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A b s t r a c t

The design of control systems for automated transport 

has been discussed in two parts. Part one covers the influence 

of system structure on the properties of the system.

In it, the relative merits of centralised and decentral

ised controllers are discussed. It is concluded that de
centralised, probably hierarchical structures, are most 

appropriate for transport control. Particular attention has 

been paid to the design of complex systems to ensure a good 

service dependability. A 'fail-soft' design is required, that 
is, one in which there is a planned, gradual degredation of 

a system following a failure. The design features necessary 

for such a characteristic are discussed in detail. Also 

discussed are the particular measurement and communication 

requirements for automated transport.

Part two of the thesis examines in detail three of the 

necessary control functions, namely the longitudinal control 

of vehicles, emergency control and junction control. There 

are two broad categories of automated control, synchronous 

and asynchronous. The former has been the subject of con

siderable research, the latter has been completely ignored.

It is shown that, contrary to the stated views of many
researchers, asynchronous control can achieve better
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performance levels than synchronous controllers, for example, 

the capacity of junctions can be almost doubled by using 

asynchronous control. Asynchronous systems have other 

important advantages over synchronous systems, for example, 

stations and junctions can be made more compact, thus minim

ising track costs (which comprise a major fraction of system 

costs), and failures are much less likely to cause major 

disruption.

Asynchronous control is usually associated with vehicle- 

follower systems. However a novel form of asynchronous 
controller has been devised and is presented in this thesis. 

This scheme, the asynchronous marker-follower control combines 

the advantages of synchronous controllers (simple processing 

and low communication requirements) with the advantages of a 

synchronous controller (an efficient use of track and a good 
response to failures). The normal performance of this scheme 

is as good as for vehicle-follower control. It does not have 

as good fault characteristics but offers much lower 

communication costs and simpler control.
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P r e f a c e

In this thesis, the design of control systems for 

automated transport is approached from a systems point of 

view. The first section discusses general aspects of control 

system design, namely, system structure, design for reli

ability and communication requirements. The treatment of the 
subject is novel and in particular, Chapter 2 - 'The Design 

of 'Fail-Soft' Systems', is completely original. The second 

section of the thesis discusses in detail, the longitudinal 

control of vehicles, emergency control and junction control.

In all a novel viewpoint is adopted.

There are two broad categories of transport control, 

synchronous and asynchronous. The former has been the subject 

of considerable research, the latter has been completely 

ignored. This thesis concentrates on asynchronous control. 

Contrary to the views stated by many researchers, it is shown 

that asynchronous control can achieve a very much better 

performance than synchronous controllers. In addition, a 
completely new form of asynchronous control has been devised, 

and is presented in this thesis. This scneme, the asynchro
nous marker-follower control, combines the advantages of 

synchronous controllers (simple processing and low communic

ation requirements) with the advantages of asynchronous
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controllers (an efficient use of track and a good response 

to failures).
In the last section of the thesis, the computer simu

lation models, used to examine the control schemes, are 

described. The interactions between automated vehicles are 

particularly complex, consequently clear presentation is 

important. To this end a number of graph plotting routines 

were written and a moving picture display technique developed.

Each Chapter is supported by a bibliography of references 

particularly relevant to the chapter. In addition a compre

hensive bibliography is contained in the Appendices.
It is appropriate at this point to acknowledge the many 

people who have helped me in this work. Foremost is my tutor 

Dr T H Thomas without whose criticism and insight little 

would have been achieved. Also Alan Hufce who helped with the 

many tricky computing problems, my sister who typed the work, 

and the Science Research Council who financed the work.



I n t r od uc t i o n

The continuously rising social and economic costs of 

current transport systems have stimulated considerable 

interest in alternative transport methods.
Automated transport systems are the particular interest 

of this thesi3. These are characterised by small unmanned 

automatic vehicles operating along a fixed reserved track. 

These vehicles may carry from two to a hundred passengers at 

speeds ranging from 15 km/hr to 70 km/hr. Vehicles may ply 

a single route, stopping at each station, or operate in a 

network and offer an origin-to-destination, no-stops service. 

Vehicles may run with time headways (time separations) 

varying from Yi a second up to 2 minutes.
Such systems potentially offer the speed and comfort of 

private vehicles combined with the economy and freedom from 

stress of public transport. The faster, more predictable, 

response of automatic controllers, compared with the human 

operator, may also give increased capacity and better safety.

Much of the early work in automated transport was 

directed at establishing the particular role and qualities 
such systems could offer. Many hypothetical schemes were 

propounded most of which are now considered to be unrealistic, 
both economically and technically.^1 Yore recent work has

concentrated on less demanding projects, for example, thirty
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vehicles to control rather than two thousand, five kilo

metres of track rather than several hundred, vehicle headways 

of 1/£-l minute rather than one second and shuttle-loop services 

instead of dedicated origin to destination services.

There has been considerable interest in the optimal 

control of particular operations in automated transport, for 
example, longitudinal controllers, merging controllers, 

vehicle dispatching. However few researchers have taken 

account of the difficulty of implementing algorithms, the 

costs of measurement and communications, the constraints 
imposed by the rest of the system, all of which inevitably 
reduce the effectiveness of their schemes.

There is little operational experience of automated 

transport. Only a few systems have been built, notably at 

Morgantown, West Virginia, AIP.TRANS at Dallas/Fort Worth 

airport and BART at San Francisco. Hone have been running 

sufficiently long for much useful data to emerge. However 

recent analyses of automated transit have been produced by 
the United States' Office of Technology assessment. These 

publications have emphasised the need for substantial further 

research in a number of f i e l d s , n a m e l y

* System reliability - all the systems so far built have 

suffered from poor reliability.
• System integration - the increasing complexity of auto

mated systems requires that the entire system design is care
fully controlled, with specific design goals and a clear 

understanding of the interactions between subsystems.
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* Longitudinal control - automated systems need to 

operate at close headways. Better normal and emergency 

controllers and strategies have to be developed to allow 

these close headways to be achieved safely.

The Layout of the Thesis

The discussions which follow are divided into three 

main parts.
Part one covers the influence that the system structure 

has on the properties of the system. Thus chapter one 

considers likely structures for automated transport con

trollers; chapter two discusses in detail the design of 

•fail soft' systems; chapter three identifies the particular 

measurement and communication requirements of an automated 

transport control network. These particular features have 

been chosen because they are fundamental factors in all 
transport control schemes, and must figure in any cost 

function related to the 'whole' system.

In part two (chapters four to six) are examined in detail 

three of the necessary control functions in automated trans
port. These are:

Chapter Four - The Longitudinal control of the Vehicle - 

The amount of information transfer required for track/vehicle 

communication is an important parameter. To communicate less 
is cheaper but requires substantial onboard computation. To 
communicate more may allow a better overall control to be 

achieved but reduces the autonomy of the vehicle and possibly

- 7 -



reduces the resistance of tne system to faults. The design 

of control algorithms with limited information transfer is 

discussed in detail and related to control schemes already 

in existence.

Chapter Five - The Emergency Backup to the Longitud

inal controller - In addition to the normal control another 
is required, the independent safety control. This oversees 

tne normal controller. It is generally a very simple, 

reliable system monitoring only the vehicle separation, 

capable of issuing only one command (typically to brake at 

an emergency rate to zero velocity). Autonomy from the 
normal control system is essential to ensure that failures 

in the normal control system are independent of failures in 

the safety system. This reduces the likelihood of a joint 

and possibly catastrophic failure. The normal and emergency 
control systems will interact, particularly when the track 

is being operated near maximum capacity. There are costs 

associated with both unnecessary emergency manoeuvres and 

undetected unsafe situations. The satisfactory balance 

of these two costs will be an important design consideration.

Chapter Six - The Junction controller - Junctions are 
usually the capacity limiting elements of a transport system. 

Control policies must be developed that allow high flows 
through the intersections, yet limit delays and the distances 
required for preparatory manoeuvres. a number of algorithms 

for ordering vehicles through the junction are presented. 

Their performance is analysed and compared.
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Finally in part three of the thesis the modelling 

techniques, used to examine the control algorithms devised, 

are explained.

Automation of Transport
An automated transport system is a highly complex 

organisation involving many interacting operations. People 

have to be informed; vehicles have to be manoeuvred, directed 

and dispatched; failures must be identified and rectified; 

safety must be ensured.
Automation commits to hardware functions previously 

carried out by humans. The designer encodes the functions 

into a system as repetitive, preprogrammed, routine strategies 

which govern the response of the system to its environment. 

However flexibility is reduced since automation cannot build 

in responses to novel unforseen events. When these occur the 
automated controller must refer control back to a human oper

ator. A totally unmanned transport system is consequently 

unlikely ever to be achieved. Staff will still be required 

at stations, for maintainance, and for ensuring the safety 

and security of passengers.

Automation his been applied to the vehicle, to many 

station functions and to the centralised strategic control of 
vehicle movements. The value of such automation has yet to 

be conclusively established. Many aspects of it have been



extensively studied, often with optimisation in mind, yet 

those systems that have been built have not performed well. 

They have been costly to build and operate, have not achieved 

significant reductions in staffing and have not provided the 
quality of service that had been expected of them.

(Control schemes are required which will enable the 

system to operate well under all foreseeable conditions.

Their design is challenging. A system has to be created that 

has few precedents and where the scale of capital outlay pre

cludes iterative levolutionary) design methods. In these 
complex systems, governed by cost functions embracing economic 
social and technical factors, design policies must find the 

best operating regions. Design is an optimisation proceedure. 
Its purpose is to select, from the group of all the possible 

systems, the one which most effectively satisfies the problem 

specification.

This thesis discusses some aspects of the design of the 

control system for an automated transport network. A 

'systems' approach has been used. This approach is particu

larly applicable to complex systems (systems which require 
substantial effort and time for their appreciation and under

standing). In a complex system, future states cannot be 
easily predicted, particularly when the system is subject to 
random events. There are two main reasons for this.

• The complexity of phenomena for which a complete 

analysis is very costly.
• The limited ability of humans to cope with analysis. 

as a result the successful design of large scale systems has
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invariably been done by decomposing the system into a number 

of simpler sub-systems, each with its own goals and 
constraints.

The systems viewpoint assumes that it is both feasible 

and useful to breakdown the original design problem into a 

number of independent sub-problems (or sub-systems). Only 

the outputs of each sub-system are considered as relevant to 

the analysis of overall system behaviour. The functioning 

of each sub-system is only dependent on its inputs. Of central 

importance is whether an arrangement of sub-systems can be 
designed to act in an overall system optimal manner and how 

all the units, acting according to their own goals, can be 

made to achieve the overall goal. To optimise a single sub

system contained within a large system without regard to the 

effects of interactions can lead to such a degraded perform
ance elsewhere in the system, that the overall performance is 

worse than without any optimisation. Coordination is required, 

that is, a suitable balancing factor from the rest of the 

system must be made visible to the designer of a particular 

sub-system. Then he, in minimising his own cost function, 
will be able to approximate the total system optimisation.

The process of design comprises the following activities.

(1. Definition of objectives 
Specification (

(2. Formulation of measures of effectiveness

Search for (3. Generation of alternatives
an optimal (
solution I'*. Evaluation of alternatives

11



(5. Selection 
Finalising (

(6 . Documentation
The design specification is a fundamental stage. All the 

influences, ranging from variations in physical variables to 

political conditions, that will act upon the system and its 

constituent sub-systems, must be detailed. The designer 

works to this specification; the inaccurate definition, or 

the designer's incorrect interpretation of it, will event

ually result in faulty operation.

In his search for the optimum solution the designer 

needs measures of effectivness, both for the system and the 
individual sub-systems comprising it. All the features of 

the proposed solution are evaluated in terras of these common « 

measures. Possible system configurations will compare 

differently according to the measures chosen, consequently 

their definition will determine the final choice of design.

All optimal searches take time. To optimise or improve 

a design requires that understanding be increased. To 

obtain the knowledge necessary for that understanding takes 
time. Large scale systems change as processes change and as 

technology advances. If these changes take place faster than 
the control system can be designed and implemented, then the 

'optimal' designs produced will no longer be optimal. There 

is a dilemma between needing to act without delay and under

standing the situation better. Also the depth of analysis 

chosen, should depend on the likely benefits to be reaped.
In complex design situations the dilemma is resolved by de

composing each major problem into several simpler problems.

1?
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Local optima are then sought and combined to form an overall 

'good' system. This speeds up the design process at the 

cost of some loss of potential system performance.

The evaluation of design alternatives requires models 

as it is only rarely that designs can be built, tested and 

rebuilt during the course of a design. Models are 

abstractions (hypotheses, theories, simulations) about the 

system under consideration. They have to be sufficiently 

simple to be comprehensible, yet complex enough to yield 

useful information when extrapolated into unknown regions. 

Models are necessarily distortions of the real world. They 
must be tested and validated with known data to establish 

their significance and region of use. Measurements are then 

made on them in the hope that the results may be used to 

predict the reactions of the real-world system. However any 

extrapolation from a model is prone to unforeseeable error. 

Optimal decisions in the approximated world may not necess

arily even be good decisions in the real world. Models say 

nothing about the effects of what is excluded and prevent 
the recognition that what is excluded may have some effect.

A variety of models may be required each illuminating diff

erent aspects of the subject, so that understanding of the 
subject is increased.

In the design process, selection follows analysis. 
Selection is the art of balancing all the features of the 
various candidate solutions. It is not primarily a technical 

problem, the analyst removes as many of the tecnnical un

certainties as possible. He defines the issues and

13





BIBLIOGBAFHY

1 Automated Highway Systems 
TRW Report 0 6 6I8-WOO6 R0-00
Prepared for OS Dept Transportation Contract C-353-66(NEG) 
Nov 1969 M/F PB-I9I6 9 6

2 Chestnut H
Communication & Control for Transportation 
I SEE PROC, Vol 56 No PP 5^-555, 1968

3 Godfrey M B
On the Operation of Automated Ground Transportation
Systems
Part 1: Urban Problems and Perspectives 
Trans. IEEE, VT-22,1,PP 1-6, February 1973

4 Hamilton 'William F 11
Automated Performance Requirements for Advanced Urban 
Transportation Systems
Advanced Urban Transportation Systems TR1 5 
Carnegie-Mellon University, 1970

5 Com R
Personal Rapid Transit - A Case for Small Vehicles 
Proc 2nd Symp on Advanced Transport Systems in British 
Cities
Urban Transport GP, Warwick University, 197^, PP 6 5 - 7 8

6 Smith D B and Yorraark J S
P R T Performance Requirements and Allocation 
Personal Rapid Transit (Ed J E Anderson et al) 1st 
National Conference on P R T, Minneapolis. Iiov 1971

7 Chu K
Optimal Decentralised Regulation for a String of Coupled 
Systems
IEEE Trans Automatic Control Vol AC-19 No 3 PP 243-246, 
1974

8 Garrard W L, Gregory, et al
Suboptimal Feedback Control of a String of Vehicles 
Moving in a Single Guideway
Transportation Research Vol 6 , P? 197-210, 1972

9 Robertson D I Sc Bretherton R D
Optimal Control of an Intersection for any Known Sequence 
of Vehicle Arrivals
AFCET, Proc. Conf. 'Traffic Control & Transportation 
Systems 1
Monte Carlo, Sept 1974. Published by North Holland Fub Co

15



Sarachic Kai Chuing Chu
Heal Time Merging of High Speed Vehicular Strings 
Transportation Science vol 9, No 2, PP 122, May 1975

Automated Guideway Transit
An Assessment of PRT and Other New Systems 
United States Office of Technology Assessment 
June 1975
Automatic Train Control in Hail Rapid Transit 
United States Office of Technology Assessment 
May 1976
De Neufville R, Stafford J H
Systems Analysis for Engineers and Managers
McGraw Hill 1971

Gosling W
The Design of Engineering Systems 
Heywood and Co Ltd London 1962

Hall A D
A Methodology for Systems Engineering 
Van Nostrand 1962

Loasby B J
Choice Complexity and Ignorance 
Cambridge University Press 1976

Wismer D A
Optimisation Methods for Large Scale Systems with 
Applications
McGraw Hill, New York 1971



1.  The S t r u c t u r e  of  Comolex  
C o n t r o l  Systems

1.1 The Importance of System Structure

The designer of an automated transport network must 

choose which functions are to be automated and select an 

appropriate control structure. He must determine how the 
various control tasks will be distributed between the vehicle, 

the trackside, and any central controller. His design should 

minimise cost, ensure reliability, localise breakdowns, and 

facilitrte maintainance and repair.

The choice of structure will determine the communications 

that will be required (communication links contribute sub

stantially to both the cost and unreliability of a system).

A suitable structure will allow the system to have a ’fail 

soft' character, that is, the system degrades gently as non- 

essential but useful information is lost.
The benefits which accrue from a judicious design of the 

control structure far outweigh those that can be achieved by 
optimisation at a detailed level. Yet system structure is 

rarely explicitly considered.

The first stage of system design should be the speci

fication of the subsystems and the structure of inter
connections. The choice of a structure for a system is not 

amenable to formal techniques of analysis. Although some
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work has been done concerning the theory of structure, the 

choice of an appropriate structure is usually made on the

basis of a comparison with other systems exhibiting
( 1- 2)desirable properties.

1 . 2  Types of System Structure

Two distinct structures can be identified in a system.

* The physical or hardware structure: The distribution 

of system hardware around the geographical region and the 

communication links supplied to interconnect them.

♦ The information or software structure: The definition 
of functions required to perform the necessary control 

decisions and the information flows that must pass between 
them.

Since communication links allow information to be trans

mitted anywhere in the system, a functional unit in the 
system informational structure need not correspond to one 

discrete module of equipment. The degree to which communi
cation links are used to transmit information from one 

locality to another for further processing depends on the 
relative costs of providing processing and communication 

equipment. Advances in the large scale integration of 
electronic circuits have tended to reduce the fixed costs 

of processor modules, also processing power is becoming

18 -



cheaper relative to communications. These trends favour 

the use of local autonomous dedicated processors having 

low communication requirements.^^

1.3 Possible Control Structures for Automated Transport 

The most common control structures that are proposed 
for automated transport systems are:-

* Centralised

* Distributed network

* Distributed hierarchical

Centralised Structures - In centralised control structures, 

all measurement data is supplied to a central controller, 

and all control actions emanate from the central controller. 

All information about the state of the system is freely 

available for use anywhere in the system so maximising the 

potential performance the system can o f f e r . ^

Centralised control systems use a large digital 

computer, time shared between a large number of functions.

The use of a single resource (the central processor) shared 

by many users is governed by queuing type phenomena. Delays 

pise non-linearly with demand; near to saturation (about 

<50?o capacity of the machine) delays rise rapidly and are 
highly variable. This sharing causes strong interactions 
between users which have therefore to be carefully organised

19 -



and controlled to ensure satisfactory operation. The

performance of centralised svstems i3 limited by the speed
( Mof response of the central processor.

In situations where the speed of response is not 

critical, well understood centralised control structures 

may be able to offer a high level of performance. This is 

because all the system information can be used, even where 

its benefit is marginal.

Several features of centralised systems militate against 

their use, especially the following.

* Communication costs are high as wide bandwidth 

channels to the processor are required. This effect is 

particularly marked if long distance channels are used to
link all parts of an extended network to the central processor, 

as, for example, would be the case in an automated transport 

network.

* The concentration of control activity into one closely 

connected area makes the system very vulnerable to faults. A 

single fault can easily affect many functions simultaneously. 

Isolation of a fault is difficult because of the high 
connectivity between functions, via the memory and CPU of

the computer.
* The complexity of interactions between subsystems 

makes the system operation difficult to understand. As a 
result it becomes more prone to software faults. An 

incomplete knowledge of the possible system states is more 

likely and may lead to undesirable and possibly unsafe 

conditions.
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* The greater number of system states makes fault 

monitoring and rectification difficult and costly.

* There is an increased possibility of unforeseen 
feedback loops occuring which may lead to unstable 

behaviour.

Distributed networks - An array of locally sited 

dedicated processors, each performing particular tasks are 

connected together. The characteristics of such systems 
depend on the style of system organisation chosen. The 

most common arrangement is the 'bus-bar' type in which all 
the system units are multiplexed onto a high-capacity 

communication link (the bus-bar). ^

Eu3-bar control structures are particularly suited to 

digital systems. Indeed they closely resemble centralised 

computing systems but with the increased speed and flexibility 

that distributed parallel processing allows. The capacity 

of the bus-bar limits system performance as it is governed 

by queuing phenomena similar to those experienced by central

ised computing systems.
( C. )Bus-bar systems have a number of useful features.

• Interconnections between functions are created by 

message addressing, consequently the system organisation is 

totally controlled by software. This can give great 

flexibility.
• Costs are reduced as there is only one communication 

link, although a higher bandwidth will be required of it.



* The simplicity of the bus-bar permits standardisation 

of the communications hardware. This reduces the costs of 

fault diagnosis, repair and maintainance, and facilitates

the use of fail-safe circuitry and high reliability design.

* As duplicate standby equipment can easily be con
nected to the bus, redundancy can be very flexibly incor

porated, particularly if one standby unit may be used to 

replace any of several similar ones.

* Bus-bar systems can be easily reconfigured. This 

allows the system to change easily as requirements change, 

so reducing the costs of obsolescence.

Bus-bar systems suffer from one major disadvantage.

The multiplexed communication link is very vulnerable to 

both hardware and software failures. Both can easily cause 

a rapid system shutdown. There is no inbuilt protection 

against faults causing incorrect addressing equivalent to a 

random connection between subsystems. To locate and diagnose 

such a fault is likely to be very difficult, particularly if 

it were an intermittent fault. Some protection can be 

provided against hardware faults by the use of redundant 
communication links. However this substantially increases 
installation and material costs particularly if each cable 

is housed in a separate conduit.

Hierarchical Distributed Systems. - A hierarchy is a multi

layer control organisation. It can be considered as a filter,



each processing layer being associated with a range of 

frequencies or band of time scales. Together the layers 

cater for the entire range of frequencies apparent in the 

system. Only at the first layer are found the actual 

physical measurement and control variables. Data is pro
gressively condensed as it moves up the structure. Decision 

times become longer, control action is more general and 

information has a more global context. ^  Each unit in

a hierarchy operates semi-autonomously in a specialised role. 

It receives limited strategic commands from its superior 

node. It passes on delegated commands to its subordinate 
units. In the absence of new commands the unit has a 

regulating function that it can execute using stored earlier 
commands. Feedback loops are closed locally, thus minimising 

the difficulty of controlling complex functions and com

pensating for long time lags.

Information is only selectively directed up a hierarchy. 
Consequently not all the system information is available 

everywhere in the network. Information of marginal value

from elsewhere in the system cannot be used. This has
. (2, 4-9)several consequences.
• Hierarchies may use more equipment than similar 

centralised systems 6ince individual functions are not shared. 

However this also allows functions to run in parallel and 

simplifies their design.
• The ultimate performance of a hierarchical system 

may be less than an equivalent centralised system.
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* As only essential information is transmitted around 

the system, communication costs are minimised.

* The system can expand or contract locally without 

strongly affecting the rest of the system.

The most important characteristic of hierarchies is 

the autonomy of the subsystems within the structure. The 

decoupling and isolation of subsystems simplifies their 

design. As a result their operation can be more confidently 
predicted and fewer design faults result.

The strong control of communication provision minimises 

the likelihood that faults will create informal information 

paths along which to propogate. This simplifies fault 

isolation, diagnosis and repair. It also increases the 

resistance of the system to disturbances, changes in the 

operating environment and failures.

The three important features of hierarchical systems, 

their intrinsic resistance to faults, their relative ease of 

design, and their flexibility, all favour their use in large 

scale systems where reliability is important.
Bus-bar systems probably offer greater flexibility than 

the hierarchical equivalent. However their vulnerability to 

faults constrains their use except in very predictable 
environments and for systems requiring only moderate amounts 

of communication.
Centralised systems offer an efficient use of equipment. 

However against this must be set their complexity, vulner

ability to faults and high communication costs.
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1.*» The Choice of Subsystems

There are many ways of partitioning a system into a 

set of interconnected subsystems. The decomposition depends 
not only on the choice of system structure but also on a 

number of other factors. Of these the most important is the 

need to partition the system into sections of manageable 

complexity. A unit too large to be understood is likely to 

be inadequately specified, to perform badly and when it fails 

to be time consuming to repair or expensive to replace. A 

unit that is too small will incur unnecessary design over

heads and will increase the problem of interconnection and 
coordination between units.

A simple measure of complexity could be - the number 

of significant states a device can adopt. However this 

takes no account of the evolution of the device (previous 

generations of a device give operational experience which 

allows the new generation to be more readily understood) or 

of the skill of the designer (his training and previous 

experience accelerate his understanding of a new device), 
such factors alter the way in which complexity is perceived.

A better understanding of how complexity is perceived and 

of the human approach to problem solving would allow design 

effort to be more effectively deployed. ^ 0

Subsystems should correspond to local concentrations 
of activity in the system. These are areas in which cheap 

local information is available and to and from which 

relatively little communication is required. This limitation
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on the number of inputs and outputs is also a limitation 

on the number of states a subsystem can adopt, and hence on 

its complexity.
The new design effort can be minimised by choosing sub

systems that correspond closely to already developed systems. 

This is an evolutionary design process. However where system 

requirements have changed and substantial modifications are 

required, it is often better to incorporate the design 

experience into a new custom-made device.

Timescales - A property of major importance is the time
scale of a subsystem. Any system will respond to a range of 

timescales or band of signal frequencies.^  ̂ The measurement 

transducers at the systems interface with its environment 
will generate raw signals containing all these system 

frequencies. A system comprises function subsystems which 

process input information and generate outputs accordingly. 

Associated with these processors is the property of 'decision 

time' or 'processor speed'. This is related to the maximum 

bandwidth the processor can handle (analogue processes) or 

to the computing time required to process a sample of input 

information (digital processes). Each function in a system 

thus has a minimum time or maximum frequency it can respond 

to. Only information changing slower than the processor 
limit can be accepted from the input or transmitted from the 
output. Furthermore there will be a time delay before a 
change at an input can affect an output. This delay will 

be at least a decision time (or the bandwidth limit 

equivalent).
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This 'time-scale' feature has several effects:

* The longer the time delays inherent in a system 

loop, the more autonomous a subsystem must become. The 

degree of autonomy of a subsystem is related to the time 

interval over which the subsystem must function independ
ently and satisfactorily.

* Upper level units concerned with the optimisation 

of lower level processes must have a longer time scale than 

those lower level processes, since to collect the necessary 

information to reduce uncertainty several decision periods 
of the process must be observed. To evaluate the effect
of an input to the lower level process, the upper level

unit cannot work faster than the lower unit it is
. . . .  (1-2) optimising.

1.3 Structure and Subsystems for Automated Transport Control

The control system for an automated transport network 

has to perform the following activities.

* Supervisory control: - Dispatching, scheduling and 

routing of both full and empty vehicles, start-up and shut 

down and possibly long term optimisation.
* Longitudinal track-side control: - Transmitting 

commands to vehicles (The control commands allow the vehicle 
to be manoeuvred at stations, through junctions and along 

the open track).
* Vehicle control: - Regulating vehicle speed, position 

and acceleration according to information from the trackside.



* Emergency control: - Ensuring the safety of the 

system, particularly the safe spacing of vehicles.

* Passenger control: - Providing route information, 

ticket dispensing, and checking, and marshalling.

A transport network will be physically distributed 

over a large area. The computing power required to carry 

out the necessary control will demand the use of several 

inter-connected computers carrying out specific tasks. The 

additional considerations of designability and reliability 

encourage the use of maximum autonomy, with low capacity 
communications linking the local centres of activity.

A number of layouts are possible of which the most 

common are: -

* Two tier localised control:- Local controllers,

attached to the junctions and stations, supervise their 

adjacent track sectors. vehicles are handed on from one 
sector to the next. Information about the vehicle (eg, 

destination and status) may be carried by the vehicle (which 

is then interrogated by each local controller, or may be 
transfered from controller to controller by lateral linking. '

* Three tier localised control:- The local controllers 

are coordinated by a higher-level controller. This is 
usually concerned with system management (eg, dispatching 
and routing, optimisation). D̂ia 5)

* Two tier centralised control:- All control is 
located at one place from which commands are dispatched to
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DIA.4 Two tier localised control

ii

DIA.5 Three tier localised control

DIA. 6 Two tier centralised control 
____________________________________ (from ref. 16)
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all the system. This arrangement incurs very heavy
. . .  . (Dia 6 )communication costs.

Whichever organisation is adopted, the controller 

must take account of the changing physical structure of 
the system, as vehicles move along the track and cross the 

boundaries between track sectors. There will always be 

some difficulty at the change over: Either the vehicle will 

be controlled by both controllers simultaneously, or by 
neither, both options involve some hazard. '
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2. The Des i gn of ' F a i l - S o f t '
Systems

2.1 Introduction

Reliability is an important parameter in the design 

of all systems. The larger and more complex the system, 
the higher is its potential benefit but so also is the cost 

of faulty running. Faults inevitably occur and more complex 

systems have correspondingly more faults. The use of extra 
complexity in a system may allow potentially higher per

formance levels. It may also prevent them being attained 

if the greater complexity leads to a reduction in system 

reliability. To maximise the operational effectiveness of 

a system the balancing of system performance against system 

cost must take account of the effects of unreliability.^

Any system can be characterised by its performance 
before failure, its performance after failure, and its 
probability of surviving without a failure. within a 
particular cost budget, the system designer manipulates these 
three characteristics to achieve an acceptable operational 
performance.

There are three approaches to this manipulation.

The Perfectionist Approach - Components and operating 

proceedures are chosen so that the probability of a failure
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in service is reduced to a negligible level. Design 

techniques of this type include; the use of higher quality 

components, 'burn in', derating and planned replacement to 
reduce in-service failures, and the avoidance of novel, 

unproven technology. Typical of this approach is the no- 
repair design of consumer items, such as refri gerators, 

and large vehicle components. A failure, when it occurs, 

is total, the only redress is replacement.

The perfectionist approach is inapplicable to complex 
systems for two reasons. Firstly, the complex systems have 

a large number of components, all of which are 'vital'
(that is the failure of any one causes a total system failure). 

Thus, for an adequate system life, impossibly high reliabilities 

are required for individual components. Secondly, the design 

of complex systems is difficult. The designer being human, 

will be unable to anticipate all the modes of use and con-
(7)sequently the likelihood of failure due to misuse increases.

The Fail-operational Approach - Levels of redundancy and 
repair strategies are chosen to give a very low probability 

of in-service system failure. Commonly known as duplication 
or triplication, the fail-operational technique incorporates 

spare equipment into the system at strategic points. As 

faults occur, this is progressively substituted for the 
failed equipment. The original system performance is main

tained until, at some point in the structure, the spare 
capacity is exhausted, whereupon the system fails completely.
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Fail-operational design is appropriate where any 

significant loss in performance is costly and immediate 

repair is difficult or impossible, eg, in aircraft control 

equipment.
For systems where loss of performance is not critical, 

the fail-operational design philosophy usually results in 

unnecessarily expensive schemes.

The Fail-soft Approach - A 'fail-soft1 system is a system 

where the degree of degredation following some failure has 

been consciously planned. Systems, so designed, attenuate 
the consequences of a failure, not necessarily by preventing 

a fault affecting system performance, but by choosing a 

compromise between the degredation of system performance and 

the cost of extra fault proofing equipment. A common, 
though simple example of a 'fail-soft' system is a vehicle 

with power steering, power brakes, or active suspension. 
These are usually designed so that in the event of a failure 

in the servo mechanism some steering, braking or suspension 

is retained albeit with a poorer performance.

'Fail-soft' should be the normal design philosophy, 
since the perfectionist cannot be used with complex systems 

and the fail-operational is too expensive. However it is 

rarely explicitly employed, and has never featured in the 
published literature.

The discussion that follows presents some techniques 

by which a fail soft system may be achieved.



Fail-soft Systems - A system is a profitable enterprise 

created and run by an operator and providing a service to 
the user. Its performance can be defined thus:-

PERFORMANCE = (VALUE OF SYSTEM) - (COST OF SYSTEM)

/or SURPLUS = BENEFIT - C0ST_7 

The way the surplus, value and cost are distributed between 

the user and the operator is not important to the argu ments 

which follow. The units of each term are money/unit time. 
Effective design and operation of the system maximises the 

surplus; ie, maximises the system performance.

2.2 The Definition o f  the Fail-Soft Characteristic

where

S - expected value of surplus 
St - mean value of surplus when in state i 

Pi - probability of being in state i 
Alternatively, equation 1 can be stated:-

S
all states

1

S So
all incidents

S S c 2o
where

C,

S

' k

o the 'perfect operation' surplus 
the cost of the K th incident
(ie, the change in surplus resulting from an

incident)

R, frequency of Kth incidentk

37 -



The fail-soft approach is to maximise S for a given budget,

either by increasing the potential performance Sq at the 

expense of a larger loss term o or vice versa. The 

frequency term R^ is influenced only by the reliabilities 

of the components that might produce the particular incident. 

The prediction of R^ is well covered in a copious literature 

spanning many years. By contrast, the incident cost has

rarely been considered, nor have methods of controlling it 

been developed (although some related topics have been studied

Disruption - The incident cost will be termed the

'disruption'. It comprises any increase in costs and any

Degree - The 'degree' of a fault is a measure of the

importance of the failed component to the system. It is
th e  l o s s  i n  p e r fo rm a n ce  as a f u n c t io n  o f  t im e .C o n s e q u e n t ly

Degree is therefore (A cost 4- A  benefit) per unit time 
The A  cost term is the cost of the incident incurred 

by the operator for repair and replacement.
The A  benefit term is the loss of service resulting 

from the incident. It is assumed to be much bigger than 
£  cost and therefore more important. In the discussions 
which follow only the A  benefit term is considered.

in isolation).^ ^

decrease in benefit resulting from an incident (Dia 7)

DISRUPTION

over the incident duration
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A component anywnere in the system contributes in 

some degree to the performance of the system. During normal 

running this contribution is a maximum. Failure reduces the 

value of the contribution. The worst-case failure will give 

the lowest possible system performance, usually lower than 

would have been achieved had the system been designed with

out the component at all. The maximum degree of fault 

corresponds to this worst case.

Lessening the degree of a fault implies a reduction in 

the importance of some function and hence its associated 

worst-case error. This reduction might be achieved by 
simplification of the system, (with a corresponding reduction 

in its normal performance SQ) or by partitioning the system 

into smaller sections whose individual importance is thus 
reduced.

For many extensive systems, degree can be conveniently 

divided into 'intensity' and 'extent'.

The 'intensity' is the value of the function to each 
of its users. The textent' is the number of users. Thus:- 

incident duration
DISRUPTION = / *  (INTENSITY, EXTENT) dt

For example, a typical structure for a transport control 

system has a local area controller dispatching regular 

commands to the individual vehicles within its zone. The 

degree of a failure in this area controller is strongly 

dependent on the number of vehicles being controlled 

(ie, its extent) as well as the loss in value of the infor

mation put out to each vehicle (ie, its intensity).
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Duration Systems intended to have a useful life that

is long with respect to the mean time between failures, must 

be repaired. The disruption caused by a fault i6 dependent 

on its 'duration'. However any change on the system output 

cannot be faster than the signal producing that change. 
Consequently the information output by a rate-limited 

function, even if it is faulty, will not change the system 

faster than that limit will allow. This suggests that it 

is not only the absolute duration of the fault which is 

important, but also its duration in units of the failed 

processor's decision time. A fault in a high speed processor
will become noticeable more rapidly than if the processor

. . (Dia 9 )were lew speed.

Repair times however depend on the complexity of the 

function involved.^ F o r  functions of a similar 

complexity, repairs will take a similar time. as a result, 

a failed high speed function of similar complexity to a 
failed low speed function will cause a proportionately 

greater disruption, unless particular measures are taken to 
reduce its repair time.^^a

3.3 Potential performance. Disruption and Operational 

Performance

To achieve the highest potential performance of a 

system, each item of information should be used to its 

maximum value ie, the information should be accepted as 

valid, used as fast as possible and everywhere possible.



However, if the information is in error, the resultant 

disruption will also be a maximum. The operational perfor

mance then achieved may well be lower than if the information 

had not been used. Thus increased system complexity, aimed 
at extracting the maximum value from information will increase 

the potential system performance but may decrease the actual 

operational performance.

If, as an alternative, the increased complexity is used 

to improve reliability, the potential performance will not 

be improved, but the actual performance may.

THE CONTROL OF DISRUPTION FCLLCWIirG A FAULT

2 . k  The Control of Unanticipated Faults

A designer can only explicitly design for faults that 
he has anticipated. His ability to foresee and evaluate 

their consequences depends on the complexity of the system.

He will not be able to forecast all faults and consequently 

will not devise a comprehensive set of contingency plans.

Action taken to compensate for unexpected faults can 

.only be taken at the time of failure. The action is the 
sequence of 'on-line' design decisions made by the system 
operator invol.ed with the fault. He is a part of the system 

and can be considered as a flexible, unspecialised, decision 

maker. In many systems he is the most important control of 
disruption resulting from a system failure.

Methods for dealing with anticipated faults are intro-

<*? -



duced into the system design from the outset. Each strategy 

can be considered as the optimal use of a new system, (the 

new system being the original system changed by having a 

faulty component).

Three running states can be identified:-

* Normal - the system is operating along its most 

profitable, maximum performance, trajectory through system 

state-space; a path previously anticipated by the designer.

* Faulty - the system is operating below its maximum 

performance trajectory but on a trajectory optimal for the 
system with a failed component. Again the path is one 
anticipated by the designer.

* Extraordinary - the system is being guided along 

a path in its state-space by the real-time design decisions 

of an operator. He covers for all unanticipated situations. 

His success depends on his ability, knowledge (training) 

and whatever system functions are accessible. He takes 

direct control of these functions via man-machine interfaces. 

Effective operator control depends on the good design of 
these interfaces.

2.5 The Control of Anticipated Faults

Action taken to control a fault is directed against 

the disruption caused by the fault. This control action 
will moderate the degree of the fault as a function of 

time and/or duration. More control will reduce disruption 

but at greater expense. A balance has to be sought.
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2.5 Types of Fault
A failure is an event, after whose occurrence the 

output state of a device shifts outside permissable limits.

It is sometimes exceedingly difficult to formulate the 

specification of a failure, where for example, there are 

subjective characteristics involved.

Failures may be:-

• Instantaneous - There is a sudden loss of function-

• Gradual - A prolonged deterioration of equipment 

leads finally to a failure.

• Permanent - Failed equipment is inoperative until 
repaired.

• Intermittent - Failures last for a short time.

The system is momentarily disturbed. The faulty equipment 

then resumes normal running possibly leaving observable 

transient conseouences in the system, where a component is 

wearing out, final failure is often preceded by a series of 

intermittent faults.

• Independent - Each failure occurs independently
of any other. Failures are usually assumed to be independent 

events even though a fault in one component varies the 

.operating conditions of other components and consequently 
the probability of their failure.

• Dependent - The failure is caused by the failure 
of another component.

• Common mode - Faults in different pieces of 

equipment, which all result from a common source failure.

The prevention of common-mode failures is particularly
(5 7)important where independence is assumed or required. '
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2.7 Sources of Faults
There are two phases in the life of a system. They 

are the design phase, in which all actions prior to running 

take place. (The design and specification of the system 

hardware, system software and forecasted operating environ

ment, including maintainance and operating proceedures), 
and the operational phase, in which the system runs in its 

actual environment, is subject to inputs and produces 

outputs. Faults can arise in either phase but their con

sequences will be observed only during the operation phase.

Faults in the design phase result if equipment, 
algorithms and the system environment differ from those 

intended or forecast. Design faults are likely to be 

systematic, that is, similar faults arise in related equip

ment; the same equipment always fails under the same con

ditions. Design faults are frequently the source of common

mode failures. As design faults are necessarily unanticipated, 

all systems are vulnerable to them. Techniques such as 

standardisation, simplification and evolution may reduce 

incidence of design faults. The use of independent designers 
reduces the risk of common failures in separate devices.

Faults arising from incorrect data supplied as input 
to the system, or from a component failure, are amenable 
to systematic fault control techniques.

2.6 The Propagation of Faults

Erroneous information will propagate along any avail

able path through a system. Most paths will be the formal



channels comprising the information structure cf the system. 

The remainder will be informal routes, resulting from a 

causal-chain interaction of system components that has no 

part in normal running. For the predictable operation of 

systems these informal routes must be identified: Often, 

for successful fault control they must be eliminated. These 

informal links are often created by the fault itself. For 

example, in a computer, an incorrect processor operation 

can easily destroy data totally unconnected with the failed 

func tion.
The speed at which faults propogate is limited by the 

delays that are introduced by operations along the path 

followed by the fault. Increasing the time delays caused 
by these operations will reduce the rate at which a fault 

can affect the system output. Operations should therefore 

be designed to work at the lowest speed consistent with their 

fulfilling their roles satisfactorily during normal running.

2.9 Classes of Fault Control

Fault control systems can be either open-loop or 
closed-loop.

Open-loop - Open loop fault control is sometimes called 

•built-in' redundancy. Equipment is used which is more 
elaborate than the minimum necessary to achieve the desired 

function. Every component i6 active all the time, but the 

configuration is such that when one fails, the function as 

a whole does not fail. The construction and effectiveness 
of these systems relies upon the fault modes of a device 

being known.
-  Wf> -



Two approaches are possible. The first aims to make

any failed unit transparent to the rest of the s y s t e m ,  ie,

the transfer function / G / with m components is the
same as the transfer function with one component.

G (s) = G .(s) - G.(s)m m-1 1
This approach can be used with relays or diodes with 

which the likely faults are either open-circuit or short- 
circuit.

Under the second approach, failures are permitted to 

cause some change in the transfer function of a unit, but

the redundancy is used to place a limit on this change.
C 7)Queuing systems are of this type.

Closed-loop - Closed-loop fault control is more important. 

Although greater expense is involved, in principle any fault 
can be controlled.

A monitor measures the actual system state and compares 

it with a prediction generated from a model. The detection 

of a discrepancy initiates action designed to counteract 

or remedy the failure. The output of the monitor may be 

continuous or discrete. The design of fault controllers 

having continuous error signals can make use of the well 

developed theory of feed-back control. Usually, however, 

fault protection is carried out using discrete fault monitor

ing; the detection of a fault causing a specific strategy to 

be selected from a small number of alternatives.

- ^7 -



DI
A.

II 
Sc

he
m

at
ic

 
of

 s
ys

te
m

 
an

d 
fa

ul
t 

co
nt

ro
lle

r



2.10 Monitoring
A system has a set of realisable states. The states 

that correspond to normal operation are defined by the 

system specification. All other states correspond to faulty 

operation.

In practice, often only the intended running states of 

a device are closely defined, as the complete definition of 

all failure states would be very time consuming and costly.

Four techniques are in common use.
• Eauipment is designed to have only a few conceivable 

failure states, for example, fail-safe equipment. (This is 
only feasible for very simple, usually mechanical, devices).

• Only important failure states of a device are 

detailed. (Unfortunately the importance of a device state 

may depend on the application of the device. In some 

situations, a particular failed state might be unimportant, 

in others it might be very important).

• Only the most unreliable parts of a device are 

considered in an analysis.

• Dependent and simultaneous faults are not analysed.

2.11 The Requirements of a Monitor

A failure generates errors which propogate away from 
the failure site. These errors are detected by the monitor. 

There are thus three sets of function states.

• The states wnich correspond to the function speci

fication and are therefore the correct states.
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• The actual states generated by the function 

(including its error states).

* The states interpreted by the monitor as correct
ones.

In a perfect system these states are all the same; in prac

tice, limitations in both the function and the monitor 
ensure that they are not. As a measure of this, two para

meters may be defined.

The 'coverage' of the monitor is the fraction of errors 

that the monitor detects. The 'restrictiveness' is the 
fraction of normal states classified as faulty. Inadequate 

coverage is expensive as many faults are not detected.

Excessive restrictiveness is expensive because there are 

many false alarms. Usually a trade-off can be made between 
the two.

Only a limited number of monitors can be deployed in 

a system. These will test the most important variables, 

those which, if faulty, would cause maximum disruption. The 
information yielded by the monitors is the only information 

available for locating and controlling failures. Thus more 

monitors allow a more comprehensive check on system operation, 
a better identification of the failure site and a more 
appropriate selection of control strategies. However extra 

expense is involved and as the error detecting transducer is 

in series with the processor being checked, the system 

reliability may be reduced and the system response slowed.
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2.1? Fault Location
Most fault analysis and control assumes that faults 

occur randomly, each fault is independent of any other and 

there is a negligible probability of simultaneous faults.

However monitors detect the errors resulting from a 
failure, not the failure itself. Although the failures may 

be random, the errors detected frequently will not be, for 

the following reasons.

* Monitor coverage of the system states is not comp

lete. Consequently multiple dependent errors may be 

recorded some distance from the failure site, possibly at 
several different parts of the structure and not necessarily 
at the same time.

* Systematic design faults may cause a similar fault

to occur simultaneously in a number of functions or monitors.

* There is a delay between the occurrence of a fault

and its detection. The longer this time delay is, the higher • 

is the probability of more faults occurring, all of which 

would have to be considered as arising simultaneously.

For effective fault location, monitors must detect all 

important faults. Each monitor must have a high coverage 
and low restrictiveness. Monitors must be closely spaced, 

thus partitioning the system into areas of low complexity 

(and high reliability). *
If these conditions are satisfied, then the unambiguous 

logical location of some faults may be feasible. (For
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example, by using cause-consequence analysis to identify 

the signature of monitor outputs resulting from a particular 

f a u l t ) . I f  not, automatic fault location is not 
possible, and fault control measures must attack errors 

rather than identify and isolate the originating failure.

2.13 Srror-Detection Techniques

Redundant Parallel Processors - Operating on the same 

input data, two or more independent processors can be used 

to carry out a function. If corresponding results disagree, 
at least one computation is faulty. The use of more than 

two resources enables voting to identify the faulty unit.
Independent processes can be interpreted as:

* The same process on the same hardware at different 
times (time redundancy to detect intermittent faults).

* The same process on different hardware at the same 

time (hardware redundancy to detect hardware faults).

• The same process based on different algorithms in 

the same hardware (software redundancy to detect software 
faults).

• Combinations of the above (these offer protection 

against all faults including design faults).

Common-mode failures render redundancy monitoring 
ineffective . Important common-modes are the input data, 

systematic design faults and environment changes.
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Redundancy is the only means of simultaneously 

achieving high coverage and minimum restrictiveness. 

Redundancy is expensive and because of the necessary 

comparison operation, speed of operation is limited

to that of the slowest processor.

Other Error-Detection Techniques - Non-redundant monitor

ing is a check on the reasonableness of the information at 
the monitored point. Coverage is lower, restrictiveness is 

higher, but costs are much reduced. Monitors may check for 

particular vital states (either normal or faulty) to whose 
absence or presence a high system cost is attached. The 

boundary between normal and faulty running corresponds to

the point at which system running costs are deemed un-
. .. (Dia 12) acceptable.

Error Detection Using Information Redundancy - Using 

coding, redundancy can be incorporated into data signals.

Many sophisticated error detection and correction codes have 

been devised which are effective for a wide range of possible 

fault situations. They are used in communication links and 
data storage/retrieval systems. It may be extendable to 

other functions, for example by incorporating into the input 

data a condition that is unaffected by the function and can 
be verified from the output data.^-1^’
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2.14 Fault Recovery
The objective of the fault recovery phase is to restore 

normal system operation with the minimum of disruption, 

following a failure. This requires the location and repair 
of the failed unit and the use of standby control to limit 
the disruption incurred in the interim.

Repair Times - The overall time to restore the original 

service depends on the repair arrangements. Plug-in replace

ment modules restore service rapidly at a high cost. Remove, 

repair and replace strategies give a high system downtime 
but are cheaper to operate. The exact balance chosen between 

the two depends on the time scale of the failed function, 

faster functions will generally have to be repaired faster.

The provision of on-line monitoring allows a faster 

response to failures. Off-line monitoring by maintainance 

men improves system reliability and makes better use of 
test equipment, so reducing costs that way.^0^

■Standby Control of System Disruption - In place of the 

failed function, standby equipment provides an alternative 
that has the best possible system value given available 

resources.

Standby measures are selected by switching, that is,
P

the system structure is reorganised. The rearrangement may 

maintain the original system performance or provide a 

reduced performance. The more closely the original
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performance is to be maintained, the more expensive is the 

provision of substitute standby processors.

There are several techniques of standby control:-

* The failed unit can be replaced by another similar 
unit. For fast acting important functions, the switching 
must be on-line and automatic.

Direct function replacement depends for its effect

iveness upon the failure being located in the replaced 

function. Otherwise faulty information will be input to 

the replacement function and system disruption will not be 
c ontrolled.

Direct function replacement, an example of the fail- 

operational technique, is expensive.

* The failed function can be isolated and the down

stream structure modified so that the information lost is 

no longer required by the remainder of the system. This 

feed-forward type of control necessarily entails some loss 
of system performance. It is much less expensive, as 

precise fault location is no longer necessary.

In some cases it is possible to substitute standardised, 
information for the signal that has failed. The standardised 

signal is chosen to minimise subsequent disruption, and could 
be

- an average value command
*- the last correct command

- a predetermined value

- a human operator input.
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2 .13 Vital Functions
Although a hierarchy of fault protection strategies 

can be incorporated into a system to attenuate the con

sequences of most faults, some vital functions will remain 
unprotected. It is at these points that a perfectionist 

approach should be applied, that is, components with a high 

intrinsic reliability should be used.

2 .1 6  S a f e t y

Reliability and safety are closely connected. A 

correctly functioning system is never unsafe (provided the 
system is correctly designed). The cost of unsafe operations 

is very high, consequently any failure, which may lead to 

an unsafe mode, is attributed a quasi-infinite system cost.

In these situations system realisations are required which 

minimise the probability of these failures. very often this 
requires the use of perfectionist or fail-operational
techniques
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3. Measurement and Communicat ion  
in Automated Transpor t

3.1 Introduction
Communication in automated transport is characterised 

by the regular transfer of information between moving 

vehicles and fixed control centres distributed over a wide 

area. Bidirectional communications between vehicle and 
vehicle, vehicle and control centre, control centre and 
control centre may all be necessary.

The control system engineer would like to have indep

endent communication channels for each information flow.

Such provision would however be wasteful, being excessively 

expensive and under-utilised, although a more precise control 

might be achieved. Communication facilities have to be chosen- 

in balance with the rest of the system, enabling adequate 

information flows to take place whilst minimising capital and 
running costs. As with all communication systems, time delay 
information rate and error rate are important parameters.

All can be improved by supplying additional bandwidth, signal 
power or less noisy channels at an increased cost.

In automated transport, certain tasks of the human 

operator have been replaced. Extensive measurement and 
monitoring is required, both to relay information enabling 

controllers and algorithms to work effectively, and to provide 

checks designed to ensure the safety of the system.
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The state variables of most interest are position and 

its time derivatives of velocity, acceleration and Jerk.

The ability of a vehicle controller to minimise absolute 

position errors directly influences the maximum vehicle flow 

a system can achieve. Precise operations at merges and 

stations depend upon both position and speed control. Accurate 

speed control is required to satisfy safety constraints, for 

example speed limits on bends and headway constraints when 

approaching other vehicles. Passenger comfort is determined 

by the quality of acceleration and jerk control. Precise 

acceleration control is difficult to achieve. Closed loop 
jerk control may not even be attempted, although venicle 

response characteristics can be designed to ensure that jerk 

stays within acceptable limits.

The coordinated operation of a complete transport net

work requires the systemwide generation of time. Clocks can 

be easily manufactured to hiih accuracy but methods have to 

be incorporated to ensure that all are synchronised. This 

creates additional communication requirements.^^

3.2 SYSTEM FEATURES

In this section are discussed the general features of 
transport communications wnich determine the overall

0
behaviour and capabilities of the transport scheme.
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3.? The Decree of Automation Sought 

The ability of a human operator to make fast overall 

assessments of unusual situations ensures that the total 

automation of systems as complex as transport networks is 
most unlikely. At some stage it becomes a more effective 

solution to employ somebody rather than attempt to devise 
appropriate equipment and strategies. The creation of 

schedules, raaintainance and recovery from severe failures, 

are examples of activities not yet amenable to full auto

mation.

Of paramount importance is the provision of an effective 
interface between the automatic equipment and the operator. 

Humans are particularly effective at identifying patterns 

of behaviour but are easily overloaded with data. Commun
ication techniques have to be devised which display primary 

information in easily recognised forms. Safeguards have

to be incorporated to reject unsafe or incorrect operator
(2 )decisions yet allow him adequate flexibility.

uommunications Involved in Open-Loon, Closed-Loop 
and Fault Control

The system structure chosen for the controller will 

have the most profound impact on the amount of communication 
required in the system. (See chapter 1)

0

Within the control structure, pairs of interconnecting 

subsystems can be analysed in terms of 'controller' and a 
'plant'. The role adopted by each subsystem depends on tr.e
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primary direction of information flow: the 'controller' 

is the upstream element and supplies appropriate inputs to 

the 'plant' which responds with an output.^ ^

The relationship between the controller and the plant 

can be either open-loop or closed-loop.

Open-loop - Conceptually the controller holds a model of 
the plant. Using this model and knowing the desired system 

output, the controller generates the necessary plant inputs. 

The accuracy of the system output is totally dependent on 

the fidelity of the model. As no measure of the actual plant 
output is used by the controller, random disturbances and 

unforeseen incidents cannot be compensated. Incorrect 

operations resulting from equipment or strategy failures 
will go undetected.

Open-loop systems require only one-way communication 

links. They may be appropriate where the system is predict

able, that is, it is reliable, well known and subject only 
to minor random disturbances, or where the cost of two-way 
communications is excessive. ̂ Dia

.Closed-loop - In a closed-loop system, the controller has 
access to measures of the actual plant performance. This 

feedback information allows compensation for minor disturb- 
ances such as noise, hardware and environmental variations. 

More sophisticated controllers may use the feedback infor

mation to track the optimal operating point of the system, 

(adaptive control)
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In closed-loop systems the controller nay net necessarily 

hold a conceptual plant nodel. However the use of a plant 

model by the controller improves its ability to compensate 

for disturbances and enables optimum seeking methods to 

proceed faster. Such an arrangement is commonly called feed

forward control or model-reference control.

Closed-loop control schemes require substantial invest

ment in two-way communications, measurement transducers and 
control equipment. They are essential for good performance

in poorly defined, noisy environments with many random 
(Dia 15)disturbances.

Fault-Control - Fault-control systems are usually closed- 

loop. Measures of actual system states are compared with 

predicted values of the states. The detection of abnormal 

discrepancies initiates standby strategies designed to 

counteract the effects of the failure. (See Chapter 2)

Extra transducers, circuitry and communications are 
required for fault-control.

Within a closed-loop system, elements may be operating
, ,, , . (Dia 16) __locally in an open-loop manner. If measurement

activities are moved further downstream, they will monitor

a wider range of system states. A single transducer will
Ptap information output by several preceeding elements.

However the information yielded is more general and its 

interpretation becomes more difficult: Feedback control
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DIA.I5 C losed  loop  system

DIA.I6
B is part of a closed loop but is itself operating 
open loop . C is part of the system and operating 
open loop .
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becomes more complex to design and delicate to adjust: 

Fault detection becomes less precise and corresponding 

strategies more clumsy. A balance must be struck between 

the ineffectiveness of monitoring too few activities and 

the high cost of monitoring all. This balance funda
mentally influences the measurement and communication 

equipment provided.

’'Friras of dipectt:;i iryĉ 'ATic;: mo ttje -ir::r

There are two classes of information routing. The 

•many to one' where several units may wish, possibly simul

taneously to communicate with one unit. The 'one to many' 
where a single unit may wish to communicate selectively with 

any one of a number of units. The former requires the 
organised multiple use of a single channel. Tne latter is 

concerned with addressing techniques. These classes arise 

in all communication systems and have been extensively studied 
particularly for telephone and computer networks. Consequently 

only specific situations associated with transport networks 
are discussed here.

3.6 Multiple Use of a Single Channel
The large number of links reauired and the physical 

separation of network elements dictates the use of control 

structures and strategies requiring limited information flows.
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In many situations a single channel has to be shared between 

several users. The added requirement for moving point to 

fixed point communication introduces further complexity, 

as messages must intercept the desired recipient in time 
and position.

With an uncontrolled channel serving several independent 

users, there is a finite probability of two or more simul

taneous transmissions. Although errors caused by such a 

collision can be identified using coding techniques, strategies 

to ensure that the correct message is retrieved are hard 

to devise.
The use of the channel must be organised so that trans

missions from independent users cannot take place simultaneously, 

that is, the channel is exclusively dedicated to one user for 

the duration of its transmission, it then becomes available 

to other users.
Interrupt type systems offer a method of channel syn

chronisation. However they require the use of parallel lines, 
one from each user, to a priority resolving unit controlling 

the message channel. In most situations arising in transport 

systems this arrangement is not possible. A variety of 
arrangements are feasible:-

The channel can be captured by a user in two ways; either 

directly, (requiring each user to listen to the channel), 
or indirectly, (via a central controller). with direct 

channel organisation either, a demand-responsive or fixed- 

seauence service can be operated.
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D i r e c t - C h a n n e l  O r g a n i s a t i o n  w i t h  a D e m a n d - r j e s o o n s i v e  S e r v i c e

- A user, wishing to send a message, transmits immediately 

if it finds the line clear. If a busy line is encountered, 

the user continues to test the line at fixed intervals 

until an idle state is found. It then transmits. (If the 

user transmits immediately a previous transmission finishes, 

there is an increased probability that two or more users, 

all delayed by the same previous user, will transmit 

simultaneously).

Direct-Channel Organisation with a Fixed-Sequence Strategy
- For a fixed-sequence type of operation, each user is 

allocated the channel in sequence. The rota must be pre

arranged and therefore cannot respond to local variations 

in demanded information flows. Each user must know and be 

able to identify it6 position in the sequence. Complic

ations arise where the potential users of the channel can 

change (eg where vehicles enter a new communication zone, 

the appropriate new signalling schedule must be loaded into 

them).
Synchronisation of individual users to the message 

stream can be achieved in two ways. If messages are fixed 

length - that is, all users are allocated the channel for 
a fixed time slot even if they have no information to trans

mit - then 'flywheel' type synchronisation is possible.
Each vehicle takes its timing information from the received 

message stream. The failure of any individual user does r.ot 

halt the message stream.
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T h e  u s e  o f  s t o p - s t a r t  c o d e s  t o  d e f i n e  t h e  m e s s a g e
boundaries allows vehicles, with no 

to use the channel less. The 3tart 

relies upon the end of the previous 

to transmit, backup proceedures are 

transmission.

information to output, 
of each transmission 

one. If one user fails 

required to restart

Characteristics of Direct-Channel Organisation - Direct- 

channel organisation needs little equipment. Demand- 

responsive schemes give no indication of failed users, a 

check which is possible in a fixed sequence scheme. The 
demand-responsive service is however the more effective 

where information flows are highly irregular and unpredictable.

In the demand-responsive mode users experience a mean 

delay which rises steeply when the demand rate exceeds 75% 

of the channel capacity. Below this demand rate the mean 
delay is substantially less than for fixed-sequence systems.

If vehicles have only limited storage for messages pending 

transmission, both schemes show significant reject rates,

that for the demand -responsive system being lower than that
„ . * (Dia 17 - 19)for a fixed sequence system.

Fixed sequence systems offer the advantage that delays

are bounded, although this is only significant near channel

satura tion.

Motes - * A survey of the literature did not reveal much

information such as has been presented above. Reference 3
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does however contain a wide ranging discussion of the 

state-of-the-art in distributed computer networks.

* The direct-channel demand-responsive scheme des- 
crioed above would appear to be a novel suggestion.

* The results presented above were produced by simu

lation. A description of the program is given in Appendix 1. 
The results are only valid for systems where the demands

to transmit can be modelled by a Poisson process. If the 

times that the user will want to transmit can be predicted, 

then a carefully designed fixed-sequence system may give 

better service.

Indirect Channel Organisation (Using- a central Controller)

- A control unit can be used to organise a communication 

channel. If only one channel is available between controller 

and users, the only policy that can be operated is for the 

controller to poll each user in turn. A demand-responsive 
service cannot be operated (as any user initiated message 

would be independent and therefore uncontrolled).
A link organised by means of a central controller 

might employ two communication channels between the controller 

and users. If both channels are of identical design and have 

the same characteristics then a variety of strategies can be 

operated. (NB, this is a simplifying assumption, not a
Prequirement) - One channel can be designated an addressing 

line, the other the message line. These channels could be 
interchangeable, enabling some degree of standby service to



be operated in the event of a failure. Any mix of fixed- 
sequence and demand-responsive policies can be operated 

enabling the advantages of both to be incorporated.

Against these benefits must be balanced the altern
ative gains that would have been achieved by operating 

each of the two channels independently for the same link. 

This provides lower delays and reject rates as a consequence 
of the lower usage of each channel.

3.7 Addressing
The successful transmission of information from one 

place to another in a system requires routing to the correct 

location, and timing to ensure that it will be received.

In transport networks a channel may serve a number of 

physically separated users, which may be fixed or moving.

If the addressee is moving the channel routing system must 
be organised to direct the message to the track segment 

adjacent to the vehicle. Should the segment be able to 

encompass more than one vehicle at a time, then messages 
must include vehicle identity in their code. Advance 
messages can be sent if track segments have storage buffers

from which the information will eventually be relayed to
. (Dia 20) the vehicle.

Communication systems linking fixed points have been 
extensively studied, particularly with respect to distributed 

computing systems, telephones etc. The extra refinement 

necessary to communicate correctly and efficiently with 

moving vehicles is the main concern of this paper.

- 72 -



- 73 -



The Geogra chical Addressing Problem - Information must 

be directed to intercept the desired vehicle, that is, it 

must be available at an appropriate track-side position 
and time.

A message can be displayed over the whole track, a 

track segment, or a fixed point. If the vehicle does not 

act immediately on the received information its storage on 
the vehicle is required. If the track does not immediately 

relay the information to the vehicle then track storage is 
required. (If the track/venicle link is available over an 

extended distance, the vehicle and the track can share the 
same store).

Reference to the position-time trajectories of the 

vehicles yields the following possibilities.

• A message is available over the whole track for 
an extended time; all vehicles receive the same message.

The information changes infrequently and the transmitter 
may be effectively the track store.

An example is the system-wide transmission of system 
status, signals such as, normal or emergency, service option 
fare scale, etc.

• A message is available over the whole track at a
particular time; all vehicles are contacted. vehicles store

. , (Dia 22)the message if necessary.

• A message is available over a portion of track for 

an extended time; not all vehicles are contacted, only those 
passing th3t portion of track.
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Position DIA. 21c Message displayed 
over a portion of 
track for an 
extended time

DIA. 2 Id Message displayed 
o v e r  a t r a c k  7one  
at a fixed time

DIA. 2le Message displayed 
at a fixed position 
for an extended 
time

DIA.2lf Message displayed 
at fixed position 
and time

* ?
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Posi tion

Time

DIA. 2lc Message displayed 
over a portion of 
track for an 
extended time

DIA 2ld Message displayed 
over a track zone 
at a fixed time

DIA.2le Message displayed 
at a fixed position 
for an extended 
time

DIA. 2lf Message displayed 
at fixed position 
and time
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* A message is available over a portion of track at

a particular time; only vehicles within the zone recieve

the information. Information can be made vehicle specific

if their trajectories are known. The number of vehicles

to be contacted and the tolerance on vehicle position
(Dis Jdetermine the length of the zone.

* A message is available at a point on the track for 

an extended time; information is position dependent and 

reaches all vehicles passing by. Information can be made 
vehicle specific by controlling the display time according 

to the number of vehicles to be contacted and the tolerance 
on the scheduled time of arrival.

* A message is available at a point on the track at

a particular time; vehicles are uniquely contacted but the
. i . . . . . . , (Dia 26)exact vehicle location is required.

Geographical Addressing by a centralised Unit - The central 

unit requires accurate knowledge of vehicle position. This 

can be derived either by measurement or from predetermined 
schedules. Successful communications depend totally on the 
correct working of the controller and the system. Disordered, 
misplaced or undetected vehicles will cause faults as 

messages become misdirected or lost.

Geovraihical Addressing Operated by the Vehicle - Some 

degree of protection against communication failures, caused 

by local running anomalies, is provided by using the actual
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vehicle movements to control both the position and duration 
of message display.

Occasionally even the message contents are generated 

by the vehicles, in which case, no intervention is required 
from a central controller.

Message Addressing - Coding added to a message enables
labelled recipients to recognise messages intended for them.

Message addressing allows the easy addition or removal of

communication units from the network. The security and

reliability of message addressing are strongly dependent
(4)on the coding techniques used.

Geographical and message addressing cun be provided 

simultaneously. The duplication of addressing information 

will enable some faults to be detected. The effectiveness 

of the fault detection depends on the independence of the 
two systems.

If the recipient of a message acknowledges it with its 

own identity (and/or a copy of the message), a closed-loop 
communication results, enabling the message transfer to 
be checked and errors corrected/^

3.0 MEASUREMENT
*

The Influence of Measurement on Communications - To control 

and operate numbers of vehicles, the control centres must 
have information from all the vehicles in the system.
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Essential signals are rr.easurements of position, velocity 

acceleration and vehicle status (identity, destination, etc;. 

Some or all of this information will be required by both 

the control centre and the vehicle. Information needed at 

the trackside and measured or stored on the vehicle, or vice 

versa, therefore requires communication from one to the 

other. If tnis is not economic, then the information’must 

be duplicated on the vehicle and at the trackside. For 

example, information about own velocity or acceleration is 

readily available on-board a vehicle, but is difficult to 

measure from the trackside. uonversly position is more 
easily determined from the trackside. Track speed limits 

are fixed and easily stored at the trackside, whereas their 

storage on-board vehicle requires a complex interpretation 

according to vehicle position.

Measurement techniques can be associated with the 

particular form of communication used across the vehicle- 
track interface. Often a physical property of the signal 

is modified, for example, its phase or its amplitude, in 

a way that does not interfere with the message already being 
carried by the signal.

Measurements can be made either discreetly or con
tinuously in time; the output information may be presented 

either as a digital or analogue signal. Usually, but not 
necessarily, discrete measurement techniques generate digital 

signals and continuous measures generate analogue signals.

The falling cost of digital processing increasingly favours
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digital signal forme, particularly in harsh environments 

(ie, noisy channels, and low simnal strengths) provided 

adequate bandwidth is available. However continuous signals 
are usually cheaper to generate and simpler to use. For 

example, analogue transducer signals are directly useable 

in control loops, whereas in digital systems both analogue 

to digital and digital to analogue conversions are generally 

required.
The information in digital signals is not affected by 

signal attenuation over distance (unless the signal strength 

falls below a certain threshold). Digital signals do not 

drift, an important consideration where measurements are 

made over a long period of time.

Position Measurements - Vehicle positions are measured 

along the track relative to some fixed point. They must 

be known sufficiently accurately to allow both successful 
communications and safe manoeuvres.

Trackside position measurement systems will locate a 
vehicle to the fixed resolution of the transducers. They 
are expensive unless precise measurements are required only 

at a few key points, for example, at junctions or station 
approaches.

Cn-vehicle position measurement requires instrumentation 
in each vehicle. The resultant measures must be period

ically updated to the track standard to remove any accumu

lated errors. The frequency of this updating depends on
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Position measurement techniques are either absolute 

or incremental. V.'ith the former the full precision of the 

device is used all tr.e time. No memory is required but 

the signals are wide band-width. V.'ith the latter, in which 
position increments are counted, memory is required, signals 

are of narrow band-width, and the measurement is subject 
to accumulated error, similar to drift in analogue systems. 

Incremental devices tend to be used for measurements made 

over long distances.

Velocity Measurements - Analogue signals proportional to 

speed are given by Doppler shift methods or devices relying 

on electromagnetic induction. Both are ineffective at 

slow speeds. The differential of a position measurement 

can also by used as a velocity signal but it is likely to 

be noisy and restricted in bandwidth.

Position based speed measurements are made by timing 

the transit time of a vehicle between two markers. This 

yields a discrete measure. Alternatively the rate at which 

markers are passed can be measured, yielding a continuous 
(though lagging) measure.

Correlation methods can also be used to measure speed, 
this also yields a continuous lagging measure.

The first scheme is more appropriate where markers 
are widely spaced, the second where they are closely spaced. 
The third method does not require markers but requires

the transducer accuracy and the maximum error allowable.
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distinctive track irregularities in order to produce a 

signal suitable for correlation. All three are ineffective 

at zero or low speeds.

cceleraticn Measurements - A signal proportional to 

acceleration con be generated using the relationship 

Force = Mass x Acceleration.

any component of lateral acceleration can be removed 

by constraining tne instrument to respond only to acceler
ations in a vertical plane aligned along the vehicle axis.

On slopes however, it is difficult to dissociate the vertical 
gravitational component. Fortunately this is not usually 

necessary as the acceleration perceived by passengers is 

the measured acceleration.

Rate of change of acceleration (jerk), although an

important measure of passenger comfort is not usually
, ( 6 )measured.

Time - To ensure synchronism throughout a system, all 

users must have access to the same time standard. Either 
local clocks have to be periodically updated from a master 

clock, or continuous system-wide transmission of time is 
required.

A comprehensive catalogue of techniques for measuring 

position, velocity, and acceleration, and techniques of 
communication is given in Appendix 2.
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4. Longitudinal Contro!

DESIGN CRITERIA FOE LONGITUDINAL CONTROL

4.1 Introduction
The accurate and reliable control of vehicle speeds 

and spacings is critical to the success of any automated 

transport system. The choice of longitudinal control 
technique will determine the system structure, most of the 

communications required and the operational performance that 

can be achieved. The longitudinal controller chosen will 

essentially determine the quality of service that can be 

offered and the cost of providing that service.
The objectives of the longitudinal control system are 

easily summarised; people should be moved to their destin

ation quickly, safely and dependably at reasonable cost.

A particular combination of service type, vehicle size, 
vehicle performance, running frequency and station spacing 

must be established that most favourably balances the value 

of the service provided and the cost of its provision. A 
wide spectrum of solutions have been proposed. One extreme 

is the auto taxi: small high performance vehicles carrying 

individual parties of 1 - 6 people, running at very small 

time separations (’/4 - 10 seconds) provide a service akin to
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the conventional taxi. h fine mesh of track covers the 

whole city and stations are frequent, so that accessability 

and convenience of travel are high. Major technical diffi

culties with such systems still remain to be solved. It 
is certain that the heavy costs of auto-taxi, both capital 

and environmental, will severely limit its application for 

the foreseeable future. A less ambitious proposal is the 

auto-tram; vehicles are larger than auto-taxis holding 

10 - 100 passengers and run at time separations of greater 

than 10 seconds. A service similar to the bus or tram is 

offered and is less convenient for the traveller than that 

of auto taxi, however the control requirements are much less 

demanding. At the other end of the spectrum, the automation 

of metro systems is well advanced with examples in many parts 

of the world. In such systems a minimum headway of 90 seconds 
is typical.

Much of the early interest ir. automated transport was 

directed at auto taxi. Recently though, there has been a 

growing interest in auto tram systems reflecting their simpler 

control problems and lower costs.

¿r.2 Fundamental Performance Measures

Potential travellers will only choose a particular mode 

of transport if the performance it provides is sufficiently 

good. Thi6 performance can be gauged by the factors:-

Ride comfort

Journey time
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Journey dependability

Sa fetv

Cost

'Pjde Comfort - The ride coinfort experienced by e passenger 

depends primarily on two factors - the noise and vibration 

transmitted within the vehicle, and tne levels of acceler

ation and jerk (rate of change of acceleration) used during 

vehicle manoeuvres.

vertical vibration depends on the suspension chosen 

for the vehicle and the cuality of the track. Suspension, 
propulsion and braking apparatus are usually interdependent 

and consequently a choice of suspension method may also 

determine the braking and accelerating characteristics of 

the vehicle, thus indirectly influencing the control of the 

vehicle.

Lateral vibration depends on the choice of steering
mechanism. This choice will also influence longitudinal

control by determining the time to switch a vehicle and by
setting the minimum radius a vehicle can negotiate.

t.'oise levels are controlled primarily by the detail

design of the vehicle, they have no significant effect on 
( 2 - 4 )longitudinal control.

Studies of subjective reactions of passengers have 

established approximate values for acceleration that should 
not be exceeded for a comfortable ride. Furthermore, to 

avoid discomfort the level of acceleration should not fluctuate
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continuously (thus requiring an overdamped vehicle response

to cnanging inputs or disturbances).

Limiting values for jerk have not been reliably estao-

lished although tr.ere is some evidence to sugrest that, if

only low levels of jerk are used, limits on acceleration

can be raised. A commonly proposed rule is that any change
in acceleration snould take at least one second. In practice,

jerk is unlikely to be controlled explicitly but will be
limited to acceptable levels by tne dynamics of the vehicle.
(4 _ 7) Typical values of accleration and jerk considered 

for automated transport are:-
Limit with seated passengers - accn 2m/s2 jerk 2m/s^ 

Limit with standing passengers - " 1.2m/s2 " 1.2m/s^

with emergency deceleration rates of twice the normal rate. 

This compares with

Hormal accn 1 - 2 m/s2 - lifts
1 - 1.6 m/s2 - metros

Emergency 2.5 - 3 . 2 m/s - lifts
Decelerations l . b -  3.6 m/s2 - metros
Jerk .5- .7 m/s^ - lifts and metros

Acceleration and jerk limits directly affect system 
performance. Higher limits allow the vehicle to achieve 

higher average speeds and carry out manoeuvres in shorter 
distances. This, for example, will then allow a shorter 

spacing between stations.
The geometry of curved track and the speed at which 

it is negotiated is determined by acceleration/jerk comfort
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levels. Thus for exar.ple, to effect a sidestep of 2m at 
a speed of 12 m/s with a jerk constraint of 1.2 r . /  
requires m of track. a bend taken at the same speed 

must have an approximate radius of 130 22 ~- i '
It will only be possible to fit complex structures such as 

.-junctions or stations into the existin': city streets if 

most curves are negotiated at reduced speeds. Thi6 in 
turn reduces track capacity and increases control costs.

Acceleration/jerk comfort levels also influence the 
design of the track in the vertical plane, when the track 

changes level.

Journey Time - The total journey time (Tj) for a 

passenger to go from origin to destination is the principle 

parameter measuring the quality of service provided by a 
transport system. It is made up of a number of components.

Tj - Tw + Ts + Tv
where

Tw - walk time to and from the station

Ts - station wait time

Tv - in-vehicle time.

Each of these components is a random Quantity, that is, it 
will have a mean value and a distribution.

Decreasing station spacing reduces the average passenger 
walk time. However, if vehicles stop at every station, in- 

vehicle time increases as vehicles stop more often. Skip- 

stop or non-stop services counteract this at tne expense of 

initial station wait time.
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For a triven service pattern .¡nd passenger demand, 

smaller vehicles running at s; orter time headways reduce

the mean passenger wait time at the expense of rrore complex
( fc)control and higher costs per passenger.

In-vehicle time has three components:-

Tv - Tb + Tc + Td

where

Tb - base trip time

Tc - speed change delay

Td - queuing delay.
The base trip time is the time a journey would take if 

the vehicle travelled its whole journey as fast as speed 

restrictions allow. All the while a vehicle is travelling 

at a speed lower than the track limit it is accumulating 

delay. The speed-change delay is the time, extra to the 

base time, taken to travel a section of track. It depends 

on acceleration/jerk limits and the vehicle manoeuvres 

required by the control policy. Sueuing delays occur in 

any system where vehicle mo.ements are not completely 
determined before a vehicle starts its journey. Queues 

form at junctions when individual vehicles are delayed to 

resolve a conflict. Delays due to queuing are very dependent 

on controller design and tend to rise rapidly when the 

system is being operated near to its maximum capacity.

The weighting of each component of journey time so as 

to reflect its relative importance to the passenger i6 the



subject of some debate.^'1 The final choice of system

operating point is very dependent on this weighting.

However, a general rule operates; for a given travel aemand, 

higher service frequencies (implying smaller vehicles) and 

higher performance vehicles give a better quality of service 

at a corresponding increase in equipment costs, running 

cos16 and control complexity.

Service Dependability - Service dependability is a measure 

of how close the service quality of the actual system 

approaches tne design service. Low dependability means 
erratic, poor service to travellers and will not attract 

patrons. Good dependability implies a ’fail-soft' system 

characteristic as discussed in Uhapter 2. In the event of 

a failure the system should continue to run, albeit at a 
lower performance.

Safety - The level of safety required of an automated 

transit system must be at least as high as the best con

ventional transport systems. Morgantown is designed such 

that the probability of two vehicles colliding is less than 

cnce in 26 year6. Safety, reliability and service are 

strongly linked. Inadequate component reliability gives 
poor service and may reduce safety. High levels of safety 
can be achieved at the expense of service or at the expense 

of dependability.^^

- 90 -



Costs - The costs cf an automated transport system are 

dominated bv tne civil engineering costs of station and 

track (approx 6c,.); the control systems contribute 1C - } 0 . 
of total costs. Cf the control costs approximately half 
are for development of software, the remainder for the 

measurement, communication, processing and actuation 
e quiprent.

Junction and station costs can be substantially reduced 

by simplifying their layouts, for example, by the use of 

on-line stations, low speed turns and the elimination of 

grade separation at junctions. However such designs reduce
system capacity, a loss that can be only partially recouped

(1, 12 - 15)



?

In addition to tne quantitative evaluation of perfor

mance yielded by the measures listed above, a number of 

desirable system attributes are considered. Only a 

qualitative treatment of these attributes is feasible, 

however their inclusion in a control scheme will allow 

better system performance to be achieved. These attributes 

reflect trade-offs made elsewhere in the system design.

Thus:-

• There is a big incentive to develop longitudinal 

controllers that allow tne use of simple compact civil 

engineering structures. This primarily affects junctions 
and stations (since straight track costs are fairly in

sensitive to vehicle control) . ̂ ^  Thus control strategies 

should be able to operate successfully with tight radii 

curves, ,at-grade crossovers and on-line stations.

• Good longitudinal control performance is necessary 

both when operating normally and when faults have occured. 

This requires firstly that safety is ensured and secondly 

that adeau3te flexibility and a suitable structure are built 

into the controller to enable the system to cope with 

failures in a fail soft manner. The principle requirements 

for a fail-soft system can be summarised from Chapter 2.
• The structure should be decentralised and prefer

ably hierarchical.
• Control should be divided into function modules.

• Each function module should be located near the 

subject of control and require only local information for 

minute to minute running.
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* Coordination with the rest of the system, to ensure 
smooth running and optimisation, shoula be on a 'parameter 

adjustment' principle so that intervention from the higher 

level improves the performance of, but is not essential to, 

the lower level. The local module should thus be seci- 

autonomous.

* Module complexity should be limited, for example, 

where a process is required in several places, it is 

preferable to duplicate equipment rather than share it, 

algorithms should be chosen for understandebility, rather 
than optimal performance.

* System management almcrithms must be flexible 

and able to respond easily to local anomalies in running.

* Failure states should be chosen to maximise system 

performance whilst in the failed state.

* Communication requirements should be minimised 
and safety status information confined to very reliable 

links.

DESIGN FOR SAFETY

'V.'orst-case ' versus Frohnbalistic Criteria 
Safety can be assured by one of two design approacnes. 

In the first or 'worst-case' approach, safety is ensured 

by a combination of; engineering to much higher standards 
than normal, any component whose failure might conceivably
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lead to en accident; so designing the system that tne failure 

of a component leads directly to a safe (usually low 

performance) state, that is, fail-safe design; using redund

ancy where the first technique is not possible and the second 

does not achieve adequately high reliabilities.

The design specification is determined by considering 

the 'worst-case' combination of events (even if it is an
ticipated that the probability of the worst case combination 

arising is very low).

Traditionally tne very high standards of safety on the 

railways have been ensured by the use of fail-safe design. 
Fail-safe design relies, for its effectiveness, upon using 

systems and components whose modes of failure are few and 

well-known. This is only possible because, long operating 

experience has revealed a catalogue of failure modes, the 

simplicity of key components allows them to be overdesigned 

to make failure improbable, and a safe system-state is 

available. However, even train control is not intrins

ically safe, for safe running is heavily dependent on the 
driver correctly remembering and interpreting his rule book.

A completely fail-3afe system probably cannot be 

designed, particularly if the control equipment is in any 

way complex. Note for example, that it was the unsafe 
failure of a vital 'fail-safe' speed-control component on

(17)a BART train which caused it to leave the track at Fremont.
The alternative to fail-safe design is redundant design, 

in which continuing system operation is assured in the event
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of a single failure. In addition to tne extra equipment 

required, extensive maintainance and repair facilities 

are needed to ensure that tne redundancy is maintained. 

Redundancy is used particularly on aircraft where safe 
system states are not available. Again not all unsafe 

failures can be eliminated by redundant design.^’'''^^

The probabalistic (or fail-soft) design process yields 

the second and more controversial approach to safety. 

Referring to Chapter 2, section 2.2, equation 2, the cost 

term C is chosen to maximise S for a given budget. This 
means choosing an optimal balance between the frequency 

term Rk (which depends on the reliabilities of components) 

and the incident cost Ck (which depends on system design). 

For unsafe failures (that is, failures that cause human 

injury or death), the incident cost Ck is so high that 

the designer can reduce the frequency of such events to 

extremely low levels before cost of the measures approaches 

the expected incident cost. An extensive reliability 

analysis is required to identify all possible faults, and 

associate with each its probability of occurring and an 
expected cost. Such an analysis leads then to the 'best' 

system specification. However, in practice a number of 
difficulties arise.

• The high costs of the reliability analysis of 

complex systems will preclude a comprehensive identification
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of all possible states, consequently tnere is no guarantee 

that all possible unsafe states will have been found.

• Both the low probabilities and the high cost of 

an unsafe system state are difficult to evaluate. Con

sequently in a system where safety considerations place 

a limit on system performance (such as in transport) an 

optimistic choice of system specification may have a very 
costly outcome if the choice proves incorrect. Thus the 

choice of specification must take account of the potential 

errors in the assessment process. As a result, it is un

likely that the 'fail-soft' approach will yield a substan
tially different result, when safety is at risk, than the 

conventional, conservative 'worst-caset analysis. However 

it is interesting to note that reference 19 advocates an

approach to transport safety similar to the fail-soft one
... , . (Dia 24)outlined above.

With automated transport systems, it is likely that 

the complexity of equipment, the use of electronics in 

safety systems, and the lack of operating experience for 

much of the new technology required will force designers 
to use a combination of worst-case and fail-soft design.

In any system, however carefully designed, unsafe 
failures will eventually occur and result in a collision. 
The operating speeds of urban transport systems are likely 

to be modest, so reducing the likelihood of serious injury 
or death. However vehicles must still be designed to 

protect the passengers inside them. This aspect of safety
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c?n draw substantially on current design techniques for 

other modes of transport, particularly the motor car.^J,‘ ^

*t.3 Safety, Headway and Capacity

Safety - Two conflicting factors influence the choice of 

minimum vehicle separation during normal running, the track 

capacity which increases as the minimum vehicle separation 

decreases, and the safety hazards which increase as the 

minimum separation decreases.

Two principle accidents can result from a failure in 
the longitudinal control system; collision with another 

vehicle or obstruction on open track and collision with 

track structure or another vehicle at a junction. In both 

cases, an effective protection can be provided by ensuring 

that there is always sufficient unoccupied track extending 

in front of each vehicle. Thus the vehicle may slow down 

safely if an abnormal situation is detected. The length 
of this zone, the variables that should be monitored and 

the strategies to be used when an emergency is detected, 

have been the subject of much debate. It is generally agreed 

that two types of controller are required - a longitudinal 
controller that normally has control of the vehicle, and an 

emergency controller whose function is to decide whether an 
emergency situation exists and to take appropriate action.

A more detailed discussion of emergency proceedures is con

tained in Chapter However, invariably one function of
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the emergency control is to emergency brake the vehicle to 

zero speed should the distance between the vehicle and 
another vehicle (or obstacle) fall below the specified 

free zone. It is the length of the safety zone which places 

an ultimate limit on the track capacity of a system. In 

the section which follows, the interaction between an 

emergency controller as outlined above and the normal 

controller is discussed and is used as an example to illus

trate the two approaches to safety.

Capacity - The capacity of a system measures its ability 
to transport people. For a given passenger demand, shorter 

headways reduce waiting tine and the associated smaller 

vehicles allow faster services to be operated. However 

costs per passenger increase, with the increase in the 

vehicle numbers, the required reliability of each (to 

maintain the same system dependability) and the complexity 

of control. Consequently the overall benefit of operating 

at a particular headway might look as in diagram 2 5 .^°*a
In an autotaxi system the curve is shifted towards low 

headways, with respect to autotram and automatic trains, 

reflecting the different weighting attached to performance 

measures in the system specification.
Capacity can be formally defined as the maximum flow 

of vehicles that can pass along the track. For constant- 
speed track this can be directly calculated from the safety 

criterion. Through speed changes capacity is very difficult
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to calculate explicitly but can be found by simulation.

At junctions an alternative definition of capacity is some

times required - it is that vehicle flow above which service

becomes unacceptable. (That is, delays become too large,
, . ,(Dia 26)manoeuvres require too much room etc)

Definitions

Flow - average number of vehicles passing a

point on the track in unit time 

Capacity - maximum flow of a section of track

Time headway - time interval between successive tails 
of vehicles measured at a point on the 

track

Mean time headway - - -it--J Flow

Minimum time headway - i---- rr—J Capacity

It should be noted that capacity is essentially a time 

quantity.

Headway - The 'distance headway' between two vehicles is 

the distance between the tails of two successive vehicles 

travelling along the track. It is this distance which is 

directly constrained by the safety criterion, since it must 
not fall below the specified safe minimum, if an emergency 
stop is to be avoided. ̂Dia The specified minimum is
termed the 'emergency headway'. It sets a switching boundary 
vehicle spacings less than the boundary result in emergency
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stops. The designer rust choose a suitable value for this 

boundary and also decide the minimum headway at which 
vehicles normally run such that the emergency monitor does 

r.ot interfere with the operation of the normal control.

4,? Choice of ICormal and Emergency Headway

orst-case 1 Approach - Any collision may result in injury 

or death and, under this approach, is attributed a quasi

infinite system cost. Thus the control system is designed

to make the probability of a collision as small as can
( 22)realistically be achieved.

The emergency headway is chosen so that even under the 
worst-case conditions the vehicle can stop without a coll

ision. Consequently the braking distance is calculated 

with tne minimum guaranteed value of braking rate. It is 

assumed that; the weather is bad; the vehicle is on a down 

grade; it is heavily loaded; there is a following wind; at 

the instant of the emergency the vehicle is travelling at 

the maximum speed allowed by the tolerance of the sp>eed 

measurement; it i6 accelerating and the longest detection 

and actuation delays apply. The calculation of braking 

distance and its sensitivity to changes in parameters is 
well covered in the literature, see for example references 

6,22 and 24.
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Probabilistic Approach - A number of costs have to be 

considered when choosing the size of the emergency headway,

* The cost of a collision. If the minimum vehicle 
headway is set at less than the emergency stopping distance, 
a vehicle encountering an obstacle will be unable to stop 

without a collision. The energy dissipated in the impact 

can be used as a measure of the severity of the collision.

In safety research on conventional motor vehicles, the 

equivalent brick-wall impact speed (E3IS) is used as a 

measure. This is the speed at which the vehicle would have 
to collide with a brickwall to dissipate the same energy.

The EBIS depends on the circumstances of the collision.
For example:-
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In neither case is it clear what is included, however it 

is likely that inflation and increasing compensation 
awards will have substantially increased these estimates 
by today.

The cost of equipment damage is much smaller than 
the cost of injury. The worst collision might destroy 

£30,000 of equipment Cone vehicle and some track)/^0  ̂ the 

33xe accident could severely injure or kill many of the 

passengers, say £200,000 + at today's prices.

If damage and injury is proportional to the energy 
2dissipated, that is EBIS a typical cost curve would look 

as in Oiagram 29. The mawimum system speed gives the 

maximum impact speed possible. The maximum assumed depends 

on whether vehicles can collide head-on or not.
* The cost of emergency braking. This cost is 

primarily a nuisance cost with components corresponding to 
passenger discomfort, energy wasted and resultant service 

disruption. It is probably nearly constant and very small 

compared with the collision cost.

* The cost of braking at too high a rate. If there 

is a fault in the emergency braking apparatus and the brakes 

are too effective, the vehicle stops too rapidly. There

is no collision but passengers may fall and be injured, or 
hit by dislodged luggage. A cost must tnerefore be included 

to take this eventuality into account.
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For each velocity, an average emergency stopping 

distance can be specified, this will be termed the nominal

stopping distance. Consider a vehicle that starts

emergency braking at a headway defined thus:-

Headway = q * nominal stopping distance

and define

r actual stopping distance 
nominal stopping distance

Diagram 30 shows the distribution of stopping distance 

about the nominal.

Diagram 31 shows the cost of collision as a function 
of collision velocity.

is monotonically increasing and depends on initial velocity 

and the behaviour of the vehicle ahead.

Combining all these factors together for a given 

initial velocity gives the cost of stopping C(r,q) as a 

function of r. This is shown in Diagram 32.

Thus, given that an emergency stop is required, a cost 

can be associated with a decision to make emergency headway 

equal to the nominal stopping distance (q=l). The cost is 
reduced if the headway is made larger (q > 1). For all
possible choices of emergency headway a cost can be calculated

For r K. q

For r q
S3I3
E3IS = f(r,q) where f( )

0

Cost (q) C(r,q) dr
all r

This is shown in Diagram 33.
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The use of closed-loop emergency braking gives a better
control of stopping distance so reducing the spread of the 

distribution F(r). Consequently the cost (q) as a 
function of q will be sharper and enable a smaller value 

of q to be used for a given operating cost.
In practice emergency braking will not start exactly 

at the design switching boundary but will take place at 

some point randomly distributed about it. The distribution 

P(q) will depend on factors such as measurement precision 

and decision and actuation time lags. The effect is to 
spread the distribution of stopping points (the stopping 
point distribution is a convolution of the switching and 

stopping distance distributions).

The actual vehicle state will lie in the vicinity of 

the normal operating point unless a failure occurs. The 

distributions are shown on diagram 35 where
K = actual headway under normal control 

during close following

nominal stopping distance

The convolution of the 'normal control' distribution 

P(k) with the monitor distribution P(q) gives the 
■probability of emergency braking. The probability of false 
alarms is the convolution of the monitor distribution with 

that part of the normal running distribution corresponding 
to correct operation. Tne cost of tnese false alarms is 
the nuisance value of emergency braking.

- 107 -



DIAS.3 6 -3 8

i

The
trapezoidal 1 
manoeuvre: ; 
fu ll accn. , 
reached

Velocity



^.7 CCr.T70L CF V7;;iCL" MOV ¿'NTS

Control of venicle movements is a two stage process. 

Firstly a desirable trajectory (expressed as values of jerlc, 

acceleration, velocity and position as functions of time) 

is determined. Then this trajectory is made the input to 

a vehicle controller designed to ensure that the actual 

vehicle state stays near the demanded state in the face of 

disturbances etc.

k , 8  Network Kanamement of Vehicle Fleet
Vehicle management is the most global level of venicle 

control. Inputs such as passenger travel demands, the re

cycling of empty vehicles and fault status are put together 

to produce specific vehicle movements around the network.

Vehicle management techniques can be classified 

according to the amount of predetermined, synchronous 

vehicle movement in the system. Synchronous vehicle move

ment is movement whereby each vehicle follows the sane 

velocity profile along the track, for example, vehicles run 
at a fixed time headway. Conversely through asynchronous 

.track sections each vehicle follows a velocity-position 

profile that varies from one vehicle to the next.
Any system can be conveniently categorised into three 

areas, namely the stations, the open track and junctions. 

Each may be operated synchronously or asynchronously.
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Table 1 summarises the style of operation for 6ome 

commonly proposed fleet management techniques.

Table 1

Technique Station Track Junction

1 Neverstop S S 3

2 Synchronous Slot A S s

3 - Quasi-synchronous slot A S A

k - Asynchronous A A A

S - synchronous 

A - asynchronous

Neverstop Control - Neverstops are of little commercial 

importance but are included here for completeness. Tach 
vehicle follows the same velocity-position profile along 

the whole track. The time headway is fixed, consequently, 

the slower vehicles travel, the closer they become. The 
minimum speed is set by the vehicles closing up completely 

(minimum speed = vehicle length/tirae headway).

Some mechanical neverstop systems have been built. In 

one design, vehicles are all coupled to a variable pitch 
screw driven by a stationary engine. In stations, the screw 

pitch becomes finer, vehicles close up together and travel r 
slowly so enabling passengers to embark or disembark.

Between stations the venicles accelerate and travel at a 
higher speed. A3 all vehicles are mechanically coupled



together, it is not considered necessary to have an indep

endent safety system. High mechanical efficiencies and an 

inherent energy regeneration keep running costs low.
Neverstop systems without mechanical coupling lose 

most of the advantages, as energy regeneration is complex, 

independent safety monitoring is essential and reliability 

is lower. However, vehicles can be arranged to actually 

stop in stations (although only for a rigidly specified 

time).

Neverstop systems are completely centralised. The 

service offered is inflexible. Any fault immobilising a 
vehicle, including a failure to load passengers in the 

specified time must halt the entire system. Consequently it 

is unlikely that such systems will be used in any network 

applies tion.

Synchronous-Slot Control - One of the earliest proposals 

for vehicle management in automated systems was the ’synch

ronous-slot' concept. On the main-line track and through 

junctions, conceptual pointers (or slots) are moved along 

the track, each following the same velocity-position profiles. 

At junctions, the pointers are in synchronism and merge to

gether. At the start of its journey each vehicle is assigned 
to a pointer bv a central control. This central control has 

previously projected forward the system state to identify * 
the earliest path (pointer) through the system that does not 

conflict with other prearranged vehicle movements.
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A passenger usinj the system, experiences a random wait at 

the station of origin, but once on-board a vehicle, has a 

fixed journey tine. Stations are operated asynchronously 

and, so that stopping vehicles do not interfere with vehicles 

that are not, stations are off-line. To enter the station, 
vehicles are diverted from the main-line. To leave the 

station, the vehicle is accelerated up to line speed and 

synchronised with its pointer before rejoining the main-line.

Synchronous-slot has the following characteristics.

• Stations are expensive, as long approach and depart
ure lanes are required. If vehicles are queued at the station 
more track is required. Station size can be reduced by using 

low-speed turnouts from the main-line, however this reduces 

main-line capacity. ^ ^

• Traclcside control is relatively simple. In one 

implementation, the velocity profile is written onto the 
track using closely spaced track markers. The central control, 

broadcasts a stream of pulses to every venicle. nach pulse

is interpreted as an instruction to advance one marker. The 
spacing of the markers defines the qjeed of the vehicle.

(Speed = marker spacing x pulse rate)

• Synchronous slot is highly centralised and has not
the flexibility to react to abnormal running conditions. If 
a vehicle fail3, other vehicles cannot be routed around the 

failure, as there is no guarantee that a conflict free '
alternative route will exist. Similarly, if for any reason,

a station cannot accept a vehicle intending to enter, there
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is no way of re-routing the vehicle elsewhere. Con-enuently 

any failure will cause an immediate shutdown of the entire 

system, with the attendant problems of sudden changes in 

power demand, alternative travel provision for travellers 

and restart.
The passenger is likewise limited by the inflexibility 

of the system. He cannot for example change his destination 

en route except by stopping at the next station he passes 

and rebooking his journey.

* Safety monitoring can in principle be carried out 

relatively simply. As the vehicle paths are known, the 
monitor need only check that vehicles are attached to a 

pointer (that is, there should be no vehicle between 

pointers). However this does not check that the pointers 

are moving correctly. To do this requires the monitor to 

check intervehicle spacing.

The high cost of stations, the large amount of com

munication to the central control and the impossibility of 
incorporating a graceful degredation of service after failures

all combine to make synchronous slot an unattractive control
u (3*0scneme.

Quasi-synchronous Control (?SC) - ^uasi-synchronous control
*

was developed to increase the flexibility of the basic 

syr.chronous-slot technique. venicles are dispatched from 
stations without the guarantee of a conflict-free journey.
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On open track and through junctions, markers follow the same 

velocity-position profiles. However junctions are locally 

controlled, and impending conflicts are resolved by dyn

amically transferring vehicles from one marker to another. 

This point transfer manoeuvre is called slot-slipping. If 

the number of pointers that can be slipped is limited, then 

the appropriate speed profiles can be built into the vehicle 

control logic as stored manoeuvres. The necessary trackside 

control can then be limited to the control of the ordering 

of vehicles through the junction.

• Journey times under SSC are no longer deterministic, 
as random delays are introduced at each merge. However 

waiting time at the station is reduced as vehicle departures 

can take place immediately a spare pointer passes the 

station.
* QSC allows a decentralised control structure to be 

used. This reduces communication costs and allows the system 

to respond flexibly to fault conditions. As the vehicle 

route no longer needs to be predetermined, a network link, 

disabled for some reason, can be isolated and vehicles re
routed around the fault (provided that an alternative route 

.exists) .



direction, or onto special reserved track. Similarly at
stations, access may be denied occasionally as a consequence 

of congestion or fault and tne vehicle must go to another 

station cr return for another attempt.
* Vehicles under SSC are not necessarily close to a 

marker, consequently safety monitoring must check inter

vehicle spac ing. ̂ ^

Asynchronous control - In asynchronous vehicle control 

no attempt is made to predetermine vehicle movements. 
Junctions, stations and open track can all be controlled 

locally with venicles being handed on from one section to 

another. Detailed information about particular vehicles is 

not necessarily required. A central controller is not 

essential but one can be used to improve the performance of 
the system (for example by coordinating junction operations 

and modifying routing commands to contain the effects of a 

fault, or congestion). Some asynchronous systems allow a 

trade off to be made between line speed and capacity. To 

take advantage of this property the control system must 
communicate to vehicles, commands dependent on the individual 

situation of the vehicles. Synchronous schemes which simplify 
control requirements so that all vehicles have the S3me 

trajectories could not make use of this property.
P

Asynchronous vehicle management can be realised using 

two control techniques. In the first, the vehicle-follower 
method, an on-board vehicle controller maintains safe
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vehicle-spacings by using venicle-to-vehicle ranging.

The inter-vehicle spacing is made some function of vehicle 

own speed and speed and position relative to one or more 

preceeding vehicles.

On open track where there is no preceding vehicle in 

range, the venicle travels at the track speed limit or at 

a speed commanded from the trackside. The vehicle controller 

can be considered as having four constraints, safe following 

speed, track speed limit, control speed, and comfort limits. 

It chooses the most restrictive as its command input.

When vehicles are running in a group under headway
control they form a platoon. A particular requirement of

the headway controller is that such platoons are spatially

stable, that is, disturbances to the leading vehicle are

attenuated as they pass do«n the vehicle string. It has

been shown that provided

Vn«i (.iw; I s  , ,  , ,- 1 ^  1 for all w

( 3 7 )

Vn
( ,iw) l
(jw) 1

this condition is satisfied,
.th
(3Ü) where

Vn - velocity of N 1"*1 vehicle
thVn+i - velocity of N+l vehicle 

If this condition is not satisfied any disturbances become 
multiplied by the cascaded control action of the following 
vehicles so that the last vehicle undergoes large fluctuations 

in speed etc. ,
In the second method of asynchronous control, marker- 

follower control, inter-vehicle ranging is removed. Instead, 
individual vehicle trajectories are designed to ensure that
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safety constraints will not be violated (provided the system 

is working nornally). Trajectories are then communicated 

to vehicles as a time-varying position set-point to the 

vehicle propulsion control. Such an arrangement decouples 

the motion of one vehicle from the next so removing the 

string-stability constraint. As no ranging is required 

measurement and communication requirements are reduced. 
However, accurate measurements of vehicle position and 

complex calculations must be made instead.

^.9 Performance Characteristics of Fleet Management 
Techniques

Trapezoidal Speed Change Profile - All vehicle trajectories 

can be viewed as a sequence of speed changes induced by 

commands from the trackside. The trackside calculates the 

desired trajectory using the fundamental equations of motion. 

It is usually desirable that the speed-change manoeuvre is 

completed in minimum time (and distance), that is, the 

venicle realises its limits on jerk, acceleration and velocity 
where feasible. This minimum-time speed-change manoeuvre 

is effected using the trapezoidal acceleration profile.
Assuming that tne same limiting values on jerk and 

acceleration are used for both acceleration and deceleration, 

the trapezoidal profile is described by the following 

equations in conjunction with diagrams 36 - *»1.
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1

where

If (V? - V^) ^  AT^ ie, maximum acceleration
is realised

then T1 = A
J

and (v2 -V = a (Tx + T2)

and D

or D

v 2 n
[*-<)'
\ 2A '

if (V2 - V $ AT1 ie, '

then al = T1J
and (V2 - V = JT1
and D = (V2 + V1)T1

or D (v2 + v X V

vi - initia1 velocity

V2 - final velocity

2J

maximum acceleration 
’ is not reached

maximum acceleration 
acceleration limit reached 

acceleration application time 
period of constant acceleration 

manoeuvre distance 
jerk value
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Headway Changing Manoeuvre - A second type of manoeuvre 

is frequently used, namely a manoeuvre to change the spacings 

between vehicles. This is achieved by using a three stage 

operation. Stage 1 changes the speed of the vehicle from 

the initial to an intermediate level V ,̂ stage 2 is
a constant speed section and stage 5 is another speed change
from the intermediate speed V. to the final speed V„i 1 2

(Dia 4-2)

If the manoeuvre must take a time T and use a distance X 

then it can be snown that the necessary intermediate speed 
is

Vi = [  alV2 ' a2Vl ’ V 2  [2 ±  ( 8 2 + A s

( ( V l  -  v2 ) 2 ♦  ( a 2 -  a x ) (Y -  2X) + 2 ( r ±a 2 -  v .^ ) * } )  ]  j

where

Z = T (— -------)

Y

Q-> =

^ lVl  ♦ V 2

a
J

2

J = jerk limit used
a^ = acceleration reached in stage 1

a. = acceleration limit reached in stage j
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A standard safety criterionStandard Emergency Headway 

has been adopted so that the performance of the fleet 

control techniaues outlined above can be compared. This 

safety criterion can be summarised thus:-
* There are negligible actuation and detection delays

* Jerk constraints during emergency braking are not 

applied

* A guaranteed rate of emergency braking is available (ae)

* Collisions at any speed are not allowed
* The minimum distance headway during normal running 

must not be less than K x emergency headway where K is 
a safety factor.

This specification yields an emergency distance headway 
V2H (v) = -5--- + Le 2. ae

where
V - vehicle speed

L - vehicle length
ae - emergency braking rate

and a minimum distance headway for normal running of H^iv)

H_(v) = K x H (v)D e
(KB Each vehicle has a tolerance zone about its commanded 
position. With vehicle-follower systems only one such zone 

need be included in the headway, with marker-following two 

must be included. This consideration is reflected in the 

choice of K )
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The Capacity of Open Track - The capacity of constant- 

speed open track, C(v) is limited by the minimum normal 

distance headway.

Plotting C(v) against V yields the familiar hump shaped

The capacity of constant-speed open-track cannot be exceeded. 

It is an upper limit on vehicle flows. Diagrams 44 and 45 

show the distance headway and time headways respectively 

as functions of velocity.

4,10 Synchronous Control

The capacity of synchronous track is constant because 
the time headway is fixed. This means that the safety 

criterion will be violated both above a maximum speed and

below a minimum speed. Consequently vehicles must travel
- , (Dia 46)between these speeds.

If speed charges are required anywhere on synchronous 

track, for example because of small track radii at corners , 
or station turnouts, the time headway between vehicles must 

be increased from the constant speed minimum. The increased

C( v) V 1 1

where
time headway between vehicles

curve.(Dia 43) The speed at which capacity is a maximum

is denoted by Vsa .̂. This maximum occurs when the emergency 

stopping distance x K = vehicle length x K

Vsat

1 2 2



Capacity [veh/sec]
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headway is necessary because vehicles close up as they ro 

through a speed reduction.

Consider the position-time trajectory of a vehicle and 

the locus of its associated minimum headway as shown in 
Diagram 47.

The closest that the vehicle may approach a previous 

vehicle is controlled by the locus of the minimum headway, 

since no other vehicle trajectory must pass through the 
shaded zone. (If it did the safety criteria would be 

violated). On synchronous track, the speed reduction always 
starts at the same point, therefore a sequence of venicle3 

looks as shown in Diagram 4o, where K(t) is the locus of 
headway, s ( t )  is the trajectory of vehicle, and critical,

critical is the time, position coordinate of the critical

point.
The minimum time headway on synchronous track is T ,c

where Tc is the maximum time separation of the vehicle
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K D _ separation of vehicles 
Hg(t) ” emergency headway

There is no simple way of specifying exactly where 

during the speed-change manoeuvre the critical vehicle 

separation will occur or what the value of the separation 

will be.

A reasonably accurate assumption can be made, namely

that the critical separation occurs at a point whose position

time coordinates are from the start of the manoeuvre.

This allows an estimate of the critical separation to be

made.(Dia 52)

Tc ■ i ’i *
a

42H, a + a
d 2 5 J

provided/

( ?

. j ! '
6j2 j| <  Hd < Sm

where

Tc - critical headway

J - jerk used
a - acceleration

V1 - start velocity

V2 - end velocity
K, - distance headway at velocity 

Ĥ , - time headway at velocity

Sm ‘ V  * ± ♦ Vl((V2 - Vl) - a U  'h (a (V2 - Vl)
J 6 J2 ' a  J / ' a
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Notes

i. The estimate gives a slightly optimistic value 

for the critical headway and does not apply for final speecs 

that are either close to the initial speed or ver low.

ii The estimate depends only on the initial speed 

V.
iii The use of lower jerk values increases the 

capacity through the manoeuvre but at the expense of a 

longer manoeuvre zone.

Diagram 53 shows the variation in the capacity of a speed 
change manoeuvre according to initial speed. (For a final 

speed satisfying Note i above)

Diagram 5^ shows the variation in the capacity of a speed 

change manoeuvre according to final speed (with a constant 

initial speed). The region of constant capacity corres

ponds to the estimate proposed above.

Diagrams 55.56 show the effect of limiting jerk on the 

time separation and safety factor curves plotted as functions 
of distance and time respectively.

Diagram 57 shows the plot of time separation against 

position through the manoeuvre for different speed changes 
(from constant initial speed (V^) to a variable final speed

(v2 ) ).

Diagram 5# shows the same curves but for a speed-up '

manoeuvre from a variable 3tart speed (V^) to a fixed 

final speed (V?).
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Diagrams 5 7 - 5 8

These diagrams show the variation of time separation 

a manoeuvre as a function of position. Each picture 

of a set of speed changes.

Diagram 57 a,b,c

n^ Speed change from 12 m/s to 11.5 m/s 

j in steps of 0.25 m/s
I
n44 Speed change from 12 m/s to 1 m/s

Diagram 58 a,b

n^ Speed change from 1 m/s to 12 m/s 

| in steps of 0.25 m/s

n,. Speed change from 11.5 m /s to 12 m/s

through 

is comprised
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Speed-up manoeuvres are much simpler than slowing- 

down manoeuvres 6inoe the critical separation occurs always 

at one or other end of the manoeuvre and has a value equal 
to the steady-state time headway.^'*'2 5 9 ,6 0 )

4.11 Quasi-Syncnronous Control

The performance of quasi-synchronous controllers differs 

from synchronous controllers because, at some points on the 
track, headway changing (slot-slipping) can take place.

Headway changing is achieved by delaying a vehicle by an 

integer number of time headways. vehicles could also be 

made to advance slots, but, as long distances and high speeds 
are required to complete the manoeuvre, it is rarely attempted. 

There are a number of schemes for slipping slots -

• The vehicle stores only a manoeuvre to slip one

slot. This must be used repeatedly if a number of slots
. . , (Dia 61)are to be slipped.

Notes

i The vehicle motion is uncomfortable

ii The length of the manoeuvre zone depends on the 
number of slots slipped

. iii Simple vehicle control
iv Allowance must be made in the headway for the speed 

change.
0

• The vehicle ha3 a fixed intermediate speed. The 

manoeuvre is continued for differing lenrthe of tire according 

to the number of slots to be slipped.
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!■; o t e s
i Manoeuvre is more comfortable

ii The length of the manoeuvre zone depends on the 

number of slots slipped but is less than in the previous 

case.
iii vehicle controller needs only one intermediate 

speed but must store the timings for each manoeuvre to slip 

a set number of slots.
iv Allowance must be made in the headway for the 

speed change.

* Vehicle has a fixed manoeuvre 

mediate speeds are varied according to 

to be slipped.

Notes

distance. The inter- 

the number of slots

i Manoeuvre length is fixed

ii vehicle controller must store the speeds and 
probably the timings for each manoeuvre. If the manoeuvre 

distance can vary from location to location in the system, 
on-board or tracksiae processing will be required.

iii Allowance must be made in the headway for the 

worst case speed change. (That is, minimum manoeuvre 

distance and maximum number of slots slipped). •

• If the constraint that each manoeuvre must start 

at the same place is relaxed, then the minimum headway can 

be reduced, but at the expense of the manoeuvre backing up
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the track. The achievable capacity of the track is not 

increased because gaps must be left in the traffic flow to 

prevent the manoeuvre backing up too far. However, short

term transient overloading can be tolerated.

Notes
i The control of slot-slipping is made much more 

complex
ii Communication requirements are increased as there 

must be continuous communication in the control zone.

4.13 Asynchronous Vehicle-Follower Control
The capacity of constant speed track under vehicle- 

follower control depends on the vehicle-following law used. 

There are three laws commonly used.
1 Fixed-Spacing - a fixed minimum inter-vehicle 

spacing is probably the easiest to instrument and control. 

Diagrams 6 5 to 68 show the headway, capacity and safety 

factor as a function of velocity.
2 Constant-Capacity - vehicle headway is proportional

, , (Dia 6 9 - 72)to velocity.

3 Square Law - vehicle spacing is proportional

to the stopping distance. It is only with a square law
(Dia 73 - 76)



\
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remaining vehicles in the group run behind the leader under 

vehicle-follower control. Each platoon resembles a loose- 

coupled train but, because individual vehicles are not 

mechanically coupled, it can be split and reformed without 

slowing down.

There are two styles of platoon control. In one, the 

group of vehicles follow very close together and for longi

tudinal control and safety purposes are considered as one 

long vehicle (individual vehicles are so close together that 

should one vehicle decelerate sharply, the following vehicles 

develop only a small relative velocity before the inevitable 
collision). At diverges, the vehicle group becomes split 

up as individual vehicles take their own routes. After the 

diverge the vehicles coalesce into new groups."

The advantage of such a control scheme is that the 
benefits of a small-vehicle type of service can be provided, 

whilst retaining some of the simplicity of control associated . 

with long-headway systems. This apparent simplicity is 

however illusory, due to the severe safety and control 

problems associated with the making and braking of vehicle 

groups. For example - at the instant after a vehicle has 
left a group, the two remaining groups of vehicles will be 

separated by a gap which must either be closed up or expanded. 
During either transition there will be a period of high risk. 

This vulnerable state could only be tolerated if the vehicled 
were travelling slowly, or if both track and vehicles were 

engineered to very high standards and a probabalistic safety
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criterion were used. Furthermore, as inter-vehicle spacings 

of any size can arise during normal operation, an indep

endent safety monitor cannot use intervehicle spacing as a 

safety criterion. As a consequence a much more complex and 

expensive safety system must be used which checks for the 

faulty operation of each section of vehicle equipment.

Notwithstanding the difficulties, two organisations 

have proposed using this form of control, FLYDA, and MATRA 

in their ARAMIS system. MATRA built a test track but it 
seems likely that they have now abandoned the enterprise.

In the second style of platoon control, vehicles always 
travel a safe distance apart. Platoons can no longer be 

considered as one vehicle, as the effect of the follower 

control is to make each vehicle follow a different trajectory

from the next. In particular, the further down the string
.. . , . .. . (Dia 77-79)a vehicle lies, the more gentle will its manoeuvre be.

Consequently to change the speed of a platoon takes a 
long time and requires a considerable distance.

The time and distance can be reduced by making the lead 

vehicle execute a very exaggerated manoeuvre such as shown 

in Diagrams 80 - 82, where the front vehicle is slowed to a 

low-speed before accelerating to the final speed.

All vehicles in a platoon passing through a speed 

restriction and then returning to normal line speed experience 

the same delay as the front vehicle. However, the front 
vehicle must commence its manoeuvre some distance before the

restriction in order that the last vehicle in the platoon
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also complies with the restriction. This results in extra 

average delay.
Models of the vehicle system carried in the trackside 

controller cannot easily be made to take account of the 
disturbances acting on the real vehicles. Consequently, the 

accurate prediction of the effect a demanded manoeuvre will 

have on a vehicle string, prior to its being executed, is 

difficult. This makes it impossible to use junctions and 

speed restrictions efficiently.
As a result platoon-controlled vehicle-follower systems 

are not attractive. Although they offer a highly de
centralised control system with low track-to-vehicle

communication requirements, the performance that can be
1achieved is severely limited.

Vehicle-Follower Systems with Supplementary Trackside Control 

of Individual Vehicles - Vehicles operate under vehicle- 

follower control, that is they select the most restrictive 

constraint in force at the time. However when specific 

manoeuvres are required, every vehicle receives trackside 

control commands (unlike the platoon-controlled scheme in 

which only the front vehicle of a group receives commands 

from the trackside).
There are two important types of manoeuvre - speed 

restrictions and the close-packing of vehicles.
For a speed restriction, vehicles are required to be 

travelling at a set low speed after a certain point on the
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track has been passed. The front venicle of a platoon can 

be commanded to follow the appropriate trapezoidal profile. 

Simultaneously the remaining vehicles in the platoon start 

to slow down according to following law characteristics.

If left uncorrected, each vehicle would pass the start of 

the speed restriction at progressively higher speeds.

Therefore at some point each vehicle must transfer from its 

vehicle-following trajectory to the trapezoidal trajectory. 

(That is, the demands of the trackside control become more 

restrictive than those of the vehicle-follower control).

If vehicles are to be delayed only the minimum amount they 
must switch trajectories at a point which varies from vehicle 

to vehicle. To do this each vehicle carries a

processor enabling it to calculate when to join the trape
zoidal profile. Communication from the trackside is a fixed 

point messare conveying the new speed limit and sited a 

suitable distance in front of tne restriction. Alternatively, 

the processor can be placed at the trackside and transmits 

to the vehicle, using a continuous communication link, the

so that tne fastest venicle can slow down before the start
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of th- speed restriction, slower vehicles will consequently
. (Dia «5*+)be delayed by more than is necessary.

When a vehicle switches from a vehicle-follower 

trajectory to the trapezoidal trajectory the enforced 
slowing down introduces gaps into the vehicle platoon, 

that is, the platoon spreads out. The extent of this 
platoon elongation is of interest since it is related to 

the capacity that can be achieved through speed restrictions 

or junctions.
In the simplest form of speed restriction, all vehicles 

are commanded to change to the new speed at a fixed point 
on the track. A platoon encountering such a speed restriction 

becomes very spread out. Diagram 85 shows the time separation 

of vehicles before and after such a speed restriction. It 

can be seen that the worst case is inferior to what could 

have been achieved had a synchronous type speed change been 

carried out (that is, the incoming vehicle spacings have 
been increased to allow for the speed change. All vehicles 

carry out the same manoeuvre at the same point. See section 

^ . 10 )

At the other extreme a speed restriction could be 

operated by slowing down the front vehicle of a platoon 

sufficiently far in front of the restriction so that by the 
time the back vehicle of the group has reached the restriction, 
it too has reached the new speed. A long manoeuvre distance' 
is required, the length of which depends on the platoon 

size.^Dia (N3, A theoretical analysis, if it could be
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Time
separation [s]

t

DIA.85 Time spacing between vehicles of 
a platoon after passing through 
a simple speed reduction from 12 to4 5 m/s 

N is the time separation between 
the n-l and the n-th vehicle 
a -  is the synchronous headway 
appropriate to the speed change 
b -  is the h igh - speed, close - packed 
headway
c -  is the low-speed . close - packed 
headway

DIA 86 Manoeuvre distance as a function of 
platoon size for a speed change
from 12 to 45 tm/s]
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carried out, may well show that an infinite manoeuvre distance 

is required. The data presented here have been produced by 

a simulation in which the manoeuvre is considered as finished 

when all the vehicles of a platoon are within l i e  of their 

final speed). However, vehicles remain close packed at the 
end of the manoeuvre. A reduction in the manoeuvre distance 

can be traded for a decrease in the packing of the vehicle 

platoon by the following technique. With reference to 

Diagram 87, at point B there is a mandatory speed restriction, 

all vehicles must pass this point at the new low speed. At 

point A a speed reduction command is given to the front 
vehicle of the platoon. Distance X is the manoeuvre zone. 

After the front vehicle has passed point A all vehicles 

start to slow down under vehicle follower control. As they 

come close to point B they are forced to slow down from 

what ever speed they have, to the final speed. Diagram 88 

shows the trade-off between the length of the manoeuvre zone 

X and the packing that can be achieved for a particular 

speed reduction.

Once past the speed reduction zone vehicles travel at 

the speed limit on a constant speed section of track. They 
maintain the spacings that were created at the start of the 

section. This is because to change the time spacings between 
vehicles requires vehicles to travel at different speeds,
(in a practical system, inaccuracies in the vehicle speed 

measurement would tend to make vehicles move apart or close 
up slowly).
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A
>

B
p>

----------------------------  X ----------------------- --
Speed command Mandatory
post for front speed limit
vehicle of platoon

DIA.87

Time

DIA.88 Time of vehicles in a
platoon os a function of X 
after a speed reduction from 
12 to 4-5 m/s
a- i s  the high speed close 
packed headway 
b- is the low speed close 
packed headway
[N] as for dia.85
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Vehicles are released from the speed restriction at 

a fixed point on the track. Front vehicles in a platoon 

execute a trapezoidal transition to the new high speed. The 

behaviour of subsequent vehicles depends on the spacings 

between the vehicles on the low speed section.

Suppose the time spacing between two vehicles is greater 

than the minimum time headway at the new higher speed. Then, 

if the first vehicle accelerates on a trapezoidal profile, 

the second vehicle will do so also. The vehicle following 

controller will not be activated and the time spacing between 
the two vehicles will be the same at the high speed as it 

was at the low speed.
If the low speed time-spacing between the two vehicles 

is less than the minimum time headway at the higher speed 

then, under the same conditions for the front vehicle, the 

second vehicle will initially accelerate on a trapezoidal 

profile. At some point its vehicle-following control will 
be activated and delay the following vehicle. Finally when 

both vehicles are travelling at the high speed they will be 

separated by the minimum time headway for that speed.

A packing manoeuvre has the following specification - 
groups of vehicles travelling at one speed, not necessarily 

close packed are manoeuvred so that by the time they reach 
the end of the manoeuvre zone tney are travelling as close- 

packed as possible at a second speed. Packing manoeuvres 

of this type ere essential for the efficient use of junctions.
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The manoeuvre is carried out in three stages. The first 

stage is a speed change to an intermediate 3peed. This 

intermediate speed is different for each vehicle. During 

the second stage, vehicles run at their intermediate speeds.
In the third stage each vehicle changes speed to the final 

speed.
The intermediate speeds are calculated so that by the 

time vehicles have reached the end of the second stage they 

have closed up any gaps. The closer the intermediate speeds 
are to the final speed the better is the packing achieved 

on the output. With reference to Diagram 8 9 , the inter
mediate speeds depend primarily on the delay time T and 

the length of the manoeuvre zone D. Both increasing T or 

decreasing D will reduce them. Increasing D reduces 

the spread of intermediate speeds between the front and back 

vehicles of a platoon and therefore helps improve packing,

(but T must be increased to compensate).

The effects of the vehicle-following constraint on the 
manoeuvre are two-fold. Firstly, the start of the manoeuvre 

backs upstream, to a degree dependent on the packing of the 

incoming stream of vehicles. Secondly near the end of the 
second stage of the manoeuvre the vehicle-following controller 

takes over control of vehicles in an unpredictable manner 
and delays vehicles by small amounts. This makes the packing 

less effective. This unpredictability makes the efficient » 
operation of junctions difficult to achieve. (For a more 

detailed discussion of the packing manoeuvre and its effects
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DIA.89 Schem atic  o f  packing manoeuvre 
showing principle pa ram ete rs

I
i
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on junction control refer to Chapter 6). Diagram show 3
the position-tine curves of vehicles in a packing manoeuvre.

Asynchronous Point-Follower Control - The combination of 

asynchronous vehicle management with point-follower control 
has not been considered in the literature. The scneme offers 

some of the simplicity of marker-following with the improved 

performance allowed by asynchronous operation. Marker

following uncouples vehicle movements, so removing some of 

the unpredictability of vehicle-follower control. The design 

of the vehicle controller is also simplified as the condition 

for platoon stability is no longer relevant.

With asynchronous point-follower control a trackside 

controller computes an individual trajectory for each vehicle. 

This trajectory is chosen so that vehicles travel as close- 
packed as safety criteria allow. Thus unlike vehicle- 

follower systems, in which the vehicle-follower controller 

ensures the safe spacing of vehicles, in marker-follower 

systems vehicles are always given safe trajectories. The 

computational requirements are much increased, but actual 

vehicle movements are more predictable.

In marker-follower control, the trackside computes the 

desired trajectory and transmits it to the vehicle in a 
convenient form. The vehicle decodes the transmissions into 

a position-time profile, which is input to the vehicle *

c ontroller
As for vehicle-follower control, there are two important 

manoeuvres, speed changing and packing. There are two time
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spacin^s of importance! the minimum time spacing of vehicles 

travelling at constant speed Tmin, and the minimum time 

spacing (Tap) required for vehicles to travel safely through 

a fixed point speed change manoeuvre. Tsp is greater than 

Tmin because it includes a component for the speed change 

(Section 4 .10 ). Vehicles arriving at the speed-change zone 

with spacings between Tmin and Tsp will start their man

oeuvre further and further upstream. Conversely if their 

time spacings are greater than Tsp the manoeuvre start 
point will move downstream. The range of start points is set 

by the stochastic properties of the gaps in the incoming 
vehicle flow. If the start point moves too far up the track 

so that it moves out of the control zone then S3fe control 

is not possible and the emergency controller will operate.

(Dia 91, 92, 93)
The trackside controller must determine the location 

of the manoeuvre start point. To do this it must have 

available to it sufficiently accurate knowledge about the 
behaviour of the previous vehicle, in order to make safe 

predictions about future vehicle movements. This requires 

good measurements around the control zone ana/or highly 
predictable vehicle movements, which in turn requires a very 

high quality of vehicle controller.
Packing manoeuvres are carried out in a similar way to 

that described under vehicle-follower systems. Each vehicle ' 

passes through a speed change to an intermediate speed.

This intermediate speed is chosen to close up gaps in the

166



- 167 -







vehicle stream. a second speed change to a fixed final 

speed completes the manoeuvre with vehicles leaving more 

closely packed and at a different speed to when they arrived. 

(Dia 90b)

The trackside controller must adjust the start points 

for each of the two speed changes and simultaneously choose 

the intermediate speed. These three operations interact, 

consequently an iterative procedure must be used to determine 

the complete trajectory. The algorithm does not present any 

problems of convergence and is discussed in more precise 

detail in Chapter Seven.

Comparison of asynchronous Vehicle-Follower, and Marker- 

Follower Control - Asynchronous vehicle management allows 

amuch more flexible control of vehicle movements than 

synchronous control. In particular, asynchronous systems 

can operate for short periods with vehicle flows higher than 

the system capacity, although queues will propagate steadily 

and delays increase accordingly.
In steady state operation the capacity of asynchronous 

systems is no better than synchronous systems. (Except in 

.vehicle-follower schemes, where the headway needs to in
corporate a smaller allowance for the tolerance of the 

vehicle's actual position about its commanded position; 

this effect would be small).
If a stopping distance headway law is used better junction 

performances can be achieved because line capacity can be
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traded for speed. This may improve the network performance 

markedly as junctions are usually the capacity limiting 

elements.
Vehicle-follower control is better than asynchronous 

marker-follower control in its response to failures. In 

many situations the emergency controller will not be activated 

as many common faults can be tolerated by the normal controller, 

for example, failures which cause a vehicle to run slowly or 

coast to a rest, or even use full service braking, since the 

•normal' vehicle-following control will adjust the speed of 

the following vehicle accordingly. This advantage is offset 
by the difficulty of providing inter-vehicle ranging aevices 

that are safe, accurate and inexpensive. Marker-follower 

control does not have such capabilities and any failure in 

the normal control system will probably result in emergency 

control action.

Marker-follower control is better than vehicle follower 

control in that vehicle movements are decoupled. This makes 

vehicle trajectories more predictable and may therefore 

improve junction performance. The difficulties of inter
vehicle ranging are removed, but other problems are intro

duced. In particular, high quality vehicle controllers are 
required, or alternatively substantial track to venicle 

communications. Ivith both formats, accurate position, velocity
Pand acceleration measurements are essential.
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¿f,15 .actual Venicle Controllers

The previous discussions presented in this chapter have 

concentrated on the design of ideal vehicle trajectories.

The characteristics of the vehicle and its controller were 
taken account of by a suitable specification of the normal- 

running, safety factor. These ideal trajectories have been 

considered as being input to the vehicle controller whose 

task is to maintain the actual vehicle trajectory near to 

the desired trajectory. The accuracy with which the vehicle 

tracks its inputs depends on the size of the disturbances, 

the control inputs and the dynamics of the vehicle and 

controller. The better this accuracy, the smaller the head

ways that vehicles can be allowed to run at and the higher 

the maximum track capacity that can be achieved.

A simple block diagram of the vehicle is shown in 

Diagram 9^. The differential equation describing the long

itudinal motion of the vehicle is

M(t) 4r = ~ Fa(V,Vw) + F - Fr(v) - M(t)gsinS - B at
where

M(t) - mass of the vehicle which varies according to 

passenger loading 
V - vehicle velocity

Vw - wind velocity (relative to the track)

F - propulsion force

6 - gradient of tne track

B - braking force
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Fa - aerodynamic drag force

Fr - rolling resistance
an approximation to the aerodynamic drag force is given by 

Fa *  ^ pA Cd (V - Vw)2

where
A - frontal area of the vehicle 

od - coefficient of drag

p - density of air

and to the rolling resistance is 

Fr (Cs ♦ CrV) M(t)

where Cs and Cr are constants.
The propulsion force F is typically modelled by a 

first order lag (representing for example, a separately 

excited DC motor).

that is
dF
dt “ - i F ♦ Gi

r
where

' t - time constant

i - motor input

Q - gain constant
Modelling of the braking force B is more difficult 

as it depends on the type of brakes (for example, regenerative 

mechanical fixed-force, closed loop etc)
It is evident that even this simplified representation 

of the vehicle dynamics is highly non-linear. Two approaches* 

have been used by researchers. In one, the equations are 

linearised about the vehicle operating point. That is, the

173



vehicle is assumed to be running in a quasi-steady state 

and the controller is designed using classical linear or 

modern control theory to limit perturbations about the 

operating point. Some researchers have

also considered the sensitivity of controller gains, derived

by such techniques, to changes in the nominal operating point,
. . . . ( 50, 5^, 62)vehicle mass, etc.

In the other approach, simulation^  ̂or full scale 

experimentation is U3ed.^^*

In all cases the control system should provide a satis

factory performance in several basic modes of operation, for 

example, constant speed, and speed transitions. For each 

mode of operation the controller must meet the usual design 

criteria on control-loop stability, transient response, 

bandwidth, and steady state error. In addition the vehicle 

trajectory must be insensitive to external forces such as 

wind gusts, variations in friction, and track gradient, yet 

the controller must not permit the vehicle to exceed specified 

bounds on acceleration and jerk. Vehicle-follower controllers 

must in addition, ensure that disturbances decrease in 

amplitude at successive vehicles, as the disturbance pro

pagates along the vehicle string, that is, a platoon of 

vehicles must be string stable.
There are many papers concerned with the design of

*vehicle controllers. A survey of the most important is 
presented below, however, no attempt is made to analyse in 
detail tne conclusions of the papers surveyed.
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T h e  l i t e r a t u r e  c o v e r s  t h r e e  c l a s s e s  o f  vehicle c o n t r
1 The control of a group of vehicles running in a 

platoon (string controllers).

_ Control of a vehicle following a track marker.

3 Control of a single vehicle following another

vehicle.

]L Controllers of Vehicle Strings - A large number of papers 

have been written on the optimal design of controllers for 

strings cf cascaded vehicles travelling along a track.

To formulate the problem, the vehicle equations are 
linearised and a quadratic cost function defined. From this 

the optimal linear regulator can be derived. to effect

control in such a system all the states of all the vehicles 

must be measured and transmitted to the controller, and the 

control signals retransmitted to the vehicles. It is usually 

assumed that the means of dat3 communication between vehicles 

and trackside control presents no problems.

Typical of such an analysis are a series of papers 

produced by anderson and Powner et al. In references 39 
and 41 a cost function taking account of velocity and spacing 

errors is used. In reference 40 the regulator incorporates 
Kalman filtering to take account of noisy measurements and 

random disturbances. Reference 42 extends this work to 

examine the effectiveness of several different multi-variable 

controller designs. A controller is derived which carbines 
Kalman filtering with integral compensation and model-
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reference control. This controller removes steady-state 

errors and is claimed to effectively regulate the vehicles 

over a wide range of operating conditions.

Other researchers have carried out similar analyses,
(43) ( 4 5notably Athans and Levine , and Peppard and Gourisnankar.

The latter proposes the use of jerk as a controlled variable

and includes a (jer$^ tern in the quadratic performance index.
This has the effect of reducing jerk during transients and

so increasing the ride comfort.
The difficulty of supplying adequate communications for

such controllers has been recognised by a number of people.
(4o)Chu develops an optimal decentralised controller that

requires only limited information transfer. He demonstrates 

that information about all vehicles is not required to control 

each vehicle, as the interactions between the vehicles 

diminish rapidly as more and more intermediate vehicles come 

between them.
( if  ($ if o  )A different approach is used by Forter and Crossley ’

(47)and Hetrakul and Fortman. They use modal control
techniques to produce a controller requiring fewer com

munication links than previous controllers.
A model-reference adaptive control policy is described 

by Powellf^^ Fixed-gain control laws require a detailed 

knowledge of the vehicle characteristics under all operating
*conditions. For system responses to be satisfactory over 

e*en a small range of system parameter variations, control 

gains have to be precisely chosen. However bv using the
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adaptive arrangement described, the controller is made 

insensitive to vehicle loading, wind drag and friction.

However, computation of the controller gains requires the 

real-time solution of a set of simultaneous differential 

equations.

Although many researchers have tackled the control of 

vehicle strings, the problem has little practical significance. 

A bibliography and detailed revue of early work is contained 

in Tabak.^

2 Controllers for Vehicles Following Moving Track Markers 
Of much more practical application are controllers designed 

for marker-follower use.

In one implementation of synchronous slot, a number 

of track markers are placed along the track. vehicles receive 

regular pulses instructing them to advance one track marker. 

(Vehicles therefore travel separated by an integer number of 

markers at a speed which depends on the marker spacing and 

the pulse rate). A vehicle travelling faster than it should 
be will arrive early, if slower it will be late. An error 

in arrival time can be converted to approximate position 

error by multiplying by velocity. This is a sampled data 

control system where the actual sampling rate varies about 

the standard pulse rate according to the error in the vehicle 

arrival time.
This type of controller has been investigated by Whitney 

tuu\and Tomizuka) They show that, a proportional controller
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is unsatisfactory (there is a conflict between adequate 

damping and small steady state error), proportional plus 

derivative control is feasible but the gains appropriate 

for small steady state errors give an uncomfortable motion, 
and proportional plus integral plus derivative can give a

good performance.
( =6)Brown also discusses the PID controller and shows

that it will track an acceleration limited moving pointer, 

with small errors and low sensitivity to disturbances.

Smith''" ' covers the optimal sampled data controller.

His scheme requires a measurement of position error and uses 
state estimation to construct an approximate state vector 

that allows the optimal control to be implemented.

An alternative implementation of marker-following 

requires continuous track-to-vehicle communication links.

The trackside computer polls each vehicle in turn to effect 

control. A number of papers discuss the design of such 

longitudinal controllers, using both continuous and sampled- 

data theory, for example Wilkie and Kornhauseri^ The
latter derives, for the continuous case, an optimal controller 

incorporating jerk into the performance index. In (52) he 

extends this work to take account of finite data rates,

sampling and noise in communication links.
(5^ 57 53)In a series of papers, Garrard et al ’ ’ ' derive

optimal linear regulators for marker follower control. They ' 

show that, in the continuous case, the performance of the 

control system ie very insensitive to variations in vehicle



mass. This allows the gain matrices to be pre-computed and 

stored on-board the vehicle. In reference 5^« Kalman 

filtering is used to estimate measurement signals corrupted 

by noise. Using simulation they conclude that the jerk 

component of the performance index is the critical term for 

determining acceptable levels of noise and minimum sampling 

intervals.

Cne paper by Ishii et a l ^ ^  reports the simulation of 

a proportional plus derivative controller. They have 

included in their simulation a complex braking model, a 

non-linear drag function and quantization of the measure
ment signals. They propose a control technique to reduce 

position errors, whereby the commands that are transmitted 

to the vehicle have been shaped to take account of the 

expected vehicle response. By this means, the vehicle can 

be made to follow a path which is closer to the desired 
trajectory. The results presented show the effects of 

varying degrees of measurement quantization but do not
consider disturbances or the effect of vehicle loading.

(59)In a notable paper, Hinman and Pitts ' investigate 

the distribution of control function between the vehicle and 

trackside. They discuss the closing of feedback loops either 

locally on-board the vehicle or via sampled data links to 

the trackside, and the use of stored profiles on the vehicle 

to reduce communication requirements. They concluded that, 

even with full trackside control, sampling rates are relat
ively low. However, if an on-board profile tracking control
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is used sample rates can be very substantially reduced for 

a given peak position error.

3 Vehicle-Follower Controllers - A number of constraints 

particular to vehicle-follower control have to be considered. 

Firstly, a platoon of vehicles running under headway control 

must be string stable, that is, a disturbance is attenuated
/7C\

as it propagates down the line of vehicles. Cosgriff u

has shown that string stability is ensured provided
G(jw) = \ jw ) 1 i for all w

|Vx ( jwJ  |

where

V1(t) = velocity of front vehicle 

V2(t) = velocity of following vehicle 
and V^(jw) and V^Cjw) are their respective Fourier 

transforms.

Satisfying this condition also ensures that a vehicle 

will have the overdamped response required for passenger 

comfort.

Secondly vehicle-follower controllers must be designed 
for two modes of operation, namely, for velocity control 

when the vehicle is travelling along open track and for 
headway regulation when the vehicle is following another 

vehicle at minimum headway. The transition between the two 

modes is usually achieved by closing a position feedback . 

loop when the two vehicles are sufficiently close together. 

The switchover is difficult to carry out smoothly without
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acceleration and ;jerk constraints being exceeded, i feature 
which is usually glossed over in discussions of follower 

c ontrol.
The choice of vehicle follower-law has a strong influence

on the design of controllers. Three laws have been discussed

earlier, constant spacing, constant capacity and stopping

distance. Nearly all the controllers described in the

literature use a constant capacity law, as this is easy to

implement, (a simple feedback of velocity to the position

summing point will achieve the necessary offset). An exception
(37)is the control scheme for MBE's CA3INENTAXI. In this an

approximate stopping distance law results from the type of 

vehicle ranging used, however no details of the design of 

the control system are availabl.-. As a result it is not clear 

what effect the use of the more useful, but ncn-linear

stopping distance law would have on controller design.
(67)Hinmann and Pitts describe a control scheme based

on a fixed block technique for measuring vehicle spacing.

They describe initially a simple logic scheme for extracting 
the spacing information from the received signal aspect.
The measurement is sampled data, the sampling rate depends 

on the speed of the preceding vehicle and guideway block 
length. Thi3 measurement is input to a controller similar 

to that described by Brown(see below) and is shown to give
P

good results. This scheme is interesting as it allows 

proven conventional railw y signalling techniques to be
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adapted for close-headway vehicle operation. (In another

paper Pitts discusses in detail the choice of block lengtn).^'°
(6o 6l)Brown ’ describes a vehicle-follower control

which permits accurate speed and spacing control, whilst 

being insensitive to vehicle weight variations and wind 
gusts. The controller incorporates proportional plus integral 

compensation in the forward path, and a feedback compensator. 

Input velocity commands are allowed to change stepwise in 

time, but are pre-filtered by a second order filter to ensure 

that acceleration and jerk comfort levels are not exceeded, 

(provided speed changes do not exceed a specified maximum 

magnitude). The block diagram of the controller is shown in 

Diagram 95« In the regulation mode, two additional loops 

are closed; to include velocity and spacing error in the

control scheme, as shown in Diagram 9&.
( ?5)In a subsequent paper Brown discusses the transition

between velocity control and headway control. He notes that 

short headway operations require fast acting controllers.
These result in a high sensitivity to the initial conditions 

and errors at the 3witch-over point. The use of limiters 
to constrain the maximum values of acceleration and jerk has 

a destabilising effect, consequently Brown investigated the 

use of a controller with time varying gains. At large 

vehicle spacings relatively low gains are used so that large 

initial spacing errors can be accepted. The gains are then 

gradually increased to those required for small perturbation
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operation at short headways. The controller developed has

been shown to be effective for s number of manoeuvres.
(63)Fenton et al discuss an alternative approach which

may be more tolerant of the non-linearities inherent in

any practical system. Their system is conveniently des-
(Dia 97)cribed using a two-dimensional phase plane. This

plane is divided into a number of regions, a certain mode 

of control being associated with each region. Each region 

is separated by a switching boundary. Fenton proposes the 

following:-
Region 1 - headway is sufficiently large for the

vehicle to operate under velocity control.

Region 2 - the following vehicle brakes at a constant

rate: This brings the vehicle into Region 3.

Region 3 - a linear regulator control maintains

minimum vehicle spacing.

Region k - a collision could occur and the following 

vehicle decelerates at a peak rate.

Region 5 - control depends on how the zone is entered

If it is entered from the linear Region 3 the vehicle 

accelerates at a fixed rate (to close a gap before it 

becomes too large). If it is entered from Region the 

vehicle coasts so bringing it into Region 6.

Region 6 - the vehicle accelerates at a fixed rate.

Other control arrangements can be made, reflecting 

different safety policies, running headways and controller 

characteristics.
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5. The Emergency Backuo to the 
Long i tud i naI Cont ro I

3 . 1 Introduction

The public is at risk to some degree anywhere in a 

transport system. For example, faulty door operations, fire, 

collisions and falling on the track are all possible hazards. 

Any practical automated transport scheme will have a series 

of safety systems and procedures designed specifically to 
control each of the major hazards. One of the more important 

safety systems, the one associated with longitudinal control, 

is discussed in this chapter.

The role of the emergency backup to the longitudinal 

controller is to provide protection for the system against 
failures of the normal control system, or unanticipated 

changes in the environment, particularly those which might 

lead to death or injury. This emergency backup runs parallel 

with the normal controller, continuously checking its 

operation. If a fault is detected, the safety system initiates 

emergency strategies that override the normal controls and 

which are designed to ensure passenger safety. The emergency 

systems as described in the literature are often very simple. 

Two variables are monitored, intervehicle spacing and 

vehicle speed. If either variable violates specified con

straints (too close, too fast) emergency brakes are applied



to halt the vehicle. By this Beans collisions ore avoided.
(1.2,3) (jn gome proposals, collisions of a limited severity

(if)are considered acceptable , although such a criteria is 

most unlikely to be adopted for a public transport scheme^ '̂ ).

The use of a binary control scheme of this sort 
(normal/stop) is not compatible with the fail-soft principle 

of gradual degredation following a failure. Certainly the 

primary task of the 'fail-soft' emergency backup would 

remain, the prevention of collisions, these being much the 

most costly form of system operation. However additional 

strategies are included which improve the post-fault system 
performance without significantly reducing safety or reli

ability or increasing costs substantially.

The Fail-Soft h’rnergency Backup

The design of the emergency backup divides into three 
areas of concern, the level of reliability required, the 

choice of monitors to establish when the normal control 

system is malfunctioning, the choice of control strategies 

to limit the consequences and duration of the failure.

Reliability - If unsafe situations are to be avoided, the 

availability of the safety backup system must be sufficiently 

high for there to be a negligible probability of the normal 

and the backup system jointly failing. This can only be 

ensured if:-
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* The backup system is intrinsically very reliable, 

it is therefore likely to be simple and well understood.

The backup system does not ensure complete security, as it 

may fail occasionally. Consequently the emergency system 

should be 'fail-safe', a requirement which further emphasises 

the need for system simplicity. A 'fail-soft' emergency 

controller requires extra components and more complex 

structures, in order to achieve the necessary variety of 

response. This extra equipment should not reduce the safety 

of the system.

* Failures in the safety system are independent of 

failures in the normal control system, that is separate 

equipment is used for the normal and the emergency controls 

even if this entails duplicating functions. Thus typically 

emergency battery power supplies, a separate braking system 

and independent monitors would be supplied. (Some sources 

of common-mode failure such as the vehicle itself, cannot 

however be removed).

* The safety system is regularly maintained and 

frequently excercised to discover any incipient malfunctions. 

This latter could be achieved in part by diagnostic tests

to check vital functions (motor, brake and communications) 

used before a vehicle leaves the station or starts a day's 

work.'5 " 9)

Monitors - The control loop for the normal vehicle controller 

i3 represented by a simplified block diagram in Diagram 98.
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Each block in the diagram denotes a functional unit 

which can be cade more reliable by standard techniques of 

redundancy and reliability engineering, whose inputs and 

outputs could be monitored to identify faulty operations 

and which is treated as a fundamental unit in any reliability 

analysis. The finer the partitioning of the system, the 
more complex these analyses become; however the diagnosis 

(identification and location^ of faults can be made more 

precise, and in principle, a better fail-soft characteristic 

should result since strategies can be more closely tailored 

to the exact circumstances of the fault.
Fundamental variables that must be monitorad in any 

scheme are inter-vehicle spacing md vehicle speed. These 

two variables directly indicate the safety status of the 

vehicle. If there is not sufficient distance between two 

vehicles, the following vehicle will not be able to stop 

without a collision if the leading vehicle should stop 

suddenly. A vehicle travelling too fast might leave tne 

track at a corner. In the text which follows, 'inter
vehicle spacing' has been interpreted broadly, as meaning, 

the spacing from the vehicle to any obstacle which might 

prevent a venicle travelling safely. Thus the spacing 

monitor should be able to detect and measure the distance, 

not only to the next vehicle, but also to debris on the track, 

missing or damaged track, track switches incorrectly set etc/ 

Very few monitoring techniques can provide such versatility 

and in general special arrangements have to be made for each
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hazard, for example, by designing the system so that the 

particular fault is very unlikely or by installing special 

detectors.
These fundamental safety checks can be made eitner on

board the vehicle or by equipment at the track-side super

vising a zone of track. Each trackside monitor is respons
ible for several vehicles, consequently its failure is more 

serious than the failure of an equivalent vehicle-based 

monitor. However, vehicle-based equipment will be more 

unreliable, both because of the more demanding environment 

and because more sets of equipment are required. Eoth the 
track and the vehicle need to know the safety status of the 

vehicle (the vehicle, so that it can take the necessary 

emergency action, the track, so that it can initiate recovery 

action). Consequently communications will be required. This 

communication is usually vehicle specific, that is, a vehicle 

based system must transmit its status and identity to the 

track so that it knows which vehicle is faulty (or every 
vehicle uses a dedicated channel - an unlikely solution); 

a track-based system must transmit to each venicle its 

individual status, which requires each message to be addressed 

(see Chapter 3). For long-headway systems geographical 

addressing can be used, the track being divided into zones 

each of which can only contain one venicle. For short head- 

way systems, zone addressing cannot be made sufficiently 

precise to only address one vehicle, conseauently, message 
addressing is required. In this latter case tne communication
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channel must have a relatively high bandwidth to give the 

necessary combination of speed of response and reliability.

Fixed-block headway monitoring is invariably proposed 

for the long-headway systems. It has the advantages of 
being simple, fail-safe, and in current use on all railway 

systems.^0  ̂ However as headways decrease two factors

affect the practicality of fixed-block measurement.

- Costs increase as the block length decreases. 

(Approximately the trackside costs are proportional to 

^/block length)

- Engineering difficulties increase as the block 
length decreases since the precise location of the installed 

block boundaries is uncertain due to electrical and con

structional overlap and tolerance.

For short headway operations, very small blocks must 

be installed to protect slow-moving vehicles at small 
separations; however a large number of signal aspects are 

required to provide adequate protection at higher speeds 

and correspondingly larger spacings. Thus higher data rates 

are needed which reduce reliability and increase costs. It 

is usually considered that fixed-block signalling cannot 

.be used at headways less than six seconds.

There are very severe problems in providing suitable, 
safe, reliable and accurate spacing measurements by any 

technique for headways less then 5 - 6  seconds.

The choice of block-size is discussed at length by 
Pitte(12). Pitts suggests that fixed-block signalling
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can be rearranged to provide measurement data for both normal 

and emergency control in a vehicle-follower type system. 

Although this introduces a degree of interdependence between 

the two systems, that may be allowable because of the inherent 

safety of fixed-block signalling.

In addition to the fundamental safety states, other 

system variables may be monitored, but the extent to which 

this is done depends on the benefits which can be realised 

by having the extra information. Useful supplementary 

monitors might be; on the vehicle, detectors of brake failure, 

motor fault, communication error, power supply failure, and 
unusual vehicle accelerations; and on the track, detection 

of missing, damaged, or icy track, faulty switch operations, 

debris, high winds, rain etc. The information from these 

checks is predictive in that they indicate that the vehicle 

might in the near future become unsafe and so trigger one 

of the fundamental safety monitors. The information pro
vided by these supplementary monitors may also help to 

determine which vehicle is the faulty one when the vehicle 

separation monitor has detected a fault. (Inter-vehicle 

spacing depends on the movements of two vehicles, either 
of which might be faulty). It is these supplementary monitors 

which provide the extra information that allows appropriate 

strategies to be deployed and a 'fail-soft' characteristic 

to be achieved. They also provide an early warning of im

pending disruption.
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^.3 The 'Two-Part' Emergency Backup
The emergency control system can be divided into two 

parts. Part one operates when one of the fundamental 

safety variables (inter-vehicle spacing or velocity) shows 

a fault. The simplest, safe strategy that can be operated 

is to brake the vehicle at an emergency rate to a halt.

Provided the vehicle spacings are sufficient, this will 

prevent the vehicle colliding. (See Chapter 4) More complex 

strategies can be devised but these are unlikely to pro.ide 

the necessary security. (See for example reference 5 or 

reference 13) Part two of the controller monitors the 

supplementary variables and activates strategies which are 

less severe than emergency braking, and designed for those 

situations where the vehicle has become faulty but is still 

in a safe state (although the longer the vehicle is faulty 

and the greater the severity of the fault, the more quickly 

the vehicle will become unsafe).

This division of roles isolates the fundamental safety 

assurance from the provision of fail-soft strategies. By 

this means the vital safety monitoring and braking system 

is kept simple, can be made independent of the rest of the 

vehicle equipment and can probably be made fail-safe. The 

non-vital 'fail-soft' part can be added to the system in

dependently in a controlled and cost effective manner. It 

does not have to be very reliable and can make use of some * 
of the functions of the normal controller, for example, the 
normal braking system, the normal measurement and communications 

equipment.
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5.^ Recovery Strategies

Strategies are required to control the system after 

a fault in such a way that the overall disruption is mini

mised. The performance of the system deteriorates in two 

ways following a fault. Firstly the faulty vehicle may be 

subject to an uncomfortable ride and its passengers delayed. 

Secondly, the faulty vehicle may interfere with the man

oeuvres of other vehicles possibly causing them to be delayed 

and carry out uncomfortable manoeuvres. The longer the 

fault persists the greater the disruption. Fault control 

strategies are therefore concerned with limiting the number 
of vehicles involved, attenuating the consequences of the

fault for those vehicles involved and returning the system
• ( 7 )to normal operation in the shortest time possible.

A variety of general strategies can be used.

Rerouting - In some networks the spread of a fault can be 

contained by rerouting the vehicles which would normally 

use the faulty link. This strategy can only be used in net

works where alternative routes are available, if these 

alternatives are not congested, and if junctions are operated 

asynchronously. Rerouting may be started even before a faulty 

vehicle has blocked a link, in anticipation of the likely 

consequences of the fault, especially where there is little 

system cost attached to the route change (journeys are a 

similar length etc). Morse Wade in reference 1*+ describes 
a simulation of a number of rerouting strategies.
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R e l a y i n g ;  t h e  F a u l t y  V e h i c l e A f a u l t y  v e h i c l e  c e a s e s  t o
have any immediate deleterious effect on the system once 

it has been removed from the normal track and its passengers 

sent on their journeys by another means. The area controller 

must make the necessary arrangements, for example, to divert 

the faulty vehicle into the next station, siding or layby, 

where repairmen and alternative transport can be provided.

The shorter the distance between such turnouts and tne faster 

the area controller can be notified and react to the fault, 

the quicker can the track be restored to normal service.

A vehicle which actually stops on the main-line track 

is likely to cause the maximum disruption. consequently if 

the vehicle is safe when a fault is reported (that is, only 

a supplementary monitor indicates a fault) then to stop the 

vehicle immediately may well be premature. In many circum

stances, a less costly strategy would be to allow the 

vehicle to continue moving (although probably subject to a 

speed limit that would be safe no matter where the vehicle 

was in the system). If the vehicle must be braked then a 

normal braking rate is used and the vehicle slowed to a 

crawl rather than a halt. The vehicle is then allowed to 
travel until it can be switched from the main-line track or 

until a safety constraint is violated and the emergency brakes 
stop the vehicle. If these procedures are adopted a faulty 

vehicle may frequently be prevented from interfering with 

the manoeuvres of other non-faulty vehicles.
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Vehicles will however from time to time come to a halt 

on the main-line as the result of a failure. The procedure 

then adopted depends on whether the vehicle can move under 

its own power, is free to move but not motor, or is immovable. 

In the first case a possible strategy is to allow the vehicle 

to crawl forward at a low speed once the emergency state 

has been reset. This will allow the vehicle to reach a 

switch off from the main-line track. In the second case, 

a number of researchers^^ have suggested that a vehicle 

from behind the failed vehicle be instructed to move up, 

engage the faulty vehicle softly, and push it to the next 
exit from the track. This strate-y has a number of problems; 

the pusher vehicle must have sufficient power to move the 

stopped vehicle,but must be designed so that it will not 

damage itself, particularly if the failed vehicle does not 

move freely, also safety constraints must be relaxed to allow 

the pusher to contact the faulty vehicle and thus the question- 

'How and under what circumstances should safety monitoring 

be suspended?' must be answered. In the third case of failure 

the immovable vehicle, repair men are required to clear the 

track and restart the system.

Although such strategies can be devised to automatically 

clear the track, it is not certain whether the class of 
failure can be reliably established automatically. Also 

it is possible that the complexity of the operations, 

particularly in class 2, will preclude total automation.
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Faulty vehicles are likely to travel nore slowly than 

is demanded by the normal controller. Consequently follcwi 

vehicles that have not been rerouted will eventually catch 

up the failing vehicle (unless it is removed from the trac.< 

before this happens;.

The response of the overhauling vehicle in vehicle- 

follower type control depends on the circumstances of the 

fault and the design of tne controller. If the two vehicle 

were initially widely separated (that is, the following 

vehicle was under velocity control) then, when the front 

vehicle stops due to a fault, the normal control action of 
the second vehicle should bring it to a halt behind the 

failed vehicle, without triggering the e-ergency braking. 

If, however, the two vehicles were travelling separated by 

the minimum normal headway (that is, the following vehicle 

was running under regulator control) then the response of 

the second vehicle to the sudden stop of the frort vehicle 

depends on the design of the controller, where the normal 
controller is designed to accept an emergency stop by the 

preceding vehicle as a 'normal' manoeuvre then the foilowir. 

vehicle will stop without activating its emergency brakes 

(although comfort limits on acceleration and jerk may be 
exceeded). '.-.'here the vehicle follower control is designer 

only to accept normal manoeuvres by the preceding vehicle 

then when the preceding vehicle executes an emergency stop, 

the following vehicle will also be forced to emergency stop 
(although after a delay and from a lower initial speed
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because the normal controller of the following vehicle will 

start to slow down the vehicle before the inter-vehicle 

spacing limit is violated. Thus an emergency stop by tr.e 

front vehicle of a vehicle string will be successively 
attenuated for each subsequent vehicle, until eventually, 

the normal control system carries out all the braking and 

the emergency system does not operate).

Restart of a vehicle-follower system is relatively 

simple. Once the faulty vehicle has been removed from the 

main-line the queue of vehicles can be released tc continue 

their .journey and no further trackside control is necessary
Asynchronous point-follower schemes are more compleA 

to control. Following the failure of one vehicle, the trac 

side controller must compute the following vehicle 

trajectories that bring them to a halt in a queue behind 

the failed vehicle. Restarting the queue is more difficult 

because each vehicle in turn must be brought in range of a 

control post so that it can receive the necessary commands 

to return the vehicle to a normal trajectory. One way in 

which this might be achieved is for the trackside control 

to instruct the queue of vehicles to crawl forwards once 

the emergency situation has been cleared. Eventually the 

vehicles will reach a command post and rejoin the normal 
control regime.

Synchronous marker-follower schemes are very difficult 

to control in a 'fail-soft' manner. In totally synchronous 
systems (synchronous slot) rerouting cannot be used. Also
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as safety at junctions is only guaranteed by the prebooking 

of journeys a faulty vehicle oust shut down the whole system 

immediately. It is not clear how the system can be re

started under such circumstances.
Some degree of control can be achieved in quasi- 

synchronous networks. In the absence of any other control 

action from the trackside, a vehicle behind a failed vehicle 

will steadily overhaul it until the inter-vehicle spacing 

constraint is infringed and the vehicle carries out an 

emergency stop.^3^9 Consequently whether or not the

failed vehicle has stopped eventually following vehicles will 
be forced to stop and as time progresses a queue of stationary 

close-spaced vehicles will form. After the faulty vehicle 

has been removed from the main-line this queue is restarted 

by commanding each vehicle in turn to accelerate up to the 

line speed. The start tine is selected so that at the end 

of the manoeuvre, the vehicle will have joined the desired 

marker trajectory. Control is then transferred to the normal 

control system. This technique requires each vehicle to be 

uniquely contacted by the trackside, via a continuous link.

Some vehicles in the stopped queue will be close to the 

junction at the end of the link. These vehicles will not 

have synchronised with their markers before reaching the 

junction and must therefore continue straight on (even if 
this is not their intended route). Vehicles intending to 
merge into the faulty link probably will also have to be 

restricted.
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V.ith sor.e types of marker-follower system, the speed 
of a synchronous section of track con be readily changed. 

This facility can be used to reduce the rate of formation 

of tne stopped vehicle queue (by slowing the track speed). 

However all vehicles on the link both in from of and behind 

the failed venicle will oe slowed (and al30 the faulty 

vehicle if it 3till responds partially to trackside signals) 

Furthermore, the procedure interferes with the svnehronisa 

of the markers at junctions, consequently the entire system 

must be 3lowed down rather than a single link alone. This 

is a severe limitation and will probably preclude the use 

of such a strategy in most networks.

The requirement for a separate emergency communication 

link to each vehicle is an onerous one. It is not needed 

provided vehicles when stationary on the track after their 

emergency stops are spaced 3t the separations they would 
hove when travelling normally. All vehicles can then restar 

at one time, accelerate to line speed and synchronise with 

their respective markers. However, to achieve this spacing 

requirement all vehicles on a section of synchronous track 

must simultaneously execute an emergency stop, that is, when 

any one vehicle carries out an emergency stop all other 

vehicles must do so too. (After this operation all the 
vehicles will be spaced along tne track at the approximate 

spacings they had prior to uhe emergency). ^   ̂ The 

removal of the faulty vehicle i3 a complex operation as it 
will usually be sandwiched between stopped non-faultv
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vehicles. One unlikely strategy which may be feasible is 

for all vehicles to crawl forward after emergency braking. 

The failed vehicle would be pushed by the vehicle behind it 

until it can be switched from the main-line. The remaining 

vehicles are then commanded to return to the normal line 

sreed.

During the whole sequence from emergency bracing to 

restart the operation of the junctions at each end of the 

faulty link must be suspended.
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6. Junct ion Cont ro l

6.1 Introduction

Junctions are usually the capacity limiting elements 

of a transport system. Consequently, there is a need to 

develop control policies that allow high flows through the 

junction yet limit the delays experienced by vehicles and 

the distances required for the preparatory manoeuvres.
In synchronous systems, junction performance has little 

meaning. The only parameter of any importance is the 

average occupancy of the merge points (or fraction of slots 

passing the merge that are occupied). This depends on the 

centralised journey booking and routing algorithms, and are 

therefore outside the scope of this research. (Many 

references discuss such control schemes in detail, see for 

example. Yap, Roesler (1,2)).

The research reported in this chapter is concerned with 
the design of asynchronous junction controllers which form 

elements of a decentralised control structure. The junction 

is treated as a processor converting streams of input traffic 

(having particular stochastic properties) into output streams. 

Its controller is a device designed to minimise seme cost 

function using information gathered solely from within its 
zone of influence. In the discussions presented, the junction



is considered to operate independently iron the rest of the 

network of which it is a part, that is, the junction always 

presents an open door to incoming traffic, and can rely 

upon its exits always being clear.

6.2 r.easures of Junction Performance

Delay - The primary task of the junction controller is to 

resolve potential conflicts between opposing vehicle streams 

intending to use a common section of track. To do this, 

vehicles are delayed by specific amounts, the size and vari

ability of which depend on the stochastic properties of the 

incoming vehicle stream, the control policy and the layout 

of the junction. These delayed vehicles form queues preceding 

the conflict point.

Secondary tasks of the junction controller are to ensure 

that speed constraints are satisfied and that switches are 

correctly operated. These operations will also delay vehicles 

but by smaller amounts than are required for conflict 

resolution.
Kean delay is the most commonly used measure of junction

( 3  *♦ )performance, however, some researchers ’ consider the 

variance is an equally important measure. In the work 

reported below, mean delay is used as the principle measure 
of junction performance and the coefficient of variation ' 

(standard deviation/mean) as supporting information.
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Capacity Closely connected with delay is capacity. For
junctions, the maximum theoretical capacity can only be realised 
if infinite queues and delays are allowed. For a more realistic 
measure, capacity is defined as being 'that level of vehicle 
flow above which service (delay, variance or some combination} 
becomes unacceptable'.

Distance Pequired for Preparatory Manoeuvres - The distances 
available for vehicle manoeuvres will be primarily determined 
by such factors as street width, station and cross road 
spacings et cetera, control schemes which require relatively 
long manoeuvre zones to achieve desired characteristics of 
capacity and delay will be at a disadvantage as they nay make 
it impossible to incorporate desirable layouts in restricted 
urban environments without major modifications to surround
ing buildings.

6.3 Geometric Constraints on Junction Layout

New urban transport schemes must generally be built 
within the confines of the existing city fabric. This may
often severely limit the range of junction layouts that can 
be used and consequently the performance that can be achieved.

In conventional traffic engineering, a junction between 
two two-way roads is common-place, with one extreme layout 
being exemplified by the cloverleaf design in which all cross
overs are replaced by a network of bridges and merges. At 
the other extreme, lies the at-grade crossing whose satisfactory
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perfornance depends on sophisticated control. In the latter 

case some potential capacity is lost.

Proposers of automated transport schemes are usually 

more concerned with the simpler junctions between two uni

directional traffic streams, in which any crossovers are re-
i j . .. . .. (Dia 101)placed with bridges.

All junction layouts can be synthesised by interconnecting 

elements comprising diverges (switches), merges and crossovers. 

These last two have similar control characteristics; a cross

over being equivalent to a merge followed by a diverge, 

consequently, in the text which follows the term 'intersection' 
is used to indicate either a merge or crossover.

The interaction between junction elements determines the 

performance of the junction and is primarily set by the 

geometry of a particular layout.

Diverges - The characteristics of the diverge are determined- 
by the type of switching mechanism used. Switch mechanisms 

can be track-based or vehicle-based. Typical of the former 
are railway points and of the latter motor-car steering. 

Track-based switches are more suitable for switching trains 
as there is little risk of one vehicle being diverted in a 

different direction to the remainder, a risk which is always 

present with vehicle-based switches.
Track-based switches can be placed as close together as 

geometric track layout considerations allow, since all the 

switches can be set in advance of the vehicle arriving at the
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first switch. Forks with vehicle-based sv;itching, on the other 

hand, must be spaced sufficiently far apart to permit re

positioning, locking and verification of the mechanism, and 

for the vehicle to stop safely should any of these actions 

prove faulty.
The time required to operate the switching mechanism 

must be incorporated into the headways separating vehicles.

This time allowance can be added to all vehicle headways or 

only to the headway of those vehicles travelling a different 

route to their predecessor through a junction. In the latter 

case, the headways between vehicles must be adjusted before 
a diverge, according to the routes they will follow.

Vehicle-based switches have an advantage for close

headway operations since the mechanisms are usually smaller, 

lighter and consequently tend to have faster switching times 

than track-based systems, (although this is not necessarily 

true, for example, see reference

Commonly one of the branches of a diverge is straight 
on, the other curved. As the curved part cannot be banked 
within the switch, it will often have a speed limit slower 

than straight on. In this circumstance turning vehicles 

must slow down prior to the switch, and sufficient extra time 

allowed in the vehicle headway for the manoeuvre to be 
executed safely.

P

Intersections - At an intersection, vehicles on opposing 
streams of traffic compete for a limited resource, namely



line capacity, on the section of jointly used track. effective 
control prior to the point of intersection is essential as 
this is a primary factor determining the overall junction 
performance that can be achieved.

Control prior to an intersection comprises two distinct 
phases, firstly the order that the vehicles pass through the 
intersection has to be decided, secondly the manoeuvres 
required of vehicles to safely merge in the desired order must 
be determined. In some strategies these two phases may be 
resolved iteratively.

The length of track required to effect the desired man
oeuvres determines the minimum distance which must separate 
junction elements. Intersections which are spaced closer 
than this minimum must be considered as part of the same 
merging procedure.

In common with diverges, curved track at an intersection 
may impose speed restrictions and must be taken account of in 
the control strategy.

Track Links - Connecting merges, diverges and intersections 
are track links which add their own constraints to the control 
of a junction. Comfort limits will define the geometry and 
speed limits of any curved track. In addition, the length of 
links will determine the range of manoeuvres that can be 
carried out along them.

All manoeuvres (speeding-up, slowing-down, cornering, 
gaining or losing height) are subject to comfort limits. A
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constraint sometimes adopted by researchers is that each such 
manoeuvre must be carried out in sequence, as there is no 
information on passenger tolerance to combined manoeuvres.
(For example, slowing down superimposed on cornering). This 
is a severe limitation particularly where complex manoeuvring 
is to be carried out in a confined space. The limitation is 
probably unnecessary, although if a number of superimposed 
operations are used, each operation may have to be less severe 
than if it were executed alone.

Emergency Monitoring - Emergency monitoring at junctions is 
primarily concerned with detecting the two unsafe conditions:-

* the switching of mechanism at a diverge is 
incorrectly set

* conflicting vehicle movements at an intersection 
have not been resolved (that is, the preceding vehicle through 
the intersection has not cleared the conflict point in time). '

The consequences of both these faults could be the 
collision of a vehicle either with the track structure or 
with another vehicle.

The detection of a faulty state can be used to trig-er 
.the standard emergency braking equipment carried on-board 
the vehicle. Consequently to ensure that the vehicle is able 
to stop safely, the decision (to brake or not), must be made

Pat least an emergency stopping distance before the fork or 
intersection.
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^uasi-Synchronous control of Junctions6  A

Constraints on Junction Layout - In auasi-synchronous 

control (QSC), manoeuvring is achieved by the process of slot 

slipping. In any practical junction control strategy, 
situations will occasionally arise where the solution to a 

merging conflict requires manoeuvres that cannot be carried 

out within the distance available. If a manoeuvre cannot 

be carried out then one of the offending vehicles must be re

routed onto an alternative safe path. This however cons

titutes a routing failure and places a number of constraints 

on design. Merges are particularly difficult to organise.

In the event of a routing failure, either the junction must 

be stopped, a highly disruptive operation, or one of the 

offending vehicles must be directed onto an abort lane.^-7̂  ^

This abort lane must reconnect with the main line at a point 

further downstream. If the abort lane is operated synchron

ously with the main line there is no guarantee that an un- 

resolvable conflict will not arise again at the second merge 

although the probability of this happening will be very low.

Only if the failed vehicle is temporarily stored in the abort 
lane and accelerated from rest into a vacant slot when it 

appears at the second merge, can safety be ensured at 

reasonable cost.
A crossing junction with an at-grade intersection is 

similarly vulnerable to unresolvable conflicts. However the 

layout complexity is much increased, and mages such junctions 

uneconomic.
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Grade-separated junctions do not require supplementary 

abort lanes to ensure safety as one of the two conflicting 

vehicles can be routed in the wron? direction, (either the 
vehicle wishing to turn must be directed straight on, or the 

vehicle intending to go straight on must be forced to turn).

Review of Research into the Performance of QSC Merging 

Strategies - Junction control in quasi-synchronous systems 

has been extensively discussed in the literature. The first 

work on the subject was carried out by Godfrey/^ He 

analysed in great detail the operation of a merge under ^SC 
and considered six strategies.

1 Lane 1 has priority, lane 2 vehicles merge into 

natural gaps in the lane 1 flow.

2 Priority is switched to the opposing lane if it has a 

delayed vehicle in it and there are none in the present lane.

3 Priority is switched to the opposing lane if all 

vehicles on the present lane have been served.

4 First-come first-served with the same lane always 
having priority in the event of simultaneous arrivals.

5 Flr3 t-come first-served with simultaneous arrivals 

resolved randomly.
6 First-come first-served with simultaneous arrivals 

resolved by giving priority to the lane not served last.

Godfrey studied these strategies both in the steady state 

and with transient changes in demand. He concluded that 
scheme 1 was the worst and scheme 3 the best, using
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variance of delay as his cost function and taking no account 

of manoeuvre costs.

Whitney^®^ developed a useful state diagram notation 

which allows the designer considerable freedom to choose how 
vehicles are to be manoeuvred. He divides the problem of 

optimal junction control into a two-stage process wnereby the 

merged state and the manoeuvres required to achieve that state 

are considered independently. uosts are chosen for the merged 

state, which for example, penalise the creation of large 

platoons (as they may reduce the performance of downstream 

junctions). Manoeuvre costs are cnosen to penalise the 
simultaneous movements of a large group of vehicles (which 

may increase the problem of ensuring safety), or to encourage 

the use of manoeuvres requiring the fewest number of trans

itions (which tends to minimise manoeuvre times).
Optimisation then procedes by choosing merged states 

according to the merging costs and manoeuvre strategies based 

only on the manoeuvre costs. Alternatively both the merge 
costs and manoeuvre costs can be considered together to choose 

the merged state. Whitney uses the first technique but does 

not consider such factors as the length of track required.

Brown^discussed the control of a one-way full

turning junction as shown in Diagram 103. He presents a 
strategy designed to minimise routing failures, given that 

a vehicle can only slip a specified maximum number of slots.' 

Using a Monte Carlo simulation he demonstrates that, usin* 
his strategy, less than 5% of vehicles at (S0% occupancy need
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to be re-routed, if vehicles are allowed to slip up to 1 1  slots. 

However his algorithm tends to bunch vehicles together, which 

may degrade the performance of downstream junctions.

Caudill and Youngblood^ 2 ̂ examined the same problem as 

Brown. They investigated a number of simple strategies which 

allowed vehicles to slip or advance small numbers of slots.

The best strategy, a 'cycles' strategy that allowed vehicles 

to move anywhere within a range of slots (the cycle), performed 

best. A 5 slot cycle gave a miss rate of about 20% at &0% 
occupancy but does require vehicles to be able to advance up 

to two slots.
It is apparent, from both these papers that many vehicles 

will be re-routed in quasi-synchronous systems operated near 

the maximum track capacity. Indeed Caudill and Youngblood 

note that, while the decision, of which vehicle to re-route, 

does not affect the assessment of algorithm performance 

(because the important event is that the conflict was not 
resolved), it is fundamental to the operation of an actual 

system. They suggest that instead of always forcing the 
merging vehicle to re-route, overall network efficiency can 

be improved by re-routing that vehicle which would be least 

delayed.
A detailed report on the operation of CABTRACK junctions 

wa6 produced by the cabtrack team at RAE.^^ In this, a 

simple junction (two main lines, cross grade-separated, and ' 

are linked by a transfer lane) is analysed, using theory and 
simulation. Several queuing strategies combined with a number
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of merging policies are discussed. The results presented 

show for each combination, mean delay, percentage vehicles 

re-routed and manoeuvre distances as functions of flow.

6.5 Asynchronous Control of Junctions
The control of junctions in asynchronous systems has been

almost entirely overlooked in the literature. The only paper
(pq.)on the subject is by Athans. He casts the problem of

controlling a merge into a linear optimal regulator problem, 

using the same approach as used in his paper on optimal vehicle 

follower control.^ T h e  two incoming streams of traffic are 

treated as one, in which vehicles are allowed to 'move over' 

one another before the merge. The merging sequence is chosen 

by finding the control cost for each possible sequence and 

choosing the one with the minimum. Provided the manoeuvres 

start sufficiently far in front of the merge the vehicles are 

able to adjust their positions so that when they reach the 

merge, the two streams combine safely in the desired merged 

sequence.

By far the most important aspect of junction control in 
•asynchronous systems is the control of merges and crossovers, 

as it is at these points that capacity is severely limited. 

Consequently the remainder of this chapter concentrates on
*

this particular problem.
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Capacity The capacity of merges and crossovers is limited

since the capacity of the intersection point (or common 

section of track) cannot exceed the capacity of a single line. 

Conseouently the sum of the incoming flows may not exceed this 

either.
A vehicle plus its normal headway passing a point on the 

track will occupy the point for the time headway associated 

with the speed of the vehicle. That is for

where
V - velocity of the vehicle 
ae - emergency braking rate 

L - length of the vehicle 

K - safety factor.
The occupancy of the point can be defined as the fraction 

of time that the point on the track is occupied, it indicates 

how near the track is to saturation.

OCCUPANCY (Occ) £  time the track is occupied 
total time

Occ n Ht- (v)
T

Occ F Ht (v)
where the mean flow rate is

n - number of vehicles passing in time T.

The occupancy at the intersection point of a '
merge or crossover can be similarly defined, except that now 
the vehicles passing are being supplied from a number of
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incoming lanes. The sequence of lane allocation, or 

alternatively the order in which vehicles pass through the 

intersection point is termed the merging order.

Often a change-over cost applies at the intersection 

point. This cost is an extra time that must be allowed when 

the lane allocation of the intersection point changes. This 

extra time takes account of the operating time for switching 

mechanisms. Also it is an allowance for safety that takes 

account of firstly, the increased control tolerances that must 

be allowed and secondly the greater difficulty of safety 

monitoring when vehicles merge (or cross paths) rather than 
follow from the same lane.

Control of single line working of a track section very 

closely resembles the control of a crossover. In this case 

a large change-over cost must be used equal to the time needed

to clear the common section of track, before the direction of
, , . (Dia 105)working can change over.

In the discussions which follow, the change-over cost 

has been incorporated into the vehicle headways by using 
different values for the safety factor K. When one venicle 
follows another vehicle from the same lane through the inter

section a following factor is applied, and when a vehicle 

follows one from another lane, the crossing factor is used. 

Thus at a s-ecified speed the working time headways for the 

following and crossing cases can be evaluated.
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where
C - crossing time headway 
f - following time headway 

v - vehicle speed

Kf, Kc - safety factors - following and crossing respectively 

L - vehicle length 

ae - emergency braking rate
The maximum flow through the intersection point when both streams 

of vehicles travel at the same speed and have the same mean 

flow is

“ (n-l)f + c
where

n - mean platoon size passing the intersection from 

either lane
Fs - maximum vehicle flow 

The occupancy is therefore 

Occ - F.(average headway)
occ - F.l2zUi_t_£n
As n increases from 1 Fs increases from — to -7* c i

that is, capacity increases with mean platoon size (as f <,c).

The absolute maximum junction capacity at a given speed is
therefore i. No junction controller can handle indefinitely, f J
an intersection when the sum of the mean input flows exceed 

this figure.



The values of f and c depend on the speed at which 

the intersection is negotiated. They will be a minimum when 

the intersection speed equals the saturation speed (Vsat) 

as defined in section ^.9 of Chapter

Any good intersection control strategy will optimise its 
performance by varying both the platoon size and the inter

section speed.

Slowing Down and Conflict Delay - Individual vehicles are 

subject to two sort3 of delay. They lose time in slowing to 

the intersection speed and they are delayed by further random 
amounts in order to resolve conflicts with other vehicles at 

the intersection. (This assumes that vehicles can only be 
commanded to drop back relative to other vehicles, that is 

vehicles are only allowed to travel slower than the main-line 

speed).

Lowering the intersection speed will increase the delay 

due to slowing down but will decrease the conflict delay 

(provided that the intersection speed exceeds the saturation 

speed, in which case, reducing the intersection speed reduces 

headways and hence the extent of potential vehicle conflicts). 

Thus for a given merging order, there will be some optimum 

speed that minimises total delay. In more complex strategies 
it may be possible to vary the target speed from vehicle to

*vehicle, each vehicles target time and speed being chosen 
simultaneously to minimise delay. However the computational
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requirements of such a scheme are severe and the reduction

in mean delay that can be realised is small.

Delay Due to Manoeuvres - In addition to the slowing down 

and conflict delays discussed above, vehicles are delayed by 

an extra amount whilst carrying out speed changes necessary 

to safely merge the vehicles at the intersection point.

The primary task of the intersection controller is to 

determine the times that each vehicle is due to arrive at the 

intersection, and its target speed. These times are chosen 

so that, given their corresponding speeds, vehicles do not 
violate their working headways at the intersection. Cnee the 

target values have been established, the formula presented in 

Chapter **, Section 9 can be used to calculate the speed changes 

required of the vehicle so that it arrives at the correct speed 

and time.

However as the vehicle progresses along the track, in many 

cases, it will be prevented from following the trajectory 
demanded from the trackside because of the effects of headway 

infringement.
In the manoeuvre zone prior to the intersection the head

ways between vehicles are being adjusted. Vehicles are being 
bunched together into the platoons that will pass through the 

intersection. The front vehicle of such platoons will not 

experience any headway infringement, but the subsequent 
vehicles following close behind will be delayed by amounts 

that are hard to predict. The larger the platoon and the
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bigger the speed changes involved, the bigger will be these 

delays.
Any vehicle experiencing such delay will reach the inter

section later than its target time, and the platoon will pass 

through the intersection less closely packed than was desired 

and so reduce junction capacity. Vehicles following one 
another from the same lane through the intersection will be 

safe (this being ensured by the normal vehicle controllers). 

However, when the lane allocation changes over, in the absence 

of any corrective action, the first vehicle from the new lane 

will arrive too soon after the last vehicle and will con

sequently be unsafe (since it will arrive at its target on 

time, being the front vehicle of a platoon).

The timetable of targets must therefore be regularly 

updated. By comparing the desired vehicle trajectory with the 

actual vehicle trajectory, either continuously or at particular 

points, the amount of 'slip' or extra delay experienced by each 

vehicle can be measured. This slip is used to adjust the time

table (by making all the targets later by the measured amount) 

and has the effect of slowing all subsequent vehicles.
This adjustment will never be completely accurate and 

there will always be some degree of unpredictability in the 

arrival time of the vehicle at the intersection. This unpre

dictability being greater the further from the front vehicle 
of the platoon the vehicle lies. The crossing factor in the' 

headway must be chosen to include the worst case of this error 

in vehicle arrival time. Clearly, the greater the frequency
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of correction, the more predictable will be the vehicle path 

and the smaller will be the value of the crossing factor 

required to take account of the errors.

The preceding discussion has been couched in terms of 
vehicle-follower control, however asynchronous marker-follower 

schemes are subject to the same sort of delays. In this form 

of control the vehicle trajectory must be chosen so that the 

vehicle will not violate safety constraints en route to the 

intersection. Therefore in the process of determining the best 

safe trajectory the controller must choose target times that 

are later than pure close packing consideration demand. The 
resultant time-table is then very similar to the vehicle- 

follower timetable corrected for the 'slip' components.

Marker-follower control offers some advantage over vehicle 

follower control in that the unpredictability of the vehicle 

arrival time at the intersection depends only on the ability 

of the vehicle controller to follow a demanded trajectory.

It does not, for example, depend on the vehicle's position in 

a platoon.

Merging Strategies - There are a very large number of possible 

merging strategies. Four have been selected for examination. 
These are

1 First-come first-served (FCFS) - This is one of the 

simplest policies. Vehicles pass through the intersection in 
the order that they arrive at a predefined control boundary. 

Vehicle detectors are required, one to each lane.
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2 Fixed time cycle (FTC). The intersection is allocated 

to each incoming lane for a set period of time. If the period 

is fixed then no specific vehicle information is needed by

the controller, however performance is low. A FTC policy is 
a very suitable backup to other more sophisticated policies 

for when they fail because of a hardware fault.

The performance of FTC can be improved by measuring the 

mean flow of vehicles and adjusting the cycle time according 

to a stored table of signal settings.

3 First-come first-served with hold (FCFS + H) - The 

intersection remains allocated to the same lane provided each 
subsequent vehicle arrives within a set 'hold' time after the 

previous vehicle. Once the hold time has elapsed, the inter
section is allocated on a first-come first-served basis. By 

a suitable choice of hold time the delay characteristics of 
the intersection can be optimised. In heavy vehicle flows 

under FCFS + H the intersection would remain allocated to one . 
lane for a very long period. Consequently a fixed maximum 

cycle time must be imposed to ensure the allocation changes

to the other lane within a reasonable time.

In operation FCFS + H allows vehicles from one lane to 

pass through the intersection until vehicles that have not 

been delayed start passing through, the allocation then changes 

to the other lane.
The policy is somewhat similar to the strategy used by » 

many vehicle-operated traffic lights in conventional traffic 

systems.
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k Alternate priority (AP) - Consideration of the 

performance of any strategy is greatly assisted by knowing 

the absolute performance boundary.

Suppose a junction controller knows the locations of 
A vehicles in lane 1 and B vehicles in lane 2, all of 
which are contained within the zones of influence upstream of

the intersection. An optimal control policy must evaluate 
( A + B ) ! different merging sequences to determine the optimal 

(1<0
A! B!

(i4)sequence. This will then determine the next vehicle to

pass through the intersection. The merging sequences must 
then be re-evaluated anew for each subsequent vehicle, taking 

account of any vehicles to have meanwhile entered the zone of 

influence. This policy becomes time consuming to compute as 

the number of vehicles observed increases. Consequently a 

limited version of the optimal strategy has been assessed,



allocated a target participates in the next contest.

In practical junction control a vehicle entering the 

manoeuvre zone must have a target which is safe and useable. 

With AP this causes some problems. After a comparison, one 
vehicle has been allocated an optimal target, the other must 
be given a provisional target (a target appropriate to it 

being the next vehicle through the intersection). At the next 
and subsequent comparisons a vehicle with a provisional target 

will be given a new target, either an optimal one if it wins 

the contest or another provisional target. A vehicle with a 

provisional target therefore experiences several changes in 

manoeuvre. This may be uncomfortable.
Eventually a vehicle with a provisional target will be 

too close to the junction to carry out any further manoeuvre 

changes. Consequently it will pass through the intersection 
at a non-optimal time.

This distance constraint effectively places a limit on 

the maximum platoon size that can be formed through the inter

section. The longer the observation zone the larger the 
maximum platoon size.

In operation AP forms platoons according to the mean flows, 
up to the maximum noted above. At low flow rates it operates 

similarly to FCFS AP and FCFS + H operate in a very similar 
manner. They differ in the detail conditions required to make 

the lane allocation change. (A  summary of the lane allocation 

conditions for AP is contained ii. Appendix k )
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6.6 The Performance of Intersection Control Strategies

The data presented below has been generated from a number 

of simulations.
A simple Monte Carlo simulation was used to investigate 

the trade off between conflict delay and slowing down delay 

for each of the merging policies described above. A second, 

more detailed simulation was used to examine the interaction 

between a vehicle-follower type controller and three of the 

merging strategies (FCFS, FTC, and AP). This simulation 

modelled a cross-over junction with no turning traffic.

A third simulation also modelled a crossover junction 
but employs a marker-follower type of vehicle control, operated 

in conjunction with two merging strategies (FCFS, FCFS + H).

More details of these simulations and other supporting 
work are contained in Chapter 7 and various Appendices.
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The performance of all the policies also depends to some 

extent on the distribution of the input headways. To examine 

the sensitivity of the simulation results to the choice of 

distribution used to model the input flow headways, two 

policies FCFS and AP were compared using four different head

way distributions.

1 Fixed spacing - all vehicles travel at the same 
time headway

2 Negative exponential

Prob(H. = t) = -*t where mean flow rate

3 Shifted negative exponential -

Prob(Ht = t < Hmin) = 0
Prob(Hfc = t >Hnin) = Qe"^( fc " Hmin)

4 Truncated negative exponential

Prob(H = Hmin) = f Rr' i a -R e~ V t dt t *  o
Prob(Hfc = t y  Hmin) = R e"Pe (Dia 106)

The last two distributions are more likely to reflect the• 

distributions of headways in practical automated transport 

systems, since in normal conditions vehicles will not run at 
spacings less than the minimum headway. The truncated negative 

exponential distribution has been used in all the simulation 
studies, as it reflects an intuitive feeling that there will
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is available, may well show that none of the distributions

suggested above are a good representation. A recent
C 1 o  )reference by McGinley discusses in some detail the choice

of distribution and their effect on a simulation of quasi- 

synchronous PRT systems.
The FCFS policy preserves the order in which vehicles 

arrive at the junction, consequently the platoon size depends 

on the distributions, for the negative exponential distribution 

a mean platoon size of 2 is predicted, and for a fixed spacing 
platoon size is always ^(Appendix 5)

At high flow rates the truncated negative exponential 

looks like a fixed spacing and at low flows tends towards the 

negative exponential. Consequently, a mean platoon size that 

tends from 2 to 1 as the flows increase would be expected.

Such a trend has been shown in simulation experiments.

The effect of different distributions on the delay chara

cteristics for FCFS are shown in Diagram 103. It is demon

strated that small differences result, mostly at the higher 

flows. Similar observations apply to AP.^*a

Conflict Delay
FCFS - The platoon size is set by the input distribution 

and is small. Consequently FCFS has a low saturation flow.^

AP - At low flows, AP has the same delay as for FCFS.
At higher flows the mean platoon size increases accordingly. • 
The saturation flow can approach the theoretical maximum.
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DIA.109 As fo r  dia. 108 ■ a l te rna te  pr io r i ty  
order ing po l icy

DIA. IIO First-come first-served
conflict delay at junction speed 
of 45m/s
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(that is, infinitely long platoons) but at the expense of
, , (Dia 111)Ion? queues forming.

FCFS + H - This policy operates very similarly to AP.

At very high flows it has a lower delay than AP.
The 'hold' time is a parameter which can be varied 

according to flow so as to minimise the mean delay. However 

it does not vary much over the full range of flows. Con

sequently a single preset value could be used which will give 

a near optimum performance over the whole range of flows.

FTC - The fixed time cycle policy is the least effective 

policy. The maximum platoon size and therefore the saturation 
flow is limited by the cycle time, the longer the cycle time 

the higher the saturation flow.

However, the mean delay experienced by vehicles is at 
least a quarter cycle time and therefore at low flow rates and 

with long cycle times vehicles will be unnecessarily delayed. 
Consequently for an efficient operation the cycle time must 

be varied according to the mean vehicle flow rate. In practice 

this may be difficult to do if the flow rates change rapidly.
(Dia 114, 115)

Diagram 116 shows the four policies together for comparison.

Slowing Down Delay - Delay due to the vehicle slowing down 

to the intersection target speed is simple to calculate. It 
is the difference between the time the vehicle actually take» 

to slow down, minus the time the vehicle would have taken to

- 2*»5 -
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DIA.II! Alternate priority
conflict delay at junction 
speed of 4-5 m/s

DIA.II2 First-come first-servedwith hold 
of 3 0  secs, 
conflict delay at junction 
speed of 4  5 m/s
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DIA.II3 First-come first - served with hold 
showing the effect of varying the 
hold time

time)
conflict delay with intersection 
speed of 4-5 m/s
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travel the same distance at full speed. The curve is shov/n 

on Diagram 117.

The Choice of Intersection Speed - For all policies the 
conflict delay is a minimum when the intersection is run at 
the saturation speed, since the time headways are a minimum 
at this speed.^Dia ^   ̂ However the delay incurred by slowing 
down to the intersection speed and speeding up after it 
increases as the intersection speed is reduced.

An optimum speed exists for each flow rate and merging 
strategy, at which the sum of the slowing down and conflicts 
delay is a m i n i m u m . D i a s r r a m  119 shows the optimum 

flow delay curves for FCF3, FCFS + H and AP.

It would be very difficult to choose operating points at 
which the performance of a FTC strategy is an optimum, as both 

the cycle tine and the junction speed must be adjusted simul

taneously. Furthermore, the delay characteristics as functions 

of speed or cycle time are discontinuous reflecting the fact 

that one cycle time can only hold an integer number of 
vehicles.

Although an optimum intersection speed can be found for 
any particular flow rate, for vehicle flows other than the very 

low the optimum speed is only slightly above the saturation 
speed. Consequently there is only a small benefit to be 

gained by varying the junction speed according to flow, and '
that with the penalty of increasing the complexity of Junction 

(Dia 122)controller
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Manoeuvre Delays - Delays due to headway infringement can 

be divided into two parts. The part which is accumulated as 
a vehicle approaches an intersection and the part accumulated 

as the vehicle accelerates away from the intersection.
Delays after the intersection result when a close-packed 

platoon of vehicles accelerates to the line speed from the 

intersection speed. The front vehicle is not delayed but 

subsequent vehicles are progressively delayed by increasing 

amounts as they drop back, relative to the front vehicle, to 

the longer headways appropriate at the higher speed. The 

larger the platoon, the greater the occupancy at the inter
section, and the lower the intersection speed, the bigger the 

delays. The merging policy used also has a small influence on 
the delay component but only at high flows. in all cases the 

component is small by comparison with the conflict delay.

The mechanism by which delays are accumulated by vehicles 

manoeuvring prior to the intersection has already been des

cribed. These delays are also a function of platoon size and 
flow rate. They are rather more serious than the speeding up 
delays discussed above. This i3 because a delay accumulated 

on one lane is transferred to the other lane via the timetable, 

which effectively couples the two lanes together. As a con

sequence the delays accumulated before the intersection are 
similar in magnitude to the conflict delay. ̂ D1-a
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DIA.121 Complete flow delay 
characteristics of 
three ordering strategies

DIA.I22 Effect of junction speed 
on delay characteristics
of first-come first-served 
strategy

- 253



ì













Size of the Manoeuvre Zone Both increasing the flow rate

and decreasing the size of the panoeuvre zone have the effect 

of reducing the mean speed of vehicles through the zone.

This has the effect of improving the packing of vehicles 

through the conflict point and therefore reducing the conflict 
delay by a small amount. However delays due to manoeuvres, 

both before and after the intersection increase. The net 

result is that reducing the manoeuvre zone slightly increases 

delays at the highest flow rates. Diagrams 1 2 J  - 128 show a 
variety of position/time curves that show the effect of varying 

the ordering policies, on the manoeuvres that vehicles carry 
out.

As the manoeuvre zone is reduced in length, the incoming 

flows tend to back further upstream. However the effect is 

small unless the incoming vehicle flows exceed the Junction 

capacity, in which case a queue grows steadily. In this 

situation, the longer the manoeuvre zone, the lon-er can a 
junction tolerate transient overloads.

Practical Junction Performance - The performance of practical 

junction layouts can be estimated by appropriately combining 

all the components of delay described above. For example:-

The simplest junction, a cross-over has a performance 

characteristic as shown in Diagram 121. The same character
istic will describe a merge-diverge j u n c t i o n , ^9) the' 

extra delay incurred by running at the intersection speed 
along the common section x - x is added.
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junction
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DIA.I3I Comparative performance of
the asynchronous marker- follower 
and the vehicle-follower schemes 
with a first-come first-served 
ordering policy
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A crossing junction with low speed turns 1 3 similar to 

a cros3-oirer with no turning, because all the conflict points 

must be considered as one, there being no room to manoeuvre 

between them.^^a However the tine headways must be
increased to take account of the transit tine of the vehicle 

through the set of conflicts.
A crossing junction with high speed turns can be operated 

differently as each conflict point is sufficiently spaced to 

allow manoeuvres between them.

The Comparative Performance of Vehicle-Follower and 
Marker-Follower Control

A simple intersection was modelled in two ways. In one, 

vehicle-follower control was simulated, in the other marker- 
follower control. The performance of the two was compared 

for a FCFS merging policy. The results are shown in Diagram 

131. The marker-follower control is only slightly inferior 

to the vehicle-follower one, and this difference may reflect 

imperfections in the optimisation routine used rather than 
any intrinsic lower performance. Both types of controller

make very much better use of junctions than quasi-synchronous
(Dia 132)



DIA.I32 Comparative performance of ju n c t io n  
con tro l s trategies

a) Asynchronous control, junction operated at the 
saturation speed with infinite platoon size

b) As for a) but with a platoon size of one

c) As for a) but with a junction speed equal to the line speed

d) As for b) but with a junction speed equal to the line speed

e) Synchronous slot capacity for junction run at the 
saturation speed
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capabilities with very limited communication requirements.

The most complex manoeuvre in asynchronous systems is 

the packing manoeuvre. The asynchronous marker-follower can 

carry out this manoeuvre by transferring only four pieces of 
information to the vehicle. These are a speed command and an 

offset distance, for each speed change. The speed command 

becomes active when the vehicle has travelled the offset 
distance from the command post. In marker-follower systems, 
precise control of the vehicle is essential. It must accur

ately measure its position (this is not a difficult technical 
problem, see Appendix 2), and carry a simple micro-processor 
to generate the required position-time profile. Its controller 

must be able to follow position commands with small or zero 

steady state errors, this again is not difficult to achieve.

(See Chapter k )

Vehicle-follower control has better fault control 

characteristics than marker-follower control. Consequently 

it has been suggested that a less expensive emergency backup 

system can be used in vehicle-follower systems, in which the 
necessary ranging information, required for both the emerg
ency monitor and the normal longitudinal controller, is supplied

(17)by the same equipment.
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7. The Computer S i mu l a t i on s

7.1 Introduction
A number of simulations have been written to examine the 

operation of vehicle controllers and junction control 

strategies. All these simulations have been designed with a 

modular structure to allow an evolutionary development. Each 
important module has been predeveloped using purpose written 

small programs. These are then incorporated into the more 
demanding larger scale simulation, for further development.

This approach to simulation offers several useful charac

teristics: -
speed - small programs are rarely complex and therefore 

easy to develop and quick to run.

identification - the discipline of writing small 

programs forces an early identification of the important 
phenomena. This in turn leads to modular simulation structures

which tend to be easier to develop.
reliability - a repertoire of expected behaviour 

patterns is built up in a 'programmed learning* manner. This 

accelerates understanding of the overall system.
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7.2 Simulation Models

The main simulation models that have been written were:-

- intersection under vehicle-follower control.
- network under vehicle-follower control.

- intersection under marker-follower asynchronous control.
- Monte Carlo models of the four merging strategies 

discussed in Chapter 6.

7.3 Intersection Under Vehicle-Follower Control

The junction is split into several regions.
Zone of influence - this is the region of the junction 

where no direct control is exercised over the vehicle. However 

the results of control action applied to other vehicles may 

have an effect on the motion of vehicles in this region because 

of the vehicle-follower control.
Hegion of control - this is the region of the junction 

where decisions have been made about a specific vehicle and 

it is controlled so as to arrive at the intersection correctly.
After the intersection there is another zone of control 

and influence.

The manoeuvre zone can be further broken down into, a 

deceleration zone, where vehicles change speed from their in

coming speed to the intermediate speed, a queuing buffer, 
where vehicles travel at their intersection speed, and a further 

deceleration zone where the vehicle changes speed to the inter

section speed.
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DIA.I33 Schematic of junction layout



Two streams of traffic are simulated representing the 

two lanes of traffic passing through the intersection.

Vehicles are generated at the intersection boundary with time 
spacings determined according to the headway distribution.

The vehicles are integrated forward each time step, according 

to control requirements until they reach the boundary of 
influence at the other side of the intersection. There they 

cease to exist.
In the space between the boundary of influence and the 

boundary of control normal intervehicle headway control 

operates. When a vehicle passes the control boundary its 
target time at the intersection is calculated according to the 

merging rule. An average speed is calculated for the vehicle 
and the appropriate accelerations applied to the vehicle. If 

the control calls for a manoeuvre causing headway infringement, 
then the signal resulting from the headway controller takes 

precedence.
When vehicles approach the intersection they are accel

erated as required to the intersection speed.
After the intersection the vehicles are accelerated up 

to the line speed. After the control boundary on the far side 

of the intersection junction control ceases and the vehicles 

are subject only to the normal headway control.
The emergency headway monitor overlays the normal control 

system. This detects unsafe vehicle spacings and stops the ' 

vehicle.
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The occurrence of particular events is marked by messages 
output to a line printer. Also at set times all the data 

pertaining to the simulation is output. All or any of this 
data can be suppressed by the appropriate setting of flags at 

the start of a run.

7.4 Network under Vehicle-Follower Control

The network simulation has a very similar design to the 

intersection simulation. The network is specified as a 
directed graph having links (each with an associated control 

strategy), entrances (with traffic generators) and exits.
This general description can encompass an arbitrarily complex 

network. Within the simulation arrays hold the geometric 

details of the network (to enable the layout to be reproduced 

for display purposes), the lengths of links, their speed 

limits and inter-connections. A further matrix specifies 
possible entrance-to-exit routes for vehicles traversing the 
network.

In operation, vehicles are created at each entrance 
according to the random generator modelling the desired input 

stream characteristics. Each vehicle is allocated an exit 
and is transferred from link to link according to the route

*matrix until that exit is reached.
The amount of information transfer required for track- 

vehicle and vehicle-to-track communications is a particularly

Throughout the journey of the vehicle various parameters
are measured and stored for processing and printing.
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important parameter in the assessment of a control strategy. 

Within the simulation information transfer points are pos

itioned on the track; the passing of a vehicle calls a servi

cing routine attached to that particular point. Such an 

arrangement is sufficiently flexible to allow most strategies 

to be simulated. It has the particular programming advantages 

that the necessary information transfer can be explicitly 

identified and a sub-routine performing a particular control 

task can be used to service any number of communication points.

Headway Generation - A random number generator produces 

numbers that have an equal probability of lying anywhere between 

o and 1. This generator is called as many times as is necessary 

for the numbers produced to lie above a specified level. (That 

is to generate an event). The number of times the random 

number generator is called, is multiplied by a specific fraction 

of the minimum headway to give the time separation to the next 

vehicle. If the time so produced is less than the minimum 

headway then the time returned by the routine is set to the 
minimum headway.

Control Soutine - The main task of the control routine is to 

calculate the intermediate speed of the vehicle. In both the 

junction and the network simulation the same technique was 

used, - namely a simple logical selection of the appropriate » 
velocity profile.^®*8 ^5) j>or aimplicity, jerk was not

included in the calculations.
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DIA.I34 The set of velocity time profiles used 
in the calculation of the intermediate 
speed (see dia. 135)
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The technique breaks down when a complex result is cal

culated for the intermediate speed, that is, the simultaneous 

constraints of time and distance cannot both be met. In the 

simple case the time constraint is relaxed and the vehicle is 

late at the junction. In the other case, the required inter

mediate speed is too low and cannot be achieved in the distance 
available. Consequently the vehicle will arrive too early at 

the junction, which is unsafe. This event counts as a failure 

of the control policy.

Storage of vehicle Queues - Each link of an intersection or 

network has an associated queue of vehicles. Within the 

simulation all the variables pertaining to the vehicles are 

stored in an array, the appropriate set of elements being 

marked by front and back queue pointers. A vehicle is entered 

by moving the back queue pointer, a vehicle is deleted by 

moving the front queue pointer.
Vehicles moving from one link to another are deleted from 

the old link queue and added to the new link queue. The target 

speeds and times for each intersection are stored in a table, 

one table for each intersection, again pointers are used to 
mark the front and back of the table.

Headway Controller - No attempt was made to model vehicle 

dynamics within the simulations. The detail simulation of ' 
vehicle dynamics is a study in its own right and for the work 

reported, unnecessary. Thus initial studies have assumed the



perfect response of a vehicle to demanded inputs. This is 

clearly unrealistic, and it is commonly accepted that the 

tolerance of the actual vehicle response about a demanded 

input is unlikely to be better than 5%. Later simulation 
studies will have to take this into account as performance 

limitations of vehicle controllers are likely to have a 

significant effect on control policies.

The headway controller uses the relationship

acceleration (T ♦ 1) leeway(T) constant
headway(T)

(The leeway is the intervehicle separation minus the headway 

appropriate to the vehicle speed.

T + 1 denotes the value during the next time interval (step) 

T denotes the value during the current time
interval (step)).

Output of Information - With any complex simulation the cleai- 

and detailed presentation of information, such that important 
phenomena can be readily identified, is a formidable task.

Output can be divided into three groups.
- Monitoring system operation - The noting of events 

.during the course of the simulation enables particular sit

uations to be identified. Such output can be valuable but 

cannot show unforseen events.
- Performance Data - A detailed simulation generates 

large quantities of raw data, most of which requires processing 
to condense the important characteristics into an intelligible
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form. Thus within the simulation simple averages and variances 

of delay and vehicle spacings are calculated. For more complex 

output, the relevant variables are saved on magnetic tape for 

subsequent processing. This subsequent processing included 

the plotting of histograms and position-time graphs.

With the network simulation, the sete of variables that 

define the state of the simulation were regularly saved on tape. 

This allowed the simulation to be restarted anywhere in a 
previously saved record and allows the simulation to be stepped 

backwards or forwards to examine in detail, particular events.

- Overview of System Operation - For complex simulations 
there are considerable problems associated with the 'bird's eye' 

view presentation of the overall system operation. Line printer 

outputs of relevant variables are useful for a quantitative 

survey of situations. However they are ineffective for a 

general overview and the detection of subtle operational 

anomalies. For this, a moving picture display is particularly- 

effective. Complex phenomena are clearly presented for which 

one has an intuitive feel, thus allowing an assessment of the 
effectiveness of algorithms and the detection of incorrect 

program operation.

Moving Picture Display - The simulations reported here use 

an interactive moving picture display as a communication medium. 

Suitably coded information is transmitted in character form, * 
(that is, one start bit, seven information bits, one parity 
bit, one stop bit) from the host computer (Rank Zerox Sigma 5)



containing the simulation, to the picture processor (Digital 

Systems GT k o ) via a full duplex 1200 baud asynchronous line.
A continuously refreshed picture is produced showing the 

motion of vehicles through the network or intersection.

At any point the display can be stopped and dialogue 

initiated with the host computer. Any portion of the picture 

can be magnified to any scale. This coupled with the ability 

to restart the simulation at an earlier stage and to step 

backwards cr forwards through the pictures enables close detail 

to be observed.
The picture displayed has the following properties

The use of the display does not substantially slow down 

the simulation
- A network that can be simulated can also be displayed.

- Vehicles moving through the network are represented 

by an unambiguous symbol whose length represents headway and 

so varies according to the speed of the vehicle.
Initial attempts to produce the required display used the 

FOCAL GT graphics routines (supplied with the GT^O is a simple, 
flexible, interpretive, language, including some graphics 

functions, similar to BASIC, and called FOCAL GT). Data trans

mitted from the Sigma 5 host was received by a FOCAL GT 
program and used to redraw the vehicle layout in the junction. 

Accumulation of data simultaneously with drawing the picture
P

output, was not possible and the resulting display was too slow 

to be effective. The best picture rate achieved was 1 picture/ 

8 secs, (broken up as 3 seconds data transmission time.
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5 seconds display time). The excessive display time, is the 
result of the very slow execution speeds of interpretive 

languages. The long data transmission time results from 

sending the ASCII character form of a decimal number rather 

than the more efficient binary form.

These two limitations were avoided in the second display 

produced. Specialist functions performing segments of the 

display process were written in assembly code and added to the 

FOCAL GT structure. This approach minimised the software 

written and retained the flexibility of programming in a high 

level language.
The functions correspond to four stages in the creation 

of a display

- The generation, within the GT^O, of a data table holding 
the aY coordinates (suitably scaled in screen units) of the 

network to be displayed. The display of the junction layout 

requires a simple extension of the network representation used• 

to describe the junction geometry. As only straight vectors 

can be displayed on the GT^O screen, curved network links have 
to be approximated with a series of straight line segments.

These segments are the same length for any given link, this 
facilitates subsequent display of vehicles. Thus the link 
identifying number, the length of individual segments and the

XY coordinates defining the ends of each segment are transferred 

from the Sigma 5 to the GT^O data table.

- The display of each network link by referencing the 

coordinate data table.
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- The display of vehicles in the junction to produce 

the moving picture.

The vehicle display routine determines the picture speed. 

Provided all the necessary calculations can be carried out 

simultaneously with the receipt of data the picture rate is 

determined by the data transmission time. The design of the 

vehicle display therefore reduces to minimising the data 

required to define a picture and ensuring that algorithms are 

sufficiently fast. The least complex symbol that could be used 

to represent the vehicle and its stopping distance is a straight 

line of variable length. To position the line anywhere on the 
screen requires the XY coordinates of each end: these, directly 

transmitted from the Sigma 5 would require four items of data.
If the vehicle is identified as lying on a particular link 

of the network, then the end coordinates can be calculated 

knowing the displacement of each end of the vehicle symbol 

from the origin of the link. This reduces the number of data 

items required per symbol to two.

The coordinates of a point on a link are calculated 

according to the algorithm.

Xp = *“ * K - i - Xn] * g
Yp = r” * [Vi - Ynl * g

n integer part of (d/p!

g  - fractional part of [d/p]
D - displacement of point from origin

p - length of one link segment
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All the data except D are constants and held in the 
previously generated data table. To calculate the coordinates 

of each point requires two multiplications and one division, 

consequently calculation times can be easily kept within the 

minimum period of 10ms separating the arrival of data items.

The maximum binary number that can be transmitted from 

the Sigma 5 in a seven bit character is 127. If, each of the 
displacements necessary for the XY coordinates of the symbol 

can be generated using numbers less than 127, then only a 

single character need be transmitted for each data item.
Three methods of generating the displacement are possible.

- The absolute displacement of a point from the link of 

origin can be transmitted. As displacements can be consider

ably greater than 1 2 7 screen units (approx 1.25 inches) in 
general, two characters would be required to define the point 

(the two characters holding the upper and lower parts of a

1^ bit binary number).
- Each point is calculated as an increment on the 

corresponding point on the previous picture. The data incre
ments are likely to be very small but rounding errors would 
accumulate from one picture to the next and probably would 
become unacceptably large.

- Along a given link, a set of points can be specified 
by sending the spacings of the points and defining the first 
point as being spaced relative to the origin of the link. For 
a set of points along a link errors can accumulate but are

X,Y - x y coordinates of link segment start
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All the data except D are constants and held in the 
previously generated data table. To calculate the coordinates 

of each point requires two multiplications and one division, 

consequently calculation times can be easily kept within the 

minimum period of 10ms separating the arrival of data items.

The maximum binary number that can be transmitted from 

the Sigma 5 in a seven bit character is 127. If, each of the 

displacements necessary for the XY coordinates of the symbol 

can be generated using numbers less than 127, then only a 
single character need be transmitted for each data item.

Three methods of generating the displacement are possible.
- The absolute displacement of a point from the link of 

origin can be transmitted. As displacements can be consider
ably greater than 127 screen units (approx 1 . 2 5  inches) in 

general, two characters would be required to define the point 

(the two characters holding the upper and lower parts of a

14 bit binary number).
- Each point is calculated as an increment on the 

corresponding point on the previous picture. The data incre

ments are likely to be very small but rounding errors would 

accumulate from one picture to the next and probably would 

become unacceptably large.
- Along a given link, a set of points can be specified

*by sending the spacings of the points and defining the first 
point as being spaced relative to the origin of the link. For 
a set of points along a link errors can accumulate but are

X,Y - x y coordinates of link segment start
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not transferred from link to link. This scheme was implem

ented for the picture display.

During the picture display communication is maintained 
with the Sigma 5 host. Any two characters typed from the 

keyboard terminates the picture display and initiates a dia

logue enabling several options to be selected. Namely

- A specified portion of the network can be magnified 

to any scale. The facility is achieved by calculating and 

transmitting to the GT'tO a new coordinate table holding only 

the coordinates of the links actually appearing in the display. 

During the picture display the Sigma 5 sends only data 
referencing the displayed links, all other is suppressed. To 
further aid the detail study of the individual vehicle move

ments, the simulation can be run in slow motion.

- During the simulation run, the variables defining the 
state of the simulation are regularly dumped onto magnetic 

tape. This records the simulation results for future data 

processing. At the request of the operator the simulation 

can be restarted anywhere on the record. This enables simul
ation work to be carried on from where it was left off or for 

any particular event to be studied in depth.

- To assist particular studies a step operation can be 
selected. On restarting the display the operator can step 
backwards or forwards one picture at a time, or return to the 

main dialogue.
- A trace option records the progress of a particular 

vehicle by printing all the variables pertaining to the vehicle.



regularly to the line printer. To prevent the continuous 

printing of variables producing a confusing line printer 

record a message option can be selected and a heading trans

mitted to the line printer.

Performance of Picture Display - A picture rate of about 2 

pictures a second is achieved. (This is determined by the 

amount of data that needs to be transmitted, consequently the 

fewer the vehicles displayed, the faster the picture rate).

If a picture is drawn for every second of simulated time 

(that is, the display runs at approximately a simulation time 
twice as fast as real time), a clear, moving, but slightly 

jerky picture is realised, also the display slows the simul

ation down a certain amount.
If the simulated time between each picture is increased 

so that the display does not hold up the simulation, there are 

unacceptably large changes between each picture making it 

appear jerky. This is because large changes can take place 

in vehicle position in the increased simulation time between 

each picture.

.7.5 Intersection under Marker-Follower Control
The simulation operates in a different manner to the 

previous simulations described.
PThe time of arrival of each vehicle at the junction 

boundary is determined using the same techniques as described 

earlier. The time the vehicle passes through the intersection
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is determined by the choice of vehicle ordering and inter

section speed. This provides sufficient information to calcul

ate the vehicle manoeuvre. The basic manoeuvre is a speed 
change carried out at S P 1 , -̂27) a constant speed section 

and a final speed change starting at SP2.

An iterative procedure is used, as follows:- Using a 

guess for the intermediate speed a trajectory is calculated 

for the vehicle using the most forward positions of SP1 and 

SP2 possible. This trajectory is stored in a polynomial form, 

a different polynomial describing each phase of the manoeuvre. 

These phases are as follows.
i Constant line speed input

ii Constant jerk transition
First
speed ili Constant acceleration
change

iv Constant jerk

V Constant speed

Vi Constant jerk
Second
speed vii Constant acceleration
change

vili Constant jerk
ix Constant final velocity (intersection speed)

The worst headway infringement during the first speed 

change manoeuvre is found by subtracting from the position of 
previous vehicle, the position of the headway locus of the 

present vehicle. This infringement is used to move the start 

point SP1 upstream (so that the infringement is reduced to ' 
zero). A similar process is carried out for the second speed 

change. This second manoeuvre adjustment is however more 

complex.
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It may not be possible to remove headway infringement 

by moving the start point upstream. Consequently the inter

section start time must be made later by a specific amount to 

remove the headway infringements. This corresponds to the 

'slip' that must be added into the intersection target time 
table.

Once satisfactory start points have been determined for 

each manoeuvre a second iteration loop recalculates the inter
mediate speed appropriate to the new manoeuvre start points. 

This slightly modifies SP1 and SP2, consequently the iteration 

cycle must be repeated, until specified accuracy constraints 

are satisfied. Although the iteration cycle is rather crude 
it works well and only 5 - 3  cycles are usually required to 

evaluate a manoeuvre.

7.6 Monte Carlo Simulation of Merging Strategies

The Monte Carlo simulation of queuing strategies is very . 

simple. The arrival times of vehicles are determined according 

to the appropriate headway distribution. The target time is 

determined according to the merging sequence by taking which

ever is later, the arrival time of the vehicle, or the earliest 

time the vehicle can follow the previous vehicle through the 
intersection, (that is, the crossing or following time headway 

as appropriate). The difference between the arrival time and 
the target time is the vehicle delay. *
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It may not be possible to remove headway infringement 

by moving the start point upstream. Consequently the inter

section start time must be made later by a specific amount to 

remove the headway infringements. This corresponds to the 

•slip' that must be added into the intersection target time 

table.
Once satisfactory start points have been determined for 

each manoeuvre a second iteration loop recalculates the inter

mediate speed appropriate to the new manoeuvre start points. 

This slightly modifies SP1 and SP2, consequently the iteration 
cycle must be repeated, until specified accuracy constraints 

are satisfied. Although the iteration cycle is rather crude 

it work6 well and only 5 - 3 cycles are usually required to 

evaluate a manoeuvre.

7.6 Monte Carlo Simulation of Merging Strategies

The Monte Carlo simulation of queuing strategies is very . 
simple. The arrival times of vehicles are determined according 

to the appropriate headway distribution. The target time is 

determined according to the merging sequence by taking which

ever is later, the arrival time of the vehicle, or the earliest 
time the vehicle can follow the previous vehicle through the 

intersection, (that is, the crossing or following time headway 
as appropriate). The difference between the arrival time and 

the target time is the vehicle delay. *
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7.7 Other Programs
Contained in the appendices are the listings of a number 

of support programs. These include - a program simulating a 

platoon of vehicles subject to varying types of speed-change 

operations, - a program to evaluate the changing safety factor 

and time headways through a jerk-limiting speed-change man

oeuvre, - a program to plot position-time graphs from data 

stored on magnetic tape, - a program to plot the pseudo three- 

dimensional graphs with hidden-line removal and a program 

(written in conjunction with Alan Hubie) to assemble PAL11 

(PDP-11 assembler code) programs into binary suitable for 

loading into the GT^O.



Conc l us i on

The important conclusions of this thesis can be summarised 

as follows.

The fundamental choice in the design of control systems 

for automated transport is between a centralised or decentralised 

system structure. Decentralised controllers by comparison with 

centralised controllers, offer the prospects of lower system 

costs, and better reliability, although with the penalty of a 

reduction in the ultimate performance available. Dependability 

of service is a vital characteristic in automated transport 
systems, and therefore for such systems, decentralised, hier

archical structures have considerable advantages.

There are two basic techniques of vehicle control, marker, 

following or vehicle-following. Marker-follower control can 

be either synchronous or asynchronous, vehicle-follower control 
is always asynchronous. Synchronous control tends to be 
centralised, and asynchronous is usually decentralised.

Previous researchers have only examined in detail the 
performance of synchronous marker-follower systems. Asynchron

ous controllers have always been dismissed as being incapable 
of providing a good system performance, and being expensive » 
to implement. The analysis of asynchronous systems presented 

in this thesis has shown that these accepted views are
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mistaken. Indeed asynchronous systems can make a substantially 

better use of track capacity than synchronous systems. This 

is particularly true for junctions, where a well chosen 

strategy can achieve nearly twice the capacity available under 

synchronous control. This, combined with the flexibility of 
asynchronous controllers allows significant reductions in the 

complexity and therefore the cost of the civil engineering 

structures.
The decentralised structure of asynchronous systems ensures 

a good response to failures and leads to a better service 

dependability than the equivalent centralised systems. Within 

the class of asynchronous systems the vehicle-follower type 

of controller has a better response to failures than the 
asynchronous marker-follower controller. However the asynchro

nous marker-follower scheme can achieve as gocd a performance 

during normal running as the vehicle-follower scheme, but 

requires much less communication. This significantly reduces 

systems costs.
Capacity in asynchronous systems is limited by the ability 

of the emergency backup systems to safely monitor inter

vehicle spacings. Of the techniques available today only 
fixed block signalling provides the necessary combination of 

reliability, 'fail-safe* and reasonable cost. However fixed 
block signalling cannot be used effectively for vehicle head

ways less than 6 - 1 0  seconds. If headways lower than this 

are demanded a completely different and radical approach to 
safety must be adopted. The concepts of 'fail-safe' and





APPENDIX 1 Simulation of asynchronous
single channel communicail on
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h bstract

Th is working paper d iscusses in  d e ta il the major aspects o f 

communication and measurement in  an automated tran sport system«

In part 1 are d iscussed  the unde rly ing  system featu res 

determ ining the design and p rov is ion  o f communication and measure

ment systems in  an automated transport network.

In part 2, there fo llo w s  a catalogue o f current communication 

and measurement techniques in d ica tin g  th e ir  major p ro pe rtie s  and 

possib le  ap p lica tion s to  automated system s.

Throughout tran spo rt there has been a growing in te re s t in  the 

use o f automation to  improve the q u a lity  o f se rv ice . Part 3 

reviews some examples o f techniques th a t have been ap p lied  to  

metros, buses, and automated systems.



Introduction
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Designs for new transport systems seek to improve the service 
offered to travellers. Better communications in stations and on 
vehicles enable passengers to understand and use the system more 
effectively. Improved control strategies and circuits enable the 
system to respond faster and more accurately to demands made of it.

Increasingly automation is employed. The human content of 
complex tasks is replaced by automatic equipment, whose predicta- 
bility, reliability and speed of operation enable a more regular and 
frequent service to be offered.

Common to all these developments is the more sophisticated use 
of information requiring fast, error-free communication links, 
extensive and accurate measurement and monitoring equipment.

Communications in Automated Transport

Communication in  an automated transport system iB  characte rised  

by the need to  tra n s fe r in form ation  re g u la rly  between moving veh ic le s  

and fix e d  con tro l centres d is tr ib u te d  over a wide a rea . B id ire c t io n a l 

communications between veh ic le  and v e h ic le , veh ic le  and co n tro l cen tre , 

c o n tro l centre and co n tro l centre may a l l  be necessary.

The con tro l system engineer would lik e  to  have independent 

communication channels fo r each in form ation  flow . Such p ro v is ion  

would however be w aste fu l, be ing excessive ly  expensive and under

u t ilis e d ,  although po ss ib ly , a more p re c ise  co n tro l cou ld  be achieved. 

Communication f a c il it ie s  have to  be chosen in  balance w ith  the re s t 

o f the system, enab ling adequate in form ation  flow s to  take p lace 

w h ils t m inim ising c a p ita l and runn ing co s ts . As w ith  a l l  communica

t io n  systems, time delays, in form ation  ra tes and e rro r rates are 

im portant parameters. A l l  can be improved t*y supp ly ing  a d d itio n a l 

bandwidth, s ig n a l power o r le ss  n o isy  ohannels at an increased co s t. 

(Refs -32 )

Measurement in  Automated Transport

In automated transport c e rta in  tasks o f the human operator have 

been rep laced , extensive measurement and m onitoring is  requ ired ,
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both to  re la y  in form ation enabling c o n tro lle rs  and algorithm s to  work 

e ffe c t iv e ly  and to  provide checks designed to  ensure the sa fety  o f the 

system.

The sta te  v a ria b le s  o f most in te re s t are p o s itio n  and it s  time 

d e riva tives o f v e lo c ity , a cce le ra tion  and je rk .

The a b ilit y  o f a veh ic le  c o n tro lle r to  m inim ise absolute p o s itio n  

erro rs d ire c t ly  in flu en ces the maximum flow  capacity  a system can 

achieve. P re c ise  operations at merges and s ta tio n s  depend upon both 

p o s itio n  and speed co n tro l. Accurate speed co n tro l is  requ ired  to  

s a tis fy  sa fe ty  cond ition s, fo r  example speed lim its  on bends and 

headway con stra in ts when approaching other v e h ic le s .

Passenger com fort is  determined by the q u a lity  o f acce le ra tion  

and je rk  co n tro l. P reo ise  a cce le ra tion  co n tro l iB  d if f ic u lt  to  

achieve. C losed loop jerk  co n tro l may not even be attempted, although 

veh ic le  response ch a ra c te r is tic s  can be designed to  ensure that jerk  

stays w ith in  acceptable lim its .

The coord inated operation o f a complete transport network re

qu ires the systemwide generation o f tim e. C locks can be e a s ily  

manufactured to  h igh accuracy but methods have to  be incorporated to  

ensure tha t a l l  are synchronised, thus c re a tin g  a d d itio n a l coinnunicac

tio n  requirem ents.
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1.A. System Features

In th is  section  are discussed the genera l featu res o f transport 

communications which determine the o v e ra ll behaviour and c a p a b ilit ie s  

o f the transport scheme.

1 «A.1 The Degree o f Automation Sought

The a b ilit y  o f a human operator to  make fa s t o v e ra ll assessments 

o f unusual s itu a tio n s  ensures that the to ta l automation o f systems 

as complex as a transport network is  most u n lik e ly . At some stage 

i t  becomes a more e ffe c tiv e  so lu tio n  to  employ somebody ra th e r than 

attempt to  devise appropriate equipment and s tra te g ie s . Examples 

are: the crea tion  o f schedules, maintenance and recovery from severe 

f a i lu re s .

Of paramount importance is  the p ro v is io n  o f an e ffe c t iv e  in te r

face  between the automatic equipment and the operator. Humans are 

p a r t ic u la r ly  e ffe c tiv e  at id e n tify in g  pa tterns o f behaviour but are 

e a s ily  overloaded w ith  data. Communication techniques have to  be 

devised which d isp lay  primary in form ation  in  e a s ily  recognised forms. 

Safeguards have to  be incorporated to  re je c t unsafe o r in co rre c t 

operator decis ions yet a llow  him adequate f le x ib i l i t y .

Modern ra ilw ay p ra c tice  is  an illu s t r a t io n  o f the changing man- 

machine boundary as automation progresses.

Manual d riv in g  — D riv e r obeys o p t ic a l s ig n a ls

at tracks ids.
Manual driving with 
automatic warning

— Driver obeys optioal signals 
but is advised of signal 
aspects ut an appropriate 
braking distance.

Manual driving with 
cah signalling

— Driver obeys optioal signals 
but is continuously advised 
of the signal aspects in the 
cab.
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D river obeys o p t ic a l s ig na ls 

but cab s ig n a ls  autom atica lly  

brake in  the event o f overspeed. 

Power and brake con tro ls  

operated by cab s ig n a l equipment. 

Fixed b lock s ig n a llin g .

D rive r not s t r ic t ly  necessary. 

Continuous two-way data communi

ca tion  f a c i l i t y  a llow s safe 

headways to  be ca lcu la ted  at 

a l l  tim es to  au tom atica lly  

operate power and brake 

equipment. D river is  

not necessary.

(R e f. 16, 229)

1,A»2 The S tructure o f Contro l Systems and it s  In fluence on 

on Inform ation Requirements

A transport co n tro l system is  a stru ctu re  o f interconnected 

subsystems. These might include veh ic le  c o n tro lle r , s ta tio n  con tro l

le rs , merge c o n tro lle rs , network c o n tro lle rs , sa fe ty  m onitors, 

passenger handling systems, power supp lie s e tc .,  each communicating 

w ith  some or a l l  other u n its .

The broadest level of design defines the system organisation.
The most appropriate sub-systems and structure are specified to 
achieve the desired ’whole' system properties. For example good 
reliability and high safety standards are fundamental factors in any 
transport scheme and should figure in any cost function relating to 
whole system operation.

Control structures for an automatic transport Bystem are 
usually either centralised or hierarchical. Other structures can 
be devised, for example, mesh structures in which every unit directly 
communicates with every other. Communication costs are very high and 
logical fault detection is almost impossible.

Automatic veh ic le  —

con tro l

Automatic veh ic le  operation -  

(fix e d  b lock)

Automatic veh ic le  operation -  

(va riab le  and moving block)



C en tra lised  con tro l

In ce n tra lised  co n tro l stru ctu re s a ce n tra l de c is io n  maker con

t r o ls  a ll the pe riphera l subsystems. Inform ation from the subsystems 

passes to  the cen tra l u n it and is  a v a ila b le  fo r use in  any other 

subsystem. Communication cost3 are high as many long d istance and 

expensive channels are requ ired  to  lin k  a l l  parts o f the network to  

the ce n tra l processor. The concentration  o f co n tro l a c t iv ity  and 

the quantity  o f communications passing through reg ions supporting 

many other a c t iv it ie s  makes the system very vunerable to  damage and 

subsequent d is ru p tio n . However b e tte r co n tro l may be po ss ib le  as 

a l l  the system inform ation is  a v a ila b le  fo r  p rocessing .

ce n tra l c o n tro lle r

•centralised structure 
Hierarchical control

In a hierarchical structure control is divided between a number 
o f semi-independent levels. Each element in the structure functions 
autonomously using only limited strategic information from higher 
levels .

Information is only selectively directed to other parts of the 
system, consequently all the system information is not available 
everywhere in the network. Limited information transfer decouples 
the system elements. Control decisions are made olose to the source 
of their information and are likely to be less optimal as a result.
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The use o f h ie ra rch ica l stru ctu res w ith d e c is ion  u n its  p h y s ica lly  

d is tr ib u te d  throughout the network reduces the demand fo r  communica- 

tio n  lin k s , so reducing co s ts . The d is ru p tio n  caused by fa u lts  is  

dim inished and the modular nature o f such systems s im p lifie s  the 

de tection  and rep a ir o f fa u lts .  (Ref. 30, 96)

— g reater understanding 
and gene ra lity

-  longer time sca les

-  greater d e ta il

-  more s p e c ific  in form ation
-  sho rte r time sca les

1.A.3 Communications involved in open loop control, closed loop 
control and fault monitoring

k 'system' of two interconnecting subsystems can be related in 
terms of a 'controller' and a 'plant'.

The role adopted by each subsystem depends on the primary 
direotion of information flow. The 'controller' is the upstream 
element and supplies appropriate inputs to the 'plant' which responds 
with the 'system' output.

The relationship between the 'controller' and the 'plant' can be 
either open-loop or closed-loop.
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Open loop

Conceptually the c o n tro lle r  ho lds a model o f the p la n t. Using 

th is  model and knowing the desired  system output the c o n tro lle r  

generates the necessary p lan t ou tputs. The accuracy o f the system 

output is  to ta lly  dependent on the a b ilit y  o f the model to  p red ic t 

the p lan t a ctio n . As no measure o f the actual p lan t output is  used 

by the c o n tro lle r  no ise and other random disturbances cannot be com

pensated fo r .  Undetected in co rre c t operations w il l  re su lt from 

equipment or strategy fa ilu re s .

Open-loop systems requ ire  on ly one-way communication lin k s .

They may be appropriate where the system is  p red ic ta b le , i. e .  i t  is  

re lia b le , w e ll defined and subject on ly to  minor random d istu rbances, 

or where the cost o f two-way communication is  excessive e .g . where 

the communications are constra ined to  a narrow band, long d istance 

lin k .

Open loop system
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Closed loop

Closed loop systems have the general form:—

system

The c o n tro lle r  has access to  measures o f the a ctua l p lan t per

formance. Th is feedback inform ation a llow s compensation fo r  minor 

d isturbances such as noise, hardware and environm ental v a ria tio n s . 

More sop h istica ted  c o n tro lle rs  may use the feedback in form ation to  

track the optim al operating po in t o f the system.

In closed—loop systems the c o n tro lle r  may not ho ld  a conceptual 

p lant model. However the use o f a p lan t model by the co n tro lle r 

improves it s  a b ilit y  to  compensate fo r disturbances and enables o p t i

mum seeking methods to  proceed fa s te r. Such an arrangement is  

commonly c a lle d  feed—forward c o n tro l.

C losed loop co n tro l schemes requ ire  su b stan tia l investment in  

two way communications, measurement transducers and co n tro l equip

ment. They are e ssen tia l fo r  good performance in  poorly  defined, 

noisy environments w ith  many random d istu rbances.
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Etult control
Fault control systems are always closed—loop. Measures of actual 

yntem states are compared with predicted values of the state. The 
etection of abnormal discrepancies initiates standby strategies 
ssigned to counteract the effects of the failure. The identification 
f a system fault requires a system model as a reference against which 
he system operation can be checked.

The model may be explicit or implicit, i.e. the fault monitoring 
an be integrated with a controller or supplied as independent equip- 
ent.

Extra transducers circuitry and communications are required, 
ystem disruption is reduced as a faster response to failures is 
ossible.

Within a closed—loop system, elements may be operating locally 
n an open—loop manner.

Jn it B is  part of a closed-loop  but is  it s e l f  operating  open—loop .

1 is  part o f the system and operating  open—loop .

Measurement a c t iv it ie s  p laced fu rth e r 'downstream' w i l l  m onitor 

a w ider range o f system s ta te s . A s in g le  transducer can tap  inform a

tio n  created by severa l proceeding elem ents. The in form ation  y ie ld ed  

is  more general, it s  in te rp re ta tio n  more d i f f ic u lt .

Feedback co n tro l over severa l systems becomes more complex to  

design and d e lica te  to  ad ju st. Fau lt d e tection  beoomes le s s  p re c ise  

and corresponding s tra te g ie s  more clum sy. There is  a balance between 

lin iilgu oost of monitoring every a c t iv ity  and the in e ffe c t iv e  m onitor

ing  o f on ly a few. Th is  balance fundam entally in flu en ces the measure

ment and communication equipment provided in  a complex autoewtio system.
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1.B. Methods o f D ire c tin g  Inform ation to  the Correct Recip ient

There are two c la sses o f in form ation d ire c tio n  methods. The 'many 

to  one' where severa l u n its  may wish, p o ss ib ly  sim ultaneously to  com

municate w ith one u n it ,  and the 'one to  many' where a s in g le  un it may 

w ish to  communicate s e le c tiv e ly  w ith one o f a number o f u n its . The 

former requ ires the organised, m u ltip le  use o f a s in g le  channel. The 

la t te r  is  concerned w ith  addressing techniques. These problems a rise  

in  a l l  communication systems and have been extensive ly  stud ied p a rticu 

la r ly  fo r  telephone and computer networks. Consequently only s p e c ific  

s itu a tio n s  associated w ith  transport networks are d iscussed here.

(Ref. 137).

1.B.1 M u ltip le  use o f a s in g le  channel

The large number o f lin k s  requ ired and the physica l separation o f 

network elements d ic ta te s  the use o f co n tro l structu res and stra teg ie s 

re q u ir in g  lim ite d  in form ation  flow s.

In many s itu a tio n s  a s in g le  channel has to  be shared between 

seve ra l users. The added requirement fo r  moving po in t to  fixed  

po in t communication in troduces fu rth e r com plexity, as messages must 

in te rcep t the desired  re c ip ie n t in  time and p o s itio n .

W ith an uncon tro lled  channel serv ing severa l independent users 

there is  a f in it e  p ro b a b ility  o f two or more simultaneous transm issions. 

A lthough e rro rs caused by the c o llis io n  can be id e n tifie d  using coding 

techniques, s tra te g ie s  designed to  ensure the oorreot message is  re

trie ve d  cannot be e a s ily  devised.

The use of the channel must be organised so that transmissions 
from independent users cannot take place simultaneously, i.e. the 
channel is exclusively dedicated to the user for the duration of its 
transmission, it then becomes available to other users.

Interrupt type systems offer a method of channel synchronisation. 
However they imply the use of parallel lines one from each user to a 
priority resolving unit controlling a message channel. In most situa
tions arising in automatic transport systems this is not possible*

A variety of schemes are possible* The channel can be captured 
by a user in one of two ways.
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(a) D ire c tly , re q u irin g  each user to  lis te n  to  the

channel

(b) In d ire c tly , v ia  a ce n tra l c o n tro lle r

J ith  each, a demand responsive o r fix e d  sequence (tim e m ultip lexed) 

service can be operated.

Direct channel o rgan isation  w ith  demand responsive stra tegy

A user w ishing to  send a message, transm its im m ediately i f  he 

fin d s  the lin e  c le a r. I f  a busy lin e  is  encountered the user continues 

to te s t the lin e  at fix e d  in te rv a ls  u n t il an id le  s ta te  is  found, 

whereupon i t  transm its. I I f  the user transm its im m ediately a previous 

transm ission  fin is h e s  there is  an increased p ro b a b ility  th a t two or 

more users, a l l  delayed by the same previous user, w i l l  transm it sim ul

taneously .)

D ire c t channel o rgan isation  w ith  fix e d  sequence stra tegy

For a fix ed  sequence type operation  each user is  a llo ca ted  the 

channel in  sequence. The fix e d  sequence must be prearranged and cannot 

respond to  lo c a l v a ria tio n s  in  demanded in form ation  flo w s. Bach user 

must know and be able to  id e n t ify  it s  p o s itio n  in  the sequence. Com

p lic a t io n s  a rise  where the p o te n tia l users o f the channel can change 

e .g . where veh ic les enter o r leave the zone o f a lin k ,  as th is  requ ires 

the s ig n a llin g  schedule to  be loaded in to  the v eh ic le  each time i t  

enters a new zone.

Synchronisation o f in d iv id u a l users to  the message stream can be 

achieved in  two ways. I f  messages are fix e d  length i. e .  a l l  users 

are a llo ca ted  the channel fo r  a fix e d  time s lo t even i f  they have no 

in form ation  to transm it, then •flyw hee l' type synchron isation  is  

p o s s ib le . Bach veh ic le  takes it s  tim ing  in form ation  from the received 

message stream. The fa ilu re  o f any in d iv id u a l user does not h a lt the 

message stream.

The use o f stop-start codes to define the message boundaries 
allow s vehicles with no information to transfer to use the ohannel 
le s s . The start of each transmission relies upon the end of the 
previous one but if one user fails to transmit, backup procedures are
requ ired to  re s ta rt transm iss ion .
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D ire c t channel o rgan isa tion  needs l i t t le  equipment. Demand 

responsive systems g ive no in d ica tio n  o f fa ile d  users, a check which 

is  p o ss ib le  in  a fix ed  sequence system.

Demand responsive se rv ices are more e ffe c tiv e  where inform ation 

flow s from each user are h ig h ly  irre g u la r and unpred ictab le .

Delay ch a ra c te r is tic s  w ith  d ire c t channel organ isation

Demand responsive channel use g ives a mean delay which r is e s  

steep ly  when the demand ra te  exceeds 75$ o f the channel capacity .

Below th is  demand ra te  the mean delay is  su b s ta n tia lly  le ss than fo r 

fix ed  sequence systems. I f  veh ic les have only lim ite d  storage fo r 

messages pending transm ission  both systems show s ig n ific a n t re je c t 

ra te s, th a t fo r  the demand responsive system being lower than that 

fo r the fix e d  sequence system.

F ixed  sequence systems o ffe r the advantage that delays are boun

ded, although th is  is  on ly s ig n ific a n t near channel sa tu ra tion . (Ref. 137)

flyeracje 
Dfc/ay

btMCUAÓ
fate.

■s

/ &
/ (!) O r e

/00/ w Tojo stora^é

/

b tM O jyd
% ate
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Channel organ isation  using a c e n tra l c o n tro lle r

A con tro l u n it can be used to  organise a communication channel.

If on ly one channel is  a va ila b le  between c o n tro lle r  and users, the 

only p o lic y  that can be operated is  fo r  the c o n tro lle r  to  p o ll each 

user in  tu rn . A demand responsive scheme cannot be operated (as any 

user in it ia te d  men::age w il l be independent and th e re fo re  u n con tro lle d ).

A lin k  organised using a c e n tra l c o n tro lle r may however employ 

two communication channels between the c o n tro lle r  and the users. I f  

both channels are o f id e n tic a l design  and have the name ch a ra cte ris

t ic s  then a va rie ty  o f s tra te g ie s  can be operated. (NB. Th is is  a 

s im p lify in g  assumption, not n e ce ssa rily  a requirem ent).

One channel can be designated an addressing lin e , the other, the 

message lin e .  These channels cou ld  be interchangeable enab ling some 

degree o f standby se rv ice  to  be provided in  the event o f a fa ilu r e .

Any mix o f fix e d  sequence and demand responsive p o lic ie s  can 

be operated, enab ling the advantages o f both to  be in corporated .

Against these ben e fits  must be balanced the a lte rn a tiv e  gains that 

would have been achieved by opera ting  each channel independently fo r  

the same lin k .  Th is provides low er delay and re je c t ra te s as a con

sequence o f the lower usage o f each channel.

1.B.2 Addressing

The successfu l transm ission o f in form ation  from one p lace to  

another in  a system requ ires ro u tin g  to  the co rre ct lo ca tio n  and 

tim ing  to  ensure that i t  can be re ce ived .

In transport networks a channel may serve a number o f p h y s ic a lly  

separated users. The range o f p o s s ib ilit ie s  is  represented diagram- 

m a tica lly  thus:
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A destin a tion  may be fix ed  or moving. I f  moving the channel 

rou ting  system must be organised to  d ire c t the message to the track  

segment adjacent to  the v e h ic le . I f  the segment can encompass more 

than one veh ic le  at a tim e then messages must include veh ic le  id e n tity  

in  th e ir  code. Advance messages can be sent i f  track  segments have 

storage bu ffe rs from which the in form ation w ill even tua lly  be relayed 

to  the v e h ic le .

Communication systems lin k in g  fix e d  po in ts have been extensive ly  

stud ied , p a r t ic u la r ly  w ith  respect to  d is tr ib u te d  computing systems.

The e x tra  refinem ent necessary to  c o rre c tly  and e f f ic ie n t ly  communi

cate w ith  moving v e h ic le s  Ì3 the main concern o f th is  paper.

The geograph ica l addressing problem

Inform ation must be d ire cte d  to  in te rcep t the intended veh ic le , 

i. e .  i t  must be a v a ila b le  at an appropriate track—side p o s itio n  and 

tim e.

Reference to  tim e—p o s itio n  tra je c to r ie s  o f the veh ic le s y ie ld s  

the fo llo w in g  p o s s ib ilit ie s .

A message can be d isp l^ red over the whole tra ck , a track  segment 

or a fix e d  p o in t. I f  the v e h ic le  does not act immediately on the 

rece ived  in form ation veh ic le  storage is  requ ired . I f  the track does 

not immediately re la y  the in form ation to  the veh ic le  then track 

storage is  requ ired , ( i f  the tra ck—veh ic le  lin k  is  a va ila b le  over an 

extended d istance, the veh ic le  and the tra ck  can share the same s to re .)

— Message a v a ila b le  over the whole tra ck  fo r  an extended time: 

A ll v e h ic le s  rece ive  the same message. The in form ation changes in 

frequen tly  and tran sm itte r may be e ffe c t iv e ly  the track  sto re . An 

example is  the transm ission  o f system sta tus, i. e .  normal/emergency, 

fa re  p o lic y , se rv ice  op tion .
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- Message available over the whole track at a particular time: 
All vehicles are contacted. Vehicles store message if necessary.

PosiI-kwn

- Message available over a portion of the track for an extended 
time: Not all vehicles are contacted, only those passing that portion 
of the track.

-  Message a va ila b le  over a p o rtio n  o f the track  at a p a rtic u la r 

tim e: Only veh ic le s w ith in  the sons rece ive  the in fo rm ation . Informa

t io n  can be made veh ic le  s p e c ific  i f  th e ir  tra je c to r ie s  are predeterm ined. 

The number o f veh ic le s to  be contacted and the to le ran ce  on veh ic le  

p o s itio n  determine the length o f the sone.
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— Message a va ila b le  at a po in t on the track  fo r an extended time: 

In form ation is  p o s itio n  dependent and contacts a l l  v eh ic le s  passing by. 

In form ation can be made veh ic le  s p e c if ic  by c o n tro llin g  the d isp l^ r 

time accord ing to  the number o f v eh ic le s  to  be contacted and the 

to le ran ce  on the scheduled time o f a r r iv a l.

— Message a v a ila b le  at a po in t on the tra ck  at a p a rtic u la r time: 

V eh ic le s are un iquely contacted but the exact veh ic le  lo ca tion  is  

requ ired .

Geographical addressing by a centralised unit
The central unit requires accurate knowledge of vehicle position. 

This can be derived either by measurement or from predetermined 
schedules. Suooessful communications depend totally on the oorreot 
wonting of the oanlrolle* and system. Disordered, misplaced or un
detected vehicles will oause faults as messages become misdirected or 
lost.



Geographical addressing operated by the vehicle

Some degree of protection against communication failures caused 
by local running anomalies is provided by using the actual vehicle 
movements to control both the position and duration of messages. 
Occasionally even the message contents are generated by the vehicles 
so requiring no central message controller.

Message addressing
Coding added to a message enables labelled recipients to recognise 

messages intended for them. Message addressing allows the easy addi
tion or removal of communication units from the network. Security and 
reliability are strongly dependent on the coding techniques used.

Geographical and message addressing can be provided simultaneously 
this duplication of addressing information enables some faults to be 
detected. The effectiveness of the fault detection depends on the 
independence of the two systems. If a recipient acknowledges a message 
with its own identity, a closed loop communication results, enabling 
the message transfer to be checked and errors corrected.
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1,C Measurement

This section introduces Part 2 of the working paper, with a dis
cussion of the general features of measurement systems. Part 2 
expands the discussion with detailed descriptions of hoth currently 
used and novel, measurement and communication techniques.

1 «C.1 Measurement and Communication

To control and operate numbers of vehicles, the control centres 
must have information from all the vehicles in the system. Essential 
signals are measurements of position velocity, acceleration and vehicle 
identity. Some or all of the information will be required by both the 
control centre and the vehicle. Furthermore some measurements are most 
conveniently made on-board the vehicle, some at the trackside. Infor
mation used at the trackside and measured on the vehicle or vice-versa 
therefore requires either duplication of measurement or communication 
from one to the other. Measurement techniques can be associated with 
the particular form of communication used across the vehicle-track 
interface. Often a physical property of the signal is modified, e.g. 
its phase or its amplitude, in a way that does not interfere with the 
message already being carried by the signal.

Measurements can be made either discretely or continuously in 
time. The output information m=vy be presented either as a digital or 
analogue signal. Usually but not necessarily discrete measurement 
techniques generate digital signals and continuous measures generate 
analogue signals. The falling cost of digital processing increasingly 
favours digital signal forms particularly in harsh environments (i.e. 
noisy channels and low signal strengths) provided adequate bandwidth 
is available. However continuous signals are usually cheaper and 
simpler. Transducer signals are directly usable in control loops, 
whereas in digital systems both analogue to digital and digital to 
analogue conversions are generally required.

The information in digital signals is not affeoted by signal 
attenuation over distance. This allows better accuracies to ba 
achieved for long distance measurements. Digital signals do not 
drift - an important consideration where measurements are made over 
a long period of time.



,C ,? Position
Vehicle positions are measured along the track relative to some 

ixed point. They must be known sufficiently accurately to allow 
>th successful communications and safe manoeuvres.

Trackside position measurement systems will locate a vehicle to 
le fixed resolution of the transducers. They are expensive unless 
'ecise measurements are only required at a few key points e.g. at 
motions or station approaches.

On-vehicle position measurement requires instrumentation in each 
ihicle. Measures made locally on the vehicle must be periodically 
jdated to the track standard to remove any accumulated errors. The 
requency of this resetting depends on the transducer and the maximum 
Llowable error.

Position measurement techniques are either 
as o lute - in which the full precision of the device is used all the time. 
> memory is required but signals are of wide bandwidth. They are used 
snerally for short range measurement.
lcremental - in which position increments are counted. Memory is 
squired, signals are narrow bandwidth but the measurement is subject 
5 accumulated error, similar to drift in analogue systems. Such schemes 
re generally used for long range measurement.

.C.3 Velocity

Analogue signals proportional to speed are given by dopplar shift 
ethods or those relying on electromagnetic induction. The rate of 
tiange of a position measurement can be used as a velocity signal, 
ie output is likely to be noisy and restricted in bandwidth.

Position based speed measurements can be made by timing between 
wo markers yielding a discrete measure, or by measuring the frequency 
f markers, yielding a continuous measure. The first is more approp—
Late where markers are widely spaced, the second requires dose spaced 
arkers. Both are ineffective at low or aero speeds.

.C«4 Acoeleration and jerk
A signal proportional to acceleration is generated using the re la- 

ion ship force - mass x acceleration. The component of lateral
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acceleration can be removed by constraining the instrument to respond 
only to accelerations in a vertical plane aligned along the vehicle 
axis. On slopes it is very difficult to dissociate the vertical 
gravitational component. Usually this is not necessary for passenger 
comfort as perceived accelerations are the measured values. Jerk (rate 
of change of acceleration) is not commonly measured.

Time
To ensure synchronism throughout a system, all users must have 

access to the same time standard. Either local clocks have to be 
periodically updated from a master clock or continuous, systemwide 
transmission of time is required.
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1 ,D « Modulât i on

In thin section are outlined the more common techniques of 
telecommunications and their important features compared. The section 
is not a comprehensive resume; it is included for the benefit of 
readers with no specific knowledge of communication principles and 
should be omitted by others. (Refs. 28, 31* 118)

1 ,D,1 The need for modulation

therefore analogue) or discrete (and usually digital). Continuous 
signals vary continuously over time. Discrete signals are discon
tinuous over time.

Digital signals occur where the information transmitted is defined 
by a sequence of signal levels, each drawn from a limited set of 
possible levels. The digital signals most commonly used are binary 
and have two levels corresponding to O and 1.

Using sampling* a continuous analogue signal can be represented 
to any degree of accuracy by a discrete signal. The Nyquist sampling 
theorem governs this replacement. It specifies the minimum sampling 
frequency necessary to allow a subsequent reconstruction of the 
original signal.

The minimum sampling rate (Nyquist rate) fii ■ 2 x analogue

Signals
The signal emanating from a source can be either continuous (and

signal bandwidth

The communication link
A block diagram of a typical communication link is thus:—
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The information to be transmitted is contained in the signal output 
from a measurement transducer or other information generator.

The sending equipment converts this source signal (the baseband 
signal) into a form appropriate to the communication channel.

The channel is the communication link established between two 
distant points via a physical path e.g. free space, line or waveguide.

The receiving equipment reforms the channel Bignal into the ori
ginal baseband signal for use by the sink. An ideal communication 
medium would deliver to the sink an identical replica of the signal 
put out by the source.

For communication purposes, the information attached to (or 
meaning of) the signal transmitted is unimportant. It is the frequency, 
amplitude and phase that are the important signal characteristics.

The message is the information to be transferred. The signal 
is the message modified for transmission.

Modulation
Usually the source signal is unsuitable for direct transmission 

and modulation is required. This technique
(a) enables the souroe signal frequencies to be matched to 

the frequencies appropriate to the transmission medium
(b) enhances the resistance of the transmission to noise 

and disturbances
(c) permits the use of multiplexing 

1.D.2 Types of modulation

Modulation is achieved by having the source signal vary some 
physical characteristic of a carrier wave. This carrier may be a 
continuous sinewave or a train of identical pulses occuring at a con
stant rate.

The use of a sinusoidal carrier wave gives rise to two basic 
forms of modulation.

Amplitude modulation - where the source signal varies the 
amplitude of the oarrier.

Angle modulation - where the source signal varies the phase of
i l »  c a r r i e r  •
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Ar.qle modulation is further subdivided into phase modulation 
— where the phase varies in proportion to the signal and 
frequency modulation — where the phase varies as an integral 
f ur.ct i on.

Modulating wave form

Frequency modulated carrier

The use of pulse waveforms gives rise to a wide range of possibili
ties of which pulse amplitude, frequency and position are the more common.

The combination of pulse waveforms and coding techniques yields 
pulse code modulation.

Pulse code modulation transmission

Amplitude modulation translates the frequency spectrum of the baseband 
signal up by the carrier frequency.

3aseband frequency 
spectrum

Amplitude modulated frequency 
spectrum

o
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The modulated s ig n a l con ta ins two so rts  o f in fo rm ation .

The f i r s t  is  the tim e vary ing  source s ig n a l contained in  the two 

sidebands. E ith e r o f the upper and lower sidebands conta ins a ll the 

in form ation  o f the o r ig in a l m odulating s ig n a l.

The second, the synch ron isation  or c a rr ie r  content o f the s ig n a l, 

t e l ls  the re ce iv e r what c a r r ie r  has been employed, in form ation that is  

necessary i f  the re ce ive r is  to  be able to  demodulate the s ig n a l.

Three forms o f transm ission  are commonly used.

Double sideband — in  which the complete s ig n a l spectrum is  transm itted.

A minimum o f equipment is  req u ired . However the c a r r ie r  s ig n a l ca rrie s  

o f the to ta l s ig n a l power and only is  a ffected  by the modulating 

s ig n a l.

Suppressed c a rr ie r  -  transm issions have the c a r r ie r  frequencies removed. 

A l l  the s ig n a l power is  contained in  the s ide  bands so enhancing the 

s ig n a l to  no ise ra t io .  The c a r r ie r  component o f the s ig n a l must be 

generated lo c a lly  at the re ce iv e r and recombined w ith  the received 

s ig n a l fo r  dem odulation. Consequently the equipment becomes more com

plex and c o s t ly .

S ing le  sideband -  on ly one o f the sidebands is  transm itted so reducing 

the bandwidth requ ired to  h a lf tha t fo r  double sideband. S ing le s id e 

band is  com plicated to  generate and decode.

Angle m odulation -  The power transm itted  by an angle modulated s ig n a l 

is  una ffected  by the m odulation. In p r in c ip le , angle modulated signa ls 

have an in f in it e  frequency spectrum. In p ra ctioe , the s ig n a l is  trans

m itted in  a f in it e  bandw idth. The narrower the bandwidth used the 

greater the d is to rt io n  in troduced and the poorer is  the noise re je c tio n .

PulBe code m odulation -  is  the most im portant c la s s  o f pulse modulation 

schemes. B inary s ig n a ls  are u su a lly  employed and the rece iver must 

decide at p a rtic u la r time inB tan ts whether a pulse is  present or absent. 

Th is d e c is io n  can be r e lia b ly  made even in  the presence o f heavy noise, 

so a llow in g  the e ffe c t iv e  usab le bandwidth o f a channel to  be much 

extended.

1 .D.3 P ro pe rtie s  o f m odulation

The chaise ef s o d e i *«" teehnioue fo r  a p a rtic u la r  a p p lica tion  

depends on a number o f fa c to rs . Some o f these are



(a) The bandwidth and noise re s is ta n ce  requ ired

(b) The bandwidth, in te rfe rence and d is to r t io n  ch a ra c te r is tic s  

o f the channel

(c ) The need fo r  m u ltip lex ing

(d) The a p r io r i ex istence o f analogue or d ig it a l s ig n a ls  

in  the system

(e) The a llow ab le cost

Double side  band modulation requ ires the least equipment. The 

i o f suppressed c a rr ie r  techniques enhances the s ig n a l to  noise ra t io  

the cost o f greater com plexity. S in g le  s id e  band transm issions 

lim ise  the bandwidth requ ired to  transm it a s ig n a l but at the expense 

reduced noise immunity and extra  co s t.

Channels subject to  fad ing  ( i. e .  tim e vary ing attenuation) 

re re ly  d is to rt A.N. s ig n a ls . Provided adequate bandwidth is  

lila b le  frequency m odulation can perform  b e tte r. The use o f w ider 

idw idths w ith  frequency modulation im proves noise re je c tio n  and 

; to rtio n .

Pu lse  code modulated s ig n a ls  req u ire  more bandwidth, but are 

'e c tiv e  in  poor q u a lity  channels. Bandwidth and s ig n a l to  noise 

;io  can be traded fo r  e rro r ra te s . Fu rth e r improvements in  the re -  

ib i l i t y  o f data transm issions are ach ieved by in troducing  redundancy 

;o the cod ing. ThiB redundancy enables transm ission  e rro rs  to  be 

tected and w ith more complex codes a llow s co rre ction s to  be made, 

ly  d iffe re n t coding techniques e x is t each o ffe r in g  d iffe re n t trade

rs between noise re je c tio n  and bandw idth.

ltiplexing
I t  is  o ften  u se fu l to  arrange a number o f ohannels to  sim ultaneously 

are a s in g le  communication lin k  by the use o f m u ltip le x in g . There are

0 methods

eguenoy multiplexing — where each channel is allocated a frequency band 
acked in the frequency spectrum.
me division multiplexing - where synchronised switches at each end of 
communioation facility enable samples to be transmitted in turn from 
oh channel to the receiving end.

Basio analogue systems are cheaper than the digital equivalent, 
«ever «here mere elaborate s ig n a l p ro cess in g  tend

1 favour digital systems, particularly as digital techniques have



(a) The bandwidth and noise resistance required
(b) The bandwidth, interference and distortion characteristics 

of the channel
(c) The need for multiplexing
(d) The a priori existence of analogue or digital signals 

in the system
(e) The allowable cost

Double side band modulation requires the least equipment. The 
e of suppressed carrier techniques enhances the signal to noise ratio 
the cost of greater complexity. Single side band transmissions 
nimise the bandwidth required to transmit a signal but at the expense 
reduced noise immunity and extra cost.
Channels subject to fading (i.e. time varying attenuation) 

verely distort A.M. signals. Provided adequate bandwidth is 
ailable frequency modulation can perform better. The use of wider 
ndwidthB with frequency modulation improves noise rejection and 
stortion.

Pulse code modulated signals require more bandwidth, but are 
fective in poor quality channels. Bandwidth and signal to noise 
tio can be traded for error rates. Further improvements in the re- 
ability of data transmissions are achieved by introducing redundancy 
to the coding. This redundancy enables transmission errors to be 
tected and with more complex codes allows corrections to be made, 
ny different coding techniques exist each offering different trade- 
fs between noise rejection and bandwidth.

iltiplexing
It is often useful to arrange a number of channels to simultaneously 

lare a single communication link by the use of multiplexing. There are 
ro methods
'equencv multiplexing — where each channel is allocated a frequency band 
racked in the frequency spectrum.
Lme division multiplexing — where synchronised switohes at each end of 
communioation facility enable samples to be transmitted in turn from 
ich channel to the receiving end.

Basio analogue systems are cheaper than the digital equivalent. 
jKever where mere elaborate signal processing iwijiiirad costs tend 
3 favour digital systems, particularly as digital techniques have
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been much developed in recent years and coots are falling rapidly.
Every conversion from analogue to digital and digital to ana

logue introduces distortion. This factor weights the choice between 
digital or analogue in favour of those that already exist in the 
system.
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2.A. Introduction

This section describes measurement and communication techniques 
that have applications in automated transport systems.

Rather than present detailed specifications of existing equipment, 
which rapidly become out of date, descriptions emphasise the general 
features of particular schemes. The classification chosen, groups 
devices according to these general features. It is intended not only 
to detail existing equipment but also to illuminate novel combinations 
which usefully blend particular attributes.

2.A.1 C la s s if ic a t io n  headings 

P o s it io n  Measurement

Po in t -  a ve h ic le  detects or is  detected at a po in t on the track  

(re fe rred  to  as a tra ck  marker or v e h ic le  detector re s p e c t iv e ly ) .

Area -  a v e h ic le  detects o r is  detected w ith in  a leng th  o f tra ck .

Continuous — A v e h ic le  can lo ca te  it s e lf ,  or is  lo ca te d  continuou

sly over a length o f tra ck .

R e la tiv e  -  The separation  between two veh ic les is  measured 

V e lo c ity  measurement

Absolute -  v e h ic le  is  measured e ith e r continuously o r a t a po in t 

on the tra ck .

R e la tiv e  — The re la t iv e  v e lo c ity  o f two veh ic le s is  measured. 

A cce le ra tio n  measurement

Absolute -  V eh ic le  a cce le ra tion s are measured e ith e r  at a point 

or con tinuously .

Within each of these groups measurements may be either
Track based - where the active equipment and the measurement out

put is at the track side.
Vehiole based - where the active equipment and measurement output 

is on-board the vehiole.
This subdivision is not rigid. Many measurement devices can be 

arranged to give a track-based or vehiole—baaed measurement, either 
by exchanging the roles of the vehiole and the track or by the addition 
of extra equipment.



The use o f communication lin k s  fu rth e r b lu rs the d is t in c t io n  

between track-based and veh icle-based techn iques. Measurement devices 

can be sim ply modelled thus

raw s ig n a l more re fin ed  s ig n a l

The three elem ents, transducer, p rocessor and user, are often 

s ite d  in  one lo ca tio n . Th is  is  not necessary and makes the d is t in c t io n  

between tra ck  based and veh ic le  based schemes d if f ic u lt  to  define un

eq u ivo ca lly .

Po in t communications

A message is  tra n s fe rre d  at a p a r t ic u la r  po in t on the tra ck .

Area communications

A message can be tran sfe rred  anywhere along a se c tio n  o f tra ck . 

W ith in  these groups messages may have e ith e r a fix e d  or va riab le  

in form ation content and be transm itted e ith e r  from the tra ck  to  the 

v eh ic le , the v eh ic le  to  the tra ck , or bo th .

2.A.2 Indexed tab le  o f techniques

The index ta b le  l is t s  a l l  the dev ices described in  th is  rep o rt. 

The ir main a p p lica tio n s  are summarised in  an abbreviated form using 

the code

w - widely used in this application 
e -  examples exist o f this application 
f  -  feasible to use in thiB application 
u - unlikely for use in this application 

The table indicates the applications o f a device but does not 
imply that they can all be achieved simultaneously. More detailed 
device descriptions follow the table and are indexed using the reference 
number in the table. A technique having several applications is des
cribed completely under one heading. The entry is then cross—referenced 
in the other appropriate sections.
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Abbreviations used

t/ b - tra ck  based

v / b - veh ic le  based

v/ t - v e h ic le  to  tra ck

t / v - tra ck  to  v e h ic le

f / m - fix e d  message

v/ m - va ria b le  message



A
p

p
lic

a
ti
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n







tra i

no*
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2 .B. Measurement Techniques

2.B.1 Point position techniques 

Contacting vehicle detectors
A ll  con tacting  systems are sub ject to  mechanical wear. They have 

short liv e s  and requ ire  frequent maintenance and replacem ent. A ll are 

inexpensive in  equipment but are expensive to  in s t a ll and m aintain.

A ll are unaffected hy c lim a t ic  con d itio n s . Only m echanical levers 

(no. 7) g ive  d ire c tio n  o f tra v e l in fo rm ation . Only m echanical lever 

and con tacting  c ir c u it s  (nos. 6 , 7 ) can be used as tra ck  markers or fo r 

communications. (Re fs. 39* 55» 63, 68, 69, 88, 89, 98, 126)

1 ) Pneumatic Tube

Wheel pressure o f a passing v e h ic le  on a so ft w a lled  tube, sends 

a pressure impulse to  a pressure se n s itiv e  sw itch at one end. Pneumatic 

tube v eh ic le  detectors have been ex ten sive ly  used fo r  v e h ic le  actuated 

t r a f f ic  lig h t 8 . They are now being superceded by inductive loop (see 

no. 1 5 ) and magnetometer devices (see nos. 1 1 , 1 2 )

-  Stopped or slow moving veh ic le s are not detected.

-  Past or heavy v e h ic le s  and veh ic le s  not perpend icu la r to  the 

tube may generate spurious pu lses.

-  The number o f a x le s  passing are counted.

-  S ize  is  ty p io a lly  2m x 15cm x 15cm.

pressure impulse
y ie ld  a spurious 
count)

sm all o r if ic e  
to  present a
pulse re fle c t io n
from the end 
(which would

pressure
sens itiv e
sw itch
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2) H yd rau lic tube

Wheel pressure o f a passing v e h ic le  on a liq u id —f i l le d  s o ft w alled 

tube d isp la ce s  f lu id  (w hite s p ir it ) .  Th is  moves a f lo a t  w hich is  de

tected , u su a lly  o p t ic a lly .

— Slow or s ta tio n a ry  veh ic le s stopped on the device are detected.

-  Otherw ise s im ila r  to  pneumatic tube (no. 1)

'loa t
3) Triboelectric sensor

The vibrations of a passing wheel cause the triboelectric element 
to develop a potential difference. The element is a flexible conductor 
covered with a dielectric. Shaking this produces a charge separation 
and hence a potential difference.

- As the device has a very high impedance, impedance matching 
and amplification are required to extract the signal.

- Was devised as an improvement on the pneumatic detector (no. 1) 
It has similar characteristics to the pneumatic deteotor (no. l)

but is less vunerable to damage.

4) Coaxial cable sensor
Wheel pressure is transmitted to a coaxial oable. This produces 

a voltage across the device proportional to the pressure and length of 
squashed none.

- Slow moving and vehicles stopped on the devioe are detected.
- Has similar properties to the triboeleotrio sensor (no. 3)
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5) Treadle

Wheel pressure on norm ally separated con tacting  s t r ip s ,  u su a lly  

ca rr ie d  in  a f le x ib le  tube, c lo ses an e le c t r ic a l con tact.

-  Slow veh ic le s  or stopped veh ic le s  on the device are detected.

-  Other ch a ra c te r is tic s  are s im ila r  to  the pneumatic de tecto r.
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6 ) C ontacting  c ir c u it s

A conducting v e h ic le  probe com pletes an e le c t r ic a l c ir c u it  w ith  

a tra ck  mounted con tact. Contacting c ir c u it s  d if fe r  from tra ck  c ir 

c u its  (no. 1 6 ) in  th a t the current path o f the s ig n a l through the 

v e h ic le  is  c le a r ly  de fin ed  ( i. e .  through the probe). The current pa th  

through a v e h ic le  on a tra ck  c ir c u it  is  not so defined (being through 

the wheels and chassis o f the v e h ic le ) .

— Contacting tra ck  c ir c u its  can be used fo r  communications 

(see no. 5 6 )

— detects s ta tio n a ry  veh ic les

— can be used as a tra ck  marker

7) Mechanical lever
The passage of a vehicle operates a lever mechanism.
- can be used either as a vehicle detector or track marker
- yields direction of travel information
- detects slow or stopped vehicles adjacent to the devioe
- variable height levers can be used to transmit simple messages 

(see fixed point comnunications no. 51“5 4)

Hon-cont acting vehicle detect are
Mon-contacting vehicle detectors are buried in the roadmy and are 

consequently less prone to wear and damage. Mona give direction of 
travel information, none oan be used for oomaunioations, none oan be 
used as track markers. Apart from the capacitance probe (no. 10) none 
are affected by the weather. (Ref. 130)
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8) Strain-gauged bar

A beam beneath the road is  d e fle cted  by the v e h ic le . The re su ltan t 

change in  s tra in  can be measured and used to  give an output.

-  S ta tionary  or moving, wheeled or wheelless v eh ic le s  are 

detected

-  s u ff ic ie n t ly  heavy obstacles are detected on the track

-  w ith  c a lib ra tio n  i t  may be po ss ib le  to  approxim ately weigh 

v e h ic le s .

9) Seismic detector
Using geophones or accelerometers, the ground vibrations generated 

by moving vehicles are detected and used to indicate a vehicle passing.
- Only wheeled vehicles are detected
- The system has been demonstrated as feasible. However the 

unpredictability of seismic propagation has impeded development. (Ref. 115)

10) Capacitance probe

A vehicle passing over a metal plate in the track oausea a change 
in capacitance. This is detected using similar techniques to induotive 
loop detectors (no* 15)

— The device can be arranged to provide short range relative 
position measurements (see no. 2 9)

— Rain and snow reduce the effectiveness of capacitance schemes.
(R e f. 64).
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11) Magnetometer
Vehicles containing ferrous materials locally increase the earth's 

magnetic field. A track mounted detector indicates the disturbance. 
This detector comprises three windings on a magnetic core. The primary 
winding is excited with an A.C. signal that saturates the core twice a 
cycle. By magnetometer action an A.C. voltage is developed in the 
secondary coilf whose amplitude is proportional to the component of the 
earth's magnetic field parallel to the probe axis. A further coil sup
plied with a D.C. current adjusts the probe to its local magnetic 
environment•

- Detector is small (typically 6cm long by 2cm diameter).
- Vehicles are detected in a circular zone approximately 1.5m dia.
— Immune to radio frequencies but not to interference from nearby 

power supplies.
— Sensitive detection, an average road vehicle causes a 20$ signal 

change. However correot operation depends critically on the initial 
adjustment.

12) Magnetic grad ient v e h ic le  de tecto r (MOVD)

As the v eh ic le  approaches the transducer eddy cu rren ts are induced 

in  the v e h ic le  m etal work by a tran sm itte r c o i l .  The re s u lt in g  magnetic 

f ie ld s  couple in to  two re ce iv e r c o ils ,  connected in  phase opp ositio n , 

causing a corresponding change in  the phase and vo ltage o f the output  

s ig n a l.

-  M.O.V.D. o ffe rs  b e tte r la te ra l re so lu tio n  than the in d u c tiv e  

loop (no. 1 5 ) and g ive s muoh la rge r s ig n a l changes.

-  The device oan be used to  measure speed as the deteotor output 

v a rie s  approxim ately lin e a r ly  w ith  the  d istance o f the v e h ic le  fro n t 

from the deteotor*

-  Device is  ty p ic a lly  12am x 15mm x 2m and is  lees expensive to  

in s t a ll than an in duo tive  loop .

§ i saturable core

n
DC bias

A.C. excitation at 5 khz.
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tran sm itte r e x c ita tio n  
frequency 100 khz.

3

(Ref. 99)

Non-contacting point position methods
Such schemes can be operated as vehicle detectors, track markers 

and communication links.

13) Magnet io
There are two arrangements

(a) Magnetic vehicle detector
The equipment consists of s single winding of a large number of 

turns of wire on a oore. A remnant magnet io field is carried by a 
vehicle as a result of its prior movements in the earth's magnetio 
field. This induces a voltage in the detector ooil.

- Detector signal varies according to the size and speed of the 
vehiole. Slow and stopped vehicles are not detected.

- The probe is typically 45°“ long by 6cm diameter giving a 1.2m 
diameter detection zone.

(b) Magnetic vehicle deteotor/track marker/communioation link
Vehiole mounted magnets are detected at the track using magneti

cally biased relays which change state when the looal field reaches a 
threshold. Alternatively a detector ooil as described in (a) above may 
be used.
Communication link

Simple messages can be transferred using magnets whose polarities 
are arranged to represent binary information. Variable messages oan 
be transferred using electromagnets.

An alternative method of transferring a fixed message uses a 
notched steel bar. The spacing of the notches snoodes the message.



Before read ing a c o i l  magnetises the ta r  leav ing  a remnant f ie ld  that 

is  non-uniform  at the  notches.

notched bar

n n
demagnetising reader magnetising

coil coil ooil

— Static magnetic fields cannot be precisely resolved. For reliable 
resolution between adjacent magnets there should be approximately the 
same distance between them, as between the magnets and the detector.
This restricts the amount of information that can be transmitted, as 
complex messages become either physically large or the track vehicle 
clearance unacceptably small*

— Modern permanent magnets are unaffeo ted  by v ib ra t io n , h igh tem

peratures, c lim a t ic  con d ition s and A .C . f ie ld s .  Only ferrom agnetic 

d ir t  (e .g . dust from  oast iro n  brake shoes) a ffe c ts  th e ir  perform ance.

-  V eh icle  d e te c tio n  using permanent magnets is  sometimes used 

fo r  la s t v eh ic le  p rov ing  and v e h ic le  d e tection  on ra ilw ay s , as the 

method is  very r e lia b le .  (R e f. 117)
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In fra -red  o r v is ib le  lig h t ,  microwave rad io  and u ltra so n ics  have a l l  

been used. Ot -p a rtic le s  and j3 -rays have a lso  been proposed.

The performance o f lig h t  systems is  reduced by high ambient lig h t 

le v e ls , ra in , snow, fog  and grim e. In fra -red  is  le ss  vunerable to  such 

fa c to rs .

U ltra so n ic  systems are a ffe cted  by strong winds which d e fle c t the 

beam and heavy r u n  which attenuates i t .

Microwave rad io  systems are unaffected by environmental fa cto rs 

but are more expensive.

-p a rt ic le s  and —rays are unaffected  by the environment but 

in  the in te n s it ie s  that are necessary would be a hea lth  hazard.

(R e fs. 22, 81, 105)

(a) Transverse methods

A beam o f energy is  transm itted  across the tra ck  to  a detector 

mounted opposite . As the beam is  focussed onto the re ce iv e r, good 

s ig n a l to  noise ra tioB  are achieved, g iv in g  re lia b le  operation  in  

adverse cond ition s.

1) V eh ic le  detector -  passing  v eh ic le s  in te rcep t the beam

2) P o s itio n  marker -  v e h ic le  mounted re ce iv e r in te rcep ts the beam and 

id e n t if ie s  the p o s it io n .

3) Communications — a mask, placed in  the path o f the beam can be used 

to  tra n s fe r a fix e d  message from the v e h ic le  to  the tra ck s id e .

Th is  is  only fe a s ib le  w ith  o p tic a l or ra d ia tio n  beams (see a lso  

po in t communications -  se ction  2 .C .1 .)
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-  Transverse schemes, mounted h o r iz o n ta lly , req u ire  two accu ra te ly  

a lig n ed  tra cks id e  mountings, v e r t ic a l mounting requ ires a gantry.

These considerations increase the installation costs of transverse 
schemes.

- Transverse schemes are very simple and have well defined detec
tion zones.

15) Reflected Methods
Energy transmitted from the track side is reflected by the vehicle.

A receiver mounted next to the transmitter detects the reflected energy. 
The signal to noiBe ratio is generally poor and sophisticated techniques 
must be adopted to give reliable operation in adverse conditions. There 
are three possible schemes.
1) A carrier signal is transmitted continuously. The receipt of the 
echoed signal indicates vehicle presence. There is no discrimination 
between echoes resulting from the vehicle and those from nearby structures 
or between the transmitted signal and others at the same frequencies.

Discrimination can be achieved in several ways.
Vehicles can be equipped with specially coded reflectors which 

uniquely modify the characteristics of the returned energy. This 
allows the echoes resulting from a vehicle to be distinguished from 
others (see fixed point communications - section 2.C.1).

Also the carrier can be modulated and the receiver designed 
to respond only to the modulation. This technique is commonly adopted 
with optical systems. The beam of light is modulated using a mechanical 
shutter. The receiver responds only to the shutter frequency.

B e tte r performance is  achieved by in creas in g  the s ig n a l to  no ise  

r a t io  at the re ce iv e r. A re f le c to r  is  req u ired  capable o f re tu rn in g  a 

la rg e  p roportion  o f the in c id en t energy from the tra n sm itte r, to

the re o e iv e r. Th is  is  p o ss ib le  fo r  o p t io a l and miorowave ra d io , by using 

re tro - re fle c t iv e  re fle c to rs  ( i. e .  Inciden t energy is  re fle c te d  back on 

it s  incom ing path, e .g . a m irro r is  re tro - re flo o t iv e  on ly  to  normal lig h t , 

whereas oar re fle c to rs  are re tro - re flo o t iv e  to  a l l  lig h t  a rr iv in g  w ith in  

a  ce rta in  co n ica l acceptance angle*



2) The time delay between a transmitted signal and the received sig
nal is measured (see also free space techniques of continuous position 
location - section 2.B.3 no. 18)

Only echoes corresponding to ranges in a certain band are accepted, 
thus discriminating between vehicle echoes and others.

In principle the time delay method can be used with optical, sonic 
and radio transmissions. However at the short ranges generally required 
for vehicle detection only sonic systems give measurable time delays. 
This results from the slow speed of sound propagation in air, (approx. 
335 «/ sec).
3) Dopplar method — A continuous carrier wave is transmitted. Signals 
reflected back from moving objects are frequency shifted (i.e. the dop
plar shift) by an amount proportional to the vehicle speed, according 
to the relationship

Af - £ to
to m transmitted frequency
Tr - vehicle velocity resolved along the direc

tion of propagation of the signal 
C - speed of propagation of the signal 

/\ f - frequency change 
V m vehicle speed
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If the transmitter is mounted so that the transmissions are nearly 
perpendicular to the vehicle movement then the resultant dopplar shift 
will be small as the vehicle passes in range of the transmitter, regard
less of vehicle speed.

Dopplar uBod for speed measurement
A beam directed longitudinally down the track suoh that Q —&-0 

allows vehicle speed to be deduced from the dopplar shift.
A transmitter installed on the vehicle can be used for on-board 

vehicle speed measurements. The beam is directed at the track and 
measurements are made on the back scattered energy.

Communications

See fix e d  po in t communications se c tio n  2 .C .1 .

C h a ra c te r is tic s  o f re fle c te d  energy methods

-  As on ly  one mounting is  req u ired  and alignment is  le ss  o r it io a l 

than fo r  transverse methods, in s ta lla t io n  ooets are low er.

-  L ig h t beam sys tems are inexpensive and hare w e ll de fined  senes

o f motion.
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— U ltra so n ic  and microwave systems are more expensive. The ir 

zones o f action  are le ss  w e ll defined and c lo s e ly  spaced equipment can 

in te r fe re . (T y p ica lly  an u ltra so n ic  beam subtends an e llip s e  30° x 1 8° 

and a microwave beam 20° x 60°).

— Dopplar systems do not re g is te r on veh ic le s  moving slower than 

1 m/s but are accurate and g ive d ire c tio n  o f tra v e l in form ation .

2 .B .2  Area (b lock) v e h ic le  de tection  

1 5 ) Inductive loops

The inductive  loop com prises one or severa l k inds o f w ire, often 

rectangu la r, la id  on or under the tra ck  su rfa ce . I t  is  connected to  

tra ck s id e  equipment and energised w ith  a s ig n a l o f between 10 khz and 

1 5 0  khz fo r  veh ic le  de tecto rs, and up to  mega hz fo r  communication lin k s .

1) V eh icle  detector

V eh icle  proxim ity causes a net decrease in  the loop inductance. 

Severa l methods are used to  detect th is  change.

(a) S e lf—tun ing method — A c ir c u it  is  used to  tra ck  the resonant 

frequency o f the loop . Only changes fa s te r  than a ce rta in  ra te  generate 

an output in d ica tin g  a v e h ic le . S ta tiona ry  or slow veh ic le s  are not 

detected.

(b) Other methods - These detect vehicle by monitoring the phase 
changes or balance in a bridge circuit caused by changes in loop induc
tance. These schemes require initial setting up and possibly routine 
adjustments. All vehicles, stationary or moving, are detected.

2) Communications
The mutual inductance between a vehicle mounted coil and the track 

coil allows the two-way transmission of modulated A.C. signals (see 
area communications section 2.C.2 not 5 8).

3) Track marker
(a) A vehicle mounted loop antenna receiving transmissions from a 

small track loop yields a track marker device.
(b) A transposed inductive loop will introduce a l80° phase change 

in the received signal as the antenna orosses the transposition. This 
can be detected as a track marker.
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in d u ctive  loop

4) Other devices
(a) If one of the two conduct ore is laid in a triangular fora, an 

approximately sinusiod modulated signal is received by the vehicle.

received
signal

The m odulation frequency ■  speed/L. The arrangement can he used 

e ith e r to  provide a  speed s ig n a l (w ith  fix e d  L) or to  enoode tra ck  

in fo rm ation  read hy the veh io le  (w ith  v a ria b le  L) (see seo tion  2.C.3 
f ix e d  p o in t com m unications).

(b ) A rectangu la r layout o f the  tra ck  conductors a llow s b inary  

in fo rm ation  to  be enooded onto the tra c k .
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•O's

(c) C a re fu l design o f the veh ic le  antenna and tra ck  loop dimensions 

a llow s a s ig n a l to  he coupled from the v eh ic le  to  the tra ck  so that the 

received amplitude va rie s approxim ately s in u so id a lly  w ith  p o s itio n .

t r a in  antenna

2/3 L

antenna location
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Characteristics of inductive loops
- Electromagnetic induction fields are unaffected by the environment. 

They can be produced over a very wide range of frequencies, propagated for 
controlled distances and used to transfer energy. They sire generally 
limited by the frequency and power restrictions imposed by broadcasting 
authorities. The range of layouts is unlimited and combined with the 
use of wide bandwidth communications makes inductive loop equipment very 
versatile.

- Inductive loops are vunerable to R.F. interference.
- Adjacent loops can interfere unless their operating frequencies 

are sufficiently different.
_ Buried detectors are free from wear but road surface movements 

can damage the cable.
- The cable is expensive.
- If surface mounted, cables are vunerable to damage and place 

constraints on maintenance.
- Sensitivity - the average road vehicle causes about a 2/6 change 

in the loop inductance, but this is proportioned to loop area, and makes 
small loops difficult to design.

- Sensitivity is reduced by the resistance of the lead cables, 
limiting the maximum range to about 300m. (Refs. 17, 19, 4 9, 50, 99,
121, 122, 132).

16) Track c ir c u it

A s ig n a l fe d  in to  one end o f an is o la te d  se ctio n  o f s te e l r a i l  

tra ck  is  detected at the other end, o ften  by using the s ig n a l to  h o ld  

on a re la y . A passing v e h ic le  shunts the B igna l so preventing i t  

reach ing  the other end. Th is  re leases the de tecto r re la y . The sim p lest 

tra ck  c ir o u it s  are D .C. w ith  in su la ted  breaks in  the s ig n a l r a ils  to  

is o la te  each o ir c u it .

W ith continuous welded r a ils  audio frequency A.C. s ig n a ls  sre  used. 

Is o la tio n  o f tra c k  segments is  achieved u s in g  impedance bonds across the 

two r a ils  which do not a llow  tra c tio n  our ren te to  pass but o ffe r  m low 

impedance to  tra ck  o iro u it  frequencies.

tra c tio n  cu rren ts

impedance
bond



The r e lia b il it y  o f tra ck  c ir c u its  depends upon the e ffectiveness 

w ith  which the tra in  shunts th e  track  c ir c u it  s ig n a l. In some cases, 

e .g . w ith  ligh tw e ight v e h ic le s , or in freq u en tly  used tra cks, veh ic les 

do not provide a re lia b le  low resistance shunt. Th is  problem can some

tim es be overcome by using h ighe r tra ck  c ir c u it  vo ltages o f up to  100 V. 

To reduce th e ir  sa fe ty  hazard pulsed s ig n a ls  may be used.

Communications

Pu lse modulation o f audio-frequency tra ck  c ir c u it s  a llow s messages 

to  be transm itted to  v e h ic le s  at very lim ite d  data ra te s . U sua lly  

de tection  is  by inductive c o ils  mounted above the s ig n a l r a ils .  Equiva

len t communication from the v e h ic le  to  tra ck  is  not p oss ib le  as the 

transm ission ch a ra c te r is tic s  o f ra ilw ay lin e s  are un su itab le . (R e fs. 36,

4 0, 58, 71, 74, 76, 110, 193).

C h a ra cte ris tics  o f tra ck  c ir c u it s

-  Operating frequencies are genera lly  le ss  than 1 khz, ty p ic a lly  

60-120 hz.

-  C irc u its  mcy be se ve ra l k ilom eters long .

-  The e le c t r ic a l c h a ra c te r is t ic s  o f tra ck  c ir c u it s  vary considerab ly  

w ith the environment. C a re fu l design is  necessary to  ensure that a 

veh ic le  shunt can be d is tin g u ish ed  from wet r a ils .

-  W heel-less or pneumatic tyred v eh ic le s  cm  use th e ir  power r a ils  

as tra ck  c ir c u it s .

-  Audio frequency tra c k  c ir c u its  are vunerable to  in te rfe ren ce  

from tra c tio n  equipsient, p a r t ic u la r ly  i f  th y r is to r  co n tro l is  invo lved .

-  D era iled  veh ic le s  are not detected.

17) 'C heck-in ' -  ’ check-out '

-  55 -

n P I  oheok in check out pj n
u

I I de tecto r detector II u
tra ck  sec tio n  ^  tra ck
or b look

(
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At the beginning and end o f each tra ck  se c tio n  is  p laced a v e h ic le  

d e tecto r. Any form o f deteotor can be used. (See se ction  2.B.1 p o in t 

p o s itio n  techn iques).

A v e h ic le  t ra v e llin g  in  the co rre ct d ire c t io n  w i l l  actuate the 

f ir s t  de tecto r which se ts the b lock  as occupied.

The second de tecto r rese ts the b lo ck  as empty when the veh ic le  

passes i t . Fu rther lo g ic a l checkB can be in corporated , which hand a 

v eh ic le  on from one b lo ck  to  the next, so in cre a s in g  the r e l ia b il it y  o f 

the system .

Check-in check-out schemes are o ften  used where tra ck  c ir c u it s  are 

u n re lia b le , or cannot be used.

2 .B .3 . Continuous p o s it io n  methods

18) Free space techniques

There are three p r in c ip a l lo ca tio n  systems based on measurements

o f

1) Propagation time
2) Signal strength
3) Signal direction

In each the measurements made allow position loci to be plotted on 
whioh the vehicle must lie. The intersection of several loci, created 
from independent measurements, enables the unknown vehicle position to 
be identified.

Most existing location systems use radio transmissions; however in 
principle optical and ultrasonic transmissions oan also be used. (Refs. 
27, 29, 53, 54, 73, 87, 104, 120, 123, 138)

1) Propagation time
Electromagnetic and sonio signals propagate at a constant speed in 

straight lines. Thus, from a measure of the time a signal takes to 
travel from the transmitter to the receiver, the shortest path distance 
from one to the other oan be calculated. Two approaches are used to 
generate the position loot.

(a) Time of arrival (TOA) - The actual propagation time of the 
signal from a transmitter to receiver is measured. Two methods are used.

(1 ) - A signal from a fixed transmitter is reoeived by the vehiole 
and rebromdoast bmuk to the transmitter after a sat delay. The dal sh
allows the vehicle return signal to be distinguished from spurious
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re fle c t io n s . In environments where these spurious re fle c t io n s  are 

n e g lig ib le  the s ig n a l re fle c te d  from the v e h ic le  s tru ctu re  can be used 

as the v e h ic le  retu rn  s ig n a l. No a ctive  veh ic le  p a r t ic ip a t io n  is  re

qu ired  but range is  lim ite d , (see re fle c te d  beamed s ig n a ls  no. 14, and 

fix e d  po in t communications se c tio n  2 .C .1 ).

(2) Both the v e h ic le  and the fix e d  tran sm itte r s ta tio n  are equip

ped w ith  synchronised c lo c k s . The transm ission delay measurements are 

made at the re ce ive r.

The time delay is  p ro p o rtio n a l to  the d istance separating  the 

veh ic le  and the fix e d  s ta t io n . One measurement e s tab lish e s the v e h ic le  

as ly in g  on a c ir c le  centred on the fix e d  s ta tio n . Three measurements 

at d iffe re n t sta tion s lo ca te  the veh ic le

(b) Time difference of arrival TDQA - The vehicle broadcasts a 
signal. Three fixed stations measure the arrival time of the signal. 
This is subtracted from the arrival time of the same signal at one of 
the other stations. The information locates the vehicle as lying on a 
hyperbolic curve symmetrical about the base line between two stations. 
TDQA requires the base stations to have synchronised clocks.
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Methods used to  measure the propagation time o f s ig n a ls

(a) The phase o f the reoeived s ig n a l is  measured re la t iv e  to  a 

reference s ig n a l. T h is  g ives ambiguous re su lts  -  a de lay  o f t  cou ld  

be an a c tu a l delay o f t  + NT where T -  pe riod  o f the s ig n a l and 

N -  0, 1 ,2  --- ►

phase
angle

(b) The a r r iv a l tim e o f the lead ing  edge o f a pu lse  is  id e n t if ie d . 

Th is  cannot be accu ra te ly  e s tab lish ed  when the s ig n a l is  d is to rte d  and 

contam inated w ith  n o ise . The re su lt is  unambiguous.

transm itted  pulse

1I
i
•

phase comparison systems.

O ften the b e tte r p re c is io n  o f phase comparison is  combined w ith  

pu lse del^ r measurements to  remove the am biguity. A lte rn a tiv e ly  the 

number o f ambiguous p o s s ib ilit ie s  oan be reduced by m ating phase 

measurements at a number o f d iffe re n t frequencies. T h is  oan y ie ld



very p recise  re su lts  in  co n tro lle d  environments and is  the ba s is  o f 

land surveying using te llu rom eters e tc .

2) S igna l Strength

A number o f remote s ta tio n s  measure the s ig n a l strength  o f a stan

dardised veh ic le  transm iss ion . Using p rev iou s ly  p lo tte d  s ig n a l strength 

contour lin e s , the most lik e ly  v eh ic le  lo ca tio n  is  determ ined.

3) D ire c tio n  Find ing

The bearing o f transm issions from a veh ic le  is  measured at a number 

o f base s ta tio n s . ]

A combination o f d ire c t io n  fin d in g  and propagation time methods 

enables one base s ta tio n  to  uniquely lo ca te  a v e h ic le . Th is  is  commonly 

ca lle d  RADAR (rad io  system s), SONAR (sound systems), LADAR ( lig h t  system s).

Characteristics of free snaoe systems
Free space location techniques are attractive beoause they offer, 

at a low oost, the capability of looating any number of vehioles within 
a specified area. However errors caused by olutter (extraneous reflec
tions from physioal features in the area of the vehiole), multipath 
re fle c tio n s  and va ria b le  propagation speeds make all the sohemes

V
N \

/



extremely inaccurate in urban environments, although using many inde
pendent measurements, averaging techniques may improve estimates of 
vehicle location.

Even if these problems can be overcome the overcrowding of the radio 
spectrum is likely to limit the application of any free-space radio 
system. Light systems are ineffective except for line of sight applica>- 
tions and sonic systems are unlikely to have a useful range.

All the schemes described can be arranged so that the location 
measurements are made either on the vehicle or at the fixed base Btation. 
Measurements made on-board the vehicle require the vehiole to identify 
which fixed station has been ranged. Measurements made at the fixed 
base require the ranged vehicle to be identified (see fixed point communi
cation Beetion 2.C.1.)

19) Guided radio techniques
In all the preceding free space location systems, radio signals 

propagated along transmission lines or waveguides (see continuous commu
nications nos. 57, 59) can be substituted for the free space radio link. 
The controlled and stable characteristics of transmission lines and wave
guides removes most of the disadvantages associated with the free space 
version. Errors occasioned by multipath reflections, variable propa
gation speeds and poor signal/noise ratios are much reduced. Radio 
spectrum usage is minimised as the radiation from the waveguide or 
transmission line is only significant for short distances away from the 
guide. However only vehicles adjacent to the guide can be located, so 
limiting applications to fixed route vehicles.

Relative position measurements
A particular feature of guided radio systems is the ability to 

couple energy into and out of the transmission line or waveguide and to 
propagate signals in one direction only down the line, without contaot-
ing or breaking the line or guide. This allows each of the techniques?
described above to be arranged to provide meaaureawnts of vehicle 
position from the track or vehiole, and vehiole to vehiole spacing.

The general arrangement of such a scheme is thus
rr -• * -v .'KQ&ïîsm O':. - /y • k'. v-fi} ¿X:. • J

*A dw ***o „
u -t A w s  ,aa stt 0», . <;*■ ,  t y  itta
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Transm issive —

a l l  energy removed 
from tra ck  guide

energy coupled 
in to  tra ck  guide

non-contacting couplers s ig n a l propagates in  one
d ire c tio n  along guide

Reflective -

rece iver and tran sm itte r

1) Propagation time
Commonly called guided radar — A pulsed or modulated miorowave 

signal is dispatched down a waveguide. Obstacles adjacent to the wave
guide or specially designed vehicle mounted reflectors coupling with 
the waveguide refleot the signal back to the transmitter. The range is 
calculated from the delay of the returned signal.

2) Signal strength
A standard signal is coupled into a transmission line with regular 

attenuation properties. The receiver measures the signal strength and 
hence calculates the range to the transmitter*

In a variant of this principle a standard voltage is injeoted into 
a wire of constant reaistanoe/unit length. Diodes in the wire ensure 
the one way propagation of the signal. A receiver measures the voltage 
anu hence calculates its range to the transmitter.
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With both these schemes, the coupling losses between the vehicle 
and transmission line must be accurately known.

None of the schemes discussed above can be made fail-safe. An out 
of range vehicle cannot be distinguished from a vehicle in range but 
not deteoted because of a fault. As relative position and speed 
measurements are usually associated with vital safety control, this 
is a severe disadvantage.

Speed measurements using guided radio
Guided radio techniques can be used to measure the speed of a 

vehicle. A signal reflected back from a moving vehicle will be dopplar 
shifted according to its speed (see Beamed Radiation no. 14).

Zf the transmitter ie another vehicle then the relative speed of 
the two vehicles will be measured. (Refs. 51, 72, 102, 109, 113, 124)
20) Line sir synchro

The vehicle transmits a fixed frequency signal using a rectangular 
antenna. This couples with two inductive loops laid on the track, each 
regularly transposed and out of phase with each other (see inductive 
loops no. 15).

The antenna and track loop dimensions are chosen so that the signal 
amplitude coupled into the inductive loop varies approximately as a sine 
function of distance.

vehicle mounted 
transmitter anten

to Rx
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The relative phases of the signals received from the track loops 
can be converted into vehicle position« The measurement produced is 
ambiguous, a position n corresponds to (x x 2nL) n - , 0, 1, 2 ..
This ambiguity is conveniently removed by counting the phase reversals 
of the received signal when the antenna passes the transpositions in the 
inductive loops.

As only the relative phase of the two signals is used to caloulate 
position variable coupling losses between the vehicle and the track do 
not affeot accuracy. However significant errors are introduced if there 
are long transmission distances from vehicle to the receiver. These 
errors result from the unavoidable parameter differences of the two 
inductive loops.
21) Linear Cam

Sited alongside the track is a device whose position from a datum 
varies as a function of distance. Tehiole mounted follower equipment 
senses the position of the device and decodes it into vehicle location. 
This system may have applications for slow speed precision manoeuvring 
over short distances.
22) Linear Digitiser

A coded strip extends along the track on which the code changes at 
regular intervals* A reader fitted to the vehicle reads this coded 
strip enabling its position to be determined.

/ / / / / / / / / z z typical
f / / / / / / / / ' r/ / / / / / / / ' structure

/// {///// V / / / /
V " "

Continuous oods s tru c tu re s  oan be read anywhere along th e ir  length 

to  determ ine a p o s itio n . As the oode changes on ly  at d isc re te  po in ts, 

schemes oan be devised whereby only these po in ts a re  narked -  the 

v e h ic le  m em oria ls each u n t i l the next Is  read. Any technique o f 

fix e d  po in t oosmunioation (se c tio n  2.0*1 ) oan be used to  create  such 

a  stru ctu re , each ohange p o in t being represented by a signpost ho ld ing  

the oode fo r  the next s e c tio n .
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Digitisers are an absolute location system. An error at one point 
can be corrected at the next, and consequently systematic position 
errors do not build up.
23) Integration

Integration of speed measurement yields a continuous position 
measure. Accuracy is limited by the precision and drift characteristics 
of the integrator. Errors tend to increase as a function of time and 
periodic resetting is required with supplementary position me astir e me nt 
devices.
24) Wheel revolution oounter

Continuous position measurement on wheeled vehicles is made very 
conveniently by measuring wheel revolution. This is equivalent to 
mechanical integration. Systematic errors are caused by variable 
vehicle loading and tyre wear which alter the effective radius of the 
wheel (these effects are particularly important with pneumatic tyres). 
Wear can be periodically compensated for but variable loading cannot 
and causes errors up to Jjt*

2 3) Incremental measures
Track markers are detected by the vehicle (see fixed point communi- 

cations 2.C.1). These markers may be regularly spaced in whioh case a 
count is proportional to distance. Alternatively markers can be 
irregularly spaced. A table is required holding the distances between 
markers.

The ta b le  may be h e ld  by the v e h ic le  o r the tra ck  (see sta red  maps 

no. 27) or can be w ritte n  onto the trao k  as a  message read by the v e h ic le  

at each marker (see fix e d  po in t commun ica tio n s  2 .C.1) in d ic a tin g  d istan ce  

to  th e  next marker.

O haracte rist io  o f both uyetamm is  the p o s s ib ility  o f m issed or 

spu rious markers re s u lt in g  in  e rro rs  whioh oamwt be oorreo ted .
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26) Dead redeeming
Variable route vehicles can be located using dead reckoning. 

Measurement of distance travelled (see nos. 18-25) and direction of 
motion are made. From these the vehicle position relative to a known 
starting point can be calculated. The method is subject to large 
systematic errorB.

Several schemes oan be used to supply the direction of travel in
formation.

(a) - Magnetic compass — cheap, moderately accurate
(b) - Gyro compass - expensive, poor long term accuracy
(c) - Differential wheel rotation - simple, very inaccurate

(Ref. 11)

27) Combinations of techniques yielding better precision
Two main criteria influence the choice of position measurement 

schemes for a transport network.
(a) The zone over which a vehicle location must be uniquely 

identified
(b) The accuracy to which the vehicle must be located
All continuous location methods will uniquely locate a vehicle to 

a given accuracy over a limited range. Measurement schemes offering 
adequate accuracy usually do not have sufficient range to cover the 
entire length of a transport route. This coverage can be supplied by 
regularly repeating the measurement scheme and using a supplementary 
measurement scheme to resolve ambiguity. This second measurement must 
have sufficient resolution to identify a single period of the finer 
measurement scheme.

An example o f such schemes is  the use o f dead reckon ing and stored 

maps to  con tro l long term e rro rs . Th is  has been proposed fo r  veh io les 

fo llo w in g  va riab le  routes fo r  which continuous lo ca t io n  is  important — 

e .g . ta x is , d e liv e ry  vans, buses, and emergency v e h io le s .

Dead reckoning measurements are o ften  combined w ith  e le c tro n ic  

signposts to  reset the measurements and is  p a r t ic u la r ly  app licab le  to  

fix e d  route veh io le s.

Dead reckoning measurements oan be reset using a s tre e t nap stored 

in  a  computer. At frequent In te rva ls  the veh io le  p o s it io n  is  ooapared 

w ith  the stored nap, and oonstra ined to  l ie  on a s t re e t .  The method 

oan go d isa strou s ly  wrong i f  accumulated e rro rs re s u lt in  the ae le ctio n  

o f the wrong road when a v e h ic le  turns a corner, a lthough in  some oases
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computer algorithms may be able to discover and correct the error.

2.B.4. Relative position techniques
28) Mechanical probe

A telescopic probe extends in front of a vehiole and contacts the 
next vehicle or obstacle. A measure of the probe extension indicates 
the separation distance.

Maximum range is determined by the length of probe used. This is 
limited by possible interference with the track structure and other 
vehicles and rigidity considerations.

29) Capacitance, inductive, magnetic probes
The proximity of another vehicle alters the capacitance measured 

by a probe on the front of the vehicle. The capacitance varies as a 
function of vehiole size and separation. Similar schemes can be devised 
using inductive loops or magnetic field deteotors (see nos. 11, 13, 19)*

These schemes have a detecting range of the same order as the 
physical dimensions of the detecting element. This is limited by the 
size of the vehicle and is thus only suitable for close proximity 
ranging.
30) Fixed block methods

The track is divided into blocks (sections of track). A vehicle 
detected in one block causes ooded messages to be displayed at each 
block upstream of the vehiole. A second vehiole following the first 
reads these messages and interprets them as the distance (in units of 
block length) separating the two vehicles. Track circuits, inductive 
loops, and check-in check-out schemes (nos. 15, 16, 17) can be used to 
delineate the track segments and detect the vehicles. Any track to 
vehicle communication technique (see section 2.C.1 and 2.C.2) can be 
used, point coamunioation devices being located at the entranoe of the 
block to whioh they apply.

The use of area communication techniques allows a better measure
ment of vehiole separation, as changes in the block message, caused by 
the movement of the front vehicle, are communioated immediately to the 
following vehiole.

aW>
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T

signpost

31) 'PoupeB1 coded track circuit
Signal generators are oonneoted across the signal rails. Each 

signal is nodulated to give pulses T/N long repeated every T (T is the 
cycle time, N is the nsximun number of blocks to be measured). Each 
signal generator is one pulse out of phase with its neighbours. Passing 
vehicles short the signal rails so that the number of pulses received 
by the vehiole gives the number of blocks separating the vehicles. The 
system is fail-safe; if a signal generator fails as a smaller separation 
is then indicated. (See also track circuits no. 16). (Ref. 163)

SHort

<7V\
&0/VX.I

1 -
2

3 r  i  -

N ---1---f- —1-
1

T  2 ^  1
7/ivs6

T



32) Differencing
Each vehicle measures its own position and transmits it, either to 

the vehicle following, or to all vehicles in the vicinity. In the latter 
case vehicles select the signal from the nearest neighbour.

Differencing is the only method by which a track—based measurement 
of vehicle spacing can be made. Any continuous position measurement 
scheme (see section 2.B.3) can be combined with an area communication 
link (see section 2.C.2) to produce such a scheme.

The same techniques oaa be applied to produce relative velocity 
signals.

33) Free space systems
All of the free space measurement techniques (see no. 18) can be 

arranged to provide vehiole to vehicle ranging. However several parti
cular disadvantages make suoh schemes very unattractive except in 
specialised environments.

(a) Reflections from nearby traokside obstacles confuse measurements. 
The use of coded reflectors (see point communications, section 2.C.1) and 
narrow beam widths improve the situation.

(b) Usually it is track distance separating vehicles which is of 
interest. On bends, line of sight instruments measure the chord of the 
curve. This is the wrong quantity and corrections must be made.

59

ranging v e h ic le
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(o) The ranging beam must illuminate the appropriate vehicle. 
Either the beam must be sufficiently wide for satisfactory operations 
on bends yet satisfy the constraints of (a) or the transmitter must 
be equipped with a homing device to actively direct the ranging beam 
at the leading vehicle.

(d) None of the sohemes can be fail-safe, an important considera
tion as the oorrect operation of ranging equipment is vital for safety. 
(Refs. 65)

34) Quided radio systems
See section 2.B.3« no. 19»

2.B.5 Velocity Measurement

35) Frequency rate
Regularly spaced track markers (see section 2.B.1, point position 

techniques) can be used to provide a vehicle based speed measurement.
If the vehicle speed is sufficiently high and the markers closely 
spaced, the frequency that markers are passed yields a continuous 
measure of speed. The measurement will lag the actual vehiole speed 
and will not follow oorreotly speed changes faster than that determined 
By the Nyquist theorem.
36) Time interval

For low veh io le  speeds o r wide marker spacings frequency methods 

oannot be used. Instead the tim e elapsed as the veh io le  moves from one 

marker to  the next is  measured. Th is in ve rted  y ie ld s  the average speed 

o f the veh io le  between the la s t  two m arkers.

37) Correlation
Two sensors mounted on the  veh ic le  de tect s ig n a ls  transm itted  from 

the veh io le  and scattered back by the tra ck . The ir re g u la r ity  o f the 

tra ck  surface modulates the re fle c te d  s ig n a l w ith  a fix e d  s p a t ia l pat

te rn  or signatu re . The two reoe ived s ig n a ls  are o ross-oo rre la ted  to  

g ive  the t in e  delay as a  tra c k  po in t moves past one sensor to  the next. 

From the de lay and the known separation  o f the two sensors the speed 

is  oa lou la ted .
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(Refe. 46, 97)

38) 'Flicker* rate
The image of a passing vehicle is directed onto a slotted plate.
(a) Behind the slots are photocells detecting the variations in 

light level as the image moves past. The light signature of the image 
falling on each photocell in turn is time shifted by an amount propor
tional to speed. The delay can he measured using correlation techniques 
and hence the vehicle speed calculated.

(b) The total light transmitted is detected by a photo detector. 
The light from each area element of the moving image is modulated at a 
fundamental frequency

Due to the randomness of the surface the resulting signal is not 
a pure sine wave but has a power density spectrum spread around fo.
The frequency has to be extracted by a tracking filter following the 
spectral peak.

In both s itu a t io n s  the use o f coherent ( la s a r)  lig h t  improves the 

s ig n a l to  no ise r a t io .  (R e fs . 21, 4 6 , 125)

39) Inductive tachometer

A w ire moved through a magnetic f ie ld  generates a  p o te n tia l d if 

ference across i t s  ends p ro p o rtio n a l to  the speed o f t  he w ire  and the 

magnetic f lu x  d e n s ity .

T h is  p r in c ip le  is  used in  a  tachom eter to  measure speed. Conven

t io n a l tachom eters are ro ta ry  and gen e ra lly  connected to  the wheels o f 

ths v e h ic le . L in ea rised  vsre ion s can be devised g iv in g  an output 

e ith s r  at the tra ck  or on the v e h ic le  w ithout the use o f w heels. 

Tachometers are expansive to  make and aoourate to  about Ijt.

velocity x magnification factor
line spacing
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40) Dopplar methods
See beamed radiation (no. 1 4) and free apace or guided radio 

(nos. 18, 19).
41) Magnetic gradient vehicle detector 

See M«G«V«D* no* 12*
42) Integration

Integration of acceleration yields speed (see no. 23)«
43) Different iat ion

Differentiation of a position signal gives a velocity agnal. Both 
a high quality position measurement and careful filtering are required 
to limit noise on the output.

2.B.6 Relative velocity measurements
44) Dopplar

The relative velocity of two vehicles can be measured using Dop— 
plar shift methods. (See beamed radiation, no. 14, free space systems 
no. 18 and guided radio no. 1 9)«
45) Differencing 

(See no. 32)
4 6) Different iat ion

Relative position differentiated yields relative velocity (see no.
43).
47) Free space systems 

(See no: 18)
4 8) Quided radio systems 

(See no: 19)

2.B.7 A cce le ra tion

49) Acoelerometers

All aoceleroamters apply the equation foroe/___ - acceleration
(a) Ball on an inolined plane.

The b a ll w il l r o l l  up the p lane 

i f  the acce le ra tion  > g tan  0

(g m a cce le ra tion  due to  g rav ity )
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(b) L iqu id  in  a U—tube

a cce le ra tio n  » g(h^ ~ b 1)

(d) Pendulum

fo r  w a l l  displacem ents 

x - k.M.a.
N m mass 
k ■ spring rate 
a - acceleration

9  -  ta n "1 |

All these transducers require considerable sophistication in 
design to produce a sensitive linear response with reasonable damping. 
All must be vehicle mounted and measure acceleration only in one plane.
50) Different iat ion

D iffe re n tia tio n  o f v e lo c ity  y ie ld s  a cce le ra tio n  (see no. 43 ).

This is the only available method for track based aooeleration measure
ment.
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2.C. Communication Techniques
There are two classes of communication
(a) Point - where the vehicle can transmit/receive messages 

to/from the track only over a short section of track.
(b) Area - where track/vehicle communications can take place 

over an extended section of the track. (Refs. 7, 24« 86,
111)

2.C.1 Point Communications
Fixed point communications can be organised in a variety of con

figurations offering different characteristics. Each one can be 
implemented using any of a wide range of hardware techniques.

Many communications involve the transfer of a single fixed 
message. Such devices are variously oalled transponders labels, sign
posts, coded masks or reflectors according to their application. This 
section details devices for which the mechanism required to change a 
message is clumsy and would only be used infrequently, i.e. the device 
transmits essentially a fixed message. In some cases the equipment may 
allow a simple change in message, e.g. by switching between elements. 
Most of the devices are described as a vehicle to track communication 
link. Usually the same equipment can be turned around to provide 
track to vehicle communications. (Refs. 3« 4« 8, 9« 12, 13, 14« 15« 16, 
41. 43, 56, 62, 77, 100, 114, 119)
51) Coded mask

A mask mounted on the vehicle is arranged to intercept a beam of 
energy transmitted across the track. Apertures in the mask, spaced 
according to the message to be encoded, amplitude modulates the beam. 
Trackside equipment receives the modulated signal and deoodeB it (see 
beamed radiation no. 14)<
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52) Coded re fle c to r

A v e h ic le  mounted la b e l re fle c ts  energy to  a re ce iv e r when illu m i

nated w ith  an appropriate s ig n a l from a tra ck s id e  tran sm itte r (see 

beamed ra d ia tio n  no. 14)*

Inform ation is  coded onto the r e f le c to r  using a number o f 

techn iques.

(a) The la b e l is  designed to  re f le c t  on ly  s p e c if ic  frequencies, 

any other s ig n a l frequencies fa llin g  on the la b e l are absorbed. 

A lte rn a tiv e ly  the la b e l r e f le c ts  back a l l  the s ig n a l except fo r  

s p e c if ic  frequency components. Massages are enooded using p a rt ic u la r  

com binations o f frequen cies .

ircvAS 'V 'ittvd (?€C£lOfcci

(b) Tbs la b e l ia  made up o f a lte rn a te  re fle c t iv e  and absorptive

su rfa ces . The p o s itio n in g  o f tbs cod ing elem ents is  used to  snoods tbs 

message.

, * bade _
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Methods of interrogating labels
(a) For frequency selective labels
- The label is illuminated with a wideband signal covering the 

frequency spectrum used in the labels. The reflected energy is re
ceived and the frequency modifications decoded. This returns all the 
label information in parallel to the reader.

- The label is illuminated with a narrow band signal which scans 
through the frequency range. The receiver identifies the coded fre
quencies in turn giving a serial readout. The scheme gives better 
noise immunity but takes longer to read a message.

(b) For position encoded labels
- A narrow beam of energy sweeps across the label illuminating 

each element in sequence. The scanning of the label is achieved either 
by using the forward motion of the vehicle to move the label past a 
fixed beam or by using mechanical devices to sweep the beam across the 
label. The former is cheaper, the latter can read stationary or slow 
moving labels.

Common devices used

O p tica l -  Black, white o r coloured, panels, studs or bars are 

illum ina ted  w ith  white (broad band) lig h t .  Colour f i l t e r s  are used to  

is o la te  the frequency spectrum components. Noise re je c tio n  is  enhanced 

by using modulated lig h t beams and re tro re fle c tiv e  m ateria ls (see beaaied 

ra d ia tio n  no. 14). (Refs. 1, 35« 83, 106)

Radio — a) Tuned ca v ity  resonators absorb s p e c ifio  frequencies 

(Refs. 5, 6, 33, 70)

b) D ipoles r e f le c t  a narrow beam o f microwave energy.

c) A su ita b ly  shaped waveguide w il l re d ire c t energy back 

the way i t  came. They are more e ff ic ie n t  but le ss compact than b ).

Schemes b) and c) use p o s it io n  to  encode messages.

Radio systems are re la t iv e ly  free  from in te rfe ren ce  and use low 

power s ig n a ls . In te rrogation  speeds can be very fa s t .  (R e fs.67 )

Inductive f ie ld s  -  In d uctive /cap ac itiv e  (i/C ) o r p ieso e le c tr ic  

c ry s ta l c ir c u it s  timed to  p a r t ic u la r  frequencies couple in d u c tiv e ly  w ith  

a veh ic le  o iro u it . Both w ide band and narrow band in te rro g a tio n  methods 

are used. Some designs o f equipment a llow  the tuned o iro u its  to  be 

switohed on or o ff to  give a  sim ple v a ria b le  message devioe.

ni+.f**onion -  U ltra so n ic  transducers are not wideband nor e a s ily



varied in frequency. Consequently their application to message communi
cations is limited.

The preceding schemes can only send limited amounts of information, 
as only a small number of encoding elements can be physically incorpora
ted into a label. They can all be made into very reliable communication 
links at low cost and are extensively used in rail transport (signalling 
and automatic vehicle identification), and road transport (bus, commer
cial and military vehicle identification, and for electronic position 
signposting and selective vehicle signalling in vehicle location schemes.)

In addition to the devices described above any track marker (see 
section 2.B.1) can be used to convey information to a vehicle. A sequence 
of markers, whose spacing encodes the message is fixed to the track. 
Passing vehicles measure the distance between markers and decode the 
message.
53) Stimulated transmissions

A beam of energy is transmitted from the trackside to a vehicle 
mounted transducer. This receives the signal, rectifies it and uses it 
to power a solid state circuit. This circuit transmits back to the 
track a coded message at a different frequency. As message lengths are 
only restricted hy the speed of retransmission and the time available 
complex messages can be easily oonanunicated.

Inductively coupled devices (see no. 15) are most commonly used 
although microwave systems exist (see no. 14).
54) Continuous transmissions

A continuous coded transmission is radiated from the track. It 
is received by any vehicle reoeiver in range. Such schemes use radio 
frequency inductive links although microwave systems have been proposed.

2.C.2 Area communications
55) Coded track oirouits

Only tra ck  to  v eh io le  communications at very low data ra tea  are 

p o ss ib le . The coded tra ck  c ir c u it  is  however very r e lia b le  and oan be 

made fa il- s a fe .  T ra d it io n a lly  coded tra ck  o iro u its  have been used to  

communicate v it a l o on tro l in fo rm ation  on most modern ra ilw ay  systems 

(see tra ck  c ir c u it s  no. 16). (R e f. 95)
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56) Contacting circuits
A modulated c a r r ie r  is  coupled in to  the power supply c ir c u it  o f 

the v e h ic le . Both v e h ic le  to  tra ck  and tra ck  to  veh ic le  data and voice 

communications are p o ss ib le . C a rrie r frequencies o f 100-150 khz have 

been used. Heavy s ig n a l attenuation  and in te rfe rence  reduce the 

e ffe ctiveness o f such c ir c u it s  (see a lso  no. 6, contacting  c ir c u it s ) .  

(Re fs. 2, 20)

57) Radiating cables ('leaky coax')
Specially designed coaxial cables with incomplete screening can 

be used to transmit signals longitudinally with low attenuation and to 
simultaneously radiate a signal which decays rapidly in strength away 
from the cable.

Radiating cable communications have been extensively used in mines 
and on railways. Low transmitter powers can be used and provided cable 
attenuation is balanced by the use of repeater amplifiers, range is 
unlimited. Incorrect line termination leads to standing waves being 
set up along the cable. These can substantially reduce local signal 
strengths and adversely affect communication. Signals of bandwidth up 
to megahertz can be transmitted with little interference. Two wey 
communications are practical both for high speed data links and multi
plexed voice channels. (Refs. 18, 25» 26, 34, 37, 66, 79, 80, 91, 92, 
93, 101, 108, 178)
58) Inductive Iqopb

Inductive loops allow the two way transmission of messages over 
track sections from a few metres up to several kilometers. A wide 
frequency range can be used with the most usual frequencies being 
around 100 khz. Inductive loops are widely used in many transport 
modes for two way data and voioe communications. They have the parti
cular advantage that the signal can be closely confined around the 
region of the loop (see inductive loops no. 15). (Ref. 82, 8 4, 194)

59) Waveguides
The use of a waveguide gives a very high capacity communication 

link (up to Ohs frequencies) and allows the use of radar techniques 
for obstacle detection and collision avoidanoe (see guided radio no. 19)

Signals are propagated along waveguides such that an external 
field is produced through which the vehiole antenna passes. This field 
is produced by one of two methods:
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(a) By the controlled radiation of energy away from the guide.
(b) By the use of surface waves in which the energy travels along 

the guide but is partially external to it. This scheme produces a 
field whioh decays very rapidly away from the guide and requires less 
power than (a).

A variety of waveguides have been developed, each with different 
characteristics. They all must be accurately formed and are conse
quently difficult and expensive to fabricate. There has been much 
interest in waveguide applications to railway operations, particularly 
in Britain, America and Japan. (Refs. 23, 66)
60) Free space radio

Although free space radio offers the capability of very flexible 
communications between all parts of a system at low oapital cost, its 
effectiveness is much reduced by several factors.

(a) There is already overcrowding of the radio spectrum and fre
quently there iB substantial interference from other users.

(b) The field pattern associated with V.H.F. radio in an urban 
environment is very complex. It comprises a fixed pattern due to 
multiple reflections from fixed objects, and shadows in cuttings and 
tunnels. On this is superimposed a varying pattern due to the movement 
of the vehicle and other vehicles around it. The result is an inde
terminate transmission path between the vehicle and base whioh changes 
constantly. Voioe transmission is usually intelligible even with the 
resultant rapid fading. Data transmission requires good paths and can 
be readily corrupted by fast fading. Over a good speech path data 
error rates of about 2 are achieved.

However radio is often the only eoonomic solution where continuous 
communications are required, particularly with variable route vehioles. 
Free space radio is widely used on the railways for emergency services, 
taxis, buses and delivery vehicles. (Refs. 42, 45» 78, 112, 195)
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3.A.1 BART (Bay Area Rapid. T ra n s it)

The Bay Area Rapid T ra n s it is  a computer supervised automatic ra p id  

tra n s it system in  San F ran c isco . It featu res an extensive ce n tra l con

t r o l designed to  optim ise tra in  running, and an innovative s ig n a llin g  

system which is  claim ed to  g ive a be tte r, sa fe r performance at a lower 

cost than could be a tta in ed  using  conventional techn iques.

There are 120 km o f tra ck  and 34 s ta tio n s . Average journey speed 

is  80 km/h w ith  a maximum speed o f 130 km/h. S ta tion  stops are 20s and 

minimum headways are 90s .

The con tro l system stru c tu re  is  d iv ided  in to  two se ction s

(a) T ra in  operating system

(b) T ra in  p ro tection  system

for stability planning of
of service operations during

peak hours



Central supervision
The central computer perforine the following roles.
a) Traffic regulation. The timetabled service ie compared with 

the actual service. For small deviations from the schedule the train 
performance is modified. (This allows up to 10jt reduction or 5056 
increase in travel times between stations).

More severe deviations are compensated using variable dwell times, 
alternative routing, station shipping and turning back trains.

b) The dispatch of trains from maintenance and storage yards.
c) The provision of routing instructions via stations and w«yrside 

equipment, to align switches.
d) The control of a large operator display showing train location 

and the status of equipment.
All communications involving the central computer are handled by a 

data telemetry system hardwired to local station and track controllers.
Local line supervision

Communication with individual trains is directed via station and 
trackside equipment. There are four types of communication involved.

a) Train identity (TH>)
b) Station stop signals
c) Speed information and train detection
d) Train attendant communications

a) TIP signals
The TIL system is a data storage and two way communication link 

between track and vehicle. Lata is transmitted serially using frequency 
shift keying (F.SJC.j, the telegrams containing the following informa
tion:

1) The tra in  id e n t ity  ( s e r ia l number, d e stin a tio n , leng th )

2) Performance m od ifica tion s

3) Door open/cloee status
Throughout it s  journey tbs t ra in  tran sm its it s  T IL  s ig n a l. Th is  is  

rece ived a t every crossover sw itch  or d ive rg e . The wayside equipment 

determ ines any sw itch ing  a ction , stopping a t ra in  i f  the change oannot 

be e ffe c te d  in  tim e.

A t s ta tio n s  the door sta tus in form ation  confirm s the door opera tion . 

As the t r a in  leaves the p latform , new performance m od ifica tion s fo r  the 

next journey stage are transm itted  to  the v e h ic le  and stored  in  the T IL  

re g is te rs .



b) S ta tion  stop s ig n a ls

An independent tra ck  conductor loop transposed every 300n*n is  la id  

from the po in t at which braking s ta rts , to  the s ta tio n . To stop a 

tra in  the loop is  energised enabling the tra in  to  detect the cross

overs. An on—board processor ca lcu la te s  the distance to  go and outputs 

a speed s ig n a l. The power and brakes are regulated accord ing ly  to  give 

a stopping accuracy o f + 1.5m. Tones transm itted from the tra ck  open 

and close  the doors.

o) Speed inform ation and tra in  d e tection

Jo in tle s s  coded tra ck  c ir c u it s  are used fo r  tra in  de tection  and 

tra ck  to  tra in  communication o f speed commands. Each b lock is  de linea

ted by a short c ir c u it  between the r a i ls .  S igna ls are in d u c tiv e ly  

coupled in to  the tra ck  c ir c u it  by a tran sm itte r loop at the short 

c ir c u it in g  band; a s im ila r  loop de tects the s ig n a l at the other end o f 

the b lo ck . Speed in fo rm ation  is  broadcast s e r ia lly  using P.SJC. o f the 

track  c ir c u it  s ig n a l. To ensure is o la t io n  o f adjacent tra ck  c ir c u its  

three p a irs  o f frequencies are used.

The tra ck  c ir c u its  rece ive  th e ir  speed commands v ia  a tim e-m ulti

plexed in form ation channel, tim ing in form ation  being provided by a 

synchron ising pulse lin e .

At each time s lo t access a b inary  0 or 1 is  placed in to  the track  

c ir c u it  tran sm itte r, in d ic a tin g  which frequency sta te  is  to  be output. 

Th is in form ation  is  saved u n t il a l l  the tra ck  c ir c u its  have been addres

sed, whereupon a l l  the tran sm itte rs change sta te  sim ultaneously. A baud 

rate o f 576 b it/ s  is  used g iv in g  th ree complete 6 b it  speed oommands/seo 

to  each tra ck  c ir c u it .  S im ila r time m u ltip lex in g  is  used to  check b lock 

occupancy, the data be ing transm itted  to  the lo ca l sa fe ty  p ro tection  

u n it.

Diagram o f tra ck  c ir c u it
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d) Train attendant
The train attendant has no control of the train when it is operating 

automatically. His function is to observe and to communicate with the 
passengers. He has two overrides:

1) Emergency stop
2) A manual mode - The operator is directed by the system supervisor 

using voice radio. The train speed is limited to 40 km/h and running is 
line of sight. The manual mode is the only means by which the train 
protection system can be overruled.

Safety systems

Speed commands are issued by units, located at the stations, which 
handle all the functions of the train protection system. The oodes 
issued to a block are determined by the distance to the occupied block 
ahead and by the physical characteristics of the track (e.g. curves 
and grades). To ensure the correct speed commands are transmitted in 
each block, each transmitted frequency state is checked by observation 
of the track circuit receiver output. Any failure of this monitoring 
operation causes an emergency stop.

The train receives all three frequency pairs from the track.
Crystal filters separate the frequencies and identify the reference 
speed command. A 'vital' circuit compares the actual train speed 
measured by an axle driven tachometer and the reference speed. The 
error is used to control the potter and the fail-safe braking.

The integrity of the speed command received from the track is en
sured by using 'comma free' codes (a repetitive sequence of any one 
code can never be oonfused with another irrespective of the time 
selected as the beginning of the message). A further check on opera
tion is made by ensuring that the vehicle receives a speed command 
every l/3 second.
Safety philosophy

Fixed b lock headway p ro tection  is  used, the length o f in d iv id u a l 

b locks varying accord ing to  it s  tra ck  speed lim it .  The wayside tra in  

p ro tection  system does not oheok the t r a in  speed. I t  is  considered a 

s u ffic ie n t  safeguard to  ensure that an unsafe speed cannot be tran s

m itted and that whatever speed is  commanded w il l not be exceeded. How

ever t h e r e  is  a very heavy dependence on unproven fa il- e a fe  d ig it a l 

o iro u itry  and already the wrong-side fa ilu r e  o f an on-beard A .T .C .
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component has sent a train through the end stops at Fremont.
As a consequence of this and other malfunctions several modifier 

tions have been made, both to the hardware and operation of the system.
One serious problem was the occasional inability of the system to 

detect a train. This resulted from a combination of factors.
(a) The very low track circuit voltages used (less than 2v)
(b) The light weight of the BART vehicles
(c) The use of disc brakes which do not clean the wheel treads
The addition of mechanical wheel Bcrubbers and stainless steel

beading welded onto little used sections has improved train detection, 
although it is not completely reliable. A permanent backup system has 
been added called sequential occupancy release (SOR). This uses a 
series of minicomputers in redundant pairs installed at 26 trackside 
locations. They provide an independent check-in, check-out of trains 
in subsequent blocks. Each track circuit is looked up until the train 
is positively detected in the next one*

Other important modifications included
(a) Redesign of the speed command circuits for fail-safe 

operation.
(b) Better information provision for the train attendant enabling 

him to form an effective backup to the automatic system.
(c) Better information provision to the central control to allow 

more accurate assessments of system status.
(d) More involvement of the central computer as a  safety back-up 

in train detection, redundant monitoring and validity checks on manual 
instructions. (Refs. 143, 144, 145, 169, 170, 171, 173)

34,2 Victoria Line
The Victoria line, opened in 1969, is a Metro in London, serving 

sixteen stations over fourteen miles of track. It uses an automatic 
train control system developed by London transport. An attendant is 
retained on the train with duties to operate the doors, the starting 
signal and take over oontrol of the train in emergencies.

The V ic to r ia  lin e  employs no signalm en, a l l  ju n ction s are se t auto

m a tica lly  by a programme machine and whole lin e  is  superv ised  from one 

oen tra l o on tro l po in t at lu s to n .

Automation has been app lied  to
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(a) Reduce s ta ffin g  requirem ents

(b) Improve se rv ice  re g u la r ity , both by making d riv in g  technique 

more con sisten t and by im proving recovery from abnormal cond ition s.

(c) Enable close headways to  be m aintained sa fe ly  in  s ta tio n  

areas. S ig n a llin g  on the V ic to r ia  lin e  has been designed on a basis 

o f an 82 sec. headway.

(d) Reduce energy consumption

The automatic tra in  c o n tro l equipment com prises two systems, the 

sa fe ty  system and the t r a in  command system.

Safety system
F a il sa fe fix e d  b lock  s ig n a llin g  and coded tra ck  c ir c u it s  provide 

basic sa fe ty  and command in form ation .

For the tra in  to  proceed under automatic co n tro l i t  must receive 

one o f the s ig n a llin g  codes from the tra ck . There are fou r codes uBed, 

each transm itted by the am plitude m odulation o f a 125 hz c a r r ie r .

These are:

120 pulses/min. - This is not detected by the train. It is used 
by the track circuit for train detection.

180 pulses/min. - This allows the train to run at 35 km/h but not 
to motor.

270 pulses/min. - This allows the train to run at a regulated speed 
of 35 km/h. The brakes sure applied if the speed exceeds 37 km/h and the 
power applied if speed falls below 33 km/h. The governed speed of 35 
km/h was chosen as this gives the best headway through stations. It is 
also the standard speed restriction used by London Transport for cross
overs, junctions and track constraints.

420 pulses/min. - This permits the train to run at maximum speed 
(up to 80 km/h) limited by tractive effort and train resistance.

If no cods is reoeived by the train or if the 180 or 270 oodes are 
reoeived and the train exceeds 4 0 ka/h the emergency brakes are applied. 
Speed monitoring is by a mechanical axle mounted governor of proven 
reliability fitted with a manual adjustment for tyre wear.
Train attendant

Facilities are provided for the train attendant to operate the train 
manually at a speed not exceeding 35 km/h. if oods is being reoeived from 
the track or 16 km/h if it is not. Overspeeding results in emergenoy 
braking.
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The attendant also has two devices for communicating with the 

central supervisor.
(a) Bare copper/cadmium wires are mounted in the tunnel. In an 

emergency these are used to trip the traction supply circuit breakers. 
The driver can communicate with the controller by clipping a portable 
telephone to the wires. This system has the disadvantage of having to 
stop the train.

(b) Full duplex in-cab communication is provided called 'carrier- 
wave' , which can be used at any time. A frequency modulated low 
frequency oarrier signal is applied to the two conductor rails that 
carry the traction current. The track transmitter uses a frequency of 
130 kHz.

The system works well under normal conditions when the trains are 
well spaced. However the low impedance of the train ( 3 ohms) com
pared with the 200 ohms characteristic impedance of the conductor rails, 
causes considerable attenuation if several trains become bunched and 
occupy the same section simultaneously. This makes communication 
unreliable at the time when it is most wanted.

Trials are being conducted on leaky feeder and radio telepathy 
systems which may offer better communications.
The command system

The train command system is used to stop trains at signals and 
platforms and to initiate coasting at appropriate points on the line. 
These commands are conveyed to the train by 'spots' positioned on the 
line. These spots are audio-frequency signals fed into short lengths 
of the running rail and deteoted by the train ooils.
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A 20 kHz s ig n a l g ives th e  in s tru c tio n  fo r  the t r a in  to  stop i f  the 

s ig n a l is  at danger.

A 13 kHz s ig n a l cuts o f f  the motors and allow s the tra in  to  coast.

Further spots are used to  stop the tra in  at a s ta tio n . A braking 

p ro file  is  w ritte n  onto the tra ck  at the approach to  each s ta tio n . The 

speed at which the t ra in  shou ld be t ra v e llin g  in  order to  be an the 

normal braking curve is  represented by lo c a l speed spots whose frequen

cie s are sca led  so that 1.6 kn/h ■  100 Hz. Along the p ro file  spots 

are loca ted  at 8 km/h in te rv a ls  s ta rtin g  at 88 kn/h and fin is h in g  at 

16 km/h.

The tra in  braking equipment uses a cce le ra tion  feedback to  give one 

o f three standard braking ra te s , maximum, normal and minimum. The actua l 

tra in  speed is  measured u s in g  a tacho generator and compared w ith  the 

requ ired speed read from the tra ck . The braking ra te  is  then se lected  

according to  whether the t r a in  is  overspeeding, co rre ct or underspeed

ing . I f  the tra in  speed is  more than 20j6 le ss  than the commanded 

speed the brakes are re leased  com pletely.

To ensure the in te g r ity  o f the commanded speed s ig n a l the braking 

command s ig n a ls  are ap p lie d  in  pulses o f 127 cy c le s fo llow ed by a pause 

o f s im ila r du ra tion . Th iB  a llow s the t ra in  to  recogn ise only genuine 

s ig n a ls .

T ra in  id e n t if ic a t io n

To convey t ra in  id e n t if ic a t io n  in form ation  to  the track  the 'Id en tra ' 

system is  used. In th is  a tra ck  mounted fix e d  o o il couples in d u c tiv e ly  

w ith a t ra in  mounted tuned c o il,  the resonant frequency o f th is  c o il 

being manually set at a journey s ta r t . One out o f e igh t frequencies 

in  the range 60-90 kHz is  used to  set the  tra in  H>.

London transport iB now experimenting with a more complex system 
called positive train identification. With this a pulsed 30 kHz signal 
is transmitted to the train. When the train is in range this stimulates 
a response signal. This response is a digital telegram timad by the 
stimulating transmission. The total message time is 28ma and can be 
used for speeds up to 77 km/h. (Refs. 20, 179, 210, 201, 107, 141, 199)

3.A.3 Morgantown
The Morgantown projeot is both an UMTA demonstration of automated 

urban transport and a p u b lic  transport Service for Morgantown. The
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troposed system contained 5*8 kins double guideway, s ix  s ta tio n s  and 9° 

reh ic le s . The sca le  o f the p ro je ct has since been considerab ly  re 

duced. The route is  now 3.5 kme long w ith  3 s ta tio n s .

The system operates both a scheduled and a demand responsive 

se rv ice . The minimum headway is  15s, top speed is  48 km/h, average 

speed is  30 kn/h.

The Morgantown p ro je c t has been extrem ely co s tly ; $64* fo r  a  sys

tem o r ig in a lly  estim ated to  cost $l8m ,w ith an estim ated fu rth e r $5 0 » 

fo r expansion to  the o r ig in a l design . Although the cost e s ca la tio n  was 

caused p a r t ia lly  by u n re a lis t ic  deadlines and design c r it e r ia ,  th e  

te ch n ica l d if f ic u lt ie s  o f such an advanced system were s e rio u s ly  under

estim ated.

In p a rtic u la r  com m ercially a v a ila b le  components allow ed ra te s  o f 

fa ilu re  which are much too  h igh fo r  automated p u b lic  tra n sp o rt. M i l i

ta ry  and space hardware oould achieve the requ ired  r e l ia b il it y  bu t at a 

much h ighe r co s t.

Morgantown Con tro l and Communications System (C it CS)
The C A CS is  d iv id ed  in to  three fu n ction s:

(a) C entra l c o n tro l and communications

(b) Station control and communications
(c ) Guideway co n tro l and communications

(a) Central control
A central computer carries out the automatic management functions, 

receiving destination service requests from the stations and trans
mitting commands for vehicle routing and dispatching to stations. A 
system operator at the central office takes control of the system 
during conditions of failure, start-up and shut down.
(b) Station control and communications (S.C.C.)

The S.C.C. controls vehicles and station operations in response 
to central supervisory commands. Signals from the station control are 
transmitted to vehicles using induotive loops embedded in tbs guideway. 
Communications are in the form of P.3.K. telegrams and fixed frequency 
oontrol tonea.

The station computer controls vehicle switching, station stopping 
and door operations. It also operates the station information displays 
and receives passenger destination demands. At each station there is a 
collision avoidanoe system (CAS) which is a back up to the primary
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control.
The CAS consists of
1) Duplicated passive vehicle detectors (reed relays activated 

by vehicle carried magnets). These detect vehicle entry into a block 
of track.

2) Inductive communication loops which transmit a safetone (10.2 
kHz with a 50 Hz modulation) to the vehicle in the block.

3) A redundant control system which determines block occupancy.
(The redundency is achieved by having one logic path go via the sta
tion computer and uses software to achieve the block control. The 
other logic path uses special purpose logic circuitry. Both logic 
paths must agree or the safetone is removed from the affected zone).
(c) Guidewav control and communications

Buried in the track are various inductive loops performing different 
functions.

1) S ta tion  stop loops (36.3 kHz,). The s ta tio n  c o n tro l transm its 

a tone s ig n a l which t e l ls  the v eh ic le  to  begin it s  stopp ing manoeuvre.

The vehicle is arranged to enter the stop loop at 1.2 m/s and is de
signed to stop + 15 cms from the centre of the station unloading gates.

2) Switching tone loops (28.3 kHz). These loops when energised 
command the vehicle to steer left or right at merges and diverges,
(i.e. select the appropriate wall to follow). The vehicle must verify 
that switching has been accomplished, otherwise it will be brought to 
a halt.

3) Calibration loops (36.3 kHz). These give a measured position 
referenoe to the vehicle. It is used to recalibrate the on—board odo
meter to remove accumulated errors.

4 ) F.S.K. loops - 129/121 kHz transmission, 104/96 reception.
The F.S.K. transceiver unit transmits speed commands, door commands and 
identification requests to the vehioles. A second set of loops is used 
to receive vehicle I.D., door responses and fault status signals trans
mitted from the vehiole.
Voice communications

The conunmications operator is responsible for communications with 
passengers. He can enable or disable vehioles using UHF radio control. 
He monitors T.V. displays of strategic points in eaoh station. Passen
gers on-board vehicles can call the operator using the vehicle UHF radio.
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S im ila r ly  the operator can address any or a l l  o f the v e h ic le s . One 

way rad io  communications are provided from the co n tro l centre to  the 

in d iv id u a l s ta tio n  p u b lic  address system . A separate 2-way UHF rad io  

system is  provided fo r  maintenance s t a f f  and v e h ic le s .

3.A.4» Bus Location

There is  considerab le in te re s t in  schemes designed to  improve bus 

se rv ices, p a r t ic u la r ly  re g u la r ity  and p u n ctu a lity . Two trends are 

apparent:

(a) The use o f bus transponders which actuate t r a f f ic  lig h ts .

These enable buses to  ga in  p r io r it y  at in te rse c tio n s  so reducing th e ir  

delay at the  expense o f some increase in  delay fo r other users, e .g . 

in  Glasgow, Le ice ste r, Nottingham, Southampton.

lb )  The use o f c e n tra lise d  bus superv is ion  schemes which o f fe r  re a l 

time m onitoring and co n tro l o f bus movements. These a llow  schedules to  

be s ta b ilis e d  and bunching m inim ised. Four transport a u th o r itie s  have 

in s ta lle d  such systems fo r  eva lu a tion , namely London, B r is to l,  Chicago 

and Hamburg.

This section on bus location will only consider the second of these 
trends.

There are three types o f bus co n tro l systems:

(a) Control by roadside inBpeotors — Roadside inspectors time 
buses at strategic points and give instructions verbally to drivers.
The roadside inspectors communioate by telephone to a controller who 
decides what control to apply and informs the inspectors accordingly.

(b) Control using radio telephone - Buses are equipped with two- 
way radio. Drivers report their position to and receive instructions 
from the controller.

(o) Control using radio and automatic vehicle location - Bus 
positions are automatically monitored and displ^red at a central offioe. 
A controller assesses the information and instructs drivers hy radio.

A simulation evaluation of these systems suggests that radio tele
phone oontrol alone offered the most cost effective situation. However 
automatic vehicle location reduces demands on radio spectrum and may 
reduce staff oosts. The four eystems briefly described below are all 
examples of the third type. However, reoently many authorities have 
begun installing the second type although mainly for reasons of driver 
security rather than for improved oontrol«
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(a) London (BESI -  Bus E le c tro n ic  Scanning Ind ica to r)

Th is was an ea rly  experiment in  bus lo ca tio n . The scheme comprises 

bus id e n t if ic a t io n  p la te s mounted on the bus and kerbside readers, 

spaced at approxim ately 13 m inutes running time apart. Transm ission 

u n its  send the inform ation to  a bus route d is p l^  panel at the cen tra l 

o f f ic e .

Operation

A modulated lig h t beam is  p ro jected  from the kerbside reader snto 

the bus I.D . p la te . Th is com prises two rows o f re fle c to r studs, the 

upper row are coloured w hite and form the time base. The lower row are 

coloured red and are the runn ing number o f the bus in  b inary  coded form .

The lig h t  beam is  re fle c te d  back to  the reader, co lou r separated, 

f ilt e r e d  and the code id e n t if ie d .  A sender transm its the inform ation 

to  the co n tro l centre v ia  telephone lin e s .  There i t  is  decoded and 

d isp lsyed . O rig in a lly  c o n tro l a ction  was app lied  by roadside inspectors. 

Later developments used two-way vo ice  rad io  communications w ith  the 

d riv e r.

The p r in c ip a l fa u lts  w ith  the BESI system are that:

(a) Large veh ic les can b lo ck  the scanner from the bus

(b) As there is  no code redundancy no e rro r checking can be ca rrie d

out.

(c) Misaligned or stationary buses can be misread.
The BESI system has been superceded by apparatus devised by Marconi 

and installed on bus route 11 in 1973« In this the vehicle uses an 
axle mounted odometer to determine its position. The bus is linked to 
the control centre by two-way radio whioh transmits either the location 
data or operator/driver conversations.

After compensation for errors due to tyre wear a position accuracy 
of about Hf) is claimed. A computer system at the control centre polls 
each vehicle in turn, processes the bus location information and drives 
a visual display unit.
Bristol

The Marconi system used in London has also been applied to buses in 
Bristol. The principal difference is the position looation equipment.
A vehicle mounted optioal reader interrogates passive ooded reflector 
plates fixed frequently along the bus route. These can be read from up 
to 3m.
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Chicago

In Chicago beacons are p laced at approxim ately 31cm in te rv a ls .

These transm it a 16 b it  code at 150 MHz in d ic a tin g  th e ir  id e n tity . As 

a bus passes a beacon (w ith in  60m) the s ig n a l is  rece ived  and stored . 

Sim ultaneously a counter s ta rts  record ing  twelve second increm ents. A 

ce n tra l computer p o lls  each bus in  tu rn  by rad io  on a 2-m inute cy c le . 

The bus when in te rrogated  transm its to  the co n tro l cen tre  the id e n tity  

o f the la s t beacon passed and the subsequent elapsed tim e . The ce n tra l 

computer estim ates the bus p o s itio n  and inform s the operator o f buses 

out o f schedule, lo s t or Bhowing an alarm . Contro l in s tru c tio n s  are 

passed to  the d riv e r by ra d io .

Hamburg

A s im ila r system is  operated in  Hamburg. However, p o s itio n  is  

measured by an ax le mounted odometer, which is  reset every 5—10 km to  

co n tro l e rro rs . The beacons use an induo tive  loop antenna and transm it 

2 out o f 6 frequencies to  id e n t ify  the lo ca t io n . (R e fs . 52, 103, 133, 

146, 148, 191, 206, 213, 226, 214).
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V O I C E  C O M M U N I C A T I O N  I N  THF TU BE .
R A I L  GAZ I N T  V O L  1 3 2  Ne 4 P P  1 2 9 - 1 3 3  A P R I L  1 9 7 6

21 ATOR J  T
IM A G E  V E L O C I T Y  S E N S I N G  BY O P T I C A L  C O R R E L A T I O N  
A P P L I E C  O P T I C S  1 9 6 6  VOL 5 P P  1 3 2 5 - 1 3 3 t

22  B A R K E R  J  L
R A D A R . A C O U S T I C  AN D  M A G N E T I C  V E H I C L E  D E T E C T O R S  
I E E E  T R A N S  VOL  V T - 1 9  NO 1 P P 3 0 - 4 3  F E B  1 9 7 0

23  BARLOW H M
S C R E E N E D  S U R F A C E  WAVES AND SOME P O S S I B L E  A P P L I C A T I O N S  
PROC I E E  VOL 1 1 2  PP  4 7 7

24 BAH WÊ LL  F T O G I L V Y  H H
C O M M U N I C A T I O N S  AN D  THF I R  E F F E C T S  ON R A I L W A Y  O P E R A T I O N S  
PRO C I N S T  R A I L W A Y  S I G N A L  E N G I N E E R S  P 1 3 5  1 9 6 6

25 B E A L  J  C ET AL
C O N T I N U O U S - A C C E S S  G U I D E D  C O M M U N I C A T I O N  FOR  GROUNO 
T R A N S P O R T A T I O N  S Y S T E M S
I E E E  PROC VOL  6 1  NO 5 P P  5 6 2 - 5 6 8  MAY 1 9 7 3

26 B E N D E R  J  G F E N T O N  P E O L S e  K W
A. E X P E R I M E N T A L  STUDY  OF V E H I C L E  LtlNO ITUO I N A L  CONTROL  
I E E E  TRANS VO L  V T - 2 0  Ne 4 PP  1 1 1 1 4 - 2 3  NOV 1971

27 BRAUN W V 6 W ALK FR  0 L
V E H I C U L A R  L O C A T I O N  AND I N F O R M A T I O N  S Y S T E M S  
I E E E  T R A N S  V e L  V T - t 9  NO 1 PP  1 3 6 - 4 3  F E B  1 9 7 0



28

29

30

31

32

33

3*

35

36

37

38

39

4C

B R O * N  J ( » L A Z I E R  F
T E L E C O M M U N I C A T I O N S  a i

CHAPMAN ANC H A L L  1 9 7 4  LONOTN

BUC K H ET AL
A N A L Y S I S  ANO CO M P AR IS O N  P P  SOME A U T O M A T I C  V E H I C L E  M O N I T O R I N G  
S Y S T E M S  A2
T R A N S P O R T A T I O N  S Y S T E M S  C E N T R E  CAMS  M A S S .  REPOR T  J U L  1 9 7 3  
M/P PB 2 2 2  152

BURROW L D
D E S I G N  OF CONTROL  S Y S T E M S  I N  AUTOMA TED T R A N S PO R T
S Y S T E M S  A3
P A P E R  I F  AC WORKSHOP O P T I M I S A T I O N  A P P L I E D  TO 
T R A N S P O R T A T I O N  S Y S T E M S  F F B  1 7 - 1 9  1 9 7 6  V I E N N A  A U S T R I A

D O N A L D S O N  P W 
D E S I G N  OP JRA  
V E H I C L E  L 9 C A T  
I E E E  T R A N S  VO

EDW ARDS  J P 
A D A P T I V E  D I G l  
P A P E R  I E R E  C 
N PL  T E D D I N G T O  
I  ER E  CC NF PRO

FO OT E  R S 
A U T O M A T I C  VEH 
T R A F F I C  E N G I N

C A T T E R M O L E  K
P R I N C I P L E S  OF P U L S E  COCE M O D U L A T IO N  
I L I E F E  BO OKS  LONCON 1 9 6 9

44 F O S T E R  G I
R A I L W A Y  S I G N A  
r a i l w a y  E n g i n

CH ES N U T  H ET  AL
C O M M U N IC A T IO N  AND CONTROL  FOR T R A N S P O R T A T I O N  
PROC  I E E E  NO 5 6  PP 5 4 4 - 5 5 5  1 9 6 8

45 F R E N C H  R C
M O B I L E  R A D I O  
P A P E R  1ERE  C 
N P L  T E D D I N G T O

CON ST AN T J  N
M IC RO W AVE  A U T O M A T I C  V E H I C L E  I D E N T I F I C A T  I O N C M A V I ) S Y S T E M  
I E E E  T R A N S  VOL V T - P 3  NO 2 P P  4 4 - 5 3  MAY 1 9 7 4

C R E E  0  J  AND G l i - F S  L  J
P R A C T I C A L  P ER F O R M A N C E  OF  R A D I A T I N G  C A B L E S
R A D I O  AND E L E C T R O N I C  E N G I N E E R  VOL 45  NO 5 PP  2 1 5 - 2 2 3

CROUCH C A
A C I  R E S E A R C H  I S  U N D E R T A K E N  AT S A N T A  F E  
R A I L W A Y  S Y S T E M  AND C O N T R O L S  OCT 1 9 7 4  P P 1 4

DAVY  M
AU T O M A T IO N  AND S A F E T Y  O P E R A T I O N  OF  M E T R O P O L I T A N  R A I L W A Y S  
B A S E D  ON H IG H  T E N S I O N  I M P U L S E  TR A C K  C t C U I T S  
R A I L  E N G I N E E R I N G  I N T  OCT 1 9 7 5  PP  2 7 3

DEN C E  R 0
C O A X I A L  C A R L E  H E L P S  C O M M U N I C A T I O N S  
I N T E R N A T I O N A L  R A I L W A Y  ¿.RNL S E P T  1 9 7 5

DOBSON  J  S
T R A N S M I T T E R  F A I L  S A F E  L N I T  FOR  THE T RR L  A U T O M A T I C  V E H I C L E  
G U IO A N C E  S Y S T E M *
T R R L  CRBWTHORNE T E C H N I C A L  NOTE TN 8 2 4  MAY 1 9 7 3  UNPUB

46  F R I T S C H E  R M 
NON CO NTA CT M 
M E A S U R E M E N T  A

47 G A R B R E C H T  K
A U T O M A T I C  WA 
R A I L W A Y  E N G I

48  G A Z I S  C
T R A F F I C  CONT 
I E E E  PROC VO L

49  GEN EV O Y  P ET
T E L E C O M M U N I C  
DU ME TR O E X P  
R E V U E  G E N E R A L

5 0  G I L E S  C G 
G U I D I N G  ANC 
NEW S C I E N T I S

51 G I T T I N G E R  N
R A D A R  T R A I N  
N A T I O N A L  T E L

D O C KER T Y  A
ROAD V E H I C L E  D E T E C T O R S .  
THE E N G I N F E R  P P  8 5 6 - 9 6 0

5 2  GOULD A V
A U T O M A T I C  VE 
I E E E  T R A N S  V

DOHERTY  A R
A R E V I E W  OF F L E E T  L O C A T I O N  T E C H N I Q U E S  
r e p o r t : d e p t  OF E N V I R O N M E N T *  T R A F F I C  c o n t r o l  & C O M M U N IC A T IO N S  
D I V I S I O N  J U L Y  1 9 7 3  16 P P

53 GUST  A F S  SON S  
V E H I C U L A R  L O  
UR BA N  F L E E T S  
M N f e S t N r t U  A T  
A I A A  P A P E R  N



41 DON ALD SON  R W
D E S I G N  0F  T R A N S P O N D E R S  S I G N A L S  AND R F C E I V E R S  FHR A U T O M A T IC  
V E H I C L E  L O C A T I O N  AND I D E N T I F I C A T I O N  S Y S T E M S  
I E E E  T R A N S  VRL C 0 M - 2 3  NO S  PP 4 8 9 - 5 0 0  MAY 1 97 5

42 EDWARDS J  R
A D A P T I V E  D I G I T A L  C O M M U N I C A T I O N  S Y S T E M S  FOR  M O B I L E  A P P L I C A T I O N S  
P A P E R  1ERE  C 0N F  o n  C I V I L  LA N D  M O B I L E  R A D I O  1 8 - 2 0  NOV 1 9 7 5  
NPL  t e d d i n g t o n  m i d d x  
1E RE  CCNF  PROC NO 33

43 FOOTE  R S
AU T O M A T IC  V E H I C L E  I D E N T I F I C A T I O N
T R A F F I C  E N G I N E E R I N G  ANC CONTROL  VOL 15  NO 6 OCT 1 9 7 3  PP 3 0 0

44 F O S T E R  G I
R A I LW A Y  S I G N A L L I N G  D E V E L O P M E N T
R A I LW A Y  E N G I N E E R I N G  JO U R N A L  VOL  2 NO 2 P P  MAY 1 9 7 3

45 FRE NCH R C
M O B I L E  R A D I O  DATA  T R A N S M I S S I O N  ER RO R P ER F O R M AN C E
P A P E R  1ERE  CONF  ON C I V I L  L A N D  M O B I L E  R A D I O  1 8 - 2 0  NOV 1 9 7 5
NPL  T E D D I N G T O N  M I D D X  1E RE  CONF  PROC NO 33

46 F R I T S C H E  R MESCH F
NON CONTACT M E A S U R E M E N T  A C O M P A R I S O N  OF  O P T I C A L  S Y S T E M S  
M EAS U RE M EN T AND CON TROL  6 J U L Y  1 9 7 3  PP  2 9 3 - 3 0 0

*7 GARB RE CH T K
A U T O M A T IC  WAGON I D E N T I F I C A T I O N  S Y S T E M  U S I N G  M ICROW AVE  T E C H N I Q U E S  
R A I L W A Y  E N G I N E E R I N G  I N T  P 2 0 8  JUNE  1 9 7 2

*8 G A Z I S  C
T R A F F I C  CONTROL  ! FROM  HANC S I G N A L  TO COMPUTER  
I E E E  PROC VOL 5 9  NO 7 P P  1 0 9 0 - 9 9  JU L  1 9 7 1

49 GENEVOY P ET  AL
T E L E C O M M U N I C A T I O N S  ET  COMMANDE  A U T O M A T I Q U E  DE L A  L I G N E  E S T  OUEST  
DU METRO E X P R E S S  R E G I O N A L
RE VU E  G E N E R A L  O E S  C H E M I N S  D E  F E R  F E B  1 9 7 *  PP  5 3 - 7 6

50 G I L E S  C G
G U I D I N G  ANC C O N T R O L L I N G  C A R S  BY E L E C T R O N I C S «
NEW S C I E N T I S T  15  PP  6 6 A - 6 6 6  1 9 6 2

51 G I T T I N G E R  N C
RADAR  T R A I N  S E P A R A T I O N  AT BARTO
N A T I O N A L  T E L E M E T E R I N G  C O N F E R E N C E  1 9 6 7  S A N  F R A N C I S C O  PROC« PP « 0 - 8 6

52 GOULD A V
AU T O M A T IC  V E H I C L E  M O N I T O R I N G  A P P L I E D  TO B U S  O P E R A T I O N S  
I E E E  T R A N S  VOL V T - P 2  NP 2 P P  * 2 - 5  MAY 1 9 7 3

53 G U S T A F S S O N  S G «  M A R I O N  J  F
V E H I C U L A R  L O C A T I O N  AND C O M M U N I C A T I O N  S Y S T E M S  F e R  
URBAN F I  E F T S
P H E 3 E N T F D  AT THE ur b a n TFCHNOL  C O N F.  MAY 2 * - 2 6  1 97 1  
A I A  A P A P E R  NO 7 1 - 5 1 3



tum tinti mili nil1! Nini lililí I

HAIGH J 0
P R E C I S I O N  P O S I T I O N  F I N C I N G  UNDER  D Y N A M I C  C O N D I T I O N S  
S Y S T E M S  TECHNOLOGY cJCT 1 97 0  NO 22

HAM R
A R E A  T R A F F I C  CONTROL  IN  WEST LONDON 2 .  V E H I C L E  CO U N T I NG  
D E T E C T O R S
T R A F F I C  E N G I N E E R I N G  AND CONTROL  AUG 1 9 6 9  P P 1 7 2 - 1 7 6  

HAM R
S Y S T E M  FOR I D E N T I F I C A T I O N  OF V E H I C L E S  T R A V E L L I N G  ALONG A 
P R E D E T E R M I N E D  R O U T F .
M I N I S T R Y  OF T R A N S P O R T  A P P L I C A T I O N  NOTE NO.  7 1 8 2 / 6 7 .

H A N Y S Z  E A Q U IN N  C E S T E V E N S  J  E T R A B O L D  W G
D A I R -  A NEW CO NCE PT  OF H IGHWAY COMMUN. FOR  A D D E D  S A F E T Y
AND D R I V I N G  C O N V E N I E N C E
I E E E  TRAN S  VOL  V T - 1 6  NO 1 P P  3 3 - 6 1  1 9 6 7  

HARMAN R E
P R O B L E M S  AND T E C H N I Q U E S  I N  THE  U S E  OF AU O IO  F R E Q U E N C Y  TRACK 
C I R C U I T S .
R A I L W A Y  S Y S T E M  C O N T R O LS  VOL 6 NO 5 MAY 1 9 7 5  PP  2 2 - 2 5

67 H U E b S H E R  
E E A S I 3 I L I  
T R A C K I N G  
P A P E R  1ST 
TEC HNOLOG

68 H U L S H E R  F 
S E L E C T I O N  
T R A F F I C  E

69 HUL SH Ef i  F 
U S E  OF VE 
T R A F F I C  E

70

1

I S E N S E E  A 
THE  M I C R O  
T R A F F I C  
R A I L W A Y  T

71
I

I T O  K K I  
TWO FRE Q U  
R A I L W A Y  T

HE AD  J  R
THE  O P E R A T I O N  OF THE I N D U C T I V E  LOOP V E H I C L E  D E T E C T O R  
T R A F F I C  ENGNG AND FONT VOL 12  J U L Y  1 9 7 0

H EM ME S  R A
AN I N T E R V I E W  OF THE UMTA A U T O M A T I C  V E H I C L E  M O N I T O R I N G  PROGRAM 
I E E E  TRAN S  ON VEH T EC H N ,  1 9 7 3  OR 1 9 7 6 .

HEWTON J  T
THE M E T R O P O L I T A N  TORONTO T R A F F I C  CON TRO L  S I G N A L  S Y S T E M .
I E E E  PROC VOL 5 6  NO 6 PP  5 7 7 - 9 9  APR 1 9 6 8

H I X  L
A U T O M A T IC  V E H I C L E  I D E N T I F I C A T I O N .
S Y M P  ON THE U S E  OF C Y B E R N E T I C S  ON THE R A I L W A Y S  P 3 9 7  
I N T  U N IO N  OF R A I L W A Y S  P A R I S  1 9 6 3

H OB BS  F D AND R I C H A R D S O N  B 0 
I N S T R U M E N T A T I O N  I N  T R A F F I C  E N G I N E E R I N G .
T R A F F I C  E N G I N E E R I N G  ANC CON TR OL  8 ( 1 2 1 . 9 ( 1 . 2 . 3 . 6 . 5 1 «  1 9 6 7 .

72

73

7 *

75

76

HO LM ES  J  C H A R T L F Y  M G
A P R O T O T Y PE  V E H I C L E  D E T E C T O R  E M P L O Y I N G  C A P A C I T I V E  P R O P E R T I E S  
R E PO R T  U M I S T  1 9 7 0 ?

HOLMSTROM F R H f l P K l N S  J  B N E W F E L L  A T WHITE E W 
A MICRewAVE A NT IC IPAT O R Y  CRASH S E N S O R  FOR A C T I V A T I O N  OF AUTOMOBILE  
P A S S I V E  RES TR A IN TS .
I E E E  T RA NS  VOL  V T - 2 2  NO 2 P P  6 6 - 5 6  MAY 1 9 7 3

77

78
HU A S
T R A N S M I S S I O N  P R O P E R T I E S  OF  W A Y S I D E  C O M M U N I C A T I O N S  S Y S T E M S  
PROC I E E E  MAY 1 9 7 s  VOl. 61 NO 5 PP  5 5 6

79

I V E S  A P 
A C O M P A R I  
A U T O M O B I L  
P RO C  M I C R

J A K O B S B E R  
A P P L I C A T I  
R A I L R O A D  
A S M E  PAP E

J E F F R I E S  
TR A C K  C I C  
R A I L W A Y  S

K A P L A N  G 
A N A L Y S I S  
L O C A T I O N  
I E E E  TRAN

K AWANAB E 
F I E L D  T E S  
CAB  S I G N A  
Q U A R T E R L Y

K E L L E R  W 
A METHOD 
S V M P  ON 
I N T  U N I 0

K I S H I M O T  
T I M E  O I V  
S P A C E  RA 
10  TH S Y

kishimo r
P R O P E R T  I  
T E L E CO M  
R A I L W A Y



67 HUtbSHER H
F E A S 1 3 I L I T Y  PE  R A D A R  BEACON T E C H N I Q U E S  E B R  PA TR BN V E H I C L E  
T R A C K I N G  4N0  P e S l T T B N  D I S P I A Y
P A P E R  1ST  N A T i e N A l  S Y M P O S I U M  BN LAW EN F O R C E M E N T  S C I E N C E  AND 
TECHNOLOGY  I T T  R E S E A R C H  I N S T I T U T E  C H I  CARGO MARCH 1 9 6 7

68 H U L S H E R  E R
S E L E C T I O N  eE  V E H I C L E  D E T E C T O R S  E B R  T P A E E I C  MANAGEMENT 
T R A F F I C  ENGNG AND CONT DFC  1 9 7 *  P P 9 1 5

69 H U L S H ER  E R S I M M S  A G
U SE  BE  V E H I C L E  D E T E C T O R S  E B R  T R A F F I C  CON TROL  
T R A F F I C  ENGNG AND C8NT  N6V  1 9 7 *  VOL 15

70 I S E N S E E  A
THE M IC RO W AVE  S Y S T E M  S I C A R I O  A ME AN S  F B R  A U T O M A T IO N  BE GOODS 
T R A F F I C
R A I L W A Y  T E C H N I C A L  REVUE  1 9 7 *  V 0 L 1 6  P P 3 9 - 4 0

71 I T O  K K I Y O S A W A  S
TWO FR EQ U EN C Y  C O M B I N A T I O N  T Y P E  A F  TR A C K  C I R C U I T
R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  Q U A R T E R L Y  R E P O R T  VOL  1 2  1 97 1  P P 8 9

72 I V E S  A P
A C O M P A R I S O N  OF M ICRO W AVE  S Y S T E M S  FOR THE HEADWAY CONTROL  OF 
A U T O M O B I L E S
PROC M IC RO W AVE  1 9 7 3  C O N F E R E N C E  B R I G H T O N  EN GLAND  P P  * 1 3 - * 1 7

73 J A K O B S B E R G  W
A P P L I C A T I O N S  OF A U T O M A T I C  V E H I C L E  L O C A T I O N  S Y S T E M S  TO
R A I L R O A D  O P E R A T I O N S
ASME  P A P E R  7 3 - R T - 6  A P R I L  1 1 - 1 2  1 9 7 3

7 *  J E F F R I E S  A E H
TRACK  C I C U I T S  AN O TH ER  R O L F
R A I L W A Y  S Y S T E M  C O N T R O L S  S F P T  1 9 7 *  P P 1 0

75 K A P L A N  G S
A N A L Y S I S  OF AN E L E C T R O N I C  F E N C E  E L E M E N T  F O R  A V E H I C L E  
L O C A T I O N  S Y S T E M
I E E E  T RA NS  VOL  V T - 2 0  NO 2 PP  2 6 - 3 *  MAY  1 9 7 1

76 KAWANABE  H I T A K U R A  E YURA  H
F I E L D  T E S T  OF m U L T I F R E C U E N C Y NON I N S U L A T I N G  TRACK  C I R C U I T S  AND 
CAB  S I G N A L L I N G  E Q U I P M E N T
QU AR T ER LY  R E P O R T  R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  VOL  3  NO *  1 9 6 2

77 K E L L E R  W M
A METHOD OF D E V E L O P I N G  HARDWARE FOR  A U T O M A T I C  CAR  I D E N T I F I C A T I O N .  
SYMP  ON THE U S E  OF  C Y B E R N E T I C S  ON THE R A I L W A Y S  P * 0 *
INT U N IO N  CF  R A I L W A Y S  P A R I S  1 9 6 3

78 K I S H I M O T O  ET  AL
T I M E  O I V I S I O N  M U L T I P L E X  CONTROL  C O M M U N I C A T I O N S  U S I N G  A P A I R  CF  
S P A C E  R A D I O  W A V E S
10 TH S Y M P O S I U M  O N  THE U SE OE C Y B E R N E T I C S  ON THE R A I L W A Y S  J R C A  1 9 7 *

K I S H I M O T O  T MA TSlJMUW A K
P R O P E R T I E S  ME O P E N  WIREO L E A K Y  C O A X I A L  C A B L E  AS A T R A I N
t e l e c o m m u n i c a t i o n  l i n e

R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  Q U A R T E R L Y  R E P O R T  VO L  12  NO *  1 9 7 1



KO K I  SH  I MC T 0 T M A T S i i MJPA K H H T O H AS H I  Y ' JTSUGI  T
T W AI N  R A D I O  T E L E C O M M U N I C A T I O N S  S Y S T E M  U S I N G  L E A K Y  C O A X I A L CAGLE 9 A

I N  T U N N E L S
R A I L W A Y  T E C H N I C A L  P E S E a RCM  I N S T  Q U A R T E R L Y  R E P A R T  V A L  1 ?  Ne 2 1371

MCAULAY A
P R O G R E S S
T R A N S P O R T

«1 K O B A Y A S H I  A N AKAY A  R
T R A I N  C E T E C T I G N  U S I N G  A RS  OR PT TAN AND S C A T T E R I N G  PHENO ME NA OE 
R A D I A T I O N  THROUGH B O D I E S  OF C A R S
Q U A R T E R L Y  R E PA R T  R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  VO L  A N S  3 SEPT

8 2  K O T H  W
0 • B • TR A C K  TO T R A I N  C O M M U N IC A T IO N
R A I L W A Y  G A 7 E T T E  I N T E R N A T I O N A L  HAY 1970a PP  3 3 6 - 3 3 7
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BUS DEMONSTRATION PROJECT
TRAFFIC ENGNfi AND CONTROL VOL 12 NS 1 MAY 1970 P *3

AUTOMATION ENSURES SAO PAUL OS METRO'S LINE CAPACITY 
RAILWY GAZ PP 351 SEPT 1974

CONTINUOUS AUTOMATIC TRAIN CONTROL ON MUNICH S-BAHN. 
RAILWAY GAZ INT JANUARY 1974 PP 18-20

D E S I G N  T E C H N I Q U E S  FOR AU T O M A T IC  T R A I N  CONTROL  
W E S T I N G H O U S E  E N G I N E E R I N G  JU L Y  1 9 7 2  PP  9 8 - 1 0 3

MA LAY AN  R A I L W A Y  S I G N A L L I N G .
R A I L W A Y  G A Z E T T E  5 6 2 - 5 6 3  16  NOV 1 9 6 2

R A P I D  T R A N S I T  I N  FRENCH  P R O V I N C I A L  C I T I E S .  
R A I L W A Y  G A Z E T T E  I N T  J U L Y  1 9 7 4  PP  2 7 2 - 2 7 6

NEW E L E C T R O N I C  C O N T R O L S  ME ET  H I G H  S P E E D  R E Q U I R E M E N T S  
I N T E R N A T I O N A L  R A I L W A Y  wOURNAL

T E S T  COACH  M E A S U R E S  NEW TRACK  TO CAB  S I G N A L L I N G  S Y S T E M  
I N T E R N A T I O N A L  r a i l w a y  JO UR NAL  J U L Y  1 9 7 4  P P  64

T R A I N  C O N T R O L S  P R O C E E D  S L O W L Y .  
E L E C T R O N I C S  VOL 4 7  NO 24  P P 4 6 - 4 8  
NOV 2 8  1 9 7 4

R E N F E  I N T R O D U C E S  CAB  S I G N A L L I N G
R A I L W A Y  S Y S T E M  CO NTR OL S  JA N  1 9 7 5  P P  2 0 - 2 2

158

159

1 6 0

T R A I N  L O C A T I O N  S Y S T E M  I S  NOW IN  O P E R A T I O N  ON THE B R I T I S H  C O L U M B I A  
R A I L W A Y  S Y S T E M  CO NTR OL S  MARCH 1 9 7 5

A L E X A N O R E  L M
V O I C E  C O M M U N IC A T IO N  I N  THF TUBE 
R A I L W A Y  GAZ IN T  A P R I L  1 9 7 6

A L S T O N  L  L
E L E C T R I C A L  R E S E A R C H  I N  B R I T I S H  R A I L W A Y S .
E L E C T R O N I C S  AND PPWER VOL 16  P 3

A L S T O N  L  L  B 1 R K 8 Y  j  W
D E V E L O P M E N T S  IN  T R A I N  CONTROL ON B •R •
J  I N S T  R A I L  S I G  E n G R S  L A T F  1 97 1
A B S T R A C T E D  IN  MODFRN R A I L W A Y S  OEC  1 9 7 1  V O L  28  NO 1 RP  2 3 2 - 3



1 6 2  B A R N E Y  G C S A N T O S  S  M
D E S I G N  E V A L U A T I Ö N  AND CONTROL  OF L I F T  S Y S T E M S  
B F  C O N V E N T I O N A L  D E S I G N  ME TW 00  S 
L I F T  J U L Y / A U G U S T  1 9 7 6

A S U R V E Y

1 6 3  BAR W E L L  F T
THE AU T O M A T IC  R A I L W A Y  ANALOGUE OR D I G I T A L  CONTROL  
U N I V E R S I T Y  riF WALES  S W AN SE A  R EPO R T  NO M R / 8 / 6 6

176

177

CUNCL IFFF.
A SURVEY 
RR0C IEEE

DAVioseN 
USE OF OAl 
HWY RES BÍ

1 6 A

165

166

167

B AR W E L L  F T
P R I N C I P L E S  OF THE A U T O M A T I C  R A I  L AY
B U L L E T I N  I R C A  C Y B E R N E T I C S  AND E L E C T R O N I C S  ON THE  R A I L W A Y P P  2 75 -2 81

B AR W E L L  F T AND L E E C H  D J
S I M U L A T I O N  OF T R A I N  F O L L O W IN G  B E H A V I O U R  I N  H . S . G . T .  S Y S T E M S .  
P A P E R  FROM THE C O N F .  ON CONTROL  A S P E C T S  OF  NEW F O R M S  OF G U I D E D  
LA N D  T R A N S PO R T  I E E  LONDON CONF  P U B L  NO 1 1 7  AUG 1 9 7 3

B L A I S E
C O M M U N I C A T I O N S  B ET W EE N  TRACK  AND LOCO AT THE C R O S S  R O A D S  
R A I L  I N T E R N A T I O N A L  D E C  1 9 7 1  PP  9 3 3

B I R K I N  M S
THE  TACT  S Y S T E M  ( T A C T -  TOTAL  A U T O M A T I C  T R A I N  C O N T R O L I  
T E C H N I C A L  RE PO R T  TP AUTO  1 T R A I N  CO N T R O L  GROUP R A I L W A Y  T E C H .  
C E N T R E  D ER B Y  OCT 1 9 7 6

178

179
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181

DEANE p Ml 
THE POSSli 
SYSTEMS Ci 
P A P E R  I E R I  
NO 33  i s }

D E L L  R MJ 
AU TO M AT I C  
PROC I Me J

DEVY  R .  
A U T O M A T I C I  
I N T  R A I Lw|

OY ER  w K
A P P L I C A T I I
E L E C T R O N ! !

168

1 69

1 7 0

171

172

1 7 3

176

175

BOGDAN V M BAOEN & HAHN H J
THE L ZB  ORE C O N T I N U O U S  A U R 5 0 M A T I C  T R A I N  CONTROL  S Y S T E M  
BROWN B O V E R I E  R E V U E  1 2 - 7 5  PP  5 2 8 - 5 3 8

BROWNSON J  W ET  AL
S T R A T E G I C  CONTROL  OF  S A N  F R A N C I S C O  B . A . R . T *
T R A N S  I E E E  S E P  1 97 1  VOL  I G A - 7  NO 5 PP  5 7 0 - 5

BUGGE W A
BA R T  IN  O P E R A T I O N  I N N O V A T I O N S  I N  R A P I D  T R A N S I T .
T R A N S P O R T A T I O N  E N g  J O U R N A L  OF A S C E  VOL  1 0 0  NO T E 2  
MAY 1 9 7 6

BURCK  C G
WHAT CAN WE L E A R N  F R O M  B A R T ?
F OR TU NE  J U L Y  1 9 7 5  P P  1C 6 - 1 0 7 # 1 6 3 » 1 6 6 / 1 6 6

B U T L E R  J  S
L I F T S  AND E S C A L A T O R S
P U B L I S H E D  BY  E L E C T R I C a I D E P T  I M P E R I A L  C O L L E G E  A V A I L A B L E  F R e M  THE 
I . C .  BOOKSHOP K E N S I N G T O N  LONDON SW7 2 A Z

C A R S O N  R W
E L E C T R O N I C S  RU NS  THE SHOW I N  THE  B AY  AREA  T R A N S I T  S Y S T E M  
p r o d u c t  e n g i n e e r i n g  o c t  7 1 9 6 8  p p  5 7 - 6 5

C H E R R Y  R C
C O M P U T E R S  TAX I S  AND G R A S S  ROOT S  T R A N S P O R T A T I O N  
HWY R E S  BO S P E C  R P T  1 3 6  1 9 7 3  PP  9 6 - 9 8

182
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186

185

1 86

1 87

188

C L O S S  E D 
L I F T  C O N I R O L .
E L E C T R O N I C  ANO POw FR VOL 1» P 3 0 8  1 9 7 2

E S S I G  P 
THE REVUE|  
OF THE 
EN ER GY  CF 
6 1ST  U IT F

F O S T E R  G 
R A I L W A Y  
R A I L W A Y

F O S T E R  G 
D E S I G N  PF 
R A I L W A Y

F R E E H A F E F  
D E S I G N  PF 
R A I L W A Y

F R E H A F E R  
I M P L I C A T 1  
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185
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C U N C L I F F E  J  P
A S U R V E Y  OF R A I L W A Y  S I G N A L L I N G  AND C O N T R O L •
PROC I E E E  5 6  NO *  PP  * 5 3 - 6 7 *

O A V I D S e N  J E
U SE  OF d a t a  P R O C E S S I N G  IN  T A X I C A B  CONTROL  
HWY R E S  BO S P E C  APT 136  1 9 7 3  PP 9 9 - 1 0 7

D EA N E  P M
THE P O S S I B L E  I N P A C T  0N S PEC TR U M  C O N S E R V A T I O N  OF R A D I A T I N G  C A B L E  
S Y S T E M S  C A R R Y I N G  S P E E C H  AND DATA  TO POAD AND R A I L  T R A N S P O R T A T I O N  
P A P E R  1 ER E  C O N F E R E N C E  eN C I V I L  LAND M O B I L E  R A D I O  1 E R E  CBNF P R O C  
NO 3 3  1 8 - 2 0  NOV 1 9 7 5  NPL  TE D D IN G T O N  M I D D X

D E L L  R M A N S E R  A W
A U T O M A T I C  D R I V I N G  OF P A S S E N G E R  T R A I N S  ON LONDON TR A N SP O R T  
PROC I  MECH E 1 9 6 * - 6 5  VOL  1 7 9  PT 3A  P P  2 * - 3 5

DEV Y  R .
A U T O M A T I C  O P E R A T I O N  W I L L  R E P L A C E  M O N T R E A L S  MANUAL S I G N A L L I N G .  
I N T  R A I L W A Y  J  VOL 15 Ne 10  OCT 1 9 7 5  P P  5 R . 6 0 . 7 5

D Y E R  W K H
A P P L I C A T I O N  OF  COMPUTER TECHNOLOGY TO R A I L W A Y  F R E I G H T .  
E L E C T R O N I C S  AND POWER P 1 06 1  NOV 1 9 7 5

E S S I G  P B E R R Y  F T
THE R E V U E  AND E V A L U A T I O N  OF THE E C O N O M I C  AND T E C H N I C A L  R E S U L T S  
OF THE AU T O M A T IO N  n F  M E T R O P O L I T A N  R A I L W A Y S .  E F F E C T S  OF THE 
E N ER G Y  C R I S I S  ON T H E I R  Ö P F R AT TON 
*  I S  T U I T P  C O N G R E S S  N I C E  1 9 7 5

F O S T E R  G I
R A I L W A Y  S I G N A L L I N G  D E V E L O P M E N T
r a i l w a y  e n g i n e e r i n g  j o u r n a l  v o l  2  n o  2  m a y  1 9 7 3

F O S T E R  G I
D E S I G N  P H I L O S O P H I E S  I N  A U T O M A T I C  T R A I N  CO N T R O L .  
R A I L W A Y  GAZ I N T  VflL 131  . .1 10 PP  3 7 7 - 8 2  OCT 1 9 7 5

F R E E H A F E R  J  E
D E S I G N  P H I L O S O P H I E S  I N  A U T O M A T IC  T R A I N  CONTROL  
R A I L W A Y  GAZ I N T  VflL 131 NO 10 OCT 1 9 7 5  PP  3 7 7 - 3 8 2

F R E H A F E R  J  E
I M P L I C A T I O N S  OF MODERN T R A N S I T  S I G N A L L I N G  C O N C E P T S  FOR M A I N L I N E  
R A I L R O A D  O P E R A T I O N
R A I L W A Y  S Y S T E M  CO NTR OL S  JA N  1 9 7 5  PP  2 0 - 2 2

F U J I I  M A TS U TA RO  
NEW T O K A ID O  L I N E .
PROC  I E E E  NO A PP 6 3 5  1 9 6 8

G A Z I Z  G C
T R A F F I C  CONTROL  F RMM HAND S I G N A L  TO C O M PUT ER  
P RO C  I E E E  J U L  197|  VOL  59  NO 7 PP 1 0 9 0 - 9

G E L B S T E  I N  E C ANfl P A R k MAM W T 
R A I L W A Y  C Y B E R N E T I C S *
P A P E R  FROM THE C O N FE R EN C E  ON CONTROL  A S P E C T S  OF NEW FORMS 
OF G U I C E D  L A N D  TRA NSPO R T S Y S T E M S .
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1 94

1 95

1 9 6

1 97
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200
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G E N EV O Y *  S C H U S S E L *  R I F F  ANC C H E S N A Y
T E L E C O M M U N I C A T I O N S  ET  COMMANDE A U T O M A T IQ U E  OE L A  L I G N E  
E S T  OUEST  DU METRO E X P R E S S  R E G I O N A L .
R E V I S E  G E N ER A L E  D E S  C H E M I N S  DE  F E R  F E B  1 9 7 4  PP  5 3 - 7 6  

GOULD A V
AU T O M A T IC  V E H I C L E  M O N I T O R I N G  A P P L I E D  TO B U S  O P E R A T I O N  
I E E E  TRAN S  V T - 2 2  NP 2 MAY 1 9 7 5

GUNSTON W T
R A I L W A Y S  OF THE E U T U R F .
S C I E N C E  JO UR NAL  3 P P  3 4 - 3 5

HARMAN R E
P R O B L E M S  AND T E C H N I Q U E S  I N  THE U S E  OE A U D I O  F R E Q U E N C Y  TRACK  
S E T S .
R A I L W A Y  S Y S T E M  C O N T R O L S  PP  2 2 - 2 5  MAY 1 9 7 5  

H A R M E S  P L
E X P E R I M E N T A L  LONG I N D U C T I V E  L O O P S  I N  A MOTORWAY E N V I R O N M E N T
P A P E R  1ERE  C O N F E R N C E  PN C I V I L  LA N D  M O B I L E  R A O I O
1 8 - 2 0  NOV 1 9 7 5  N P l  T E D D I N G T O N  M I D D X  1 ER E  CONE  PROC NO 33

H A R R I  SON 0 J
THE D E V E L O P M E N T  OF  A M U L T I S I T E  S I N G L E  CH AN N EL  R A D I O  S Y S T E M
FOR P O L I C E  AND F I R E  S E R V I C E  C O M M U N I C A T I O N S
P A P E R  1 E R E  CONE ON C I V I L  LA N D  N O B I L E  R A D I O
1 8 - 2 0  NOV 1 9 7 5  N P l  T E D O I N G T O N  M I D D X  1E RE  CONF  PROC NO 33

H E A L Y  T J  ET  AL
EN ER GY  C O S T S  OF AN E L E C T R I C  M A S S  T R A N S I T  S Y S T E M
S T A T U S  R EPO R T  NO ?  OC T 1 1 9 7 2  U N I V E R S I T Y  OF  S A N T A  C L A R A  C A L I F  

H E R N S T I E N ,  YAGOOA , O R M A N
M I N I  COM PUT ERS  I N  NETWORK T R A F F I C  CON TROL  
T R A F F I C  ENG & C O N T P Ö L  MAY 1 9 7 2  VOL 14  NO 1 PP  3 6 - 9

HOCHBRUCK H AND KUMM W
F U L L Y  A U T O M A T IC  D R T V E R I . E S S  T R A I N  O P E R A T I O N .
I F A C  PROC FROM THE  3 R D  C O N G R E S S  VOL  1 BK  1 P A P E R  5 E  
I N S T N  P EC H  E N G I N E E R S  1 9 6 6 .

H U P K E S  G
B U X I  -  OEMANO R E S P O N S I V E  B U S  O P E R A T I O N  I N  THE N E T H E R L A N D S  
T R A F F I C  ENGNG AND CONT VOL  12

HUN TER  B C
CONTROL  S Y S T E M S  F O R  L I F T S  
PT  1 L I F T  J U L Y / A U G  1 9 7 2
PT  2 THE A U T O M A T I C  L I F T  WITHOUT A T T EN D AN T  L I F T  S E P T / O C T  1 9 7 2  
PT  3 M U L T I L t F T  I N S T A L L A T I O N S  L I F T  N O V / O EC  1 9 7 2
PT  4 CONTROL  S Y S T E M S  FOR A U T O M A T I C  L I F T S  L I F T  J A N / F E B / M A R / APR 
PT  5 THROUGH T R I P  T I M F  L I F T  M A Y / J U N E  1 9 7 3

HURFORD N S
P O S I T I V E  T R A I N  I O F N T I F I C A T I O N
R A I L W A Y  S Y S T E M  C O N T R O L S  VOL 6  NO 3  MARCH 1 9 7 5  P P  1 3 - 1 5 * 1 8 - 2 0

I N S T .  E L E C T R I C A L  E N G I N E E R S
C O L L O Q U IU M  ON « T H F  AU T O M A T IO N  OF R A I L W A Y  S Y S T E M S  I N  THE 7 0 « S *  
LONDON 4 . 5 . 1 9 7 3 «  D I G E S T  NO 1 9 7 3 / 1 5
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INST RAILWAY SIGNAL ENGRS
SET 0F 26 BOOKLET S ON RAILWAY SIGNALLING PRACTICE* INCLUOING 
2 - p r i n c i p l e s  er INTERLOCKING 
7 - TYPICAL s i g n a l c o n t r o l c i p c u i t s 
9 - TRACK CIRCUITS 
14 - MULTIPLE a s p e c t s i g n a l l i n g 
19 * 21 - ROUTE CONTROL SYSTEMS 
24 - AUTOMATIC WARNING SYSTEMS
26 - REMOTE CONTROL OE RAILWAY SIGNAL INTERLOCKING 

I TO T EBIFARA H
AUTOMATIC TRAIN OPERATION BY PROGRAM CONTROL 
PROC I MECH E 1964-65 VOL 179 PT 3A PP51-61

IT I  T SHINDO A
A U T O M A T I C  CON TROL  T R A I N  O P E R A T I O N  PT 1 A U T O M A T I C  B R A K I N G  A P P A R A T U S  
TO ST OP  A T R A I N  A t  A P R E S C R I B E D  P O I N T
Q U A R T E R L Y  R EPO R T  R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  J N R  VCL  3 NO 3 
S E P T  1 9 6 2

J A C K S O N  R L
AN E V A L U A T I O N  OE BU S  CONTROL  S Y S T E M S  BY S I M U L A R T I O N  
T R R L  R E P O R T  L R  7 1 ?  1 97 6

KA MBE  T S A R U Y A  T
P E R F O R M A N C E  T E S T  OE AN A U T O M A T IC  T R A I N  P O S I T I O N E D  S T O P  S Y S T E M  
Q U A R T E R L Y  R E P O R T  R A I L W A Y  T E C H N I C A L  R E S E A R C H  I N S T  VOL  12  N 0 3  1 9 7 1  PF 
P P  1 52

KATA O KA N f l V IA
T R A I N  S A F E T Y  CON TR OL  S Y S T E M  FOR S H I N K A N S E N  -  C . E . V .  S Y S T E M  
W IT H  P R I O R I T Y  ON S A F E T Y .
AS M E  T R A N S  OF J O U R N A L  e F  D Y N A M I C  S Y S T E M S  M E A S U R E M E N T S  
AND CONTROL  VOL  9 7  Ne 2 PP  1 4 6 - 1 * 8

K E K O N I U S  0  K A L L B F R G  N 0
THE  A U T O M A T I C  P I L O T  FOR UNDERGROUND T R A I N S  I N  STOCKH OLM 
PROC  I  MECH E 1 9 6 4 - 6 5  VOL 1 7 9  PT 3A P P 7 1 - 7 9

KE NT  G R D U C K I T T  H
D E V E L O P M E N T  OF A U T O M A T I C  T R A I N  O P E R A T I O N  ON LONDON T R A N S P O R T  
PROC  I N S T n  R A I L W A Y  S I G N A L  E N G I N E E R S  1 9 6 4 - 6 5  P P 1 7 1 - 9 8

K O H L E R  E J
C O N T IN U O U S  A U T O M A T I C  T R A I N  CONTROL  ON M U N I C H  S - B A H N  
R A I L W Y  GAZ JA N  1 9 7 4

K U 8 0  S  AND KANAD A S
A U T O M A T I C  T R A I N  O P E R A T I O N  BY  M I N I  C O M P U T E R • 
r a i l  I N T  Ne 9 S E P T  1 9 7 3  P P  9 7 1 - 9 7 5

L A G E R H A U S E N
U S E  OF E L E C T R O N I C  COM PU TERS  FOR D R I V E R L E S S  TRAIN O P E R A T l e N  AN D  
C E N T R A L I S E D  CONTROL  OF THF  T R A F F I C  ON THE L I N E
B U L L E T I N  I RCA C Y B F R N E T I C S  AND E L E C T R O N I C S  ON THE R A I L W A Y S  PP  2 9 5 - 3 C

L A S S  H
uÂECr i  TRACK  T E S T S  a C I  FOP  EU ROP E
i n t  r a i l w a y  j o u r n a l  m a y  1 9 7 0
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2 2 3  

22%

2 2 5

2 2 6

2 2 7

228

2 15 L E N T Z  G
THE AU T O M A T IC  T R A I N  CONTROL  S Y S T E M  E 0 R  THE H I GH  S P E E D  T R A I N S
I N  U SE  ON THE D E U T S C H E  B U D ES B A H N
P A P E R  15 CEC 1 9 6 6  I  EE  CONE PPOC PP 1 0 9 - 1 2 7

239 PIERICK K
m a n -m a Ch InE 
RAIL INT v

HAUNTER E J
DEM AN D  R E S P O N S I V E  T A X I  S Y S T E M S  NEW YO R K  E X P E R I E N C E  
T R A F F I C  Q U AR TE RL Y  J U L Y  197%  VOL  28

M C K I L L O P  A N
A U T O M A I C  O P E R A T I O N  OF R A P I D  T R A N S I T  T R A I N S  
J  I N S T  R A I L  S I G N A L  E N G R S  1 3 - 1 1 - 1 9 7 1  »
A B S T R A C T E D  IN  MODERN R A I L W A Y S  JA N  1 9 7 2  VOL  29  NO 12 P P  2 % - 6  

M E L L I T  B
T R A I N  CONTROL  S Y S T E M S  ! AN I N T E R N A T I O N A L  SU R V EY  
R E P O R T  / U N I V E R S I T Y  OF B I R M I N G H A M

M E L L I T  B
CON TR OL  METHODS  FOR A U T O M A T I C  T R A N S P O R T  I R A I L W A Y  P R A C T I C E )  
P R O C E E D I N G S  OF S Y M P O S I U M  » AD VA NC ED  T R A N S P O R T  I N  B R I T I S H  C I T I E S '  
UR BA N  T R A N S PO R T  R E S E A R C H  GROUP U N I V E R S I T Y  OF  WARWICK  MARCH 197%

ME YENB U R G  K
A U T O M A T I C  T R A I N  O P E R A T I O N  ON S W I S S  F E D E R A L  R A I L W A Y S  
P RO C  I  MECH E 1 9 6 A - 6 5  VOL 1 7 9  PT  3A P P  6 2 - 6 8

MONK N W I N B I G L E R  H S
C O M M U N IC A T IO N  WITH  M O V IN G  T R A I N S  I N  T U N N E L S
I R E  TRAN S  ON V E H I C U L A R  C O M M U N I C A T I O N S  PGVC 7 DEC  1 9 5 6  PP  2 1 - 2 8  

M I D D L E T O N  w D
G E T T I N G  THE BUGS  OUT OF B AR T  
R A I L W A Y  GAZ I N T  J A N  1 9 7 5  P P  1 % - 1 7

M U I L V I J K  D
M O B I L O P H O N E  B U S  T R A F F I C  S U P E R V I S I O N  AND CONTROl  S Y S T E M  
P H I L I P S  TELECOMM R E V  TL (1 1  J U L Y  1 9 6 5

PARKM AN  W T G E L B S T E I N  E E 
R A I L W A Y  C Y B E R N E T I C S
P R O C .  I  EE  CONF.  ON THE CON TROL  A S P E C T S  OF G U I D E D  L AN D  T R A N S PO R T  
LONDON AUG 19 7%  I E F  CONF  P U B L .  NO 1 1 7  P P  1 - 1 1

O G I L V V
R A D A R  eN  THE R A I L W A Y S
E L E C T R O N I C S  ANO POWER 19 6%  1 0 ( 5 1  P P  1%6  

O L I V E R  B W STO NE  0
NEW METHODS FOR THE CONTROL  AND R E G U L A T I O N  OF B U S E S •
I N T  S Y M P .  ON MAN M A C H I N E  S Y S T E M S #
I E E E  CCNF RE CORD  NO 6 9 C 5 8 - M M S  1 9 6 9

O X L E Y  P R
O I A L - A - R I DE DEMAND A C T L A T F D  P U B L I C  T R A N S P O R T  
T R A F F I C  ENGNG AND CÖ NT VOL 12 J U L Y  1 9 7 0

P A R K I N S O N  J A
AUTOMATED SUBWAY T R A I N  O P E R A T I O N  I N  NEW YORK
B U L L E T I N  I R C A  C Y B E R N E T I C S  ANO E L E C T R O N I C S  ON THE R A I L W A Y S
P P  1 5 % - 161
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P I E R I C K  K
m a n -m a c h i n e s y s t e m  in the c o n t r o l of t r a n s p o r t p r o c e s s e s
RAIL INT VOL * Nfl 10 OCT 1 973 PP 1073-1077 

P9PE R
r a i l w a y s a f e t y a n d o p e r a t i n g  p h i l o s o p h y 
PAPER CHANNEL TUNNEL DEPT 9H BOARD
PHILLIPS R S 
ELECTRICAL l i f t s .
PITMANS 1973

SANTOS S M BARNEY G C C
C O L L E C T I O N  OF P A P F R S  THE D E S I G N  E V A L U A T I O N  AND CONTROL  OF L I F T  
S Y S T E M S
1 9 7 4 - 7 5  C O N T R O L S  S Y S T E M S  C EN T R E  U M I S T  M A N C H E S T E R  

S C H M I T Z  H
I N T E G R A T E D  A P P L I C A T I O N  OF I N F O .  T E C H N I Q U E S  ON THE R A I L W A Y S .
4 TH I N T  S Y M P  OF R A I L W A Y  C Y B E R N E T I C S  W ASH IN GT O N.  2 1 - 2 6  A P R I L  
1 9 7 4  R A I L  I N T  NO 2 PP 1 2 5 - 1 2 9  F E B  1 9 7 4

SECON D  I N T E R N A T I O N A L  S Y M P O S I U M  ON THE U SE  OF C Y B E R N E T I C S
o n  t h  r a i l w a y s  ( S e s s i o n  o n  t h e  a u t o m a t i c  c o n t r o l  o f  t r a i n  m o v e m e n t s

B U L L E T I N  I R C A I  C Y B E R N E T I C S  AND E L E C T R O N I C S  ON THE R A I L W A Y S  
VOL  4 NOS 10 S 11 OCT & NOV 1 9 6 7

SCHMITZ W
I N T E G R A T E D  P R O C E S S  CON TRO L  ON THE R A I L W A Y S  
P R O C E E D I N G S  ON G U I D E D  L A N D  T R A N S P O R T  1 9 6 6  P P 4 3 - 4 5

SCHMITZ W
THE P O S S I B I L I T Y  OF  D R I V E R L E S S  T R A I N  O P E R A T I O N  I N  R E L A T I O N  TO 
MODERN S I G N A L L I N G  S Y S T E M
B U L L E T I N  I R C A  C Y B F R N F T I C S  ANO E L E C T R O N I C S  ON THE R A I L W A Y S  P P 1 8 8 - 1  

S H I N O H A R A  H
A T U Ö M A T IC  T R A I N  O P E R A T I O N
B U L L E T I N  I R C A  C Y B E R N E T I C S  AND E L E C T R O N I C S  ON THE R A I L W A Y S  P P 1 8 2 - 1 8 7  

S H I R A I  Y O S H I M I  I S H I H A R A  Y
T E I T O  R A P I C  T R A N S I T  A U T H O R I T I E S  A U T O M A T IC  T R A I N  O P E R A T I O N .
PROC I E E E  5 6  NO 4 PP  6 C 5 - 6 1 5  A P R I L  1 9 6 8 *

S M I T H  V H
V I C T O R I A  L I N E  S I G N A L L I N G  P R I N C I P L E S
P A P E R  I  E E  M E E T I N G  P U B L I C A T I O N  1 6 . 1 1 . 6 6 .  P P 7 6 - 1 0 4  

S T A B L O  J  ANO L E R O Y  J
L A T E S T  D E V E L O P M E N T S  I N  A U T O M A T IC  O R I V I N G  ON THE R A I L W A Y  
S Y S T E M  OF THE P A R I S  T R A N S PO R T  A U T H O R I T Y .
FR EN C H  R A I L W A Y  T E C H N I Q U E S  NO 2 1 9 7 4  P P  5 5 - 6 5

S T E F A N E X  R G 6 W I I  K I E  D F
CONTROL  A S P E C T S  OF A D L AL MflOE T R A N S P O R T A T I O N  S Y S T E M  
I E E E  T RA NS  VOL  V T - 2 2  PP  7 - 1 2  1 9 7 3

STEäART j m
t r a i n  R E G U L A T I O N  S T R A T E G Y .  THF METHOO  
I N T E R S E C T I O N .
P A I L  I N T E R N A T I O N A L  1 6TH  YEA R .  J A N  1 9 7 5

OF A X I A L  ROUTE
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2 * 3  S T O N E  C
S Y S T E M S  F OP AU TO M AT I C  C O N T R O L  ANO M O N I T O R I N G  OF BU S  S E R V I C E S  
T R A F F I C  ENGNG ANC CONT Vfl l  12 DEC  1 9 7 0  P * 1 0

2 * *  S T e N E  0 AND OLlVFP B
a u t o m a t i o n  i n  t h e  c o n t r o l  a n d  r e g u l a t i o n  o f  b u s e s «
X V I I  CeNVEGNC I N T F R N A 2 I O N  AL E  D E L L E  C O M M U N I C A Z 1 0 N I  GENOA 
OCT 1 9 6 9

2 * 5  S T R A K O S C H  G R
V E R T I C A L  TRA NSPOR TA  ION  E L E V A T O R S  AND E S C A L A T O R S  
W I L E Y  N YORK 196 7

2 * 6  T Y L E R  J  F H
S I G N A L L I N G  FOR H IG H S P E E D  T R A I N S
PROC  I N S T  R A I L W A Y  S I G N A L  E N G I N E E R S  1 9 7 0

2 * 7  TA BA K  D
A P P L I C A T I O N  OF MODERN C O N T R O L  AND O P T I M I S A T I O N  T E C H N I Q U E S  TO 
T R A N S P O R T A T I O N  S Y S T E M S  ( C O N S I D E R S  ROAD T R A F F I C »
CONTROL  AND D Y N A M IC  S Y S T E M S  VOL 10  PP 3 * 5 - * 3 *  1 9 7 3

2 * 8  T A P P E R T  H
C H A R T I N G  THE L I M I T S  OF UNMANNED O P E R A T I O N .
R A I L W A Y  G A Z E T T E  I N T  VOL 1 3 1  NO 10  P P  3 7 3 - 3 7 7  OCT  1 9 7 5

2 * 9  T Y L E R  J  F H
S I G N A L L I N G  FOR H IG H S P E E D  T R A I N S »
P R E P R I N T  PROC I N S T N  R A I L W A Y  S I G N A L  E N G I N E E R S  
MODERN  R A I L W A Y S  MARCH 1 9 7 0  P 1 0 6

2 5 0  WARGO M D
A U T O M A T I O N  W I L L  H F L P  U N S C R A M B L E  T ANG LED  T R A F F I C  S Y S T E M S  I N  C I T I E S  
PRODUC T E N G I N E E R I N G  OCT  12 1 9 7 0  PP  1 5 - 1 6

2 5 1  WANTTAG G E
AUTOMATED R A I L W A Y  T R A N S P O R T A T I O N  C O N F I G U R A T I O N S  
G« M «C «  R E S E A R C H  OEPT  R E P O R T  1 0 . 1 . 1 9 7 2

2 5 2  W I N T E R  P
S W I S S  E X P E R I M E N T S  W ITH  TR A C K  TO T R A I N  C O M M U N I C A T I O N .
R A I L W A Y  GA Z E T T E  IN T  VOL  131  NO 10  OCT 1 9 7 5  PP  3 R 7 - 3 S 8
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AiPENDIX 4 Summary of lane change conditions 
for alternate priority

T. - time last vehicle passed through the intersection taken arbitrarily as 
from Lane 1.

Tl - The earliest time after Ta a, lane 1 vehicle may arrive.
T2 — The earliest time after Ta a lane 2 vehicle may arrive.
T3 - Earliest time after Ti a lane 2 vehicle may arrive.
T4 — Earliest time after T2 a lane 1 vehicle may arrive.
Tg - The time the next lane 1 vehicle would arrive at the intersection with 

no delay.
Tc - The time the next lane 2 vehicle would arrive at the intersection with 

no delay.

T1 I 3Intersection 
Time diagrams

T, = T. + f1 A
T2 " TA + C
T, = T, + f + c

3 A
T. = T. + 2c
4 A

case 2 

case 1

f — following working time headway 

c — crossing working time headway

Diagram

The conditions for a change of lane allocation at the intersection may be 
summarised as follows.

C 2
i.e» both vehicles will be delayed in both cases 1 and 2 .
then vehicle B goes first, i.e. the lane allocation of the inter 
section will not change.

ihen the lane allocation will change from 1 to*2, vehicle C will go 
first.
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APPENDIX 6 B ib l io g r a p h y

The bibliography is arranged into sections,each 

of which is labelled by a header indicating its 

contents.Contained in this bibliography are all the 
references encountered in the course of the research.
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THE PERFORMANCE OF JUNCTION CONTROL STRATEGIES IN A HIERARCHICAL URBAN 
TRANSPORT SYSTEM

L. Burrow and T. Thomas 

Introduction

Where the introduction of a new transport system, into the fabric of an 
existing city, is proposed, any scheme requiring bulky civil engineering 
structures will be at a severe disadvantage. There is thus a considerable 
incentive to develop structurally compact layouts, particularly for complex 
components such as stations and junctions.

Several approaches to the design of junction structure are in use. One 
extreme is exemplified by the extravagant cloverleaf layout, in which all 
potential intersections of traffic streams are replaced by a network of 
bridges and merges. At the other extreme lies the on—grade crossing, whose 
satisfactory performance depends upon sophisticated control.
Some potential junction capacity is lost when control is substituted for 
civil engineering. As junctions are usually the capacity determining 
elements of a transport system, there is a need for control polocies that 
allow high flows through the intersection, yet limit delays and the 
distances required for preparatory manoeuvres.

Synchronous (marker following) headway control, at least in its simple form, 
iB not well suited to maximising junction capacity. It uses fixed time- 
headways calculated for maximum speed, and it therefore offers no means of 
realising the reduced headways available at lower speeds. By contrast 
asynchronous control permits a local trade-off between capacity and speed.

Synchronous headway con tro l is  o ften  assoc ia ted  w ith  ce n tra lise d  network 
c o n tro l, w h ile  asynchronous headway con tro l i s  more appropriate in  h ie r 
a rc h ic a l systems. In  these la t te r ,  each m ajor component is  semi—autonomous, 
on ly  se lected  in form ation  being passed up o r down the h ie ra rchy . Autonomy 
g ives p ro te ctio n  against w idespread fa ilu re s  and reduces communication co sts . 
Lo ca l ju n ction  c o n tro lle rs  can form part o f a  h ie ra rch ica l'S y stem .

Prov ided  a ju n ctio n  always presents an open door at i t s  entrances and can 
re ly  upon it s  e x its  being c le a r, i t  can be analysed in  is o la t io n  from the 
re s t o f the network o f which i t  iB  a p a rt. I t  can be trea ted  as a processor 
converting  streams o f input t r a f f ic  (having s p e c if ic  s ta t is t ic s )  in to  output 
stream s. I ts  o o n tro lle r becomes a device designed to  m inim ise Borne cost 
fu n ctio n  using in form ation  e n tire ly  gathered from w ith in  it s  boundaries.

A good cost fu n ctio n , by whioh d iffe re n t c o n tro l schemes oan be r e lia b ly  
compared, w i l l  be complex. I t  should in co rpo ra te  not on ly measures o f d e ity , 
capacity  and ju n ction  a lee, but a lso  take account o f economics, p sycho log ica l 
oomfort e to . I t  would be a ttra c tiv e  to  study the c o n tro l o f a fu ll- tu rn in g  
two-way juno tion  using a r e a lis t ic  cost fu n c tio n : however such a junction  is  
an in te ra c tin g  network o f merges, lin k s  and in te rse c tio n s  and t h is  d ire c t

H r. Burrow and D r. Thomas are members of the In te r U n iv e rs ity  In s t itu te  fc  
Engineering C on tro l, Engineering Department 9 Warwick U n iversity«
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approach is not practicable. The work reported here is concerned with a 
single junction element, viz. an intersection of two traffic streams with no 
provision for turning. The performance of various control strategies have 
been compared, using as cost function, the mean delay experienced by vehicles 
arriving randomly but with a specific mean flow rate.
Headways

The distance headway between two vehicles is taken as the spacing between 
them plus the length of either. For uncoupled vehicles, safety demands that 
headway is maintained above some minimum value that is dependant on speed.
It is convenient and conventional to designate this minimum or emergency 
headway as vehicle length plus the stopping distance, and to calculate the 
latter using a reliably attainable emergency braking rate. The safety 
supervision equipment is assumed to apply emergency braking whenever this 
emergency headway is infringed.

Such an application during a deliberate manoeuvre is most undesirable. 
Vehicle running control is therefore designed to maintain headways above 
their emergency values. A working headway can be designated and used as a 
set point for longitudinal control. Working headway is also likely to be a 
function of speed and can be expressed as emergency headway times a factor. 
The multiplier chosen reflects both the desired safety margin and the 
expectation of headway infringement during particular manoeuvres.

Suppose, for example, that a junction controller wishes to slow down a close 
packed string of vehicles. One technique would be to simultaneously command 
every vehicle to decelerate. Another technique would be to command the 
leading vehicle only to decelerate, and to rely upon feedback headway con
trollers in the following vehicles to slow them down as their working head
ways become infringed. In the latter case, non-infringement of the emergency 
headways depends on the severity of the leader's manoeuvre and on the effi
ciency of the feedback controllers. In the second case the proper definition 
of the working headway is important.
The term 'brick-wall stop' has been applied to a vehiole undergoing an in
finite rate of deceleration. The emergency headway defined above is based 
on the possibility of a brick-wall stop by the vehicle ahead. There has been 
much debate about the acceptability of shortening the emergency headway on 
the grounds that brick wall stops are not possible. A variant of this argu
ment allows the factor relating working to emergency headway'to be less when 
vehicles are following each other, than when they are crossing. Both in
stinct and conventional road transport experience seem to support this dis
tinction. In the work being reported here, the working headway has been 
taken as 1.2 times the emergency headway, but the factor has been nised to 
2.0 for crossing vehicles. The existence of such a distinction has a marked 
effect on junction performance under various strategies.
Time headway is  a more nebulous concept than d istance headway but is  u se fu l 
where p a irs  o f v e h ic le s  are moving at constant speed. In such a case time 
headway is  d istance headway d iv id e d  by the speed. Veh io le flo w  ra te  is ,  in  
tu rn  the re c ip ro ca l o f time headway. Thus fo r  a steady speed, sa tu ra tion  
flow  ra te  can be taken as speed d iv ided  by the working headway. P lo tt in g  
sa tu ra tio n  flow  aga inst speed g ives the fa m ilia r  h i l l  shaped curve which 
id e n t if ie s  the maximum flow  (o r capacity ) and the corresponding 'sa tu ra tio n  
speed' (diagram l) .  Fo r reasons o f performance and flo w  s t a b ilit y  p ra o tio a l 
transport systems have lin e  speeds w e ll above th e ir  sa tu ra tion  speed.



At a specified speed, one can evaluate working time headways for the following 
and crossing cases (f and c respectively). The saturation flow through the 
intersection when both streams travel at this speed will be

P = n____  where n is the mean platoon size passing
(n-1) f + c the intersection from either line.

As n increases from 1, PB increases from l/c towards l/f. The junction 
capacity is the value of Fs when the speed at the crossing point equals the 
saturation speed. Clearly capacity increases with mean platoon size, and any 
good junction control strategy must make use of this property. The ultimate 
junction capacity equals l/f defined at the saturation speed. No junction 
controller can handle an intersection when the sum of the mean input 
flowrates exceeds this figure.

General Features of a Control Strategy

Any junction control scheme must establish a trajectory for each vehicle from 
its entry point to the intersection, and from the intersection to the exit 
point. System constraints such as acceleration limits must be observed. The 
trajectories should collectively minimise the chosen cost function.

The critical features of a trajectory are its intersection arrival time and 
its intersection speed: the primary task of the control algorithm is to 
determine these target values. The times must be such that, given their cor
responding speeds, vehicles do not violate their working headways at the 
intersection. Before these times can be determined, the vehicle order 
through the intersection must be decided. In some algorithms, order and 
timing are chosen by an iterative process.

Individual vehicles are subject to two sorts of delay. They lose time in 
slowing to the intersection speed and speeding up again: they lose further 
time in manoeuvres to avoid conflict with other vehicles. The target inter
section arrival time allows for both delay elements. Lowering the inter
section speed will increase the former element but decrease the latter, 
provided intersection speed exceeds saturation speed, any reduction in it 
will reduce headways and hence the extent of potential vehicular conflicts). 
Thus there will be some optimum speed that minimises total delay. According 
to the algorithm chosen, it may be possible to vary the target speed from 
vehicle to vehicle, or it may be necessary to give the same' value to every 
vehicle.
W ith su ita b ly  soph istica ted  lo n g itu d in a l c o n tro l, and w ith  a 's u ff ic ie n t  man
oeuvre d istan ce , the target tim es and speeds would always be a tta in a b le . In 
the p ra c t ic a l case, the necessary manoeuvres may cause in fringem ents o f 
working headways, re su ltin g  in  a d d itio n a l, veh icle-determ ined, c o n tro l a ctio n . 
Th is  a ctio n  w i l l  always take the form o f b rak ing  and hence re su lt in  yet fu r 
th e r de lays. These are genera lly  qu ite  s lig h t  compared w ith  the de lay 
elements mentioned above, but may a tta in  s ig n ific a n c e  w ith  p a r t ic u la r  
co n tro l a lgorithm s.

As the flow  ra te  through the junction  is  in creased , a con d itio n  w i l l  even
tu a lly  be reached where v eh ic le s  experience in tru s io n  o f th e ir  w orking head
ways even before they reach the junction  c o n tro l boundary. Th is  d e fin es the 
stage av which the junotion  ceases to  behave as an autonomous system component.
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Possible Junction Control Strategies 
'Fixed. Time Cycle*

The intersection is allocated for a set period to each lane in turn. The 
policy creates platoons, the size depending on the flow characteristics and 
limited by the length of the period.

Conventional traffic light control is the simplest manifestation of a fixed 
time cycle. However in this form the intersection is inefficiently used, 
primarily because only the speed of the front vehicle of a platoon, formed at 
the junction, can be optimised. The remaining vehicles pass the junction at 
a speed determined by headway control.

A more sophisticated control ensures that all vehicles pass through the inter
section at an optimal speed. This requires the vehicles to be allocated their 
target times and speeds some distance before the intersection. If only a 
limited distance is available for organisation then headway infringement will 
make it impossible to achieve the optimum targets. Increased delay will 
result; also the ultimate average platoon size will be reduced, lowering the 
saturation flow.

The results obtained demonstrate these effects of headway infringement.
(dia 4) Diagram 2 shows that increasing the period length increases the 
ultimate capacity, but also increases the delay at lower flows.

The results of optimising the junction speed and period length for particular 
flows are shown on diagram 3« Operating points on this curve would be diffi
cult to realise in practice as the performance is very sensitive to parameter 
changes.

Fixed Platoon Size

This alternative policy has many similarities to the fixed time cycle. How
ever the strategy appears particularly inflexible and no studies have been 
carried out.
♦First Come First Served*

The vehicles pass through the intersection in the order with which they 
arrive at a predefined control boundary.

The p latoon  s ize  is  on ly  dependent on the input veh ic le  headway d is tr ib u t io n . 
(The work reported here employs a m odified Po isson a r r iv a l d is tr ib u t io n ;  
average p la toon  s ize  -  1.4 v e h ic le s .)  The u ltim ate  capacity  o f the system is  
there fo re  fix e d . The e ffe c ts  o f headway infringem ent are sm all, as the p la 
toon s ize  is  sm a ll. The curves (diagram 5 ) fo r  the sim u lation  w ith  and w ith
out headway con stra in ts  confirm  th is .  As expected, the system e x h ib its  sm all 
delays fo r  flow s below sa tu ra tion , but sa tu ra tio n  flow  is  low . (d ia  6)

The 'A lte rn a te  P r io r ity *  Scheme

Consideration  o f the performance o f any stra tegy  is  g re a tly  a ss is te d  by know
ledge o f the absolute performance boundary. A stra tegy which goes some way 
to  p rov id in g  such a boundary is  the "a lte rn a te  p r io r ity "  scheme.

The order o f the v e h ic le s  through the in te rse c tio n  is  determ ined from a 
comparison o f two o rdering  p o lic ie s .  ■*
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Case l) a vehicle from Lane 1 is followed by vehicle from Lane 2 
Case 2) a vehicle from Lane 2 is followed by a vehicle from Lane 1

The comparison is carried out using the next vehicle in each lane to be 
allocated an intersection target.

The total delay that would be incurred in each case is compared and the 
policy offering the lowest delay is the one adopted. This determines the 
next vehicle through the junction. The vehicle not allocated a target then 
participates in the next 'contest'.

The condition for the change of lane allocation can be summarised as follows 

At the intersection the following times are defined.

T^ — time last vehicle passed through the intersection taken arbitrarily as 
from Lane 1.

Tl - The earliest time sifter Ta a lane 1 vehicle may arrive.
T2 — The earliest time after Ta a lane 2 vehicle may arrive.
T3 — Earliest time after T], a lane 2 vehicle may arrive.
T4 — Earliest time after T2 a lane 1 vehicle may arrive.
Tg — The time the next lane 1 vehicle would arrive at the intersection with 

no delay.
Tq — The time the next lane 2 vehicle would arrive at the intersection with

no delay. i 1
T.B lanes

i z
Intersection T,C

Time diagrams

f — following working time headway
T2 - TA + o
T^ -  TA + f  + o

T„ -  T , + 2o 
4 A

o — crossing working time headway

Diagram

The con d itio n s fo r  a change o f lane a llo c a t io n  at the in te rse c tio n  may be 
summarised as fo llo w s .

1 i f  Tb  <. Tx

Tc <  T2

i.e. both vehioles will be delayed in both oaseB 1 and 2.
then veh io le  B goes f ir s t ,  i.e *  the  lane a llo c a t io n  o f the in te r 
se ctio n  w i l l  not change.

2 (a )  AS Tb

2

th e n  th e  lan e  a l lo c a t io n  w i l l  change tram 1 t o *2, v e h io le  C w i l l  go
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first.

2(b) if Tc ;> T3
tb -c T1

then lane allocation will stay with lane 1, vehicle

3 M . tb > T4
Tc >■ T3

then a first-come first served system operates.

4 in the situation where

T1 TB T4or _
2 TC T3

The change of lane occurs for a variety of conditions dependent upon the 
actual situation.
The policy forms platoons according to the input flows and hears a close 
resemblance to the operation of a roundabout in conventional traffic.

Results obtained from a simulation without headway infringement demonstrate 
the low delay high ultimate flow characteristic of the scheme, (dia 7)

Conclusion

In an asynchronous headway control system the line capacity is a function 
of line speed. This property, may be used in a particular strategy to 
locally increase the line capacity be reducing the line speed.

If a distinction is drawn between two situations; a vehicle following 
another and a vehicle crossing the path of another, two 'working headways' 
can be defined. This distinction has a fundamental effect on the operation 
of control strategies. In particular a policy favouring the formation of 
platoons allows the intersection to cope with a greater ultimate flow.

However if the control policy starts a manoeuvre at a single- fixed point 
before the intersection, headway infringement will cause vehicles to incur 
extra delay. This extra delay increases with platoon size.

Better performance may be achieved using more complex control strategies 
which enable manoeuvres to start at a point dependent upon individual 
vehicles.
The concep tua lly  sim ple 'f ix e d  tim e oycle* p o lic y  perm its h igh  sa tu ra tion  
flow s to  be achieved but w ith  re la t iv e ly  h igher delays at low flow  ra te s .

Conversely the ' f i r s t —come firs t- s e rv e d ' system takes advantage o f lo c a l 
headway d is tr ib u t io n . T h is  y ie ld s  a low delay but w ith  a low u ltim a te  flow .

The 'a lte rn a te  p r io r it y ' p o lic y  generates p latoons dependent upon the flow  
ra te . T h is  g ives low de lays at low flow  ra te s  but a llow s a h igh  u ltim ate  
flow  ra te  to  be achieved.

otefoMiill

„ 
■*



Appendix I

The simulation parameters used were 

Line speed
Emergency deceleration 
Normal acceleration 
Following headway factor 
Crossing headway factor 
Vehicle length

12.0 m/sec 
2.5 m/sec^ 
1.25 m/sec^ 
1.2 
2.0 

4.0 m

For the simulation including headway constraints control commenced 300 m 
before the intersection.







THE SIMULATION' O; JUNCTIONS IN' AUTOMATIC URBAN TRANSPORT SYSTEMS 
USING INTERACTIVE GRAPHIC DTSPT.AYS
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INTRODUCTION

The continuously rising costs associated with conventional transport 
systems, those of congestion, pollution, the profligate use of energy, etc., 
have stimulated considerable interest in alternative transport systems.

Of particular interest are automated transport systems, which potentially 
offer the flexibility, speed and comfort of private vehicles, combined with 
the public transport benefits of economy and freedom from stress. The faster, 
more predictable, response of automatic controllers, by comparison with the 
human operator, may also give increased capacity and better safety (1,2,3).

Where the introduction of a new transport system into the fabric of an 
existing city is proposed, any scheme requiring bulky civil engineering structures 
will be at a severe disadvantage. Control can be substituted for civil engineer
ing at the expense of some loss of potential system capacity. There is thus 
great incentive to devise sophisticated control schemes, which provide the 
desired service characteristics yet permit compact structures to be designed, 
particularly for stations and junctions.

This paper reports the simulation of junctions in an automatic transport 
system. Automatic transport control, its structure and operational philosophy, 
is intro duced briefly to define the environment within which- the simulation 
studies have been carried out.

Large general simulations are evolutionary in nature. The design of 
simulation structures to allow free development, is examined emphasing the 
need to develop submodels of the system. These can then be introduced into 
the main body of the simulation, after their behaviour has already been 
investigated in some detail.



In this context, the implementation of the junction simulation is 
described highlighting the essential elements.

The data output requirements o f a simulation are defined. For a 
general overview of system operation a moving picture is useful, and the 
implementation and the interactive display used with the simulation is 
described in detail.

Finally, some results are presented showing a few of the programme 
capabilities.

TRANSPORT CONTROL

The control structure for an automatic transport system may be 
centralised or hierarchical. Central control can provide better performance 
by using all the system information. However, communication costs are high 
and failures anywhere in the system can cause extensive disruption.

In a hierarchical structure, control is divided between a number of 
semi-autonomous levels, with only limited information transfer between levels 
The autonomy localises failures and communication costs are reduced.

Control strategies may be classed as either deterministic or stochastic. 
Deterministic control requires complete knowledge of every vehicle's present 
and future positions: it is generally associated with centralised control. 
Stochastic control implies that only a limited knowledge of vehicle positions 
is available: it is particularly applicable in hierarchical control environ
ments. It is also generally associated with 'vehicle following' algorithms 
(in which a vehicle obeys a speed, command whilst on open track and when 
following a vehicle, adjusts its speed to some function of the distance 
to the vehicle in front).

MERGE CONTROL

Merge co n tro l in  d e te rm in is tic  systems is  r e la t iv e ly  s im p le . V eh ic le  

journeys are prearranged so that c o n f lic ts  never a r is e  a t a merge.

In  S tochastic systems, v e h ic le s  a rriv e  a t ju n c tio n s  randomly and are 

nerged under lo c a l co n tro l. As ju n c tio n s are u su a lly  the cap ac ity  lim it in g  

elem ents o f a transport system, there  is  a need to  develop co n tro l p o lic ie s  

tha t a llo w  h igh flow s through the in te rs e c tio n , ye t lim it  de lays and the 

d istan ces requ ired fo r  p reparatory  manoeuvres.

K1 - l -



The simulation reported here has been designed to test and compare 
algorithms for the local control of an isolated junction in a stochastic 
system. Provided a junction always presents unrestricted entrances to incoming 
traffic and can rely upon its exits being clear, it can be studied in isolation 
from the network of which it is a part. Its controller is thus a device for 
minimising some cost function, using information gathered entirely from 
within its boundaries (4, 5, 6,).

SIMULATION

Analytic description of a system as complex as a junction is unlikely 
to be helpful. Even if an accurate mathematical description could be produced, 
the complex highly constrained, non-linear interaction of variables is almost 
certain to defy solution. In this situation simulation can be used to study 
specific situations, with the implicit assumption that the results will 
enable the significant characteristics of the general solution to be identified(7).

A simulation can only model the major system features since intricate 
detail studies are very expensive in programming and running times. These 

important features can frequently be predeveloped using an efficient specific 
program. Further development can then be carried out in the more demanding 
larger scale simulation environment.

This approach to simulation offers several useful characteristics.

Speed - because small programs are easy to develop and quick to run.

Identification - since submodels can be isolated within the main 
body of the problem which in its turn leads to modular simulation 
structures.

Reliability - because a repertoire of expected behaviour patterns is 
built up, leading to a better comprehension of the overall system.

A modular simulation structure allows such development to take place 
in parallel with the main simulation. Provided the structure created 
accurately represents the system and still allows sufficient flexibility 
to incorporate subsequent developments, then the simulation can evolve 
easily as the understanding of the system grows.

K1 -3 -



TUE JUNCTION SIMULATION

The essential components of a junction can be identified as:-

(1) Track
(2) Vehicles
(3) Track-vehicles communications interface
(4) Track-control communications interface
(5) Control system

TRACK

A junction can be specified as a directed graph having links, nodes, 
entrances (traffic generators) and exits (traffic sinks). This general 
description can encompass an arbitrarily complex network. Simulation of 
track uses arrays to hold the geometric details (to enable the layout to 
be reproduced for display purposes) the lengths and speed limits of links 
and their interconnections. A further matrix specifies possible entrance- 
to-exit routes for vehicles traversing the network.

In operation vehicles are created at each entrance according to a 
random generator modelling the desired input stream characteristics.
Each vehicle is allocated an exit and is transferred from link to link 
according to the route matrix until that exit is reached.

VEHICLES

The detail simulation of vehicle dynamics is a study in its own 
right. Junction modelling requires only crude vehicle simulation, incorpora
ting realistic constraints on velocity, acceleration and jerk (rate of 
change of acceleration). Initial studies have assumed the perfect response 
of a vehicle to demanded inputs. This is an unrealistic assumption: it 
is commonly accepted that the tolerance on the practical vehicle specifica
tion is unlikely to be better than 5%. Later simulation studies will have 
to take this into account as performance variations are likely to have a 
very significant effect on control policy decisions.

TRACK-VEHICLE AND TRACK-CONTROL COMMUNICATIONS

The amount of information transfer required for track-vehicle and 
track-control communication is a particularly important parameter in the 
assessment of a control strategy. Information transfer is expensive, 
requiring sophisticated apparatus of high reliability. To conmunicate 
less is cheaper, to communicate more allows a bettef control to be achieved



which nay reduce costs elsewhere in the system. Careful simulation of 
the information transfers enables the balance between these factors to 
be studied.

As communication at points along the track is likely to be used in 
a real system, the simulation models this. Other communication arrangements 
can be readily modelled without a change in the simulation structure.

Within the simulation information transfer points are positioned on 
the track; the passing of a vehicle calls a servicing routine attached to 
that particular point. Such an arrangement is sufficiently flexible to 
allow most strategies to be simulated. It has the particular programming 
advantages that the necessary information transfer can be explicitly 
identified and a subroutine performing a particular control task can 
be used to service any number of communication points.

CONTROL SYSTEM

The control system is a decision making process. The control commands 
dispatched to vehicles are determined knowing the ideal response of the 
system, (i.e. a conceptual model of the system is held in the controller) 
and some past and present information.

Two control systems are required in an automatic transport system- 
One, the normal running control system, the other, an independent safety 
control system. The latter oversees the former and is generally a system 
monitoring the single condition 'is the vehicle separation adequate for 
the speed of the vehicle?'. It is essentially a controller, holding a very 
simplified system model, capable of issuing only one command (e.g. brake 
at the emergency rate to zero velocity).

Autonomy from the normal control system is essential to ensure that 
failures in the normal control system are independant of failures in the 
safety control system, so reducing the likelihood of a joint and possibly 
catastrophic failure.

The normal control system has two paths of action, normal or abnormal. 
The choice depends on a comparison of actual system performance with the 
performance predicted by the conceptual model held by the controller.



Normal control is exerted when the comparison shows no serious deviations.
There are two interdependant decisions involved.

(1) VThat future state is required of the vehicles?
(2) What commands should be transmitted now to achieve that state?

For example, in the vicinity of a merge decisions have to be made 
about:-

(1) The future order of vehicles through a merge.
(2) The longitudinal control action that has to be applied to each 

vehicle, such that they achieve the order efficiently and safely.

Abnormal control results when the comparison reveals a s’erious error.
If the cause of the fault can be identified (e.g. an unusually slow vehicle) 
then the normal controller nay be able to handle the situation without 
major disturbance (effectively by modifying temporarily its conceptual 
system model). If not, then the emergency braking system will have to 
be actuated. The control structure is summarised by diagram (1)

Normal Normal Normal

Communication Control
\

(brakes 6 motor)

• *
\
>
\

Independent Emergency
\

Emergency 
Actuators 

(special brakes)Safety monitor Control

C are fu l s im u la tio n  o f the con tro l s tra te g ie s  is  im portant as there 

is  much d ispute concern ing the c r it e r ia ,  th a t should be adopted, to  ensure 

a high degree o f s a fe ty , concoim itant w ith  a reasonable le v e l o f technology 

and im plem entation c o s t.

Of p a rtic u la r  in te re s t ,  e s p e c ia lly  w ith  systems operating near 

maximum capacity  is  the in te ra c tio n  between the normal and emergency con tro l 

systems. There are co sts  associated  w ith  both, unnecessary'emergency



manoeuvres and undetected unsafe situations. The satisfactory balance 
of these two costs will be an important design criterion in any comprehensive 
junction control policy.

SIMULATION OUTPUT
With any complex simulation the clear and detailed presentation of 
information, such that important phenomena can readily be identified, is 
a formidable task. Output can be classed into three groups:-

(1) Monitoring system operation

The noting of events during the course of the simulation enables 
particular situations to be identified. Such output can be valuable but 
cannot show unforseen events.

(2) Performance data

A detailed simulation generates large quantities of raw data. A 
majority will require processing to condense the important characteristics 
into an intelligible form. A careful design of these output packages 
is required to ensure that valuable information is not lost.

(3) Overview of system operation

For a system as complex as a junction there are considerable problems 
associated with the 'birds-eye view' presentation of the overall system 
operation. Line printer outputs of relevant variables are useful for a 
quantitative survey of situations. They are ineffective for a general 
overview and the detection of subtle operational anomalies.

PICTURE DISPLAY OF SYSTEM OPERATION

A p ic tu re  d isp la y  c le a r ly  presents complex phenomena fo r  which one 

has an in tu it iv e  fe e l,  thus a llow ing  an assessment o f the e ffe ctiv e n ess o f 

a lgorithm s and the d e te c tio n  o f in co rre c t program opera tion .

The s im u la tion  be ing  reported here uses an in te ra c t iv e  moving p ic tu re  

d isp la y  as it s  main com un ica tion  medium. S u ita b ly  coded in form ation  is 
transm itted  in  characte r form from the host computer (Rank Zerox Sigma 5) 

con ta in ing  the s im u la tion , to  the p ic tu re  processor (D ig ita l Systems GT 4o)



via a full duplex, 1200 ba d, asynchronous line. A continuously refreshed 
picture is produced showing the motion of vehicles through the junction.

At any point the display can be stopped and dialogue initiated with 
the host computer enabling a portion of the picture to be magnified to any 
scale. This coupled with the ability to restart the simulation at an earlier 
stage and to step backwards or forwards through the pictures allows close 
detail to be observed.

The Sigma 5 is a process control computer with simultaneous real-time 
Fortran and batch job operation. The simulation described uses about Ilk 
of memory and runs as a Fortran job.

The GT 40 graphics terminal is a continuous refresh type display 
driven by a PDP 11/05 computer. It can display alphanumeric or graphical 
data in any combination. The GT40 can be operated as a general purpose 
computer, either in a stand-alone function, or as a peripheral to a host 
computer. Supplied with the GT40 is a simple, flexible, interpretive 
language, including some graphics functions, similar to BASIC, and called 
FOCAL GT.

PICTURE DISPLAY STRUCTURE

The picture displayed had the following properties:-

(1) The use of the display does not substantially slow down the 
simulation.

(2) Any junction network that can be simulated can also be displayed.
(3) Vehicles moving through the junction are represented by an 

unambiguous symbol, whose length represents the headway (vehicle length 
plus stopping distance) of the vehicle and so varies according to the speed 
of the vehicle.

(4) The picture replacement rate is sufficiently fast to give an 

impression of motion.

I n it ia l attem pts to produce the requ ired  d isp la y  used the FOCAL GT 

graph ics rou tin e s. Data transm itted from the Sigma 5 host was rece ived  by 

a FOCAL GT program and used to redraw the v e h ic le  layou t in  the ju n c tio n .



Accumulation of data simultaneously with drawing the picture output 
was not possible and the resulting display was too slow to be effective.
The best picture rate achieved was 1 picture/8 secs (broken up as 3 secs 
data transmission time, 5 secs, display time). The excessive display time 
is the result of the very slow execution speeds of interpretive languages.
The long data transmission time results from sending the ASCII . character 
form of a decimal number, rather than the more efficient binary form.

These two limitations were avoided in the second display produced. 
Specialist functions performing segments of the display process were written 
in assembly code and added to the FOCAL GT. This approach minimised the 
software written and retained the flexibility of programming in a high 
level language.

The functions correspond to four stages in the creation of a display

(1) The generation, within the GT40, of a data table holding the 
XY co-ordinates (suitably scaled in screen units) of the network to be 
displayed.

(2) The display of individual network links.
(3) The display of vehicles in the junction to produce the moving 

picture.
(4) The setting and resetting of a display clock showing simulation

time.

STATIC NETWORK DISPLAY

The d is p la y  o f the ju n c tio n  layout requ ires a sim ple extension o f 

the network rep resen ta tion  a lready used to describe  the ju n ction  geometry.

As on ly  s tra ig h t vectors can be d isp layed  on the GT40 screen, curved network 

lin k s  have to  be approximated w ith  a se rie s  o f s tra ig h t lin e  segments. These 

segments should be the same length  fo r  any given lin k ,  to f a c ilit a t e  sub

sequent v e h ic le  d is p la y s .

The lin k  id e n tify in g  number, the length o f an in d iv id u a l segments, and 

the XY co -o rd in a tes d e fin in g  the segments are tra n s fe rre d  from the Sigma 5 

to a data ta b le  w ith in  the GT40. The tab le  can then be referenced by a second 

fu n ctio n  to generate a p ic tu re  o f the ju n c tio n  network.



DYNAMIC VEHICLE DISPLAY

The vehicle display routine determines the picture speed. Provided 
all the necessary calculations can be carried out simultaneously with the 
receipt of data, the picture rate is determined by the data transmission 
time.

The design of the vehicle display therefore reduces to minimising the 
data required to define a picture and ensuring that algorithms are sufficiently 
fast.

The least complex symbol that could be used to represent the vehicle 
and its stopping distance is a straight line of variable length. To 
position the line anywhere on the screen requires the XY co-ordinates of each 
end: these;directly transmitted from the Sigma 5 would require four items
of data.

If the vehicle is identified as lying on a particular link of the 
junction network, then the end co-ordinates can be calculated knowing the 
displacement of each end of the vehicle symbol from the origin of the link.
This reduces the number of data items required per symbol to two.

The co-ordinates of a point on a link are calculated according to 
the simple algorithm.

x + r X - x l X g
n L n-1 "J

y + r Y  . - Y "I X g
n L n-1 nJ

integer part of Ip/P]
fractional part of



All the data except D are constants and held in the previously 
generated data table.

To calculate the co-ordinates of each point requires two multi
plications and one division, consequently calculation times can be easily 
kept within the minimum period of 10 m/secs separating the arrival of 
data items.

DATA TRANSMISSION

The maximum binary number that can be transmitted from the Sigma 5 
in a seven bit character is 127. If each of the displacements necessary 
for the XT co-ordinates of the symbol, can be generated using numbers less 
than 127 then only a single character need be transmitted for'each data item.

Three methods of generating the displacement are possible.

(1) The absolute displacement of a point from the link origin can be 
transmitted. As displacements can be considerably greater than 127 screen 
units (approx 1.25 inch) in general, two characters would be required to 
define the point (the two characters represent the high and low order parts 
of a binary number).

(2) Each point is calculated as an increment on the corresponding 
point on the previous picture.. The data increments are likely to be very 
small but rounding errors would accumulate from one picture to the next 
and probably become unacceptably large.

(3) Along a given link, a set of points can be specified by sending 
the spacings of the points and defining the first point as being spaced 
relative to the origin of the link. For a set of points along a link, 
errors can accumulate, but these are not transferred from link to link or 
from one picture to the next. This scheme was implemented in the picture 
display.

COMMUNICATION WITH THE SIGMA 5 H8ST

During the p ic tu re  d isp la y  communication is  m aintained w ith  the Sigma 5. 

Any two characters typed from the keyboard term inates the p ic tu re  d isp la y  

and in it ia t e s  a d ia logue enab ling severa l op tions to  be se lected .

(1) A s p e c ifie d  p o rtio n  o f the network can be, m agnified to  any s e a l* .



The facility is achieved by calculating and transmitting to the GT40 a 
new co-ordinate table holding only the co-ordinates of links actually 
appearing in the display. During the picture display the Sigma 5 sends 
only data referencing the displayed links, all other is suppressed.

To aid the detail study of individual movements the simulation can 
be run in slow notion if required.

(2) During a simulation run, the variables defining the state of 
the simulation are regularly dumped on magnetic tape. This records the 
simulation results for future data processing.

At the request of the operator the simulation can be restarted anywhere 
on the record. This enables simulation work to be carried on from where it 
was left or for any particular event to be studied in depth.

(3) To assist in this study a step operation can be selected. On 
restarting the display the operator retains control. After each picture
he has the options, to step backwards or forwards one picture, to dump data, 
or return to the main dialogue.

(4) To prevent the continuous dumping of variables producing a 
confusing line printer record a message option can be selected and a 
heading transmitted to the line printer.

(5) A tra ce  option  records the progress o f a p a r t ic u la r  v e h ic le  by 

p r in tin g  a l l  the v a ria b le s , p e rta in in g  to the v e h ic le , re g u la rly  to the 

lin e  p r in te r .

SYSTEM PERFORMANCE

A p ic tu re  ra te  o f about 2 p ic tu re s/se c  is  achieved. I f  a p ic tu re  

is  output every one second o f sim ulated time ( i.e .  the d isp la y  is  running 

approxim ately a t a s im u la tion  time tw ice  as fa s t as re a l time) a c le a r 

moving je rky  p ic tu re  is  re a lis e d , however the d isp la y  slows the s im u la tion  

down a c e rta in  amount.

I f  the sim ulated time between each p ic tu re  is  increased so that the 

d isp la y  does no t hold up the s im u la tio n , each p ic tu re  jumps in  unacceptably 

la rg e  steps to  the next p ic tu re . Th is  is  because la rge  changes in  v e h ic le  

p o s itio n  can take p lace  in  the increased sim ulated time between each p ic tu re .



A very approximate estimate of calculation times within the GT40 
suggests that, with a few programming alterations, a picture rate of 
10 pictures/sec could be achieved, provided a fast enough data link was 
available. Faster than this may result in timing problems, with the GT40 
being unable to keep up with continuous data transmission.

Sot'S RESULTS
Some of the features of the program are demonstrated in the results 

shown below:-

The junction simulated is a one way no-turning intersection.
Continuous communication channels between vehicles and between vehicle and 
controller are assumed to exist.

Three strategies have been simulated. Each determines the order of 
vehicles through the intersection in a different manner. In each, there 
is the same penalty attached to changing the lane allocation of the inter
section. In all of the strategies, vehicles are commanded to follow a 
velocity profile designed to bring them to the intersection at the appointed 
times (which are determined by the vehicle order) and with a set speed.

Diagram (3) shows the flow delay characteristics of each of the 
policies.

i if

(1) Th is  is  a first-com e  firs t-s e rv e d  a lgorithm . The order o f 

v e h ic le s  through the in te rse c tio n  is  determ ined by the order v e h ic le s  pass 
a co n tro l boundary in  fro n t o f the in te rs e c tio n . Note the low delay and 

low sa tu ra tio n  flo w  o f the scheme.

(2) In  th is  p o lic y  the in te rse c tio n  is  a llo ca te d  to each lane in

tu rn  fo r  a se t p e rio d . The method is  s im ila r  to  fix e d  period  t r a f f ic  lig h ts .  

Note the h igher de lays invo lved and the h igh u ltim a te  flow  achieved.

(3) Th is  is  a more complex p o lic y  designed to reduce de lays. A  

p a r t ic u la r  lane ho ld s p r io r it y  a t the in te rs e c tio n  u n t il a n a tu ra l break 

appears in  the incom ing stream. The p r io r ity  then sw itches to  the o th e r lane. 

T h is  scheme operates as a first-com e  firs t- s e rv e d  system a t low flow  ra tes 

and o ffe rs  low er de lays than the fix e d  time c y c le  system a t h igh  flo w



CONCLUSIONS

Although only a limited amount of work has been carried out on this 
simulation, the picture display has nora than proved its worth. Its main 
advantage lies in being able to readily tie up particular phenomena with 
line printer data output. This is particularly useful in program develop
ment where considerable time can be saved as .a result.
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UNITBItSITY OF WARHICi:

Design of Control Systems in Automated. Transport Systems

I.. D. Burrow,m .So.,
Urban r a d >.
Group

Control of automated trans-crt systems involves many interacting 

operations. People have to bo informed, guided and regulated. Vehicles 

have to bo manoeuvred, directed o.id dispatched. Failures and faults 

must bo identified and rootified. Safety must be ensured.

Many of those aspects have been extensively studied, often with 

optimisation in mind, yet, when extended to whole system operations, 

most schemes do not perform well. Either necessary vehicle manoeuvres 

cannot be easily performed, or the system response to fault conditions 

is inadequate, or unstable modes of operation appear.

Operating schemes are required which will onable the system to 

operate well under all practical conditions. In complex systoms, 
governed by cost functions embracing qualitative and quantitative 

economic, social and technical factors, design policies must attempt 

to find tho best operating regions.
To aim fo r  the g lo b a l op tim isa tion  o f suoh in tr ic a te  Bystoms is  

u n re a lis t ic .  Even in  tho ovont tha t an accurate mathematical descrip 

t io n  o f tho cost fu n ctio n  and system oould bo produoed, tho complex, 

h ig h ly  constra ined, non -lin ea r in te ra c tio n  o f v a ria b le s  is  ce rta in  to  

dofy s o lu tio n . At best on ly lo c a l optima can bo found and by ca re fu l 

doBign, combined to  form an o v e ra ll ’ good* system.

The b e n e fits  whioh acoruo from a Ju d ic iou s design o f tho oon tro l 

stru ctu re  fa r  outweigh thoso tha t oan bo achieved by optim isation  at

a d e ta ile d  le v e l



This paper will consider a systematic approach to the design pro

cess which may help move offectivo control systems to be evolved.
Good reliability and high safety standards are fundamental factors 

in any transport control schomo and must figure in any cost function 

relating to the operation of the whole system. The papor will survey 

the response of a transport scheme to failures, outlining the require

ments for a 'fail soft' system and discuss tho use of hierarchical 

structures to achieve such a characteristic.

Optimisation

The process of optimisation is often presented as a highly exact 

process. Yet, if optimisation is taken in tho general Bcnso of meaning, 

the systematic approach to a situation, with a view to obtaining tho 

host possible outcome, using what previous knowledge is available, then 

only in a few situations is this true.
To gather tho information necessary to dooide upon an improvement 

takes time. Better foreoasts require more time. Optimisation processes 

cannot work foster than the systems they are trying to improve. Consq- 

qucntly tho evolution of good transport schemos may take several 

decados, whereas the on line optimisation of parameters in a vohiolo 

controller may take only seconds.

Design

The crea tion  o f a ’ good' system is  part o f an op tim isa tion  proooss. 

Tho designer, by assem bling together h is  p rev ious experience, attempts 

to  create a new system whose p rope rtie s more c lo s e ly  approach the 

design s p e c ific a t io n .

An important part o f  the design process is  tho aoourote s p e c ific a 

t io n  o f the design environment or a d e f in it io n  o f a l l  the in flu en ce s 

on tho systom o f in te re s t . These in clude  d istu rbances fo r  whioh the 

design must oater, o r it o r ia ,  fix e d  in fo rm ation  and measures o f p e rfo r-
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There are few direct design precedents for automatic transport 

control systems. The feedback link labelled 'previous experience' is

weak. Nevertheless a good design process will make the maximum use 

possible of what transferable experience exists.

Designs can bo evolved at throe lovols

1) S tructu re

2) Subsystem

3) Param eter or equipment

S tru c tu ra l lo v o l of  design

A s/stem can bo considered as a s tru ctu re  o f intoroonneoted sub- 

syrterns. P o te n t ia lly  ovory subsystem is  i t s e l f  a system. The o r ig in a l 

system ia  a subsystem in  a moro general systom. The design problom is  

lim ite d  by the dosignor. A co n tro l onginocr w i l l  tako as fix e d  the 

transport p o lio y  determ ining the p a rt ic u la r  n iche h ie  systom w il l  f i l l .  

S im ila r ly  ho w i l l  tako as fix e d  tho range o f components ava ila b le  fo r 

use in  h is  c ir c u it s .  E ffe c t iv e ly  an upper and lower boundary to  the 

problom has been p re scrib ed .



h

A system i B  typically much more complicated than a man can overview, 
only a piece at a time can be considered and so a set of subsystems has 
to be definod. The most general level of design dofinos the system 
organisation. It specifies the most appropriate subsystems and struc
ture to achieve the desired 'whole' system properties.

The choice of subsystems in a system is determined by several fac
tors. Some subsystems arc immediately apparent as thoy correspond to 
necessary functional units in the system, junction controllers, signalling 
systems, emergency backup systems are all possible units in a transport 
control structure.

The choice of si bsystems may reflect a degree of complexity, 
related to the ability of one or more pooplo to fully understand it 
within a given time. A unit too largo to be understood is unlikely to 
perform woll and when it fails will bo time-consuming to repair and 
probably too big to replace.

A subsystem may be chosen bcoauso it corresponds closely to an 
already developed soheme, so reducing tho design effort roquired.

The choice of a structure for a system is less obvious. Some work 
exists on tho theory of structures (refs. 1, 2). However generally the 
choice of an appropriate structure can only bo made on tho basis of com
parison with othor systems exhibiting dcsirablo properties. Direct 
solutions may not bo found but the com parison may co n s titu te  some 
demonstration of f e a s ib ilit y .

L ik e ly  co n tro l stru ctu re s fo r  an autom atic transport system are 

e ith e r ce n tra lised  o r h ie ra rc h ic a l (R e f. 3)

In ce n tra lise d  oon tro l s tru c tu re s , a o o n tra l de c is io n  making u n it 

con tro ls  a l l  the p e rip h e ra l subsystems. In form ation  from the subsystems

passes to  the o o n tra l o ff ic e  and is  a v a ila b le  fo r  use in  any othor sub-

'
system.

2 )

in

-  4 -



Communication costs are high and. the centralization of control 
makes the system very vuncrahle to faults,

Well understood centralized control structures can probably offer 

a better level of control by using all the system information. However 
the complexity of interactions between subsystems makes the system less 

easy to understand.

This has two effeots:
1) The system bocomcs more prono to software faults. An incomplete 

specification of subsystem states is more likely and may lead to 

undefined unsafe conditions. The greater number of subsystem 

states makes fault monitoring and rectification more difficult 

and costly.

2) The greater number of feodback loops tends to increase the chance 
of unstable system responses. This foroos lower gains to be used 

and results in a poorer control action.

In a hierarchical structure control is divided between a number 
of semi—autonomous levels. Hierarchy decouples elements of a system. 
Each element in the tree is an autonomously functioning Bubsyotem using 
only limitod strategic information from tho level above. Frequently 
this information can bo transmitted discontinuously. Communication is 
in two directions; A command or parameter down tho hierarchy specifying 
what should happen. A foodback or check up tho hierarchy saying what 
is happening*

Hierarchical organisation reduces the number of unwonted foodback 
loops in the system, so allowing the interaction of subsystems to be 
more confidently predicted.

Hierarchies show a graduation in properties which are summarised 
in the
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A hierarchy can ho considered as a filter, each layer boing con
cerned only with a rango of frequencies. Together the subsystems cater 
for the entire range of frequencies apparent in the system.
Subsystems Level of Design

To a subsystem tho rest of the system is its environment. Where 
the subsystem is designed in isolation, as often will be tho case, its 
interface or connections with tho outer world have to bo accurately 
specified, otherwise incompatibilities will ariso.

The dosigner of a subsystem wants to minimise his own particular 
cost function. This will generally be achicvod at the expense of the 
outside system. Tho balancing component from the outside must be made 

visible to tho subsystem so that an overall balance can be achieved, 
i.e. tho subsystems should bo given boundary conditions suitable for 
approximating tho total optimisation.

Tho use of simulation is ofton an appropriate aid to the design 

of a subsystem. Simulation is a moans of modelling approximately the 

important systom interactions, at an aeoolerated time scale* By in

vestigating a largo number of speoifio situations a more complete 

picture of tho process is built up, hopefully onabling bettor solutions 

to be found.

Computer simulations have boon extensively usod in the analysis 

of transport control systems, particularly for notwork design studies, 

vohiole management and operation strategies (refs. 4, 5» 6 give a 
selection of representative work in this field).

_____ - 6 -
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Parameter Optimisation
At tho level of the inrtorontion v»i-tK the w'lrld, parameter

optimisation can frequently bo approached mathematically, although in 
transport control the many parameter constraints and non linearities 
prevent general solutions from being found and recourse has to be made 
to iterative techniques.

In some circumstances an optimal solution to tho problem can be 
found at tho dosign stage and incorporated into the system hardware. 
Alternatively the designer can structure tho hardware in such a way as 
to allow optimisation to take place 'on line*. This may lead to a 
better control but it the cost of added complexity of equipment, measure
ments and communications.

Dynamio optimal controllers are often proposed for vehicle position 
and speed controllers whilst merge control algorithms may well bo 
optimised at the design stage. (Rofs. 7, 8, 9)
'Failsoft' transport control

In tho  dosign o f l.xgo  complex transport ¿jyotono the q u a lity  o f 

se rv ice  is  s tro n g ly  in flu en ced  by the r e l ia b il it y  o f tho system and it s  

a b ilit y  to  cope w ith  fa u lts  as they occu r. R e lia b ilit y  o f in d iv id u a l 

components can be assured up to  some lim it ,  fa ilu re s  w il l however 

s t i l l  occur. I t  has been estim ated tha t g iven reasonable standards o f 

r e l ia b il it y  fo r  a medium s ize d  auto ta x i systom a fa ilu re  oan be 

expected somewhere every oouple o f m inutoB. A system which is  very 

sen s itiv e  to  fa u lts  is  going to  be at a sovore disadvantage. 'F a il 

s o ft ' systems can bo de fined  as systems whioh, as fa ilu re s  occur, 

p rog ress ive ly  booome degraded in  performance, ra th e r than oo llapso  

com pletely. The dosign o f a oon tro l s tru ctu re  to  have th is  so rt o f 

property Is  a 'b la ck  a r t ' fo r  whioh no system atic approach appears to  

have been developed.

7



ConclusBy the systematic application of the standard toahniques of 
reliability, standby and redundancy, to all levels of the design 
process, to the structure, subsystems and equipment, it is hoped that 
the effects of a fault can bo minimised, its zono of influence circum
scribed and its duration minimised, so leading towards the creation of 
a 'failsoft' system.

Failures of a transport system cause disruption of service and 
often create unsafe situations. To ensure tlio safo running of a system 
requires two control systems. One tho normal running control, the other 
an independent safety control system. The latter ovorsess the former 
and is generally a simple controller activated by the single condition 
'is the vehicle separation inadequate for the speed of the vehicle?' 
and issuing one command (e.g. brake at an emergency rate to zero 
velocity). The safety control system must be autonomous from the normal 
oontrol Bystem to ensure that failures in normal control are independent 
of failures in the safety control system* thus redwing the likelihood 
of a joint and possibly catastrophic failure.

The disruption caused by a fault is particularly dependent upon 
the severity of the fault. This Boverity depends on the area of the 
system affected, the subsequent propogation of the fault through the 
system and the time duration of the fault.

All theso factors are made less significant by designing subsystems 
to operate as independently as possible over localised regions of the 
track.

This independence, necessary also for backup safety systems is an 

intrinsic property of hierarchical structures. Hierarchy allows 
structures to expand or oontraot locally without influencing the 
remainder of the system. The modular nature of such systems reduces 

maintenance and repair times by simplifying the detection of faults and

their repair.
-  8 -
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Conclusions
Tho design of a complex transport oontrol system must integrate 

all tho facets of a transport scheme. Good system availability, safety 
and fail soft characteristics aro especially difficult to design into 
a system yet are fundamental to its operation.

Hierarchical structures are more roadily broken down and under
stood. They appear to offer characteristics which allow effective 
designs to bo evolved. Other structures may allow better results to 
be achievod but probably at tho cost of much groator design effort.
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If/IHODUCnON

Automation is increasingly being applied to large 
coup lex systems. Most of these systems are expensive 
to desigi, build and operate, their potential 
benefits are higi but so also is the cost of their 
faulty ruining. Faults inevitably occur, more 
conplex systems have correspondingly more faults. 
Contemporary automated systems' are conplex, they 
lack flexibility and frequently use computers which 
are disabled by almost any fault. As a result they 
usually experience severe reliability problems. (1)

faults occur is progressively substituted for the 
failed equipment. The original system performance is 
maintained until at some point the spare capacity is 
exhausted, whereupon the system fails completely. Fail 
operational desigi assumes a very higi cost for any 
partial or whole system failure. Such desigi is 
relevant where repair is difficult or impossible and 
total system operation is vital. Space or military 
applications are typical examples. However, where such 
desigi criteria are not important the ’fail operational 
desigi philosophy usually results in unnecessarily 
expensive schemes. (3)

Reliability is an important parameter in the desigi 
of all systems. Althougn the use of increased 
complexity in a system may allow potentially higher 
performance levels, it may also prevent them being 
attained if the greater complexity leads to a 
reduction in system reliability. To maximise the 
operational effectiveness of the system the balance 
of system performance against system cost must take 
account of the effects of unreliability.

The Perfectionist Approach

The simplest and most commonly enployed tactic for 
improving system reliability is the use of more 
reliable components, combined with desigi and 
operating techniques that minimise the failure rates 
of components in active use. This requires components 
that are better designed and manufactured, the use 
of derating, 'bum in', and planned replacement, and 
the avoidance of novel unproven technology. As 
completely reliable components do not exist failures 
still occur. By reducing the system downtime 
resulting from failures, availability and hence the 
operational effectiveness of the system can be 
improved. This requires the use of faster more 
expensive maintainance and repair techniques e.g. 
modular construction, online monitoring etc.
Implicit in this perfectionist approach is the 
assumption that failures are costly compared with the 
price of the improved components, more conservative 
desigi practice and better repair provision.

Techniques for the assessment of system reliability 
from the knowledge of the failure characteristics of 
components are widely covered in the literature. 
Similarly the reliability of networks, both maintained 
and not maintained, is extensively explored, for a wide 
variety of reliability indexes. (2)
The Fault Tolerant Approach

Further improvements to the operational effectiveness 
of a system can only be achieved by reducing the 
costs of failures when they occur. Fault tolerant 
desigi conveniently splits into

1) 'Fail operational'design
2) 'Fail Soft' desigi

Both techniques are convemed with the provision of 
flexibility in a system to make it less sensitive to 
the consequences of a failure. In both errors are 
detected and alternative strategies deployed which 
reduce system disruption resulting from faults.

J*chnix»'* Incorporates Into the system at strategic points, spare equipment, which, as

Fail soft. In many cases 'fail soft' engineering is a 
more appropriate philosophy. 'Fail soft' is a quality 
of planned graceful system degradation following a 
failure. Systems, so designed, attenuate the conse
quences of a failure, not necessarily by preventing a 
fault affecting system performance but by effecting an 
optimal compromise between the degradation of system 
performance and the provision of extra 'fault proofing' 
equipment. There has been much discussion of fail 
operational techniques. The fail soft option has 
however been neglected, although cne or two recent 
papers acknowledge its importance. In this paper some 
aspects of the fail soft problem are examined. This 
may help designers to more accurately specify their 
reliability problems and assist them to translate an 
overall system characteristic of 'fail soft' into 
specific requirements for subsystems.

SYSTEM ASPECTS OF FAIL SOFT DESIGN

A system is a profitable enterprise created and run by 
an operator and providing a service to the user.

Surplus = value of the system to the user - cost of 
the system to the user.
Effective design and operation of the system maximises 
this surplus, i.e. maximises the system performance. 
The cost of a failure is disruption which is the loss 
resulting from a fault,(the increased costs incurred 
by the operator e.g. repair and replacement costs and 
the decreased system value to the user e.g. the de- 
gredaticn of service, resulting from the fault).

Disruption = 
Extent “ 
Intensity
IXiraticn

function (intensity, extent, duration) 
area of the system affected by a fault 
the importance of the erroneous inforvi- 
tion to the affected subsystems 
the time taken to restore the system to 
full operational effectiveness.

Fail soft desigi is based an this equation. At each 
stage in the design and operation of the system 
strategies and equipment are set up so as to balance 
the cost of precautions against the potential dis
ruption of an anticipated fault. A designer can only 
explicitly design for faults he has anticipated. His 
ability to forsee and evaluate their consequences 
depends an the carplexity of the system. He will not 
be able to forecast all faults and consequently will 
not devise a comprehensive set of contingency plans. 
Action to compensate for unexpected faults can only be 
taken at the time of failure. This on line 'design' 
action is carried out by the system operator involved 
with the fault. He is a part of the system and can be 
considered as a flexible, unspecialised, decision 
element. In many systems his role is the most



152

important weapon controlling the disruption resulting
from a system failure.
Methods for dealing with anticipated faults are 
introduced into the system design from the outset. Each 
strategy can be considered as the optimal use of a 
new system. This new system being the original system 
now changed by having a faulty conponent. Three 
running states can be identified.

Normal - the system is operating along its most 
profitable, maximum performance trajectory through 
the system state space; a path previously anticipated 
by the designer.

Faulty - the system is operating below its 
maximum performance trajectory, but on a trajectory 
optimal for the system with a failed conponent. Again 
the path is previously anticipated by the desigier.

Extraordinary - the system is being guided along 
a path in the system state space by real time design 
decisions made by the system operator. He covers 
for all unanticipated situations. His success depends 
on his ability, knowledge (training) and whatever 
functions of the system are available. He takes 
direct control of these functions via man-machine 
interfaces, whose good design is essential for 
effective operator control. Notwithstanding its 
importance, the operator and his interface will not 
be further discussed. Thus throughout its life the 
system can be envisaged as following the best 
trajectory available to it. At any particular time 
the system will be running at a certain performance.

Performance. = actual rate of profit generation 
maximum rate of profit generation

Faults reduce the system performance, an effect 
which is shown schematically on diagram 1. The 
shaded area corresponds to the disruption caused by 
the fault. Fail soft strategies seek to minimise this 
area. The quality of gradual degradation is achieved 
by minimising sudden losses in performance resulting 
from failures and by suitable design multiple faults 
cause only a proportionate loss of performance.

THE EFFECT OF SYSTEM STRUCTURE CN DISRUPTION

Timescales

Associated with any system is a range of timescales, 
a range of signal frequencies that the system will 
respond to. The measurement and control actions, at 
the systems interface with its environment, generate 
■the raw signals containing all these system 
frequencies. A system conprises functional subsystems, 
local concentrations of activity, which process input 
information and generate outputs accordingly.
Associated with these processors is the property of 
'decision time' or processor speed. This is related 
to the maximum bandwidth (or range of frequencies) the 
processor can handle (analogue processes) or to the 
conputing time required to process a sanple of input 
information (digital processes). Thus with each 
function in a system can be associated a minimum time 
or maximum frequency that it can respond to. Oily 
information changing slower than the processor limit 
can be accepted from the input or transmitted from 
the output. There will be at minimun a decision 
time delay before a change at an input affects an 
output.

The Spread of faulty Information
The erroneous information generated by a failure will 
propagate througn the system along any available 
information route. Hast of these routes will be the 
formal' channels cotiprising the information structure 

of the system. The remainder will be the 'informal' 
routes resulting, not from desigi requirements but 
rrotn a casual interaction of system conponents that 
has no part in named naming. For the predictable 

8y8ten®» informal routee nusc beidentified and duly considered. Often for successful 
control they must be eliminated.

Disruption

The disruption resulting from a fault is a function of
Intensity of the fault
Extent of the fault
Duration of the fault (Time to restore normal 

service)

Intensity. The intensity of a fault is the loss in 
value to the system of the informat icn output by the 
failed function. Information transmitted from any 
point in the system contributes some degree to the 
system performance. During normal running this 
contribution is a maximum. Errors in the information 
will reduce the value of this contribution. The 
worst case error will have the lowest possible system 
value. This worst case error will usually cause a 
lcwer system performance than not having the 
information at all i.e. the erroneous information 
could be a distint disadvantage to the system 
performance. The maximum intensity of a fault 
corresponds to this worst case error.

To reduce a fault intensity irrplies a reduction in the 
importance of a function, and hence the worst case 
error. This migit be achieved by simplification and 
therefore a corresponding reduction in system 
performance or by a more widespread use of monitoring 
to partition the system into smaller sections whose 
individual importance is thus reduced.

Extent. The extent of a failure is a measure of the 
area of a system influenced by a fault. It is the set 
of subsystems to which a failed component can send 
erroneous information to. The extent of a fault is 
related to the autonomy of the finetion. The higner 
the autonomy the fewer the interconnections and the 
smaller the extent of the fault. Increasing autonomy 
implies more local measurement and control, the 
transmission only of selected information, the receipt 
only of strategic commands and the use of one-way 
conruni cat ions, i.e. openloop operations. All of 
these policies reduce the potential performance of a 
system but improve their resistance to faults and 
therefore, may, with good designs improve, the 
operational performance of the system.

Time to restore service. Systems intended to have a 
useful life long with respect to the time between 
failures must be repaired. The disruption caused by a 
fault is dependent on its duration. However, changes 
on the system output cannot be faster than the signal 
producing that change and consequently information 
output by a rate limited function, even if it is faulty 
will not change the system faster than that limit will 
allcw. This suggests that it is not the absolute 
duration of the fault which is important but rather 
the duration of the fault in units of the failed 
processor decision time (a non dimensional measure) 
i.e. the effects on system performance of a fault in 
a high speed processor will become noticeable more 
rapidly than if the processor were a low speed fmcticn. 
(see dia 2 )

Repair times however depend on the complexity of the 
function involved. Thus for functions of similar 
complexity repairs are likely to take about the same 
time. As a result a failed high speed function of 
similar complexity to a failed low speed system will 
cause a proportionately greater disnption.
(see dia 3,* )
Pita the argument it is apparent that measures which 
control disruption by minimising fault duration ft pee 
are more effective on faster Auctions.
The Effect of Delay

Each Ancticnal unit in a system introduces delays 
into a signal flow. The lower the delay a signal 
experiences the more up to- date it will be and the 
more value it will have for control. The om./enm
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important weapon controlling the disruption resulting 
from a system failure.
Methods for dealing with anticipated faults are 
introduced into the system design from the outset. Each 
strategy can be considered as the optimal use of a 
new system. This new system being the original system 
now changed by having a faulty corrponent. Three 
running states can be identified.

Normal - the system is operating along its most 
profitable, maximum performance trajectory through 
the system state space; a path previously anticipated 
by the designer.

Faulty - the system is operating below its 
maximum performance trajectory, but on a trajectory 
optimal for the system with a failed corponent. Again 
the path is previously anticipated by the designer.

Extraordinary - the system is being guided along 
a path in the system state space by real time desigi 
decisions made by the system operator. He covers 
for all unanticipated situations. His success depends 
on his ability, knowledge (training) and whatever 
functions of the system are available. He takes 
direct control of these functions via man-machine 
interfaces, whose good desigi is essential for 
effective operator control. Notwithstanding its 
importance, the operator and his interface will not 
be further discussed. Thus throughout its life the 
system can be envisaged as following the best 
trajectory available to it. At any particular time 
the system will be ruining at a certain performance.

Disruption

The disruption resulting from a fault is a function of
Intensity of the fault
Extent of the fault
Duration of the fault (Time to restore normal 

service )

Intensity. The intensity of a fault is the loss in 
value to the system of the information output by the 
failed function. Information transmitted from any 
point in the system contributes some degree to the 
system performance. During normal running this 
contribution is a maximum. Errors in the information 
will reduce the value of this contribution. The 
worst case error will have the lowest possible system 
value. This worst case error will usually cause a 
lower system performance than not having the 
information at all i.e. the erroneous information 
could be a distint disadvantage to the system 
performance. The maximum intensity of a fault 
corresponds to this worst case error.

To reduce a fault intensity implies a reduction in the 
importance of a function, and hence the worst case 
error. This migit be achieved by simplification and 
therefore a corresponding reduction in system 
performance or by a more widespread use of monitoring 
to partition the system into smaller sections whose 
individual importance is thus reduced.

Performance. = actual rate of profit generation 
maximum rate of profit generation

Faults reduce the system performance, an effect 
which is shown schematically on diagram 1. The 
shaded area corresponds to the disruption caused by 
the fault. Fail soft strategies seek to minimise this 
area. The quality of gradual degredation is achieved 
by minimising sudden losses in performance resulting 
from failures and by suitable desigi multiple faults 
cause only a proportionate loss of performance.

THE EFFECT OF SYSTEM STRUCTURE ON DISRUPTION

Timescales

Extent. The extent of a failure is a measure of the 
area of a system influenced by a fault. It is the set 
of subsystems to which a failed conpcnent can send 
erroneous information to. The extent of a fault is 
related to the autonony of the function. The higier 
the autonony the fewer the interconnections and the 
smaller the extent of the fault. Increasing autonomy 
inplies more local measurement and control, the 
transmission only of selected information, the receipt 
only of strategic conmands and the use of one-way 
coimaiications, i.e. openloop operations. All of 
these policies reduce the potential performance of a 
system but inprove their resistance to faults and 
therefore, may, with good desigis inprove, the 
operational performance of the system.

Associated with any system is a range of timescales, 
a range of sigial frequencies that the system will 
respond to. The measurement and control actions, at 
the systems interface with its environment, generate 
-the raw signals containing all these system 
frequencies. A system comprises functional subsystems, 
local concentrations of activity, which process input 
information and generate outputs accordingly.
Associated with these processors is the property of 
'decision time' or processor speed. This is related 
to the maximum bandwidth (or range of frequencies) the 
processor can handle (analogue processes) or to the 
conputing time required to process a sanple of input 
information (digital processes). Thus with each 
function in a system can be associated a mininun time 
or maximum frequency that it can respond to. Only 
information changing slower than the processor limit 
can be accepted from the input or transmitted from 
the output. There will be at mininun a decision 
time delay before a change at an input affects an 
output.

The Spread of faulty Information
Ihe erroneous information generated by a failure will 
propagate througi the system along any available 
information route. Host of these routes will be the 
rorraal channels conprising the information structure 

of the system. The remainder will be the 'informal' 
routes resulting, not from desigi requirements but 
m w i  a casual interaction of system oonponents that 

!?? P“ * 1x1 nora“ l naming. For the predictable 
ÎS!5îïiîîLof ®y8tenB» informal routes east beidentified and duly considered. Often for successful 
control they suit be eliminated.

Time to restore service. Systems intended to have a 
useful life long with respect to the time between 
failures must be repaired. The disruption caused by a 
fault is dependent on its duration. However, changes 
on the system output cannot be faster than the sigial 
producing that change and consequently information 
output by a rate limited function, even if it is faulty 
will not change the system faster than that limit will 
allcw. This suggests that it is not the absolute 
duration of the fault which is important but rather 
the duration of the fault in units of the failed 
processor decision time (a non dimensional measure) 
i.e. the effects on system performance of a fault in 
a high speed processor will become noticeable more 
rapidly than if the processor were a low speed Auction, 
(see dia 2 )

Repair times however depend on the conplexity of the 
Anction involved. Thus for Auctions of similar 
conplexity repairs are likely to take about the same 
time. As a result a failed high speed Anction of 
similar conplexity to a failed low speed system will 
cause a proportionately greater disrvption.
(see dia 3,* )
F*om the arguaent it is apparent that measures ttxich 
control disruption by minimising fault duration times 
are more effective on faster Auctions.
The Effect of Delay

Each Ancticnal m i t  in a system introduces delays 
into a signal flow. The lower the delay a signal 
experiences the more up to* date it will be and the 
more value it will have for oontrol. The aor/srse



153

argument suggests that the greater the delay given 
to erroneous information the lower the effect it will, 
have on the system. This suggests a means of 
controlling disruption. For example system performance 
can frequently be traded for system speed. If the 
consequences of a failure can be reduced by slowing 
the system, some benefit may accrue. Also if fault 
control strategies can be made to operate faster 
than the forecasted error propagating mechanisms 
then sore form of forward error control is possible.
In the general case functions should be designed 
to operate at the slowest speed consistant with them 
fulfilling their desired role.

Potential Performance, Disruption and operational
Effectiveness

To achieve the highest potential performance for a 
system each item of information is used to its 
maximum value, i.e. the information is believed, and 
used as fast as possible and everywhere possible. 
However, if the information is in error, then the 
potential disruption is also a maximum, and the 
performance then achieved may well be lcwer than if 
the information had not been used. Thus increased 
system conplexity, aimed at extracting the maximum 
value from information, may increase potential system 
performance, and decrease actual performance. 
Alternatively the increased conplexity may be used to 
improve reliability; potential performance is not 
increased but the actual performance may.

SYSTEM STRUCTURES * 1 2

There are two distinct structures in a system.
1) The physical structure i.e. the distribution of 
system hardware around the region and the supply of 
comnunication channels.
2) The information structure i.e. the definitions of 
functional subsets and the data flows required 
between them.

Often, particular Auctions correspond to particular 
modules of equipment, and particular data flews 
correspond to certain conmunicaticns equipment.
Hcwever, hardware comnunicaticn facilities allow the 
information processing in a system to be geographically 
distributed anywhere in the locality. The degree to 
which this is done depends on the relative provision 
costs of processing and cotmuni cation equipment.
The cost of a single processing module can be 
approximately characterised as the sum of two terms.
Che proportional to the functional capability of the 
module the other a fixed tern governed by the module 
quality (e.g. reliability).
Similarly for comnmicaticns equipment there is a 
standing cost and a variable cost dependent on 
bandwidth and range.
The current trend of decreasing module fixed costs with 
large scale Integration reduces the overheads 
associated with physically distributed systems. 
Processing power is becoming cheaper relative to 
cortani cat ions. This favours the use of local 
autonomous processing and reduced ccnnuiication 
requirements.

Centralised Systems

Measurement data is supplied to a central controller 
which consequently must operate at maximum system 
speed. All the system information is available 
everywhere so maximising the potential system 
performance. Centralised system usually exploit the 
ability of digital machines to serve a large nurber of 
functions simultaneously by timesharing. Substantial 
nunbers of high capacity conrnnication links and 
coeplex resource allocation is required particularly 
if the system is spread over a  geographically large area.

The use of a single resource shared by many usera is 
governed by queuing type phenomena. Delays rise nen-

3inearly with demand, near saturation delays increase 
rapidly and are highly variable, and performance is 
limited by the reaction speed of the processor. This 
sharing causes strong interactions between users.
These are manifest by a requirement for cooperation 
or control to ensure an optimal sharing.

Centralised systems are vulnerable to faults, 
particularly as informal links are easily created as 
the result of any type of failure. They are costly 
to make redundant, difficult to diagnose and expensive 
to maintain. (4)

Distributed Systems

An array of locally sited processors performing 
particular tasks are interconnected by comnunication 
links. The characteristics of such systems are 
dependent on the style of organisation chosen.

Networks. All units in the system are connected to 
all others. Depending on the organisation of the 
measurement and control functions, the connections may 
be higi bandwidth or lew.

In one common arrangement all the system units are 
multiplexed onto a higi capacity bus. This has the 
advantage that substantial connectivity can be 
provided at low cost. System organisation is almost 
totally determined by software since interconnect ions 
are made by message addressing. This facilitates 
substantial reconfigurations of the system to 
counteract faults. As the bus is a shared resource 
its performance is typical of queuing phenomena. The 
bus itself is very vunerable to failures causing a 
total system shut down i.e. it is a particularly vital 
component. Also system resistance to faults is 
substantially reduced by the ease with which faults 
can propagate along 'informal' paths created as a 
result of addressing failures. However, the hardware 
simplicity of the scheme makes the use of fail safe 
designs and higi reliability techniques realistic.
The ease of reconfiguration allows the system to 
expand gracefully to cope with increased system 
requirements so reducing the problem of obsolescence. 
Duplicated standby equipment can be connected to the 
bus so enabling redundancy to be very flexibly applied, 
particularly if one unit may be used to replace any of 
several similar ones performing different roles. Bus- 
type structures are particularly suited to digital 
systems and if units are standardised there are 
advantages in maintenance, diagnostics and repair. (5)

Hierarchical distributed systems. A hierarchy is a 
multi-layer control organisation. It can be considered 
as a filter, each processing layer being associated 
with a range of frequencies or band of time scales. 
Together the layers cater for the entire range of 
frequencies apparent in the system. Oily at the first 
layer are found the actual physical measurement and 
control variables. The data is progressively condensed 
as it moves n? the structure. Decision times become 
longer, control action is more general and information 
has a more global context. Each uiit in the hierarchy 
operates semi-autcnomously in a dedicated role. It 
receives limited strategic ccrmands from its superior 
mode. It passes on delegated ccrmands to its 
subordinate units. In the absence of specific 
cocmands the uiit has a regulating function it can 
execute alone using its previous cocimand. Information 
is only selectively directed up the hierarchy 
consequently not all the system information is 
available everywhere in the network. The limited 
information transfer decobles the system but at the 
expense of reducing potential system performance.
The structure of hierarchies provides substantial 
inbuilt protection against the propagation of faults. 
This is particularly true if every Auction is placed 
as hi#i up the hierarchy as possible, each Auction 
controlling the narrowest band of signal speeds 
possible. (6)

¿JU.
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FAULT CONTROL

Fault control systems are either open-loop or closed-
loop.

Open-loop. Open loop fault control is sometimes 
called built-in redundancy. An equipment structure 
is used which is more elaborate than the minimum 
necessary to achieve the desired function. All the 
components are active all the time but the 
configuration is such that when a failure occurs the 
function as a whole does not fail. The construction 
and effectiveness of such systems relies upon the 
fault modes of a device being known. Two approaches 
are possible. In the first a failure makes the failed 
unit transparent to the rest of the Auction e.g. 
relays, diodes, network
i.e. the transfer finction with m ccrponents 

F(m) = F(m-l) = F(l) 
and the reliability with m conponents.

R(m) is greater than R(l)
In the second approach failures cause a change in the 
transfer Auction of the unit but the redundancy is 
such that the function sensitivity to faults is 
reduced. In this case the finction has an expected 
transfer function which depends on the faults that 
have occurred. e.g. transistor circuitry with 
protection or queuing systems.

Closed-loop. Substantially more important are closed- 
loop fault control systems. Although neater expense 
is involved, in principle any fault condition can be 
so controlled.

A monitor measures the actual system state and conpares 
it with a prediction generated by an inplicit or 
explicit model. The detection of discrepancies 
initiates strategies designed to counteract and remedy 
the failure, (see dia 5)
The output of the monitor may be continuous or 
discrete. The desigi of fault controllers using 
continuous error signals is allied to that of closed 
loop automatic control for which a substantial body 
of theory exists. The onset of a failure can be 
considered as changing the transfer finction of a 
systems or as random disturbances introduced into the 
system. In all cases there are substantial problems 
of formulation and analysis. Usually fault protection 
is carried out using discrete fault monitoring, the 
detection of a fault causing a specific alternative 
strate^ to be selected.

Failures

A failure is an event after whose occurrence the output 
state of a device shifts outside pennissable limits.
The output state of a device depends on
1) Its desigi
2) Its environment
3) Its initialisation -— — settings
*0 Its inputs software
5) Its operation ^  initial conditions
Failures can arise at any of these phases.
Monitoring

The physical event of a failure causes a change in a 
variable at the point of failure. This propagates 
downstream as errors. The monitor detects these 
errors, not the fault itself, and before any fault 
control action can take place a monitor must detect 
an error. There are three classes of information 
associated with a fincticn.

'toe states which correspond to the Auction 
specification and are therefore the correct states 

toe actual states generates by the Auction 
_. *tafces accpeted by the monitor, 
ideally these three sets should overlap, in practice 
they do not because of limitations and errors in both 
the Auction and the- monitor.

The * coverage' of the monitor is the fraction of 
errors the monitor detects. The ’restrictiveness1 
is the fraction of normal states classified as faulty. 
Inadequate coverage is expensive because of 
uncontrolled faults. Excessive restrictiveness is 
expensive because the normal system performance is 
constrained. Usually there is a trade-off between 
the two.
Only a limited number of monitors can be deployed 
testing the most important variables i.e. monitors 
are sited where information has the most value, where 
in the event of a failure disruption would be a 
maximum and outweighs the cost of monitor provision. 
The info m a t  ion yielded by these monitors is the only 
information available for locating and controlling 
failures. More error checks allow a more comprehen
sive monitoring of system states, a better identifi
cation of the failure site and a more appropriate 
selection of alternative strategies. However, greater 
expense is involved and as the error detecting 
mechanism is in series with the processor being 
checked the system reliability is reduced and the 
system response slowed.

Error Recovery

The objective of the error recovery phase is the 
restoration of normal system functioning after a 
failure, with the mininun of disruption. Recovery 
from a failure is governed by three factors.
1) The timescale of the failed function
2) toe repair time3) toe interim control of system disruption.

Timescales. The timedependency of disruption is 
governed by the timescale of the failed Auction.
If repair times are short with respect to the failed 
time scale then there need only be minimal control 
of system disruption. If repair times are slew with 
respect to the finction time scale then more elaborate 
measures are required. Repair times must be made 
shorter, and more sophisticated interim control 
strategies operated (see dia ^).

Repair times. The overall time to restore the 
original service depends on the repair arrangements. 
Plug-in replacement modules restore service rapidly 
at higi cost. Remove, repair, replace strategies 
give high system downtime but are cheaper to operate. 
The provision of on-line monitoring allows more precise 
rapid fault location and better interim control. Off
line monitoring improves system reliability and makes 
better use of test equipment so reducing costs that 
way. Repair times may be lessened by diminishing 
system complexity between monitors e.g. by reducing 
monitor spacing or by the use of more standardised 
equipment.

The use of narginal testing and preventative mainte
nance are means of identifying and forestalling faults 
for minimal system disruption since by for exanple 
maintaining the system at weekends or during the nitfit 
the necessary loss of service has mininun cost.

Interim Control of System Disruption 
Switching Systems
The monitor is an error detecting interface througi 
which infonraticn flows from one finction to another. 
During normal ruining this information has its maxinun 
value to the system. Faults reduce this value. In the 
place of particular faulty uiits , disruption control 
strategies provide an alternative supply of information 
having the best possible system value, given the 
available resources. The more information about the 
current ruining state of the system that can be used, 
the more effective can the control be made.
Interim measures for fault control are selected by 
switching i.e. the system structure is reorganised.
The rearrangwnent may reduce the information require-



merits ar^*6o correspondingly lowering the system per
formance or it may maintain the original performance. 
The more closely the original performance is to be 
maintained the more expensive is the provision of 
substitute processing capacity for the interim fault 
control.

There are several techniques of interim control.
1) The failed element is replaced by another unit. 
Apart fhom switching transients there is no major 
service disruption. For fast acting functions the 
switching must be online and automatic. For slew 
acting functions off-line switching can be used in 
the form of module replacement by repairmen. The 
replacement function may fulfill the same role as the 
failed functions or have a sinplified role yielding
a lower system performance but at a lower cost. In 
some circumstances several alternatives may be 
provided for a given function if it is sufficiently 
inport ant or unreliable. Direct function replacement 
depends for its effectiveness upon the failure being 
located in the replaced finction (otherwise faulty 
information will not be controlled). Direct finction 
replacement is expensive and is therefore only 
installed where the costs of failure are higi and 
strongly time dependent.
2) The failed function is isolated and the down
stream structure modified so that it no longer 
requires (or is less affected by) the new faulty 
information. This feed forward type of control 
necessarily entails some loss of system performance. 
However, it is much less expensive and does not 
require fault location for its effective use.
3) The failed function is disconnected and substitute 
standardised information is input. The information is 
chosen specifically to minimise subsequent disruption. 
Exarples migit be

a) An average value conmand is given
b) The last correct corrmand is used
c) A predetermined satisfactory value is sent
d) A human operator input.

Vital Functions

Although a hierarchy of fault protection strategies 
can be incorporated into a system to attenuate the 
consequences of most faults some vital points will 
remain vmerable. It is at these points that compo
nents with a higi intrinsic reliability need to be 
placed, since no alternative action can be devised 
to control disruption. Such points may often be the 
switching nodes for other fault control equipment.(7)
CONCLUSIONS

This paper discusses some of the inportant facets of 
'fail soft * engineering. The subject has been 
approached deterministically. Every error has a 
causative failure, every failure has an evaluable 
consequence and probability of occurrance. However, 
only general rules have been developed, whose 
implementation demands a very higi degree of system 
analysis at the design stage. Methods have been 
developed and are well surveyed in the literature, 
which enable some of this analysis to be achieved.
Often they fail or are isireliable in the complex 
situations that arise in prat ice. Systems must be 
made intelligible by design simplification and analytic 
approximation and assumption, i.e. system conplexity 
must be reduced. The use of low complexity may reduce 
potential performance but the decrease in design 
overheads and improvement in operational effectiveness 
may more than compensate.
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APPENDIX 8 Computer programs

In the course of the research reported In this
thesis,a number of computer programs have been written.
A selection of the more important are contained in this
appendix. They are as follows -

1) A program to simulate an intersection in a 
vehicle-follower type system

2) A program to simulate a network in an asynchronous 
transport system

5) The programs required in the GT40 to produce
the moving picture display ( these are written 
in PAL 11 or FOCAL )

4) A program to simulate the control of vehicles 
in an asynchronous,marker-follower type control 

system
5) A FOCAL program that provides the rolling graph
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