle detection only sonic systems give measurable time delays. This results from the slow apeed of sound propagation in air, (approx. $335 \mathrm{~m} / \mathrm{sec}$) 。
3) Dopplar method - 4 contimous carrier wave is transmitted. Signals refleoted baok from moving objects are frequency shifted (1.e. the dopplar shift) by an amount proportional to the vehiole speed, according to the relationship

$$
\Delta t=\frac{y_{r}}{c} \text { so }
$$

fo - tranamitted frequency
Vr - vehicle velocity resolved along the direction of propagation of the signal

C - epeed of propagation of the Eigal
Δf - frequenoy change
V - vehiole apeed

- 50 -

If the transmitter is mounted so that the transmissions are nearly perpendicular to the vehicle movement then the resultant dopplar shift will be small as the vehicle passes in range of the transmitter, regardless of vehicle speed.

Dopplar used for apeed measurement

A bean direoted longitudinally dow the track such that $\theta \rightarrow 0$ allows vehicle speed to be deduced from the dopplar shift.

A transmitter installed on the vehiole oan be used for on-board vehicle speed measurementis. The bean is directed at the track and measurements are made on the back soattered energ.

Commiontions

See fired point commaiontion eeotion 2.C.1.
Chereoterietios of refleoted emerar Enthods

- As only one mounting is required and aligement is leas oritionl then for tranoverve mothode, installation oosts ax lower.
- Lleht bean ayotom ace inaxpenaive and have woll dofined sones of cotion.
- Ultrasonic and microwave systems are more expensive. Their zones of action are less well defined and closely spaced equipment can interfere. (Typically an ultrasonic beam subtends an ellipse $30^{\circ} \times 18^{\circ}$ and a microwave beam $20^{\circ} \times 60^{\circ}$).
- Dopplar systems do not register on vehicles moving slower than $1 \mathrm{~m} / \mathrm{s}$ but are accurate and give direction of travel information.

2.B. 2 Ares (blook) vehicle doteotion

15) Inductive loops

The inductive loop comprises one or several kinds of wire, often rectangular, laid on or under the track surface. It is connected to trackside equipment and energised with a signal of between 10 khs and 150 khz for vehicle detectors, and up to mega hz for communication links.

1) Yehicle detector

Vehicle proximity causes a net decrease in the loop inductance. Several methods are used to detect this change.
(a) Self-tuning method - A circuit is used to track the resonant frequency of the loop. Only ohanges faster than a certain rate generate an output indicating a vehicle. Stationary or slow vehicles are not detected.
(b) Other methods - These detect vehicle by monitoring the phase changes or balance in a bridge circuit caused by changes in loop inductance. These sohemes require initial setting up and possibly routine adjustments. All vehicles, stationary or moving, are deteoted.
2) Commanications

The matual induotance between a vehiole mounted coil and the track coil allows the twoway tranmiasion of moduleted A.C. Eignals (see area communications section $2 . C .2$ no: 58).
3) Treok matcer
(a) A vehicle mounted loop antenna reoeiving transmiasions from a small traok loop yielda a traok marker devioe.
(b) A tranoposed induotive loop will introduce a 180° phace ohange in the reoeived aignal as the antoma orosese the traneponition. This cen be doteoted a traok marker.
inductive loop

4) Other devices
(a) If one of the two conductors is laid in a triangular form, an approximately sinusiod modulated signal is received by the vehicle.

received signal

The modulation frequency $=$ epeod/L. The arrangement an be need either to provide a speed signal (with fired L) or to encode trick information read by the vehicle (with variable L) (eec motion 2.C.3 fired point commiontions).
(b) A reotanguler layout of the track conduotore allow binary information to be encoded onto the track.
to rec

- 53 -

(c) Careful design of the vehicle antenna and track loop dimensions allows a signal to be coupled from the vehicle to the track so that the received amplitude varies approximately sinusoidally with position.

Characteristics of inductive loops

- Electromagnetic induction fields are unaffected by the environment. They can be produced over a very wide range of frequencies, propagated for controlled distances and used to transfer energy. They are generally limited by the frequency and power restrictions imposed by broadcasting authorities. The range of layouts is unlimited and combined with the use of wide bandwidth communications makes inductive loop equipment very versatile.
- Inductive loops are vunerable to R.P. interference.
- Adjacent loops can interfere unless their operating frequencies are sufficiently different.
- Buried detectors are free from wear but road surface movements can damage the cable.
- The cable is expensive.
- If aurface mounted, cables are vunerable to damage and place constraints on maintenance.
- Sensitivity - the average road vehicle causes about a 2% change in the loop inductance, but this is proportional to loop area, and makes amall loopa difficult to design.
- Sensitivity is reduced by the resistance of the lead cables, limiting the maximum range to about 300 m . (Refs. 17, 19, 49, 50, 59, 121, 122, 132).

16) Track circuit

A signal fed into one end of an isolated seotion of steel rail track in detected at the other ond, often by using the aignal to hold on a relay. A passing vehicle shunts the signal so preventing it reaohing the other ond. This releases the deteotor relay. The simplest traok cirouite are D.C. with inoulated breaks in the mignal raile to isolate each oirouit.

With continuous welded rails audio frequenoy A.C. Eignala are umed. Isolation of traok segments is achieved using inpedanos bonds coroes the two rails which do not allow traction ourrente to pase but offor low impedanoe to traok oirouit frequencien.

with e.g.

The reliability of track circuits depends upon the effectiveness with which the train shunta the track circuit signal. In some cases, e.g. with lightweight vehicles, or infrequently used tracks, vehicles do not provide a reliable low resistance shunt. This problem can sometimes be overcome by using higher track circuit voltages of up to 100 V . To reduce their safety hazard pulsed signals may be used.

Commanications

Pulse modulation of audio-frequency track oircuits allows messages to be transmitted to vehicles at very limited data rates. Usually detection is by inductive coils mounted above the signal rails. Rquivalent communication from the vehicle to track is not possible as the transmission characteristics of railway lines are unsuitable. (Refs. 36, $40,58,71,74,76,110,193$).

Characteribtios of treck oircuits

- Operating frequencies are generally less than 1 khr , typically $60-120 \mathrm{hz}$.
- Circuits may be several kilometers long.
- The electrical characteristios of track circuits vary considerably with the environment. Careful design is necessary to ensure that a vehicle shunt can be distinguished from wet rails.
- Wheel-less or pneumatio tyred vehicles can use their power rails as track circuits.
- Audio frequency track circuits are vunerable to interference from traction equipment, partioularly if thyristor control is involved.
- Derailed vehioles are not detected.

17) 'Check-in' - 'check-out'

At the beginning and end of each track section is plaoed a vehicle detector. Any form of detector can be used. (See section 2.B.1 point position techniques).

A vehicle travelling in the correct direction will actuate the first detector which sets the block as oocupied.

The second detector resets the block as empty when the vehicle passes it. Further logical checks can be incorporated, which hand a vehicle on from one blook to the next, so increasing the reliability of the system.

Check-in check-out schemes are often used where track cirouits are unreliable, or cannot be used.

2.B.3. Continuous position mothods

18) Free space technioues

There are three principal location systems based on measurements of

1) Propagation time
2) Signal strength
3) Signal direction

In each the measurements made allow position loci to be plotted on which the vehicle must lie. The intersection of several looi, created from independent measurements, enables the unknown vehicle position to be identified.

Most existing location aystems use radio transaissions; howover in principle optical and ultrasonic tranemiesions oan also be used. (Refs. 27, 29, 53, 54, 73, 87, 104, 120, 123, 138)

1) Propagetion tire

Electromagnetio and sonic signals propagate at a oonctant apeed in otraight lines. Thase, from a mescure of the time aignel takes to travel from the tranalter to the receiver, the shortest path diatanoe from one to the other oan be oaloulated. Two approsohes are used to generate the position looi.
(a) Time of arrival (TOM) - The cotual propagatica time of the signal from a tranmitter to reosiver is masured. Two mothods are used.
(1) - A aignal from a fixed transaitter is reoeived by the vohiole and rebrociont bouk to the iranaititer after a set delay. che enlay allow the vehiole return sicnal to be distinguichod from eperione
reflections. In environments where these spurious reflections are negligible the aignal reflected from the vehicle structure can be used as the vehicle return signal. No active vehicle participation is required but range is limited, (see reflected beamed signals no. 14, and fired point communications section 2.C.1).
(2) Both the vehicle and the fired transmitter station are equipped with synchronized olocks. The transmission delay measurements are made at the receiver.

The time delay is proportional to the distance separating the vehicle and the fixed atation. One measurement establishes the vehicle as lying on a circle centred on the fixed station. Three measurements at different stations locate the vehicle

(b) Time difference of arrival TDOA - The vehicle broadcasts a aignal. Three fired stations masure the arrival time of the signal. This is subtraoted from the arrival time of the same signal at one of the other stations. The information locates the vehicle as lying on a hyperbolio curve eymmetrioal about the base line betwoen two atations.

Mothods used to measure the propagation time of aignals
(a) The phase of the reoeived aignal is measured relative to a reference aignal. This gives ambiguous results - a delay of could be an aotual delay of $t+N T$ where $T=$ period of the signal and $N=0,1,2 \rightarrow \infty$

(b) The arrival time of the leading edge of a palse is identified. This cannot be acourately established when the signal is diatorted and contaminated with noise. The result is unambiguove.

Pulse systems require a much wider bandwidth transmission than phase comparison mytcme.

Orten the better preoision of phase oomparison is combined with pelse delay manuremate to remove the mbiguity. Alternatively the muber of abiguous poseibilitios om be raduced ty making phase mecouremente at a number of exfrorent frequenolen. This oan jiold
very precise results in controlled environments and is the basis of land surveying using tellurometers etc.
2) Signal Strength

4 number of remote stations measure the signal strength of a standardised vehicle transmission. Using previously plotted signal strength contour lines, the most likely vehicle location is determined.
3) Direction Finding

The bearing of transmissions from a vehicle is measured at a number of base stations.

A combination of direction finding and propagation time methods enables one base station to uniquely locate a vehicle. This is commonly called RADAR (radio systems), SOAR (sound systems), LADAR (light systems).

Cheraoterietion of free mean syatere

Free apse location techniques are attractive beowate they offer, at a low cost, the capability of locating any mummer of vehicles within a specified area. However error n caped by clutter (astranacas refleotion from physical features in the area of the vehicle), ultipeth reflections and variable mopagation speeds min all the sabomen
extremely inaccurate in urban environments, although using many independent measurements, averaging techniques may improve estimates of vehicle location.

Even if these problems can be overcome the overorowding of the radio spectrum is likely to limit the application of any free-apace radio system. Light systems are ineffective except for line of aight applicetions and sonic systems are unlikely to have a useful range.

All the schemes described oan be arranged so that the location measurements are made either on the vehicle or at the fixed base station. Measurements made on-board the vehicle require the vehiole to identify which fixed station has been ranged. Measurements made at the fixed base require the ranged vehicle to be identified (see pixed point communication section 2.C.1.)

19) Guided radio teohniouses

In all the preceding free space location systems, radio signals propagated along transmiseion lines or waveguides (see oontinuous communications nos. 57, 59) can be subetituted for the free space radio link. The controlled and atable charsoterietics of transmission lines and waveguides removes most of the disadvantages assooiated with the free space version. Frrors oocasioned by multipath reflections, variable proper gation speeds and poor signal/noise ratios are much reduced. Radio spectrve usage is minimised as the radiation from the waveguide or transmission line is only eignifioant for short distancea away from the guide. However only vehioles edjeoent to the guide oan be located, so limiting applications to fired route vehicles.

Roletive ponition mepurements

A partioular feature of guided radio aystem is the ability to couple enerey into and out of the transmission line or waveguide and to propagate aignals in one direotion only down the line, without conteoting or breaking the line or guide. This allows ecoh of the teohniques deacribed above to be arranged to provide manuremente of vehiole ponition from the trak or vehicle, and vahicle to vehiole apacinge.

The goneral arrangement of much a sohome is thule
energy coupled into track guide
signal propagates in one direction along guide

Refleotive -

1) Proparation tim

Commonly called guided radar - A pulsed or modulated miorowne aignal is dispatchod down a waveguide. Obstacles adjacent to the waveguide or speoially designed vehicle mounted reflectors coupling with the waveguide refloot the signal back to the transmitter. The range is calculated from the delay of the returned signal.
2) Sienal atrencth

A Etandard Eignal is coupled into a tranamiseion line with regular attenuation propertion. The receiver measures the signal etrength and benoe caloulater the range to the tranemitter.

In a variant of this prinoiple a standard voltage is injeoted into a wire of oonatant resistanoe/vinit length. Diodes in the wire eanure the one way propagation of the aignal. 4 reooivar measures the voltage min honoe calculates ito range to the tranmittor.

With both these schemes, the coupling losses between the vehicle and transmission line must be accurately known.

None of the schemes discussed above can be made fail-safo. An out of range vehicle cannot be distinguished from a vehicle in range but not deteoted because of a fault. As relative position and speed measurements are usually associated with vital safety control, this is a severe disadvantage.

Speed moasurements using quided radio

Guided radio techniques can be used to measure the speed of a vehicle. A Eignal reflected back from a moving vohicle will be dopplar ahifted according to its speed (see Beamed Radiation no. 14).

If the transmittor is another vehicle then the relative apeed of the two vehicles will be measured. (Refs. 51, 72, 102, 109, 113, 124) 20) Linear synchro

The vehicle transmits a fired frequency signal using a rectangular antenna. This couples with two inductive loops laid on the track, each regularly transposed and out of phase with each other (see inductive loops no. 15).

The antenna and track loop dimensions are chosen so that the signal amplitude coupled into the induotive loop varies approximately a sine function of distance.
can be ambigu This a of the induct posit not a are 1 orrort induc 21)
varie
sense
This
over
22)
regu: strip

The relative phases of the signals received from the track loops can be converted into vehicle position. The measurement produced is ambiguous, a position n corresponds to ($x \times 2 \mathrm{~nL}$) $n=\quad, 0,1,2 \ldots$ This ambiguity is conveniently removed by counting the phase reversals of the received aignal when the antenna passes the transpositions in the inductive loops.

As only the relative phase of the two signals is used to calculate position variable coupling losses between the vehicle and the track do not affect scoureoy. However significant orrore are introduced if there are long transmisaion distances from vehicle to the receiver. These orrore reault from the unavoidable parameter differences of the two induotive loops.
21) Linear Cm

Sited alongside the track is a device whose position from a datua varies as a function of distance. Vehiole mounted follower equipeent senses the position of the device and decodes it into vehicle looation. Thia system may have applications for slow speed precision manoeuvring over short distenoes.

22) Linear Diaitiser

A coded strip extends along the track on which the oode ohanges at regular intervale. A reader fitted to the vehicle reads thia ooded etrip onabling ite position to be dotermined.

Continuove oode etreoturee oen be read apyubere along their length to detaredse a ponition. As the code changes only at dieorete pointe,
 vahicle mamorising eoch until the matis read. Ans teoknique of fired point oommication (scotion 2.C.1) oan be used to oreato molh a etrwoture, acoh ohnage point bolne soperencuted to a ifmpont bolding the oode fer the uen sootion.

Digitisers are an absolute location system. An error at one point can be corrected at the next, and consequently systematic position errors do not build up.

23) Integration

Integration of speed measurement yields a continuous position measure. Accuracy is limited by the precision and drift characteristics of the integrator. Frore tend to increase as a function of time and periodic resetting is required with supplementary position measurement devices.

24) Wheel revolution counter

Continuous position measurement on wheeled vehicles is made very conveniently by measuring wheel revolution. This is equivalent to mechanical integration. Systematic errors are caused by variable vehicle loading and tyre wear which alter the effective radius of the whee (these effects are particularly important with pneumatic tyres). Wear can be periodically compensated for but variable loading cannot and causes errors up to 5%.

25) Incremental measures

Track markers are detected by the vehicle (see fired point commoncations 2.C.1). These markers may be regularly spaced in which case a count is proportional to distance. Alternatively marker an be irregularly spaced. A table is required holding the dietences between markers.

The table may be bold by the vehicle or the track (see stored ape no. 27) or on be written onto the track as menage seat by the vehicle at each marker (500 fixed point oommicention 2.C.1) indicating distance to the mast maker.

Oharaoteriatio of both motion io the possibility of mined ar
a give
adequ
entiz
regal
meas
have
meas!
maps
foll

- 0.

sign
fire
in 1
witt
can
or 1

26) Dead reckoning

Variable route vehicles can be located using dead reckoning. Measurement of distance travelled (see nos. 18-25) and direction of motion are made. From these the vehicle position relative to a known starting point can be oalculated. The method is subject to large systematic orrors.

Several schemes can be used to supply the direotion of travel information.
(a) - Magnetic compass - cheap, moderately accurate
(b) - Cyro compass - expensive, poor long term acouracy
(c) - Differential wheel rotation - simple, very inacourate (Rof. 11)
27) Combinations of teohniquas yielding botter preoision Two main oriteria influence the choice of position measurement schemes for a transport network.
(a) The zone over which a vehicle location must be uniquely identified
(b) The accuracy to which the vehicle mast be located

011 contimuous location mothods will uniquely locate a vehicle to a given accuracy over a limited range. Measurement schemes offering adequate accuracy usually do not have suffioient range to oover the entire length of a transport route. This coverage can be eupplied by regularly repeating the measuremont schem and using a supplemontary measurement soheme to resolve ambiguity. This seoond mesaurement must have aufficient resolution to identify a single period of the finer measurement soheme.

An example of such schemes is the use of dead reokoning and stored maps to control long term orrors. This has been proposed for vehiolea following variable routes for which contimuove loontion is inportant e.g. taxie, delivery vans, buses, and emorgonoy vehioles.

Dead reokoning meapurements are often oombined with eleotronic eiamposta to resot the measuremate and is partioulariy applioable to ficed route vehioles.

Dead reokoning meanuremonte oan be reset veing a etreot map etored in a compreter. At rrequent intervale the vehicle position is compared with the stored map, and oonstrainod to lio on a etreet. The method oan 60 dicastrounly wrons if soovmalated errose result in the meleotion or the wrong road whon a vehicle tumas a onrrar, although in som ones
computer algorithms may be able to discover and correot the error.

2.B.4. Relative position teohnicues

28) Mechanical probe

A telescopic probe extends in front of a vehicle and contacts the next vehicle or obstacle. A measure of the probe extension indicates the separation distance.

Maximum range is determined by the length of probe used. This is limited by possible interference with the track atructure and other vehicles and rigidity considerations.
29) Capacitance, inductive, magnetic probes

The proximity of another vehicle alters the capacitance measured by a probe on the front of the vehicle. The capacitance varies as a function of vehiole size and separation. Similar schemes can be devised using inductive loops or magnetic field deteotors (see nos. 11, 13, 15).

Thase schemes have a detecting range of the same order as the physical dimensions of the detecting element. This is limited by the size of the vehicle and is thus only euitable for close proximity ranging.
30) Pixed block mothods

The track is divided into blooks (sections of track). \& vehicle detected in one blook causes ooded messages to be dieplayed at each blook upstrean of the vehicle. A second vehicle following the first reads these messages and interprets them as the distence (in units of block length) separating the two vehicles. Track cirouits, inductive loope, and check-in check-out sohemes (nos. 15, 16, 17) can be used to delineate the track eegmente and deteot the vehicles. Any traok to vehicle commanioation teomnique (see meotion 2.C.1 and 2.C.2) oan be used, point commanication devices being located at the entrance of the blook to winioh they apply.

The uee of aren oommiontion teohniques allowe better meavirement of vohicle separation, ohnegen in the blook mesenge, omued by the movemant of the front vehiole, are commanioated inadiately to the following vohiole.

31) 'Poupes' coded track oircuit

Signal generators are connected across the signal rails. Esoh signal is modulated to give pulses T / H long repeated every T (T is the cycle time, I is the maximum number of blocks to be measured). Each signal generator is one pulse out of phase with its neighbours. Passing vehicles short the signal rails so that the number of pulses received by the vehicle gives the number of blocks separating the vehicles. The system is fail-safe; if a signal generator fails as smaller separation is then indicated. (See also track circuits no. 16). (Ref. 163)

Signalling Sequence

32) Differencing

Each vehicle measures its own position and transmits it, either to the vehicle following, or to all vehicles in the vicinity. In the latter case vohicles select the signal from the nearest neighbour.

Differencing is the only rethod by which a track-based measuremont of vehicle spacing can be made. Any continuous position measurement scheme (see section 2.B.3) can be combined with an area communication link (see section 2.C.2) to produce such a scheme.

The same techniques oan be applied to produce relative velocity
(c) The ranging beam must illuminate the appropriate vehicle. Either the beam must be sufficiently wide for satiafactory operations on bends yet satisfy the oonstraints of (a) or the transmitter must be equipped with a homing device to actively direct the ranging bean at the leading vehicle.
(d) None of the sohemes can be fail-safe, an important oonsideration an the correat operation of ranging equipment is vital for safety. (Refs. 65)
34) Guided radio gybtems

See section 2.B.3, no. 19.

2.B. 5 Felocity Hassurement

35) Frequenoy rate

Regularly apsoed traok markers (see seotion 2.B.1, point position teohniques) oan be used to provide a vehicle based speed measurement. If the vehicle apeed is mufficiontly high and the markere olosely apaced, the frequency that maricers are passed yields a continuous measure of speed. The measurement will lag the cotual vehiole apeed and will not follow oorreotly speed changes faster than that determined by the Nyquiat theorem.

36) Tire interval

For l w vehiole epeeds or wide markor spsoinge frequency mothode oannot be used. Inetead the tim elapsed an the vehiole moves from one marker to the noxt is meanured. This inverted yields the avorage mpeed of the vehicle betwoen the last two markere.

37) Correlation
 Two sensore mounted on the vehicle deteot signale trancaitted from the vehiole and eoattered beok by the traok. The irregularity of the track aurface modulatea the reflooted aignal with a firod epatial pattern or migneture. The two received eignals are oroes-oorrelated to dive the tim doley a treak point nover pent aen cemeor to the next. From the deley and the known eoparation of the two sensore the apeod is oaloulated.

38) 'Flioker' rate

The inage of a passing vehicle is direoted onto a slotted plate.
(a) Behind the slots are photocells detecting the variations in light level as the image noves past. The light igignature of the inage falling on eaoh photocell in turn is time shifted by an amont proportional to speed. The delay can be measured using correlation techniques and hence the vehicle speed calculated.
(b) The total light tranemitted is detected by a photo deteotor. The light from each aree element of the moving inage is modulated at a fundamental frequency

$$
\text { fo }=\frac{\text { velocity } x \text { magnifioation faotor }}{\text { line spacing }}
$$

Due to the randomess of the surfaoe the resulting eignal is not a pure aine wave but has powar dencity speotrum epread around fo. The frequency has to be axtracted by a tracking Pilter following the epeotral peak.

In both situdions the use of coherent (lasar) Ifget improves the signal to noise ratio. (Ref. 21, 46, 125)

39) Indrotive teohomater

A wire moved through a magetio field ganeraten potential difference soross ite end proportional to the epeed of the wise and the magetio flur density.

This principle is used in trohomter to noneure epecd. Conventicunl teohomaters are rotary and cunerelly oonocoted to the wheols of the vehiclo. Hnoarised vereion on be devieed givins en outpert either at the track or on the rehiole without the ve of wheel. Teohomatere are expanmive to melse ad soovrete to ebout ifo.
40) Dopplar methods

See beamed radiation (no. 14) and free apace or guided radio (nos. 18, 19).
41) Magnetio gradient vohicle deteotor

See M.G.V.D. no. 12.
42) Integration

Integration of acceleration yields speed (see no. 23).
43) Differentiation

Differentiation of a position signal gives a velocity ignal. Both a high quality position measurement and oareful filtering are required to limit noise on the output.

2.B. 6 Relative velocity measurements

44) Dopplar

The relative velocity of two vehicles can be measured using Dopplar shift methods. (See beamed radiation, no. 14, free apace systems no. 18 and guided radio no. 19).
45) Differencing
(See no. 32)
46) Differentiation

Relative position differentiated yields relative velocity (see no.
43).
47) Froe space Eyntens
(See no: 18)
48) Guided redio evsten:
(See no: 19)

2.B. 7 locelergtion

49) Acoolerometers

411 accelerometers apply the equation foroo/maes - acceleration
(a) Ball on an inolined plane.

The ball will roll up the plane if the acoeleration $>$ e $\tan \theta$
(6 = ecocloration dus to eravity)
(b) Liquid in a U-tube

acceleration $=\frac{g\left(h_{2}-h_{1}\right)}{L}$
(c) Mass on a spring

for amall displacement: エ=k.M.E.
$M=$ mass
$\mathbf{k}=\operatorname{spring}$ rate
a = acceleration
$\theta=\tan ^{-1} \frac{2}{6}$

411 these transducere require considerable sophistioation in design to produce asensitive linear response with reasonable damping. 411 muat be vehiole mourted and meaure aceleration only in one plane. 50) Differentiation

Difforentiation of velooity yielde noceleration (see no. 43). This is the only available method for trak based acceleration meamere ment.

2.G. Communication Teohniques

There are two classes of communication
(a) Point - where the vehicle can transmit/receive messages to/from the track only over a short section of track.
(b) Ares - where track/vehicle commications can take place over an extended section of the track. (Refs. 7, 24, 86, 111)

2.C. 1 Point Communications

Pixed point commanications can be organised in a variety of configurations offering different characteristics. Each one can be implemented using any of a wide range of hardware techniques.

Many commanications involve the tranafor of a single fired message. Such devices are variously oalled transponders labels, signposts, coded masks or reflectors according to their application. This seotion details devices for which the mechanism required to change a message is clumsy and would only be used infrequently, i.e. the device transmits essentially a fixed message. In some cases the equipment may allow a simple change in message, e.E. by switching between elements. Most of the devices are described as a vehicle to track communication link. Usually the same equipment can be turned around to provide track to vehicle oommunioations. (Refs. 3, 4, 8, 9, 12, 13, 14, 15, 16, $41,43,56,62,77,100,114,119$)
51) Coded mask

A mask mounted on the vehiole is arranged to intercept a beam of energy tranmitted soross the track. Apertures in the mask, epsoed according to the message to be onooded, amplitude modulates the beam. Treoknide equipment receiver the modulated eignal and deooder it (see beamed radiation no. 14).

52) Coded reflector

A vehicle mounted labol reflects energy to a receiver when illuainated with an appropriate signal from a trackide transmittor (see beamed radiation no. 14).

Information is coded onto the reflector using a number of teohniques.
(a) The label is designed to reflect only specifio frequencies, any other signal frequencies falling on the label are absorbed. Alternatively the label reflects beok all the signal except for specifio frequenoy components. Meseages are encoded using particular combinations of frequencies.

eacl
by 1
fix
labi
mov

$$
\sin p s
$$

(a) For frequency selective labels

- The label is illuminated with a wideband signal covering the frequency spectrum used in the labels. The reflected energy is received and the frequency modifications decoded. This returns all the label information in parallel to the reader.
- The label is illuminated with a narrow band signal which scans through the frequency range. The receiver identifies the coded frequencies in turn giving a serial readout. The scheme gives better noise immunity but takes longer to read a message.
(b) For position encoded labels
- A narrow beam of energy sweeps across the label illuminating each element in sequence. The scanning of the label is achieved either by using the forward motion of the vehicle to move the label past a fired beam or by using mechanical devices to sweep the beam across the label. The former is cheaper, the latter can read stationary or slow moving labels.

Common devices used

Optical - Black, white or coloured, panels, studs or bars are illuminated with white (broad band) light. Colour filters are used to isolate the frequency spectrum components. Noise rejection is enhanced by using modulated light beams and retroreflective materials (see beamed radiation no. 14). (Refs. 1, 35, 83, 106)

Radio - a) Tuned cavity resonators absorb specific frequencies (Refs. 5, 6, 33, 70)
b) Dipoles refleot a narrow beam of microwave energ.
o) A suitably shaped waveguide will redirect energy back the way it came. They are more offioient but less compact than b). Schemes b) and c) use position to encode messages.
Radio systems are relatively free from interference and use low power aignals. Interrogation epeeds can be very fast. (Refa.67)

Inductive fielde - Inductive/oapacitive (L/C) or pieso electric orystal circuite tuned to particular frequenoies couple induotively with a vehiole oirouit. Both wide band and narrow band interrogation mothode are ued. Some designs of equipmont allow the tuand oirouite to be ewitohed on or off to give aimple variable masage device.
nitranonion - Ultremonio transducere are not wideband nor eanily
varied in frequency. Consequently their application to message communications is limited.

The preceding achemes can only send limited amounts of information, as only a small number of enooding elements can be physically incorporated into a label. They can all be made into very reliable communioation links at low cost and are extensively used in rail transport (signalling and automatic vehicle identification), and road transport (bus, commercial and military vehicle identification, and for electronic position signposting and selective vehicle signalling in vehicle location schemes.)

In addition to the devices described above any track marker (see section 2.B.1) can be used to convey information to a vehicle. A sequence of markers, whose spacing encodes the message is fixed to the track. Passing vehicles measure the distance between markers and decode the message -

53) Stimulated transmissions

A beam of energy is transmitted from the tracicside to a vehicle mounted transducer. This reoeives the signal, rectifies it and uses it to power a solid state circuit. This cirouit transmits back to the track a ooded message at a difforent frequency. As message lengtha are only restricted by the speed of retransmission and the time available complex messages can be easily oommanicated.

Inductively coupled devices (see no. 15) are most commonly used although eiorowave systems exist (see no. 14).

54) Continuous transmissions

A continuous coded transmission is radiated from the track. It is reoeived by any vahicle receiver in range. Suoh mohemen use radio frequenoy inductive links although microwave systens have been proposed.

2.G.2 Aree commmications

55) Coded treak airouits

Only trak to vehiole oommenicatione at very low data rates are poenible. The coded traok airouit is however very reliable and oan be made fail-aff. Treditionally ooded track oirouite have beon uned to oonmionte vital oontrol information on mont modern reilway aynten (eee track oircuite no. 16). (Rof. 95)

56) Contacting cirouits

A modulated carrier is coupled into the power supply cirouit of the vehicle. Both vehicle to track and track to vehicle data and voice communications are possible. Carrier frequencies of 100-150 khz have been used. Heavy signal attenuation and interference reduce the effectiveness of such circuits (see also no. 6, contacting circuits). (Refs. 2, 20)

57) Radiating cablea ('leaky ooar')

Specially designed coaxial cables with incomplete screening can be used to transmit signals longitudinally with low attenuation and to simultaneousiy radiate a signal which decays rapidly in strength away from the cable.

Radiating cable communications have been extensively used in mines and on railways. Low transmitter powers can be used and provided cable attenuation is balanced by the use of repeater amplifiers, range is unlimited. Incorrect line termination leads to standing waves being set up along the cable. These can substantially reduce local signal strengths and adversely affect communioation. Signals of bandwidth up to megahertz can be transmitted with little interference. Two was communications are practical both for high speed data links and multiplexed voice ohannels. (Refs. 18, 25, 26, 34, 37, 66, 79, 80, 91, 92, 93, 101, 108, 178)
58) Inductive loops

Inductive loops allow the two way transmission of messages over track sections from a fow metres up to several kilometers. A wide frequency range aan be used with the most usual frequencies being around 100 kch . Inductive loops are widely used in many trangport modes for two way data and voioe communications. They have the particular adventage that the signal can be olosely confined around the region of the loop (see inductive loope no. 15). (Ref. 82, 84, 194)

59) Maveruides

The use of a waveguide gives a very high oapaoity oommanioation link (up to Ghs frequenoien) and allowe the use of radar teohniques for obetcole detection and collision avoidanoe (see guided radio no. 19).

Signale propagated along waveguides muoh that an external field is produced through whioh the vehicle antenna pasces. This field is produced by one of two methode:
(a) By the controlled radiation of energy away from the guide.
(b) By the use of Burface waves in which the onergy travels along the guide but is partially external to it. This scheme produces a field which decays very rapidly away from the guide and requires less power than (a).

A variety of waveguides have been developed, each with different characteristics. They all must be accurately formed and are consequently difficult and expensive to fabricate. There has been mach interest in waveguide applications to railway operations, particularly in Britain, America and Japan. (Refs. 23, 66)
60) Free space radio

Although free space radio offers the oapability of very flexible communications between all parts of a system at low oapital oost, its effectiveness is much reduced by several factoris.
(a) There is already overorowding of the radio apeotrum and frequently there is substantial interference from other users.
(b) The field pattern assooiated with V.H.F. radio in an urban environment is very complex. It oomprises a fired pattern due to multiple reflections from fired objeots, and shadows in outtinge and tunnels. On this is superimposed a varying pattern due to the movement of the vehicle and other vohicles around it. The result is an indeterminate transmission path between the vehicle and base which changes oonstantly. Voioe transaiasion is usually intelligible even with the resultant rapid fading. Date transmission requires good paths and can be readily corrupted by fat fading. Over a good speeoh path data error rates of about 2% are sohieved.

However redio is often the only econonic solution where contimous commanioations are required, partioularly with variable route vehiolen. Free space radio is widely used on the railwaye for emergenoy services, taxis, buaes and delivery vehicles. (Refs. 42, 45, 78, 112, 195)

Part 3: Examples

Content:

3.A.1 - Bay Area Rapid Transit (BLRT)

- Central supervision
- Local line supervision
- Train I.D. signals
- Station stop signals
- Speed information and train deteotion
- Train attendant
- Safety systems
- Safety philosophy
3.A.2 - Victoria line
- Safoty bystem
- Train attendant
- The command system
- Train identification
3.A.3 - Morgantown
- Control and commications
- Central control
- Ouideway control
- Voice commanications
3.A.4 - Bus location

3.A.1 BART (Bay Area Rapid Trangit)

The Bay Area Rapid Transit is a computer supervised automatic rapid transit system in San Francisco. It features an extensive central control designed to optimise train running, and an innovative signalling system which is claimed to give a better, safer performance at a lower cost than could be attained using conventional techniques.

There are 120 km of track and 34 stations. Average journey speed is $80 \mathrm{~km} / \mathrm{h}$ with a maximum speed of $130 \mathrm{~km} / \mathrm{h}$. Station stops are 20s and minimum headways are 908 .

The control system structure is divided into two sections
(a) Train operating system
(b) Train protection system

Central Bupervision

The central computer performs the following roles.
a) Traffic regulation. The timetabled service is compared with the actual service. For amall deviations from the sobodule the train performance is modified. (This allows up to 10% reduction or 50% increase in travel times between stations).

More severe deviations are compensated using variable dwell times, alternative routing, station skipping and turning back trains.
b) The dispatoh of traine from maintenance and storage yards.
c) The provision of routing instructions via stations and wayside equipment, to align mwitches.
d) The control of a large operator display showing train location and the status of equipment.

All communications involving the central computer are handled by a data telemetry system hardwired to local atation and track controllere. Local line supervision

Communication with individual trains is directed via station and trackside equipment. There are four types of commanication involved.
a) Train identity (TID)
b) Station stop signals
c) Speed information and train detection
d) Train attendant communications
a) TID sigmals

The TID system is a data storage and two way communication link between track and vehicle. Data is transaitted serially uaing frequency ahift keying (P.S.K.), the telegrans containing the following informar tion:

1) The train idontity (serial muber; destination, loagth)
2) Performanoe modifioations
3) Door open/close etatus

Thronghout itm journey the train tranamita ite TIV eigaal. This is received at every crossover ewitoh or diverge. The wayile equipment doterainel any ewitching aotion, etopping atrain if the change cannot be offeoted in time.

It atations the door atatus information confirm the door operation. As the train leaves the platform, new performance modifiontions for the next jourmey stage are traneritted to the vohiole and etored in the PID regieters.
b) St

An
from t
train
overs.
a spet
a stol and c : c) S

J
track
ted b
coupl
circu
the b
track
three
I
plext
syncl
circt
This
sed,
rate
to e
ocou
unit

b) Station Btop sienals

An independent track conductor loop transposed every 300 mm is laid from the point at which braking starts, to the atation. To stop a train the loop is energised enabling the train to detect the crossovers. An on-board processor calculates the distance to go and outputs a speed signal. The power and brakes are regulated accordingly to give a stopping accuracy of $\pm 1.5 \mathrm{~m}$. Tones transmitted from the track open and close the doors.
c) Speed information and train detection

Jointless coded track circuits are used for train detection and track to train commenication of speed commands. Each block is delineated by a short circuit between the rails. Signals are inductively coupled into the track circuit by a tranmitter loop at the short circuiting band; a similar loop detects the signal at the other end of the block. Speed information is broadcast serially using F.S.K. of the track circuit signal. To ensure isolation of adjacent track circuits three pairs of frequencies are used.

The track circuits reacive their speed commands via a time-maltiplexed information channel, timing information being provided by a synchronising pulse line.

At each time slot access a binary 0 or 1 is placed into the traok cirouit transmitter, indicating whioh frequency state is to be output. This information is aaved until all the track circuite have been addressed, whereupon all the transmitters change state simultaneousiy. A baud rate of 576 bit/s is used giving three complete 6 bit apeed comands/sec to each track oirouit. Similar time multiplexing is used to chook block ocoupancy, the data being transmitted to the local eafety proteotion unit.

Diagram of traok oirouit
$-84-$

Speed	Code	Wayside Multiplex Unit (Wall.U.)
$130 \mathrm{ka} / \mathrm{h}$	101111	
113	100111	
80	101011	
58	100011	
44	100101	
29	101001	
10	100001	
0	100000	

us in
line
prot
Safe
hand
isst
ahe:
and
eac)
of 1
ope:

Cry
spe
mea
err
sur
cod
se]
tic
eve
Sad
d) Train attendant

The train attendant has no control of the train when it is operating automatically. His function is to observe and to communicate with the passengers. He has two overrides:

1) Emergency stop
2) A manual mode - The operator is directed by the system supervisor using voice radio. The train speed is limited to $40 \mathrm{~km} / \mathrm{h}$ and running is line of sight. The manual mode is the only means by which the train protection system can be overruled.

Safoty systems

Speed commands are issued by units, located at the stations, which handle all the functions of the train protection system. The oodes issued to a blook are determined by the distance to the ocoupied block ahead and by the physical characteristics of the track (e.g. curves and grades). To ensure the correct speed commands are transmitted in each block, each transmitted frequency state is checked by obeervation of the track circuit receiver output. Any failure of this monitoring operation causes an emergency stop.

The train receives all three frequency pairs from the track. Crystal filters separate the frequencies and identify the reference speed command. A 'vital' cirouit compares the actual train speed measured by an axle driven tachometer and the reference speed. The error is used to control the power and the fail-aafe braking.

The integrity of the speed command received from the track is ensured by using 'comma free' codes (a repetitive sequence of any one code can never be confused with another irrespective of the time selected as the beginning of the message). \& further oheck on operation is made by ensuring that the vebicle receives a speed command every $1 / 3$ second.

Safety philosophy

Fired block headway protection is used, the length of individual blooke varying according to its track apeed limit. The wayaide train protection system does not cheok the train speed. It is considered a sufficient aafoguard to onsure that an unafo speed cannot be traneaitted and that whatever apeed is commanded will not be eroeeded. However there is avery heavy dopendence on unproven fail-safo dicital odrouitry and already the wrong-bide failure of an-bcard d.T. E .
component has sent a train through the end stops at Fremont.
As a consequence of this and other malfunctions several modifications have been made, both to the hardware and operation of the system.

One serious problem was the occasional inability of the system to detect a train. This resulted from a combination of factors.
(a) The very low track circuit voltages used (less than 2v)
(b) The light weight of the BART vehicles
(c) The use of disc brakes which do not clean the wheel treads

The eddition of mechanical wheel scrubbers and etainless steel beading welded onto little used sections has improved train detection, although it is not completely reliable. A permanent backup system has been added called sequential occupancy release (SOR). This uses a series of minicomputers in redundant pairs installed at 26 trackside locations. They provide an independent oheck-in, check-out of trains in subsequent blocks. Fach track circuit is looked up until the train is positively detected in the next one.

Other important modifications included
(a) Redesign of the speed command circuits for fail-safe operation.
(b) Better information provision for the train attendant enabling him to form an offeotive backup to the automatic aystem.
(c) Better information provision to the oentral control to allow more accurate assessments of system atatus.
(d) More involvement of the central computer as a safoty bsok-ap in train detection, redundant monitoring and validity checks on manual instruotions. (Refs. 143, 144, 145, 169, 170, 171, 173)

3el. 2 Viotoria Line

The Viotoria line, opened in 1969, is a Motro in London, serving sixteen stations over fourteen miles of track. It uses an automatio train control system developed by London transport. An attendent is retained on the train with dutien to operate the doore, the etarting aignal and tace over oontrol of the train in emereencies.

The Viotoria line omploge no Eignalmon, all funotions are not automatioally by a procrane maohine and whole line is aupervised from one contral control point at Eustom.
(a) Reduce ataffing requirements
(b) Improve service regularity, both by making driving technique more consistent and by improving recovery from abnormal conditions.
(c) Enable close headways to be maintained safely in station areas. Signalling on the Victoria line has been designed on a basis of an 82 sec . headway.
(d) Reduce energy consumption

The automatic train control equipment comprises two systems, the safety system and the train command system.

Safoty systom

Fail safe fixed block signalling and coded track circuits provide basio safety and command information.

For the train to proceed under automatic control it mast receive one of the signalling codes from the track. There are four codes used, each transmitted by the amplitude modulation of a 125 hz carrier. These are:

120 pulses/min. - This is not detected by the train. It is used by the track circuit for train deteotion.

180 pulses/min. - This allows the train to run at $35 \mathrm{~km} / \mathrm{h}$ but not to motor.

270 pulses/min. - This allows the train to run at a regulated speed of $35 \mathrm{~km} / \mathrm{h}$. The brakes are applied if the speed exceeds $37 \mathrm{ka} / \mathrm{h}$ and the power applied if apeed falls below $33 \mathrm{kcm} / \mathrm{h}$. The governed apeed of 35 k /h was chosen as this gives the best headway through stations. It if also the standard speed restriotion used by London Transport for oroseovers, junctions and track constraints.

420 pulses/ain. - This permits the train to run at maximum speed (up to $80 \mathrm{~km} / \mathrm{h}$) linited by tractive effort and train resistance.

If no code is received by the train or if the 180 or 270 codes are received and the train axceeds $40 \mathrm{ka} / \mathrm{h}$ the emercency braken are applied. Speod monitoring is by a moohanical axle mounted governor of proven reliability fitted with a mamal adjustmont for tyre wear.

Train attendent

Facilities are provided for the train attendant to operate the train mamally at a speed not aroceding $35 \mathrm{ka} / \mathrm{h}$ if oode is beins reoeived from the traok or $16 \mathrm{ke} / \mathrm{h}$ if it is not. Overmpeoding renults in emergonoy braking.

The attendant also has two devices for commaicating with the central supervisor.
(a) Bare copper/cadmium wires are mounted in the tunnel. In an emergency these are used to trip the traction supply circuit breakers. The driver can communicate with the controller by clipping a portable telephone to the wires. This aystem has the disadvantage of having to stop the train.
(b) Full duplex in-cab commanication is provided called 'carrierwave', which can be used at any time. A frequency modulated low frequency oarrier signal is applied to the two conductor rails that carry the traction ourrent. The track transmitter uses a frequency of 150 kHz .

The system works well under normal conditions when the trains are well spaced. However the low impedance of the train (5 ohme) compared with the 200 ohms oharacteristic impedance of the conductor rails, causes considerable attenuation if several trains become bunched and occupy the same section simultaneously. This makes communioation unreliable at the time when it is most wanted.

Trials are being conduoted on leaky feeder and radio telepathy systems which may offer better communications.

The command system

The train command system is used to stop trains at signals and platforms and to initiate coasting at appropriate points on the line. These commands are conveyed to the train by 'apote' positioned on the line. These spots are audio-frequency aignals fod into short lengths of the running rail and deteoted by the train coils.

Eleotrical cirouite for comand epote

A 20 kHz signal gives the instruction for the train to stop if the signal is at danger.

415 kHz signal cuts off the motors and allows the train to coast.
Further spots are used to stop the train at a station. A braking profile is written onto the track at the approach to each atation. The speed at which the train should be travelling in order to be on the normal braking curve is represented by local speed spots whose frequencies are scaled so that $1.6 \mathrm{~km} / \mathrm{h}=100 \mathrm{kz}$. Along the profile spots are located at $8 \mathrm{~km} / \mathrm{h}$ intervals starting at $88 \mathrm{~km} / \mathrm{h}$ and finishing at $16 \mathrm{~km} / \mathrm{h}$.

The train braking equipment uses acceleration feedback to give one of three standard braking rates, maximum, normal and minimum. The actual train speed is measured using a tacho generator and compared with the required apeed read from the track. The braking rate is then selected according to whether the train is overspeeding, correct or underspeeding. If the train speed is more than 20% less than the commanded speed the brakes are released completely.

To ensure the integrity of the commanded speed signal the braking comand signals are applied in pulses of 127 cycles followed by a pause of similar duration. This allows the train to reoognise only gemuine signals.

Train identification

To convey train identification information to the track the 'Identra' system is used. In this a track mounted fixed ooil couples inductively with a train mounted tuned coil, the resonant frequency of this coil being manually set at a journey atart. One out of eight frequencies in the range $60-90 \mathrm{kHz}$ is used to set the train ID.

London transport is now experimenting with a more complex eystem called positive train identifioation. With this a pulsed 50 kHs signal is transmitted to the train. When the train is in range this atimalates a response signal. This reaponse is a digital telegram timad by the stimulating tranmisaion. The total messago time is 28 and and can be used for speeds up to $77 \mathrm{~km} / \mathrm{h}$. (Refs. 20, 179, 210, 201, 107, 141, 159)

3.103 Morrantom

The Morgantown projeot is both en UNTM demonetration of artomated urban traneport and a public tranaport servioe for Morgantown. The
roposed system contained 5.8 kms double guideway, six stations and 90 ehicles. The scale of the project has since been considerably reluced. The route is now 3.5 kms long with 3 stations.

The system operates both a schoduled and a demand responsive service. The minimum headway is 15 s , top apeed is $48 \mathrm{~km} / \mathrm{h}$, average speed is $30 \mathrm{~km} / \mathrm{h}$.

The Morgantown project has been extremely costly; \$64- for a system originally estimated to cost $\$ 18 \mathrm{~m}$, with an estimated further $\$ 50 \mathrm{~m}$ for expansion to the original design. Although the cost encalation was caused partially by unrealistic deadines and design oriteria, the technical difficulties of such an advanced system were seriously underestimated.

In particular commercially available components allowed rates of failure which are muoh too high for automated public transport. Military and space hardware could achieve the required reliability but at a much higher cost.

Morgantown Control and Commnications System (C\& CS)

The C \& CS is divided into three functions:
(a) Central control and communications
(b) Station control and communications
(c) Guideway oontrol and communications
(a) Central control

A central computer carries out the automatic management funotions, reosiving destination service requests from the stations and transmitting comands for vehicle routing and dispatching to atations. A bystem operator at the central office take control of the system during conditions of failure, atart-up and shut down.
(b) Station oontrol and conmiontions (S.C.C.)

The s.C.C. controls vehicles and atation operations in reaponse to central supervisory comands. Signals from the station control are transaitted to vehiclea using induotive loope embedded in the guidoway. Commicationg are in the form of F.S.K. telegran and fired frequency oontrol tonas.

The atation oomputer controle vohicle awltohing, atation atoppins and door operations. It also operaten the etation information dieplaye and recaives pascencor destination denands. At each atation there is a colliaion avoidance aystem (CAS) which is back up to the prianary
control
The
1)
by veh: of tra
2)
kHz wi
3)
(The r
tion C
other paths
(c) $\underline{G v}$

Br
functi
1 .
a tont
The vi signer

2
comma:
(i.e.
that
a hal
3
refer
meter
4
The I
ident
to rt
mitte
Foica
pass!
Ho mi
gers
control.
The CAS consists of

1) Duplicated passive vehicle detectors (reed relays activated by vehicle carried magnets). These detect vehicle entry into a block of track.
2) Inductive communication loops which transmit a safetone (10.2 kHz with a 50 Hz modulation) to the vehicle in the block.
3) A redundant control system which determines block occupancy. (The redundency is achieved by having one logic path go via the station computer and uses software to achieve the block control. The other logic path uses special purpose logic circuitry. Both logic paths must agree or the safetone is removed from the affected zone). (c) Guideway control and communications

Buried in the track are various inductive loops performing different functions.

1) Station stop loops (36.3 kHz). 'l'he station control transmits a tone signal which tells the vehicle to begin its atopping manoeuvre. The vehicle is arranged to enter the stop loop at $1.2 \mathrm{~m} / \mathrm{s}$ and is designed to stop $\pm 15 \mathrm{cms}$ from the centre of the station unloading gates.
2) Switching tone loops (28.3 kHz). These loops when energised command the vehicle to steer left or right at merges and diverges, (i.e. select the appropriate wall to follow). The vehicle must verify that switching has been accomplished, otherwise it will be brought to a halt.
3) Calibration loops (36.3 kHs). These give a measured position reference to the vehicle. It is used to recalibrate the on-board odometer to remove accumalated errors.
4) F.S.K. loope - 129/121 kHz transmission, 104/96 reception. The F.S.K. transceiver unit transeits speed comands, door commands and identification requests to the vehicles. A second set of loope is used to receive vehiole I.D., door responses and fault otatue ignale tranemitted from the vehiole.

Toice communications

The comminications operator is responsible for communicatione with passengere. Ho can enable or diaable vohioles uing UHF radio control. He monitors T.V. displays of atrategic points in eaoh atation. Pascencere on-board vehicles oan oall the operator ueing the vehicio uip radio.

Similarly the operator can address any or all of the vehicles. One way radio communications are provided from the control centre to the individual station public address system. A separate 2-way UHF radio system is provided for maintenance ataff and vohicles.

3.1.4. Bus Location

There is considerable interest in schemes designed to improve bus services, partioularly regularity and punctuality. Two trends are apparent:
(a) The use of bus transponders which actuate traffic lights. These enable buses to gain priority at intersections so reducing their delay at the expense of some inorease in delay for other users, eog. in Glasgow, Leicester, Nottingham, Southampton.
(b) The use of centralised bus mupervision sohemes which offer real time monitoring and control of bus movements. These allow sohedules to be stabilised and bunching minimised. Four transport authorities have installed such systems for evaluation, namely London, Bristol, Chicago and Hamburg.

This section on bus looation will only consider the second of these trends.

There are three types of bus control systems:
(a) Control by roadside inspeotors - Roadside inspectors time buses at strategio points and give instructions verbally to drivers. The roadside inapectore communicate by telephone to a controller who decides what control to apply and informe the inapector: accordingly.
(b) Control using radio telephone - Buaes are equipped with twoway radio. Drivers report their position to and receive instructions from the controller.
(c) Control using radio and automatio vehicle looation - Bus positions are automatically monitored and displayed at a oentral offioe. A oontroller assessen the information and instruots drivers by radio.

A simulation evaluation of theee syutcms eugeente that radio telephone control alone offored the most cost effcotive situation. However automatic vahiole location reduces domands on radio apeotrua and may reduce etaff costs. The four aytema briefly desoribed below are all excoples of the third type. However, recontis many authoritios have begun inntalling the scound type although mainly for reanone of driver ecourity rether then for inproved control.
(a) Lon

Thi
bus ide spaced unite : office Operat

A
the bu upper colour

Th
filter
to the
displa
Later
drive:
T
(
out.
(a) London (BRSI - Bus Electronic Scanning Indicator)

This was an early experiment in bus location. The scheme comprises bus identification plates mounted on the bus and kerbside readers, spaced at approximately 15 minutes running time apart. Transmission units send the information to a bus route display panel at the central office.

Operation
A modulated light beam is projected from the kerbside reader onto the bus I.D. plate. This comprises two rows of reflector studs, the upper row are coloured white and form the time base. The lower row are coloured red and are the running number of the bus in binary coded form.

The light beam is reflected back to the reader, colour separated, filtered and the code identified. A sender transmits the information to the control centre via telephone lines. There it is decoded and displayed. Originally control action was applied by roadside inspectors. Later developments used two-way voice radio communications with the driver.

The principal faults with the BESI system are that:
(a) Large vehicles can block the scanner from the bus
(b) As there is no code redundancy no error ohecking can be carried out.
(c) Misaligned or stationary buses can be misread.

The BESI system has been superceded by apparatus devised by Marconi and installed on bus route 11 in 1973. In this the vehiole uses an arle mounted odometer to determine its position. The bus is linked to the control centre by twoway radio which transmite either the location data or operator/driver conversations.

After compensation for errors due to tyre war a position accuracy of about $\%$ is oleimed. A oomputer system at the control oentre polls esch vehicle in turn, prooesses the bus location information and drives a visual display unit.

Bristol

The Marconi aystem used in London has also been applied to buses in Bristol. The prinoipal difference is the position looation equipment. 4 vehiole mounted optioal reader interrogatea pasaive ooded reflector plates fired frequentiy along the bus route. Thase oan be read from up to 3m.

- 94 -

Chicago
In Chicago beacons are placed at approximately 3 km intervals. These transmit a 16 bit code at 150 MHz indicating their identity. As a bus passes a beacon (within 60 m) the signal is received and stored. Simultaneously a counter starts recording twelve second increments. A central computer polls each bus in turn by radio on a 2 -minute cycle. The bus when interrogated transmits to the control centre the identity of the last beacon passed and the subsequent elapsed time. The central computer estimates the bus position and infcrms the operator of buses out of schedule, lost or showing an alarm. Control instructions are passed to the driver by radio.

Hamburg
A similar system is operated in Hamburg. However, position is measured by an axle mounted odometer, which is reset every 5-10 kn to control errors. The beacons use an inductive loop antenna and transait 2 out of 6 frequencies to identify the location. (Refs. 52, 103, 133, $146,148,191,206,213,226,214$).

Bibligyraphy

The bibliography is divided into two sections.
Section 1 contains references whose predominant emphasis is on the design or characteristics of particular pieces of equipaent or techniques.

Section 2 contains references describing applications of equipment or teohniques.

BIBLIGGRAPHY PART 1

```
-------
```

THIS PART HF THE RIBI TPGRAPHY CONTATNS REFERENCES PREDAMINANTLY CENCERNED WITH ETUIPYENT

1 - -
ACI READS TILTED MRDULE LABELS
RAILWAY SYSTEM CONTRELS JUNE 1973 PP 26
$2-=$
TRACK TO TRAIN COMMUNTCATIAN VIA OVERHEAD CONDUCTOR WIRE MODERN RAILWAYS MARCH 1970

- - -

NEW ELECTRONICS MEET HIGH SPEED REQUIREMENTS
INT RAILWAY JRNL SEPT 1975

UTGMATIC IDENTIFICATION WHAT WHEN WHERE RAILWAY SYSTEM CONTRELS MARCH 1975
microwaves used fer car identification RAILWAY SYSTEM CONTREIS MARCH 1975

MICROWAVE VEHICLE IDENTIFICATION SYSTEM DEVELGPED FOR US APMY RAILWAY SYSTEM CONTREI.S MARCH 1975
AUTOMATIC VEHICLE MONITARTAG ANO CONTRAL IN AN URBAN
70-TRAN-4n ASME Or.t $197 n$

MOVING UBJECT IDENTIFYING SYSTEMS CONTROL ENG OCT 1971 PP 63070

```
ACI STARTS TA EARN ITS KEFP
RAILWAY GAZ IMT VHL 1 Pg NA 3 PP 9?-95 MAR 1973
IDENTIFY TPAINS OR CARS
RAILWAY SIG \(\delta\) CGMMUN MAY 1953 PP 31
- -
AUT OMATIC SYSTEMS EF WATGN IDFNTIFICATIEN
RAILWAY GAZ PP 489.497 JIJNE 1月 1965
- - -
INDUCTIVE FIELD VFHICLE GIITDANCE SYSTFM
HARVESTER CO UK PATENT 13894756 OCT 1969 PUBL 20 SEP 1972
AKAGAWA ET AL
THE NEWLY PLANNED TRAIN CPMMUNICATIGN SYSTEM APPLIED TO THE SHINKANSEN NETWGRK
10 TH SYMPOSIUM ON THE USE OF CYBERNETICS ON THE RAILWAY IRCA 1974
ANDERSEN
ELECTROMA GNETIC LBAP VEHICLE DETECTORS
IEEE TRANS VOL VT 19 PP \(33-30\) FEB 1970
ALEXANCER LM
VOICE CGMMUNICATIAN IN THF TUBE.
RAIL GAZ INT VEL 132 Ne 4 PP 129 -133 APRIL 1976
ATOR J T
IMAGE VELOCITY SENSING BY OPTICAL CERRELATIAN
APPLIEC OPTICS 196A VAL 5PP 1325-1331
BARKER JL
RADAR, ACOUSTIC AND MAGNETIC VEHICLE DETECTORS
IEEE TRANS VEL VT-19 NP 1 PP30-43 FEB 1970
BARLOW H M
SCREENED SURFACE WAVES AND SEME POSSIRLE APPLICATIONS
PROC IEE VOL 112 PP 477
BARWELL F T OGILVYH H
COMMUNICATIONS ANO THFIR EFFECTS ON RAILWAY OPERATIONS
PRUC INST RAILWAY SIGNAL ENGINEERS P 1351966
BEAL JCET AL
CONTINUSUS-ACCESS GUIDED CEYMUNICATION FER GROIIND
TRANSPERTATIEN SYSTEMS
IEEE PROC VOL 61 NO 5 PP 562-56R MAY 1973
HENDER J G FENTHN DE ALSEK \(W\)
A. EXPERIMENTAL STIDY PF VEHICLE LHNGTTUDINAL CINTREL
IEEE TRANS VEL VT-20 NE 4 PP \(11114-23\) NgV 1971
BRAUN W \(V\) A WALKFR D L
VËHICULAR LOCATION AND INFPRMATICN SYSTEMS
IEEE TRANS VEL VT-I9 NE 1 PP 136043 FER 1970
```

BREAN J GLAZIER F
TELECOMMUNICATIONS
CHAPMAN ANC HALL 1974 LHNDEN
BUCK H ET AL
ANALYSIS ANi) COMPARISOR EF S日ME AUT日MATIC VEHICLE MSNITMRING SYSTEMS
TRANSPERTATIEN SYSTEMS CENTRE CAMB MASS. REPORT JUL 1973
M/F PB 222152

BURROW L D
DESIGN OF CONTROL SYSTEMS IN AUTGMATED TRANSPGRT SYSTEMS
PAPER IFAC WERKSHEP GPTIMISATION APPLIED TS
TRANSPORTATION SYSTEMS FFB 17-19 1976 VIENNA AUSTRIA
CATTERMOLE K
PRINCIPLES GF PULSE CGCE MEDULATION
ILJFFE BCOKS LONCON $\mathbf{1 9 6 9}$

CHESNUT HETAL
COMMUNICATIGN AND CONTROL FOR TRANSPORTATION
PROC IEEE NG 56 PP $544-5551968$
CONSTANT JN
MICROWAVE AUTOMATIC VEHICLE IDENTIFICATIGNIMAVII SYSTEM
IEEE TRANS VOL VT-P3 NE 2 PP 44053 MAY 1974
CREE D J AND GILFS L J
PRACTICAL PERFGRMANCE PF RADIATING CABLES
RADIU ANO ELECTRENIC ENGINEER VEL 45 NO 5 PP 215-223
CROUCH C A
ACI RESEARCH IS UNCERTAKEN AT SANTA FE
RAILWAY SYSTEM AND CONTRELS OCY 1974 PPI4
DAVY M
AUTOMATION AND SAFETY PPERATION OF METRGPOLITAN RAILWAYS BASED ON HIGH TENSION IMPIJLSE TRACK CICUITS
RAIL ENGINEERING INT OCT 1975 PP 273
DENCE R D
CUAXIAL CARLE HELPS CARMUNICATIONS
INTERNATIUNAL RAILWAY ERNL SEPT 1975
DUBSON J S
TRANSMITTER FAIL SAFE LNIT FER THE TRRL AUTHMATIC VEHICLE GUIDANCE SYSTEM.
TRRL CRAWTHARNE TECHAICAL NETE TN B24 MAY 1973 UNPLB
DECKERTY A
REAO VEHICLE DETECTORS.
THE ENGINFEO PP R56-96n
DUHERTV A
A REVIEW MF FLEET LOCATTON TECHNI QUES
REPORT: DEPT OF ENVIRAAMENT, TRAFFIC CRNTRDE X COMMUNICATIENS UEVISIEN JULY 197316 PP

DONALOSAN R W DESIGN EF TRA VEHICLE LGCAT IEEE TRANS VE

EDWARDS JR ADAPTIVE DIGI PAPER IENE C NPL TECDINGTE IERE CENF FRE

FGOTE R S autematic veh TRAFFIC ENGIN

FOSTER G I
RAILWAY SIGNA RAILWAY ENGIN

FRENCH R C MUBILE RADIG PAPER IERE C NPL TEDOINGTE

FRITSCHE R NON CONTACT measurement

GARBRECHT K AUTEMATIC WAG RAILWAY ENGIN

GAZIS C
TRAFFIC CONTR IEEE PROC VOL

GENEVOY P ET TELECUMMUNICA DU METRE EXPR REVUE GENERAL

GILES C G GUIDING ANC C NEW SCIENTIST

GITTINGER N C RADAR TRAIN S national tele

GOULD A V GUTEMATIC VEH ieEE trans ve

GUSTAFSSEN S VEHICULAA LOC URBAN FLEETS HRESENTEO A AIAA PAPER NE

DUNALOSEN R W

DESIGN GF TRANSPUNRERG SIGNALS AND RFCEIVERS FHR AUTOMATIC VEHICLE LGCATIEN AND IDENTIFICATIEN SYSTEMS IEEE TKANS VEL COM-23 NG 5 PP $489-500$ MAY 1975

EDWARDS J R

ADAPTIVE DIGITAL CPMMIJIICATIEN SYSTEMS FRR MEGILE APPLICAIIGNS PAPER IENE CENF AN CIVIL LAND MASILE RADI日 $18=20$ NOV 1975
NPL TELOINGTAN MIDDX
IERE CENF FREC NB 33
FUOTE R S
AUTGMATIC VEHICLE IDENTIFICATIAN
TRAFFIC ENGINEERING ANC CONTROL VOL 15 NO 6 ECT 1973 PP 300
FOSTER G I
RAILWAY SIGNALLING DEVELOPRENT
RAILHAY ENGINEERING JBLRNAL VOL 2 NA 2 PP MAY 1973
FRENCH R C
MUBILE RADIU DATA TRANSMISSIGN ERRER PERFGRMANCE
PAPER IERE CENF EN CIVIL LANO MEBILE RAOIO $18-20$ NOV 1975
NPL TEDDINGTON MINDX IERE CINF PROC NO 33
FRITSCHE R MESCH F
NON CONTACT MEASUREMENY A CEMPARISON OF OPTICAL SYSTEMS
MEASUREMENP AND CENTRIL 6 JULY 1973 PP 293-300
GARBRECHT K
AUTEMATIC WAGEN IDFNTIFICATIEN SYSTEM USING MICRGWAVE TECHNIGUES RAILWAY ENGINEERING INTP 208 JUNE 1972

GAZIS C
TRAFFIC CONTROL: FROM HANE SIGNAL TA COMPUTER
IEEE PREC VOL 59 NH 7 PP 1090-99 JUL 1971
GENEVGY P ET AL
TELECOMMUNICATIONS ET COMMANDF AUTGMATIQUE DE LA LIGNE FST OUEST DU METRE EXPRESS REGIANAL
REVUE GENERAL DES CHEMINS DE FER FEB 1974 PP 53-76
GILES C G
GUIDING ANC CENTRELLING CARS BY ELECTRENICS.
NEW SCIENTIST 15 PP 664-6661962
GITTINGER N C
RAOAR TRAIN SEPARATIEN AT BARTD
NATIUNAL TELEMETERING CANFERENCE 1967 SAN FRANCISCO PROCP PP 80-86
GBULD A V
AUTUMATIC VEHICLE FUNITTFIAG APPLIED TO BUS RPERATIONS
IEEE TRANS VOL VTーPZ NE 2 PP $42-5$ MAY 1973
GUSTAFSSON S G MAHIENJF
VEHICULAR LOCATIEN AND CEMMUNTCATIEN SYSTEMS FER URBAN FLEETS
PHESEMTED AT THE IJRUAY TFCHNOL CRNF. MAY 24-2K 1971
AIAA PAPER NG 71-513

```
HAIGH」D
PRECISION PGSITIEN FINCING UNDER OYNAMIC CONOITIENS
SYSTEMS TFCHNALOGY OCT 1975 NO 22
HAM R
AREA TRAFFIC CONTOAL IN WEST LONDGN 2. VEHICLF COUNTING
DETECTERS
TRAFFIC ENGINEERING ANR CSNTROL AUG 1969 PPIT2-176
HAM \(K\)
    SYSTEM FOR IDENTIFICATIGN EF VEHICLES TRAVELLING ALENG a
    PREDETERRINED ROUTF.
    MINISTRY GF TRANSPART APPLICATION NGTE NO. 7182/67.
    HANYSZ E A OUINN C E STEVENS J E TRABOLO W G
    OAIR= A NEW CONCEPT OF HIGHWAY COMMUN. FOR ADDED SAFETY
    AND ORIVING CONVENIENCE
    IEEE TRANS VOL VT-16 NE 1 PP 33-41 1967
    HARMAN R E
    PROBLEMS AND TECHNIQUES IN THE USE GF AUDIO FREQUENCY TRACK
    CIRCUITS.
    RAILWAY SYSTEM CENTRELS VFL 6 NO 5 MAY }1975\mathrm{ PP 22-25
    HEAD J R
    THE OPERATION OF THE INOUCTIVE LOOP VEHICLE DETECTOR
    TRAFFIC ENGNG AND CONT VAL 12 JULY 1970
    HEMMES R A
    AIN INTERVIEW OF THE UMTA ALIGMATIC VEHICLE MONITERING PREGRAM
    IEEE TRANS ON VEH TECHN, 1973 AR 1974.
    MEWTON J T
    THE METROPOLITAN TERONTO TRAFFIC CONTROL SIGNAL SYSTEM.
    IEEE PROC VOL 56 NA & PP 577-99 APR 1968
    HIX L
    AUTOMATIC VEMICLE IDENTIFICATIONO
    SYMP EN THE USE OF CYRERNETICS ON THE RAILWAYS P 397
    INT UNION OF RAILWAYS PARIS 1963
    HGBBS F D AND RICHARISON B D
    INSTRUMENTATION IN TRAFFIC ENGINEERING.
    TRAFFIC ENGINEERING ANC CONTROL 8(12).9(1.2.3.4.5), 1967.
    HOLMES J C HARTLFY M G
    A PROTETYPE VEHICIE DFTECTER EMPLGYING CAPACITIVE PROPERTIES
    REPORT UMIST 1970?
    HOLMSTROM F R MOPKINS J B NEWFELL A T WHITE E W
    A MICREWAVE ANTICIPATARY CRASH SENSGR FOR ACTIVATIEN GF AUTGRGBILE
    PASSIVE RESTRAINTS.
    IEEE TKANS VEL VT-22 AD 2 PP 46-54 MAY 197?
    HU A S
    TRANSMISSIEN PROPFRTIES OF HAYSIDE CHMMIJNICATIANS SYSTEMS
    PHOC IEEE MAY 197. VOI. GI NO S PP 556
```

KAPLAN G
ANALYSIS
LOCATION
IEEE TAAN
KAmANAEE
FIELD TES
CAB SIGNA OUARTERLY

KELLER W - METHEO SYMP ON T INT UNION

78
KISHIMETE TIME OIVI SPACE RAD 10 TH S YM
PROPERTIE
TELECOMMY
RAILmat

HUEBSHER H
FEASISILITY PF RADAR BEAC AN TFCHNIQUES FER PATRGN VEHICLE TRACKING AND PESITION CISPIAY
PAPER IST NATIENAI SYMPASTUM AN LAW ENF RRCEMEHT SCIENCE AND TECHNHLUGY ITT RESFARCF I 'ISTITUTE CHICARGF MARCH 1967

HULSHER F R
SELECTIGA RF VEHICLE DETECTGRS FER TPAFFIC MANAGEMENT TRAFFIC ENGNG AND CONT OFC 1974 PP915

HULSHER F R SIMMS A G
USE GF VEHICLE DETECTAFS FGR TRAFFIC CONTREL
TRAFFIC ENGNG AND CONT NOV 1974 VEL 15

ISENSEE A
THE MICREWAVE SYSTEM SITARIO A MEANS FER AUTGMATION OF GOEOS TRAFFIC
RAILWAY TECHNICAL REVUF 1974 VOL16 PP39-40

ITOK KIYOSAWA S
TWO FREQUENCY COMBINATIGN TYPE A F TRACK CIRCUIT
RAILWAY TECHNICAL RESFARCH INST OUARTERLY REPGRT VOL 121971 PPE9

IVES A P
A COMPARISEN GF MICROWAVE SYSTEMS FGR THE HEADWAY CONTROL OF AUTOMOBILES
PROC MICRGWAVE 1973 CANFERENCE BRIGHTAN ENGLAND PP 413-417

JAKBBSBERG H
APPLICATI ONS OF AUTOMATIC VEHICLE LOCATION SYSTEMS TO
RAILROAD GPERATIENS
ASME PAPER 73-RT-6 APRIL 11 -12 1973

JEFFRIES A EH
TRACK CICUITS ANOTHER FFLE
RAILWAY SYSTEM CONTRCLS SEPT 1974 PP10
KAPLAN G 5
ANALYSIS OF AN ELECTROAIC FENCE ELEMENT FOR A VEHICLE
LUCATION SVSTEM
IEEE TRANS VBL VT-20 NM 2 PP 26-34 MAY 1971
KAWANAEE H ITAKURA E YITAA H
FIELD TEST OF MULTIFREGUENCY NEN INSULATING TRACK CIRCUITS AND
CAB SIGNALLINO EOIITPMEAT
QUARTERLY REPGRT RAILHAY TECHNICAL RESEARCH INST VOL 3 NO 1962

KELLER W M
A METHOD GF CEVELRPING HAREWARE FER AJTOMATIC CAR IOENTIFICATIEN.
SYMP ON THE USE OF CYAERNFTICS FN THE RAILHAYS P 104
INT UNION CF RAILWAYS FAHIS 1963

KISHIMETU ET AL
TIME OIVISION MULTIPLEX CHNTROL COMMUNICATIONS USINO A PAIR EF
SPACE RADIE WAVES
10 TM SYMPESTUM ON TMF IJE UF CYAERNETICS ON THE RATLWAYS JRCA 1974
KISMIMOTE T MATSIJMUHAK
PROPERTIES AF OPEN WIRED I.EAKY COAXIAL CABLE AS A THAIN
TELECOMMUNICATIEN LINE
RAILWAY TECHNTCAL PESFANCH INGT RUAHTFRLY REPART VOL 12 NO 1978


```
KISHIMETE P MATSUMURA K MATRHASHI Y IJTSUGI T
TRAIN RADIE TELECTMMUNIGATIGNS SYSTEM USING LEAKY CEAXIAL CABLE
IN TUNNELS
RAILWAY TECHNICAL RESEARCH INST QUARTERLY REPGRT VGL 12 NE 2 1971
KOBAYASHI A NAKAYA R
TRAIN CETECTIGN USING ABSTRPTIPN AND SCATTERING PHENOMENA OF
RADIATION THRGUGH RGDIES GF CARS
QUARTERLY REPGRT RAILWAY TECHNICAL RESEARCH INST VBL 4 NO 3 SEPT 6E
```

KUTH W
D.B. TRACK TO TRAIN CEMMUNICATIGN
RAILWAY GAZETTE INTERNATIGNAL MAY 1970, PP 334-337
LASS H
CZECK TRACK TEST ACI FER EUREPE
INTERNATIGNAL RAILWAY JRNL MAY 1970
LEAVER R F
TRACK TO TRAIN COMMUNTCATIEN.
SYSTEMS TECH NO 2O FERRUARY 1975 PP $30=32$
LEE L H
THE USE OF MINI CAMPUTER IN THE ON LINE CONTRAL OF A
LARGE TAXI FLEET
IEEE TRANS VEL VT-23 NE 3 PP 147-54 AUG 1974
LEITENBURGER W
MUDERN TELECOMMUNICATIENS FGR RATIENALISING RAILWAY OPERATION
RAILHAY TECHNICAL REVUF 1972 VAL 14 PRG
LIGUERI A KAPLAN G HABER C
R.C.A. GOVERNMENT COMMLNICATION SYSTEMS AUTOHATIC
VEHICLE MONITOFINA SYSTEM
CENTRACT NE DIT-UT-ION23 NEV $7197 ?$
M/F PB-219033

MACE D G H
INSTRUMENTATION IN ROAD TRAFFIC CONTRAL
TRAFFIC ENGNG AND PONTAGL VOL 5 DEC 1963 P483
MARLEY P J
VEHICLE DETECTOR FVALUATIGA STUOY
TRAFFIC ENBINEERING ANC CINTROL JUNE 1968 PP 68-72
MARTIN D R
RADIO COMMUNICATION IN MINES 5 TUNNELS
ELECTRON LETT VOL 6 NG 18 SEP 1970
MARTIND JR
FULL CEVERAGE EF THE MINF RY LINE - PROPAGATED gY VAF RADIE
MINING TECHN NOV 1970 PP 7-15
MARTIND」R
SYSTEM ASPECTS OF LEAKAGE FIELO RADIT COMMUNICATION
PAPER IEAE CGNF AN CTVIL MO8ILE LAND RADIO IA-20 NOV 1975
NHL IECOIMGIEA HIDEA IERF CONP PREC NA 33
MATSUMETO SHUNTETSU
MIGMHAY COMMUNICATION SYSTEH USING OUIDANCE CABLE
IEEE TAANS VOL VT-PO NE 1 PP $12-16$ FE日 1971
mCaulay a PREGRESS TRANSPERT

MELLITT B DATA TRAN ELECTREN

MESAREVIC THEORY \&F ACADEMIC

MEYR H R NON COATA HASLER RE

MILLS M K FUTURE VE IEEE TRAN

MILLS M magnetic IEEE TRAN

MIX R M CAR NUMBE RAILWAY S

MONK N COMMUNICA IRE TRANS

MOURE W SOME MEAS BETWEEN (TRANSP OR

MUILWIJK MOBILOPHO PHILIPS

MURRAY W OVERVIEW MITRE COR

NAKAMURA a DEVICE aUTOMATIC 1OTH SYMP

NIELO C AUTGMATIC BRITISH

NORTON D SPEECH CS TECHNICAI

COAKYU TRAINCOR LOTH SYMI

```
mCAULAY a C
PREGRESS IA SIGNALIINB FOR TRACK GUIDED SYSTEMS TRANSPERTATIEN ENGINEERINTI JRNL FBR ASCE VAL 101 NG TE4 NEV 1975
MELLITTB
DATA TRANSMISSIUN CHARACTERISTIES OF RAILWAY TRACK.
ELECTREN LETT GB VPL 9 NE 23 PP 550-551 15 NeV 1973
MESAROVIC M D MACKU \(\cap\) TAKAHARA Y
THEORY GF HIERARCHICAI. MULTILEVEL SYSTEMS
ACADEMIC PRESS NEW YURX 1970
MEYR H RYSER H ZIMMFR CH
NON CENTACT SPEED MEASUREMENT BY CORRELATION TECHNIQUES
HASLER HEVIEW VOL a NA 2
MILLS MK
FUTURE VEHICLE DETECTIEN CENCEPTS
IEEE TRANS VOL VT-I9 NE 1 PP 43-49 FEB 1970
MILLS MK
MAGNETIC GRADIENT VEHICLE DETECFGR
IEEE THANS VOL VT-23 NE 3 PP \(91-9\) AUG 1974
MIX R M
CAR NUMBERS BY ACI: FAST MAVE TO USFRS
RAILWAY SIGNALLING COMNUN NEV 1965 PP \(16-8\)
MONK N WINBIGLER H S
COMMUNICATIGN WITH MEVING TRAINS IN TUNNELS
IRE TRANS VEH CEMMUN VEL PGVC=7 PP 21-28 DEC 1956
MOERE W \(\quad\) MACE \(O\) G \(W\)
SOME MEASUREMENTS RN L LASER SYSTEM TO MEASURE THE DISTANCE BETWEEN VEHICLES
(TRANSPORT K) ROAD RESEARCH LAB TECHNTCAL NOTE NG TN4G3 APR 1970
MUILWIJK D
MOBILOPHONE BUS TRAFFIC SUPERVISITN AND CONTRGL SYSTEM
PHILIPS TELECGMMUNICATIGNS REVUE VOL 26 NO 1 JULY 1965
MURRAY W S 8 SCALES WC
OVERVIEW OF AUTOMATIC VEHICLE MGNITORING SYSTEMSE
MITRE CORP WASHINGTON REPART MTP-386 AUG 1573
NAKAMURA ET AL
A DEVICE FER THE DFTECTION OF THE BAUNDARY BETWEEN CARS IN AN AUTOMATIC CENTROLLFD YARD IOTH SYMP OSIUM ON THE LSF GF CYAERNETICS DN THE RAILWAY IRCA 1974
NIELD C W
AUTOMATIC RECORDING OF HABON MEVEMENT
BRITISH CAMMUNIVATIONS AND ELECTRGNICS SEPT 1963 PP 690-694
NORTON D J DAVID V
SPEECH CEMPUNICATIANS WTTH TRAINS
TECHNICAL PEETING CF PEE MARCH 1967
COAKYU ET AL
TRAIN CEMMLNICATIMNS SYSTEF
\(10 T M\) SYMPOSTUM ON THE LSE EF CYBERNFTICS GN THE RAILWAY IRCA 1974
```


STARAS H HENTCKMAN S N
ACCURACY GF VEHICIF LACATIEV RY TRILATERATIAN IN A DENSE
LRBAN ENVIFGNMENT
IEEE TFANS VEL VT-21 NE 1 PP $38-43$ FEB 1972
STARAS H ET AL
A RADAR SENSUR FUR AUTRMATIC BRAKING THAT IS IMMUNE TO BLINDING
AND CLLTTER
PROC. MICREWAVE 1973 CPNFEFENCE, BRIGHTAN ENGLAND PP $404-412$
STAVIS G
BPTICAL CIFFRACTIAN VFLECIMETER
INSTRUNENTATIEN ANC CONTRGL SYSTEMS FER 1966 VEL 39 PP 99

SCHNARTZ H
AUTUMATIC VGLUME SURVEY IVSTRUMENTS
TRAFFIC ENGNG AND CONT VOL 5 DEC 63 P 480

SCHWARTZ H
SPEED SURVEY INSTRUMENTS
TRAFFIC ENONG AND CONT VEL 5 FEB 1964

SCHWARTZ H C
RELIABILITY ENGINEERING, IPPACT ON TRANSPARTATION CONTROL
SYSTEMS.
R S C RAILWAY SYSTEM CONTROL (USA) VEL 5 NU 7
PP 15-17,20.22,24 JULY=AUG 1974
SCLATER N
WANTEO: FASTER PGLICE COMPUNICATIENS
ELECTRONIC DESIGN VOL 16 PT 131968 PP 25-31

SINGLETEN F HARD J E
DYNAMIC STOCHASTIC CONTROL HF FREEWAY SYSTEMS VOLUME 5 A
COMPARITIVE STUOY RF VARIGUS TYPES OF VEHICLE DETECTERS
ELECTRENIC SYSTEMS LAR MIT CAMRRIDGE MASS MCT 1975
REPORT ESL R 6I2 CONTRACT DOT TSC 849
SWALED L GINNMG
THE MARCONI RRL VEHICLE DETECTBR
TRAFFIC ENGNG AND CONTROL VOL 11
TEOD
ELECTRIC CABLES FGR SIGNALLING AND TRACK TO TRAIN COMMUNICATIGN RAILWAY ENG JVOL 4 NE 5 P $71=73$ SEPT 1975

TRACEY R N
INSTANTENEQUS BUS TDENTIFICATION AND LECATION
METROPELITAN MAY 1 JUNF 1968
TYLER R A
VEHICLE LOCATIEN SYSTEMS.
HIRELESS WERLD SEPT 1970 P 435
WARREN W T ET AL
VEMICLE LGCATIEN EXPERTMENT
IEEE TRANS VEL VT-PI NE 3 P 9P-100 AUR 1972

WAY R

THE ADVANCE TO AUTRMATI.TN
RAJLWY INT NEV 1976 PGE7-696


```
147 = = -
    AUTUMATED GUIDEWAY
    AN ASSESSMENT EF PRT AAD ATHER NEW SYSTEMS
    OFFIC E OF TECHNOLBGY \triangleSSESSMENT US CONGRESS JUNE 1975
148
149 = - -
    AUTUMATIEN ENSURES SAG PAIILGS METREIS LINE CAPACITY
    RAILWY GAZ PP 351 SEPT 1974
    CONTINUUUS AUTEMATIC TRAIN CONTROL FN MUNICH S-BAHN.
    RAILWAY GAZ INT JANUARY 1974 PF 18-20
    DESIGN TECHNIQUES FOR AUTOMATIC TRAIN CONTROL
    WESTINGHEUSE ENGINEERING JULY 1972 PP 98-103
    -"-
    MALAYAN RAILWAY SIGNALLING.
    RAILWAY GAZETTE 562-563 16 NOV 1962
    RAPID TRANSIT IN FRENCH PREVINCIAL CITIES.
    RAILWAY GAZETTE INT JULY 1974 PP 272-276
    - - -
    NEW ELECTRONIC CONTRELS MEET HIGH SPEEO RERUIREMENTS
    INTERNATIONAL RAILWAY _OURNAL
    TEST CGACH MEASURES NEW TRACK TO CAB SIGNALLING SYSTEM
    INTERNATIGNAL RAILWAY GUURNAL JULY 1974 PP 64
156
    TRAIN CONTROLS PROCEED SLAWLY.
    ELECTRONICS VOL 47 NO 24 PP46-48
    NOV 28 1974
    RENFE INTRODUCES CAB SIGNALLING
    RAILWAY SYSTEM CONTRELS JAN 1975 PP 20-22
    TRAIN LOCATION SYSTEM IS NEW IN GPERATION EN THE BRITISH CELLMBIA
    RAILWAY SYSTEM CONTRELS MARCH 1975
    ALEXANDRE LM
    VOICE COMMLNICATIEN IN THF TUSE
    RAILWAY GAZ INP APRIL 1976
    ALSTENLL
    ELECTRICAL RESEARCH IN BRITISH RAILWAYS.
    ELECTRENICS AND PRWER VEL 16 P 3
    ALSTON L L BIRKBY J W
    DEVELGPMENTS IN TRAIN CGNTRUL ON B.R.
    J INST RAIL SIO ENGRS LATF 1971
    ABSTRACTED IN MODFRN RAILINAYS NEC I971 VPL 2S NP 1 PP 232-3
```



```
17ヶ CUNCLIFFE 」P
    A SURVEY GF RAILWAY SIGNALLING AND CENTRAL.
    PROC IEEE 56 NE 4 PP K53-674
177 OAVIDSEN JE
    USE UF DATA PROCESSING IN TAXICAR CONTROL
    HWY RES BD SPEC FPT 136 1973 PP 99-107
    DEANE P M
    THE PHSSIBLE IMPACT UN SPECTRUM CONSERVATIGN GF RADIATING CARLE
    SYSTEMS CARRYING SPEECF AND DATA TO PGAD AND RAIL TRANSPERTATIEN
    PAPER IERE CONFEFFNCE EN CIVIL LAND MGBILE RADIG IERE CONF PROC
    NO 33 18-20 NOV 1975 NPL TEDDINGTAN MIDOX
    DELL R MANSER A W
    AUTOMATIC DRIVING RF PASSENGER TRAINS ON LUNDON TRANSPERT
    PROC I MECH E 1964-65 VEL 179 PT 3A PP 24-35
    DEVY R.
    AUTOMATIC OPERATIEN WILL REPLACE MONTREALS MANIJAL SIGNALI.ING.
    INT RAILWAY J VOL 15 NE 10 OCT 1975 PP 58.60,75
    OYER WKH
    APPLICATIGN OF COMPUTEF TECHNOLOGY TA RAILHAY FREIGHT.
    ELECTRONICS AND POWER P IOGI NOV }197
    ESSIG P BERRY F T
    THE REVUE AND EVALUATION OF THE ECONUMIC AND TECHNICAL RESULTS
    GF THE AUTEMATION RF MFTRAPOLITAN RAILWAYS. EFFECTS OF THE
    ENERGY CRISIS ON THEIR GPFRATIAN
    41ST UITP CONGRESS NICE 1975
    FOSTER G I
    RAILWAY SIGNALLING DEVELOPNENT
    RAILWAY ENGINEERING JAIIRNAL VAL 2 NO 2 MAY 1973
    FESTER G I
    DESIGN PHILGSOPHIFS IN AUTAMATIC TRAIN CONTROL.
    RAILWAY GAZ INT VEL 1:31,., 10 PP 377082 OCT 1975
    FREEHAFER J E
    DESIGN PHILGSOPHIFS IN AUTOMATIC TRAIN CUNTROL
    RAILWAY GAZ INT VAL 17t NM 10 ECT 1975 PP 377-382
    FREHAFER JE
    IMPLICATIGNS OF MHDERN TRANSIT SIGNALLING CONCEPTS FOR MAINLINE
    RAILREAD OPERATIGN
    RAILHAY SYSTEM CONTRELS JAN 1975 PP 20-22
    FUJII MATSUTARO
    NEH TOKAIDO LINE.
    PROC IEEE NO 4 PP 635 196R
    GAZIZ G C
    TRAFFIC CONTRIL FRPM HAND SIGNAL TM CSMPUTER
    PROC IEEE JUL 197: VOL 59 NH 7 PP 1090-9
    GELBSTEIN E C AND PARKMAN W T
    RAILWAY CYAERNETICS.
    PAPER FROM TME CONFEREACE ON CENTRAL ASPECTS OF NEW FORMS
    OF GUIDED LAND TRANSPART GYSTEMS.
```


TRAIN SAFETY CONTROL SYSTEM FGR SHINKANSEN－C．E．V．SYSTEM WITH PRIERITY AN SAFETY．
asme trans of journal ef grnamic systems measurements ASME TRANS OF JOURNAL EF DYNAMIC S
AND CONTROL VOL 97 NE 2 PP $146=148$

KEKONILS O KALLBFRG N
THE AUTGMATIC PILOT FgR LNEERGRUUND TRAINS IN STOCKHOLM PROC I MECHE $1964-65$ VAL 179 PT 3A PP71－79

210 KENT G R DUCKITT μ
DEVELOPMENT OF AUTEMATIC TRAIN OPERATION GN LONDON TRANSPART
PROC INSTN RAILWAY SIGNAL ENGINEERS 1964－65 PPIT1－98
211 KOHLEREJ
CONTINUOUS AUTOMATIC TRAIN CONTROL GN MUNICH S－BAHN
RAILWY GAZ JAN 1974
212 KUBO S AND KAMADA S
AUTOMATIC TRAIA OPERATIGN BY MINI COMPUTER．
RAIL INT NE 9 SEPT 1973 PP $971-975$
213
LaGERHAUSEN
USE UF ELECTRUNIC COMPLTERS FGR DRIVERLESS TRATN GPERATIEN AND CENTRALISEO CONTRHI．OF THF TRAFFIC HN THE LINE
BULLETIN IRCA CYAFRNETICS ANO ELECTRANICS ON THE RAILWAYS PP 295－3C
214
INST haIlway signal engrs
SET OF $2 G$ BhekLets gn gati．way signalling practice，incluning
2 －PHINCIPLES EF INTERLHCKIHG
7 －TYPICAL SIGNAL Cgntrgl cipcuits
9 －track ciacuits
14 －MLLTIPLE ASPFCT SIGNAILING
19 ， 21 －R日UTE CHNTHOL SYSTEMS
24 －ALTEMATIC WARNING SYSTEMS
26 －REMETE C日NTR日L OF RAILWAY SIGNAL interlocking

AUTGMATIC TRATA OPFRATIPN RY PNGGRAM CFNTROL
PROC I MECH E $1964-65$ VAL 179 PT 3A PP51－61
ITI T SHINDO A
AUTUMATIC CONTROL TRATN EPERATION PT 1 AUTOMATIC BRAKING APPARATUS
TO STOP A TRAIN AT A PRESCRIBED POINT
QUARTERLY REPGRT RAILWAY TECHNICAL RESEARCH INST JNR VEL 3 NE 3
SEPT 1962
JACKSEN R L
AN EVALUATION OF BUS CENTREL SYSTEMS BY SIMULARTIEN TRRL REPORT LR 71P 1976

KAMBE T SARUYA T
PERFERMANCE TEST OF AN AUTOMATIC TRAIN POSITIGNED STOP SYSTEM QUARTERLY REPGRT RAILWAY TECHNICAL RESEARCH INST VOL 12 NE3 1971 PF PP 152

KATAUKA NEVIA

LASS 4

LZECH TRACK TESTS ACI FAF EURAFF．
Int RaIlway Journal may 1970


```
259 PIERICK K
    MANOMACHINE SYSTEM IN THE CFNTRFL AF TRANSPFRT PRFCESSES
    RAIL INT VHL 4 NE 10 ECT 1973 PF 1073-1077
    PBPE R
    RAILWAY SAFETY AND GPFFATING PHILESEPHY
    PAPER CHANNEL TUNNEL REPT GH BFARD
    PHILLIPS R S
    ELECTRICAI_ LIFTS.
    PITMANS 1973
232 SANTOS S M BARNEY G C C
    COLLECTIUN OF PAPFRS THF DESIGN EVALUATION AND CENITREL GF LIFT
    SYSTEMS
    1974-75 CENTRELS SYSTEMS CENTRE UMIST MANCHESTER
233 SCHMITZ H
    INTEGRATED APPLICATION GF INFO. TECHNIGUES ON THE RAILWAYS.
    4TH INT SYMP GF RATLWAY CYBERNETICS WASHINOTON, 2I-26 APRIL
    1974 RAIL INT NO 2 PP 125-129 FEB 1974
234 SECOND INTERNATIONAL SYMPASIUM ON THE USE GF CYBERNETICS
    GN TH RAILWAYS ISESSIGN ON THE AUTOMATIC CONTROL OF TRAIN MOVEMENTS
    BULLETIN IRCA: CYRERNFTICS AND ELECTRONICS ON TNE RAJLWAYS
    VOL 4 NOS 10 & 11 OCT & NAV 1967
235 SCHMITZ W
    INTEGRATED PROCESS CENTREL ON THE RAILWAYS
    PROCEEDINGS ON GUINED LAND TRANSPORT 1966 PP43-45
    SCHMITZ W
    THE P&SSIBILITY OF DRIVERI_ESS TRAIN APERATIGN IN RELATIGN TG
    MODERN SIGNALLING SYSTEM
    BULLETIN IRCA CYRFRNFTICG AND ELECTRINICS UN THE RAILWAYS PPIR8-IS
237 SHINOHARA H
    ATUUMATIC TRAIN BPERATIGN
    BULLETIN IRCA CYBFRNETICS AND ELECTRONICS ON THE RAILWAYS PP182-187
    SHIRAI YOSHIMI ISHIHARA Y
    TEITE RAPIO TRANSIT AITHPRITIES AUTGMATIC TRAIN EPERATIAN.
    PROC IEEE 56 NO & PP 6C5-615 APRIL 1968.
    SMITH V H
    VICTURIA LINE SIGNALLIAG PFINCIPLES
    PAPER IEE MEETING PUBI.ICATITN 16.11.6G. PP 76-104
    STABLH J AND LEREXY J
        LATEST DEVELGPMENTS IN AUTUMATIC DRIVINO TN THE RAILWAY
        SYSTEM GF THE PARIS TRANSPERT AUTHERITY.
        FRENCH RAILWAY TECHNIJLFS NE ? 1974 PP 55-65
    241
    STEFANEX R G K WIIKIE D F
        CONTRAL ASPECTS EF A DLAL MAOE TRANSPGRTATION SYSTEM
        IEEE TRANS VPL VY-?2 PP 7-1P 1973
    24?
        STENART % :-
        TRAIN REGULATIEN STRATFGY. THE METHAD TF AXIAL RBUTE
        INTERSECTION.
        PAIL IATERNATIONAL 1 GTH VEAR, JAN 1975
```

```
    SYSTEMS FAR AUTGMATIC CENTRHL AND MGNITGRING GF BUS SERVICES
    TRAFFIC ENGNG ANO CONT VAL 12 DEC 1970 P4IO
244 STENE D AND GLIVEF E
    AUTGMATIEN IN THE CGNTRGL AND REGULATION OF BUSES.
    XVII CENVEGNE INTFRNAZIGNALE DELLE CGMMUNICAZIONI GENOA
    甘CT 1969
245 STRAKBSCH G R
    VERTICAL TRANSPURTAION EL.EVATGRS AND ESCALATERS
    WILEY N YGRK 1967
    TYLER JF H
    SIGNALLING FOR HIGH SPEED TRAINS
    PROC INST RAILWAY SIGNAL ENGINEERS 1970
    TABAK D
    APPLICATIGN OF MODERN CONTRGL AND OPTIMISATION TECHNIQUES TA
    TRANSPORTATION SYSTEMS (CANSIDERS ROAD TRAFFIC)
    CONTROL ANO DYNAMIC SYSTEMS VOL 10 PP 3450434 1973
    TAPPERT H
    CHARTING THE LIMITS OF UNMANNED OPERATION.
    RAILWAY GAZETTE INT VAL 131 NA 10 PP 3730377 ECT 1975
249 TYLER JFH
    SIGNALLING FOR HIGH SPEED TRAINS,
    PREPRINT PROC INSTN RAILWAY SIGNAL ENGINEERS
    MODERN RAILWAYS MARCH 1970 P }10
    WARGO M D
    AUTGMATIEN WILL HFLP IJA SCRAMBLE TANGLED TRAFFIC SYSTFMS IN CITIES
    PREOUCT ENGINEERING GCT 12 1970 PP 15-16
    WANTTAGGGE
    AUTOMATED RAILWAY TRANSPARTATIEN CONFIGURATIANS
    G.M.C. RESEARCH DEPT REPERT 10.1.1972
    WINTER P
    SWISS EXPERIMENTS WITH TRACK TO PRAIN COMMUNICATION.
    RAILWAV GAZETTE INT VAL 131 NO 10 OCT 1975 PP 387-388
```

APPENDIX 3 DERIVATION OF FORMULA FOR
INTERMEXIATE SPEED
a_{1} - acceltration reached in Ist spetd change a_{2} - " " \ln " j_{1} - value of jerk usto " Ist ."

v_{1} - velority at stort
v_{2} - vetcrity at fud
V_{i} - internediate spetd.
T - thire for whote momotuvre X - distance

$$
\begin{align*}
& T_{1}=\frac{\left(v_{i}-v_{1}\right)}{a_{1}}+Q_{1} \quad \text { where } \quad Q_{1}=\left|\frac{a_{1}}{j_{1}}\right| \\
& T_{2}=\frac{\left(v_{2}-v_{i}\right)}{a_{2}}+Q_{2} \quad \text { where } Q_{2}=\left|\frac{a_{2}}{j_{2}}\right| \\
& D_{1}=\frac{\left(v_{1}+v_{i}\right)}{2} T_{1} \\
& D_{2}=\frac{\left(v_{2}+v_{i}\right)}{2} \cdot T_{2} \\
& V_{i}=\frac{x-\left(D_{1}+D_{2}\right)}{T-\left(T_{1}+T_{2}\right)} \ldots \ldots \tag{1}\\
&\left(T_{1}+T_{2}\right)=\frac{\left(v_{i}-v_{1}\right) a_{2}+\left(v_{2}-v_{i}\right) a_{1}+a_{1} a_{2}\left(Q_{1}+Q_{1}\right)}{a_{1} a_{2}} \\
&\left(D_{1}+D_{2}\right)=\frac{1}{2 a_{1} a_{i}\left(\left(v_{2}^{2}-v_{1}^{2}\right) a_{2}+\left(v_{2}^{2}-v_{i}^{2}\right) a_{1}+a_{1} a_{2}\left(Q_{1} v_{1}+Q_{2} v_{2}\right)\right.}
\end{align*}
$$

From (1) $\quad V_{i}\left(T-\left(T_{1}+T_{2}\right)\right)=X-\left(D_{1}+D_{2}\right)$

$$
\begin{aligned}
& \text { LHS }=T v_{i}-\frac{v_{i}}{a_{1} a_{2}}\left[\left(v_{i}-v_{1}\right) a_{2}+\left(v_{2}-v_{i}\right) a_{1}+a_{1} a_{2}\left(a_{+}+a_{2}\right)\right] \\
& \text { RHS }=x-\frac{1}{2 a_{1} a_{2}[} \begin{aligned}
\left(v_{i}^{2}-v_{1}^{2}\right) a_{2}+\left(v_{2}^{2}-v_{i}^{2}\right) a_{1} & +a_{1} a_{2}\left(Q_{1} v_{1}+Q_{2} v_{2}\right) \\
& \left.+a_{1} a_{2}\left(Q_{1}+Q_{2}\right) v_{i}\right]
\end{aligned}
\end{aligned}
$$

multiply by $2 a_{1} a_{2}$ and collect terms

$$
\begin{aligned}
v_{i}^{2}\left(a_{1}-a_{2}\right) & +v_{i 2}\left(a_{1} a_{2} T+a_{2} v_{1}-a_{1} v_{2}-a_{1} a_{2}\left(\frac{\left.Q_{1}+Q_{2}\right)}{2}\right)\right. \\
& +\left(a_{1} a_{2}\left(Q_{1} v_{1}+Q_{2} v_{2}\right)-2 a_{1} a_{2} x-a_{2} v_{1}^{2}+a_{1} v_{2}^{2}\right)=0
\end{aligned}
$$

using the standord solutoin for a quadrati equatai and setting.

$$
\begin{aligned}
& Z=T-\left[\frac{Q_{1}+Q_{2}}{2}\right] \\
& Y=Q_{1} V_{1}+Q_{2} V_{2}
\end{aligned}
$$

the final solutain can $b \in$ obtarined ofter some algefraic manipubtion:

$$
\begin{array}{r}
v_{i}=\frac{1}{\left(a_{1}-a_{2}\right)}\left\{a_{1} v_{2}-a_{2} v_{1}-a_{1} a_{2}\left[z \pm\left(z^{2}+\frac{1}{a_{1} a_{2}}\left[\left(v_{1}-v_{2}\right)^{2}+\cdots\right.\right.\right.\right. \\
\left.\left.\left.\quad-\quad-\left(a_{2}-a_{1}\right)(y-2 x)+2\left(v_{1} a_{2}-v_{2} a_{1}\right) z\right]\right)^{1 / 2}\right\}
\end{array}
$$

A.PENLIX 4 Sumary of lane chance conditions for alternate priority

T_{A} - time last vehicle passed through the intersection taken arbitrarily as from Lane 1.
Tl - The earliest time after TA a lane l vehicle may arrive.
T_{2} - The earliest time after T_{A} a lane 2 vehicle may arrive.
T_{3} - Earliest time after T_{1} a lane 2 vehicle may arrive.
T_{4} - Earliest time after T_{2} a lane 1 vehicle may arrive.
T_{B} - The time the next lane l vehicle would arrive at the intersection with no delay.
T_{C} - The time the next lane 2 vehicle would arrive at the intersection with no delay.

Time diazrams
$T_{1}=T_{A}+f \quad f-$ following working time headway
$T_{2}=T_{A}+c$
c - crossing working time headmay
$T_{3}=T_{A}+f+c$
$T_{4}=T_{A}+2 c$

Diagram

The conditions for a change of lane allocation at the intersection may be summarised as follows.
$1 \quad \begin{array}{llll}\text { if } & \mathrm{T}_{\mathrm{B}} & < & \mathrm{T}_{1} \\ & \mathrm{~T}_{\mathrm{C}} & < & \mathrm{T}_{2}\end{array}$
i.e. both vehicles will be delayed in both cases 1 and 2. then vehicle B goes first, i.e. the lane allocation of the intersection will not change.
2(a) if

$$
\begin{array}{lll}
T_{B} & > & T_{4} \\
T_{C} & < & T_{2}
\end{array}
$$

then the lane allocation will change from 1 to.2, vehicle C will go first.
$2(\mathrm{~b})$ if $\mathrm{T}_{\mathrm{c}}>\mathrm{T}_{3}$

$$
\mathrm{T}_{\mathrm{B}}<\mathrm{T}_{1}^{3}
$$

then lane allocation will stay with lane 1, vehicle B will go first. 3
if $\quad \begin{aligned} & \mathrm{T}_{\mathrm{B}}> \\ & \mathrm{T}_{\mathrm{C}}>\mathrm{T}_{4} \\ & \mathrm{~T}_{3}\end{aligned}$
then a first-come first served system operates.
4 in the situation where
$\begin{array}{ll}\text { or } & \mathrm{T}_{1}<\mathrm{T}_{\mathrm{B}}< \\ \mathrm{T}_{2}< & \mathrm{T}_{4} \\ \mathrm{~T}_{\mathrm{C}}<\end{array}$
The change of lane occurs for a variety of conditions dependert upon the

APPENDIX 5 MEAN PLATOON SIzE
$P(z)=\lambda e^{-\lambda z}$ is potability density that there is a gap of lough t.
The probability of platoon size i is

$$
\begin{aligned}
P_{i} & =\int_{z=0}^{\infty} P(i ; i) p(\tau) d z \\
P(i ; r) & =\frac{k^{i}}{i!} e^{-k} \quad \text { where } k=\lambda z \\
d r & =\frac{d k}{\lambda} \\
\therefore P_{i} & =\int_{k=0}^{\infty} \frac{k^{i}}{i!} e^{-k} \lambda e^{-k} \frac{d k}{\lambda} \\
& =\frac{1}{i!} \int_{0}^{\infty} k^{i} e^{-2 k} d k \\
& =\frac{1}{i!}\left[\frac{-1}{2}\left[k^{i} e^{-2 k}\right]_{0}^{\infty}+\frac{i}{2} \int_{0}^{\infty} k^{i-1} e^{-2 k} d k\right] \\
& =\frac{1}{i!}\left[\frac{i}{2} \cdot \frac{i-1}{2} \cdot \cdot \frac{1}{2} \int_{0}^{\infty} e^{-2 k} d k\right] \\
& =\frac{1}{i!}\left[\frac{i!}{2 i} \cdot \frac{1}{2}\right]=\frac{1}{2^{i+1}} \\
\therefore P_{0} & =\frac{1}{2} \quad P_{1}=\frac{1}{4} \quad P_{2}=\frac{1}{8} \quad c k
\end{aligned}
$$

If platoons of zero sine are discounted thou nisan platoon siyt

$$
\begin{aligned}
& =\sum_{i=1}^{\infty} i P_{1}^{i} \text { where } P_{1}^{\prime}=\frac{P_{1}}{1-P_{0}} \\
& =2
\end{aligned}
$$

APPENDIX 6 Bibliography

The bibliography is arranged into sections, each of which is labelled by a header indicating its contents. Contained in this bibliography are all the references encountered in the course of the research.

AVIZIENIS A
EAULT TOLERANT SYSTEMS
IEEE TRANS ON COMPUTER
LOC: UWL
AVIZIENIS A
FAULT TOLERANT COMPUTING AN EVERVIEW
IEEE COMPUTER VUL JAN/FER 1971 PP $5-8$
BARLOW RE PRESCHAN
BARLOW RE PRESCHAN
MATHEMATICAL THEORY O
PGURICIUS W G ET AL
RELIABILITY MADELLING FOR FAULT TOLERANT COMPUTERS
IEEE TRANS. CEMPUTERS VEL C=20 NOV 1971 PP $1306=1311$ LOC: UWL

CARTER F
eF
THE ATTAINMENT GF RELIABLF DIGITAL SYSTEMS THROUGH THE USE REDUNDANGY A SURVEY

CARTER C BOURICIUS W G
A SURVEY OF FAULT TOLERANT CEMPUTER ARCHITECTURE AND ITS
EVALUATION
COPPUTER JANAFEB 1971
CAFTER W C ET ALTA
LOGIC DESIGN FER DYNAMIC AND TNTERACTIVE RECOVERY
IEEE TRANS ON CEMPUTERS VEL $C 20$ NE 11 NGV 1971
 3RD INT CONFERENCE ON PRT
CRGOTT HL REZENBERO D P
ERGOTT H L REZENBERG D P
REDUNDANCY GUIDANCE CENTRE IBM CERP OWEGO N YORK
REPT 62-533-001 MAY 196 ?
EEIN
REDUNDANCY A MISLEADING MISNEMER
IN REDUNDANCY TECHNIQUES FER CEMPUTING SYSTEMS
ED HILCOX R H MANN W C SPARTAN BEEKS
WABHINGTON DC
LEC: LDB
LEC: LDB
INBURANCE NUISANCE OF RED
FI.ENE RAULT TOLERANT MULTIPROCFSSAR
INF COLLECTED PAPERS ON FAULT TELERANT SPACECRAFT CAMPUTER
TECHNELOGY EDTTOR H HECHT THE AERESPACE CORP AERESPACE
REPORT NO
PP $183-210$
FUEBELL J•B. IFAC GTH TRIENNIAL WORLD CENGRESS. BESTAN/CAMBRIDGE,
MASS. AUGO 1975 . LECN: UTRG.
R 3000 GENERAL RELIABILITY REFERENCES

GAVER D P
TIME TO FAILURE AND AVAILARILTTY OF PARALLEL SYSTEMS TIME TO FATH REPAIR
IEEE TRANS ON RELIABILITY VEI R-12 JUNE 1963

$$
-1+2,-2
$$

GULDMAN A S SLIATTERY T B
AAINTAINABILITY A MAJER ELEMENT OF SYSTEM EFFECTIVENESS UNIVEREITY OF CALIFORNTA FNOTNERI
JOHN WILEY AND SONS N YORK 1964
LOC: UWL T 352 G6 99824
VERY DETAILED RESUME OF MAINTAINABILITY
GESLING
THE DESIGN OF ENGINEERING SYSTEMS
HEYWOOD AND CE LTD LENDEN 1962
LOC: UWL
HERWALD 8 W
RELIABILITY AS A PARAMETER IN PHE SYSTEMS CONCEPT
CHAPTER 11 SYSTEMS:RESEARCH AND DESIGN ED ECHMAN D R
$\underset{=1}{2}$
LOC: UWL T 352 S9
HOPKZN8 4
A FAULT TOLERANT INFORMATIEN PROCESSING CENCEPT FER SPACE
EnICLES

[^4]R 3000 GENERAL RELIABILITY REFERENCES
HOPKINS A L
HIERARCHICAL AUTONEMY IN SPACFRULRNE INFORMATION
PROCESSING
IFAC 6TH CONGRESS 1975 BESTEN/CAMBRIDBE MASS USA
LOC: UWL
JACOBSON H
INFGRMATIONAL CONTENT OF MECHANISMS AND CIRCUITS
INFORMATION AND CONTREL 21959 PP 2B5-296
JACQUES JEAN LESQ
75-21881

-
KEMP J C
RED REDUNDANCY TECHNIQUES FPR COMPUTING SYSTEMS
D WILCEX R H MANN W S SPARIAN BGOKS
WABHINGTON DC
LOC: LDB
KLASIShka TF
RETHAD FOR REDUNOANCY SCLEMF PERFARMANCE ASSESSMENT
IEEE THABN ON COMPUTERE $C 20$ NEV 1971
LOC: UWL
IN ELECTRONIC SYSTEMS
OT 3 G OUANTITATIVE CEMPARISOA OF REDUNDANCY SCHFMES
RAE TR 722001973
REDUNDANCY IN ELECTRONIC SYSTEMS
NELIABILIMETHOD FOR THF ANALYSTS AND ASSESSMENT MF
REDUNDANCY SCHEMES

$\begin{aligned} & \text { REDUNDANCY SCHEMES } \\
& \text { RAE PARMBOROUGH HAN }\end{aligned}$
KLABEHKA
RELIABILITY IMPRQVEMENTS AY REDUNDANCY IN ELECTRONIC SYSTEMS

IT AN EFFICIENT NEH REDLNDANCY SCHEME RADIAL LOGIC
FARNBOROUGH HANTS TFCH REPERT 69045

Nu

0
ON THE CONNECTIUNS BETIEEN RANGE OF VARIABLE 8 CONTREL
SROCEEDINGS OF THE 1975 INTERNATIONAL CONFERENCE ON RELIABLF
SOFTWARE LOS ANGELES CALTF ORNTA APRIL 1975
SOFTWARE REDUNDANCY IN REAL TIME SYSTEMS
PROCEEDINGS OF IFIP CONGRESS 1974 STECKHBLM NORTH HOLLAND
PUBLISHING CE P $182-186$
KGPETZ H TME SEFTWARE
IFAC GTH TRIENNIAL WERLD CENGRESS AUG $24=301975$
BOSTON/CAMERIDGE MASS USA
KUEN RE
COMPUTER REDUNDANCY DESIGN PERFERMANCE AND FUTURE
IEEE TRANS ON RELIABILYTY R IR NO 1 FEA 1969
UWL
Ees $F P$
OUANTIFICATION OF MANI MACHINE SYSTEM RELIABILITY IN PRECESS CONTROL
IEEE TRANS ON RELIABILITY R 2 R NE 3 AUG 1973
LOC:
. 3000 GENERAL RELTABILITY REFERENCES
R
R $3000 \ldots . . .{ }^{\circ}$....... GENERAL RFLIABILITY REFERENCES
LOFGREN L -Y BY REDUNDANCY
INFORMATION AND CONTREL 1 195R PP 127-147

3
3
0
0

MODELLING ANO RELIABILTTY EF REDUNDANT DIGITAL SYSTEMS
PHD STANFORD UNIVERSITY CALIF 1975
UNIVERSITY MIFILM ERDER NA 75-218月1
IABILTTY OF REDUNDANT DIGITAL SYSTEMS
PHD STANFGRD UNIVERSITY 1975 UNIV. M/FILM NO 75-21881
LYONS R E VANDERKULK W
RELIABILITY IMPROVEMENTS
1BM JOURNAL OF RESEARCH ANC DFVELGPMENT VEL 61962 PP 200-209
MANN WC
RESTORATIVE PRECESSES FOR REDIINDANT COMPUTING SYSTEMS
IN FEDUNDANCY TECHNIQUES FER CEMPUTING SYSTEMS EO WILCOX R HANN W C SPARTAN BEOKS CASHINGTON DC LOC: LDB
DESIGN OF REAL TIME CEMPUTER GYSTEMS PRENITICE HALL INC ENGIEWUAC CLIFFS NEW JERSEY 1967
eSakI s ility analysis of a twe unit standby redundant
FEB 1972
ON RELIABILITY R \rightarrow ?1 NE 1 UWL

PETERSON W W
yod 53005 NO
in redundanc ED WILCOX LOC: LDB PIERCE W H FAILURE TOLERANT CEMPUTER DESTGN ACADEMIC PRESS N YORK 1965
pelovke a
FUDAMENTALS OF RELIABILITY THEERY ACADEHIC PRESS 1968 LeC: UWL

RE INTEGRATED APPREACH TO SYSTEM FAILURE EFFECTS. IFAC GTH TRIENNIAL WORLD CENGRESS BESTEN/CAMBRIDGE, mass. AUG 1975. MASS: AUG LOCN: UTRG.
SHE OMAN ML
PREBABILISTC RELIABILITY $\triangle N$ ENGINEERING APPREACH
MC GRAW HILL N YORK 1968
EXCELLENT BOOK
SHEOMAN M L
THE EQUIVALENCE OF RELIABILITY DIAGRAMS AND FAULT TREE
ANALYSIS
haY 1970
LOC: UWL
SHERT R a
IECUNDANCY A SURVEY
IEEE GROUP NEWS MAR 1

SMITH TE
NETWORKING OF CGMPUTERS IN TEDAYS INDUSTRY
ADVANCES IN INSTRUMENTATIGN VEL 30 PT 1 ISA 75
ANHUAL CENFERENCE MILWAUKEE WISCONSIN 1975 OCT $6=9$
AVERY W H MAKEFSKI R A
ADVANCED URBAN TRANSPERTATION SYSTEMS AN OVERVIEW UNIVERSITY PITTSBURG PENN 1970
LAY RK
A RATIONAL FER PERSONAL AND GREUP TRANSIT DEVEL GPMENT
PAPER 1975 MINNESETA INT CONF ON PRT VEL 1 PREPRINTS SEPT 16-19 1975 DENVER CELERADO
PARKINSEN TE
AUTEMATION IN URBAN TRANSPERT
ELECTRONICS AND POWER VOL 14
PFEFFER J L MCGEAN T
OCT 1968 PP 392-396
THE TECHNOLGGY ASSESSMENT EF PERSGNAL RAPID TRANSIT MTR 6924 THE MITRE CERP MCLEAN JAN A 1975
S 0100 CENFERENCE PRECEEDINGS
-eeneen

- -

AUTEMATED GUIDEWAY TRANSIT
AN ASSESSMENT EF PRT AND ATHE
UNITED STATES CONGRESS OFFICF OF TECHNALOGY ASSESSMENT
JUNE 1975
LOC: 5 UWL IO
15
AUTGMATIC TRAIN CONTREL IN RAPID RAIL TRANSIT LOC: UTRG
ANDERSON J.E. IED.: IT
COL PRT, MINNESETA MAY 1973. 648P
PUBL BY DEPT OF AUDIE VISUAL EXTENSION, MINNESOTA UNIVERSITY LOCN: UTRG
ANDERSON J.E. (ED.)
PREC NAT CENF EN PRT, MINNESATA NAV 1971, 500P LOCN: UTRG
PROC $18 T$ SYMP ON ADVANCED TRANSPERT SYSTEMS IN BRITISH CITIES. URBAN TRANSPERT GP, WARWICK UNIVERSITY,1973, LOCN: UTRG

[^5]ANDERSON P.A., BERMAN R• COMPARISEN

APPLICATION
PERSONAL RAPID TRANSIT II, (PREC 2ND INTERNAT CONF ON PRT),
UNIVERSITY OF MINNESETA, MAY 1973 , PP. $155-172$
LOCN: UTRG. LOCN: UTRG.

AVERY W• Ho MAKEFSKI R• A.
OPERATING STRATEGIES FER DEMAND ACTUATED ACGV SYSTEMS.
VOL. I DESIGN AND SIMULATIEN.
JUHN HOPKINS UNIV, APPL PHYS LAB, REPORT: APL-JHU CPOO4
(TPR O19),AUG.1971, P•222. (FER VOLII SEE UNDER ROESSLER) ITPR O191,AUG.
M/F OB 206416

LOCN: UTRG.
BEYD R.K.
FINAL REPORT ON THE DESIGN GF A GENERAL CONTROL SYSTEM FER EETERMINISTICALLY CONTRELIEN GRGUND TRANSPORTATION SYSTEMS -R.W. SYSTEMS GREUP IPREPARED FER THE GFFICE OF HIGH SPEED GRUUND TRANSPORTATIONI FEBRUARY 1972. M/F PB 2108690

BEYD ROU.-AND LUKAS M.P.
HOW TO RUN AN AUTEMATED TRANSPERT SYSTEM.
IEEE SMC-2 PP $331=341$
LECN: UTRG
CONTINUUUS SYNCHRENOUS LENGITUCINAL GUIDANCE OF AUTGMATED
BRINNER TOR
PH.D. DEPT. ELECT. ENG., GHIE STATE UNIVERSITY, CELUMBUS,
OHIE, JUNE 1973.
GODFREY GON OF CONTROL STRATEGYFS FOR SIMPLE AUTOMATED
NETMORKS • ONE SYSTEM SCIFNCES,
PROC. OF THE SRD HAWAIAN TAT, CBNF. ON SYSTEM SCIFNCES,
WESTERN PERIEDICALS CB. 1970, PP 283-286. LOCN: UTRG.
GODPREY M.B.
ON THE OPERATIEN OF GUTGMATED GRQUND TRANSPORTATION SYSTEMS. PART 1: URBAN PREBLEMS ANN PERSPECTIVES.
TRANE - IEEE, VT-22,1,PP 1-6, FEBRUARY 1973.
IDIBCUBEES SUAURAAN GROWTH AF U.S. CITIES. REVIEWS TYPES
BE SUITABLES.
DEAION CENPREI CONSTDERATIONS FA AUTAMATFD GROUND TRANSP
TETEMS
GUIURE URBAN GREUND TRANSPERTATION SYSTEMS DESIGN
AME CONTROL CONSIDERATIONS.
IW ORMATION ANC CONTROL LAR. STANFERTH RESEARCH INST.
MEMLO PARK, CALIF. TECHNICAL REPORT DEC. 1967 .
watiju Lop. ET AL
IEEE PROC, VOL.56 NO.4 PP.493-513, APR 1968
LOCNB UNL
YNEUEK HENLEYE J
SY\&TEMS
PREPRINTS IFAC GTH TRIENNIAI. WORLD CONGRFSS AUG $24-301975$
BGETON/CAMBRIDGE MASS. USA
S 3C00 ．．．．．．．．．．．．．．OPERATING STRATEGIES
－0ッロー・
som R．
PREC 2ND SYMP EN ADVANCED TRANSPERT SYSTEMS IN BRTTISH CITIES．
PROC END SYMP EN ADVANCED TRANSPERT SYSTEMS IN BRITISH
。
GATHENBLAGI
10
2
1
ICA
ITTS GOL．
BHORT READWAY TRANSPORTATIEN SYSTEMS．
A．I．A．A．PAPER NE． $71-942$ FREM THE A．I．A．A．GUIDANCE
CONTROL AND FLIGHT MECHANTCS CENF．HEMPSTEAD N7．
AUGLST 1971．
PRIVER A．S．
SURVEY OF PRT VEHICLE MANAGEMENT ALGORITHMS

REESLER W．J．，WADDELL．M．C．，FERD B．M．，DAVIS E．A．
GPEFATING－STRATEGIES FER DEMAND ACTUATED ACOV SYSTEMS．
JOMN HOPKINS UNIV，APPL PHYS LAB，REPORT：APL－JHU CPOO4 ITPF 0191；1972，212P，（FOR VAL．I SEE UNDER AVERY （W／FF PG 206416 ）
LOCN：UTRG

ROESLER W•J., WILLIAMS M•B., FERD B.M., WADDELL M.C. COMPARISONS OF SYNCHRONQUS AND ASYNCHRONEUS PRT VEHICLE MANAGEMENT AND SEME ALTERNATIVE RQUTING ALGERITHMS PERSONAL RAPID TRANSIT II, IPREC 2ND INTERNAT CONF UNIVERSITY OF MINNESETA, MAY 1973, PP.425-438 LOCN: UTRG.
:
USE OF SIM是敫

PAPER 4* TH NAT ORSA MEETING SAN DIEGO CALIF. NEV 12-14 1973
RUMSEY A.F. AND POWNER E.T.

[^6]s 3000 OPERATING STRATEGIES

> COMMUNICATION CONSIDERATIENS FER AUTEMATICALLY CONTROLLED URBAN TRANSIT SYSTEMS.
> HIGH SPEED GREUND TRANSPERTATIEN J. VEL.8, NE.3, 1974,PP271-274.
> YORK H.L.
> SIMULATION OF A PRT SYSTEM GPERATING UNDER QUASI-SYNCHRENOUS CONTROL.
> $\begin{aligned} & \text { PAPER FROM THE OND INT. CONF. ON P.R.T. MINNESETA UNIVERSITY. } \\ & \text { MAY } 1973 .\end{aligned}$
> LOCN: UTRG.

MELLIT AND CALDERBANK H.J. THE EFFECTS OF SPEED RESTRICTIONS ON THE STABILITY OF RRL SYS GURMS OF GUIDED PROC IEE CENF ON CENTREL ASPECTS OF NEW FERMS OF GUIDED LAND TRANSP日RT. LENDON, AUG. $1974{ }^{\circ}$ LGCN: UTRG.
MORAB D MCGEAN T J
SAFETY ESTIMATES FER URBAN TRANSIT SYSTEMS
3 RD INT CONFERENCE ON PRT DENVER COLERADO
SEPT $16-191975$
MUNEON A. D., ET AL
QUASI-SYNCHRENEUS CONTREL EF HIGH-CAPACITY PRT NETWGRKS
QUASI-SYNCNRONEUS CONTROL EFMI GHE PUBL: AERESPACE CERP JAN
IN OHIOH CAPACITY PRT SYSTEMS. PUBL: AERGSPACE CERP JAN
LOCN: UTRG

π

TT 1968

AMEIRICAN REAO BUILDER, JUNE-JULY 1975, PP 20-240

> ETUREEA M.A.
> $\begin{aligned} & \text { FEARIAILITY OF AUTGMATIC GLIDEWAY CONTREL. } \\ & \text { IMROTEL HUD CONTRACT NE. H777. GENERAL RESEARCH CORP, } 1967 .\end{aligned}$
> MAF FBE 178262
> LACN UTRO.
> THOMAS T.M.
> CHAP-G IN 'ADVANCED URAAN TRANSPGRT', SAXAN HAUSE STUDIES, 1975
> LOCN: UTRG
> Thomas
> CQNPRGL TECHNIQUES FQR PRT.
> RLY GAZ
> LOCN: UWL
> THOMIB TOH०
> PROC IBT BYMP ON ADVANCED PRANSPORT SYSTEMS IN BRITISH CITIFS. URAAN TRANSPORT GP, WARWICK UNIVERSITY, 1973, PP.109-128 LQCN: UTRB.
> TRW ITETEME GREUP TRW GYETEMS GROUP, MCLEAN, WASHINGTON GPERATIONS FEBRUARY 1972
> DESION FOR A GENERIC CONTROL SYSTEM FGR DETERMINISTICALLY $\begin{aligned} & \text { (H/F PB-21086R E } 2108 \mathrm{Gg} \text {) } \\ & \text { LGCM: UTRG }\end{aligned}$

S 3100 AUTOMATIC CONTROL
s 3100 AUTOMATIC CONTRQL
YORK HOLE OF A PRT SYSTEM OPERATING UNDER QUASI-SYNCHRONEUS
CENTROL RAPID TRANSIT II, (PREC 2ND INTERNAT CONF ON PRT), UNIVERSITY OF MINNESETA, MAY 1973, PP.439-448 LOCN: UTRG
POWNER E.T.
ANDERSON OIGITAL CONTROL OF CASCADED VEHICLES IN A HIGH SPEED TRANBPORT SYSTEM IN THE PRESENCE OF NEISE E STECHASTIC INPL oIstributien LOCN: OWL.
ATHANS MO, LEVINE WOSOP LEVIS A.H
GPTIMAL S SUBOPTIMAL POSITION K VELACITY CANTROL OF A STRING OF HIGH GPEED VEHICLES
REPERT ESL R 291, M.T.T. ELECTRONTCS + SYSTEMS LAB. 19AB
ATHANS MO, LEVINE W.S., LEVIS A.H.
SYBYEM FOR OPTIMAL S SUBOPTIMAL PESITION - VELOCITY CONTROL FOR
PROG. FIFTH INTERNATIONAL CONGRESS AICA, LAUSANNE, SWITZERLANC.
BENDER JUG. ANO FENTON ROE.
A STUDY OF AUTEMATIC CAR FELLAWING.
IEEE VOL. VT 18, PP. 134-140, NOV. 1969.
LECN: UWL.
BENIDER J.G• AND FENTON ROE
IN EXPERIMENTAL STUDY OF VEHICLE LONGITUDINAL CONTROL
IEEE TRANS VOL VT-20 NE 4 PP1 14-123 NEV 1971
LOCIN: UTRG.
GEXIUIS S.
AN EXTENDED MEDEL FOR CAR FOLLEWING
TRANSPORTATION RESEARCK VEL 2 : PP 13 LeCN: UWL.
83200 VENICLE CENTREL

DECENTRALISED CONTREL IBM RESEARCH REPORT
PRANSPGRTATION SCIENC TRANSPORTATION SCTENCE VAL 8, PP
I.OCN: UWL.
SOCN: UWL.
ChTIñl decentralised regulatien fer a string of ceupled systems
IEEE TRANS AUTEMATIC CENTREL VEL AC-19 NE 3 PP 243-246, 1974
LOCN: UWL
COBERIFFR.
OYNAMICS OF AUTEMATIC LONGITUDINAL CONTROL SYSTEMS FER
AUTOMOBILES
OYNAMICS OF AUTEMATIC LONGITUDINAL CONTROL SYSTEMS FOR
IN TTHEORY: DESIGN OF LONGITUDINAL CENTROL SYSTEMS FER
AUTOMEBILES
COMMUNICATION + SYSTEMS LAB., ENG. EXP. STATION, OHIO STATE UNIV REPERT EES 202A-8 PP 235-351

LUKAS HOP. AND MIZRACHI B.D. AUTGMATED GROUND TRANSPORTATIEN
LUKAS H.P. AND MIZRACHI B.D. INSTRUMENT SECIETY OF AMERICA. CENF. PAPER 71-508, 1971.
MACKINNON C.
HIOH CAPACITY PRT SYSTEM DEVEI OPMENTS
TRANS- LEEE $V T=24,1$, PPRO 14 , FEBRUARY
TDISCUSSION OF DEPENDENCE EF SAFE HEADWAY ON LEADING AND
FOLLOWING VEFICLE BRAKING, RAITES, JERK AND REACTION TIME. COMPARISON MADE OF PARAMETERS, CVS, MATRA ARAMISI.
MCGEAN T.J.
REALIZABLE MAINLINE HEADWAYS FRR PRT SYSTEMS
SECOND PRT

3R00 VENICLF CANTROL
83200 VENICLE CENTREL
HAYHAN R.J. ET AL LONAITUDIHAL REFERENCE SIGNAL GENERATION FER AUTOMATIC
PROC IEEE VOL 60 NEII PP $1454-1455$ NOV 1972 IENICLE CONTREL.
PRGC IEEE VOL 60 LOCN: UWL.
MILLER C.A.
COMMENT ON HEADWAY LIMITATIONS FER SHERT-TERM PEOPLE
HEESONAL RAPID TRANSIT II IED. J.E. ANDERSENI UNIVERSITY OF HINNESETA
COCN: UTRG.
NEUBERT HOK•P.

NICOLAS VOT. δ COMSTOCK T.F.
SIMULATION OF CONTREL SCHEMES FOR PNEUMATIC ANTI-SKID BRAKE
INTER SOC CONF TRANSPORTATIGN DENVER, SEPT 73 ASME PAPER T3ICTIR
CONTREL SYSTEM FER AUTEMATIC ALITOMOBILE DRIVING.
IFAC TOKYO SIMP ON SYSTEMS ENGINEERING FOR CONTROL
SYBTEMS DESIGN, 1965 .
S 3800 VEHICLE CANTREL

PASTERNACK SO
SOME MODERN CONTREL ASPECTS AF GUTOMATICALLY STEERED VEHICLES CRERE TRANGPORTATIAN DENYER COLO SEPT 73 AMERICAN SECIETY OF MECHANICAL ENGINEERS PUBLICATION LOCN: UTRG

[^7]PADOISON I.D.
IMPROVEMENTS I
PABTERNACK .
LOCN: UTRG 7 7
S 3200 VEHICLE CENTREL
CHMIDT R.A. study of

ANOTHER LOEK AT PLATEON DISPERSIEN
TRAFIIC ENG AND CONTREL VEL 13, PARTS $8,9,10$ DEC 71 JAN FEB 78
STANFORD UNIV. CEMP SCI DEPT. REPORT CS-231
M/F ADO732664
LOCN: UTRG.
SEDDIS P. A.
ANOTHER LOEK AT PLATEON DISPERSIEN
TRAFFIC ENG AND CONTREL VEL I3, PARTS $8,9,10$
LOCN: UWL
SHLAJOVER S.E.
PERFORMANCE LIMIT OF AUTOMATIC STEERING CAN

PERF ORMANCE LIMIT OF AUTOMATIC STEERING CANTROLLERS. PRT III CONF P PUBL. BY UNTVERSITY OF COLORADE, CENTRE FER
TRANSPGT STUDIES, IMR
TOPTIMAL CENTREL THEORY USING A CEST FUNCTION REFLECTING
LECN: UTRG.
LECN: UTRG
TROI OUIDANCE FOR SINGIEIDIIAL MODE VEHTCLE
DISCRETE-TIME LONGITUDINAL CONTREL OF DUAL MEDE AIITAMORILES
INTER-SUCIETY CANFERENCE ON TRANSPORTATIAN DENVER CBLO SEPT T3 AMEAICAN SECIETY OF MEEHANITAL ENGINEERS PUBLICATION
PReTT D^{8}
197e INTERNATI ONAL CGNGRESS OF IRANSPORTATION CONFERENCES
INTERSOCIETY CENFERENCE ON TRANSPORTATIAN WASHINGTAN D.C.
JUNE: 1972
LOCN: UTRG (SUMMARY)
S $3200 \cdots \cdot$. VEHICLE CONTREL
S 3200 0.0.0. 0.0 VENICLE CONTROL
VOS8 P.J. iN A STRING OF VEHICLES EMPLOYING VEHICLE
STABILITY IN A STRING OF VEHICLES EMPLOYING VEHICLE
FOLLBWER CENTREL.
APL/UHU MCS-6-153, SEPTEMBER 1972.
LECN: TRY ABREAD.
WHITEY D.E AND TEMITILIA
NORMAL AND EMERGENCY CONTREL GF A STRING OF VEHICLES BY FIXED REFERENCE SAMPLED DATA CONTROL.
SEE ANDERSEN ET AL. PERSONAL RAPID TRANSIT. 1972. LOCN: UTRG.
WHITTEN R P
HEADWAY PRETECTIGN ON SYNCHRQNQLSLY OPERATED SEATTIE WASHINGTEN ASCE/ASME TRANS
LOCN: UTRG
WILKIE D.F. CONTROL SCHEME FER AUTOMATED TRANGPART SYSTEMS.
ILKIE D.F.
TRANSPORTATION SCIENCF, VAL.4, 4, PP. $347-364$, NOV 1970
LOCN: UWL
YANE SEN CHI
LOW BENSITIVITY DESIGN OF EPTTMAL FEDORACK SYSTEMS RPT UMTA-MA-19-0003-73-5 JUI.Y 1973
M/F PB=231441
83400 •••••••• JUNCTIENS, CENTREL AND SIMULATIGN

> THANS M .
> - UNIFIED APRREACH TO VEHICLE MERGING PREBLEM*
> RANSPORTAFION RES, VBI•3, 1, PP•123-134, A PR
> LACN: UWL.
> ATHANE MO, LEVINE WOS.
> $\begin{aligned} & \text { OPTIMAL VEMICLE CONTROL FOR THF MERGING PROBLEM } \\ & \text { REPART ESL-R-327, MOTOT•ELFCTRONICS + SYSTEMS LAB. } 1967\end{aligned}$
> BLUMENFIELD D.E.
> IEREING FREM AN ACCELFRATIEN I $\triangle N E$
> TRANBPORTATION SCIENCF VAL 5. PF 161-168
> LQCN: UWL.
> AREEDING K•J.
> HINOR TO MAJER LOCN: UWL.
> BROWN B.J.
> INTER-SOC CONFERENCE ON TRANSPGRTATION, DENVER, CAI,O., SEPT 173
MERICAN SOCIETY OF MFCHANICAL ENGINEERS PUBLICATIAN
LOCN: UTRG
S $3400 \ldots$. JUNCTIENS, CENTREL AND SIMULATION
CUADILL R J YEUNGBLEED J N
STUDY OF VARIGUS MERGE CENTREL ALGORITHMS APPLICABLE TO
AUTGMATED TRANSIT SYSTEMS
JRD INT CSNFERENCE ON PRT DENVER COLGRADO SEPT $16=191975$
ELIASSI T. AND FENTON R.E.
ON COMPUTER CONTROL IN THE MERGING OF AUTGMATED VEHICLES.
OHIO STATE UNIVERSITY. PREC. TECH. CONF. ISLANDS OF
APPLICATION TOKYO JPAN IEEE 1972 PR $140-147$
ISOME USEFUL DIAGRAMS SHEWING RANGE OF FEASIBLE CONTROL).
LOCN: UTRG.
GODFREY M.B.
HEADWAY AND SWITCHING STRATEGIES FER AUTOMATED VEHICULAR
GROUND TRANSPQRTATION SYSTEMS.
REPQRT DSR $76106-4$ E ENG. PRG.JFCTS LAB. DEPT MECH. ENG.
MOI.T. CAMBRIDGE NEV, 1966 M/F PB-173644
LOCN: UTRG.
GDFREY M.B:
MERGING IN AUTEMATED TRANSFERTATIEN SYSTEMS . SC.D. THESIS, DEPT. MECH. ENG. M.I.T. JUNE 1968. LECN: UTRG.

[^8]TRW REPORT O6818-WOO6 ROOOC PREPARED FOR THE
U.S. DEPT. TRANSPORTATION CONTRACT C=35.3-66INEGI, JULY 1970.
M/F PB-199124.
LOCN: UTRG.
GEGMETRIC DESIGN OF PRT NFTWERK ELEMENTS
PAPER PRESENTED AT THE SECEND TNTERNATIENAL CONFERFNCE ON PRT UNIVERSITY OF MINNESOTA, MAY 1973 LECN: UTRG.
HU TOC. INTEGER PREGRAMMING I NETWARK FLEWS.
ADDISON-WESLEY, 1969

NETHERK CONTREL STUDY
LUKAS MOP. KAN I.F.
EVALUATION OF AN ALGORTTHM FER ALLECATING NETWORK SPACE IN DETERMINISTIC AUTOMATED TRANSPERTATIUN NETWGRKS.
OP RES SOC AMER, NATIONAL PEETING, ATLANTIC CITY, NEV 1972 LOCN: UTRG

ROUTING ALGORITHMS FOR URBAN RAPID PRANSIT
TRANSP RES, VOL.9 NO.4 PP.? $15-223$, UUG 1975
LUCN: UWL
NQIIVITNIS ONV TQaLNQJ 'SXAQMLIN OCge S

STETMORK IMPLICATIONS ON CONTRAL SYSTEM DESIGN FOR A DUAL MEDE TRANSPORTATION SYSTEM.
TRANSPORTATION RESEARCH
TRANSPORTATION, RESEARCN VEL *6, PP +157-168, 1972.
LOCN: UWL.
STEFANEK R•G. 5 WILKIE D•F:
CONTRQL ASPECTS OF A DUAL MODF TRANSPGRTATION SYSTEM.
IOUASI-DETERMINTSTIC SYNCHRONAUS CONTRELI IEEE TRANS. VT-22, 1, PP,7-13. FEB 1973
LOCN: UWL FPERe224573
GTRYGLEY J G STEKES S M CAOMER T N
TRANSPORTATIUN SYSTEM SIMULATIEN CASE STUDIES
PAPER AT THE 46 TH NAT MEFTING OF ORSA SAN JUAN PUERTO RICR
OCT $16-181974$
TOYE C R
PAPER AT THE A6 TH NAT MEFTING OF ORSA SAN JUAN PUERTO RICA
OCT $16-181974$
TOYE CR
AUTEMATED GUIDEWAY GREUND TRANGPORTATION NFTWORK STMULATION PRT III 1975 MINNESETA TNTERNATIONAL CENFERENCE AN PRT
SEPT $16-191975$
WADE R•M.
PAPER AT THE 16 TH NAT MEFTING OF ORSA SAN JUAN PUERTE RICP
OCT $16-181974$
TOYE C R
A COST OR
UNIVERSITY
Le
YAP EOL.
DETERMINISTIC SYNCHRENEUS CONTROL IN PERSENAL RAPID TRANSIT NETW
MOSC. THESIS, WARWICK UNIVERSTTY, SEP 1973 . LOCN: UNIVERSITY ENG DEPT
3500 nETWERKS, CONTRQL AND SIMULATIEN

YAPCREASING THE PASSENGER CAPACITY OF TRANSPGRTATION NETH INOER
VAP EDL. THOMAS T.H.
INCREASING THE PASSEN
DETERMINISTIC SYNCHRONEUS CONTROL IPARAMETRIC STUNY OF TRUE PRTI
PROC. IEE CONF. ON CONTREL ASPFLTS GF NEW FORMS OF GUIDED LAND PROC. IEE CONF, ON CONTREL
TRANSPRTT. LONDON AUG 1974 LOCN: UTRG

LOCN: NLL
BERBMANN O.R.
CAPACITY OF AUTOMATED FIXEL GUIDEWAY TRANSPORTATIAN SYSTEM
STATIONB WITM MULTIPLF LOACING POSITIGNS
OP HEB SOC AMER, NATIONAL MEETING, NEW ARLEANS, APR 1972
LOCN: UTRG
GERGMANN D.R.
EFFECTB OF RANDGMNESS IN VEHICLE DWELL TIMES ON ThF THROUGMPLT
OF AUTOMATED FIXED QUYDWAY TRANSPGRTATIAN SYSTEM STATIONS WITH MULTIPLE LEADING PESITIGNS
OP RES BOC AMFR, NATIONAL MEETING, ATLANTIC CITY, NAV 1972
LOCNZ UTRB
DAIS L YORK H L STATIONS FAR QUASI SYNCHRONOUS PFRSONAL
RAPID TRANEIT NETWORKE

$$
\begin{aligned}
& \text { TRANBPORTATION RESEARCN VEL } 1974 \text { PP 63-70 } \\
& \text { TRA }
\end{aligned}
$$

FREVTAG wog.
GOME PRACTICAL CONSIDFRATIENS FOR OPERTION OF PRT STATIONS PAPER PRESENTED AT ZNB INT CENF ON PRT AT THE UNIVFRSITY OF L日en: uTRB

 GF EOLORADE, CENTRE FAR TRANGPERT STUDIES
ITREATE ONOLINE OFF-LINE AND D-LEOP STATIANS UNDER DIFFERENT STAPPING IS A PEER OPTIONI.
LACN: UTRA
S 3700 DISPATCHING AND SCHEDULING
GRECE, ARMANDE V. FACI.ITIES. EVANSTON, ILI.M ALGO 196B. CHARTS, TARLES, BIRI. MOS. THESIS, NERTHWESTFRN LNIVERSITY DEPARTMENT OF CIVIL ENGINEERING.
HEAPROC:
ABPECTB OF STATION DESIGN ANE SCHEDULED APERATIUNS IN AN AUTOMATED TRANSPERT SYSTEM. MOAC: PROJECT REPORT, WARWPCK LNIVERSITY, SEPT 197.3. LOCNI UNIVERSITY ENGINFERTRG DEPARTMENT PDERIION ISTABILITY AF STMEDIIE WITM VARIATIMNS IN LOAD TIMFSI PROS. IEE CONF. ON CONTROL ASPECTS OF NEW FGRMS OF GUIDED LAND TRANBPORT. LONDON AUG 1974

EtM 0.

HEIN O.
APPROXIMATE METHED FER DETFRMINING VEHICLE CIRCULATION SCHEDIJLES ULLETIN IACA:CYBERNETICS + EIFCTRENICS ON THE RATIWAYS MEVENEER 1969 P.429-441
LOCN: UTRE
HOWRON L-L GEATHINGTON KOWO HIOMHAY RES REC, NO 318, PP 4049,1970
HUTBC.
DECOMPGEITIGN ALGERITHM FAR SHRRTEST PATHS IN A NFTWORK J ORBA, VOL-16, 1, PP.91-1C2, JAN-FEB 196 R.
-3700 DYSPAPCHING AND SCHEDULING 3700
MUDDART K.h.
GUS PRIORITY IN GREATER LGNDON: G, BUS BUNCHING AND REOULARITY OF SERVICE.
TRAFF E ENG. AND CONTROL
I BTUDY OF FACTERG AFFFCTING PREPUGATIGN AF RUNNING DISTURBANCES
ALONS A ROUTE AND FROM BUS TO RUSI
LOCN: UWL
JACRBEN HOS.: WREN A.
SIMULATION OF URBAN BUS GPERATIONS
REPORT: OPERATIONAL RESEAREH UNIT, UNIVERSTTY OF LFEDS
LOCN: UTRG.
REPORT: OPERATIONAL RESEARCH UNIT, UNIVERSTTY OF LFEDS
LOCN: UTRG.
MASGN F•J.
LATBONING TENDENCIES IN PET SYSTEMS.

[^9]MOTOR INDUSTRY RESEARCM ABSACIATIGN
REPGRT ON RELEVANT WORK AT PRFSENT BE
REPGRT ON RELEVANT WORK AT PRFBENT BEING CARRIED OUT IN THE BUS
IWDUETRY AND ELSEWHERF OY THE PUBLIC SERVICE VEHICLF OPERATTENAL REAEARCH ADVISERY PANFL.
MIRA BULL, VEL•P PP $8-$
NEMELL GOF. AND PETTS R.B.
MAIMIAINING A BUS SCHEDULE.

OPTIMISATION GF BUS OPERATIONS IN URBAN AREAS.
OECD RGAD RESFARCH PURIICATION, PARIS 1972 (PUBL:H.M.S.A.)
S 3700 DISPATCHING AND SCHEDULING
SERVICE REGULARITY EFFECTS OF VARIATIONS IN BUS RUNNING TIMES
L.T.EE OPERATIENAL RESEARCH DEPARTMENT, BUS PROJECT SECTION
TECNNICAL NOTE TN 75.
LOCN: UWL.
CONTROL STRATEGTES FOR AN IDEALISED PUBLIC TRANSPORTATION SYSTEM TRANSPORTATION SCIENCE VEL 6, PP 52-72, 1972
SALZBORN F•J.M.
6G|PP 137-148, 1972.
TRANSPORTATION SCIENCE
SCHARMACK D.K.
AN EMPTY VEHICLE SHUTTLING PRARLEM.
INTEROSOC CONFERENCE ON TRANSPERTATION, DENVER, CELO., SEPT 173
AMERICAN SECIETY GF MECHANTCAL ENGINEERS PUBLICATION
LOCN: UTRG
SESHAGIRI N•, ET AL
COMFUTER GENERATED TIME-TABLES AND BUS SCHEDULES FER A LARGE BUS
TRANSPORT NETWERK
TRANSPORTATION SCIENCE VUL. 3, NG. 1, 1969 PP 69-85.
LECN: UTRG AND UWL.
STEMART JOM.
COMPUTER SIMLLATION ATDS TRAIN SERVICE PLANNING
RLY BAZ INTERNAT, 130 , 10 PP 21-23, JAN 1974
LOCN: UWL.
SURPONT J.
SURRONI OPERATIONAL
QPERATIONAL RESEARCH ENABLES THE RESTERS TA BE OPTIMIZED
BULLETIN IRCA:CYBERNETICS + EIECTRENICS ON THE RATLWAYS BULLETIN IRCA:CYBERNETICS + EIECTRENICS ON THE RATLWAYS
AUGOBEPT 1965 P.329-339 LEGA: UTRG
STONE D.
SYSTEMS FOR THE $\triangle U T O M A T I C$ PGNTROL AND MANITARING AF BUS SERVICES
TRAF ENG
VAN REES

- BIUDY OF ROLLING STACK CIRCILATIEN
QULIETIN IRCA:CYBERNETICS + EIFCTRONICS AN THE RATI WAYS
DECIMAER 1966 P.566-573
LECR: UTRG
WEAVER A., WREN A.
BUS CREW SCHEDULING BY COMFUTERS
INPEMTIONAL RESEAREH UNIT, UNTVERSITY OF LEEDS. LECHE URRG.
WELDING P.I - 5 DAY D.J.
SIMLLATION OF UNDERGROUND RAIL,WAY OPERATION.
RLY GAZETTE, JUNE $4, ~ 1965$. PP. $438-441$.
LOCN: UWL

OPERATIONAL LOCN: UTRG

WESTBN J.G., WILLIAMSAN D., 5 LEVINE S.M. COMPUTERS TO THF AN ASSESSMENT EF THE APPLTCATTEN OF ON-LINE COMPUTERS CONTROL OF. THE NERTMERN LINE: A SIMULATIAN STUDY. LONDIS TRANSPOKT O.R. REPERT R191, NEV 1572 LECN: UTRG

WINFIELD R.C.
OMNIGUS OPERATIEN AND CENTREL SIMULATER.
MARCSNI CE. REPERT Y/248/5676, APRIL 1972.
WREN A. TRANSPORTATIEN PLANNING 5 TECHNGLOGY. 1972 VOL 1 PP -115-122.

LECN: UTRG.
Y UUNG D •R.
SCHEDULING A FIXED-SCHEDUIE, CGMMAN CARRIER PASSENGER
TRANSPORTATION SYSTEM LOCN: UTRG AND UWL
S 3800 GENERAL SYSTEMS BIBLIEGRAPHY
S

> SCIENTIFIC METHOD AND SYSTEMS MODELLING
> SYBTEMS MODELLING TECHNOLAGY A THIRD LFVEL COURSF
> THE OPEN UNIVERSITY
> - -0."
> GENERAL RESEARCH CORP. SANTA BARBARA, CALIF• PRE178262 $\begin{aligned} & \text { GENERAL RESEARCH CORP. SANTA RIRBARA, CALIF. } \\ & \text { HUD GONTRACT NE. HOT77. JAA } 1968 \text {. IMICRAFICH }\end{aligned}$ $\begin{aligned} & \text { HUD GONTRACT NE. H=777. JAN 1968. IMICRAFICHE PB=178262 } \\ & \text { LECN: UTRG. }\end{aligned}$
> $\begin{aligned} & \text { BURRPW L D } \\ & \text { THE IDESIGN OF CENTROL SYSTFMS IN AUTOMATED TRANSPART }\end{aligned}$
> $\begin{aligned} & \text { PAPER IFAC WGRKSHEP OPTIMISATION APPLIED TO } \\ & \text { TRANBPORTATION SYSTEMS } \\ & \text { FEE } 17=19 \text { VIENNA } 1976 \text { ILSTRIA }\end{aligned}$
> $\begin{aligned} & \text { PAPER IFAC WGRKSHEP OPTIMISATION APPLIED TO } \\ & \text { TRANBPORTATION SYSTEMS } \\ & \text { FEE } 17=19 \text { VIENNA } 1976 \text { ILSTRIA }\end{aligned}$
CANNISN ROH.
TRANISPORTATION AUTEMATION AND SOCIAL STRUCTURE.
PROC. IEEE 61. PP.518-525, 1973. IBACKGREIIND ANO
LECN: UWL.
CHORAFAS D N
SYSTEMS AND SIMULATION
ACADEMIC PRESS LENDON 1965
LOC UWL
CARANT R.C.
INF ORMATION FLEWS IN HIERARCHTCAL SYSTEMS.
INT. JQ GENERAL SYSTEMS VAL. 1, PR $9-18,1974$.

DIBCRETE ENENT SIMULATION LANGUGES
DROCAMHING LANGUAGES ED. GENUYS F 1968 ACADEMIC PRESS
OAHL O J HEARE C A ${ }^{\text {a }}$
OAHL 0

WIERARCHICAL PREGRAM STRUCTURES
TRUCTURAL PRBARAMHING ED. DAHL
UWI OA 75 D2 72-12568
DEL RIO B.
buge for the meliability ef railway transport autematic centrel sVITEM.

[^10]

ERENHEERING DESIGN THE CONCEPTUAL STAGE
ERENCH
HEINEMANN EDUCATIONAL BEOKS 1971
FUSSELL J.B.
A REVIEN OF FAULT TREE ANALYSIS WITH EMPHASIS ON LIMITATIONS.
IFAC GTH TRIENNIAL WORLD CENGRESS. BESTON/CAMBRIDGE, MABS. AUG. 1975.
LOCN: UTRG.
GODFREY M•B.
ON THE OPERATIEN OF AUTEMATED GREUND TRANSPGRTATIEN SYSTEMS I, URQAN PROBLENS
IEEE, TRANS. OF VEHICUIAR TECH. VEL, VT-22, NE, 1, FEB. 1973.

> QODFREY M.B.
> SYSTEMS
> APER - NAT. CONF. ON PRT, MINNEAPOLIS, MINN, NOV 1.3, 1971.
> HALL A D
> $\begin{aligned} & \text { A METHODOLEGY FER SYSTEMS ENGINEERING } \\ & \text { VAN NESTRAND } 1962\end{aligned}$
> HARTLEY M.G.
> $\begin{aligned} & \text { DARIGAL SIMULATIEN METHEDS. } \\ & \text { DA } 435 \text { N2. }\end{aligned}$
> JOWNSON D M
> $\begin{aligned} & \text { A SYSTEMATIC INTRGDUCTION TO THE PSYCHELEGY OF THINKING } \\ & \text { HARPER AND REW } 1972\end{aligned}$
> LOC: UWL Q2 342 J6 72-10625
$5 s$ INF ORMATION
LOCN: UWL.

LOWENSCHASS
RESTGRING ERGANS LOCN: UWL.

MARCH J G SIMEN A
JOHN WILEY N YERK
megean themas j.
PEOPLE MOVERS.
PERSONAL RAPID
LOCN: UTRG.
INTRGDUCIIEN TE THE THE ORY GF gAMES HC BRAW HILL BE日K CORP N YORK 1952

MESAREVIC MC MACKO D TAKAHARA Y
THE THE日RY OF MULTILEVEL SYSTEMS ACADEMIC PRESS 1970
MESAROVIC M D MACKO D TAKAHARA Y
THEORY OF HIERARCHICAL MULTILFVEL SYSTEMS
ACADEMIC PRESS N YORK 1970
LOC: UWL QA $435 \mathrm{M3} 70$
LOC: UWL QA $435 \mathrm{M3} 70-15943$
MESKOWITZ D. AND WARGE J.
AUTOMATION WILL HELP UNSCRAMRIE TRIANGLED TRAFFIC
SYSTEMS IN CITIES.
PROCUCT ENGINEERING * OCT. 1970.

MANAGEMENT SCIENCE VEL 1 * NE 2 PP B-92-B-101

$$
0
$$

NEWELL A SHAW 」C SIMON HA
CHESS PLAYING PREGRAMS AND THF PRABLEM OF COMPLEXITY
IBM JRNL OF RES ANO DFV VEL? NB PP 320-335 ECT 1958
EEMELI SHAH S SIMON $+A$
NEWELL A SHAW JC SIMON
THE ELEMENTS OF A THE日RY OF

> THE ELEMENTS OF A THEERY OF HUMAN PREBLFM SOLVING PSYCHOLOGICAL REVIEW VOL 65 PP $151-166$ MARCH 19
NEWELL A SHAWJC SIMON \downarrow A
A GENERAL PREBLEM SOLVING FREGRAM FOR A COMPUTER
COMFUTERS AND, AUTEMATION VOL JULY 1959 PP $10-17$
A SYETEMATIC INTRDUCTIEN TE THE PSYCHEL EGY OF THINKING HARPER AND ROW 1972

$$
\text { LOC: UWL OZ } 342 \mathrm{J6} \text {, } 7210625
$$

NEWELL A SIMEN H A HUMAN PREBLEM SELVI
PRENTICE HALL 1972
LOC: UWL O2 343
NEWE L A SIMEN H
HEURISTIC PREBLEM SOLVING
OPS RESEARCH VAL 6 JAN/FEB 1958 PP $1-10$
MAY/JUNE 1958 PP449-450
MAY/JUNE 1958 PP449=450
PECOMPOSITION OF LERE GPTIMAL CONTROL PRARLEMS .
PROC. IEEE VOL 14: NO. 6, PRIRA5-851. JUNE 1967.
EECN: UWL.
ASYMPTOTIC PRGPERTIES OF SYSTEMS FER MAXIMUM SYNTHESISED
PIERCE WOH.

2800 GENERAL SYSTEMS BIBLIGARAPHY
ANDELL B
TOMARDS A METMODOLOGY OF CEMPITING SYSTEM DESIGN
IOMAROS A METMQDOLOGY OF CEMPIITING SYSTEM DESIGN
IN DOFTMARE ENEINEERING EN. NAUR RANDELI NATO SCIFNTIFIC AFFAIRS DIVISIEN 1968
RAY AND CHAUDHURI, K•R.
MINEHALLY REDUNDANT RFLIARLE SYSTEMS DESIGN.
BELL BYET. TECH. LOCN: UWL.
SABE A.P. AND SMITM N.J.
COMPJTERS AND ELECTRICAL FAGINEERING, PERGAMAN VAL.1, NO.1, PP 68-71. 1973.
SCHDEFFLER J D LASDON L
OECENTRALISED PLANT CONTRAI.

$$
\text { IBA PRANS VOL } 5 \text { NO? APF } 1966 \text { PP } 175-183
$$

BIMON H A
THE NEW BCIENCE AF MANAGEMENT OECISIONS
HARPER AND BROTHERE N YORK 19 KO
HARPER AND BROTHERE N YORK $19 K 0$
BTEEL INDUBTRY PRGJECT STAFF.
IFAE GTH TRIENNIAL WORLD CENGRESS, BOGTONICAMBRIDGE, MASS
GUB 1975 .
LOCM: UTRG.
THRALL M CeEMRS CH DAVIS R L
THRALL R C CBEMRS
DECIBION PROCESSES
JOHN MILEY N YORK 195%
L日CI C UWL HN 5840 T4
VAN REUMANN
VAN MEUMANN
PROPABILIBTIC LAGICS AND THE SYNTHESIS OF RELIABLE GRGANISMS
FROM UNRELIABLE COMPONENTS.
FROM UNRELIABLE COMPONENTS.
PRINCETON UNIVERSITY PRESS. 1956. LOCN: UWL.
WALD A.
BEQLENTIAL ANALYSIS.
JOHA WILEY AND SONS INC. 1947.
WEINBEYCHOLOGY OF COMPIITER PRAGRAMMING
THE PBYCHOL
LEC: UWL
UWL GA $75 \mathrm{WB} \quad 73-00171$
WEISBMANN L M
A METHODOLEGY FOR STUDYING THF PSCHOLOGICAL COMPLEXITY
OF COMPUTER PRPGRAMS
TECH REPT CSRG 37 COMEPUTER SYSTEMS RESEARCH GROUP UNIVEREITY OF TORENTA AUR 1974
S 3800 GENERAL SYSTEMS BIBLI OGRAPHY
WEISSMANN L M
A METHODELEGY FER STUDYING THE PSYCHELOGICAL COMPLEXITY
TECHNICAL REPORT CSRG 37 CEMPUTER SYSTEMS RESEARCH GREUP
UNIVERSITY OF TERENTO AUG 1974
WISMER O.A.
APPLICATIONS.
MCGRAW-HILL, NEW YORK, 1971.

- - -

TRAFFIC ENGNG AND CENTREL VEL 12 NO 1 MAY 1970 P 43
-®® RAILWY GAZ PP 351 SEPT 1974

CONTINUEUS AUTEMATIC TRAIN CENTREL ON MUNICH S=BAHN. RAILWAY GAZ. INT•, JANUARY 1974, PP18-20.

OESTGN TECHNIQUES FOR AUTANATTC TRAIN CENTREL WESTINGHOUSE ENGINEERING JULY 1972 PP $98=103$

- - -

MALAYAN RAILWAY SIGNALLING.
MALAYAN RAILWAY SIGNALLING.
RAILWAY GAZETTE $562=563.16$
LOCN: UWL
MODELLING EF HIERARCHICAL EPTIMISATION FGR OVER-SATURATED URBAN ROAD NETWGRKS .
INT JOURNAL OF CONTREL. PR. $913-934$. DEC. 1974. LOCN: UWL.

RAPID TRANSIT IN FRENCH PREVINCIAL CITIES.
RAILWAY GAZETTE INT•ง JULY $1974 . ~ P P ~ 272-276 ~$
$839 C 0$.......... CENTREL EF GTHER FERMS EF SURFACE TRANSPART

> BETLEY MOH.
> COMPUTER SIMULATIEN OF TRAFFIC AS AN AID TO THE DESIGN OF
> JUNCTIONS
> $\begin{aligned} & \text { PAPER READ } \\ & \text { L OCN: UTRG }\end{aligned}$
> AT8E
> BLA18E
> $\begin{aligned} & \text { COMMUNICATIONS BETWEEN TRACK AND LACO } \\ & \text { RAIL INTERNATIENAL DEC } 1971 \text { PP } 933\end{aligned}$
> BIRKIN MOS
> AS $15 V 1$ 3H
> TECNNICAL REPERT TR AUTO I THAIN CONTREL GRGUP RATIWAY TECH.
> CENTRE DERBY GCT 1974
> LOCN: UTRG
> BOOCECK D NEWMAN M
> THE ADVANCED PASSENGER TRAIN
> RAILWAY ENGINEER 2(2) MAR/APR 1977 PP 20-27,38
> BRANSTON D
> PUEL. 19, CENTRE DE RECHERCHE SUR LES TRANSPORTS UNIVERSITY
> OF MONTREAL, 1975.
> -
> $\begin{aligned} & \text { BROWNSON JOW ET AL. } \\ & \text { STRATEGIC CONTRGL OF SAN FRANCTSCG B.A.R.T. } \\ & \text { TRANS IEEE SEP I971 VAL IGA-7 NA } 5 \text { PP } 570-5 \\ & \text { LOCN: UWL }\end{aligned}$
BEILEY MOHO
COMPUTER SIMULATIEN OF TRAFFIC AS AN AID TO THE DESIGN OF
JUNCTIONS
PAPER READ PTRC SUMMER CONF 1973 (JUCTION DESIGN SESSION)
LOCN: UTRG
blaise
CEMMUNICATIONS BETWEEN TRACK AND LECO AT THE CRESS READS
RAIL INTERNATIENAL DEC 1971 PP 933
BIRKIN MOS
THE TACT SYSTEM ITACT- TOTAL AUTEMATIC TRAIN CONTRELI
TECMNICAL REP ERT TR AUTO I TRAIN CENTREL GROUP RAILWAY TECH. CENTRE DERBY OCT 1974
LOCN: UTRG
BOOCECK D NEWMAN M
THE ADVANCED PASSENGER TRAIN
RAILWAY ENGINEER $2(2)$ MAR/AP
RAILWAY ENGINEER 2(2) MAR/APR 1977 PP 20-27,38
BRANSTON D_{0}
MRAELS OF SINGLE LANE TIME HEADWAY DISTRIBUTI GNS.
PUBL. 19, CENTRE DE RECHERCHE SUR LES TRANSPERTS.
LOCN: CRANFIELD, CENTRE FGR TRANSPERT STUDIES.

STRATEGIC CONTROL OF SAN FRANCISCO B•A.R.T.
TRANIS IEEE SEP 1971 VEL IGA-7 NE 5 PP $570-5$
LOCN: UWL.
S 3900 CENTRAL OF OTHER FERMS OF SURFACE TRANSPPRT
-
BUGGE: N.A.
BART IN OPER
TRANBPORTATION ENG. JAURNAL OF ASCE, VEL. 100, NO. TEZ,
BUTLIER JS
LIFTS AND ESCALATORS
PUBL ISHED EY ELECTRICAL DEPT IMPERIAL COLLEGE AVAILABLE FRBM
THE TOC. BEOKSHOP KENSINGTEN IONDON SW7 2AZ
CAMUS R ET AL
APTIMAL DECONGESTION TECHNIQUE FER URBAN TRAFFIC NFTWORKS PAPER IFAC WORKSHOP OPTTMISATION APPLIED TO TRANSPORTATIEN SYSTEMS VIENNA AUSTRIA 1976
CHERRY R.C.
COMPUTERS TAXIS AND GRASS REETS TRANSPORTATION HWY RES BD SPEC RPT 1361973 PP 94098
CLARK J.M.
SYMP ON PUBLIC READ TRANSPERT ANALYSIS 1970.
CATEGURISATION OF WAYS OF GPERATING BUSES ITH REFERENCE TO EXPERIMENTS IN UKIUSA).
LOCN: UTRG.
CLOSS E.D.
ELECTRONIC AND PEWER VEL. 18 P.308, 1972,
LECN: UWL.

BHITM VOM . WNE OTONALLTNC PRINCTPLES
SHITM VIN.
VICTERIA L
PAPER TOE FE. MEETING PUBLTCATTEN 16.11 .66. PAGES $76=104$
LOCN. U.T.R.G.
STABLO J. AND L
LATEET OEVELOPMENTS IN AUTEMATIC DRIVING ON THE RATLWAY SYSTEM OF THE PARIS TRANSPERT U UTHORITY. FAENCH RAILWAY TECNNIDUES NA. R, 1974, PP 55-65.
IIMTERESTINGI FAENCH RAILWAY TECHNIDUES NA. 20 1974, PP 55-65.
IIMTERESTINGI

[^11]VICTORIA LINE SIGNALLING PRINCIPLES
PAPER I OE UE MEETING PUBLICATTEN 16
sTABLO J. AND LEROY J.
S 3900 CENTREL EF OTHER FBRMS GF SURFACE TRANSPPRT
WANTTAG G.E.
AUTGYATED RAILWAY TRANSPORTATIEN CONFIGURATIONS BOM.C. RESEARCH DEPT RFPORT 10.1.1972 LOCN: CRANFIELD U.T. .ACC NB O2453B
WEBSTER F V CEBBE B M
WEBSTER F V CEBBE B
TRAFFIC SIGNALS
MINISTRY OF TRANSPET 5 RQAC RESEARCH TECHNICAL PAPER NO 56 LONDON 1966 H M STATTENARY OFFICE
WINTER P.
SWISS EXPERIMENTS WITH TRACK TE TRAIN CAMMUNICATIANO 387-388.
S 3900 CENTREL OF GTHER FERMS OF SURFACE TRANSPERT
-
WANTTAG O.E.
AUTOMATED RAILWAY TRANSPORTATIEN CONFIGURATIONS
OHPC. RESEARCH DEPT RFPQRT 10.1.197
LOCN: CRANFIELC U.T. . $\triangle C C$ NO OR453B
WEBSTER F Y CABBE B M
TRAFFIC SIGNALS
MINISTRY OF TRANSPET 8 RQAM RESEARCH TECHNICAL PAPER NE 56
LONDON 1966 H M STATIANARY EFFICE
SWISS EXPERIMENTS WITH TRACK TE TRAIN CAMMUNICATION.
RAILWAY GAZETTE INT: VEL. 131 , NO. 10 , OCT. 1975, PP 387-388.

AFPENLIX 7 Publiched papers

A nurber of papers have been published on the work reforted in this thesis. They are as folloris

1) L. Burrow and T. Thoras - - The performance of junction control stratefies in a hierarchical urban transport system - , I.E.E. conference Control aspects of new forms of guided land transport ', London, 28-30 aug, 1974
2) L. Burrow - - The simulation of junctions in automatic urban transport systers using interactive Eraphic displays - United Kinedom Simulation Council conference on computer simulation, Bowness-on-7indermere, 6-8 may, 1975 (to be published in the Simulation Council series'Simulation')
3) L. Burrow - - The design of control systers in automated transport systems - IFAC workshop 'Optimisation applied to transportation systens' Vienna, Austria,17-19 feb,1,976
4) L. Burrow - The 'fall soft' design of complex systems - I.E.E. conference DA $\operatorname{stributed~computer~}$ control systems ${ }^{\circ}$, Birmingham, 26-28 sept, 1977

approach is not practicable. The work reported here is concerned with a single junction element, viz. an intersection of two traffic streams with no provision for turning. The performance of various control strategies have been compared, using as cost function, the mean delay experienced by vehicles arriving randomly but with a specific mean flow rate.

Headways

The distance headway between two vehicles is taken as the spacing between them plus the length of either. For uncoupled vehicles, safety demands that headway is maintained above some minimum value that is dependant on speed. It is convenient and conventional to designate this minimum or emergency headway as vehicle length plus the stopping distance, and to calculate the latter using a reliably attainable emergency braking rate. The safety supervision equipment is assumed to apply emergency braking whenever this emergency headway is infringed.

Such an application during a deliberate manoeuvre is most undesirable. Vehicle munning control is therefore designed to maintain headways above their emergency values. A working headway can be designated and used as a set point for longitudinal control. Working headway is also likely to be a function of speed and can be expressed as emergency headway times a factor. The multiplier chosen reflects both the desired safety margin and the expectation of headway infringement during particular manoeuvres.

Suppose, for example, that a junction controller wishes to slow down a close packed string of vehicles. One technique would be to simultaneously command every vehicle to decelerate. Another technique would be to command the leading vehicle only to decelerate, and to rely upon feedback headway controllers in the following vehicles to slow them down as their working headways become infringed. In the latter case, non-infringement of the emergency headways depends on the severity of the leader's manoeuvre and on the efficiency of the feedback controllers. In the second case the proper definition of the working headway is important.

The term 'brick-wall stop' has been applied to a vehiole undergoing an infinite rate of deceleration. The emergency headway defined above is based on the possibility of a brick-wall stop by the vehicle aheád. There has been much debate about the acceptability of shortening the emergency headway on the grounds that brick wall stops are not possible. A variant of this argument allows the factor relating working to emergency headway to be less when vehioles are following each other, than when they are crossing. Both instinct and conventional road transport experience seem to support this distinction. In the work being reported here, the working headway has been taken as 1.2 times the emergency headway, but the factor has been mised to 2.0 for crossing vehicles. The existence of such a distinction has a marked effect on junction performance under various strategies.

Time headway is a more nebulous concept than diatance headway but is useful where pairs of vehicles are moving at oonstant speed. In such a case time headway is distance headway divided by the speed. Vehicle flow rate is, in turn the reciprocal of time headway. Thus for a steady speed, saturation flow rate can be taken as speed divided by the working headway. plotting saturation flow againet speed gives the faniliar hill shuped ourve whioh identifies the marimum flow (or capacity) and the corresponding 'saturation apeed' (diagram 1). For reasons of performance and flow stability practioal transport systems have line speeds well above their saturation speed.

82

At a specified speed, one can evaluate working time headways for the following and crossing cases (f and c respectively). The saturation flow through the intersection when both streams travel at this speed will be

$$
F_{s}=\frac{n}{(n-1) f+c} \quad \begin{aligned}
& \text { where } n \text { is the mean platoon size passing } \\
& \text { the intersection from either line. }
\end{aligned}
$$

As n increases from $1, F_{s}$ increases from $1 / c$ towards $1 / f$. The junction capacity is the value of F_{B} when the speed at the crossing point equals the saturation speed. Clearly capacity increases with mean platoon size, and any good junction control strategy must make use of this property. The ultimate junction capacity equals l / f defined at the saturation speed. No junction controller can handle an intersection when the sum of the mean input flowrates exceeds this figure.

General Features of a Control Strategy

Any junction control scheme must establish a trajectory for each vehicle from its entry point to the intersection, and from the intersection to the exit point. System constraints such as acceleration limits must be observed. The trajectories should collectively minimise the chosen cost function.

The critical features of a trajectory are its intersection arrival time and its intersection speed: the primary task of the control algorithm is to determine these target values. The times must be such that, given their corresponding speeds, vehicles do not violate their working headways at the intersection. Before these times can be determined, the vehicle order through the intersection must be decided. In some algorithms, order and timing are chosen by an iterative process.

Individual vehicles are subject to two sorts of delay. They lose time in slowing to the intersection speed and speedine up again: they lose further time in manoeuvres to avoid conflict with other vehicles. The target intersection arrival time allows for both delay elements. Lowering the intersection speed will increase the former element but decrease the latter. (Provided intersection speed exceeds saturation speed, any reduction in it will reduce headways and hence the extent of potential vehicular conflicts). Thus there will be some optimum speed that minimises total delay. According to the algorithm chosen, it may be possible to vary the target speed from vehiole to vehicle, or it may be necessary to give the same value to every vehicle.

With suitably sophistioated longitudinal control, and with a sufficient manoeuvre distance, the target times and speeds would always be attainable. In the practical case, the necessary manoeuvres may cause infringements of working headways, resulting in additional, vehicle-determined, control action. This action will always take the form of braking and hence result in yet furm ther delays. These are generally quite slight compared with the delay -lements mentioned above, but may attain significance with partioular control algorithme.

As the flow rate through the junction is increased, a condition will eventually be reached where vehicles experience intrusion of their working headways even before they reach the junction control boundary. This defines the ntage ar which the funotion ceases to behave as an autonomous system component.

Possible Junction Control Strategies
'Fixed Time Cycle'
The intersection is allocated for a set period to each lane in turn. The policy creates platoons, the size depending on the flow characteristics and limited by the length of the period.

Conventional traffic light control is the simplest manifestation of a fixed time cycle. However in this form the intersection is inefficiently used, primarily because only the speed of the front vehicle of a platoon, formed at the junction, can be optimised. The remaining vehicles pass the junction at a speed determined by headway control.

A more sophisticated control ensures that all vehicles pass through the intersection at an optimal speed. This requires the vehicles to be allocated their target times and speeds some distance before the intersection. If only a limited distance is available for organisation then headway infringement will make it impossible to achieve the optimum targets. Increased delay will result; also the ultimate average platoon size will be reduced, lowering the saturation flow.

The results obtained demonstrate these effects of headway infringement. (dia 4) Diagram 2 shows that increasing the period length increases the ultimate capacity, but also increases the delay at lower flows.

The results of optimising the junction speed and period length for particular flows are shown on diagram 3. Operating points on this curve would be difficult to realise in practice as the performance is very sensitive to parameter changes.

Fixed Platoon Size
This alternative policy has many similarities to the fired time cycle. However the strategy appears particularly inflexible and no studies have been carried out.

TFirst Come First Served
The vehicles pass through the intersection in the order with whioh they arrive at a predefined control boundary.

The platoon size is only dependent on the input vehicle headiay distribution. (The work reported here employs a modified Poisson arrival distribution; average plation size $=1.4$ vehicles.) The ultimate oapacity of the system is therefore fired. The effects of headway infringement are small, as the platoon size is small. The ourves (diagram 5) for the simulation with and without headway constraints confirm this. As expeoted, the system exhibits emall delays for flows below saturation, but saturation flow is low. (dia 6)

The 'Alternate Prioritv' Scheme

Consideration of the performance of any strategy is greatly assiated by knowledge of the absolute performance boundary. A strategy whioh goos some way to providing such a boundary is the "alternate priority" scheme.

The order of the vehicles through the interseotion if determined from a comparison of two ordering polioien.

first.
$2(\mathrm{~b})$ if $\quad \begin{array}{ll}\mathrm{T}_{\mathrm{C}} & > \\ \mathrm{T}_{\mathrm{B}} & \mathrm{T}_{3} \\ \mathrm{~T}_{1}\end{array}$
then lane allocation will stay with lane 1 , vehicle B will go first.
3 if $\begin{array}{lll}\mathrm{T}_{\mathrm{B}} & > & \mathrm{T}_{4} \\ \mathrm{~T}_{\mathrm{C}} & > & \mathrm{T}_{3}\end{array}$
then a first-come first served system operates.
4 in the situation where
or $\quad \mathrm{T}_{1}<\mathrm{T}_{\mathrm{B}}<\mathrm{T}_{4}$
The change of lane occurs for a variety of conditions dependent upon the actual situation.
The policy forms platoons according to the input flows and bears a close resemblance to the operation of a roundabout in conventional traffic.

Results obtained from a simulation without headway infringement demonstrate the low delay high ultimate flow characteristic of the scheme. (dia 7)

Conclusion
In an asynchronous headway control system the line capacity is a function of line speed. This property, may be used in a particular strategy to locally increase the line capacity be reducing the line speed.

If a distinction is drawn between two situations; a vehicle following another and a vehicle crossing the path of another, two 'workine headways' can be defined. This distinction has a fundamental effect on the operation of control strategies. In particular a policy favouring the formation of platoons allows the intersection to cope with a greater ultimate flow.

However if the control policy starts a manoeuvre at a single.fixed point before the intersection, headway infringement will cause vehicles to incur extra delay. This extra delay increases with platoon size.

Better performanoe may be achieved using more complex control strategies which enable manoeuvres to start at a point dependent upon individual vehioles.

The conceptually simple 'pixed time oyole' polioy permits high saturation flows to be achieved but with relatively higher delays at low flow rates.

Conversely the 'first-come firat-served' system takes advantage of local headway distribution. This yields a low delay but with a low ultimate flow.

The 'alternate priority' policy generates plateone dependent upon the flow rate. This gives low dolays at low flow rates but allows a high ultinate flow rate to be achieved.

Appendix 1
The simulation parameters used were

Line speed
Fmergency deceleration
Normal acceleration
Following headway factor
Crossing headway factor
Vehicle length

- $\quad 12.0 \mathrm{~m} / \mathrm{sec}$
- $2.5 \mathrm{~m} / \mathrm{sec}^{2}$
- $1.25 \mathrm{~m} / \mathrm{sec}^{2}$
- 1.2
- 2.0
- $\quad 4.0 \mathrm{~m}$

For the simulation including headway constraints control commenced 300 m before the intersection.

USING INTEPACTIVE GRAPHIC DISPI,AYS

Abstract

L.D. BURROW M.Sc.

Inter University Institute of Engineering Control University of Warwick.

INTRODUCTION

The continuously rising costs associated with conventional transport systems, those of congestion, pollution, the profligate use of energy, etc., have stimulated considerable interest in alternative transport systems.

Of particular interest are automated transport systems, which potentially offer the flexibility, speed and comfort of private vehicles, combined with the public transport benefits of econony and freedom from stress. The faster, more predictable, response of automatic controllers, by comparison with the human operator, may also give increased capacity and better safety ($1,2,3$).

Where the introduction of a new transport system into the fabric of an existing city is proposed, any scheme requiring bulky civil engineering structures will be at a severe disadvantage. Control can be substituted for civil engineering at the expense of some loss of potential system capacity. There is thus great incentive to devise sophisticated control schemes, which provide the desired service characteristics yet permit compact structures to be designed, particularly for stations and junctions.

This paper reports the simulation of junctions in an automatic transport system. Automatic transport control, its structure and operational philosophy, is intro duced briefly to define the environment within whicl- the simulation studies have been carried out.

Abstract

Large general simulations are evolutionary in nature. The design of simulation structures to allow free development, is examined emphasing the need to develop submodels of the system. These can then be introduced into the main body of the simulation, after their behaviour has already been investigated in some detail.

In this context, the implementation of the junction simulation is described highlighting the essential elements.

The data output requirements of a sitaulation are defined. For a general overview of system operation a moving picture is useful, and the implementation and the interactive display used with the simulation is described in detail.

Finally, sone results are presented showing a few of the programe capabilities.

TRANSPORT CONTROL
The control structure for an automatic transport systern may be centralised or hierarchical. Central control can provide better performance by using all the systen information. However, communication costs are high and failures anywhere in the system can cause extensive disruption.

In a hierarchical structure, control is divided between a number of semi-autonomous levels, with only limited information transfer between levels. The autonomy localises failures and cormunication costs are reduced.

Control strategies may be classed as either deterministic or stochastic. Deterministic control requires complete knowledge of every vehicle's present and future positions: it is generally associated with centralised control. Stochastic control implies that only a limited knowledge of vehicle positions is available: it is particularly applicable in hierarchical control environments. It is also generally associated with 'vehicle following' algorithms (in which a vehicle obeys a speed command whilst on open track and when following a vehicle, adjusts its speed to some function of the distance to the vehicle in front).

HEPGE CONTROL
Herge control in deterministic systems is relatively simple. Vehicle journcys are prearranged so that conflicts never arise at a merge.

In Stochastic systems, vehicles arrive at junctions randomly and are merged under local control. As junctions are usually the capacity limiting elementa of a transport system, there is a need to develop control policics that allow high flows through the intersection, yet limit delays and the distances required for preparatory manourvres.

The simulation reported here has been designed to test and compare algorithms for the local control of an isolated junction in a stochastic system. Provided a junction always presents unrestricted entrances to inco:iño traffic and can rely upon its exits being clear, it can be studied in isolation from the network of which it is a part. Its controller is thus a device for minimising some cost function, using information gathered entirely from within its boundaries ($4,5,6$,).

SIMLATIO:

Analytic description of a systen as complex as a junction is unlikely to be helpful. Even if an accurate nathematical description could be produced, the complex highly constrained, non-linear interaction of variables is alrost certain to defy solution. In this situation simulation can be used to study specific situations, with the implicit assumption that the results will enable the significant characteristics of the general solution to be identified(7).

A simulation can only model the major system features since intricate detail studies are very expensive in programming and running times. These important features can frequently be predeveloped using an efficient specific program. Further development can then be carried out in the more demanding larger scale simulation environment.

This approach to simulation offers several useful characteristics.

Speed - because small programs are easy to develop and quick to run.

Identification - since submodels can be isolated within the main body of the problem which in its curn leads to modular simulation structures.

Reliability - because a repertoire of expected behaviour patterns is built up, leading to a better comprehension of the overall system.

A modular simulation structure allows such development to take place in parallel with the main situlation. Provided the structure created accurately represents the system and still allows sufficient flexibility to incorporate subsequent developments, then the simulation can evolve easily as the understanding of the syster grows.
K1-3-

The essential components of a junction $c a n$ be identified as:-
(1) Track
(2) Vehicles
(3) Track-vehicles comanications interface
(4) Track-control communications interface
(5) Control system

TRACK
A junction can be specified as a directed graph having links, nodes, entrances (traffic generators) and exits (traffic sinks). This general description can encompass an arbitrarily complex network. Simulation of track uses arrays to hold the geonetric details (to enable the layout to be reproduced for display purposes) the lengths and speed limits of links and their interconnections. A further matrix specifies possible entrance-to-exit routes for vehicles traversing the network.

In operation vehicles are created at each entrance according to a randor generator modelling the desired input stream characteristics. Each vehicle is allocated an exit and is transferred from link to link according to the route matrix until that exit is reached.

VEHICLES

The detail simulation of vehicle dynamics is a study in its own right. Junction modelling requires only crude vehicle simulation, incorporating realistic constraints on velocity, acceleration and jerk (rate of change of acceleration). Initial studies have assumed the perfect response of a vehicle to demanded inputs. This is an unrealistic assumption: it is commonly accepted that the tolerance on the practical vehicle specification is unlikely to be better than 57 . Later simulation studies will have to take this into account as performance variations are likely to have a very significant effect on control policy decisions.

TRACK-VEHICLE AND TRACK-CONTROL COMMUNICATIONS

The amount of information transfer required for track-vehicle and track-control commication is a particularly important parameter in the assessment of control strategy. Information transfer is expensive, requiring sophisticated apparatus of high reliability. To commicate lesa is cheaper, to commicate more allows a better control to be achieved
which may reduce costs elsewhere in the system. Careful simulation of the information transfers enables the balance between these factors to be studied.

As cormunication at points along the track is likely to be used in a real system, the simulation models this. Other communication arrangements can be readily modelled without a change in the simulation structure.

Within the simulation information transfer points are positioned on the track; the passing of a vehicle calls a servicing routine attached to that particular point. Such an arrangement is sufficiently flexible to allow most strategies to be simulated. It has the particular programming advantages that the necessary information transfer can be explicitly identified and a subroutine performing a particular control task can be used to service any number of commication points.

CONTROL SYSTEM

The control system is a decision making process. The control commands dispatched to vehicles are determined knowing the ideal response of the systen, (i.e. a conceptual model of the system is held in the controller) and some past and present information.

Two control systems are required in an automatic transport systemOne, the normal running control system, the other, an independent safety control system. The latter oversees the former and is generally a system monitoring the single condition 'is the vehicle separation adequate for the speed of the vehicle?'. It is essentially a controller, holding a very simplified system model, capable of issuing only one command (e.g. brake at the emergency rate to zero velocity).

Autonomy from the normal control system is essential to ensure that failures in the nornal control system are independant of failures in the safety control system, so reducing the likelihood of a joint and possibly catastrophic failure.

The normal control system has two paths of action, normal or abnormal. The choice depends on a comparison of actual systen performance with the performance predicted by the conceptual model held by the controller.

Normal control is exerted when the comparison shows no serious deviations. There are two interdependant decisions involved.
(1) What future state is required of the vehicles?
(2) What commands should be transmitted now to achieve that state?

For example, in the vicinity of a merge decisions have to be made about:-
(1) The future order of vehicles through a merge.
(2) The longitudinal control action that has to be applied to each vehicle, such that they achieve the order efficiently and safely.

Abnormal control results when the comparison reveals a serious error. If the cause of the fault can be identified (e.g. an unusually slow vehicle) then the normal controller may be able to handle the situation without major disturbance (effectively by modifying temporarily its conceptual system model). If not, then the emergency braking system will have to be actuated. The control structure is surmarised by diagram (1)

Careful simulation of the control strategies is important as there is much dispute concerning the criteria, that should be adopted, to ensure a high degree of safety, concomitant with a reasonable level of technology and implementation cost.

Of particular interest, especially with systems operating near maximum capacity is the interaction between the normal and emergency control systens. There are costs associated with both, unnecessary'emergency
K1 -6-

DYNAMIC VEHICLE DISPLAY

The vehicle display routine determines the picture speed. Provided all the necessary calculations can be carried out simultaneously with the receipt of data, the picture rate is determined by the data transmission time.

The design of the vehicle display therefore reduces to mininising the data required to define a picture and ensuring that algorithms are sufficiently fast.

The least complex symbol that could be used to represent the vehicle and its stopping distance is a straight line of variable length. To position the line anywhere on the screen requires the XY co-ordinates of each end: these, directly transmitted from the Sigma 5 would require four items of data.

If the vehicle is identified as lying on a particular link of the junction network, then the end co-ordinates can be calculated knowing the displacement of each end of the vehicle syrabol from the origin of the link. This reduces the number of data itens required per symbol to two.

The co-ordinates of a point on a link are calculated according to the simple algorithm.

$$
\begin{aligned}
& X_{p}=X_{n}+\left[X_{n-1}-X_{n}\right] X g \\
& Y_{p}=Y_{n}+\left[Y_{n-1}-Y_{n}\right] X g
\end{aligned}
$$

where $n=$ integer part of
[1/7]
$g=$ fractional part of
$[\mathrm{D} / \mathrm{P}]$
D = displacement of point from origin
$P=$ length of one link segment

All the data except D are constants and held in the previously generated data table.

To calculate the co-ordinates of each point requires two multiplications and one division, consequently calculation times can be easily kept within the minimum period of $10 \mathrm{~m} / \mathrm{secs}$ separating the arrival of data items.

DATA TRANSMISSION

The maximum binary number that can be transmitted from the Sigma 5 in a seven bit character is 127. If each of the displacements necessary for the XY co-ordinates of the symbol, can be generated using numbers less than 127 then only a single character need be transmitted for each data item.

Three methods of generating the displacement are possible.
(1) The absolute displacement of a point from the link origin can be transmitted. As displacements can be considerably greater than 127 screen units (approx 1.25 inch) in general, two characters would be required to define the point (the two characters represent the high and low order parts of a binary number).
(2) Each point is calculated as an increment on the corresponding point on the previous picture. The data increments are likely to be very small but rounding errors would accumulate from one picture to the next and probably become unacceptably large.
(3) Along a given link, a set of points can be specified by sending the spacings of the points and defining the first point as being spaced relative to the origin of the link. For a set of points along a link, errors can accumulate, but these are not transferred from link to link or from one picture to the next. This scheme was implemented in the picture display.

COMMUNICATION WITH THE SIGMA 5 heSt

During the picture display cormunication is maintained with the Sigma 5. Any two characters typed from the keyboard terminates the picture display and initiates a dialogue enabling several options to be selected.
(1) A specified portion of the network can be, magnified to amy scale.

The facility is achieved by calculating and transmitting to the GT40 a new co-ordinate table holding only the co-ordinates of links actually appearing in the display. During the picture display the Sigma 5 sends only data referencing the displayed links, all other is suppressed.

To aid the detail study of individual movements the simulation can be run in slow notion if required.
(2) During a simulation run, the variables defining the state of the simalation are regularly dumped on magnetic tape. This records the simulation results for future data processing.

At the request of the operator the simulation can be restarted anywhere on the record. This enables simulation work to be carried on from where it was left or for any particular event to be studied in depth.
(3) To assist in this study a step operation can be selected. On restarting the display the operator retains control. After each picture he has the options, to step backwards or forwards one picture, to dump data, or return to the main dialogue.
(4) To prevent the continuous dumping of variables producing a confusing line printer record a message option can be selected and a heading transmitted to the line printer.
(5) A trace option records the progress of a particular vehicle by printing all the variables, pertaining to the vehicle, regularly to the line printer.

SYSTEM PERFORMANCE

A picture rate of about 2 pictures/sec is achieved. if a picture is output every one second of simulated time (i.e. the display is running approximately at a simulation time twice as fast as real tine) a clear moving jerky picture is realised, however the display slows the simulation down a certain amount.

If the simulated time between each picture is increased so that the display does not hold up the simulation, each picture jumps in unacceptably large steps to the next picture. This is because large changes in vehicle position can take place in the increased simulated time between each pictura.

A very approximate estimate of calculation times within the GT40 suggests that, with a few programing alterations, a picture rate of 10 pictures/sec could be achieved, provided a fast enough data link was available. Faster than this may result in timing problems, with the GT40 being unable to keep up with continuous data transmission.

SOIE RESULTS
Sone of the features of the program are demonstrated in the results shown below:-

The junction simulated is a one way noturaing intersection. Continuous communication channels between vehicles and between vehicle and controller are assumed to exist.

Three strategies have been simulated. Each determines the order of vehicles through the intersection in a different manner. In each, there is the same penalty attached to changing the lane allocation of the intersection. In all of the strategies, vehicles are commanded to follow a velocity profile designed to bring them to the intersection at the appointed times (which are determined by the vehicle order) and with a set speed.

Diagran (3) shows the flow delay characteristics of eacil of the policies.
(1) This is a first-come first-served algorithm. The order of vehicles through the intersection is determined by the order vehicles pass a control boundary in front of the intersection. Note the low delay and low saturation flow of the scheme.
(2) In this policy the intersection is allocated to each lane in turn for a set period. The method is similar to fixed period traffic lighes. Note the higher delays involved and the high ultimate flow achieved.
(3) This is a more complex policy designed to reduce delays. A particular lane holds priority at the intersection until a natural break appears in the incoming stream. The priority then switches to the other lane. This scheme operates as a first-come first-served system at low flow rates and offers lower delays than the fixed time cycle system at high flow rates.

Although only a limited amount of work has been carried out on this simulation, the picture display has more than proved its worth. Its main advantage lies in being able to readily tie up particular phenomena with line printer data output. This is particularly useful in prosran developnent where considerable time can be saved as a result.

ACKNOKLEDGE MENTS

The work reported is part of an on-going PhD sponsored by S.R.C. The author wishes to express his particular thanks to Dr. T. Thomas for his constant support and suidance throughout the course of this project. BIBLIOGRAPHY
(1) Urban Iransport Research, Group working paper, No 21 'Advanced Urban Transport' - Dec -73.
(2) Report by Task Force on New Concepts in Urban Transportation University of Xinnesota 'Planning for personal rapid transit' Dec 1972.
(3) Urban Transport Research Group Symposium '74 'Advanced Transport Systens in British Cities' 27, 28, 29 March 1974 at University of Warwick.
(4) L Burrow, T Thomas - 'The performance of junction control strategies in a hierarchical urban transport system' I.E.E. Conference on Control Aspects of New Forms of guided land transport' 28-30 August 1974, pp 80-87.
(5) Boyd R K, Lukas MP.' How to run an automated transportation system' I.E.E.E. SS亻C-2 pp 331-341 July 1972.
(6) L P Hajdu et alia - 'Design and control considerations for automated ground transportation systems' Proc IEEE Vol 56 No 4 April '68pp 493-513.
(7) M H Beilby 'Simulation of the novenent of road traffic Part 1' Department Transportation and Environmental Planning, University of Birmingham, December 1971.
AVERAGE DELAY
Diagram 3

UNIVE:SITY OF GARYICY

Design of Centrol Syctoms in Automated Mraneport Systoms

> I.. D. Burrow, M.Sc., Urtear Tranos at Rand...anh Group

Control of aitomated transcit systems involves many interacting operations. People havc to be informed, guidod and rogulated. Vchicles have to bo manoouvrod, directed raid dispatchod. Failuroz and foults must be identified and rootifiec. Safety must bc ensured.

Many of those aspects have bson extensivcly studied, often with optimisation in mind, yot, whon estended to whole systom operations, most schemes do not perform well. Eithor necossary vehicle manocuvres cannot be easily porformod, or tho system response to fault conditions is inadequate, or unstable modes of oporation appear.

Operating schemes are roquired which will onable the system to operate well undor all practical conditions. In complex systoms, govornod by cost functions embraoting qualitativo and quantitative economic, social and tochnioal factors, dosign policies must attompt to find tho best oporating regions.

To aim for tho global optimisation of such intrionte systoms is unrealistic. Even in the ovent that an acourato mathomatical doscription of tho cost funotion and system oould bo produced, tho complax, highly constrainod, non-linear interaction of variables is oortain to dofy solution. At best only local optima can bo found and by oaroful dosign, combinad to form an overall 'good' system.

The benefits whioh soorue from a fudioious dosign of tho oontrol struoture far outweigh those that can be achiovad by optimisation at a dotailod lovel.

This paper will consider a systematic approach to the design prooess which may help move offective control systems to be evolved.

Good roliability and high safety standards are fundamental factors in any transport control schemo and must figure in any cost function relating to the operation of the whole system. The papor will survey the response of a transport schome to failures, outlining the roquiroments for a 'fail soft' systom and discuss tho use of hierarchical struoturos to achicvo such a charactoristic.

Optimisation

The procoss of optimisation is ofton presontod as a highly cxact process. Yot, if optimisation is taken in tho gonoral sonso of meaning, the systematic approach to a situation, with a viow to obtaining the bost possible outoome, using what previous knowladge is available, then only in a fow situations is this true.

To gathor tho information nocoseary to dooide upon an improvoment takes time. Better foreoasts roquire more time. Optimisation processes cannot work faster than thu systems they aro trying to improvo. Consqquently the ovolution of good transport schomos may take sovoral decados, wheroas tho on line optimisation of paramotors in a vohiolo controller may take only scoonds.

Design

The oreation of a 'good' systom is part of an optimisation prooess. Tho dosigner, by assembling together his previous exporience, attompts to oroate a new systom whose properties moro closoly approsoh the dosign specification.

An important part of tho design process is tho soourate apecification of tho design onvironment or a dofinition of all the influonoos on tho syatom of interset. These inolude disturbanoes for which the dosigen must oater, oritoria, fixod information and maanures of performance.
system critori
demande servioe
control
weak.
possibl
minor disturbancos demand veriations hardware variations environmental variation

There are fow diruct dosign procedants for automatic transport control systems. The foodback link labollod 'provious exporience' is weak. Nevertheless a good dosign procese will make the maximum use possiblo of what transforablu axperionce oxists.

Dosigns can be evolvad at throe lovols

1) Structuro
2) Subsystom
3) Paramoter or oquipmont

Struotural loval of desien

A syotem can bo considjred as a structuro of intoroonneotod subsyrtoms. Potentially ovory subsystom is itgelf a system. The original fystom in a subsystem in a moro gencral systom. The dosign problom is limitod by tho dosignor. A control onginoor will tako as firod the tranopert polioy dotormining tho particular niohe his aystom will fill. Similarly he will tako as fixed tho range of components available for usc in his oirouite. Effectively an upper and lower boundary to the problam has boen presoribod.

A systom is typically muoh morc complicatod than a man can overview, only a picce at a time can be considered and so a sot of subsystoms has to bu definod. The most gencral luval of design dofincs tha systom organisation. It speoifics the most appropriate subsystoms and structure to achicve the dusired 'wholc' systom properties.

The choicc of subsystems in a system is dotermined by several factors. Some subsyetems arc immodiatoly apparent as thoy corrospond to necessary funotional units in the systom, junction controllers, signalling systoms, omergency backup systoms aro all possiblc units in a transport control structuro.

The choico of st bsystems may roflect a dugrec of complarity, related to the ability of ono or more pooplo to fully undorstand it within a given time. A unit too largo to bc undorstood is unlikoly to perform woll and when it fails will bo timu-consuming to repair and probably too big to roplace.

A subsystom may be choscn bcoausc it corrosponds closcly to an alroady developod sohome, so ruduoing tho design offort roquired.

The choico of a structure for a system is less obvious. Somc work oxists on tho theory of struotures (rufs. 1, 2). Howover gonorally the choice of an appropriato struoturo can only bo made on tho basis of comparison with othor systoms oxhibiting dosireblo proportios. Dirsot solutions may not bo found but the comparison may oongtituto some domonstration of feasibility.

Likely control struotures for an automatic transport systom aro eithor contralizad or hiorarohioal (Rof. 3)

In oontralized oontrol struoturos, a oontral deoision making unit controle all the periphoral subsystoms. Information from the eubeyetems pasces to the contral offioo and is availablc for use in any othor subsyintom.
more

Communication cocts are high and the centralization of oontrol makes tho systom very vunorable to faults.

Well understood contralizod control structures can probably offer a better luvol of control by using all the system information. However the complexity of interactions between subsystoms makes the system less casy to understand.

This has two effeots:

1) The syston bocomes more prone to software faults. An incomplote specification of subsystom statos is more likely and may lead to undefinod unsafe conditions. The greator number of subsystom states makes fault monitoring and rootification more difficult and costly.
2) Tho groater number of feodback loops tends to increase the chanco of unstable systom respbnses. This foroos lower gains to be usod and rosults in a pooror control action.

In a hierarchionl structure control is divided betweon a number of somi-autonomous luvols. Hiorarchy dccouples elements of a systom. Each olement in tho trec is an autonomously funotioning subsyotem using only limitod stratogio information Irom tho lovel above. Frequently this information can bo transmittod discontinuously. Commanication is In two directions; A command or paramoter down tho hierarchy spooifying what should happen. A foodback or cheok up tho hiorarohy saying what is happoning.

Ilierarohioal organisation raduces the numbor of unwnotod foodback loops in the system, so allowing the intoraotion of subsyatems to bo moro confidontly prodiotod.

Hiorarohios show a graduation in proportios whioh aro sumarisod in tho diagram.

groator understanding greator generality longer time scales
greater detail
more spcioific information shorter time scales

A hiorarchy can bo considered as a filtor, oach layer boing concerned only with a rango of froquoncies. Together the subsystems cater for the ontire range of frequencies apparent in the system.

Subsybtems Levol of Dosign

To a subsystem the rest of the system is its onvironment. Where the subsystom is designod in isolation, as often will be tho case, its intorface or connections with tho outer world havo to bo acourately spocificd, otherwise incompatibilitios will ariso.

The dosigner of a subsystem wants to minimiso his own particular cost function. This will genorally bo achicvod at the oxpense of the outside system. The bslanoing component from the outside must be made visible to the subsystom so that an ovorall balance oan be achioved, i.e. tho subsystems should bo givon boundary oonditions suitable for approximating the total optimisation.

Tho use of aimulation is ofton an appropriate aid to the design of a subsystom. Simulation is a means of modelling epproximately the important aystom intoractions, at an eocolorated time soale. By invostigating a largo number of specifio situations a more complete picture of the process is built up, hoperilly onabling bettor solutions to be found.

Computor simulations havo boon oxtonsively usod in the analysie of tranmport control syotom, pankionlarly for notwork dosign etudien, vahiole managemont and operation etrategios (refs. 4, 5, 6 five a seleotion of representativo work in thie fiold).

At the level of the intorantion with the wonl warld, parameter optimisation can froquontly be approached methomatically, although in transport control the many paramotor constraints and non lincarities prevent genural solutions from boing found and recourso has to bu made to iterative tochniques.

In some circumstances an optimal solution to tho problem can bc found at the dosign stagc and incorporated into the systam hardwaro. Alternativoly the dosigner can structure tho hardware in such a way as to allow optimisation to tako place 'on linc'. This may lead to a better oontrol but $\varepsilon+$ the cost of addod comploxity of equipmont, moasurements and communications.

Dynemio optimal controllors are ofton proposed for vohicle position and speed controllers whilst murge control algorithms may well bo optimised at the design stige. (Rofs. 7, 8, 9)

'Failsoft' transport control

In the dosign of lige craplex trancpurt jyotci: the quality of service is strongly influenced by the reliability of the system and its ability to cope with frults as they occur. Roliability of individual components can be assured up to some limit, foilures will however still occur. It has been estimated that given reasonable standards of reliability for a medium sized auto tari system a failure oan be expocted somowhere every couple of minutos. A system which is very sensitive to faults is going to be at a sovere disadvnntage. 'Fail soft' systoms oan bo dofined as systoms whioh, es failures oocur, progrossively booome dograded in porformanoc, rather than oollapso complotely. The dosign of a control structure to have this sort of property is a 'blaok art' for which no aystomatio approach appears to have bean developed.

By the systemetio applioation ef tha atandard toohniques of reliability, standby and redundancy, to all levcls of tho design process, to the structure, subsystems and equipment, it is hoped that the effects of a fault can be minimised, its zono of influonco circumscribed and its duration minimised, so loading towards the creation of a 'failsoft' system.

Failures of a transport systom causo disruption of sorvice and ofton create unsafo situations. To onsure tho safo running of a system requires two control systoms. Ono tho normal running control, the other an indepondent safoty control system. Tho lattor oversess the formor and is generally a sumple controllor aotivatod by the single condition 'is the vehiclo separation inadequate for the speed of the vehicle?' and iasuing one command (e.g. brake at an emergency rate to zero velocity). The safoty control system must be autonomous from the normal oontrol system to ensure that failures in normal control are independent of failures in the eafety control system, thus reducing the likelihood of a joint and possibly catastrophic failure.

The disruption causod by a fault is pertioularly deponder:t upon tho severity of the fault. This soverity depends on the area of the aystem affected, the subsequent propogation of the fault through the system and the time duration of tho falt.

All theso faotors are made lass signifioant by designing subsystems to operate as independentiy as possiblc over localised rogions of the treok.

This independenoc, necessary also for baokup safety systems is an intrinsic property of hierarahical etruotures. Hlerarchy allow structures to expand or oontract locally without influenoing the remainder of the syotom. The modular nature of suoh aystem reduces maintenance and mepair times by eimplifying the deteotion of faults and their repaif.

Conclusions

Tho design of a complex transport antrol oystem must integrate all the faocts of a transport scheme. Good system availibility, safety and fail soft oharacteristics aro espocially difficult to design into a system yot are fundamental to its operation.

Hiorarchical structures are moro roadily broken down and undorstood. They appear to offer choractoristics which allow effectivo designs to be evolved. Other structuros may allow better results to bo achicvod but probably at tho cost of mach graator dosign effort.

Reforencos

1. Mosarovio M.D., Macko D., Takahara Y.
'Theory of hierarchical, multilevol systems' Aocdemic Press 1970, New York.
2. Langfors B.
'Thoorctical analysis of information systems' Vol. 1.
Studentlitterctur 1971 Sweden
3. Black I.G., Gillis R., Hendorson R., Thomas T.H.
'Advanced Urban Transport'
Saxon House 1975
4. Burrow L.D.

The simulation of junctions in automatio urban transport systoms using intoraotive graphio displays'
Paper Conforonce on Computer Simulation, United Kingdom Simulation Council, Windermere, May 6-8, 1975.
5. York H.L.
'Simulation of a P.R.T. System operating under quasiBynchronous control'
Personal Rapid Tranait 2, (Procoodinge of 2nd International Conforonoc on P.R.T.) University of Minnesota, May 1973.
6. Hoap R.C., Thomas T.H.
'Porformanoo of automatio transport bystoms under fixod sohodulo oporation'
Proooodings IJ.E. Conference 'Control Aspects of New Porms of Ouided Land Transport' London, August 1974.
7. Athans M., Lovino W.S., Lewis A.H.
'A system for optimal and mub-optimal position and velocity oontrol of atring of high apeod vahioles'
Report ESL-R-291 H.I.T.
Elootronios and Systoms Lab. 1966.
8. Chu K.
'Optimal docentralizod regulation for a string of couplod systems'
IEHET Trans, on Automatic Control. Vol. AC-19, No. 3, 1974.
9. Athans M.
'A unifiod approach to the vohicle morging problem' Transportation Rosearch, Vol. 3, 1, April 1969.

THE 'FALI SOFT' DESECN OF
L.D. Burrow

Urtan Transport Fesearch

INIRODUCTION

Automation is increasingly complex systems. Most of to design, build and oper benefits are high but so faulty mnning. Faults in complex systems have corn conterporvary automated sy lack fieabled by almost an are disale by

Reliability is an inporta Af all systers Althoumh of all systems. Although complexity in a system ma performance levels, it may attained if the greater reduction in system relia of system periormance aga account of the effects of The Perfectionist Approac

The simplest and most cur improving system reliabil reliable corponents, conb operating techniques that of components in active 4 that are better designed of derating, 'burn in', the avoidance of novel ur completely reliable compo still occur. By reducing resulting from failures, perational effectiveness improved. This requires expersive malntainance ar modular construction, onl Implicit in this perfect assurption that failures price of the irproved sor design practice and bette

Techniques for the ansess from the knowledge of the companents are widely co Similarly the reliabilit and not maintained is variety of relisbility

The Fault Tolerynt Appro
Frether improvernente to or aystem can only be of a aystam can only be deaien conveniently apli
ig ipariently spli
2) 'Pail Sort' desi Both techniquas are acnv Meribility in ayste the cornequnces of a fa detected end eltermative reduce aystem disruption
Pail oparational. systen at stratedc poin

Urban Transport Research Group, University of Warwick, UK

INIPODUCTION

Autonation is increasingly being applied to large complex systems. Most of these systems are expensive to design, build and operate, their potential benefits are high but so also is the cost of their faulty runing. Faults inevitably occur, more complex systems have correspondingly more faults. Contemporary autorated systemis are complex, they lack flexibility and frequently use computers which are disabled by almost any fault. As a result they are disabled by almost any fault. As a result they
usually experience severe reliability problems. (1)

Reliability is an important parameter in the design of all systers. Although the use of increased complexity in a system may allow potentially higher performance levels, it may also prevent them being attained if the greater complexity leads to a reduction in system reliability. To maximise the operational effectiveness of the system the balance of system performance against system cost must take account of the effects of unreliability.

The Perfectionist Approach

The simplest and most commonly employed tactic for improving system reliability is the use of more reliable components, combined with design and operating techniques that mindimise the failure rates of components in active use. This requires components that are better designed and manufactured, the use of derating, 'burn in', and planned replacement, and the avoidance of novel unproven technology. As carpletely reliable comporents do not exist failures still occur. By reducing the syster downtime resulting from failures, availability and hence the operational effectiveness of the system can be inproved. This requires the use of faster more expensive maintainance and repair techniques e.g. modular construction, online manitoring etc. Inplicit in this perfectionist approach is the assumption that failures are costly compared with the price of the improved components, more conservative design practice and better repair provision.
Techniques for the assessment of system reliability from the knowledge of the fallure characteristics of components are widely covered in the literature. Siminrily the reliability of networks, both maintained and not maintained, is extensively explored, for a wide variety of reliability indexas. (2)

The Fault Tolerant Approach

Further inprovements to the operational effectiveness of a system can only be achieved by reducing the costs of failures when they occur. Fault tolerent design conveniently splits into

> 1) 'Fail operational'design
2) 'Pail Sort' deaign

Both techniques are converned with the provision of Moxdbility in a syatem to malce it less sensitive to the consequances of a railure. In both arrors are detected and altermative strategies daplayed which reduce system disruption resulting from frulte.

Pail operational. This technique incorporates into the system at strategic pointe, spare equipnant, which, the
raults occur is progressively substituted for the failed equipment. The original system performance is maintained until at some point the spare capacity is exhausted, whereupon the system fails completely. Fail operational design assumes a very nigh cost for any partial or whole system failure. Such design is relevant where repair is difficult or impossible and total system operation is vital. Space or military applications are typical examples. However, where such design criteris are not important the 'fail operational design philosophy usually results in unnecessarily expensive schemes. (3)

Fail sort. In many cases 'fail soft' engineering is a more appropriate philosophy. 'Fail sort' is a quality of planned gracerul system degredation following a failure. Systems, so designed, attenuate the consequences of a failure, not necessarily by preventing a fault affecting system performance but by effecting an optimal compromise between the degredation of system performance and the provision of extra 'fault proofing' equipment. There has been much discussion of fail operational techniques. The fail soft option has however been neglected, although ane or two recent papers acknowledge its importance. In this paper some aspects of the fail soft problem are examined. This may help designers to more accurately specify their reliability problems and assist them to translate an overall system characteristic of 'fail soft' into specific requirements for subsystems.

SYSTEM ASPECTS OF FAIL SOFT DESIGN

A system is a profitable enterprise created and run by an operator and providing a service to the user.

Surplus $=$ value of the system to the user - cost of the system to the user.
Effective design and operation of the system maximises this surplus, i.e. maximises the system performance. The cost of a failure is disruption which is the loss resulting from a fault, (the increased costs incurred by the operator e.g. repair and replacement costs and the decreased system value to the user e.g. the degredation of service, resulting from the fault).

Disruption $=$ function (intensity, extent, duration) Extent a area of the systen affected by a fault Intensity $=$ the importance of the erroneous infor ${ }^{3}$ tion to the affected subsystens
Duration $=$ the time taken to restore the system to rull operational effectiveness.
Fail soft design is based on this equation. At each stage in the design and operation of the system strategies and equipment are set φ so as to balence the coat of precautions against the potential disruption of ar anticipated fault. A designer cen only explicitiy design for faults he han anticipated. His sbility to forsoe and evaluate their consequencese dopends on the complexity of the system. He will not be able to forecast all faulta and consequentiy will not devise a eamprehensive set of contingency plens. Action to compeneate for unexpected raults cen onily be talcon at the tim of failure. This on line 'donign' action is carried out by the system operator involvod with the rault. He is a part of the aystem and Cm be considered as a Rexdble, unspecialised, decision -lement. In mery syate his role is the sont
inportant weapon controliling the disruption resulting Mom a system failure.
Methods for dealing with anticipated faults are Introduced into the system design from the outset. Each strategy can be considered as the optimal use of a new system. This new system being the original system now changed by having a faulty companent. Three runing states can be identified.

Normal - the system is operating along its most profitable, maximu performance trajectory through the system state space; a path previously anticipated by the designer.

Fauity - the system is operating below its maximu performance trajectory, but on a trajectory optimal for the system with a failed component. Again the path is previously anticipated by the designer.

Extraordinary - the system is being guided along a path in the system state space by real time design decisions made by the system operator. He covers for all unanticipated situations. His success depends an his ability, knowledge (training) and whatever functions of the system are available. He takes direct control of these nnctions via man-machine interfaces, whose good design is essential for effective operator control. Notwithstanding its importance, the operator and his interface will not be further discussed. Thus throughout its life the system can be envisaged as following the best trajectory available to it. At any particular time the system will be running at a certain performance.

Performance. $=\frac{\text { actual rate of proflt generation }}{\text { muman rate of prolit generation }}$
Faults reduce the system performance, an effect which is shown schematically on diagrem 1 . The shaded area corresponds to the disruption caused by the fault. Fail soft strategies seek to minimise this area. The quality of gradual degredation is achieved by minimising sudden losses in performance reaulting fram failures and by suitable design multiple faults cause coly a proportionate loss of performance.
'HE EPFECT OF SYSTEM STKUCTURE ON DISRIUPIICN

Tinescales

Associated with any system is a range of timescales, a range of signal frequencies that the system will respand to. The measurement and control actions, at the systems interface with its enviromment, generate the reo signals containing all these aystem requencies. A system couprises nnctional subsystems, local concentraticus of activity, hich process input information and generate outputs accordingly.
Associated with these processors is the property of 'decision time' or processor speed. This is related to the maximul bandridth (or range of frequenciea) the processor can handle (analogue procesaes) or to the computing time required to process a mample of input information (digital processed). Thus with each function in a system can be associated a minimum tim or madmem frequency that it can reapand to. Only information changing slower than the processor limit can be accepted from the input or transmitted from the output. There will be at minimm a decision time delay befor a change at an input affects an output.

The Spreed of faulty Information

The erraneous informition genorated by afilure wil propagate tharoug tha gyater along any availoble informetion route. Most of theae routes will be the 'rormal' chanela compelising the information etructure of the systion. The remaindir will be the 'inforval' routes resulting, not from dosien requirwants but frow a casual interaction of ayst coupanents that has no part in normel rurning. Por the prodicteble operation of systean, these informal routes mar be identifled and duly considered. Often for euccesenn control they met be olimiret.

Disruption

The disruption resulting from a fault is a function of Intensity of the fault
Extent of the fault
Duration of the fault (Time to restore nomal service)

Intensity. The intensity of a fault is the loss in value to the system of the information output by the failed function. Information transmitted fram any point in the syotem contributes some degree to the system performance. During normal moning this contribution is a maxinm. Errors in the information WIll reduce the value of this cantribution. The worst case error will have the lowest possible system value. This worst case error will usually cause a lower system performance than not having the information at all i.e. the erroneous information could be a distint disadvantage to the system performance. The maximum intensity of a fault correspands to this worst case ermor.
To reduce a fault intensity implies a reduction in the importance of a function, and hence the worst case error. This might be achieved by simplification and therefore a corresponding reduction in system performance or by a more widespread use of monitoring to partition the system into smaller sections whose individual intortance is thus reduced.

Extent. The extent of a failure is a measure of the area or a system influenced by a fault. It is the set of subsystems to which a railed component can send erroneous information to. The extent of a fault is related to the autanory of the function. The higher the autonomy the fewer the interconnections and the smaller the extent of the fault. Increasing autanomy implies more local measurement and control, the transmission only of selected information, the receipt only of strategic cormends and the use of one-way commilcations, i.e. openloop operations. All of these policiea reduce the potential performence of a system but improve their resistance to faults and therefore, may, with good designs Improve, the operational performance of the system.

Time to restore service. Systent intended to have a useful irfe lang with respect to the time between failures must be repaired. The dismption caused by a fault is dependent on its duration. However, changes on the system output carnot be faster than the signal producing that change and consequently information output by a rate limited fnction, even if it is faulty Mill not change the syotem faster than that limit will allow. This suggests that it is not the sbsolute duration of the fault inich is important but rather the duration of the fault in units of the failed processor decision time (a non dimensional measure) i.e. the effects on system performence of a fault in a high speed processor rill become noticesble more rapidly then if the processor were a low speed function. (see dia 2)

Fepair times however depend on the camplexity of the fuction involved. Thus for fnctions of Eimilar couplexity repairs are likely to take about the same tine. As result a falled hish speed Nnction of aimilar complexity to a failed lom speed aystea mill cavee proportionately greater dirmption. (see dis 3,4)
From the argo ont it is apparant that maneume mich control dirruption by minisiaing fault duretion tima are ane erfective on farter fuctions.

Dh Effect of Dolay

Ean Inctional unit in a gyten introduoed delaye
 eperiences the ore up to date it will be and the ore velv it will hw for contiol. Th as dere
important weapon controlling the disruption resulting from a system failure.
Methods for dealing with anticipated faults are Methods for dealing with anticipated faults are introduced into the system design from the outset. Each introduced into the system desigh from the outset. new system. This new system being the original system now changed by having a faulty comporent. Three running states can be identified.

Nomal - the system is operating along its most profltable, maximum performance trajectory through the system state space; a path previously anticipated by the desiguer

Faulty - the system is operating below its maximum performance trajectory, but on a trajectory optimal for the system with a failed component. Again the path is previously anticipated by the designer.

Extraordinary - the system is being guided along a path in the system atate space by real time design decisions made by the system operator. He covers for all unanticipated situations. His success depends on his ability, knowledge (training) and whatever functions of the system are available. He takes direct control of these functions via man-machine interfaces, whose good design is essential for effective operator control. Notwithstanding its importance, the operator and his interface will not be further discussed. Thus throughout its life the system can be envisaged as following the best trajectory available to it. At any particular time the system will be running at a certain performance.

Performance. $=$ actual rate of profit generation maximum rate of profit generation
Faults reduce the system performance, an effect which is shown schematically on diagram 1. The shaded area corresponds to the disruption caused by the fault. Fail soft strategies seek to minimise this area. The quality of gradual degredation is achieved by mindmising sudden losses in performance resulting from failures and by suitable design multiple faults cause only a proportionate loss of performance.

THE EFFECT OF SYSTEM STRUCTURE ON DISRUPTION

Timescales

Associated with any system is a range of timescales, a range of signal requencies that the syatem will respond to. The measurement and control actions, at the system interface with its enviroment, generate the raw signals containing all these system
rrequenciea. A system comprises Nuctional subsystems, local concentrations of activity, thich process input information and generate outputs accordingly.
Associated with these processors is the property of 'decision time' or processor speed. This is related to the maximum bandidith (or range of frequencies) the processor can handle (analogue processea) or to the computing time required to process a sample of input information (digital processes). Thus with each nanction in a syatem can be associated a wifinum time or maxdmum requency that it can reapond to. Only information changing slower than the procesacor limit can be accapted from the input or transmitted from the output. There will be at minimm a deciaion time delay before a change at an input affecta an output.

The Sproed of Pulty Information

The erraneoun information ganarated by a fillure will propagate throurh the syatem along any availubla Informetion route. Most of thee route will be the 'rormal' channels comprising the information atructure of the syaten. The remainder will be the 'Informal' routes reaulting, not from deaien requiremmeta but irom a casual interaction of ayatmonements that has no part in normal ruming. For the predicteble operation or syatem, these infornal routen nem be identirled and duly considored. Often for successenu control they mist be oliminted.

Disruption

The disruption resulting from a fault is a function of Intensity of the fault Extent of the fault
Duration of the fault (Time to restore normal service)

Intensity. The intensity of a rault is the loss in value to the system of the information output by the failed function. Information transmitted from any point in the system contributes some degree to the system performance. During normal running this contribution is a maxinum. Errors in the information will reduce the value of this contribution. The worst case error will have the lowest possible system value. This worst case error will usually cause a lower system performance than not having the information at all i.e. the erroneous infommation could be a distint disadvantage to the system performance. The maximm intensity of a fault corresponds to this worst case empr.

To reduce a fault intensity implies a reduction in the importance of a function, and hence the worst case error. This might be achieved by simplification and therefore a corresponding reduction in system performence or by a more widespread use of monitoring to partition the system into smaller sections whose individual importance is thus reduced.

Extent. The extent of a failure is a measure of the area of a system influenced by a fault. It is the set of subsystems to which a failed component can send erroneous information to. The extent of a fault is related to the autonors of the nnction. The higher the autonong the fewer the interconnections and the smaller the extent of the fault. Increasing autonory implies more local measurement and control, the transmission only of selected information, the receipt only of strategle coumands and the use of cre-way commenications, i.e. openloop operations. All of these policies reduce the potential parformance of a system but improve their resistance to faults and therefore, may. with good designs iuprove, the operational perforriance of the system.

Time to restore service. Systems intended to have a useful irre long with respect to the time between failures mast be repaired. The disruption caused by a fault ia dependent on its duration. However, changes on the system output carnot be faster than the signal producing that criange and consequently information output by a rate limited fnction, even if it is faulty will not change the system faster then that limit will allow. This suqgests that it is not the absolute duration of the fault nich is inportant but rather the duration of the fault in unita of the railed processor dacision time (a non dimonsional masure) i.e. the effects on system performance of a fault in a high speed processor will become noticeable more repidly then if the processor were a law speed Inction. (ace dia 2)

Repair times however depend on the couplexity of the Nunction involved. Thus for functions of aimilar complexity repairs are likely to take about the sam tim. As a result a railed high speod nnction of siediar complexity to a railod lam apeed aynten will cave a proportionately greater diaription.
(see dia 3,4)
Fica tha argerment it is apparvat thent masurve wich control diaruption by minisiaing railt duration time ane now effective on faster nnctions.

The Efrect of Deley

Each Anctional unit in a aysten Introduces delay into a aignl how. In lower the dolay a aignl experiences the moxe $u p$ tordate it w111 be and the nore vilu it will have for ocntral. The an rese
argument subzests that the greater the delsy given to erraneous information the lower the effect it will. have on the system. This suggests a mears of controlling dismuption. For example system performance can frequently be traded for system speed. If the cansequences of a failure can be reduced by slowing the system, some benefit may accrue. Also if fault conirol strategies can be made to operate faster than the forecasted error propagating mechanisms then sore form of forward error control is possible. In the general case functions should be designed to operate at the slowest speed consistant with them rulrilling their desired role.

Pctential Performance, fismption and operational

To achieve the highest potential performance for a system each item of information is used to its raximm value, i.e. the information is belleved, and used as fast as possible and everywhere possible. However, if the informstion is in error, then the potential disruption is also a madmu, and the Ferformance then achieved may well be lower than if the information had not been used. Thus increased system complexity, ained at extracting the maximm value from information, may increase potential system perfortance, and decrease actual performance. Altermatively the increased complexity may be used to improve reliability; potential perfomance is not increased but the actual performance may.

SYSTEM STRUCTURES

There are two distinct structures in a system.

1) The physical structure 1.e. the distribution of system hardware around the region and the supply of commication chamels.
2) The information structure i.e. the definitions of functional subsets and the data flows required between them.

Orten, particular functions correspond to particular modules of equipont, and particular data flows correspond to certain comminications equipment.
However, hardware comminication facilities allow the information processing in a system to be geographicaliy distributed anywhere in the locality. The degree to which this is done depends on the relative provision costs of processing and commnication equipment The cost of a single processing module can be approximately characterised as the sum of two terms. one proportional to the functional capability of the module the other a fixed term governed by the module quality (e.g. reliability).
Similarly for commacations equipnent there is a standing cost and a varisble coat dependent on bandridth and range.
The current trend of decreasing module fixed costs with large scale integration reduces the overheads associated with physically distributed aystens. Processing power is becoming cheaper rolative to commanications. Thin favours the use of loeal autanomous procesaing and rechuced commication requirements.

Centralised System:

Measurement data is aupplied to a centrel controllar which consequently must oparate at maximm ayatem apeed. All the syatem informetion is avalloble everymere so madmising the potential system performance. Centralised syatec uviliy uploit the ability of digital machine to serve a Iarge nurber of function simultaneouly by timmharing. Substantiol numbers of high capecity costmniontion linics and complex resource alloontion is required particularly if the system is spread over a goographionily large area.

The use of a lingle moource chared by my unery in governed by queuing type phenowian. Delmy rise non-
linearly with demand, near saturaelon delajs increase rapidly and are highly variable, and performance is inmited by the reaction speed of the processor. Bis sharing causes strong interactions between users. These are manifest by a requirement for cooperation or control to ensure an optimal aharing.

Centralised systems are vmerable to faults, particularly as informal links are easily created as the result of any type of failure. They are costly to make redundant, difficult to diagnose and expensive to maintain. (4)

Distributed Systems

An array of locally sited processors performing particular tasks are interconnected by commnication links. The characteristics of such systems are dependent on the style of organisation chosen.

Ietworks. All units in the system are connected to all others. Depending on the organisation of the measurement and control functions, the connections may te high bandwidth or low.

In one cormon arrangement all the system units are multiplexed cnto a high capacity bus. This has the advantage that substantial connectivity can be provided at low cost. System organisation is almost totally determined by software since interconnections are made by message addressing. This facilitates supseantial reconfigurations of the system to counteract faults. As the bus is a shared resource its performance is typical of queuing phenomena. The bus itself is very vinerable to failures causing a total system shut down i.e. it is a particularly vital component. Also system resistance to faults is substantially reduced by the ease with which faults can propagate along 'informal' paths created as a result of addressing failures. However, the hardware simplicity of the scheme makes the use of fail safe designs and high reliability techniques realistic. The ease of recanfiguration allows the systen to expand gracefluly to cope with increased system requirements so reducing the problem of obsolescence. Duplicated standoy equipuent can be connected to the bus so enabling redundancy to be very flexibly applied, particularly if one unit may be used to replace any of several similar ones performing different roles. Bustype structures are particularly suited to digital systems and if units are standardised there are adventages in maintenance, diagnostics and repair. (5)
Hierarchical distributed aystems. A nierarohy is a Eulti-layer control orgenisation. It can be considered as a filter, each processing laver being associated with a range of frequenciea or band of time scalea. Together the layers cater for the entire range of frequencies apparent in the aystem. Only at the flust layer are found the actual physical measurement and control variables. The data is progressively condensed as it moves up the structure. Decision times becom longer, cantrol action is more general and information has a more global context. Each unit in the hierarchy operates nemi-autonomously in a dedicated role. It receives limited strategic comands from its superior mode. It passes an delegated commends to its subordinate unita. In the absence of apecinc commends the unit has a regulating nnction it can execute lare using its previou command. Information is andy selectively directed up the hiererohy consequantly not all the system information is availmble everylhere in the natwork. The limited information trinafer decouples the system but at the expere of reducing potential syated performen.

The etructure of hierarohie provides subatentin inbuilt protection egrinat the propagetion or foulta. Thi is praticularly tru if every nuction if placed enith up the hiererchy posaible, each fnction controlling the nerromet bend of iffel apent poeniblo. (6)

FALLT CONTROL

fault control systems are either open-loop or closedloop.

Open-loop: Open loop fault control is sometimes called built-in redundancy. An equipment structure is used which is more elaborate than the minimum necessary to achieve the desired function. All the components are active all the time but the
configuration is such that when a failure occurs the function as a whole does not fail. The construction and effectiveness of such systems relies upon the fault modes of a device being known. Two approaches are possible. In the first a failure makes the failed unit transparent to the rest of the function e.g. relays, diodes, network
i.e. the transfer function with in components
$F(m)=F(m-1)=F(1)$
and the reliability with m components.
$R(m)$ is greater than $R(1)$
In the second approach failures cause a change in the transfer function of the unit but the redundancy is such that the function sensitivity to faults is reduced. In this case the function has an expected transfer function which depends on the faults that have occurred. e.g. transistor circuitry with protection or queuing systems.

Closed-loop. Substantially more important are closed$\frac{100 p \text { fault control systems. Although greater expense }}{}$ is involved, in principle any fault condition can be so controlled.

A monitor measures the actual system state and compares it with a prediction generated by an implicit or explicit model. The detection of discrepancies initiates strategies designed to counteract and remedy the failure. (see dia 5)
The output of the monitor may be cantinuous or discrete. The design of fault controllers using continuous error signals is allied to that of closed loop automatic control for which a substantial body of theory exists. The onset of a failure can be considered as changing the transfer nunction of a systems or as random disturbances introduced into the system. In all cases there are substantial problems of formulation and analysis. Uaually fault protection is carried out using discrete fault manitoring, the detection of a fault causing a specific alternative strategy to be selected.

Failures

A failure is an event after whose occurrance the output state of a device shifts outside peruissable limits.
The output state of a device depends on

1) Its design
2) Its environment
3) Its initialisatio
4) Its inputs
5) Its operation \qquad
Failures can arise at any or these phases.

Manitoring

The physical event of a failure causes a change in a variable at the point of failure. This propagates downstream as errors. The monitor detects these errors, not the fault itsolf, and before any fault control action can take place a monitor mult detect an error. There are three classes of information associated with are three

The states which correspond to the Nnction specirication and are therefore the correct states

The actual states ganarates by the fnction The states accpeted by the monitor.
Ideally these three sets should overlap, in prectice they do not because or iliditations and errom in both the function and the renitior.

The 'coverage' of the monitor is the fraction of errors the monitor detects. The 'restrictiveness' is the fraction of normal states classified as faulty. Inadequate coverage is expensive because of incontrolled faults. Excessive restrictiveness is expensive because the normal system performance is constrained. lalally there is a trade-off between the two.
only a limited number of manitors can be deplcyed testing the most important variables i.e. monitors are sited where information has the most value, where in the event of a failure disruption would be a maxinm and outweighs the cost of monitor provision. The information yielded by these monitors is the only information available for locating and controlling failures. More error checks allow a more comprehensive monitoring of system states, a better identification of the failure site and a more appropriate selection of alternative strategies. However, greater expense is involved and as the error detecting mechanism is in series with the processor being checked the system relizbility is reduced and the system response slowed.

Error Recovery

The objective of the error recovery phase is the restoration of normal system functioning after a failure, with the minimm of dismuption. Recovery from a failure is governed by three factors.

1) The timescale of the failed function
2) The repair tine
3) The interim control of system disruption

Timescales. The timedependency of disruption is governed by the timescale of the failed function. If repair times are short with respect to the failed time scale then there need anly be minimal cantrol of system disruption. If repair times are slow with respect to the function time scale then more elaborate measures are required. Repair times must be made shorter, and more sophisticated interim control strategies operated (see dia 4).

Repair times. The overall time to restore the original service depends on the repair arrangements. Plug-in replacement modules restore service rapidly at high cost. Remove, repair, replace strategies give high system downtime but are cheaper to operate. The provision of an-line monitoring allows more precise rapid fault location and better interim cantrol. Orfline manitoring improves system reliability and makes better use of test equipment so reducing costs that way. Repair times may be leasened by diminisining aystem complexity between monitors e.g. by reducing monitor spacing or by the use of more standardised equipment.

The use of marginal testing and preventative maintenance are means of identifying and forstalling faults for minimm aystem disruption since by for example maintaining the system at weekends or during the night the necessary loss of service has minimam cost.

Interim Cantrol of System Disruption switching Syateni

The manitar is an error detecting interface through wich information flow from ane function to mother. During norual rurring this information has ite maximem value to the ayatem. Faults rechice this value. in the place of perticular faulty units, disruption control strategiea provida an altornative supply of information having the best poesible system value, given the availeble resources. The more information sbout the curyent runing state of the syatem that cen be veed, the more effective can the control be made.

Interim masarres for rault control are selacted by gritching 1.e. the ayotem atpucture is morgenised. The rearrengring may reduce the information require-
ments amso correspondingly lowering the sygtem per fomance or it may maintain the original performance. The more closely the original performance is to be maintained the more expensive is the provision of substitute processing capacity for the interim fault control.

There are several techniquen of interim cantrol. 1) The failed element is replaced by another Init. Apart from switching transients there is no major service dismption. For fast acting functions the switching muse be online and autamatic. For slow acting functions off-line awitching can be used in the form of module replacement by repairmen. The replacement function may fulfill the same role as the failed functions or have a simplifled role yielding a lower system performance but at a lower coat. In some circumstances several alternatives may be provided for a given function if it is sufficiently important or unreliable. Direct function neplacement depends for its effectiveness upon the failure being located in the replaced function (otherwise faulty information will not be controlled). Direct finction replacement is expensive and is therefore only installed where the costs of failure are high and strangly time dependent.
2) The failed function is isolated and the downstream structure modified so that it no longer requires (or is less affected by) the now faulty information. This feed forward type of control necessarily entails some loss of system performance. However, it is wuch less expensive and does not require fault location for its effective use.
3) The failed function is discornected and substitute standardised infornation is input. The information is chosen specifically to minimise subsequent disruption. Exarples might be
a) An average value commend is given
b) The last correct command is used
c) A predetermined satisfactory value is sent
d) A human operator input.

Vital Punctions
Although a hierarchy of fault protection strategies can be incorporated into a system to attenuate the consequences of most faults sume vital points will remain vunerable. It is at these points that components with a high intrinaic reliability need to be placed, since no altermative action can be devised to control disruption. Such points may often be the switching nodes for other fault control equipment.(7)

canclusians

This paper discusses sore of the important facets of 'fail soft' engineering. The subject has been approached determiniatically. Every error has a causative failure, every failure has an evaluable consequence and probability of occurrance. However, only general rules have been developed, whose implementation demands a very high degrea of systed ansiysis at the desigen stage. Mothods have been developed and are well surveyed in the literaturu, which enable sone of this analyais to be achieved. Often thay fail or ame uneliable in the complex situations that arise in pretice. Systens mint be made intelligible by designaimplification and malytic approdmation and assunption, 1.e. system conplexdty mint be rechuced. The use of 10 corplerdty rivy reduce potentinl performance but the decrease in desien overnead end improvement in oparational effectivenma may more than compensate.

1) Herrald S.U., 1961.
"Raliabilicy" an parametar in the aytems concept" Chapter 11: Syitetan: Research 4 Design Ed. Echman Dr. Hiley
2) Miera K.B.. 1975.
"On optimal reliability design: " reviev"
Plenary paper Ifac 6th Congrea Predriat Vol. 3
3) Dourrough, Jan 1969,
"Machodical approach to aelf repairing computera" IEEE Trana. on Computeri C-18
4) Hopkine A.L. . 1975.
"Hierarchical autonowy in apaceborme inforation procestion ${ }^{\text {N }}$
Plenary paper IFAC 6th Congress Preprines Vol. V
5) Cartright L.M., Mayberry J.C., Oct 6-9, 1975, "Diatributad syetems - neu approach to procese coneral"
ISA-75 Annual conference 'Advances in
inctrumentarion ", Milvalkee, Wisconein, Vol.30, pt. 7
6) Conant R.C., 1974.
"Information flou in hierarchical aysema" Ine. J. Ganeral Syatema Vol.7. pp 9-12
7) Hacht H., Dec 1975.
"Fault tolerant softuare far apacecraft
applicatione"
Aeroapace Corp. El Segundo Calif. Technology Div

Dis. 1 - Time dependenoy of aystem performence following a rant

Dia. 2 - Fanlt performence of low opeed funotion oompared with that of a hiph epeed function

Dia. 3 - Effeot of oomplexity on repeir tin

Dia. 4 - Performance of fenlty alow and fat funotion with fixd repair tin

APPENDIX 8 Computer programs

In the course of the research reported in this thesis, a number of computer programs have been written. A selection of the more important are contained in this appendix. They are as follows -

1) A program to simulate an intersection in a vehicle-follorer type system
2) A program to simulate a network in an asynchronous transport system
3) The programs required in the GT40 to produce the moving picture display (these are written in PAL 11 or FOCAL)
4) A program to simulate the control of vehicles in an asynchronous,marker-follower type control system
5) A FOCAL program that provides the rolline graph display used by 4)
ThIS PROGRAM SIMLLATES AN INTERSECTION WITH CONTINUOUS
VEHICLE FOLLOWER TYPE CONTRGL.
STD ILO,LP), (DO,LE), ILL,LO)
! PAUSE T3 TO TO

CIALLOET (FIL, (BO), IRSI, 30), (FAR, B), (FSI, 950)

CIFERTRANH BE. 8
COMMON PARGET1100,41, VEHA12,8,501,ITARG(2,50),IPEINT(2,2),
CL PPNML, ACCNML, ACCEMG, INTPGS, CRLPES, SPEED, CONC GN,FFHDWY, FCHDWY,
CYEL JNCA JFLOWAFTIME, AFLOW 3,3$)$ LFLOW $(3,2)$, IPARAM, PCECC, OCC JNC,
CTOSLIP,NVEH,DELAY(2,2,20),AVDEL (2,3),FACDEL(6),VL,
CPIR I, PCOCCP (2), PERECCI21,SLIPTOI21,TARRY,ITARRY
CANXVHI21
Co KOUNT12.21
DIMENEION HSTA(50)
REAL LSPMAX,LSPNML, INTPHE
-1 MOISMフuIO
C READ IM RUN DATA,
CCONCON,FFHDWY, FCHDWY, VL
READI105,222IIPARAM, NVEH
READI105, 1101 TIMLAB,TOTAL, TSTOP
READII05,62 IMAR
READ(105,300) P(1), P(2)
0010
6 MEADER.
CONTINUE
MRITEIIO8,791

FORMAT16F10．3．1．6F10．31
FORMAT1
ORMATIJMIOTRUN CONSTANTS ARE，MAX LINE SPEEDI，T40，INORMAL LINE S
FORED＇，TGO＇＇NERMAL ACCN＇，T8O，＇EMERGENCY ACCN＇，TIOO，＇PESN OF INTERSE CCTION＇）
82 FORHATIINO，IPOSN OF CONTROL＇，T2O，＇INITIAL JUNC SPEED＇，T4O，＇SSERVE C
CONETANTI，T60，＇FOLLOWING FACTER＇，T80，＇CRESSING FACTER＇，T1CO，＇VEHICL
 CIMEADWAY TYPE 11, T60，＇HEADWAY TYPE $21, T 80$, NO OF VEH／HDWY FRACTIIO

$$
\text { C } 1.2!1
$$

FBPMAT（1018）

一～の日。
$\underset{\sim}{\sim} \underset{\sim}{\sim}$
ε
N：

 CMAR (10): JPEINTI21, IFLOWI2), ITYPE, ITIME, DELT,LSPMAX,
CYEL SNC, JFLQW, FT IME, AFLOWI 3, 3I, LFLOW (3, 21 , IPARAM, PC
CTE3LXPOMYEM, DELAY(2,2,20),AVDEL (2,3),FACDEL(6),VLO

CAMXVN(2)
COMBACKII001
0
0
0
0
0
0
0
0
DIMENEI ON DTIMEIRI
DIMENBION ISECTIZI
OU-HVON (O*OJ•H3AN) II
EOO NGAHANVEH

VEHAI $I, 3, J)=0.0$
EMERG(I, $J)=\bullet F A L S E$. IPOINT $(1,1)=50$
IPOINT $11,21=2$
VEHAI $1,1,1)=0$
VEHA $1,2,1)=1)=$ SPNML
VENA $1,3,1)=0$
EMHDWY $=($ LSPNML *LSPNML $/(2 * A C C E M G)+V L)$ VEHAI $1,4: 11$ EEMHDWY *FFHDWY
VENAI $1,5,1)=0$
VEHAII,6;1) 99999
VENA(1,7,1) EEMHDWY
옹

$$
\begin{aligned}
& \text { LFLOW } 1,1 \text {) }=1 \\
& \text { LFLEWIEWI2, II=0 } \\
& \text { DO } 209 \text { Jei,2 } \\
& 00209 \mathrm{KeI} \text { ONEAH } \\
& \begin{array}{l}
\text { CALL SPACE }(\text { SPACEN }(1), 1) \\
\text { CALL SPACE } \operatorname{SPACEN}(2), 2)
\end{array} \\
& \stackrel{\circ}{\circ}^{\circ}
\end{aligned}
$$

ENTRY VMEVE?

POSN=999990 + EMHDWYUFFHDWY
No VENICLE IN LANE.

EHA1 (1,6,N1) $=99999$
CO IICOUNT=NEAN.LT.OI GETO 14 IF IDTIME(I),NE:OOI GOTA 116

$$
\begin{aligned}
& \text { DTIME IIIEITIMENDELT } \\
& \text { OOTO It }
\end{aligned}
$$

$$
007010 \square \square
$$

CALL DISRIB ITHDWY,I,2I
OTLME
amDUY(MAII: 110 ! $)$
Aliellamaltoli+1
IF IMAIIBII-LE.9OI OBTO 30
C WRITE MAIEABE
C WRITE BLOCK OF MEADMAYB TO DISK FOR RECYCLING OF OUTPUTS TE INPUTS. CALL DISKWTIIBECT(I), AHDWY(I,I),I) EECTIIEI8ECTIII*\&
IF IIEECTII)EE日.13) ISECTIIIEI
andurisiallot
AHDWY(92AIIEITIMEDELT
DETACKIS2.8IJITIME*DELT
C SAVE ON MAB TAPE, MEADWAY INFARMATION FBR DISTRUBUTIAN CALCULATIEN. CAL DUFFERGUT(22,1, CSTACK(1, 1), 92, ISTI CALL DUFFERQUT(22,1,AHDWY(1,1):92,13T) CONIINUE
1N2.EO.O1 N2-50
IF (N2+EQ•IPEINTII-1) GETO 10
IPOINT(I,11+2
(NI EEC.51) N1=1
(N1 EEC.521 NI-2
 JoN\&
CONTSNUE
14
눙
IF (N3.EO.O) N3=50

[^12]M2-IPOINTII,21-1
IF (N2.EO.O) N2 50
TFIU.GT•OI GETA 208
DELAYVEDELT-S/LSPNML
 EMHDWY $=V$ VV/ 2 +ACCEMa) $+V L$

VEMAII, TIJJ IEEMHDYY
IF IJ•EQONZIGOTO 10
IE (J.EQ.51) J. 1
Goro 27
ล

continue
 y-VEMAIJ,20JI

VEHA $1,2,3$) $=V$
SoU4DELT*A*DELT *DELT/2
CVEMAC1,3,J)=POSN N3-Jes

$$
\begin{aligned}
& \text { VEHAIDGAJIOLEEAYY } \\
& \text { VEMAII, TiJI EEMHDWY }
\end{aligned}
$$

${ }_{\sim}^{\infty}$
$\stackrel{-}{-}$

MOVE VEHICLES FORWARD ONE TIME INCREMENT.
208 CAEVEHAII,1,JI.
SUBROUT FLAB
REAL LBPMAK，LBPNML，INTPGS CMARISOIOUPOINTIEIOIFLOWIEIOITYPE， CVELJNC，JFLOW，FTIME，AFLOW（3，31，LFLOW（3，2），IPARAM，PCOCC，OCC．JNC， CTESLIP，NVEM，DELAY（2，2，20），AVDEL（2，3），FACDEI，（6），VL， CMGAM，TETALBTIMLAG，IETAIR，2，50），AHDWY（100，2），MA（2，2）， CPI2），PCOCCP（2I，PERECCI2），SLIPTGI2），TARRY，ITARRY
C）NXVHI2）
TMDUYE－BPEED／I2．＊ACCEMG／\＆VL／SPEFD
HMDWYESFEEDI2．GACCEMGFHLHE
（1）BAOLBPNMLILSPNML／ACCNML
D0－37 I－1．？
W\＆－IPOINT（I，I） 1
NEIPOINT11．2）－1
Og＝en（O－日S•ZN）
IF（MLOECOIPEINTIIOPI）QETE 37
JON\＆
POANEVEMA $1,3, J)$
FLARE OFALBE．
FLAREOFALBE．
ACCNOO
IF IPOBN－CRLPASI $39,40,4 C$
VENICLE ENTEAED JUNCTION C
VENICLE ENTERED JUNCTION CENTREL ZONE？
IF IPOSNOINTP日S $+0.5141,42,42$
लーITARGII，d）
AT＇，ITIME＊DELT，33，
SUBROUTINE VMANEV

IFLOW(IIOIFLEWIIIT1
S=ABS (IUV*UV-UJ*UJ)/(2*ACCNML.)) DTTJ= (INTPOS-PESN)
IF IDTTJ•GT•S) GETO 52
CULATE INTERMEDIATE SPEEDS FGR
-

$$
\begin{aligned}
& \text { UVVVERAIIPC, } \\
& \text { UJGTARGET(M, }
\end{aligned}
$$

OTTJ= (INTPOSOPOSN)
VEHICLES IN CONTROL ZONE TO INTERSECTION.
CCN $=$ ACCNML
AF IUV•LT•UJIACCN=ACCNML.
TTTJ TARGET(M, 1$)$-ITIME*CELT
IF ITTTJ\>.O.) GOTE 700

\%
음
55 UI＝1DTTJ＝D11／ITTTJ＝DR1 －070 57
ถั
BE2＊TTTJACCNHL－2＊iUV＋UJI
Couv＊UV＊UJ＊U」＝2＊ACCNML＊DTTJ

BF 104．BE．OI
ACCN－ACCEMG
CALL PRINTIITEMERGENCY DECN TG REACH INT VEL ATI，ITIME＊DELT，

$$
\begin{gathered}
\text { C3Brien } \\
\text { stop }
\end{gathered}
$$

DOTO 39 cm
D30 Beation
DIOIUJEUJ－UVaUVI／（－paACCAML）
DE®（UJ－UV）／｜－ACCNAL
TI＝1DTTJ－D1 $1 / U J+02$
IF（1TTTJ＝．11．BT．T1）GOTE 154
IF（TTTJU日T．92）вOTG 155
Bez＊TtijaACCNML＋2＊（UV＋UJ）
C＝OUJBUJ＝UV BUV－2＊DTTJ＊ACCNML
F－BEB－GABAC
DE＝（2\＆ACENHL BeTTO 20 U $V+U V+L J=U J / / 2$
UI－80RT（D5）
flabootrue．
ouro
DJaBORT（DA）
UI＝1－B＋031／（24A）

0101057
日－2＊TTTJ＊ACCNML－2＊Suv＊U」
0
46
sTOP
DIESORTIDH)

$$
U 1-(-B+D 3) /(2 * A)
$$

CONTINUE

$$
\begin{aligned}
& \text { UTOLSPMAX } \\
& \text { FLABE.TRUE }
\end{aligned}
$$

$$
\text { (ABSILI-UVIOLT••1) GETE } 203
$$

$$
\begin{aligned}
& \text { TO } 203 \\
& \text { CNeO } \\
& \text { TO } 203 \\
& \mathrm{CN}=0
\end{aligned}
$$

$$
\begin{aligned}
& -A C C \\
& 203
\end{aligned}
$$

1FIIUI-U
1FIIUI-UVI-BT•O.1)ACCN=ACCNML
GOTO 39
HOITARBI
HICLE HAS PASSEED INTERSECTION.
IF (MOLEOO) GOTO $G 6$
IF (ITIME FDELT-TAROET (M. 1 I. GT.
CALL PRINTI('VEH IS TOO EARLT AT JUNCTIEN ATI, ITIME ADELT,
C3R,I,J)
(F (ABSITARGET(M,2)-VEHAI $1,2, J)$) LE : 1) GETO 38 IF (ABSITARGET(M,2)-VEHAIT,2,J)) -LE:•1) GOTO
CALL PRINTI

[^13]IF IM.ED.OI GOTOS
IF
IF IVENAII,2:J)OGE•LSPNMLIG日TO 48
0
옹N
CALCULATEB VARIABLES OF TNTEFEST.

VARIS(2,1)-VARISI2,11*DELAYI2,I,J)**2
TGE DELAYS.

1.
2
2
4
0
$\underset{\sim}{w}$
UT I
C FINDS THE TIME HEADWAY TE THE NEXT INCOMING VEHICLE.

CMARIIO), JPOINTI2I,IFLOWI2I,ITYPE,ITIME,DELT,LSPMAX,
CLBPNML,ACCNML,ACCEMG, INTPOS,CRLPOS,SPEED,CONCON,FFHOWY, FCHDWY,
CVEL JNC, JFLOW,FTIME,AFLOWI 3,3I,LFLEWI3,2I,IPARAM,PCOCC, BCCJNC,
CVEL JNC, JFLOW,FTIME, AFLOW $13,31, L F L O W 13,21,1 P A R A M, P C O C C, B C C J N C$, CTO8LIP, NVEH, DELAY(2,2,201,AVCEL $12,31, F A C D E L(6), V L$ CP(2), PCOCCP (2), PEROCCI2),SLTPTBI2),TARRY,ITARRY CTOAHOTOTALBTIMLAG,ISTA(2,2,50),AHOWY(100,2),MA(2,2), CP(2), PCOCCP (2), PEROCCI(2),SLYPTOI2),TARRY,ITARRY
CoNXVHI2) C, NXVHI2)

CANBACK (100)
COKOUNT

DIMENBION TLIZ)
DIMENSION BPACEA(100,21,N(2)
DIMENSION BPACEA(100,21,N12
DIMENBION ASPACE(ZIONNN(2)
DIMENEICN IITR):JJIRI
DIMENEIEA IIteloJJIE
NIIIEI
N(E)=1

TL(R)ETOTAL
III)=1
II(2)
(IV)
REAL L8PMAX,LSPNML, INTPOS 2, ,50), ITARG(2,50),IPOINT(2,2),
CMARIIOI

N(I)IE
CALL RAND
CALL RANDOM(III(2),JJ(I),RN)
\&f IAGPACE(K).OE,O) BOTG 49
CONTINUE
RETURN
ENTRY GPACEISPACEN, I'
IF APPROPRIATE HEADWAY IS READ FROM DISK BUFFER WHEN RECYCLING
OUTPUTS TO IAPUTS.
IF IABPACEII).OE.I-0I GATO BA
49
suaroutine spaces innnaspacei

SUBROUTINE PRINT

REAL LSPMAX, LSPNMLI INTPES
COMMON TARGET(100,4), VEHA12,B,50),ITARG12,501,IPEINT(2,2),
CMAR(10),JPEINT(2),IFLOW(2),!TYPE,ITIME, DELT,LSPMAX,
CLSPNHL, ACCNML, ACCEMG, INTFOS, CRLPOS, SPEED, CONCON, FFHDWY, FCHDWY,
CVEL JNC, CTOSLIP,NVEH,DELAY(2,2,20),AVCEL(2,3),FACDEL(6),VL, CNOAH, TOTAL, TIMLAG, ISTA(2,2,50),AHDWY(100,2),MA12, CP(2), PCOCCP(2), PERECC(2),SLTPTOI2), TARRY, ITARRY

Co KOUNT $(2,2)$

TIME OITIME FOEL
WRITEISOB,103)
WRITEI108,65)TIME
IF IMAR(2)INE.OIGOTG 63
WRITE 1208,661
N\& IPOINTII, $11+1$

WRITE 1 108,67)1
IF INLCEGIIPGINTIIS2II GETG 64
JaN2

IFIJJOEONZIGETO 64

Jej +1
IF (J.E日. 51) J=1
Gero 100

FORMATI8X, 'VEN NE', 11 X, 'ACCNI, $12 X, 1$ VEL', 11 XI, IPOSNI, 11 X, 'HDWY', CIOX,'DELAY', $9 X$, 'LEEWAY', $9 X$, 'EMHDWY', X, 'TARGET NEI)
FORMATI/C)
FORMAT(//)
FORMATIIA.7F1503.1月)
FORMATISMO: ITAROET DATA'I
FORHATIIE,T20,F10.3,T40,F10.3,T60,F10.3.T80,F10.3,T100,IIOI CITARGET HCWYI,TBO, 'TAR B/END / A TIME', TIOO, 'BACK PAINTI FORMATISNO:TEO, 'LANE NE 1',THO, ILANE NO ?',T60,'TOGETHER' FORMAT(X, 'AVERAGE DELAY I, T18,F10.3,T38,F10.3,T57,F10.3)
FORMAT $(X$, IENTRY FLOWI,T1A,F10.3.T38,F10.3, T57,F10.3)
FORMATIX, IJUNC FLOWI,T18,F10.3,T38,F10.3,T57,F10.31
 M M

 LOWI

INTERSECTIONS TARGET CALCULATING RCUTINE.

VEHA（1，8，1）$=((T A=(I N T P E S-P E S N) / L S P N M L) * 2 \cdot)$ TARG（1，1）＝1 TFLUW（1）＝1
TYPE $=1$
ARRY $=0$ 。
TARRY＝0
PERECC（1）＝0．
PEROCCI2I＝0．
THDWYE＝SPEED／（2＊ACCEMG）＋VL／SPEED
THDWYC THDW YE＊F CHDWY
HDWYF＝THDWYE \＆F FHDWY $(P)(2), 1 E \cdot 0,11$ RETURN NDP（1）＝TA＋P（1）

$$
\begin{aligned}
& P(1) \\
& P(1)+P(2)
\end{aligned}
$$

$$
\begin{aligned}
& \text { TARGET(2,1) EENDP(1) } \\
& \text { TARGET(2,2) EVELJNNC }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TARGET }(1,3)=0 \\
& \text { TARGET } 2,1)=E N D P(1)+\text { THDWYC }
\end{aligned}
$$

ō

$\stackrel{9}{9}$

RATIO＝FLOATIIFLOW（2））／FLEAT（IFLOW（1））
RATIO FLOAT（IFLOW（1））／FLEAT（IFLOW（2）） AEI／（2＊ACCEMG）
BeelRATIE+1)/IFLEW* (2*FCFOWY+(RATIE-1) *FFHDWY)) CoVL

 BOTO 106
 THDHYE =VELJNC/(2*ACCEMG) +VL/VELJNC
THDWYC = THDWYE \#F CHDWY
THDWYF ETHDWYEAFF HDWY
1FLOW(1) $=0$
1FLOW(2) 0
©
$\stackrel{\circ}{\circ}$
ENTRY TAG3(II,12)

20
TAGTIM TARGET(M1, 1) +THDWYF
TAGTIMETARGETIM1,1) +THDWYF TIME CYCLE STRATEGY.
THDWYN=THDHYF
ITAGTIMOLTOENDPITII) GETA 303
寅
1F 111 EG. $1113=2$ THDWYN THDWYC
ENDP $(11)=E N D P(11)+P(1)+P(2)$
TARGET(JPOINT $(21,1)=T A G T I M$
TARGET(JPOINT(2),4) IEENDP(II)
LASTVII11-JPEINTI2)
GOTO 304-1.
IF (ITYPE.EQ.II)GOTG 32

M2-JPGINTI2)-1 $2=100$
ヘn ${ }_{\text {m }}^{\text {m }}$
304
ARGETIJPE
ONTINUE
AROETIJPE

ITARG(11,12I-JPGINTI2) 0 12

EINTI2)-JPEINTI2)+1
C CALCULATE MINIMUM DELAY.
UYOLEPNHL
SofUVEuV
TAC= C UV $-V E L J N C I / A C C N M L$
THDELY=ITAC-TTHIER
VEMAIIIP1,121-THDELY
C CALCULATE NEXT ALTERNATE PRIERITY TARGET.
NFVIITETARGII,NXVHITII
IF IRTII-TAREETINFVILII
TF IIOEACUYPEI THON

AF (ART(3-I): OT OPARTIZ)) PART(2)=ART(3-1)

C EIND A VEHICLE TO BE GIVEN AF TARGET. LNEXTEI
IF ITDART (2) © LT •TDART (1)) LNEXT=2
KPOINT-KPOINT +1

LPNEXT=NXVH(LNEXTI
NPOST=1TARG (LNEXT \& LPNEXT)
TARBUFETARGETIKPOINT,I)
TARGETIKPOINT,I)ITARGET (APEST,II
2003 TARGET(NPOST,I)STARGUF
THDYYNETHDWYC
(F ILNEXT•EQ:JTYPE) THDWYN=TMDWYF
STARI - STARI \& THDWYN
IFITARTILNEXTI-GT-STARII STARI=ARTILNEXTI
TARGETIKPGINT:IIOSTAR +THCWYN
TAREETKPORTOI IETHOWYN

NXVHILNEXTIENXVHILNEXTI +1
ITARQILNEXT.LPNEXTIGKPOIAT
LANE INQ.L
LANEEI
LANE=2
ITARGILANE, NGI I NPOST
JTYPE
NBACK (NPOSTI O ILANE - $11: 50+$ NO
IF (NI-EG•N2) GOTO 13
NI $=$ KPOINT +1
IF (NI.EE.JPEINT(2)) RETLRN NReJPOINT (2):I
IF (N2.EG.O) N2=100
12

LANEE1
IF (NBACK(JJI.GT.50) LANE
AAMJHL = VAMOHL (ЗdALI•O3•3NV7) II TARGET(JJ 1) $=$ TAREET (Jっ 1$)+$ THOWYN TARGET(JJっ3) = THDWYN
JPJJ
F (J.EDON2) GeTe 40
ITYPE =LANE
IF IJ.EOUN2
continue
RETURN
CONTINUE
NV=ITARG(11,12)+1
IF (NV OED.O) GOTO 60
NA $=0$
OcCJNC=TARGET(M,3)+BCCJNC
C CALCULATE SLIPPAGE WHEN A VEHICLE PASSES THRQUGH INTERSECTION. IOSLIP 1 Il12,1,3
3 CONTINUE TSR PARET(M,3)+PERECC(I1)
IF (KPOINT•LT•JPOINT(Z).AND.JPGINT(2)•LT•JPEINT(1)) NA $=100$ IF INV $-L T \cdot$.JPOINT (2).AND.JPOINT(2)•LT•JPOINT(1)) NB $=100$ IF NVPINT+1
KPOINT=KPOINT+1
LANE (NBACKIKPEINTIOGT.50) LANE=2 NXVH(LANE I ENXVH(LANE) +1
IF (NXVH(LANE),EG.51) NXVH(LANE)=1
CONTINUE
LFLOW 12,11)=LFLOW 12,11) +1
SLIP =ITIME *DELT - TTARG
IF (SLIP) $35,35,36$
$\mathrm{Mg}-\mathrm{M}+1$
ME=N+1
IF IM2.EG.IO1) M2=1
IF IPIII*LE:O..AND•P
$\stackrel{\unrhd}{5}$

$$
\begin{aligned}
& \text { DJUST ALL LATER TARGETS. } \\
& 5 \text { TAREETIIOIIETARGET(I, I) +SLIP }
\end{aligned}
$$

$$
\begin{aligned}
& \text { NSLANEEI } \\
& \text { IF (NBACKII) } Q T \cdot 501 \text { NSLANE=? }
\end{aligned}
$$

$$
\begin{aligned}
& \text { WYN THDWYC } \\
& \text { INSL ANE \& E , NFLANE I THDWYN=THDWYF }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF (NSLANE EE •NFLANE) THDWYN= THDWYF } \\
& \text { SLIPETARGET (MM, I) + THDWYNeTARGET(I, 1) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IF ISLIPI35,35,5 } \\
& \text { ITARGIII,I2I=-1TA }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TTARGII1,121E-1TARG(11,12) } \\
& \text { CULATE SLIP ENREUTE BECAUSE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { CULATE SLIP ENREU } \\
& \text { ME=ITARGIT1,12 }
\end{aligned}
$$

ACHIEVE SET TARGET.
0°
$\stackrel{0}{\circ}$
$\cdots \quad \cdots$
MQロJPOINT(2)=1
FLAO-TRUE.
COTO OS SE
35 MEITARG(ILOIZ)
MI =JPOINT (1) +1 IF (M1-EQ•IO1) M1=1 (M1.NE.M) GE JPOINT(1)=M1
$M 1=N 1+1$
$I F$
$(M 1+E C-101) ~ M 1=1$
IF (MI•EG.IO1) MI=1
IF (M1•EE.JPEINT(2)
IF (M1-EG.JPEINT(2)) GOTE 59
IF (TARGET(M1,1).GT.O.) GETE 59 JPOINT(I) ${ }^{\text {M M }} 1$
응
11
2
0
0
0
0
0
0
CALL PRINTI (IVEH HAS PASSED JUNCTION LATENESS=1,SLIP,35,I1,I2)
TARRYロY=II
RETURN
GETO 59
ENTRY TAG5(11,12,UI)
TTARG-TARGET(M,1)
UJ=TARGET (H,2)
UVEVEHAIII:2,12)
PQ8NEVEHAII1,3,12
T- (DTTJ*(UJ*UJ*UV*UV-2*UT*UT)/(2*ACCNML))/UI
C* $2 *$ \&I-UV-UJ)/ACCNML
401 BENDN $=8 L$ EEND $+P(1)+P(2)$
If $111 . E G \cdot 1) \quad 13=2$

1F 11.EQMO) I=50
TARGETIMZ.4.J日ENDN $\mathrm{M}=\mathrm{N}=1$

TABO TAFGETMM, 1)
lipatagn-tabo
NE=0

NoN+1
$\hat{\text { n }}$

- 우
:
\%
!
402
ロ
\because

IF (I-EQ.51) I=1 M3 ITARG(II, 1)

 TAGN=TARGET(M3,1) + THOWYF
 $\stackrel{\text { ® }}{8}$

 $\stackrel{\square}{2}$IF (I.EO.51) I=1
IF IM.EOOOI GETE 401
TAGO=TARGET(M,1)
AGN-TAGE1,410
CENTINUE
M2aJPOINT(2)-1
IEM
TARGETII, 1) $=$ TARGET(I,1) +SLIP
IF II.EQ-M2) GETO 210
IF (K.EQ.101) K=1
IF (NBACK(K).GT.50) NSLANE=?

F INSLANE,EQ.NFLANE) THDWYN=THDWYF
LIPETARGET (I, 1) + THDWYN-TARGET(K,1)
F (SLIP)210,210,21?
FLANE=NSLANE
i8
$\stackrel{\rightharpoonup}{\mathrm{N}}$
212
411
68T0 211
GETO 413 CONTINUE
FIFLAG) EETURN END

CALCULATES DIETRIBUTIONS AND PLATS LINE PRINTER HISTEGRAMS.
uuv
SUBROUTINE DIS
CAMMEN TARGET(100,4), VEHA $2,8,50$), ITARG12,50),IPGINT(2,2),
CMAR(10),JPEINT(2), IFLOWIR), ITYDE, ITIME,DELT,LSPMAX,
CLSPNML, ACCNML, $\triangle C C E M G, I N T F G S, C R L P O S, S P E E D, C O N C O N, F F H D W Y, F C H R W Y$,
CVEL JNC, JFLOW, FTIME, AFLOW(3,3) LFL OW (3,?), IPARAM, PCOCC, OCC JNC,
CTOSLIP, NVEH, DELAY(2,2,20),AVCEL (2,3),FACDEL(6), VL,
CNGAH, TOTAL,TIMLAG,ISTA12,2,50),AMDWY(100,2),MA(2,2)
CNEAH,TOTAL, TIMLAG,ISTA12,2,50), AHDWY(100,2),MA(2,2),
CPI2),PCOCCP(2),PEROCC(2),SLPRTO(2), TARRY,ITARRY
C) NXVHIZI
CONBACKICO)
REAL LSPMAXOLSPNRL, INTPOS
DIMENSIEN KPLAT(2), NCOUNT(2), PAVERI2)
DIMENSION DSTA130,2), MCALNT(2), QSTA(30)
EQUIVALENCE IDSTA:
IF IMAR(9)-NE.O) GOTE 17
FORMATIINO:IAVERAGE PLATEON SIZE LANE 11,F6.1.5X, ILANE 21,F6.1)
continue
DO 1 I=102
KPLAT(I)EI
NCOUNTIII=0
PAVERIICO.
KOUNTII: J)=0
141! Jokl=0
HOWYM IILSPNML/(2*ACCEMG) + VL/LSPNMLI \&FFHDWY
RETURN
ENTRY DISI
DOE I=1.2
MCOUNTIII 00
005 J=1.30
$\underset{\sim}{\sim}$

DSTA(J, I) $=0$. RETURN

ENTRY DISTR: IF IMAR(10). IF IMAR 30
$E Q \cdot 11$ GETE 7
$E Q \cdot O 1$ GOTE 8
TAI II/MCOUNTIII
(GSTA,30,.TRUE., IT IME*DELT, $2,-1$)
(1,2)/MCEUNT(2)

$$
\begin{aligned}
& \text { CALL PLETER } \\
& \text { DO } 9101,30
\end{aligned}
$$

$$
\text { Do } 11 \quad 1=1,30
$$

, 30

$$
10
$$

ALL 12 I=1,2
30
30
$=0$. J. 1 ETURN ENTRY DISTRE(DEL,JIM) IEJIM
INT $=D E L / 2 \cdot+1$
IF (INT.GT•3O) INT=30
 MCOUNT(I)=MCEUNT(I) +1 CONTINUE

RETURN

B(HOWY, II,KK)
INT=((HDWYOHDWYM) *10./HDWYM+.5) +1 IF (INT•GT•5C) INT=50 IF IINT•LT•I) INT=1
ISTAIII,KK,INTI=IST

WRITES BLOCKS OF DATA TA MAGNETIC TAPE TO ALLOW SUBSEQUENT
PLOTTING OF POSITIEN TIME CURVES.
SUBROUTINE GRAPHI (FLAG,IFLET)
COMMON TARGEP 1 (100,4), VEHA $(2,8,50), 1$ TARG $(2,50)$, IPEINT 2,2$)$,
 CVELJNC, JFLOW,FTIME, AFLOW (3, 3), LFLOW (3,2), IPARAM, PCOCC, OCC JNC,
CTABLIP,NVEH, DELAY(2,2,20),AVCEL(2,3),FACDEL(6),VL,
 CP(2), PCOCCP 121, PERECC(2), SLTPTEI2),TARRY,ITARRY
C,NXVHI2) C) NBACKIIOO
REAL LBPMAX, LSPNMLSINTPAS

(PICTYIY)=(Y-CRLPOSI\#SFACT+10.5
IST=RO(INTPOG-CRLPES)
SFACTE760./DIST
CALL LDWD2(0)
o日ta 101
CALL LDWD 1101
ITIMEU 1 IPL OT WDELT* 10
ITIMESEITIMEADELTH10
ITIMESEITIMEADELTHEL
ITIMESEITIMES-ITIMEL
IF IITIMEB.LT.O) ITIMESE $100000+$ ITIMES
CO-ORDINATES OF PICTURF OF INTERSECTION.
DO 2 IEI,S
ITIMET=ITIMES/10
ITIMEVEITIMEU/10
$M E T+10+16$
$E V+10+32$

ON3S

CALL LDWDEIIII
LDWD2（0）
WDEEND
\qquad CALL LDWDIIII CALL LDWDIIII
IDATAEROEIINTP CALL LDHDIIIDATA）
IF（IOEO．Z）日eto 102
CALL LDWDIIPICTXICRLPESI）
CALL LOWDIIPICTYIINTPESII CALL LDWDIIIPICTXI2．＊INTFOS CALL LDWDIIPICTYIINTPESII 6日TO 100
CALL LDWDIIIPICTXIINTPESII
CALL LDWDIIPICTYICTPESS）
CALL LDWDIIPPICTXIINTP日S）
CALL LOWDICIPICTYIZ．\＃INTFES－CRLPESI）
ENTRY GRAPHIJFLAGI 200 1－1．？
ALL LDND2101
NIEIPOINTIS，11＋1
1F（N1－EE．51）N1－1
IF（N2•ER．O）N2－50
IF（NLDEGIIPEINTILEPI）GETO ？ 200
Jene

IPCSS（VEHAI $1,3, J$ ）－PLAST \＆SFACT +2.5
：
ENTRY LOWDZ(MNE)
IARR(1)=INTEG
IF (INTEG•LT•128.AND.INTEG.GE.O) GETO 4 SIGN=0
IF IINTEGI5,6,6
ISIGN=64
INTEG=-INTEG 28
HI ORD=INTEG/128
ILEORD=INTEG-IHIERD*128
IF IILOORD.NE.OI GOTE 10
ILOERD $=1$
IHI $O R D=I H I O R D+8$
IHIRRD=
CONTINUE
INTEG=0

N=3 7 IETON
INTEG=IARR(I)
LW, IM INTES
-NE. 1001 GeTO 7
$\mathrm{x}=1$
CONTINUE
RETURN
ENTRY WDSEND
CALL CHECKIL,IM,IST,IBCI

-
a

IPT $=0$
GOTO $17,8,11$ INDEX
END

\section*{| $5=1$ |
| :--- |} $\frac{3}{5}$ EAD

\qquad

 PLar※k-

000000000000000000000

PLETS HISTEGRAMS ON LINE PRINTER. SUBREUTINE PLETER ($X, N, B A R, T$ IME,NPES,LANE) REAL X(N), HEAD (10), BLANK, STAR
INTEGER LINE 1100$)$ BLAN, INTEGER LINE (100), BLANK, STAR
LOGICAL BAR
IFINOLTIIGE TE 25

WRITE 108.502)
De 1 I $=1,100$
LINEIII=BLANK

$$
\begin{aligned}
& \text { XHAX }=-1 \bullet E 70 \\
& \text { XHINE } 1 \bullet E 70
\end{aligned}
$$

XHIN
IF(X(I) \circ LT•XMIN) XMIN=X(I)
IF $(X(1)$ ©GT•XMAX) $\quad X M A X=X(1)$
CONTINUE
IF (XMAX=XMIN) $25,3,4$
F IIABSILANEI.ET,3) WRITE(108,3004)LANE
IF ILANE•GY•OI WRITEIIOR,3ONITTME FNP
© 507 XMI
ILANE.OT.OIWRITE(108.300\%)
DO 6 IOI,N
KPLATXE($\mid X(I)=X M I N) /(X M A X-X M I N \|)=1000+5$
IF (KPLOTX.GT.100) KFLETX=100
IF (KPLOTX•EO.O) OETO 11
IF IKPLOTXOEQ.OI GETE I
IFI-NGTOEAR) GO TO B

00300300
00300330
00300350
PLETS HISTEGRAMS ON LINE PRINTER.
SUBRGUTINE PLATERIX,N,BAF,TIME,NPOS,LANE) REAL X(N)AHEAD(10)
INTEGER LINEIIOOI,BLANK, STAR
GBGICAL BAR
CATA BLANK:8TAR/I
IFINALTAII00 TO 25
WRITEI 10B,S02I
DO 1 I=1,100
LINEIIIrBLANK
KMAXE-1.E70
XHINE L.ETO

IF(XIIIOLTOXMIN) XMINEX(I)
 1FIxis)

CONTINUE
IFIXMAX-XMINI25,3,4
XMAXXMIN+1.
CONTINUE
EADIII-IXMAX-XMINIE2/100+XMIN 30031
KPLETX=($(X(I)=X M I N) /(X \operatorname{MAX}=X H I N)) * 100 \cdot+05$
F (KPLOTX•GT-100) KPLETX=100
IF (KPLOTX•EQ.O) GO
Rer

[^14] DO 9 K 2, KPLOTX
25 WRITEI 108,506)
z
 S3NV7, "x!IVWyos

NMO.

5 XI 3006 FORH

3006 FerMATIIX,9HDELAY $\quad 15(1 \mathrm{H}=1,1 \mathrm{HI}, 10(9 \mathrm{X}, 1 \mathrm{HI}) /$

507 FORMAT(16X,11(F9,3,1HX))
11.4.1 $T E R$ ERRER
T($1 \mathrm{X}, 9 \mathrm{HSPACING}, 15(1 \mathrm{H}-), 1 \mathrm{HI}, 10(9 \mathrm{X}, 1 \mathrm{HI})$
ORMAT 16 (* MIN HEACWAY $1,5 \mathrm{X}, 1 \mathrm{HX}, 2 \mathrm{X}, 1 \mathrm{HI}, 10(9 \mathrm{X}, 1 \mathrm{HI})$

END

:ALLOBT (FIL, X2),(FSI,80)
!OLOAD OO, (UDCB,5),(PUBLIB,CBCLIB)
ASS (F:22,0)
家
TOI 20,0C)
CIMACRSYM

> SI, Ge $E F$ $E F$

I, 12
LI,12
1,12
1,12
0,4
AL3,0

BCWRITE
BCREAD
BCSET
BCMEVE
BCOC
END 00, (UDCB,5), (PUBLIB,CECLIB)
-
THIS PROGRAM SIMLLATES NETWERKS.
COMMON /CONST1/SPNHL,ACCNML,ACCEMG,VL,FFHDWY,FCHDWY,SIDEA , CRL\{ZOI, CONST1, CONSTZ,ACCJK, DELT,HIEGHT,WIDTH
COMAON CONST2, IBUFI20),LEND(20,3), JNEY(4,4,5),NLINKS,NIN,NEUT

CIVEHA1 $100,41, L$ INKP $(20,21, L$ I, NCRL 120)
C,ITIME,NPRINT,NPLET,NPICT,NFIEW,NPARAM,NMAG, ITRANS(100),ITRP 6,BAL1(21) fe日alaid)
6.BAL6(5)
6,BAL17(3)
CEMMON /VREAD/ IBC,IST,L,IM,IBUF1(10)
COMMON /CONST3/ LINKST(2C), IPST(20), SFACT
COMMON /WRIT/ SETTIM, ISTEP, IKNOW, IFLG,TSAVE, IPRT
ס, ITRACE, ILINK, IVNG
SIITMO
COMMON /CARRY/ NEDE,HSTERE,WSTERE
S,SCSTX,SCSTY
FLAG=1
C INPUT DATA AND UNITS HEADER.
0.6 I $=0$, NDUM 10
UP LINK VEHICLE QUEUE PEINTERS.
LINKP $(I+1,1)=L E N D(I, 1)+1$
QeTO 6
$\operatorname{LINKP}(1+1,1)=1$
LINKP(: $+1,2)=$ LEND $(1+1,1)$
C INITIALISE LECAL CEUNTERS. ITIME=0
NPRINT=0
NPLOT $=0$
NFLONAM=0
NHAG=0
DO $950 \quad I=1,5$
LINKST $(1)=0$
TES
$=1,1$
$1=0$
S ARRAY PESITIEN INTE VEHICLE NUMBER FER LINK. (I) $P=0$ 9

```
9 6 0
```

7 IEI,NIN
ALL ENTRY(I,J)
IMENIIIESPACE(I) - $=9 \vee 7$
CALL SEOLOD (4)
CALL WRIFIN
$\cdot 3$
20 TIMEFITIMEFDELT
IF IIPRT.EQ.1) GETO 500
READ CHECK.
C CHECK READ.
IF IIAND(IST,1).EQ.1) GETO 500 IF READ FINISHED. IBYTE=0
STEO
8
0_{0}
0
CALL BCMEVE (L,IBUFI, IBYTE,IBC,IST)
C ChECK IF MAIN DIALOGUE TE BE SKIPPED.
(F (ICH(IBUF1,I),EQ.2Z47) NENSTEP=1 18T=0
IBC $=1$
C SET UP READ FOR TIMING CHARACTER. CALL BCREAD (L,IBC,IST)
ALL SEGLOD(4) CALL SE GLOD (4)
CONTINUE
ClAGe4
C BRANCH TO DIALOGUE.
500 CALL OECIDE

IE

$$
\begin{aligned}
& \text { T1 } 1 \\
& \text { ST1 } \\
& \text { TES }
\end{aligned}
$$

－が心の
I 19
NII
IIS
$\stackrel{0}{\omega}$
※
TMG
CALL SEGLOD（3）
IF IITMO．EQ．50）GOTA 30
CALL CLOCKIITME）
ITMOe50
CONTINUE
LE PICTURE．
0
0109 （ट1s311•03•1
先 白
CHAN

30
C SEND
C

a
IF IITRACE•NE．I．ER•NPRINT•EQ．O）GOTO 41
FLAQ－J OR（1）
OCK（ITME
RACE OPT
RACE OPTION SELECTED CALL PRINT
IF STEPPING BACKWARDS IGNGRE WRITE TE MAGNETIC TAPE． F（IKNEW－EQ．－1）GOTE 44
a）GeTO
CALL
CALL

VEHICLE CONTREL SUBROUTINE.

SUBREUTINE ICONTROL $A C C N M L, ~ \triangle C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A$ COMMON /CONST1/SPNML, ACCNML, ACCEMG, , CsPE
COMMON /CONST2, IBUF (20),LEND $(20,31$, JNEY $(4,4,5)$,NLI INKS,NIN,NQUT 5, MAR(10), ICOCE (20), ICRL(20), JPRINT, JPLOT, JPICT, JFLOW, JPARAM, JMAG COMMON NVAR/ TIME,TSTOP, VEHA $(100,8)$, TIMEN(4), HDWYS(100), SFACT 6, IVENAI 100,41 ,LINKP 20,21, LI, NCRL (20)
6, ITIME, NPRINT,NPLOT,NPICT,NFLOW,NPARAM,NMAG, ITRANS(100), ITRP
8, BAL1(21)
6, BAL2(14)
б, S, OFFSET,KPQINT, JPOINT, KLANE, LLVEH, THDWYE, THOWYC
K, THDWYF, DTIME, KLINK, NFV(2), LANE (2), PART (2), ART(2), TOTDEL(2)
δ, BAL $6(5)$

> 5)
> LOGICAL FLAG
> FLAGE F FALSE.

> N
> INITIALISATION.
> $\begin{aligned} & \text { 0. } 21 \text { I } 123,24,25,26,2711\end{aligned}$
> $\mathrm{H}=1$
> $\begin{aligned} & \mathrm{M}=1 \\ & \mathrm{NO}=0\end{aligned}$
> 00 33 JEI, NLINKS
> NO ONO +NCRL(J)
> POSN=PEND(J)
> MaM+NCRL(J)
> CONTINUE
> ${ }^{*}$
> 33
SPNML＝SPEEDL（LANE（1））

OO 35 J＝I，NLINKS
IF INCRLIJI．EO．O）
IF INCRL（J）．ED．O）GETO 35
NOONO
00 Kam，No

ก ณค

0
0
がッ

$0 t$
 KLANE=2
NFVI\{)
NFPINTEO
LLVEHOKPEINT
EHAIKPOINT,
EKLANE
20
CROINTE:
1.
IF (-NFVII) EEO.J) NFV(I)=-NFV(I)
TMDWYN PHDWYE
IF IMFLANEDEQ.NSLANEI THEWYNETHOW
IVEHAILLVEN,AIE-J
IVEHAILLVE
LLVEHEJ
1 ARTIIIIVEHAINFVIII:SI OFFFSET
STAROVEHAIKPEINT:AI
~
THDWYN THDWYC
IF IIOEQOKLANEI THDWYN-THDWYF
PART(1)ESTAR+THDWYN
IF (ART(I)GGTOPART(1)) PARTIIIEARTII)
PART(2)=PARTII) THDWYC

LNEXT-I

THOWYNETHDWYC

(F ILNEXP.ED,KLANE) THDWYN-THDWYF
KONFV (LNEXT)
VEHAIK, 4 IOSTAR + THDWYN
IF |K•NE•JI OOTO 50
KBTOREEIVEHA|KPGINT,A)
TVEHA(KPEINT:H) =K
IVEHA(K,4)EKSTERE
NXVEHEK
MFLANEIVEHAIK,2)
KBTOREIVEHAINXVEHPA)
IF (KSTOREOEG.OI GOTE 6
IF IKSTORE.EQ.OI GOTO

NBLANE-IVEHA(KI,2)

THDWYN THDWYC
1F LPEVEHA (NXVEH,4) \& THDWYA=VENA (K1,4)
IF ISLIP.LE,OO1 GOTB 61
VENA(KI, \&) UVEHA (KI, A) + SLIP
NXVEHEKI
NFLANEANSLANE
OOTO EI
9070 58
IF I-NXVEHDEGIK) GOTE 5 ?
OUTPUTI(108):TARGET TABLE FATLUREI, TIME
IVEHA (KPOINT,A) =K
KPOINTONFV(LNEXT)
NFVILNEXT) =-MARK(LANE (LNEXT) , KPEINT, 1$)$
NFVEHEKPEINT
กัロ
웅
ONTINUE
F (J.NE,K, AND.NFV(LNEXTI,GT.O) GETO
FT (J.EQっK) GOTO 851
STORE IVEHA(K1,4)
IF (KSTERE•EG.O) GOTE 900 Kı=OKSTORE
$\stackrel{\sim}{0}$
90 GOTO 901 늘
$\frac{1}{4}$
\sum_{3}^{4}
3
THDWYN=THDWYC , NFLANEI THDWYN = THDWYF
IF (NSLANE•EG.NFLANE) THOWYN=TH
IVENEHEJ
CONTINUE
7) $=$ SPNML
($\mathrm{H}, 2$)

$D 1=A B S(U J * U J=U V * U V) /(2 * A C C N M L)$
D2-ABSIUN-UVI/ACCNML
70
5
5
A.e2 C= $=U V \& U V=U J * U J=2 * A C C N H L * C T T J$
D3: BABC日FABC BOTO 6

OOTB
DSORT(D3)

VEHA1 J.7)=(DTTJ=D1)/(TTTJ=D21
веTO 8
$A=2 \quad$.
$8=2 * T T T J * A C C N M L=2 *(U V+U J)$
$C=U V * U V+U J * U J=2 * A C C N M L * D T T J$
D30B*B-4*A*C
CALL PRINTII'INTERSECTIEN SPEEC REQUD TEO LEWI,TIME,I, JI VEHA(Jっ7)=1.
GOTO 8 .
D3=S0RT(D3)

IF IVEHAI Jo 7 I.LT.SPNML)
VEHA(Jo 7) SSPNML
flage.truEP
If (inOtoflag) geto 90
$\therefore=$
FLAGEOFALSE,
$T=(D T T J+(U J * L J+U V * U V=2 * U I * U T) /(2 * A C C N M L)) / U I+(2 * U I=U V=U J) / A C C N M L$ TTARON $=$ TIME +T
SLIPETTAFON-VEHA1Jっ41
VEHA $\left(N X V E H_{0}\right)$) $=V E H A\left(N X V E H_{0} 4\right)$ +SLIP

KSTORE IVEHAINXVEND 90
KI=IABSIK8TORE)
NSLANE I IVEHAIK1,?
26 (NSLANE.EQ.NFLANE) THDWYNETHDWYF
SLIPOVEHA (NXVEHA4)-VEHA(K1,4) +THDWYN

$$
\begin{aligned}
& \text { (dI7s) } 31 \\
& {[x=H 3 A \times N}
\end{aligned}
$$

INUE
VEMA(J.7)=1
CALL PRINTII'JNTERMEDIATE SPEED REQUD TEO LOW',TIME,I,J)
RETURN

GOTO 12
VEHA1 J.4) $=0$.
SPNHL - SPEEDLITVEHA(J,2)
VEHA(Jo7) 7 SPNHL
VEHA(J, 7)=VEHA(J,6)
RETURN
CONTINUE 92 I-1.2
IF (J.NE,NFVII) GETE 9 ?
G日TO 93
4
음
$\underset{\sim}{\sim}$
$\stackrel{m}{\square}$
$*$
FLAG－．
UI＝VEHAIJっ7
T＝iDTTJ＋（UJッU
TTARGNETIME＋
SLIPETTARGNOVEHA（Jっ\＆）
VEHA（NXVEH，H）IVENAINXVEH，H）＋SLIP
VEWAINXVENE IVEHA（NXVFH， 2 ）
NFLANE
KSTORE OIVEHAINXVFHO\＆
KI－IABSIKBTGREI
NSLANEEIVEHAIK1，？）
90
IF INSLANE•EG，NFLANE）THDWYN＝THDWYF
SLIPEVEHA $N X V E H \rho 4)$－VEHA $(K 1,4)$＋THDWYN

$$
\begin{aligned}
& \text { NXVEH=KI } \\
& \text { IF ISLIP, }
\end{aligned}
$$

IF（SLIP） $90,90,15$
n
2
0
0
0
IF（VENA（J，7）©GE 1,1 ）RETLRN
VEMAIJoフIG1．
CALL PRINTIIIINTERMEDIATE SPEED REQUD TOU LOW＇，TIME，I，J）
RETURN
VEHA（J，4）－VEHA（J，4）+ DTIME
IOKLINK
BOTO 11
VENA（Jo4）DO．（IVEHA（J，て））
VEMA $(J, 7)=$ SPNML
REFURN 7I YEMA（J．6）
EHAIJ，
ONTINUE
Ei，2
EONFV（I）Gete
$9 ?$ \because
ำ．
$\underset{\sim}{\sim}$
\cdots
14

DO 95 I＝1，2
 IF ILANEIII

LANET＝IVEHA（KPEINTIR）
IF（NFVII）－EQ．KPEINTI GOTO 96
CONTINUE
NFVII）＝－MARKILANE（J），NFVIII，I）
KSTOREEIVEHAINFVEHIH）GgTO 98
IF（KSTORE•NEONFVII）GgI NFVIIIEONFVIII

97
 ｜KBT

～
ตू
にั
ถ゙ดัの
IF IKISTORE－EQ．O
WFVEHDOKSTERE
BOTO 99
POINT＝1，21
－IVEHA
OTO II
Gz \sum_{i}^{0}
C FER ENCODING AND TRANSMITTING PICTURE REUTINE CHARACTERS.
COMMON /CILDWD, IPT, IBUF(25), IARR(3) COMMON /VREAC/ IBC,IST,L,IM,IBUFI(10)
COMMON /WRIT/ SETTIM, ISTEP, IKNEW, IFLG,TSAVE,IPRT
6, ITRACE, ILINK, IVNO
6) ITMO
COMMON /VAR/ TIME
COMMON /CONSTZI IBUFZ $(20), \operatorname{LEND}(20,3)$, JNEY $(4,4,5)$, NLINKS, NIN, NEUT
DIMENSION IHOLDZ (100)
EQUIVALENCE (IARR(1), INTFG), (IARR(2), IHI RRD), (IARR(3), IL ERRD) NAMELIST LOTSAVE CINITIALISATION.
CINITIPT=0
IPTE=0
INPUT(20)
IKNEWEO

- INRETURN
ENTRY LOWDI (MNE)
IHELD SAVES DATA FER DEBUGGING.
IHOLDE(IPTZ+I)=INTEG
CIVIDE NUMQER INTG A HIGH ORDER AND LOW ORDER CGMPONENT BREAKPT $2 * * 8$
H10RD = INT
ILOORD $=$ INTEG-IHI GRD*128
INTEGEIARR(I)
LW,9 INTEG
STB, 9
2
2
0
0
2
2
3
3
3
4
4
IBUFっ4
IPTEIPT+1
IF IIPTONE 1001 GETE 1 INDEX=3
COTO 9

INDEX＝2

C

ENTRY READER
INDEXEI
IF (SETTIM.EO.TIME) GOTA 32
IF (SETTIMOLT.TIME) GOTE 20
TIME TO SET TIME. MOVE POSITION ON DATA TAPE FRAM
21 IF (TIME.GE.TSAVE) GOTO 32
32
154
BUFFERIN MORE.
22 IF (TIMEOLT.SETTIM) GOTA 21

REA

$$
\begin{array}{r}
3 \text { Cl } \\
\text { C REMOVE }
\end{array}
$$

$$
\begin{aligned}
& \text { F IISTONEPR) GOTO } \\
& \text { E TRAILING BLANKS. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { DO } 1 \text { Jeso, } 1,-1 \\
& \text { IF (ICHIIBUF, J) ONE•2Z40) GOTE } 2
\end{aligned}
$$

$$
\begin{aligned}
& J+1 \\
& \text { NUE } \\
& \text { D F }
\end{aligned}
$$

$$
\begin{aligned}
& \text { D030 I=182 } \\
& \text { CONTINUE } \\
& \text { SHIT LINE }
\end{aligned}
$$

$$
\begin{aligned}
& \text { IOTO } 3 \\
& \text { IETURN }
\end{aligned}
$$

IBUF:1
ADD CARRIAGE RETURN, TO LINE ENDS.

20 CHECK READ FINI SHED.

 CALL CHECKIL,IMAIST,IBC) 20 SURE$$
9
$$

$$
x \cdot 00^{\prime}
$$

IST=0

$$
\stackrel{\circ}{\infty}
$$

operater dial egue.
SUBRQUTINE DECIDE
COMMON /WRIT/ SETTIM,ISTER, IKNOW, IFLG,TSAVE,IPRT CGMMON /WRIT/ SETTIM
б. 1 TMO
б, NONSTOP
COMMON /CARRY/ NEDE, HSTORE,WSTORE
δ, SCSTX,SCSTY
COMMON /CONST1/SPNML, ACCNML, $\triangle C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A ~$
G,CSPEED,PEND(20),SPEEDL(20),XYTAB(20,7),ASPACE(4),PREB(4,4
GeCRL(20), CENST1,CONST2,ACCJK,DELM, ©)IMESS $6(5)$:IMESS7(11),IMESS8(4)
DIMENSION IMESS9(4)
©, ITRACE,ILINK, IVNE
COMMON /VREAD IBC, IST,L,IM, IBUF(10)
DIMENSION IMESSII(10)
DIMENSION IMESS $4(9)$, IMOI 201 , IMESSI
COMMON /VREAD IBC, IST,L,IM, IBUF(10)
DIMENSION IMESSII(10)
DIMENSION IMESS $4(9)$, IMOI 201 , IMESSI
DIMENSION IMESS\&A(9), IME(20), IMESSI2(5)
DIMENSION IMESSI3(6)
DIMENSION IMESS9A(12)
COMMON /CONST2/ FILLI(219)
DIMENSION IMESS\&A(9), IME(20), IMESSI2(5)
DIMENSION IMESSI3(6)
DIMENSION IMESS9A(12)
COMMON /CONST2/ FILLI(219)
COMMON /CONST2/ FILLi(219)
EOUIVALENCE (FILLI(216), JP
GOUIVALENCE FILL
EQUIVALENCE (FILL (1), TIME)
DIMENSION LINKP(20,2)
DIMENSION LINKP(20,2)
DIMENSION ITRANS 100)
EQUIVALENCE (FILL(1308),LINKP(1,1)) OIMENSION MAR(10)
DIMENSION IMESSI417
EQUIVALENCE (FILLI(164), MAR(1))
T',8200000000/
21,820000000001
S is',82000000001 PICTUR
는 ONTROL TIME R DATA ICR/8200000000 DATA IMESS2 /'WHICH OPTIEN IS ','REQUIRED ?', 8200000000
DATA IMESS3 /'RESET TIME ER ST','EP PICTURES :S', 8200000000

$0-15$

C READ ONE CHARACTER TE CONTINLE.
CALL BCREAD(L,IBC,IST)
800 CALL CNESKILAIMBIST,IBCI
HAS ARRIVED 800
CBYTE=0 \quad CALL BCMEVEIL,IBUF,IBYTE,IBC,IST) IF 110
iste0
800 C
C
CHECK
C CHECK
IF IIANDIIBT,BI,NE•BI GOTO $8 C 0$ ว 7 าาข
IF ILOADOED.OI BETO 12
C INPUT FECAL PROGRAM IF LOAD
CALL SENDER
OAD=0
LOAD $=0$
IBT $=0$
0.07052
20 18T0
C WRITE TO GTAO 'WHICH OPTION REQUIREDI. 0.ETO 6
C WRITE OUT OPTION AVAILABLE,
CALL BCWRITEIL,IMESS3: $0,33,1 S T$)
$18 C=10$
18700
C READ IN MAXIMUM 10 CHARACTER.
CALL BCREADIL,IBC,IST)
IF IIAND (IST, 8) © NE \& B) GETO I
ist=0
iBYIE=0
C ONLY FIRST TWO CEUNT AND ONLY ONE LETTER SELECTS GPTION. CHECK SENSE CHARACTER FGR OPTION REOU
C CHECK SENSE CHARACTER FGR OPTION REQUIRED.
Do $3 \mathrm{~K}=1,2$
IF IICH(IBUF,KI.EQ.22D9) GETE 4
IF IICHIIQUF,KI.EO.PZE2) GETE 5
NOMCHM
는ㄴํ OU OK O
 ํロロシ～ロ NヘNNNス ョanañ家品品品 w CONTINUE
ISTOO
CALER INPUT．
IBTOO
CALL BCWRITEIL，IMESS $4,0,33,15 T$ I
CALL BCMRITEIL，IMESSUA，O，33，IST） GOTO ${ }^{\circ}$
C MESBAOE OPTION．

CALL BCWRITE（L，IMESSI2，0，17，1ST）
$\begin{array}{l}\text { IST＝0 } \\ \text { IST }\end{array}$

$18 C=B 0$
C READ IN HESBABE．
IF IIAND（IBT，8）－NE•RI GOTO 23
8

25

$$
\begin{aligned}
& \begin{array}{l}
\text { CALL } \operatorname{ACREADILIIBC,IST)} \\
\text { CALL CHECKILIIM,IST,IBC }
\end{array} \\
& \text { N } \\
& 23 \text { CALL CHECKILIIM,IBTIIBC } \\
& \text { GRTO } 23
\end{aligned}
$$

AL
52

BC

Svicen EPTION.

$$
\begin{aligned}
& \text { IBC=20 } \\
& \text { CALL BCREADIL,IBC,ISTI } \\
& \text { CALL CHECKIL,IMOIST,IBC }
\end{aligned}
$$

$$
\begin{aligned}
& A L L \text { CHECKIL,IM,IST,IBC) } \\
& F(I A N D(I 6 T, S) \cdot N E \cdot B) \text { GETE } 22
\end{aligned}
$$

AYTECO
CALL BCNEVEIL,IBUF,IEYIE,IBC,IVNE
FORMATI2151
JEMARKIILINK.LINKPIILINK,2I,-IVNE)
IVNOEITRANSIJI
C EVENT DIAGNESTIC OUTPUT CANCELLED. BCWRITEIL,IMESS14,0,25,1ST 1ST=0
84 CALL BCREADIL,IBC,IST)
IF (IANDIIST,8),NE•8) GETO 84 8T=0
IVNE-1
CALL BCMEVEIL, IBUF, IBYTE, IBC, ISTI
IF IICHIIBUF,IIOEQ.2ZE8) MARI(3)"1
C RETURN TO OPTIEN SELECT.
GOTO 20

2FB•ZI
NEW OPTION. RN FOR
BOTO 20
nd3y
808 \square
$x \rightarrow 2$
$+?$
IBTMO
CHANBE IN TIME REQUTRED.
CALL BCWRITEIL,IMESS5,0,4 , IST)
18T=0
1EC=10
CALL ACREADIL.IBCOIBTI
CALL CHE(KIL.IM,IST,IBC)
IF (IAND(IST,B)ONEOR) GAT 18T00

$$
\begin{aligned}
& 18 Y T E=0 \\
& \text { CHIL }
\end{aligned}
$$

N

$$
\begin{aligned}
& \text { DECODEIIOOIC } \\
& \text { FORMATIF:3) } \\
& \text { TIME FBUNDD. }
\end{aligned}
$$

$$
\begin{aligned}
& \text { TIME FDUND } \\
& \text { BETIIMETIME +DISP }
\end{aligned}
$$

C CHANEE TAPE POSITION ACCERDTNGLY. CALL READER

GRITE TO OTHO TIME NOW FER SCREEN ENCODE (2A, 1 1 O,IBUF,N)TIME,ICR
FORMATITPREBENT TIMEI,FIC:3,A1) FORMO

110
CALL BCWRITEIL,IBUF, O,N,ISTI
C METUNN FOR NEW OPTION.
QOTO 20
SET UP TWE
TURN \qquad BCWRITEIL，IMESSI1，0，37，1ST）
10
BCREAD（L，IBC，IST）
CHECK（L，IM，IST，IBC）
IAND（IST，8）ONE，8）GETO 906
0 BCWRITEIL，IMESSI1，0，37，1ST）
10
BCREAD（L，IBC，IST）
CHECK（L，IM，IST，IBC）
IAND（IST，8）ONE，8）GETO 906
0

$$
\begin{aligned}
& \text { 영́․ } \\
& \text { (10,101,IBUF,N) JPICT } \\
& \begin{array}{l}
\text { BCMEVEIL, IBUF, TBYTE,IBC,ISTI } \\
\text { BC•EO.1) GETO } 907
\end{array} \\
& \text { GETO } 907
\end{aligned}
$$

告
Wnn
IF mere管 st ES． TIME

',TIME,N,JI

NENEXISTANT
\sum_{2}^{∞}
BUQROUTINE PRINTIIM,AA,II,JJI \&,CBPEED,PENDI2O),SPEEDL(20),XYTAB(20,7),ASPACE(4), PRREB(4,4) ,CRLI2O),CONST1,C ONST2,ACCJK,DELT,HIEGHT,WIDTH NI INKS,NIN,NRUT , MARIIO). ICAOE (20), ICRLI201, JPRINT, JPLOT, JPICT, JFLOW, JPARAM, JMAG COMMON NAR, TIME, TSTEP,VEHAIIOO,BI,TIMEN(4), HDWYSI 100I,SFACT C, IVEHA1 100,4$)$ ILINKP $(20,2), L I, N C R L(20)$
G, IT IME, NPRINT,NPLOT,NPICT,NFL OW, NPARAM,NMAG,ITRANSI 1001 , ITRP 6.BALI(21)
S.1(2), J(2) \& A (2), K(8)
6.BAL3(21)

- L, NUMBER(2)
DIMENSION M(8)
IF IMAR(3) ©NE,O) RETURN
$A(L)=A A$
J(L) =ITRANS (JJ)
(F (L.NE:I) GETO 2
OGETHER
UTPUT TWO MESSAGES TOGETHER
(WITE(108, 3$)(K(N), N=1,8), A(1), I(1), J(1),(M(N), N=1,8), A(2), I(2), J(Z$

IF (NUMBERIRI.EE.O) GOTG 10

$K(N)=M(N)$
MESSAGE
L $\quad 2$
RETURN
T THE
C ADD IN BY BACK SPACING EXTRA INFERMATION.

INPUTS DATA AND WRITES HEACFA

リリリ
8UBROUTINE DATARD
COMMON／CONSTI／SPNML，ACCNML，$\triangle C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A ~$
6，CSPEED，PEND（20），SPEEDL（20），XYTAB（20，7），\triangle SPACE（4），PROB（4）4）
6，CRL（20），CONSTI，CONST2，ACCJK，DELT，HIEGHT，WIDTH
COMMON／CONST2，IBUF（20），LENC（20，31，JNEY（4，A，5），NLINKS，NIN，NAUT
CPMMON NVAR，TIME，TSTOP，VEHA（100，81，TIMEN（4）OHDWYSI 100），SFACT
6．IVEHA（100，4），LINKP $(20,21, L 1, N C R L 120)$
6）ITIME，NP
CoBALI 211
$\begin{aligned} & 6, B A L 3(21) \\ & 6, B A L 6(5)\end{aligned}$
4，BAL17（3）
C PRINT FLAGS．
$\begin{aligned} & \text { READ } 105,10_{1} \text { ）SPNML，} A C C N M L, ~ A C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A, D E L T, ~ \\ & \text { SCBPED，TSTOP，CENST1，CONST2，} A C C J K\end{aligned}$
READI205，102）JPRINT，JPLET，JPICT，JFLOW，JPARAM，JMAG
READI105：110
12 LEND 11,1 ）$=$ LEND $(1-1,1)+\operatorname{LEND}(1,1)$
READ 1105,110$)(L E N D(1,3), 1=1,20)$
C VEHICLE GENERATGR LEVELS．
C WRITE READ（105，104）（ASPACE（1）．1＝1，4）
E TTE MER．2001 IRUF
WRITE（IOB，ZO2）SPNML，ACCNML，ACCEMG，VL，FFHDWY，FCHOWY，SIDEA，DELT，
GOTO:
-
 INI
NKS
IIX

$$
\begin{aligned}
& 1 \text { SPEEDLII) } \\
& \text {-XYTAB1I,3) } \\
& \text {-XYTAB(I,4) }
\end{aligned}
$$

CULATE RADIUS FROM SURTENDED ANGLE:
RADIUS=SERT $(A * A+B * B) /(2=S$ INIRACIUS/2)
CULATE LENGTH OF $\triangle R C$ LINK.
PENDIIIERARADIUSASINISRRTI
C CALC

$$
\begin{aligned}
& \text { NIN } \\
& \text { NEUT }
\end{aligned}
$$

$$
(\text { YYAB (i, J), J=1, } 7 \text {) }
$$

-0
0
0
0
0
0

[^15]\[

$$
\begin{aligned}
& N E \cdot O=1 \\
& A * B * B)
\end{aligned}
$$
\]

RADIUS=ABSIRADIUS)
ICONST1, CENST2,ACCJK

SPEEDLII)-AMINI(SPNML,SPEEDL(I))
IF (RADIUS.GT-4 H) GATE
\quad
C Clacu
PENDIIIE2*RADIUSAASIN(SNRTIA*A+B*B)/(I2\#RADIUS)
SPEEDLIII=AMINI(SPEFDLII)SORT(SIDEA*RADIUS)I
KYTABIIITIOSI
WRITE TO HEACER.

$0=0$
I=IaNLINKS
EAD(105:112)NCRL (1)
m
C READ IN DETAILS EF CENTREL PEINTS,
READ(IO5,113)(ICRLIJ)OICRLIJI) JIMANO)
READ(105,113)I(CRLIJ):ICRLIJI)
MaM+NCRL(I)
GOTO 9
WRITE REST OF HEADER.
READIIO5:112INCRLII)
IF (NCRLII).EQ.O.) GOTO NO-NO + NCRLIII
 FORMATIRMO, JOURNEY MAIRTX INPUT TO EXIT)
FERMAT(X,'INPUT')
FGRMAT $6 x, 12,4(x, 513)$ FORMAT(3F10.3)

FORMAT(9CF8.2/10F8.2)
-8

FORMATIINO, $2 x$, 'LINE SPEFD', $4 x$, INML ACCN', $4 x, 1 E M G$ ACCNI, $2 x$

$\begin{array}{ll}101 & \text { FORMATIICF8 } \\ 102 & \text { FORHATIGI10 } \\ 110 & \text { FORMATI2OI4 } \\ \text { 104 FGRMATI4FIO } \\ \text { 200 FORMATIIHI } \\ 201 & \text { FORMATIIHO, }\end{array}$
$\Delta x \cdot 3 x=$
FGRMATIX,IOFI2,3) TTME STEPS FQR G/PI,7X, TPRINTI,BX,IPLOTI,5X,IPIC GTURE', 3X, IFLEN CALCI, 2X,IPARAM CALCI,5X,IMAG G/DII
~~응
FORAAT(X,24(1-0):6112)
FORMATIINO, 'VEM GENERATAFS', 15 X , 'LEVFL 1 ', 5x, 'LEVEL 2',5x,
GLEVEL $31,5 x$, 'LEVEL ''

R HDWY FI, X,'FCTR HDWY
SPEFE',3x,'STOP TIME'
INT
$3 x, 1$
12,3
NO OF

FORMAT $(x, 15,5 x, 15(F 10,3,190), 1)$
FORMAT $(X, 15,4 x, 1$ © CONTREL')
은

C OUTPUT SIMULATIEN DATA•
subroutine print
COMMON /CONST1/SPNMI, ACCNML, ACCEMG, VL,FFFHDYY,FCHDWY,SIDEA
C, CBPEEDPPENDI2O), SPEEDL(20), XYTAR120, 7), ASPACE (4), PREB14,4)
COMMON /CONST2, IBUF(20),LEND(20,31,JNEY(4,A,5),NLINKS,NIN,NOUT
 COMMON IVAR, TIME, TSTOP, VEHAI 100,81 , TIMEN(4), HDWYSI 100), SFACT SOIVEHAIIOORA)LINKPI20,2), LTINCRLI2OI d, BALI(21) d, BAL2 (14)

6, BAL3(21)

COMMON /WRIT/FILL(6), ITRACE,ILINK,IVNE
IF IMENSION(I).NE•O) RETURN
CALL PRINTE(2)
1E (ITRACEVEG)
WRITE (108,100)
WRITE(108,101)
EACH LINK,
2
2
2
2
2
2
C REACHED END EF QUEUE FER LINK,
$\stackrel{\%}{8}$
\checkmark
8.3).LV
F (J.EQ.LINKP(I,2)) GeTE 2 J=MARK(I, Jo1)
ONTINUE
F IMAR
(MAR(5).NE.O) GETE 3
NE J=1. 100
IF NE VEHICLE.
IF IITRANSIJ.EQ.O) GOTO 4
NaN+1
ISAVE(N,I)=ITRANS(J)
IF (N.NE•25) GETO 4
OUTPUT TRANSLATION TABLE
(ge.f=r'(c)
CONTINUE
WRITE $(108,104)(I S A V E(J, 1), J=1, N)$ WRITE $(108,104)$ (ISAVE(J,2), $\ddagger=1, \mathrm{~N})$

Noo TINUE

(tIge'x)IVWYOA OT
INNIINQS E
FRITE(108,102)
WRITE(108,105)
105 FORMAT(X,1201-1)
C TRANSLATE TRACE NUMBER (IUNE) INTO ARRAY LOCATION. DO $20 \mathrm{~J}=1,100$. 30 TITRAN

LV=0

LVEISIGNIITRANSIIABS(IVEHAIJ,4) I), IVEHA(J,4)) CONTINUE
옹
©

TT＝ABSIVEHA $(\mathrm{J}, 2)=$ VEHA $(J, 6) 1 / \triangle C C N M L$
VEHICLE WITHIN SLEWING DEWN DISTANCE OF NEDE CALL CONTREL REUTINE．
ふ 心
TTEABSIVEHAIJ
VEHICLE WITHIN
IF IPOSNOLT．S $2 a$
20
2
2
2
20
0
0
0 K（I，J）11 $+x^{\frac{\omega}{z}}$ $\because \quad m \quad n-$

\square
bubroutine ecmeckinum)
COMAON TCONSTI/SPNML,ACENML, $\triangle C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A$ G, CRLI2OI,CONSTI, CONST2,ACCJK, DELT,HIEGHT, WIDTH , MARIIO), ICACE(20), ICRLI2O), JPRINT, JPLET, JPICT, JFLOW, JPARAM,
GIVEHA(100,A),LINKPIPO,21,LI,NCRLI201
 b) BaL2 (21)
S. BAL2(14)
b) BaL3(21)
s.BAL1713)

(antinks

JCHECKOMARK (1,J,-1)
IF IJCHECK.E日. LINKPII,?) GETE 1
MDHYEEMHCWYAFFHDWY

IF INUMOEDOI) вOTO 7
aOPO

IF INUMOEQ-11 G0TO 7
continue
PGB2-VEMA(K,3) +PEND(I)

QUBROUTNE ASVE COMHON /CONST1/SPNML, ACCNML, ACCEMG,VL,FFFHOWY,FCHDWY,SIDEA C) CBPEED, PEND(20), SPEEDL(20),XYTAB(20,7),ASPACE (41, PRAB(4,4)

G,ITIME,NPRINT,NPLOT,NPICT,NFLOW,NPARAM,NMAG,ITRANSIIOOI,ITRP
8,BAL1(21)
6, BaLz(14)

6, BALI7 13)
FOR EACH LINK.
JeLINKP(I,1)

C FIND THE NEXT LINK.

IVEHA
IPLELINKF
INEXTL
IN
IPL=LINRINEXTLISL,

VEHA $(J, K)=0$.
CONTINUE
IF IVEHAIJO3), TT.PENDIIII GOTO 1

9 VEHICLE

SUBROUTINE VMOVE 5,CBPEED,PEND(20), SPFEDL(20), XYTAB(20,7), $A S P A C E(4)$, PROB(4,4)
 GOMARIIO)EICODE(20),ICRLIEOI,JPRINT,JPLOT, JPICT, JFLOW, JPARAM, JMAG COMMON NAR, TIME,TSTOP,VEHA(100,B),TIMEN(4),HDWYS(100),SFACT
COIVEHAIIOO,4I,LINKPI20,2I,LI,NCRLIROI
 8, BAL2(14)
6, BAL3(21)
$8, B A L 17(3)$
DO 1 I-1, NLINKS

VEHA $J, 3)$-VENA $J, 3)$ \&DP
VEHA $(J, B)=V E H A(J, 8)=D P$
VEHA(J,2)-VENA(J,?) \&VEHA(J, (1) \& DELT
IF (VEMA (J) IF (J.ED,LINKP(I,2)) GOTE 1 J=MARK(I,J) 11
GOTO 2
RETURN
GENERATES RANDEM NUMBERS WITH EQUAL PROBABILITY BETWEEN O AND 1
SUBROUTINE RANDOM(IX,IY,YFL)
65539
$Y, 5,6,6$
Y $=1 Y+2147483647+1$
2
YFL=IV
YFLEYFL* $4656613 E-9$
RETURN
60

$$
\infty
$$

uu
jemk limits any change in acceleration.
FUNCTION AJERKCACCN1, ACCN2),
 Sg HARIIOI, IC ODE (RO), ICRLIPOI, JPRINT, JPLET, JPICT, JF LOW, JPARAM, JMAG
 SoIVEMAl2001A), LINKPI20,2IISLISNCRLI201
GiITIME,NPRINT,NPLOT,NPICT,NFLOH,NPARAM,NMAG,ITRANS(100),ITRP s)BAL1(21)
CfBAL3(21)
8, DAL6(8)
ADIFFM=ACCJK_DELT
DELACCOACCNZ-ACCN1
AJERKACCN2
IF IABS (DELACC).
IF IABS (DELACCI.GT-ADIFFM) A.JERK=SIGN(ADIFFM, DELACCI I ACCN I
END

Redixtyent:

RADIUS=XYTAB(I,7)

C CALCULATE NUMBER OF SEGMENTS IN CURVED LINK.
THI=ATANZ $($ (XYTAB $(I, 2)=X Y T A B(1,6)), X Y T A B(I, 1)=X Y T A B(1,5))$ THETAMAPENDIII/RADIUS
IDATAESFACTHPENDIINNINTF SEGMENT LENGTH AND X ANC Y CO-GRDINATES.
12 CALL LDWDIIIDATA)
CALL LDWDI(IX)
IF (RADILSIIO.3,10
IDATA=SFACT\&PENDIII
OOTO 12
OQ 7 J=10KK
THE TA L L THETAMAJ/NINTP
IX $=(X Y T A B(I, 5)$ \&RADTLS*CES(THETA + THI)) *SFACT + * 5 IY O(XYTAB $(I, 6)+R A D I U S * S I N A T E S A$
INTERMEDIATE X, Y CO-ORDINATES.
CALL LDWDI(IX)
CALL LDWDI IY)
7 CONTINUE 1 IXEXYTABII,3I』SFACT*05
IYEXYTABII,4I\#SFACT+O5
SEND END X,Y COE ORDINATES.
CALL LDWDI (IX)
CALL LDWDIIIY
CONTINUE
σ
$=$
C SEND
u
RADIUS:XYTAB(1,7)
F (RADIUS) $2,11,4$ Lan
Se-fioius

THETAM=PEND (1)/RADIUS
NINTP=6.4THETAM/3:142+05
IDATA $=$ SFACT 4 PEND I)/NINTF +. 5
SEGMENT LENGTH AND x ANC Y CO-GRDINATES.
12 CALL LDWD1(IDATA)
CALL LDWD I 1 IVI, 3,10
(DATA F SFACTAPENDII)
BOTO 12
KKONINTP
00 7 JeisKk

$=0$
THETACL FTHETAMAJJNINTP
(xYTaBI
C SEND INTERNEI (IX)
CALL LDWDIIIX
7 (IXEXYTAB(I, 3) $\triangle S F A C T+05$
IYEXYTABII,A) ESFACT,+ 5
SEND END X,Y CE. ORDINATES.
END X, Y CO- GRDINATES.
CALL LDWDI $I X$)
CALL LDWDI(IY)
CONTINUE
CALL LDWD2(0)
1F (1ETEP•NE•O) GOTG 21
$-\sum_{i u}^{0}$

$$
\begin{aligned}
& \begin{array}{l}
\text { CHECK IF TIMING CHARACTER FREM GT } 40 \text { RECIEVED. } \\
20 \text { CALL CHECK }
\end{array} \\
& \text { : } \\
& \begin{array}{c}
010 \\
51 \\
\hline
\end{array} \\
& \text { I }
\end{aligned}
$$

$$
\begin{aligned}
& \text { ä }
\end{aligned}
$$

SUBROUTINE NEWPIC COMMON /MRIT/ SETTIM,ISTEP,IKNEW,IFLG,TSAVE,IPRT GOITRACE,ILINK.IVNO
COMMON /CONSTB/ LINKSTIPCI,TPSTIZOI,SFACT COMMEN /CARRY/ NEDE,HSTAFEOWSTERE S, BCBTX,SCSTY
COMMON /CONST1/SPNML, ACCAML, $\triangle C C E M G, V L, F F H D W Y, F C H D W Y, S I D E A ~$ 5, C8PEED, PENDI 20), SPEEDL (20), XYTAB (20, 7), ASPACE14), PREB(4,4) S,CRLI(20), CENSTI,CONSTZ,ACCJK,DELT,HIEGHT,WIDTH
COMMON ICONSTRI IBUFIZO), LENDI2O,31, JNEY(4, A, 5I, NLINKS,NIN,NEUT COMMON NAR, TIME,TSTOP,VEHAIIOO,BI,TIMEN(4),HDWYS(100),SNLM S.IVEHA1 100 , 41, I INKP (20,21,LT, NCRL120)
S, ITIME,NPRINT,NPLOT,NPICT,NFLOW,NPARAM, NMAG, ITRANS(100), ITRP
ס.BAL1(21)
5, BaL2120)
6iBAL3(21)
BeBAL6(5)
©ADL87(3)
DIMENSION SOLN(5,2,P)
DIMENSION ASELNIZOI
DIMENSION INQDESIIOI,XNEDES(10), YNODES(10)
IF IMAR(4)IONE.O) RETURN
RECALCULATE SCALE FAETOR.
5

J=0

0056 1=1:20
08 560 I=1010
DOEDEBIIICO
UP. NEW REFERENCE POINT fRGM NODE iNPUT iN DIALQGUE.
SFACTEAMINI (760./HIEGHT:IOONO/WIDTH)
565
1
0
0
0
0
ulu

INODES(INDPT)=NQDE

YNODES(INDPTI=SCSTY
CONTINUE
XPC = XNODES (INDPT)
(IdONI) IS BOONA $=$ JdA
DE 500 190 1 IaJ
DO 500 I90:1.J
윤
c^{500} ONLY
Te ${ }^{2}{ }^{2} 1$
JOJ +1 IGATIVE IF NEDE IS AT START.
END ATYACHED TO REFE
EN:

NEDE 4 RENC
GETE
GOT 10 NeDE
-NEDE) LINKST(J) $=$ I 0070 3
Iorrissmir 2 CALL LDWD2(0)
RANSMIT NEN LINK
CALL LDNDIIJ
11 II=1:20
SoLNIII) $=0$.
IF (LINKST(J).LT,O) $k=3$ CXNGDE=XYTAB(I,K) *SFACT CYNODE $=X Y T A B(1, K+1) * S F A C T$
XHEXPCOCXNODE

$\operatorname{SOLN}(5,1,1)=X Y T A B(1,4-K)=S F A C T+X M$
$\operatorname{SOLN}(5,1,2)=X Y T A B(1,5-K)=S F A C T+Y M$
$\operatorname{SOLN}(5,1,2)=X Y T A B(1,5-K) * S F A C T+Y M$
C IS END OF LINK WITHIN PICTURE.
IF (SOLNI5,1,1).OE•D..ANC.SALN(5,1,1)•LE.1000..AND.SOLN(5,1,2).GE.
SO..ANDASELN15,1,2

I
N(II
TA
C-S
(1,
1
$1)$
2
UE
II
NI
XY
PC
KST
KS
GN
I,
1

GN $(1$, CELX 1 -ISIGN(1, DELX2) $18,19,18$
$, 1,1)=0$.
$, 1,2)=0$.

CONTINUE
IX=SOLNIIMIN, JJMIN, 1)+. 5
IYESOLNIIIMIN, JJMIN, $)+.5$
XFLTOFLOATIX)
YFLTEFLOATIIY)

ONTI

$\underset{\sim}{n}$
$\stackrel{\infty}{-1}$
9
No

泉 mon^{2} ?
ARG*RADIUS**2-(A-H)**2
IF IARGI25,20,20
IF III.GE.3) GETE

$$
\text { IF (SOLN(II,JJ, Z),GE, O.,AND.S日LNIII,JJ, ZI -LE, 760.) GOTO } 28
$$

 SOLN(II, JJ,1)=0.
SOLN(II, JJ, 2) $=0$.

IF (SOLNIII,JJ,2),GE,O.,AND.SELNIII,JJ,2),LE,760.) GOTO 28

$$
\begin{aligned}
& \begin{array}{l}
=A \\
=G+ \\
=A
\end{array} \\
& \text { SOLN(II, 1, 2) }=\text { G }+ \text { SQRT (ARG) } \\
& \text { SOLN(II,2,2)=G-SGRT(ARG) } \\
& \begin{array}{c}
n \\
\vdots \\
7 \\
3 \\
0 \\
0
\end{array}
\end{aligned}
$$

O
$\stackrel{\infty}{\sim}$
N
$\stackrel{(1)}{\sim}$

IIMIN=II
32 II $=104$
$00 ~$
02
D
IF (II.EROIIMIN.AND.JJ.FG.J.JMIN) GETE 3?
SOLN(II, JJ, 1$)=0$.
CONTINUE
(F ILINKSTIJ).GT.OI GOTH 40 PST(JIEPEND(I)*SFACT-THE $X=S O L N(I I M I N, J J M I N, 1)+0$.
Mra
TPSTIJI
HESTO-O
IYEYPC THEMIN/3•142*-5

CALL LDNCIIICATA)
IF (IX.EG.O) IX=1
(x)
F $1 K K$
THETA LFTHEMIN*JJ/NTNTP
I $X=F+$ RADIUS F COS (THETA T THI +THESTA) +.5
둘
-
CALL LDWDI I
IF IRADIUS

ल̈
N
104
:
F
N
R
岂定:

IF isy．EHD（ix）
CALL LDWDI（ix）
LOWCI（Iy）
ONTINUE PDT 1
NODE＝INDDESIINDPT）
1F INDDE．NE．O1 OCTO 540
CALL LDWD1（0）
CALL HDSEND
IF（ISTEP．NE．OI GOTO 210 CALL CHECKILP，IM，IST，IBCI IF（SBCOLTC1）GETO 200 cantinue
RETURN

REIMIN $=5$
JJMIN $=1$
ロス

200
～
응
웅

is NEGATIVE VALUE.

$$
\begin{aligned}
& \text { :CLEAR FLAG BITS. } \\
& \text { :INVERT RZ } \\
& \text { IR5 IS I IF CHARACTER IS INCREMENT ELSE O. }
\end{aligned}
$$

: SAVE CHARACTER IN INCREMENT STRRE.
IUNSAVE REGISTER AND RETURN.

R5

பに
\because
0
0
0
\ddot{a}
\ddot{a}
0.9
0.9

LTIME:

STOP:
11330

ERIRI
RDENE, ARCSF
ERDENE, ARCSF IL BEK FOR CHARACTER.
I COUNT

$$
\begin{aligned}
& \begin{array}{l}
\text { Le日P2 } \\
\text { RO } \\
\text { R1 } \\
\text { ESP1 } \\
\text { R? }
\end{array} \\
& \text { ARANCH IF CHARACTER NOT ZERE. } \\
& \text { Characters. } \\
& \text { : ARANCH IF DATA NOT A PAIR XY'S. } \\
& \text { IRRANCH IF } 2 \text { ZEREIS RECEIVED. } \\
& \text { RECETVE ANPTHER CHARACTER. } \\
& \text { : RRANCH IF NET ZERQ. } \\
& \text { \&SET BIT } 15 \text { IN TABLE AS FLAG. } \\
& \begin{array}{l}
\text { DRBUF, RUFFFF } \\
\text { 2OOBBIFFER }
\end{array} \\
& \begin{array}{l}
\text { 200, BIFFER } \\
\text { LAP6 }
\end{array} \\
& \text { INTB, RUFFFF } \\
& \text { - (gy) © yssnq }
\end{aligned}
$$

$$
\begin{aligned}
& \text { RETURN. } \\
& \text { : MULTIPLY BUFFER BY ? TG TURN INTE } \\
& \text { DISPLACEMENT FER NEW LINK ADDRESS . } \\
& \text { INOW REAOY FAR NEW LINK DATA. }
\end{aligned}
$$

$\vec{\alpha}$
 $\begin{array}{lllll}\because & \text { m } & \ddot{0} & \ddot{0} & \ddot{a} \\ \ddot{a} & \vdots & a & a & a \\ 0 & 0 & 0 & 0 & 0 \\ 0 & \cdots & 0 & 0 & 0\end{array}$
LOEP6:
L00p4:
LEBP 7
ERAR2
α
$\frac{\alpha}{4}$
$\frac{\alpha}{4}$
4
4
BUFFER
LEBP9
\&SIGN, BUFFEF
LEAPIO
SSIGN, BUFFEF
BUFFER
BUFFER, (R5)
R2
LEOPO
INTB, BUFFER \#OR2
: RETURN FER NEW VALUES.
:SET FLAG BIT IINDICATING END BF PREVIBUS
:LINK DATA.
LEBPO
11330

L日EP7:
0
0
0
0
0
0
0
0
0
0
0

SGAVE REGISTERS.
I SAVE IST ARQUEMENT.

$$
\begin{aligned}
& x \\
& \text { 늘 } \\
& 6 \\
& 6
\end{aligned}
$$

+STACK

$$
\begin{aligned}
& R O=-(S P) \\
& R 1,-(S P) \\
& R 2,-(S P) \\
& R S,=(S P) \\
& R 3,=(S P) \\
& R G,=(S P)
\end{aligned}
$$

FPUT $\quad \begin{aligned} & -(S T A C K\end{aligned}$
SP,R1
(R1) + (R1)
R4, $R 1)$
R3)(R1)

R1.SAVF

Savegris

mo
stack
に
\propto
쏜른
「
$+$
: FIND X CG-ARDINATE FREM TABLF,
: TEST BIT FGR END OF LINK DATA.
: RESTGRE REGISTERS AND RETURN FREM SUBREUTINE. :MOVE DISPLAY GRAPHICS INST INTE PICTURE FILE.
: FIND Y CGAORDINATE FRQM TABLF. : CONDITIEN BITS FER DISPLAY DATA.
: SAVE X DATA IN PICTURE FILE. : De SIMILARLY FOR Y CE-ERDINATES. Jd INST,(R1) *

 Le日r 3
$x X, R O$
FIND DATA INCREMENT.
: DE SIMILARLY FER Y CE-ERDINATES.

[^16]

$\begin{array}{r}\ddot{0} \\ \ddot{0} \\ 0 \\ \hline\end{array}$
LeOp 1 :
LOOP2:

\square

ICAICULATE ADORESS AF
OFIXED POINTS E
Rere
IIAST ARG?
: DEEUCT TWO
IEVALLUTE ARGS
ISAVE IMPERTANT REGISTERS
IINTIALISE PICTURE INSERT REGISTER

R1,ENDIRO
RO

a
\vdots
\vdots
0
0
$R 1,=(5 P)$

$$
\begin{aligned}
& \text { а̄凶 }
\end{aligned}
$$

Exie
6.6.TBABF
countl
TIME (ROI, R1
RIODECH(RO)
R10...-(SP)
DECE(ROI
(SP): DFCO(RC)
CeUnT3
$\ddot{\alpha}$

\ddot{a}

\#̈ * ※ w

601:
 ※̈

> GO QRBUF, BUFFER EHBIT, BUFFFR EIGHTH BIT IS CLRAR BUFFER,RO
LeBP6
LEEP2O
1，RO
～
2
$\bar{\alpha}$
$2 \rightarrow$

$\stackrel{\infty}{\infty}$ ャッ ${ }^{\infty}$品夜

603：

COUNT1：
\ddot{i}

0
0
0
－ 2
 \geq

ー웅 a
20
20
0 LOOPG：
LOOP2：

－ZRYTE．RO

－Step，RC	ITEST STAP CANDITION
Le日p 7	
－RSIGN，RO	
FINAL	
PC，CLOCK	
60	
（SP）＋，R4	
（SP）＋，R3	
PC	
acollinforn	ICHECK COLLISION BIT
IEAP29	
－1．CTEST	iyEs SEt flag
－COLLIDF，R	ICLFAR RIT
－003600．P日IN	T IINTENSIFY VECTORS
－RSIGN，RO	ATEST SIGN
LOOPO	
ERSIGN，RO	dCIEAR SIGN BIT
RO	：AFGATE
LEAPO	
RO．SUM	：PILL SUM FRAM Stere
SUM，R1	
LEAP43	
R3	
LEAP40	rtat 1
－15．0R3	
－MSBPR1	：NARMALISE R1 T0
LEAPMO	IEXPONENT IN R3 5
R1	：MANTISSA IN R1
R3	
LOAP41	
DATAE，R3	：SIIM EXPONENTS
R3	BEXPONENT AF DIVISION

LOOP1：
FINAL：

$\#$
2

\ddot{a}
\vdots
\vdots
\vdots

Le0p20：
L00pO：
L日0p43：
L00p4：

$\ddot{0}$
$\dot{0}$
0

:RO CONTAINS FRACTION
ISTARE IF X CARD CALC
IN
R2,FRA
LEBP31
FRACTARR
(R3)
YYES
8P32
(R3)*
IMULTIPLY TNTFGFR PART BY 4 FQR DATA DISPL
RO, 23

LEAP 73
IRY HELDS THE DIFFERENCE
0
THE
$\underset{\alpha}{-1}$

$\ddot{9}$
$\stackrel{0}{0}$
0
0
LOOP37:
BPREPARE

$\max _{\boldsymbol{a}}^{\boldsymbol{a}}$
QP74
QR3
QP71
$5 \cdot O R 0$
OPSO
OERM
OPS1
R2
:RI*RR=R3 +VE NARMALISFD NOS
:RT CENTAINS MANTISSA RO THE EXPANENT
ICARRECR SIGN CENDITIBN
IR 3 NOW CENTAINS ABS CMHRD
:VFFICLE END
YFS Y COBRD?
-SAVE ABS CORRD
INSERT POINT IN
ICAIC COOORD FAR
IFTRST PRINT
ALS甘7ध
4
$\frac{1}{4}$
2
2
2
2
0
a
α
x
60
$\times 0$
6
40
2
$\frac{1}{2}$
-2,R2

LeOP46: LOEP71:
L60P74:
UNNERM:
Leep50:
L60p51:
L00p73:
L00p72: LOEP34: LOUP52:

$$
\begin{aligned}
& \text { ISPIRRG ISFT INTENSITY RIT } \\
& \text { ILGNGY (R5) } \\
& \text { R3: (RSI \& CRERE } \\
& \text { YYEG } \\
& \text { (SP) \&IASTX ISAVE ARS PETNT }
\end{aligned}
$$

$$
\begin{aligned}
& \text { LOGP } 30 \\
& \text { BUFFER,R4 }
\end{aligned}
$$

LFFER,R4 ISTART NEW LINK

$$
\begin{aligned}
& \triangle C_{A B}(R 4)=R 3 \\
& (R 3)+9 R 1
\end{aligned}
$$

$$
\begin{aligned}
& \text { OTAB(R4):R3 } \\
& (\text { R3) } \rightarrow \text { RQ R HELDS DATA DIST BTIWN }
\end{aligned}
$$

$$
15 \cdot 10
$$

$$
\mathrm{MSE}, \mathrm{R}
$$

1.eP68

$$
\begin{aligned}
& \text { RI } \\
& \text { RO } \\
& \text { LEA }
\end{aligned}
$$

LEAP67
RI, CATAM
RI, CATAM
LESP56
LIONGV, IR5 1.
(R3) JRI
GSXIRI
ISGRT GUT SIGN
ICAIC LJNK AFFSET

LOOP55:

ä
in
O
O

LOEP4:
LOOP67:
Le0p68:

\ddot{a}	0	$\ddot{0}$	$\ddot{\sim}$
0	0	0	0
0	0	0	0
0	0	0	0
0	0	0	0

focal prograt to oisplay meving pictures.
C:FECAL-11,LFECA-A
$1.10 \times F \times(=1,175610,2)$: DISABLF FECAL INTERRUPT

1.50 X FDIS (O, H, O, O):S I OFSET(L,O,O):S L=FSKP(L,850) WHEN BUILD COMPLETED AND THEN NEXT PICTURE IS BUILT. C DRAW MOVING PICTURE,
1.8O O HST MEMSX FUIII

XT (L, OH, OE,OT,OR,OE,OS)
WRITE SCALING LABEL ON SCREFK.

3.50 R

[^17]\[

$$
\begin{aligned}
& 2.10 \text { T FYPE CONTROL F: IF Ia1,1000: } \\
& 2.20 \times \text { FXI-1,175610,66)iX FSKP(5CO): }
\end{aligned}
$$
\]

CONTRAL.
NATE THAT ONLY THE PESITION CURVE OF THE PREVIAUS VEHICLE AND HEADWAY Curve of the pregent vehicle are stared. ionf for each lanel. C:FORTRANH GO,S
BUF(3)
DIMENSION IMESS(20)
DIMENSION IBUFIZIONIVIG
DIMENSIUN CBNPT(5),V(10,4),ACCN(10,4),TJ(10,4), A, ERK (10,4)
DIMENSION. PDELIZ)
DIMENSION. FTIMEII
INCNEIGA IFCOUNTI?I, SAFEINGI21
OIMENSION ACEEFF(2001,FRINGF(10,4), ISTACK(20)
COMMEN /PLAT, TBLOCK, BBUNDH, BOUNDL, START, QTIME, ENDTIM
COMMON TSTART, TFIN,FLEVEL 1 , FLEVEL?
CGMMON IS WAP, NUM, IF, IB, IN, SPEEDI, STARTM1, STARTM2, ST IME,FTTME
COMMON /CHAN/ ISTORET 4,21 ,RSTGRE $(4,2)$
LUGICAL NOEUT
LOGICAL ISBEGIN
LOGICAL FRONTOK, BACKEK, SFEEDEK
NAMELIST
HOLDES-5
NOOUTEFFALSE.
8
2
2
2
ω

$$
\begin{aligned}
& w \\
& \sum_{2}^{w} \bar{x} \bar{x} \\
& \hline
\end{aligned}
$$

$\operatorname{NIV}(2)=0$
$\operatorname{NIV}(3)=0$
OF RUNNING FRGM TERMINAL.
OF RUNNING FRGM TERMINAL.
으를
IV1=0
MUM=700
STOPNOWE.FALSE.
(s) 1 dNDJ-MONTOB
DOUNDL=CENPT(1)
ENDT IM=300.
DDELTE.5
-
MRITE(108,903)
VELSTRT, VELEND, VELMAX, ACCNML, ACCEMG,VL
-
CONPT,FLEVEL 1, FLEVEL2,FLEVEL3, DEGREE
品 nono WRITE1101,景

O

delars=0.
TTH-ICONPT(5)-CONPTIT) I/VELSTRT
PDEL(1)=0.
ATANI VELEND
THIEATANIVEL
API=3.14159
AKINTOKON/I2*ACEEMG
Calculate headmays.
HETART-(VELSTRT*VELSTRT)*AKTNT + VLLKGN HFIN=IVELEND*VELENDI*AKTNT + VL*KEN TBTARTENSNART/VEL
TFINEHFN/VELEND
TFINEMFININELENDKOM
00491 1=1050
1ald)=0

232 IFCEUNT $(M)=0$
$233 \quad$ SAFRING $(M)=F$

GeTO 145 145 | k $=k-1$ |
| :--- |

$$
\begin{aligned} & \text { GOTO } 155 \\ & \text { BACKK } \end{aligned}
$$
 ontinue
 GACKOK=.tRUE.

T POINT FIRST MANOEUVRE.
ITTIM1
ITD UP TOE FAR
107
473

C | 145 |
| :--- |

C BACKED UP TAO FAR.

STAP
220 IF ISTARTMA.LT.CENPTI2IIGATM 225
STARTMI -CONPT(2)
FRONTOKETRUE.
235 FRONTOK-TRUE.
IF ISFCOUNT(2). OE•3) GOTE 234
if IStaRtMz.GT.CONPTI3)1 GETE 270
1TT1=3
IED UP TOQ FAR.
MRITEIIO8,181OITTL, LANE,NUM
STOP
Citeration fails to find a start point for secend maneeuvre, REFORE CHANGE

IFCOUNTILIENPT(4)
STARTM2

FACTOR \quad FACT OR +1 .
O日TO 330
OOTO 280
stopise
270 IF (STARTME.LTT.CENPT14)) GOTE 280 BACKOK-TRUE.

280 CONTINUE

C HAVE SATISFACTORY FRENT AND EACK START PBINTS BEEN FOUND? IF NPT
C RE-ITERATE SELUTION.
IF $I=$ NOT. (FRENTOK PANC.BACKEK) GETO 330
DISTI SS $6, I B)=S(5, I B)$
DISTIAS(6)1B)OS(5)IB)
IF IDISTI.GT•O.I GOTE 3 OC
C DISTANCE AVAILABIF. FOR MANOFLVRE IS INADEDUATE. THIS IS A FAULT.
WRITEI $108,18 E 11)$ LANE, NUM
1820 FORMAT1:-VE DIS: -
DISTIニO.
300 TIMEI-T(6,18)-T(5,18)
C TIME AVAILABLE FBR MANOEUVRE IS iNADEDUATE. MAKE TARGET TIME LATER C AND RE-ITERATE.

$$
\begin{aligned}
& \text { IB4OI LANE,NUM } \\
& \text { VE TIME LI,II, V } V \text {,I4) }
\end{aligned}
$$

ME-TIMEI
310 IF (SPEEDOK) GOTE 320
IF (ABSISPEEDI-SPEEDI•LT.EPSR) SPEEDOKE.TRUE.
C CALCULATE NEW INTERMEDIATE SPEED.

SPEEDIOSPEED \& ISPEED-SPEECIIHCONSTIT
 INEIT-INEIT + 1

IF IINOIT-GT.IOI SPEEDOKI.IRLE.
C RETURN TO REITERITE.
FINAL TRAJECTORY FOUND.

IF ULATE DELAY, S.D., ETC.
DELAY-FTIME -STIME +PDELILANEI-TTH
FTIMEIILANEIOFTIME
FTIMEIILANEI-FTIME
FLOWENUM/STIME

802 IF (iV2-2**IEX.LT.O) GOTE 8OG IV2-IV2-2:AIEX NIVIIEX+11=1

802
$\begin{array}{lll}\text { STEF } & \\ \text { GETE } & 1015 \\ \text { GOTE } & 1014\end{array}$ GET (IO.3N•X3I) \&I
F INIV(7)-EG.1
IF INIV(6):EQ.1)
806
804

C READ THING

CALL RD(ICC,Y1)
C READ THING CHARACTER IF GRAPH TO BE PLETTED.
\sum_{8}^{0}

ISF G=5
VI*HII,INI*1,4*:5
CALL BINDECIISFG,BUF,V1) CALL WTNL (ISFG,BUF)
CONTINUE

CONTINUE
CONTINUE
978
1004
1014 BT=0
BC
BCSET(L, 3,0) COLTNUE

1114

 C DUTPUT ALL DATA PERTAINTNG TE TRAJECTERIES. UT ALL DATA PERTANE, NUMWRITEIIOB,9OR) LANE,
OUTPUTISBIITIME:

WRITEIIOB,900IT
OUTPUTT10819
OUTPUTIIOBI INEADWAY:
WRITEI108,900IH RTMY
OUTPUTIIO81IVEL B
WRITEUTIIC8IIFRINGEI
OUTPUTIIC8ITFRINGE
WRITE(108,902)
FG.1.AND.VAR.EQ.1) GETE 1011
IF INIV(1)-EE.I.AND.NIVI?)
CONTINUE
WRITEIIO8,9O1) LANE, ONUM, ETARTMI,STARTMZ, STIME,FTIME,FSTIME, SPEEDI C, DELAY,FLOW, OELAYA,VARI,FRINFIN, ECCP IF (STOPNOW) STAP

GOTO (10C1,1002) VAR
1108
1013

$$
\begin{aligned}
& \text { LSAVELLANE } \\
& \text { IF ILSAVE•EQ.?) GOTA } 1
\end{aligned}
$$

SUBROUT INE NEWLANE (LANE, SAVET)
COMMON TSTART, TFIN, FLEVEL1,FLEVEL?
IF (BEGINI-GT.SAVET+HOLD) GETO 2
IF (BEGINI-GT•BEGINP+50.) GETG 2 TUSEITIN
LANE=1

GOTO 3
IF (BEGIN1•LT.BEGINR) LANE=1
TUSE=TFIN
IF ILANE, NE, ©LAVE) TUSE=TFINC
IF ILANE,NE•LSAVE) BEGINP =RST
FTIME AFTIME +TUSE
TTOT=TTOT +TUSE
RETURN
END
IF (BEGIN1•LT.BEGINR) LANE=1
TUSE=TFIN
IF ILANE, NE, ©LAVE) TUSE=TFINC
IF ILANE,NE•LSAVE) BEGINP =RST
FTIME AFTIME +TUSE
TTOT=TTOT +TUSE
RETURN
END
\sim
m

SET UP NEW VARIABLES FER NEW LANE SELECTED,
SUBROUTINE UNSAVEILANEI
COMMON /SWAP/NUM, IF, IB, IN, SPEEDI, STARTM1, STARTMZ, STIME,FTIME COMMON ICHANI ISTORFI4, R1,RSTOREI4,21 NUM $=$ ISTORE (1 , LANE)
SPEEDI=RSTORE (1,LANE)
STARTMI =RSTERE 2, LANE)
STARTM2•RSTGRE (3 ,LANE)
ETURN
\sum_{w}^{0}

[^18]u u

COEFF $(1,1$ SEG,IF)

CONTINUE
F (TS•LT•QTIME•ER•TS•GT.ENDTH) GETE 1
IF (P LT
CALL PLOT ITS, P, IMED)
TSETS + DDELT
TSETS+DDELT
IFIISEG.EQ.10) GETE ?
IF ITS.LT•T(ISEG+1,IF)) GOTA 2
ISEG=ISEG+1
IF IISEG.GT.10) ISEG=10
CONTINUE
CONTINUE
DT=TS-TII
PT=COEFF $(1, I S E G, I F)+C O E F F(2,1 S E G, I F) * D T+\operatorname{CEEFF}(3$, TSEG,IF)*DT**2 * $+\operatorname{CEEFF}(4$, ISEG,IF) $* D T * * 3+\operatorname{CEEFF}(5,1 S E G, I F) * D T * * 4$

$$
\begin{aligned}
& \text { IMOD }=12 \\
& \text { GOTO } 3
\end{aligned}
$$

CONTINUE
IF (TS.GT.ENDTIM) GeTO 5
GOTO 7
CONTINUE
IMED=13
TS=TISIE)
(1.ISEG,IB)
9^{3}
 $\stackrel{0}{0}$ $\dot{\alpha}$
 OTIME•OR PGGGI.ENDTMM GOTO BCUADL ©R P IMB
LT
NU CONTI

$$
\text { F (TS•LT•T (ISEG }+1, I B))
$$

$$
\begin{aligned}
& \text { F ISEG.EG. 10) GETE 11 } \\
& \text { F (TSOLT.T(ISEG+1,IB)) GETE } 11
\end{aligned}
$$

$$
\mathrm{GT} \cdot 10) \quad \text { ISE } G=10
$$

DT=TS-T(ISEG,IB)
IF (ISOGT ENDTIM) GETO E
IF (P.GT, geUNDH) RETURN
GOTO IORPLT

[^19] 2.20 S S S CE=0is $\Delta T=0: S$ SP=1.C:S ST=1:S $E F=3 ; S$ EE=3:S $P E=1$
2.30 X FSKP1350.850):S IEE85:T MDONT FORGFT BGDCEC!"!, \%3.00: E H
C DELETE GRAPH AT ENGE OF DISPLAY TO $\triangle D D$ NEW GRAPH,

4.10 S DT(I)=TT(I)-TL:S TLETTII):S DP(I)=PP(I)-PL;S PL=PP(I)
C DRAW GRAPH VARIARLES TE SCRFFN IIAITS: $1(I-21) 5 \cdot 6,5.9,5.9$

5.61 S IPEFITRI-CH(22-I)-FSGMIDH(P2-1) **.5):S LQ=FVECILQ,IT,IPI:R

[^20]42.05 T !:O H
42.10 D 40 :I ($-P$ P(7) $) 42 \cdot 1: I \quad(-P Q(5)) 42 \cdot 2: S P P=0$
42.201 (PP)42.3,42.3.42.1
C IF ONLY LINE PRINTER OUTPUT NG FURTHER PARTICIPATION REQUIRED GT4O EXCEPT TO SEND CODED FLAGS.
42.30 T IV, ! 42.9
(PO121)42.1.42.1:D 12.7:G $13 \cdot 1$
42.36 I (POI2)/42.1,42.1:0 12.7:G
C MESSAGE TYPED EN KEY BEARD IS TRANSMITTED TE SIGMA 5 . R
S
42.80 S 2Z=FCHR(FCHR(-1)):I (72-13)42.9,42.05,42.9

[^0]: Since communication links allow information to be transmitted anywhere in the system, a functional unit in the system informational structure need not sorreenond to oss discrete module of equipment. The degree to which communication links are used to transmit information from one locality to another for further processing depends on the relative costs of providing processing and communication equipment. Advances in the large scale integration of electronic circuits have tended to reduce the fixed costs of processor modules, also processing power is becoming

[^1]: * Emergency control: - Fnsuring the safety of the system, particularly the safe spacinf of vehicles.
 * Passenger control: - Providing route information, ticket dispensing, and checking, and marshalling.

 A transport network will be physically distributed over a large area. The computing power reauired to carry out the necessary control will demand the use of several inter-connected computers carrying out specific tasks. The additional considerations of designability and reliability encourage the use of maximum autonomy, with low capacity communcations linking the local centres of activity.

 A number of layouts are cossible of which the most common are: -

 * Tro tier localised control:- Local controllers, attached to the junctions and stations, suvervise their adjacent track sectors. Vehicles are handed on from one sector to the next. Information about the vehicle (eg, destination and status) may be carried by the vehicle (which is then interrogated by each local controller, or may be transfered from controller to controller by lateral linkinf. (Dia 4)
 * Three tier localised control:- The local controllers are coordinated by a higher-level controller. This is usually concerned with system management (eq, dispatching and routing, optimisotion). (Dia 5)
 - Two tier centralised control:- All control is located at one place from which commands are dispatched to

[^2]: - If the constraint that each maroeuvre must start at the same place is relaxed, then the minimur headway can be reduced, but at the expense of the manoeuvre backing up

[^3]: 4 Alternate friority (AP) - Conaideration $c f$ the performance of any strategy is greatly assisted by knowinf the absolute performance boundary.

 Suppose a junction controller knows the locations of

[^4]: IEE: TRANS ON CGMPUTERS C. 20 NEV 1971

[^5]: PREC: 2ND SYMP ON ACVANCED TRANSPERT SYSTEMS IN BRITISH CITIES. URBAN TRANSPERT GP, WARWICK UNIVERSITY, 1974
 LECH: UTRG

[^6]: LONGITUDINAL CONTREL IN GUIDED TRANSPGRTATION SCHEMES USING THE MOVING CELL PHILESEPHY
 PAPER FRGM THE CONF. ON CONTRQL ASPECTS OF NEW FQRMS
 OF GUIDED LAND TRANSPOFT TEE LONDON CONF. PUBL: 117. AUGUST 1974.
 LOCN: UTRG.

 SHITH D.B. AND YERMARK J.S.
 PERSONAL RAPID TRANSIT (ED. J.E. ANDERSEN ET AL) IST NAT. CENF. P.R.TO MINNEAPQLIS.
 Leve.

 WILKIE O.F. SYSTEMS

 LOCN: UWL.

[^7]: $d 3$

 PITTS GOL.
 AUGMENTED BLOCK GUIDANCE FER SHORT HEADWAY TRANSPGRTATION
 SYSTEMS \quad REPGRT: JOHN HEPKINS UNI, $\triangle P P I$ PHYS LAB, APL-JHU 019 (178P)
 PEPPARD L. E. GOURISHANKAR VFMBU
 AN HPTIMAL, AUTEMATIC CAR-FRLLAHING SYSTEM
 IEEE TRANS. VBL. VT-21. NA. $2 . \mathrm{C} \cdot 67-73$ MAY 1972.
 LOCN: UWL.
 PEPPARD L. E. GOURISHANKAR VFMBU
 AN HPTIMAL, AUTEMATIC CAR-FRLLAHING SYSTEM
 IEEE TRANS. VBL. VT-21. NA. $2 . \mathrm{C} \cdot 67-73$ MAY 1972.
 LOCN: UWL.
 PEPPARD L. E. GOURISHANKAR VFMBU
 AN HPTIMAL, AUTEMATIC CAR-FRLLAHING SYSTEM
 IEEE TRANS. VBL. VT-21. NA. $2 . \mathrm{C} \cdot 67-73$ MAY 1972.
 LOCN: UWL.
 pITTS G.L.
 REPORT:
 M/F PB-214391
 LOCN: UTRG.
 SOQ.A.P. - STRING GPERATIAN AND ANALYSIS PREGRAM - A
 SIMULATION OF FIXED BLECK FEGULATIEN GF TRANSPORTATIEN
 VEHICLES MCS-3-255, JAN. 1972.
 LOCN: NOT IN GREAT BRITAIN.

[^8]: GGDFREY MOB. PRESENTED AT TIMS/ERSA JUINT MEETING, SAN FRANCISCE, MAY 1-3, 1968.

[^9]: OP RES SOC AMFR, NATIONAL MEETING, A LOCM UTRG
 OP RES 8OC AMFR, NATIUNAL PEETING, ATLANTIC CITY, NAV 1972

[^10]:

[^11]: STEFANEK R.GO WILKIE D.F.
 CONTWOL ASPECTS OF A DIIAL MODF TRANSPORTATION SYSTEM IEEETRANB VOL VT-22 PP 7-1? 1973 LOCN: UWL
 $\begin{aligned} & \text { STEWART J.M. } \\ & \text { TRAIN REGULATIGN STRATFGY. THE METHOD AF AXIAL REUTE }\end{aligned}$
 SYSTEMS FOR AUTGMATIC CONTROL AND MONITARING OF BUS SERVICES
 TRAFPIC ENGNG AND CONT VOI 12 DEC 1970 P410
 STENE D. AND OLIVER B.
 $\begin{aligned} & \text { AUTEIMATION IN THE CONTROL AND REQULATION OF BUSES. } \\ & \text { XVII CONVEGNE INTERNAZTONALE DELLE CEMMUNICAZIONI, GENEA. } \\ & \text { OCT, }\end{aligned}$
 OCT. 1969.
 TNTERBECTION.
 $\begin{aligned} & \text { RAIL INTERNATIENAL } 10 \text { GTH YEAR, JAN } 1975 . \\ & \text { LOCN: UNL. }\end{aligned}$
 LOCN: UWL.
 SYSIENS FOR AUTGMATIC CONTROL AND MONITARING OF BUS SERVICES

 $$
 \begin{aligned}
 & \begin{array}{l}
 \text { AUTGHATIGN IN THE CONTROL AND REQULATION OF BUSES, } \\
 \text { XVII CONVEGNE INTERNAZTONALE DELLE CEMMUNTCAZIONI, GENEA. } \\
 \text { OCT. 1969. }
 \end{array}
 \end{aligned}
 $$

[^12]: ~
 ©
 -AVMOVIH WחWINIW NVHL
 TO 21 HEADWAY INFRINGED AT',ITTME*DELT,31,1,JI REENCY 19 IF IONOT-EMERGIIOJIIGOTE 23
 CALL PRIMTIIIEMERGENCY DECN END ATI,ITIME DELT,?2,I,JI CALL PRIMTI CEMERE.
 EMERGIIOJI EOFALBE.

 $$
 \begin{aligned}
 & \text { IF IITARGII, JI.NEOOIBOTO25 } \\
 & \text { LCULATE ACEELERATIEN TO APPLY TO VEHICLE. }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { ULATE ACCELERATIEN TO APPLY TO VEHICI } \\
 & \text { ACCN OVEHAII; G; JI OCONCON/VEHAII, }
 \end{aligned}
 $$

 $$
 \text { IF AABSIACCNI LITACCNHLIOOTH } 26
 $$

 ACCN ESIGN(ACCNMLOACCN)

 VEL VEMAII.2OJ) (IVEL=LE,O):AND. $\triangle C C N . L T-O)) ~ \triangle C C N=O$
 IFIITARGIIBJIOEQ.O) OOT 22
 IFIVENAIIBI, JIOLTAACCNI ACC
 IF IVEHAII:I, JIOLT.ACCN) ACCN=VEHAII, $1, J 1$
 CONTINUE
 VEHAII, I, JIEACCN
 CENTINUE
 IF (J.EQ N2 IBOTO 58
 JEJ
 IF (J.E O.51) J=1

 GOTO 15
 NI = IPOINT(I,1)
 IF (N1.EO-S1) NI=1
 $\rightarrow \infty$
 $\stackrel{\rightharpoonup}{\sim}$
 .
 $0 \times$
 คื゙ส
 0
 $\mathbb{N} \quad \mathbb{N}$
 ∞

[^13]: CEEOIOJI

[^14]: INE(K-1) $=B L A$
 LINE(KPLETX)=BLANK
 2
 2
 0
 0
 0

[^15]: INP

 Carbination poute and journey probarle.
 P POSSIBLE)
 I JNEY(I, J,

 $$
 \begin{aligned}
 & \text { P POSSIBLE) } \\
 & \text { (JNEY(f,J,K),K=1,5), PRER(I,J) }
 \end{aligned}
 $$ - 0 12) $(1, I=1,4)$

 …

[^16]: : CHANGE PTCTURE INSTRUCTIAN TA
 : VECTAR INSTRUCTIMN.

[^17]:

[^18]: SUBROUTINE SAVEILANE) COMMON /CHAN/ ISTERE (4,2),RSTORE (4,2) STIME-STIME +GAP ILANE ISTORE (I,LANE) ENUM

 ISTORE(2,LANE)=IF
 ISTORE (3,LANE) $=18$
 STORE (4)LANE I. INEED
 RSTORE (1)LANE)
 RSTORE (2,LANE)STARTM
 STORE (3)LANE) STIM

[^19]: C NECESSARY MOCIFICATIONS TE FPCAI BINARY FGR SATISFACTGRY

 $$
 \begin{gathered}
 z \frac{a}{4} \\
 1 \\
 \hline
 \end{gathered}
 $$

 $$
 \begin{array}{r}
 H 10 \\
 H 10
 \end{array}
 $$

 STCH

 $$
 \begin{aligned}
 & \text { TCH } 1 \\
 & \text { TCH } 5
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { TE SIGMA } \\
 & 440 \text { INT }
 \end{aligned}
 $$ c CEMMUNICATIONS TE SIGMA 5.

 $$
 \begin{aligned}
 & 0.440 \\
 & 3 n 6 \\
 & \text { GT40 }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { YS JA GTAC } \\
 & \text { O-SUYMARY }
 \end{aligned}
 $$

 52 (1C4472) NO :
 -GRAPHS:F
 TELETYPE

 $$
 6 \text { INTO }
 $$

 $$
 52
 $$

 HiX FWIII:O
 -

 $$
 \begin{aligned}
 & \text { HAO INTE } \\
 & \text { G INTO? }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & 525 P(10447 P) \text { NB } \\
 & 523 \hat{(104475)} \text { NA } \\
 & 766(3566) \text { NA ECHA }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & 706135661 \\
 & \text { F FUNCTIENS }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { I-FULL DATA ALL:FO } X \text { FI-SUMMARY FINA } \\
 & \text { IL ONLY:FG-LANE I:F MESSAGE:FG-STOP }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & \text { CT FUACTTENS } \\
 & \text { I-FUIL DATA ALL:FO } \\
 & \text { FI-SUMMARY FINAL }
 \end{aligned}
 $$

 $$
 \begin{aligned}
 & 0(61111 \\
 & (5 W) .
 \end{aligned}
 $$

[^20]:
 DECODE INTO FLET REUTINF IF REQUIRED, OTHFRWISE SEND
 C 111 TO SIGMA 5 TE CONTINUE SIMLIATING 13.15 T LM, x1.0nila, " V N", x=.0n. 13.16 (POI3)-1R113.17,13.17,13.5
 13.17 (POIA)-LA+1)13.5.13.7.13.5
 3.20 D
 13.40 S 2FIRiG 42.1
 14.10 F IVI.10:A P(T),P(T)AH(T)

 C READ SENSE KEYS, DECEDE TF CFANGED.
 $40.10 S A=F X I C, 177570,-11: I$ IV $11 V=A 140.15,40 \cdot 3,40.15$
 40.15 S IVEA:S E=7

