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Abstract 
 
 
Mycobacteria are acid fast bacilli responsible for the wide spread global diseases 

tuberculosis and leprosy. The increased persistence of multidrug resistant (MDR) 

mycobacterial strains has led to the focus on discovery of new and under-utilised cellular 

targets such as the cell wall. 

 

Peptidoglycan, the principle structural component of the bacterial cell wall is a hetero-

polymer comprised of alternating monosaccharides cross-linked by pentapeptide chains. 

The cell wall of mycobacteria are inherently resistant to antimicrobials and aid in evasion 

from host immune detection due to modifications to its composition. The hydroxylase 

enzyme NamH has been documented to play a role in the N-glycolylation of peptidoglycan 

monosaccharides, utilizing molecular oxygen during aerobic growth to convert N-acetyl- 

to N-glycolyl groups. This modification is found predominantly in  Actinobacteria, except 

Mycobacterium leprae due to genomic reduction.  The percentage incorporation of N-

acetylated and N-glycolylated saccharides is dependent upon the environment and 

functional characterisation of the impact of each modification is vital to achieving a greater 

understanding into mycobacterial response to a range of factors including dormancy, 

resuscitation and intracellular propagation. 

 

The investigations described in this thesis concern the susceptibility of a M. smegmatis 

DnamH strain, the cell wall of which contains solely N-acetylated cell wall components 

towards: (a) selected hydrolytic enzymes, as a model of the survival of phagocytosed 

mycobacteria within the harsh conditions of the phagolysosome and; (b) new and existing 

antimicrobials commonly used as therapies against infection. The absence of the N-

glycolylated sugar within the peptidoglycan cell wall led to consistently observed increases 

in susceptibility to a range of hydrolytic enzymes and antimicrobials, especially those 

which target the formation of peptidoglycan. Mycobacterial Mur ligases demonstrated 

increased catalytic bias towards N-glycolylated substrates to increase their inclusion into 

the wide peptidoglycan sacculus.  Investigations were expanded to characterize the impact 

of newly discovered known cell wall active compounds against the peptidoglycan 

biosynthesis machinery. 
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Chapter 1: Introduction 
 

1.1 Tuberculosis 

 

Tuberculosis (TB, tubercules bacillus) is a contagious disease affecting approximately a third of 

the human population (Houben and Dodd 2016). The World Health Organisation (WHO) 

categorises TB as the second most preeminent cause of death by an infectious disease (WHO, 

2012). Worldwide occurrences of tuberculosis were diminishing towards the end of the 21st 

century, but the rise of widespread resistance to standard drug therapies and the number of human 

immunodeficiency virus (HIV) co-infections have led to the disease being categorised as a global 

health emergency (WHO, 2011). The rising global impact of tuberculosis coupled with the 

emergence of multiple therapy resistances leads to the requirement of new antimicrobial treatments 

as well as identifying new and re-examining pre-existing targets in mycobacteria such as the 

peptidoglycan (PG) cell wall.  

 

 

1.2 Mycobacteria  

 

Mycobacteria are aerobic unicellular rod organisms noted to include an increased C-G content of 

bases. Commonly aligned with Gram positive bacteria due to genetic similarity, the genus 

Mycobacterium is part of the family Actinobacteria, encompassing 170 species (Fedrizzi, et al. 

2017). Mycobacteria are categorised as Acid-Fast bacilli (AFB) (Riello, et al. 2016), and include 

organisms such as Mycobacterium tuberculosis (M. tuberculosis), Mycobacterium leprae (M. 

leprae) and Mycobacterium smegmatis (M. smegmatis).  
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1.2.1 Mycobacterium tuberculosis complex (MTBC) 

 

Mycobacterium tuberculosis is classified as part of the Mycobacterium tuberculosis complex 

(MTBC), a group of genetically similar mycobacteria (Chimara, et al. 2004), which infect 

numerous hosts with tuberculosis. M. tuberculosis, M. africanum and M. canettii are categorised 

as human pathogens (Somoskovi, et al. 2009, de Jong, et al. 2010), M. bovis infects both bovine 

and human subjects (Vayr, et al. 2018), and M. microti infects rodent species (Vayr, et al. 2018).  

 

 

1.2.1.1 Mycobacterium tuberculosis 

 

In 1882 Robert Koch first discovered the causative agent of tuberculosis in humans, M. 

tuberculosis (Koch, 1882). Koch demonstrated an in vitro method for reproducing the disease 

pathophysiology observed initially in humans by infecting animal cells with M. tuberculosis. The 

mycobacterium was visualised under a microscope utilising a newly conceived staining technique 

(Weigert, 1875), which led to Koch receiving the 1905 Nobel Prize in Medicine for his isolation 

and investigation of tuberculosis.  

 

 

1.2.2 Non-tuberculosis mycobacteria (NTM) 

 

Other members of the genus mycobacteria excluding the MTBC and M. leprae are classified as 

non-tuberculosis mycobacteria (NTM) (Fedrizzi, et al. 2017). NTM reside within a number of 

environments such as soil and water (Falkinham 2015), and though rarely pathogenic can cause 

infection notably in immunosuppressed hosts (Horsburgh, et al. 1993). 
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1.2.2.1 Mycobacterium smegmatis  

 

Due to the laboratory containment procedures required to study M. tuberculosis and the inability 

to easily culture M. leprae (Bailey, et al. 2017), the weakly-pathogenic saprophyte M. smegmatis 

is commonly used as a model to investigate mycobacteria (He and De Buck 2010) due in part to 

the organism’s fast growth and the ease of generating cultures in manufactured media. The original 

M. smegmatis wild type strain displayed a low transformation efficiency, and was resolved by the 

isolation of an efficient-plasmid-transformation (ept) mutant strain, defined as mc2155 (Snapper, 

et al. 1990). 

 

 

1.2.3 Mycobacterium leprae 

 

Leprosy, also known as Hansen’s disease, was identified by Armauer G. Hansen in 1873 (Vera-

Cabrera, et al. 2015). Leprosy is induced by the intracellular pathogen M. leprae and 

acknowledged to be a major public health issue in numerous developing countries (Sales, et al. 

2011). Requiring an extended incubation period within host cells, infection predominantly occurs 

within the skin, the peripheral nervous system and the upper respiratory tract (Ooi and Srinivasan 

2004). There are various methods of categorising leprosy. The World Health Organisation 

separates patients based upon the visible type and number of afflictions on the skin (Gaschignard, 

et al. 2016). Those who display less than five skin lesion with a negative bacterial skin sample are 

termed paucibacillary. Patients with either or both, a greater number of skin lesion than five and/or 

a positive skin test detection of bacteria are termed multibacillary. A second method of 

categorising leprosy is determined by the immune response of the host to the bacilli (Ochoa, et al. 

1996). A robust immune system response contributes only to a smaller number of visible skin 

lesions and a thickening of peripheral nerves, culminating in the patient registering as moderately 

contagious, described as tuberculoid leprosy. An impaired immune system response leads to a 

more pronounced manifestation of skin lesions, a widespread impact on the nervous system and 

additional organs. This disease state is significantly more contagious and denoted as lepromatous 

leprosy. M. leprae is non-culturable long term in vitro on manufactured media and agar (Bailey, 

et al. 2017), requiring study through traditional in vivo animal models (Adams, et al. 2012).  
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The sequencing of the M. leprae genome (Cole, et al. 2001) has revealed extensive genomic 

reduction, with many of the equivalent genes found in M. tuberculosis described as pseudogenes 

displaying no function (Muro, et al. 2011), including of relevance to this thesis, NamH.  With less 

than fifty percent functional genome, M. leprae lacks numerous metabolic systems justifying the 

required incubation period and the requirement of animal model culture systems. Leprosy is 

commonly diagnosed through a skin biopsy (Joshi 2011), and once confirmation of leprosy is 

attained, a lepromin skin test can also determine the form of leprosy (Krotoski, et al. 1993), 

evaluated by the capacity of the host to initiate a cell-mediated immune response to M. leprae 

bacilli. The presence of swelling and redness indicates the presence of tuberculoid leprosy while 

the absence of changes to the skin indicate lepromatous leprosy. Treatment for leprosy is generally 

a twelve-month multidrug therapy that is tailored to the type of leprosy observed (Malathi and 

Thappa 2013). Paucibacillary leprosy requires dapsone and rifampicin, whereas multibacillary 

leprosy requires both previously mentioned antibiotics plus clofazimine. 

 

 

1.3 Bacterial cell wall 

 

Classified upon the composition of the cell wall, bacteria are commonly identified based upon a 

technique known as Gram staining (Beveridge 2001). The stain was developed by Hans Christian 

Gram as a taxonomic tool based solely on the complexity of the bacterial cell wall and the total 

percentage of amassed peptidoglycan within the sacculus (Austrian 1960). The unique structural 

component is located in virtually all eubacteria, excluding Mycoplasma. The 20-80nm broad 

peptidoglycan layer of gram-positive organisms such as Staphylococcus aureus and Streptococcus 

pneumoniae consists of between 30-70% of the total structure of the cell wall (Schleifer and 

Kandler 1972). Gram-negative bacteria have a minimal 2-3nm peptidoglycan layer along with 

lipoproteins, phospholipids and lipopolysaccharides which are surrounded by an outer membrane 

(Beveridge 1999). Certain bacteria such as mycobacteria do not conform to identification through 

Gram-staining. 

 

The cell wall of mycobacteria is impermeable to different commonly utilised identification 

techniques and the ability to resist decolourisation by acid alcohol is due in part to the inclusion of 
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mycolic acids, a structural component of the mycobacterial cell wall found predominantly in 

Actinobacteria (Kragelund, et al. 2007). Comprised of long chain, branched fatty acids, mycolic 

acids combine with arabinogalactan (AG) and peptidoglycan to form the mycolic acid, 

arabinogalactan and peptidoglycan (mAGP) complex, an integral part of mycobacterial cell wall 

architecture (Alderwick, et al. 2015). The varying components of the bacterial cell wall of Gram-

positive, Gram-negative and acid-fast bacilli are depicted in Figure 1.1. 

 

 

 
Figure 1.1 Cross-section of the major components of the bacterial cell wall of (a) gram-positive, (b) gram-
negative and (c) Acid-Fast bacilli. Gram-positive bacteria contain a greater percentage of peptidoglycan. Gram-
negative bacteria contain a smaller percentage of peptidoglycan and an outer membrane. Acid-Fast Bacilli contain the 
mycolic acid-arabinogalactan-peptidoglycan complex and an outer membrane comprised of glycopeptides and lipids. 
Abbreviations: CM – Cytoplasmic membrane, PG – Peptidoglycan, OM – Outer membrane, CLM – Capsule like 
material, AG – Arabinogalactan, MA – Mycolic acids, LP – Lipopolysaccharides. Adapted from Cabeen and Jacobs-
Wagner (2005), Crick (2001) and Abrahams (2018).  
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1.3.1 Peptidoglycan 

 

Peptidoglycan also known as murein (Vollmer and Holtje 2004) is present in virtually all known 

species of bacteria, excluding select examples such as Mycoplasma and archaebacteria (Kim, et 

al. 2015). Peptidoglycan is not found in eukaryotic cells and is therefore a well-regarded site of 

antimicrobial investigation (Yount and Yeaman 2013). The purpose of the polymer is as a scaffold 

for the bacterial cell; preserving the overall shape, rigidity and stability of the cell membrane to 

protect from outside forces such as osmotic pressures, yet permitting steady bacterial growth, 

expansion and division (Vollmer, et al. 2008). 

 

 

1.3.2 The structure of peptidoglycan 

 

The fundamental structure of peptidoglycan, observed in the majority of bacteria consist of glycan 

strands interconnected by short cross-linked peptide side chains as depicted in Figure 1.2. 

 

 
Figure 1.2: The structure of peptidoglycan in mycobacteria. Alternating N-acetylglucosamine (GlcNAc) and either 
N-acetylmuramic acid (MurNAc) or N-glycolylmuramic acid (MurNGlyc) sugars form glycan chains (blue lines) by 
b-1,4 glycosidic bonds. Chains are interconnected by cross-linking (red lines) amino acid 3 and 4 of parallel peptide 
stems. Position 3 is commonly L-Lysine for Gram-positive organisms and meso-DAP in Gram-negative and Acid-
Fast bacilli. Abbreviations: MurNAc – N-acetylmuramic acid, GlcNAc – N-acetylglucosamine,  L-Ala – L-Alanine, 
D-Glu – D-Glutamate, L-Lys – L-Lysine, m-DAP – meso-diaminopimelic acid.  Adapted from Bugg, et al. (1999). 
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The mycobacterial peptidoglycan backbone is constructed from alternating N-acetylglucosaminyl 

(GlcNAc) and either N-acetylmuramyl (MurNAc) or N-glycolylmuramyl (MurNGlyc) sugar 

residues bound via b(1®4) linkages (Mihelic, et al. 2017). The cross linked bridges are formed 

initially from five bacterial specific amino acids. The formation of peptidoglycan involves the 

implementation of distinct phases to construct the overall sacculus. These are the cytosolic 

assembly of the UDP-MurNAc/NGlyc-pentapeptide subunits, the intracellular membrane-bound 

transport across the plasma membrane and integration into the interweaved sacculus architecture 

(Vollmer 2008). 

 

 

1.3.3 The cytoplasmic steps of peptidoglycan synthesis 

 

Uridine diphospho-N-acetylglucosamine (UDP-GlcNAc), the initial precursor of the cytosolic 

pathway is obtained from glucosamine biosynthesis, a product of carbohydrate metabolism (Spiro 

1958). The first committed enzymatic step in the pathway involves MurA (Rv1315), an UDP-N-

acetyl-glucosamine enolpyruvyl transferase catalyzing the transfer of an enolpyruvate group from 

phosphoenolpyrvate (PEP) to the C3 position of the glucosamine sugar ring of GlcNAc, 

culminating in UDP-GlcNAc-enolpyruvate (Babajan, et al. 2011). The subsequent enzyme in the 

pathway, MurB (Rv0482), an UDP-N-acetylenolpyruvylglucosamine reductase, permits the 

reduction of the enolpyruvate double bond utilising the transfer of electrons from NADPH via 

FAD to form the lactyl group of MurNAc, creating one of the two main subunits of peptidoglycan, 

linked to UDP (UDP-N-acetyl-muramic acid; UDP-MurNAc) (Eniyan, et al. 2018).  

 

The remainder of the pathway appends selected amino acids to UDP-MurNAc to generate the 

pentapeptide stem. The residues appended to the subunit are specific to individual organisms. The 

four amino acid ligases MurC (Rv2151c), MurD (Rv2144c), MurE (Rv2158c) and MurF 

(Rv2157c) are ATP dependent enzymes (Munshi, et al. 2013) which employ an identical reaction 

mechanism involving a high-energy tetrahedral intermediate to react with the relevant amino acid 

to extend the peptidoglycan precursor by up to five amino acids. The standard pentapeptide stem 

is composed from L-Alanine, D-Glutamate, the third position for most Gram-positive organisms 

is L-Lysine or diaminopimelic acid (DAP) whereas most Gram-negative organisms and Acid-fast 
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bacilli incorporate DAP at this position (Consaul, et al. 2004). Variations to this sequence are 

observed in M. leprae. The mycobacterium incorporates L-Glycine into position one of the peptide 

stem as opposed to L-Alanine observed in other members of the mycobacterium genus (Mahapatra, 

et al. 2005). The final two residues are D-alanyl-D-alanine. D-amino acids are not natural cellular 

products, D-Alanine is generated from L-Alanine by a pyridoxal 5’-phosphate (PLP) cofactor 

dependent catalysis of alanine racemase (Alr), while D-Glutamate is isomerized from L-glutamate 

by glutamate racemase (MurI) which deprotonates the a-carbon of L-Glutamate with one active 

site thiol, and reprotonates the intermediate with a second thiol to bring about the L ® D 

conversion of glutamate (Glavas, et al. 2001). ATP dependent D-alanyl-D-alanine ligase (Ddl) 

combines two D-Alanine residues to incorporate them into the UDP-MurNAc peptide stem (Walsh 

1989).  

 

The cytosolic phase of peptidoglycan synthesis is tightly regulated to aid in mycobacterial 

pathogenesis and antibiotic survival. The activity of MurA is regulated by interaction with CwlM, 

an peptidoglycan amidase homologue which when phosphorylated by the Serine/Threonine 

protein kinase PknB increases MurA activity 30 fold (Boutte, et al. 2016). Direct phosphorylation 

of the cytosolic Mur ligases in mycobacteria (Thakur, et al. 2008) is also implemented by PknA 

and PknB to regulate the formation of the pentapeptide stem attached to UDP-MurNAc subunit 

against host stimuli (Munshi, et al. 2013). The cytosolic phase of peptidoglycan synthesis is 

depicted in Figure 1.3. 
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Figure 1.3 The formation of UDP-MurNAc-pentapeptide from the peptidoglycan cytosolic biosynthesis pathway. Cytosolic enzymes MurA and MurB 
transform UDP-GlcNAc into UDP-MurNAc. Four ATP dependent amino acid ligases MurC-F adhere bacterial specific residues (Black – Gram-positive, Blue – 
Gram-negative/Acid-Fast bacilli) to UDP-MurNAc creating UDP-MurNAc-pentapeptide. Abbreviations: NAM – N-acetylmuramic acid, NAG – N-
acetylglucosamine, UDP – Uridine diphosphate, PEP – Phosphoenolpyruvate, ATP – Adenosine triphosphate, Alr – Alanine Racemase, DdlB – D-Ala-D-Ala 
ligase, AFB – Acid Fast Bacilli, L-Ala – L-Alanine, D-Glu – D-Glutamate, L-Lys – L-Lysine, m-DAP – meso-diaminopimelic acid. Adapted from Teo, et al. 
(2015).  
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1.3.4 Formation of Lipid II 

 

Phospho-MurNAc-pentapeptide is translocated from UDP-MurNAc-pentapeptide to a prenyl 

phosphate which in most bacteria is the C55 prenyl phosphate, undecaprenyl phosphate (Chen, et 

al. 2016). Mycobacteria are unique however in that they utilise the C50 prenyl phosphate, 

decaprenyl phosphate for this purpose in a reaction catalysed by MurX (Rv2156c) to form Lipid I 

(decaprenyl diphospho-MurNAc-pentapeptide) (Mahapatra, et al. 2005). The enzyme MurG 

(Rv2153c), a glycosyltransferase is coupled to this reaction and transfers a GlcNAc subunit onto 

the C4 position of the muramyl sugar ring culminating in the formation of Lipid II (decaprenyl 

pyrophosphoryl-MurNAc-(GlcNAc)-pentapeptide (Bouhss, et al. 2008). The decaprenyl 

phosphate carrier is acquired from two sources, the enzymatic phosphorylation of decaprenol or 

the dephosphorylation of decaprenyl pyrophosphate (Touz and Mengin-Lecreulx 2008). 

 

 

1.3.5 Traversal of Lipid II to the extracellular face of the cytoplasmic 

membrane 

 

Before incorporation into the peptidoglycan sacculus, Lipid II must be transported across the 

cytoplasmic membrane by a ‘flippase’. Currently the exact mechanism is unknown but two 

proteins have been reported to flip Lipid II. The first identified by Mohammadi et al. (2011)  was 

E. coli FtsW corresponding to mycobacterial Rv2154c. This protein is important in cell division, 

and has the ability to move peptidoglycan subunits across proteoliposomes and membrane vesicles. 

The mechanism of transport involved a size-restricted pore-like structure with substrate specificity 

for Lipid II. The second protein (Sham et al. 2014) identified by in vivo experiments was MurJ, 

corresponding to mycobacterial Rv3910 as the unidentified flippase. Sham et al. (2004) also 

demonstrated that FtsW was unable to transport Lipid II in vivo. Coordination between a number 

of proteins is currently the suggested mechanism.  

 

The formation of Lipid II and the traversal across the plasma membrane are depicted in Figure 1.4. 
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Figure 1.4 The formation of Lipid II and the traversal of Lipid II across the plasma membrane. UDP-MurNAc-pentapeptide synthesised within the cytoplasm 
is bound to a lipid carrier by MurX, generating Lipid I. MurG adheres GlcNAc to Lipid I forming Lipid II. Lipid II is transported between the cytoplasm and 
extracellular space/periplasmic space (Gram-positive/Gram-negative) by the plasma membrane bound ‘flippase’ FtsW or MurJ. Abbreviations: NAM – N-
acetylmuramic acid, NAG – N-acetylglucosamine, UMP – Uridine monophosphate, UDP – Uridine diphosphate, L-Ala – L-Alanine, D-Glu – D-Glutamate, L-Lys 
– L-Lysine, m-DAP – meso-diaminopimelic acid. Adapted from Teo et al. (2015). 
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1.3.6 Extracellular peptidoglycan integration 

 

Once Lipid II has been transferred across the plasma membrane it is integrated within the existing 

peptidoglycan chains. Penicillin binding proteins (PBPs) are extracellular enzymes, which are 

categorised by activity and molecular weight (Waxman and Strominger 1983). Select PBPs are 

unique in function whereas other display a redundancy (Sassine, et al. 2017). PBPs are divided 

into high molecular weight PBPs with either bifunctional transglycosylase and transpeptidase 

domains or monofunctional transpeptidases and low molecular weight PBPs, which are typically 

carboxypeptidases (Strobel, et al. 2014). Transglycosylation (TG) is the polymerisation of Lipid 

II to form the individual glycan chains that comprise peptidoglycan strands (Galley, et al. 2014). 

Transpeptidation (TP) is the cross-linking of the peptide stems to rigidify the glycan chain 

structures (Sauvage and Terrak 2016). Carboxypeptidation cleaves the terminal D-alanine residues 

from non-cross-linked peptide stems (Sauvage, et al. 2008).  

 

In M. tuberculosis single stands of peptidoglycan are formed from Lipid II monomers along with 

the essential bifunctional PBPs PonA1/PBP1 (Rv0050) and PonA2/PBP2 (Rv3682) (Kieser, et al. 

2015) which adhere the terminal 4’-OH of GlcNAc from one Lipid II onto a second Lipid II 

terminal MurNAc forming a b-1,4 glycosidic bond. The decaprenyl phosphate group is then 

displaced from Lipid II. Regulation of the mycobacterial PBP activity is modulated through 

phosphorylation of the cytoplasmic tail by the serine/threonine protein kinase PknB (Kieser, et al. 

2015), a unique mechanism not observed currently in other organisms (Prisic, et al. 2010) and 

required to alter the rate of mycobacterial growth and cellular elongation (Kieser, et al. 2015). 

 

The transpeptidation of parallel peptidoglycan strands occurs in two variations, either (4®3) or 

(3®3) cross-linking. Bifunctional PBPs contain TP domains that as far as have been observed, 

exclusively catalyse (4®3) cross-linking (Patru, et al. 2017). Transpeptidases that implement 

(3®3) cross-linking have not been found to possess TG activity (Hugonnet, et al. 2016). The most 

common form of cross-linking is (4®3) (Vollmer, et al. 2008), meaning the e-amino group of the 

third position peptide of the stem, m-DAP in mycobacteria is connected to the a-carbonyl of the 

fourth position peptide, D-Alanine of a parallel glycan strand. Transpeptidation involves the 

formation of an acyl-enzyme intermediate (Sauvage, et al. 2008), a noncovalent complex between 
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the a-carbonyl carbon atom of the fourth position D-Alanine residue within the peptide stem of 

the donor peptidoglycan strand and the active site serine of the PBP transpeptidase domain. The 

TP active site utilises a lysine residue to abstract a proton to activate the nucleophilic activity of 

the active site serine (Kumarasiri, et al. 2014), causing the release of the terminal D-Alanine 

residue from the donor stem during acylation. Deacylation occurs through interaction of the acyl-

enzyme intermediate with the e-amino group of the third position amino acid of a secondary 

acceptor peptidoglycan strand displacing the PBP and forming a covalent bond with the donor 

strand resulting in transpeptidation (Macheboeuf, et al. 2007). The mechanism for (4®3) peptide 

stem cross-linking is depicted in Figure 1.5. 

 

 

 
Figure 1.5 Transpeptidase activity of PBPs against parallel mycobacterial peptidoglycan strands forming a 
(4®3) cross-link between peptide stems. The PBP active site lysine residue abstracts a proton to aid the formation 
of an acyl-enzyme intermediate implemented by the PBP active site serine residue against the a-carbonyl carbon atom 
of the fourth position D-Alanine of the donor stem. The terminal D-Alanine of the donor stem is released. Deacylation 
occurs through displacement of the PBP by the e-amino acid group of the third position DAP of the acceptor peptide 
stem forming a covalent bond between the (4®3) cross-link. 
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The second configuration of transpeptidation involves (3®3) cross-linking. The more rigid PG 

structure that results from (3®3) cross-linking is believed to aid against environmental stresses 

such as hypoxia and increase antimicrobial resistance (Peddireddy, et al. 2017). The peptide cross-

links are constructed from transpeptidation by L,D-transpeptidases LdtMt1 (Rv0116c) and LdtMt2 

(Rv2518c) (Correale, et al. 2013), containing an active site cysteine residue instead of the serine 

residue observed within the TP domain of PBPs (Magnet, et al. 2008). The tetrapeptide donor stem 

cleaved by carboxypeptidases interacts with the active site cysteine residue forming an acyl-

intermediate with the third position DAP residue, and releasing the fourth position D-Alanine. 

Deacylation transpires when the enzyme is displaced by the e-amino acid group of the third 

position DAP residue of the acceptor peptide stem forming a (3®3) cross-link covalent bond 

between the two DAP residues. The mechanism of (3®3) cross-linking of peptide stems is 

depicted in Figure 1.6. 

 

 

 
Figure 1.6 L,D-transpeptidase activity against parallel mycobacterial peptidoglycan strands forming a (3®3) 
cross-link between peptide stems. The L,D-transpeptidase active site cysteine residue forms an acyl-enzyme 
intermediate against the a-carbonyl carbon atom of the third position DAP residue of the donor stem. The terminal 
fourth position D-Alanine of the donor stem is released. Deacylation occurs through displacement of the transpeptidase 
by the e-amino acid group of the third position DAP of the acceptor peptide stem forming a covalent bond between 
the (3®3) cross-link. 
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PBPs do not have a eukaryotic equivalent which makes them a key target of antibacterial 

investigations. As noted by the name penicillin binding proteins (Tipper and Strominger 1965), 

penicillins and other b-lactams such as cephalosporins interact with PBPs, specifically inhibiting 

the transpeptidase activity of the enzyme due to the structural similarity of these antibiotics to the 

donor substrate as well as the intrinsic reactivity of the b-lactam ring of penicillin, cephalosporin 

and related antibiotics. Lipid II integration into the polymerised peptidoglycan cell layer is 

depicted in Figure 1.7.
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Figure 1.7 Nascent Lipid II incorporated into the overall peptidoglycan architecture by penicillin binding proteins. Translocated Lipid II synthesised within 
the cytoplasm is integrated by transglycosylation to extend the peptidoglycan glycan chain and parallel chains are cross-linked to improve structural stability by 
transpeptidation of the peptide stems. The lipid carrier is removed and recycled by traversing across the plasma membrane. Abbreviations: NAM – N-acetylmuramic 
acid, NAG – N-acetylglucosamine. Adapted from Teo et al. (2015).  
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1.3.7 Recycling and maintenance of peptidoglycan 
 

The peptidoglycan sacculus is not a static structure. It is constantly being remodelled as new glycan 

monomers are incorporated and existing strands are cleaved to permit peptidoglycan turnover and 

cell division (Vollmer, et al. 2008). The localised removal of glycan strands is tightly regulated by 

peptidoglycan hydrolases. Those that cleave the b-1,4 glycosidic bonds of glycan strands are 

termed glycosidases and those who cleave the (4®3) or (3®3) peptide linkages are 

endopeptidases (Harty, et al. 2000). Once cleaved, the peptidoglycan disaccharides are recycled 

and redistributed as either a source of energy or reprocessed back into peptidoglycan biosynthesis 

(Park and Uehara 2008). Recycling of PG has traditionally been investigated in E. coli, as gram-

positive bacteria lack an outer cell wall therefore it was initially assumed that PG was not recycled 

but instead lost (Park 1995), this is not a currently held belief (Borisova, et al. 2016), though the 

mechanisms for recycling in gram-positive organisms have not yet been identified. The membrane 

protein AmpG has been determined as the cytoplasmic transporter of PG monomers within E. coli 

(Lindquist, et al. 1993). A homologue of AmpG has yet to be classified in mycobacteria. 

 

 

1.3.8 Modifications to peptidoglycan facilitating resistance to hydrolytic 

enzymes 
 

The host’s immune response to invading mycobacteria involves the release of hydrolytic enzymes 

such as lysozyme (Ragland, et al. 2017) to degrade the mycobacterial cell wall and aid immune 

signalling towards infected macrophages (Amaral, et al. 2016). Mycobacteria and other organisms 

attempt to mitigate these actions and evade recognition through specific peptidoglycan 

modifications to alter the composition of the bacterial cell (Ragland, et al. 2017) wall as depicted 

in Figure 1.8.  
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Figure 1.8 Modifications to the bacterial peptidoglycan monomer Lipid II to decrease susceptibility to host 
hydrolytic enzymes. Bacteria can utilise various alterations to the Lipid II structure to disrupt conventional enzyme 
binding. (a) The standard structure of Lipid II, (b) Amidation of D-glutmate to D-isoglutamine (Blue), (c) N-
glycolylation of MurNAc to MurNGlyc (Pink), (d) O-acetylation of MurNAc (Red), (e) N-deacetylation of MurNAc 
to MurN (Green), (f) N-deacetylation of GlcNAc to GlcN (Green). Adapted from Ragland et al. (2017). 
 

 

1.3.8.1 O-acetylation 
 

O-acetylation is a ubiquitous peptidoglycan modification observed in numerous bacteria involving 

the appendance of an acetyl group to the C-6 hydroxyl of N-acetylmuramic acid sugars. The 

addition is administered by an O-acetyltransferase (OatA) within gram-positive bacteria 

(Moynihan and Clarke 2010) and coordination through a transmembrane bound acetate transporter 

(PatA) and a periplasmic O-acetyltransferase (PatB) in Gram-negative bacteria (Bernard, et al. 

2011). The modification is implemented on nascent peptidoglycan strands and perturbs lysozyme 

binding through steric hindrance without altering the host immune NOD (Nucleotide-binding 

oligomerisation domain-containing protein) recognition of peptidoglycan (Moynihan and Clarke 

2010). 
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1.3.8.2 N-deacetylation 
 

The removal of the C-2 acetyl group from either the GlcNAc or MurNAc moieties within the 

polymerised peptidoglycan, known as N-deacetylation is catalysed by the deacetylase PgdA 

(Rv1096), creating glucosamine, GlcN and muramic acid, MurN moieties (Vollmer and Tomasz 

2000). This modification aids virulence by decreasing host immune NOD recognition of 

peptidoglycan (Boneca, et al. 2007) and reduces lysozyme activity by removing the proposed 

interaction between the acetyl groups and the lysozyme active site (Callewaert and Michiels 2010).  

 

 

1.3.8.3 Amidation 
 

Resistance towards hydrolytic enzymes can also be instigated through modification of the cross-

linked peptide stem of peptidoglycan chains. The second and third residues of the peptidoglycan 

peptide stem D-Glutamate and m-DAP can be amidated (Ngadjeua, et al. 2018) with the D-

Glutamate residue becoming D-Isoglutamine. This modification is predominantly found within 

gram-positive and acid-fast organisms and implemented by enzymes such as the mycobacterial 

amidotransferase GatCAB (Su, et al. 2016) to reduce the overall net negative charge of the cell 

envelope which attracts lysozymes (Figueiredo, et al. 2014). 

 

 

1.3.8.4 N-glycolylation 
 

N-glycolylation is a unique structural alteration of the muramic acid sugar predominantly found in 

all mycobacteria and members of the Actinobacteria family (Vollmer 2008), except M. leprae 

where the orthologue of MTB NamH in this organism (ML0085c) is a pseudogene (Mahapatra, et 

al. 2008). N-glycolylation differs from O-acetylation and N-deacetylation by the cellular region in 

which each modification takes place, occurring solely within the cytoplasm of the mycobacteria 

whereas the other two mentioned modifications occur in the extracellular region solely to 

polymerised PG. The methyl group of the N-acetyl moiety of UDP-MurNAc is oxidised to its 
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corresponding alcohol to form the N-glycolyl moiety by the hydroxylase, NamH (Rv3818) to form 

the N-glycolyl modification of peptidoglycan. (Raymond, et al. 2005), as depicted in Figure 1.9. 

 

 
Figure 1.9: The hydroxylase activity of NamH. Molecular oxygen is fixed (highlighted in red) to the second position 
of the muramic acid ring of UDP-MurNAc due in part to the hydroxylase NamH oxidising the methyl group of the N-
acetyl moiety into the N-glycolyl moiety generating UDP-MurNGlyc.  
 

 

Categorised as a Rieske type monooxygenase enzyme (Rieske, et al. 1964), NamH catalyses the 

addition of a hydroxyl group to the muramic acid from oxygen molecules attained within an 

aerobic environment. NamH enzymes contain a 2Fe-2S centre to catalyse the reaction of oxygen 

with UDP-MurNAc substrates (Liu, et al. 2014). The active site is a flat rhombic cluster of two 

inorganic sulphide ions constructing a bridge with two Fe ions. One of the Fe ions interacts with 

two NamH cysteine residues while the other with two histidine residues. Utilising a reductase and 

cofactors such as NADPH permit the reduction of oxygen (D’Ordine, et al. 2009). 

 

The mycobacterial cell wall incorporates both variants of muramic acid within the PG layer 

(Mahapatra, et al. 2005). The percentage incorporated can differ depending upon factors such as 

phase of cellular growth as well as location within host macrophages. The standard ratio of 

MurNGlyc:MurNAc sugars located within the peptidoglycan of exponentially growing M. 

smegmatis cells was observed by chromatographic and mass spectrometric analysis to be 7:3. 

(Raymond, et al. 2005). Though the addition of the N-glycolyl muramic acids within the 

peptidoglycan structure can mitigate against hydrolytic enzymes, the unique structural 

modifications permits increased immune recognition. The N-glycolylation of muramic acids was 

observed to significantly increase the stimulation of NOD2 receptor recognition during 

mycobacterial infection (Coulombe, et al. 2009). The innate host immune response to 

mycobacterial infection requires pattern recognition molecules such as Nod-like receptors and 
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Toll-like receptors coordinating to recognise the architecture relating to the invading bacilli and 

induce proinflammatory cytokine production (Bodar, et al. 2008). The findings reported by 

Coulombe et al. (2009) indicate that NOD2 pathway maybe precisely focused to recognise specific 

N-glycolylated mycobacterial cellular debris. The implementation of N-glycolylated 

peptidoglycan has however been demonstrated to not impact the pathogenicity of M. tuberculosis 

(Hansen, et al. 2014) 

 

 

1.4 Tuberculosis infection 
 

The obligate pathogen is transmitted from infectious patients in droplets of sputum, residing 

airborne for several hours (Singh, et al. 2016). Bacilli traverse the respiratory tract of hosts, 

invading the macrophages of lung alveoli (Guirado, et al. 2013).  

 

 

1.4.1 Innate immune response 
 

The first point of contact between the immune system of the host and invading bacilli, involves 

recognition of mycobacterial cell wall components such as lipoproteins (LprA) and 

lipoarabinomannans (LAM) (Welin, et al. 2008) by pattern recognition receptors (Toll-like 

receptors (TLR)) of the innate immune system (Takeda and Akira 2005). TLR-2 initiates a pro-

inflammatory immune response, culminating in the activation of nuclear transcription factor (NF)-

κB within the macrophage and secretion of pro-inflammatory cytokines and chemokines to signal 

infection (Domingo-Gonzalez, et al. 2016).  

 

The innate immune system identifies specific structures unique to bacteria such as the 

peptidoglycan cell wall, termed pathogen-associated molecular patterns (PAMPs) to activate 

pattern recognition receptors NOD1 and NOD2 (Fritz, et al. 2006). NOD1 is a receptor for 

muramyl peptides containing meso-diaminopimelic acid (DAP) within the peptide stem of released 

peptidoglycan fragments (Chamaillard, et al. 2003). NOD2 is a receptor for muramyl dipeptide 

ligands (Inohara, et al. 2003) (Mo, et al. 2012). 
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The bacilli are engulfed by phagocytes such as macrophages, neutrophils and dendritic cells 

forming a vacuole from the enclosed plasma membrane, known as a phagosome (Pauwels, et al. 

2017). The internalised environment of the phagosome must undergo significant alterations to pH, 

hydrolytic enzyme content and nitric oxide concentration to successfully lyse the enclosed 

mycobacterial cell (Canton, et al. 2014). This maturation of the phagosome is a key component of 

the innate immune system. Once the bacilli has been phagocytosed two outcomes may transpire, 

favouring either the mycobacterium or the immune system as depicted in Figure 1.10.  
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Figure 1.10 The antibacterial mechanisms of the phagosome to aid (a) host microbial factors, or (b) against bacterial defence mechanisms. Phagocytosed 
bacteria within the host macrophage phagosome attempt to prevent the activation of host antimicrobial activity such as the generation of reactive oxygen species 
(ROS), antimicrobial peptides, proteases and proton pumps. Bacteria utilise their own proteases to break down antimicrobial peptides, bacterial enzymes to alter 
harmful compounds, and inhibit recruitment of vital host protein complexes to synthesize ROS. Abbreviations: SOD - Superoxide dismutase, MPO - 
Myeloperoxidase, ROS - Reactive oxygen species, INOS - inducible Nitric Oxide synthase, Ara4N - 4-amino-4-deoxy-arabinose, NADPH - Nicotinamide adenine 
dinucleotide phosphate. Adapted from Flannagan (2009). 
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1.4.1.1 Arresting phagosome maturation 
 

The primary goal of the invading mycobacteria once phagocytosed is to prevent the maturation of 

the phagosome into the phagolysosome, forged by combining with lysosomes (Zimmerli, et al. 

1996). Lipoarabinomannan (LAM), a glycolipid incorporated within the mycobacterial cell wall 

recognises and binds to both mannose and complement receptors (Kang, et al. 2005). The 

interaction aids mycobacterial virulence by preventing cytosolic increases in Ca2+ concentration, 

causing the incorporation of mannose capped with LAM onto the cell membrane of infected 

macrophages, impeding recognition. Mannose capped LAM ligands within dendritic cells bind to 

host mannose receptors and Dendritic cell specific intracellular adhesion molecule-3-grabbing 

nonintegrin (DC-SIGN) receptors suppress phagolysosome maturation, membrane antigen 

integration and macrophage apoptosis (Halder, et al. 2015). M. tuberculosis emits other targeted 

ligands to modulate macrophage response, for example phosphatidylinositol mannoside (PIM) 

binds Toll-like receptor-4 (TLR4) and inhibits the regulation the signalling pathways of infected 

macrophages (Doz, et al. 2009). Phagosome maturation suppression is essential to ensure 

mycobacterial reproduction and survival within host macrophages. Invading mycobacteria also 

diminish cytosolic phosphatidylinositol 3-phosphate (PI(3)P) concentration to delay phagosome 

maturation, by secreting the phosphatase SapM to hydrolyse PI(3)P (Vergne, et al. 2003). 

Unimpeded bacilli replicate and rupture the host cell macrophages to infect neighbouring cells 

(Simeone, et al. 2012). The halting of phagosome maturation is a key component for M. 

tuberculosis survival and proliferation within host macrophages (Welin, et al. 2008). 

 

 

1.4.1.2 Phagosome maturation 
 

If the innate immune system is unobstructed by the phagocytosed mycobacterium then 

phagolysosomal formation is established. The phagosome once formed is gradually integrated with 

other macrophage vesicles, firstly with an early endosome, then a late endosome and finally the 

lysosome (Desjardins, et al. 1994). The function of the phagolysosome is to provide a toxic 

environment to mycobacteria and ultimately lead to cell lysis. Mechanisms include the application 

of vacuolar proton transporting ATPase (vH+-ATPase) along with initiation of a Ca2+ signalling 



 
 

25 

cascade in order to reduce internal pH (Forster and Kane 2000), the generation of nitric oxide (von 

Bargen, et al. 2011) and ubiquitin derived autophagy (Bah, et al. 2016). The intrinsic pH of the 

phagolysosome measured at pH 5 (Flannagan, et al. 2009), optimises the lysosome derived acid 

hydrolysis of mycobacterium. The integrity of the mycobacterial cell membrane is destabilised by 

the generation of ubiquitin-derived peptides permitting generated nitric oxide to permeate the cell 

(Purdy, et al. 2009). Once cells are lysed within apoptotic vesicles, antigens derived from the 

mycobacterial architecture are integrated and distributed within the cell membrane of dendritic 

cells (Espinosa-Cueto, et al. 2017). Cytokine secretion initiated during recognition of bacteria 

attract a number of immune cells such as monocytes, neurophils and lymphocytes to the site of 

infection (Lyadova 2017) and due to integration of mycobacterial antigens on the cell membrane, 

infected macrophages are recognised. 

 

Macrophages release various cytokines and proteolytic enzymes as part of the innate immune 

response to M. tuberculosis invasion (Domingo-Gonzalez, et al. 2016). Over 50 distinct 

degradative enzymes such as proteases, glycosidases and phosphatases capable of impeding 

various cellular components are produced by the lysosome (Flannagan, et al. 2009), the majority 

of which are noted to display optimum enzymatic activity at acidic pH ranges (Odaka and 

Mizuochi 1999). These proteins vary in their roles from lactoferrin which prevents bacterial 

growth by sequestering iron within the phagosomal lumen (Masson, et al. 1969), to defensins 

which impact the integrity and permeability of the pathogen cell membrane (Lehrer, et al. 1993). 

 

This thesis focusses on two specific hydrolytic enzymes secreted by the phagolysosome, lysozyme 

and b-hexosaminidase. 

 

 

1.4.1.2.1 Lysozyme 
 

Lysozymes are also known as either muramidases or N-acetylmuramide glycanhydrolases. They 

are characterised by their ability to hydrolyse the b-1,4 glycosidic bonds between either N-

acetylmuramyl or N-glycolylmuramyl residues and N-acetylglucosaminyl residues of the 

carbohydrate components of the peptidoglycan of  Gram-positive, Gram-negative or Acid-fast 
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organisms (Ragland and Criss 2017). Lysozyme was identified in numerous biological secretion 

and characterised as bacteriolytic (Fleming 1922). The structure of lysozyme was the first ever 

enzyme solved by x-ray diffraction (Blake, et al. 1967). 

 

Found throughout bacterial, plant, animal species as well as in viruses, lysozymes are highly 

conserved anti-microbial enzymes and vital components of the innate immune response against 

microbial infection (Ragland and Criss 2017). The broad phylogenetic distribution of lysozymes 

is responsible for the evolution of bacterial mechanisms of resistance to these enzymes, either by 

modifying their peptidoglycan sacculus or through the utilisation of specific inhibitors (Ragland 

and Criss 2017). Lysozymes are sub divided into three main groups, c-type (Chicken), g-type 

(Goose) and i-type (Invertebrate), although other lysozyme variants from plants, bacteria and 

phages do occur (Jolles and Jolles 1984, Fastrez 1996). C-types include both the chicken and 

human lysozyme variants and are also noted to be standard models in the study of protein structure 

and function (Gourbatsi, et al. 2016). C-type lysozymes comprise two domains bridged by an alpha 

helix, where those enzymes have an optimal activity range of between pH 6-9, with an active site 

located in a deep cleft within the enzyme (Pincus, et al. 1977). 

 

 

1.4.1.2.1.1 Human lysozyme 
 

The human lysozyme consists of 130 residues with a molecular weight of 14.7 kDa. It shares 

around 58% amino acid sequence identity with the chicken homologue although the noted anti-

bacterial activity is threefold greater (Wu, et al. 2015) as a result of variation in cationic residues 

and tri-dimensional structures. Human lysozyme, along with other C-type lysozymes are cationic 

(Callewaert and Michiels 2010), attracted to the negative charge of the targeted bacterial cell 

envelope, human lysozyme embeds itself within the cell membrane and forms pores to aid 

antibacterial activity (Zhang, et al. 2016). The two mechanisms of lysozyme activity are depicted 

in Figure 1.11. 
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Figure 1.11 Hydrolysis of peptidoglycan by lysozyme. (a) The two proposed roles of lysozyme against microbial 
cells binding either to the peptidoglycan layer to hydrolyse PG monomers or embedded into the plasma membrane to 
disrupt integrity. (b) the hydrolysis reaction of lysozyme against the b-1,4-glycosidic bond between MurNAc and 
GlcNAc sugar monomers. The essential active site residues of the lysozyme active site, aspartic acid (red) and glutamic 
acid (blue) are depicted. Abbreviations: MurNAc – N-acetylmuramic acid, GlcNAc – N-acetylglucosamine, PG – 
Peptidoglycan, CM – Cytoplasmic membrane. Adapted from Ragland, et al. (2007). 
 

 

Lysozyme plays a key role in the activation of the innate immune system. Macrophages secrete 

extracellular lysozyme during infection to produce PAMPs from the lysed bacterial peptidoglycan 

layer to initiate pattern recognition receptors (Davis, et al. 2011). The peptidoglycan of 

phagocytosed bacteria are hydrolysed by lysozyme within the phagolysosome and these 

peptidoglycan monomer ligands are transferred across the endosomal membrane of macrophages 

to NOD receptors to further increase immune recognition (Lee, et al. 2009). Occasionally viewed 

as an aid in disease diagnosis, raised concentrations of human lysozyme are observed in both the 

urine and serum of leukaemia patients (Osserman and Lawlor 1966). Lysozyme is a common 

antibacterial agent located within the blood and saliva as well as secreted by certain organs and 

cells such as the spleen, kidneys and white blood cells where specific missense mutation in the lyz 

gene can culminate as inheritable renal amyloidosis (Yazaki, et al. 2003). 

 

 

1.4.1.2.2 b-hexosaminidase 
 

b-hexosaminidase is the second enzyme produced by the lysosome (Koo, et al. 2008) to be 

investigated in this thesis. The enzyme has a similar mode of action to lysozyme although it cleaves 
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the b-1,4-linked glycosidic bond between MurNAc and GlcNAc subunits from the non-reducing 

end of oligosaccharide chains. The fully functional enzyme is comprised from one a and one b 

subunit transcribed from the genes hexA and hexB respectively. b-hexosaminidase is vital to 

regulating the central nervous system (Beutler 1979). It forms a complex with the cofactor GM2 

activator protein within lysosomes, where it catalyses the decomposition of the ganglioside GM2 

(Ganglioside monosialic 2). Mammalian b-hexosaminidases are organised into two functional 

isoforms composed of dimers from either a or b subunits (Dersh, et al. 2016). One isoform is b-

hexosaminidase A, an a/b heterodimer which degrades GM2 gangliosides in neurons, whereas the 

other isoform, b-hexosaminidase B is a b/b homodimer secreted to degrade glycosphingolipids in 

the visceral organs. The role of the enzyme is vital as mutations in the genes of either the a or b 

subunits lead to accumulation of GM2 gangliosides within neurons concurrent with 

neurodegenerative disorders such as GM2 gangliosidosis. Gene mutation specific to the a subunit 

lead to Tay-Sachs disease (Myerowitz 1997), conversely b subunit gene mutations lead to 

Sandhoff disease (GM2-gangliosidosis type II) (Yamada, et al. 2013). Both disease states produce 

a debilitating ganglioside accumulation in lysosomes, especially those within neurons.  

 

Recent investigations into b-hexosaminidase knockout mice indicate that the enzyme is an 

essential factor of innate immunity for the host, reducing mycobacterial infection and survival 

within macrophages (Koo, et al. 2008). M. tuberculosis infection has also been shown to impact 

regulation of specific hydrolytic enzyme expression within lysosomes. Infection leads to 

significant down-regulation of both a- and b-hexosaminidase subunits by a factor of 20- and 25-

fold respectively (Hare, et al. 2017). 

 

Patients who are carriers of the Tay-Sachs gene have been recognised as presenting an increased 

resistance to tuberculosis (Spyropoulos 1988). These patients, who are unable to form the 

functional a-chain and therefore have a deficiency of the a/b heterodimer form of b-

hexosaminidase have significantly increased production of brain and fibroblast b-hexosaminidase 

B (b/b) by upwards of 200%. This has led to the understanding that the b/b homodimer is an 

important component of the host immune response to M. tuberculosis infection. 
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1.5 Dormancy 
 

Dormancy is the process by which M. tuberculosis cells enter a reversible state of reduced 

metabolic activity to endure cellular stresses and the immune response of the host (Gengenbacher 

and Kaufmann 2012). This state known as non-replicating persistence (NRP) (Wayne 1994) is 

initiated by specific environmental factors such as immune response, pH and nutrient availability 

(Peddireddy, et al. 2017) in order for M. tuberculosis cells to persist without cellular division 

within the host for prolonged periods of time. Dormant M. tuberculosis bacilli were first identified 

within pulmonary lesions surgically excised from patients who tested negative to tuberculosis 

smear testing (Canetti 1955). Excised lesions were examined and found to contain both 

populations of viable and non-viable mycobacteria decades after initial infection, hence the term 

NRP. The bacilli contained within these persisting populations are profoundly heterogenic and can 

be divided into three separate categories based upon specific physiological states (Kaprelyants, et 

al. 1993). Bacilli can be described as viable, dormant or differentially culturable based upon their 

ability to propagate in vitro. Viable cells are able to grow readily within nutrient media; dormant 

cells depend upon resuscitation first before normal cellular growth can be obtained and 

differentially culturable cells are completely unable to be cultured in vitro. The immune response 

to mycobacterial invasion leads to the formation of granulomas, an aggregation of infected 

macrophages and activated T-cell lymphocytes encased in necrotic lesions to mitigate the 

pathogenesis of M. tuberculosis (Saunders and Britton 2007) as depicted in Figure 1.12.  
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Figure 1.12 The cellular components and overall structure of a granuloma formed during tuberculosis 
infection. M. tuberculosis infected macrophages are encased with layers of interlinked epithelioid cells. Macrophages 
within the granuloma can combine to form multinucleated giant cells or differentiate into foam cells.  Multiple other 
cell types aggregate to form a granuloma including T-cells, B-cells, NK cells, neutrophil cells and dendritic cells. The 
mycobacteria are localised within the necrotic core and are non-pathogenic to hosts. Adapted from Ramakrishnan 
(2012). 
 

 

The granuloma microenvironment has a reduced pH and deprives the bacilli of oxygen and 

required nutrients for regular aerobic cellular growth. Mycobacteria persist within these necrotic 

granulomas by utilising a metabolic shift initiated by the two component regulatory system 

DosRS/T (Karakousis, et al. 2004). Genes related to this system were originally discovered within 

a virulent Dev strain of M. tuberculosis, leading to the genes for the DosR regulon being designated 

as devR (Rv3133c) and one of the two sensor histidine kinases, DosS being designated as devS 

(Rv3132c). The second kinase DosT, is expressed from the gene dosT (Rv2027c). The low oxygen, 

high nitric oxide (NO) and carbon monoxide (CO) environment of the granulomas stimulates the 

DosR regulon. In vitro, extended periods of stationary phase growth as well as static cultures can 

also lead to an activation of the DosR regulon (Honaker, et al. 2009).  

 

Hypoxic conditions are a requirement for the regulon as even if activation is initiated by nitric 

oxide or carbon monoxide, the recognition of oxygen by the system is an inhibitor to dormancy 
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(Kumar, et al. 2007). The two sensor histidine kinases are activated by different environmental 

stimuli. DosS is a redox sensor, whereas DosT is a hypoxia sensor. The sensors exhibit comparable 

protein sequences although vary in their ability to autophosphorylate and phosphotransfer, with 

DosT more adept than DosS (Roberts, et al. 2004). As found in both eukaryotic and prokaryotic 

organisms, the sensors are known to contain the small-molecule binding, regulatory GAF domains 

(cGMP, adenylyl cyclase, FhlA) (Honaker, et al. 2009). These domains permit the sensors to bind 

heme, (Sivaramakrishnan and de Montellano 2013), which in turn binds the mentioned divalent 

gases, O2, CO and NO and modulates the actions of the kinase response.  

 

During aerobic conditions the redox sensor, DosS is in an inactive state attributed to the constant 

presence of oxygen. Its heme ligand is constantly oxidised to Fe3+, inhibiting kinase signalling. 

The DosT sensor in an aerobic environment is also inactive, bound to oxygen molecules, the kinase 

is able to resist oxidation (Sousa, et al. 2007), explaining the reason why it is able to respond to 

hypoxia, but unable to function as a redox sensor.  

 

During immune response, macrophages produce nitric oxide. If concentrations of nitric oxide 

greatly exceed that of O2, then nitric oxide will out compete the oxygen molecules for the heme 

binding sites of DosS (Voskuil, et al. 2003). Oxygen inhibits the DosS sensor fifty fold more than 

nitric oxide (Tuckerman, et al. 2002). In the absence of O2 the heme bound to DosS is reduced to 

Fe2+, which in turn triggers autokinase activity of the sensor, signalling activation of the regulon. 

In the absence of O2 the hypoxia sensor DosT is deoxygenated, initiating autokinase activity.  

 

The redox/oxygenation state of the DosS/T sensors are used as a means of detecting the shifting 

environment and allowing the bacilli not only to adapt but persist. The induction of DosR is 

contingent upon the auto phosphorylation of either of the kinase sensors culminating in the 

phosphorylation of DosR (Roberts, Liao et al. 2004). DosR only regulates one of the two sensors, 

DosS in the two-hybrid system, due to the dosS gene residing within a region consisting of DosR 

regulon genes. dosT is situated close to one of these regions (Voskuil, et al. 2003) but does not act 

as though regulated by DosR. The expression of dosT is unaltered whether in aerobic or low 

oxygen environments (Saini, et al. 2004).  
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The DosT hypoxia sensor is important for initial recognition of environmental stresses and 

measuring the surrounding O2 concentrations. Once O2 decreases, DosT is induced and signals the 

DosR regulon and in turn increases the expression of dosS. The importance of DosT diminishes 

during hypoxic conditions and DosS is solely responsible for the induction of DosR regulated 

genes (Honaker, et al. 2009). The signalling of the DosR regulon by DosS and DosT is depicted 

in Figure 1.13. 

 

 

 
Figure 1.13 Activation of the M. tuberculosis DosR regulon by kinase sensors DosS (a) and DosT (b) to initiate 
mycobacterial dormancy. Interactions between the kinase sensors sensing divalent gases Oxygen (O2), Nitric Oxide 
(NO) and Carbon Monoxide (CO) regulate the induction of the DosR regulon. (a) In the presence of O2, the heme 
ligand of DosS is oxidised to Fe3+ inactivating signalling, in hypoxic conditions or with the aid of a cellular redox 
couple such as FdxA, DosS can be reduced implementing autokinase activity. DosS activity can also be initiated by 
interaction with NO and CO divalent molecules “locking” the sensor into an reduced active state initiating signalling. 
(b) In the presence of O2, the heme ligand of DosT is oxygenated to Fe-O2 impeding signalling. In hypoxic conditions 
or due to interactions with NO or CO divalent molecules, the sensor is “locked” into a deoxygenated active state 
initiating autokinase activity. The activation of the DosR regulon leads to the upregulation of highly conserved 
dormancy genes. 
 

 

The DosR regulon consists of around 50 co-regulated genes vital for adapting and maintaining 

survival during dormancy (Leistikow, et al. 2010). Many of these genes transcribe hypothetical 

proteins with current unknown function, though specific genes aid in acquiring energy from 

alternative sources during dormancy such as nitrate reduction (Sohaskey 2005) and glyoxylate 

metabolism (Wayne and Lin 1982). The construction of a M. tuberculosis dosR deficient strain has 
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shown that genes upregulated by DosR in hypoxic conditions are contingent upon the regulon for 

induction (Park, Guinn et al. 2003). The majority of these DosR regulated genes have a DNA 

consensus motif preceding the sequence. Investigations have shown that DosR binds directly to 

this motif (Park, et al. 2003). Other environmental conditions known to induce the regulon include 

hydrogen peroxide (H2O2) and ethanol (C2H5OH) (Kendall, et al. 2004, Voskuil, et al. 2011). 

Dormant mycobacteria are not solely located within granulomas, and mycobacterial DNA have 

been identified from within adipose tissue (Neyrolles, et al. 2006). This type of tissue is also noted 

as a high nitric oxide/low oxygen environment. The physiological differences between aerobically 

cultured M. tuberculosis and dormant bacilli also impact treatment for patient. Those with latent 

tuberculosis require more tailored therapeutics as dormant cells are more resistant towards 

common antimicrobials (Aguilar-Ayala, et al. 2018). Dormant mycobacteria are non-infectious 

and can persist with the host several years until conditions within the granulomas change. 

 

 

1.5.1 In vitro dormancy models 
 

A number of models have been created to investigate dormancy in vitro, the most well-known 

being the Wayne model of non-replicating persistence characterises the impact of microaerophilic 

conditions on the growth and dormancy of M. tuberculosis (Wayne and Lin 1982). Previous 

methods noted that the sudden transfer of aerobically grown mycobacteria to an instantly anaerobic 

environment led solely to cell death but the gradual reduction of oxygen induced dormancy 

(Wayne 1994). The Wayne model identified two separate stages of non-replicating persistence 

(NRP) depending upon the oxygen concentration. NRP stage 1 was categorised once diminishing 

oxygen saturation had reached 1%. This stage involved a significant and constant formation of 

glycine dehydrogenase and a steady production and maintenance of ATP concentration. The 

turbidity of the culture slowly increased during this period though the cause was not attributed to 

an increase in CFU.  

 

NRP stage 2 required 0.06% O2 saturation. During this almost anaerobic stage the turbidity seen 

in stage 1 did not increase and the previously observed high production of glycine dehydrogenase 

was notably reduced. The survival of mycobacteria within NRP stage 2 was greatly increased by 
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acclimatising for an extended time period within NPR stage 1. The Wayne model also observed 

that NRP bacilli from either stage could be immediately resuscitated once introduced to optimal 

aerobic and nutrient conditions (Wayne 1994).  

 

Other models of in vitro dormancy include nutrient starvation in PBS (Betts, et al. 2002), 

incubation in extended stationary phase (Smeulders, et al. 1999, Shleeva, et al. 2002) as well as 

the multiple stress model (Deb, et al. 2009). 

 

 

1.5.2 In vivo dormancy models  
 

Standard in vivo animal models of M. tuberculosis infection involve either rabbit, guinea pig or 

most commonly mouse hosts (Gupta and Katoch 2009) due to the similarity to the human immune 

response. Mouse models initially demonstrated the relationship between the immune response to 

infection and the triggering of mycobacterial dormancy, depicting the switch as not solely nutrient 

derived (Wayne and Sohaskey 2001). 

 

Animals can be infected by aerosols to imitate the standard infection route in humans with low-

dose bacterial loads or injected intravenously with high-dose bacterial loads such as the Cornell 

model (McCune and Tompsett 1956). Predominantly a study of chronic infection, the Cornell 

model in mice causes mycobacterial infection (1-3 x 106 dose) led by an extended antimicrobial 

therapy of isoniazid and pyrazinamide to produce bacilli that are non-culturable. The disease state 

can be reactivated through suppression of the host immune system (McCune, et al. 1956). The 

mouse model displays a number of drawbacks to investigating latent tuberculosis infection. The 

granulomas created within mice lack the rigid formation and composition found in the human host, 

leading to a lack of necrosis at the core of the granuloma, vital for mycobacterial dormancy 

(Munoz-Elias, et al. 2005).  To mimic human mycobacterial infection with greater accuracy, 

artificial granulomas are implanted within mice models subcutaneously to induce the latent 

mycobacterial disease state (Karakousis, et al. 2004).  
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1.5.3 Resuscitation 
 

M. tuberculosis bacilli can remain in a state of dormancy for decades as long as the encased 

granuloma environment remains constant (Kapoor, et al. 2013). Maintaining the stability of 

granulomas requires tumour necrosis factor (TNF- α) activity (Keane, 2005) in signalling innate 

immunity. In vivo investigations in mouse models (Mohan, et al. 2001) have concluded that 

employing monoclonal anti-TNF antibodies to constrain the cytokine commences resuscitation. A 

compromised immune system constraining T-cells results during immunosuppression; common 

causes include advanced age (Montecino-Rodriguez, et al. 2013), treatment for autoimmune 

disease (Stenger, 2005) or HIV infection (Paige and Bishai 2010). Co-infection of TB and HIV 

leads to an active tuberculosis state as HIV infection diminishes the total number of CD4+ and/or 

CD8+ T-cells primed to respond to M. tuberculosis infection (Wells, et al. 2007).  

 

Once the granuloma environment changes from an anaerobic to aerobic state, the mycobacteria 

must initiate resuscitation procedures in order to become a metabolically active infectious 

pathogen. Oxygen molecules once again outcompete other divalent gases and bind to the heme 

groups of DosS/T kinase sensors, terminating signalling to the dormancy regulon DosR 

(Tuckerman, et al. 2002).  

 

Resuscitation is also instigated by lytic transglycosylases defined as resuscitation promoting 

factors (Rpfs) (Telkov, et al. 2006) and RipA (Rpf-interacting protein A), an endopeptidase (Hett, 

et al. 2007). Rpfs not only permit bacilli to revert back to an active state but also stimulate growth 

(Rosser, et al. 2017). Five rpf gene homologues, rpfA-E have been identified within the genome 

of M. tuberculosis (Mukamolova, et al. 2002), each possessing muralytic activity towards the b-

1,4 glycosidic bonds of peptidoglycan in a similar method to c-type (chicken) lysozyme (Cohen-

Gonsaud, et al. 2005). The homologues display a functional redundancy and are known to be non-

essential for mycobacterial growth (Downing, et al. 2004). Non-culturable dormant M. 

tuberculosis rpf-deficient strains have been examined and determined to be significantly impaired 

during resuscitation (Downing, et al. 2005). Individual Rpfs form a two protein complex with 

RipA at the septa of cells undergoing cellular division (Hett, et al. 2007). The mechanism by which 

resuscitation is enacted is still undetermined. 
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1.6 Diagnosis 
 

Basic laboratory identification of mycobacteria is obtained through Acid-fast Ziehl-Neelsen 

staining of acquired sputum samples (Riello, et al. 2016). A fuchsine based dye combined with the 

presence of phenol is used to penetrate the lipid layer, cells are decolourised by an acid-alcohol 

solution and counter stained for identification under microscopy. The relatively inexpensive 

diagnostic test has certain disadvantages including the inability to detect extrapulmonary TB 

(Purohit and Mustafa 2015). Frequently polymerase chain reaction (PCR) testing is coordinated 

with acid fast bacilli (AFB) staining to increase diagnostic precision and reduce false negative 

diagnoses (Ryu 2015). The oldest currently used technique is the tuberculin skin test, otherwise 

known as the Mantoux test (Nayak and Acharjya 2012), an intracutaneous tuberculin injection, 

instigating a delayed hypersensitivity reaction. The original hypothesis for the test was determined 

in 1890 by Robert Koch and the standard intradermal technique was pioneered by Charles 

Mantoux in 1907 (Yang, et al. 2012) utilising purified protein derivative (PPD) from M. 

tuberculosis cells. The methodology for amassing PPD was revised and standardised in 1934 by 

Seibert (Seibert 1934). PPD is no-longer acquired solely from MTB, instead less pathogenic 

alternatives have been developed, denoted by a suffix letter such as PPD-A for M. avium. Other 

common methods for evaluating pulmonary TB in patients include chest x-rays (Woodring, et al. 

1986) and computed tomography (CT) scans to locate and define lesions (Lee, et al. 1993). 

Interferon-g release assays (IGRAs) provide a twenty-four-hour outcome from initial testing 

(Banaei, et al. 2016). The assays measure the interferon-g (IFN-g) immune response of patients to 

specific M. tuberculosis antigens. The known drawback to IGRA testing is the inability to 

distinguish between active and dormant tuberculosis (Sharma, et al. 2017). 

 

 

1.7 Antimicrobial Discovery 
 

At the beginning of the 20th century the potential of antimicrobials was being hypothesised. A 

German physician, Paul Ehrlich ascertained that specific chemical dyes stained selective bacterial 

cells but not others, and extrapolated that certain compounds may kill selective cells (Bosch and 

Rosich 2008). The first antimicrobial, Arsphenamine was discovered in 1909 for the treatment of 
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syphilis (Williams 2009). In 1928, Alexander Fleming inadvertently discovered the antibiotic, 

Penicillin (Tan and Tatsumura 2015), secreted from the fungi Penicillium notatum. The mould 

prevented growth of Staphylococcus, creating a bacteria-free zone. The isolation and purification 

of the antibiotic by Florey and Chain (Gaynes 2017) led to penicillin being the first mass produced 

antimicrobial utilised to treat infection during the second world war. These discoveries led to the 

global effort during the 1900s to purify and distribute antimicrobial products to medicate against 

bacterial infection. Early antimicrobial discoveries include Sulphonamide (1935) (Jesman, et al. 

2011), Cephalosporins (1945) (Nakajima 2003), Chloramphenicol (1947) (Wiest, et al. 2012), and 

Aminoglycosides (1943) (Vong and Auclair 2012). Predominant targets of antimicrobial therapies 

include DNA replication, protein synthesis and the bacterial cell wall (Kohanski, et al. 2010). 

 

 

1.7.1 Tuberculosis treatment 
 

The primary protection from M. tuberculosis infection in humans was the production of a vaccine 

(Luca and Mihaescu 2013). The Bacillus Calmette Guérin (BCG) vaccine containing a living 

attenuated strain of M. bovis is commonly administered to both infants and adults to present 

mycobacterial antigens to the immune system. Vaccination unfortunately impedes certain methods 

of tuberculosis detection in patients such as the tuberculin test (Buddle, et al. 1999). The standard 

antimicrobial treatment for tuberculosis is a six to nine-month multidrug combination (Kerantzas 

and Jacobs 2017), synergising the activities of four anti-tuberculosis therapies. Isoniazid (INH), a 

prodrug activated by the mycobacterial heme enzyme, KatG (Metcalfe, et al. 2008) inhibits the 

formation of mycolic acids (Quemard, et al. 1991). Targeting the fatty acid synthetase II (FAS-II) 

system, Isoniazid inactivates InhA, a 2-trans-enoyl-acyl carrier protein reductase (Marrakchi, et 

al. 2000). Rifampicin (RIF) is primarily a derivative of rifamycin B, a product of the bacterium 

Amycolatopsis mediterrani (Nigam, et al. 2014). An inhibitor of bacterial DNA transcription to 

RNA, rifampicin binds to the b-subunits of the RNA polymerase RpoB. Pyrazinamide (PZA) is 

active as an anti-tuberculosis therapy once hydrolysed to pyrazinoic acid (POA) by a 

pyrazinamidase enzyme PncA expressed by M. tuberculosis. The mode of action of the prodrug 

once activated by PncA is currently unknown but was initially believed to obstruct metabolism 

and the mycobacterial plasma membrane (Zhang, et al. 2003). Currently it is thought that POA 



 
 

38 

impacts trans-translation and ribosomal protein S1 (RpsA) (Shi, et al. 2011), although this has 

been disputed (Dillon, et al. 2017). The efficacy of Pyrazinamide is elevated against slow and non-

replicating bacilli (Pullan, et al. 2016). Ethambutol (EMB) is a antimicrobial targeting the 

mycobacterial cell wall (Alderwick, et al. 2015). A known inhibitor of several key components of 

the complex; ethambutol prevents the transport of mycolic acid into the cell wall, as well as the 

inhibition of arabinogalactan and lipoarabinomannan biosynthesis (Goude, et al. 2009).  

 

The multidrug therapy administration can vary depending upon the stage of tuberculosis infection 

as certain treatments have greater efficacy against solely latent or active TB. Latent TB infection 

is commonly treated with a monotherapy of isoniazid, or rifampicin if isoniazid resistance is 

detected (Norton and Holland 2012). If resistance towards one or all of the first-line therapies 

occurs, then second-line therapies are implemented. Second-line treatments include 

fluoroquinolones and aminoglycosides (Falzon, et al. 2013) which inhibit DNA gyrase (Hooper 

1999) and protein synthesis (Eustice and Wilhelm 1984) respectively.  

 

Select antimicrobials utilised against standard drug resistant tuberculosis strains target the 

mycobacterial peptidoglycan biosynthesis pathway. D-cycloserine, another secondary TB therapy 

inhibits the enzymes Alr and Ddl responsible for the synthesis of D-Ala-D-alanyl, the fourth and 

fifth amino acids of the UDP-MurNAc/NGlyc-pentapeptide stem (Chen, et al. 2017). Vancomycin, 

a glycopeptide antibiotic enacts hydrogen bonding with the terminal D-Ala-D-Alanyl residues of 

UDP-MurNAc-pentapeptide, preventing incorporation of the precursor into the peptidoglycan 

layer (Soetaerta, et al. 2015).  

 

 

1.7.2 Antimicrobial resistance 
 

The prevalence of antimicrobial resistance (AMR) is impacting all aspects of antimicrobial therapy 

and research, rapidly becoming a global health threat (Gootz 2010). Current estimates predict 

AMR will supersede cancer as the leading global cause of death annually by the year 2050 (O'Neill 

2015). Basic standard treatments to common infections are insufficient, with selected bacterial 
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strains becoming multidrug resistant (Zhang and Yew 2009). It is vital that new and existing targets 

be explored in order to develop contemporary antimicrobials to implement against AMR. 

 

 

1.7.3 Mechanisms of Antimicrobial resistance 
 

The acquisition and implementation of resistance to antimicrobial products is an evolutionary 

requirement and plays a key role in the survival of bacteria within a microenvironment (Miller, et 

al. 2016). The natural selection of resistance used to occur over an extended time period but recent 

advances in drug discovery and global application of therapies have produced a number of man-

made selection pressures to pathogens, that have increased resistance acquisition (Kapil 2005). 

Resistance to antimicrobials can be gained, through acquiring genes such as methicillin resistance 

in Staphylococcus aureus (MRSA) (Lee, et al. 2018) the altering of genes such as pneumococcal 

penicillin resistance (Hakenbeck, et al. 2012), or inherently such as impermeable membranes 

(Gotoh 2001) and efflux pumps (Poole 2007).  

 

The time frame for adaption of targets to therapies can vary. Resistance towards the antibiotic 

vancomycin, a peptidoglycan biosynthesis inhibitor, (Hammes and Neuhaus 1974) was identified 

30 years after its original development (Launay, et al. 2006); whereas sulphonamide resistant 

streptococcal strains were identified within three years of the drug first being prescribed (Finland, 

et al. 1976).  

 

The most basic instance of resistance is a mutation to the genetic sequence of an antimicrobial 

target. Examples include the simplest single point mutations, along with insertions, deletions and 

inversions of genes (Nollau and Wagener 1997). The alteration of a single nucleotide can 

significantly impact not only the amino acid sequence but also the 3-dimensional structure of the 

folded protein, altering the drug target.  

 

A consequence of being unable to utilise the exchange of genetic material termed horizontal gene 

transfer, M. tuberculosis cultivates resistance to prevailing therapies such as rifampicin and 

streptomycin by genetic mutation (Ramaswamy and Musser 1998). Other methods of resistance 
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include impacting the efficacy of the antimicrobial through either hydrolysis (Tao, et al. 2012) or 

modification (Lambert 2005), inactivating the drug. b-lactamases hydrolyse the b-lactam ring, the 

functional group of b-lactam antibiotics such as penicillin (Heesemann 1993). Modifications of 

drug structure to impede activity are the focus of phosphoryltransferases and acetyltransferases 

which catalyse O-phosphorylation and N-acetylation respectively to impact aminoglycosides 

(Morita, et al. 2014) and chloramphenicol (Shaw 1983). The final noted bacterial mechanism to 

influence drug concentration are efflux pumps. Located ubiquitously within the membranes of all 

bacteria, efflux pumps diminish the intracellular concentration of administered antimicrobials 

(Poole 2007).   

 

 

1.7.4 Antimicrobial resistant Tuberculosis 
 

Aside from acquired resistance to selected antimicrobials, mycobacteria are inherently resistant to 

various therapies, that target the mycobacterial cell wall (Hett and Rubin 2008). The reduced rate 

of diffusion traversing the mAGP complex coupled with efflux pumps, antimicrobial degrading 

enzymes and response regulators impedes drug efficacy (Chambers, et al. 1995). Tolerance 

towards an antimicrobial is not equivalent to resistance. Tolerance is not a genetic predisposition 

(Murakami, et al. 2017), but avoidance of mycobacterial lysis instigated by dormant or non-

replicating cells (Fattorini, et al. 2013) along with numerous drug resistance pumps (Poole 2007). 

Isoniazid, ethambutol and rifampicin tolerance has been established in vitro (Tudo, et al. 2010, de 

Keijzer, et al. 2016). Antimicrobial resistance to drug therapies can be separated into primary 

resistance, infection acquired through a resistant strain and acquired resistance, observed during 

drug treatment (Jenkins, et al. 2018). Acquired resistance to one of the standard multi-drug 

therapies to tuberculosis can be obtained through inadequate drug adherence, management or 

selection pressures (Kapil 2005).  

 

Generally evoked due to genetic mutation, there are four classifications of mycobacterial resistance 

states (Chan, et al. 2009). The first state is when a strain is mono-resistant to a single first-line 

therapy. Poly-resistant when immune to two or more therapies excluding isoniazid and rifampicin. 

A strain identified as resistant to both isoniazid and rifampicin is termed multidrug-resistant 
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(MDR). The final classification encompasses both MDR, a fluoroquinolone and one other second-

line therapy, deemed as extensively drug-resistant (XDR) (Zhang and Yew 2009).  

 

Resistance towards Isoniazid treatment can be induced through a number of methods. A mutation 

in the peroxidase, KatG which activates isoniazid from the prodrug state. An increase in the 

expression of the target of inhibition, InhA or alterations to either NADH affinity or the NADH 

dehydrogenase enzyme (Miesel, et al. 1998, Tseng, et al. 2015). Rifampicin resistant M. 

tuberculosis is frequently the result of genetic mutations to the b-subunit of the mycobacterial 

RNA polymerase (Alifano, et al. 2015).  

 

Antimicrobials resistance has also been observed towards therapies which target the peptidoglycan 

cell wall biosynthesis pathway. Fosfomycin is the sole administered antimicrobial which targets 

the cytoplasmic phase of peptidoglycan synthesis, inhibiting the first enzyme in the pathway MurA 

(Nasiri, et al. 2017). The active site of MurA commonly contains a cysteine residue which 

fosfomycin modifies to inhibit peptidoglycan synthesis in fosfomycin sensitive organisms. 

Mycobacteria are intrinsically resistant to a broad range of antimicrobials including fosfomycin 

due specifically to the active site cysteine being replaced with an aspartate residue (De Smet, et al. 

1999). D-cycloserine resistance in mycobacteria is displayed either by overexpression of either of 

the targeted enzymes, Alr and Ddl (Feng, et al. 2003) or by mutations observed predominantly in 

the Alr enzyme (Chen, et al. 2017). 

 

Synergy between existing antimicrobials has been shown to combat mycobacterial mechanisms of 

resistance. The genome of M. tuberculosis encodes the b-lactamase BlaC, expressed to hydrolyse 

standard b-lactam antimicrobials (Hugonnet, et al. 2009). Recent investigations have shown that 

co-administering clavulanate, an inhibitor of b-lactamases along-side common b-lactam classes 

such as penicillin, carbapenems and cephalosporin aid in therapy against previously resistant 

strains (Hugonnet and Blanchard 2007) (Kumar, et al. 2012).  

 

The prevalence of drug resistance within strains of tuberculosis illustrate the raison d’etre of an 

extended therapy period and underlines the requirement for additional anti-tuberculosis 

antimicrobials or modifications to existing treatments. 
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1.8 Thesis aim 
 

The overall objective of this thesis is to evaluate the role of mycobacterial N-glycolylation on 

peptidoglycan and peptidoglycan precursors, in order to gain a better understanding of the 

observed resilience endowed by this modification towards a range of both hydrolytic enzymes and 

antimicrobial therapies. Furthermore this thesis will examine what variation the modification has 

on peptidoglycan synthesis flux, aiding mycobacteria against external pressures as well as 

investigating the role of newly discovered cell wall active treatments to combat the increasing 

spread of antimicrobial resistance towards standard therapies.  
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Chapter 2. Materials and Methods 
 

2.1 Buffers and solutions 
 

All buffers and solutions were prepared using Milli-Q purified water sterilised before use by 

autoclave or with a 0.2 µm filter. A WPA pH meter CD720 from Hanna instruments measured the 

pH of all solutions against pH buffer standards at pH 4, pH 7 and pH 10. Analytical grade 

chemicals were acquired from either Acros Organics (USA), Bachem (Germany), Calbiochem 

(USA), Chembridge (USA), Fisher Scientific (USA), Novabiochem (Germany) or Sigma-Aldrich 

(USA). Synthesised oligonucleotides were acquired from Integrated DNA Technologies (UK). 

 

 

2.2 Growth media 
 

The following growth media were utilized throughout this thesis. 

 

 

2.2.1 7H9 media  
 

7H9 medium was used for propagation of mycobacteria (Sigma Aldrich) 

 

0.5% (w/v) (NH4)2SO4, 0.5% (w/v) L-glutamic acid, 0.1% (w/v) Sodium citrate, 0.001% (w/v) 

Pyridoxine, 0.0005% (w/v) Biotin, 2.5% (w/v) Na2HPO4, 1% (w/v) KH2PO4, 0.001% (w/v) Ferric 

ammonium citrate and 0.001% (w/v) CuSO4, adjusted to pH 6.8. Media was sterilised by 

autoclave.  

 

7H9 media was supplemented with 10% (v/v) ADC (comprising 5% (w/v) Bovine serum albumin, 

2% (w/v) Dextrose, 0.8% (w/v) Sodium chloride, 0.003% (w/v) Catalase) and 0.05% (v/v) Tween 

80, passed through at 0.2 µm filter. The complete medium was stored at 4°C. 
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2.2.2 Lysogeny broth (LB) broth  
 

LB broth used for E. coli growth. 

 

1% (w/v) Tryptone, 0.5% (w/v) NaCl and 0.5% (w/v) Yeast extract were combined and 

autoclaved. LB broth was stored at 4°C. 

 

 

2.2.3 Super Optimal broth with Catabolite repression (SOC) media 
 

SOC medium was used to promote growth of competent E. coli following transformation with a 

plasmid vector. 

 

2% (w/v) Peptone, 0.5% (w/v) Yeast extract, 0.6% (w/v) NaCl, 1.9% (w/v) KCl, 1% (w/v) MgCl2, 

1.2% (w/v) MgSO4, were combined and autoclaved. Media was supplemented with 3.6% (v/v) 

Glucose passed through at 0.2 µm filter. Combined medium was stored at 4°C.  

 

 

2.2.4 Minimal growth media  
 

Minimal growth media was used for B. subtilis growth. 

 

1% (w/v) (NH4)2SO4, 7% (w/v) K2HPO4, 3% (w/v) KH2PO4, and 1% (w/v) Sodium Citrate, were 

combined and autoclaved. Medium was combined with 0.2% (w/v) MgSO4 0.2% (w/v) Casein 

hydrolysate and 1% (w/v) Glucose passed through at 0.2 µm filter. Completed medium was stored 

at 4°C. 
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2.2.5 Tryptic soy agar  
 

Tryptic soy agar was used for M. smegmatis growth. 

 

1.5% (w/v) Casein peptone (pancreatic), 0.5% (w/v) Soya peptone (papain digest), 0.5% (w/v) 

NaCl was adjusted to pH 7.3, supplemented with 1.5% (w/v) Agar, and sterilized by autoclaving. 

Once cooled to 50°C, agar media was poured into sterile petri dishes and stored at 4°C.  

 

 

2.2.6 LB-agar 
 

LB-agar was used for E. coli growth. 

 

1% (w/v) Tryptone, 0.5% (w/v) NaCl, 0.5% (w/v) Yeast extract, 1.5% (w/v) Bacto-agar was 

sterilized by autoclaving, selected antibiotics were incorporated into agar media once it had cooled 

to 50°C and poured into sterile petri dishes. It was stored at 4°C.  

 

 

2.2.7 Minimal media agar  
 

Minimal media agar was used for M. smegmatis growth. 

 

1% (w/v) (NH4)2SO4, 7% (w/v) K2HPO4, 3% (w/v) KH2PO4, 1% (w/v) Sodium Citrate, 0.2% (w/v) 

MgSO4 were combined, adjusted to pH 7.4, supplemented with 1.5% (w/v) Agar and autoclaved. 

Once cooled to 50°C, medium was supplemented with 0.2% (w/v) Casein hydrolysate and 1% 

(w/v) Glucose passed through at 0.2 µm filter. Media was poured into sterile petri dishes and stored 

at 4°C.  
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2.3 Bacterial strains 
 

Organism Strain Genotype Reference 

M. 

smegmatis 

PM965 (Wild type)  ept-1 rpsL4 DblaS1 Raymond, et al. (2005) 

M. 

smegmatis 

PM979 (DnamH) ept-1 rpsL4 DblaS1 DnamH1 Raymond, et al. (2005) 

E. coli Top 10 F- mcrA Δ(mrr-hsdRMS-

mcrBC) φ80lacZΔM15 

ΔlacX74 deoR recA1 

araD139 Δ (ara-leu)7697 

galU galK rpsL (StrR) 

endA1 nupG 

Grant, et al. (1990) 

E. coli BL21 (DE3) F- ompT gal dcm lon 

hsdSB(rB-mB-) l(DE3 [lacI 

lacUV5-T7p07 ind1 sam7 

nin5]) [malB+]K-12(lS) 

Studier and Moffatt, 

 (1986) 

E. coli BL21 (DE3) 

pRosetta 
F-ompT hsdSB(rB–, mB–) 

gal dcm (DE3) and pRosetta 

plasmid for rare codon 

overexpression 

Studier and Moffatt, 

 (1986) 

E. coli Tuner (DE3) F-ompT hsdSB(rB–, mB–) 

gal dcm lacY1 (DE3) 

Compaan and  

Ellington (2003) 

B. subtilis 168 trpC2 Spizizen (1958) 

S. aureus ATCC 27664 see, selq Bergdoll and Borja 

(1971) 
Table 2.1 Bacterial strains utilised within this thesis 
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2.4 Bacterial growth 
 

2.4.1 Generation of glycerol stocks  
 

5 mL of LB media with antibiotic as required was inoculated with a single colony from solid 

media. Cultures were incubated with shaking at 180 rpm at 37°C. Exponentially grown cells were 

transferred to 1.8 mL Corning cyro-vials and aseptically mixed with growth media plus between 

20-50% (v/v) glycerol, depending on the organism and frozen in liquid nitrogen. Purity of stocks 

were assessed through serial dilution and growth on nutrient agar. Stocks were stored at -80°C. 

 

 

2.4.2 Generation of competent cells 
 

E. coli expression strains of interest were inoculated from single isolated colonies in LB media 

with an antibiotic if required and incubated at 37°C with 180 rpm agitation overnight. Overnight 

cultures were then used as a 10% (v/v) inoculum of sterile LB, supplemented with 20 mM MgSO4 

and preferred antibiotic and grown as above until an optical density (OD600nm) within the range of 

0.4 to 0.6 was reached. Cells were pelleted by centrifugation at 4°C at 4500 x g for 10 minutes in 

a Beckman JA-14 rotor. Pellets were resuspended gradually in 100 mL of ice cold TFB1 (30 mM 

Potassium acetate, 10 mM Calcium chloride, 50 mM Manganese chloride, 100 mM Rubidium 

chloride, 15% (v/v) Glycerol pH 5.8). This suspension was incubated on ice for 5 minutes then 

pelleted by centrifugation at 4500 x g for 5 minutes at 4°C in a Beckman JA-14 rotor. Isolated 

pellets were resuspended in ice cold TFB2 buffer (10 mM MOPS, pH 6.5, 75 mM Calcium 

chloride, 10 mM Rubidium chloride, 15% (v/v) Glycerol) and incubated on ice for 1 hour. 

Competent cells were aliquoted, and frozen in liquid nitrogen. Stored at -80°C. 
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2.4.3 Aerobic growth of M. smegmatis 
 

Frozen stocks of mycobacteria were cultured at 37°C with 180 rpm agitation in 250 mL baffled 

flasks to oxygenate the media for 30 hours. Once samples reached exponential phase, cultures 

were diluted to an OD600nm of 0.1. Cells were passed through a 26-gauge needle to disrupt clumps 

and further diluted by a factor of 104. 100 µL of diluted cultures were pipetted in triplicate into 96-

well microtiter plates. As required concentrations of hydrolytic enzymes/antibiotics were added. 

Triplicate control wells containing media were used as negative and contamination controls. 

Microtiter plates were covered by gas permeable membrane barrier seals (4titude). Microtiter 

plates were incubated and analysed in a Varioskan flash multimode reader (Thermo Scientific) at 

37°C with intermittent shaking, where growth was measured at OD600nm at 3 hour intervals for 48-

60 hours. 

 

 

2.4.4 Determination of Minimal bactericidal concentration (MBC) 
 

Cells which failed to produce observable growth in the presence of hydrolytic enzymes/antibiotics 

were pipetted in 10 µL volumes onto segmented nutrient agar plates. Plates were incubated at 37°C 

in aerobic conditions for 72 hours. Presence of growth used to inform MBC values. 

 

 

2.4.5 Anaerobic growth of M. smegmatis 
 

Cultures were grown as in Section 2.4.3 and then diluted to an OD600nm of 0.1. Cultures were serial 

diluted ten-fold in media until an OD600nm of 10-8 was reached. 20 µL from each dilution was 

pipetted onto tryptic soy agar (Section 2.2.5) and minimal agar (Section 2.2.7) plates. Plates were 

initially incubated in an anaerobic cabinet for 21 days at 30°C. The agar plates were then 

transferred to an aerobic 37°C incubator for six days. Control plates were incubated in aerobic 

conditions for six days.  
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2.5 Assessment of hydrolytic enzyme activity against modified mycobacterial 

peptidoglycan  
 

2.5.1 Mycobacterial agar colonisation against hydrolytic enzyme incubation 
 

M. smegmatis was cultured to exponential phase and centrifuged at 3,200 x g for 10 minutes. The 

supernatant was removed and pellets were resuspended twice in incomplete Hank’s balanced salt 

solution (HBSS) buffer (8% (w/v) NaCl, 0.4% (w/v) KCl, 0.05% (w/v) Na2HPO4, 1% (w/v) 

Glucose, 0.06% (w/v) KH2PO4 and 0.035% (w/v) NaHCO3) minus Mg2+ and Ca2+. Cells were 

passed through a 26-gauge needle (Sigma Aldrich) to break down aggregates. Samples were 

diluted to 105 Colony forming units (CFU).mL-1 using complete HBSS buffer composed of 

chemicals mentioned above in addition to MgSO4 (0.12% (w/v)) and CaCl2 (0.14% (w/v)). 90 µL 

of diluted cells were pipetted into 96-well microtiter plates in triplicate and incubated with 10 µL 

of increasing concentrations 128-0.03 µg.mL-1) of hydrolytic enzymes. Microtiter plates were 

coated with a gas permeable membrane barrier seal and incubated for 1.5 hours unless stated 

otherwise at 37°C. Aliquots of wells were pipetted onto TSB agar plates in triplicate. Plates were 

incubated for 72 hours at 37°C and the percentage of viable colonies were counted, averaged, 

imaged and analysed. Standard concentrations of lysozyme were dissolved in media. Standard 

concentrations of b-hexosaminidase were prepared in media, based upon units of activity per 

milligram specified by the acquired sample. 

 

 

2.6 Cloning and editing of DNA 
 

DNA plasmids and gene constructs utilised during this thesis are outlined in Appendix 1. 

 

Primer sequences to introduce cleavable TEV and poly-Histidine tag sequences are stated in Table 

2.2. Denaturing temperature was 98°C, annealing temperature was 48°C and extension 

temperature was 72°C unless otherwise stated. 
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Primer Sequence 
MurA Forward GCGCGCCATATGGTGGCTGAACGCTTT 

GTTGTTACGGGCGGCAATCG 
MurA Reverse C-term + TEV GCGCGCGGATTGAAAGTACAGGTTCTC 

CAGACACACACGTTC 
MurA Reverse C-term + TEV + 
His 

GCGCGCCTCGAGCTAGTGGTGGTGGTGG 
TGGTGGGATTGAAAGTACAGG 

MurC Forward GCGCGCCATATGAACGCTGGTCAACTGCC 
MurC Reverse + TEV GCGCGCGGATTGGAAATACAGGTTCTC 

TTGCAGGACACCGCTACAGCC 
MurC Reverse + TEV + His GCGCGCCTCGAGCTAGTGGTGGTGGTGG 

TGGTGGGATTGGAAATACAGG 
Table 2.2 Primer sequence modifications to M. leprae MurA and MurC genes. Forward and reverse primers to 
include a C-terminal cleavable TEV sequence, a poly-histidine tag and enzyme restriction sites to pCOLD-M. leprae 
MurA and pCOLD-M. leprae MurC plasmids. 
 

 

2.6.1 Polymerase Chain Reaction (PCR) 
 

Reagents and primer concentrations specified by the manufacturer were combined in accordance 

with the requirements of the Phusion® polymerase at a scale depending upon the number of PCR 

samples required. Samples were transferred into the Mastercycler Gradient thermocycler and pre-

programmed temperature cycles for primer denaturation, annealing and extension were selected. 

Annealing temperatures were dependent upon length and GC content of synthesized 

oligonucleotides.   

 

 

2.6.2 DNA digestion by restriction enzymes  
 

Based upon the plasmid utilised and the available restriction sites contained within the 

cloning/expression region, vectors were digested by specific New England Biolabs (NEB) 

restriction enzymes. Digestion of plasmid DNA or PCR products were optimised by incubation of 

500 ng of DNA with the desired restriction enzyme in a suitable NEB buffer (provided by 

manufacturer) at 37°C for a minimum of 3 hours. Restriction enzymes utilised in this project are 

noted in Table 2.3. 
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Restriction enzyme Sequence 
NdeI CA^TATG 

GTAT^AC 
XhoI C^TCGAG 

GAGCT^C 
Table 2.3 Restriction enzymes utilized for restriction digest of M. leprae Mur enzymes and the vector pCOLD. 
Genetic sequences targeted for enzyme digestion are indicated. Enzymes were incubated for 4 hours at 37°C in 
manufacturer’s recommended NEB buffer 4. 
 

 

2.6.3 DNA purification  
 

PCR, digestion and ligation products were purified using a Qiagen QIAquick® PCR Purification 

kit. Purification was conducted to manufacturer’s specifications.  

 

 

2.6.4 DNA ligation  
 

Digested plasmid DNA were incubated at 37°C for 1 hour with Shrimp alkaline phosphatase to 

dephosphorylate. The enzyme was denatured following incubation at 65°C for 30 minutes and the 

digested plasmid was purified. Digested PCR products and plasmid DNA with reciprocal sticky 

nucleotide ends were ligated together in a final volume of 10 µL by T4 DNA ligase from NEB 

according to the manufacturer’s instructions. A negative control without enzyme was also 

produced. Ligations were incubated at 37°C for 1 hour and resulting ligated plasmids were 

transformed in E. coli TOP10 cells and grown on LB agar at 37°C overnight. 

 

 

2.6.5 Quantification of DNA concentration  
 

A NanoDrop ND-1000 spectrophotometer (Thermo Scientific) was used to quantify 1 µL DNA 

samples at A260/280. 
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2.6.6 Site directed mutagenesis 
 

Complementary oligonucleotides between 25-45 base pairs in length with a greater than 78°C 

melting temperature were synthesized. The point mutation was located within the centre of the 

synthesised oligonucleotides. Whole PCR amplification to generate the newly mutated plasmid 

was conducted with an Aligent QuikChange II Site-Directed Mutagenesis Kit in accordance with 

the manufacturer’s instructions. 

 

Primer Sequence (5’-3’) 
MurA Forward D-C  
active site 

CGCGTGGCACTGCCGGGCGGTT 
GCGCAATCGGCTCTCGTCCG 

MurA Reverse D-C  
active site 

CGGACGAGAGCCGATTGCGCAA 
CCGCCCGGCAGTGCCACGCG 

Table 2.4 Sequences of primers used for site directed mutagenesis of M. leprae MurA gene. Forward and reverse 
genetic overlapping primers to substitute a cysteine residue (Highlighted in bold) for the aspartate residue within the 
active site of MurA. 
 

 

2.6.7 Agarose gel electrophoresis 
 

The size and purity of plasmids, digests and PCR products were determined with a 1% (w/v) 

agarose gel. 1 g of agarose (Sigma) was combined with 100 mL of 1 x Tris-acetate EDTA buffer 

(TAE, 40 mM Tris acetate, 1 mM EDTA, pH 8.3), the agarose was melted using microwave 

heating. A gel cast was constructed containing an inserted comb indicating the required number 

and size of sample wells. Proceeding only once the solution was cooled enough to be held, 

Ethidium bromide was carefully added, 3 µL per 100 mL solution to a final concentration of 0.5 

µg.mL-1. The final solution was then thoroughly mixed and poured into the pre-made cast to set. 

The agarose gel was excised from the cast and placed within a geneflow gel tank and immersed 

completely in 1 x TAE buffer. DNA samples were combined in eppendorfs with 1 x DNA loading 

dye (Fermentas 6 x stock: 0.25% (w/v) bromophenol blue, 0.25% (w/v) xylene cyanol FF and 15% 

(v/v) Ficoll 400). Samples were loaded into individual wells alongside a DNA ladder (Fermentas) 

comprising DNA fragments of lengths appropriate for estimation of the presumed size of samples 

and a negative control absent of DNA. The voltage and duration of electrophoresis was dependent 
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upon the size of gel. Standard agarose gels (100mm by 100mm) were electrophoresed at 90 volts 

(V) for 45 minutes. Gels were analysed under ultraviolet light with a Syngene GeneSnap G:Box 

gel illuminator. 

 

 

2.6.8 DNA sequencing  
 

Isolated DNA plasmids were sequenced by submission to GATC Biotech (Germany). Samples 

were submitted as 10 µL aliquots containing 80-100 ng.µL-1 of plasmid DNA and 5 pmol.µL-1 of 

DNA primer, usually the vector promoter or terminator sequence. Plasmid primer sequences used 

during this project are recorded in Table 2.5.  

 

Primer Sequence (5’-3’) 

pUC57 forward GTAAAACGACGGCCAGTG 

pUC57 reverse GGAAACAGCTATGACCATG 

T7 promoter TAATACGACTCACTATAGGG 

T7 Terminator GCTAGTTATTGCTCAGCGG 

pCOLD forward GCACGCCATATCGCCGAAAGGC 

pCOLD reverse GGCAGGGATCTTAGATTCTGTGC 

Table 2.5. The nucleotide bases of upstream and downstream sequences encompassing the cloning/expression 
region within selected plasmids. These sequences were used to amplify plasmid genes during PCR for DNA 
sequencing/cloning techniques.  
 

The DNA sequences obtained from submitted samples were analysed and aligned against the 

known complete nucleotide sequence of the relevant genes using the plasmid editor software ApE 

(http://jorgensen.biology.utah.edu/wayned/ape/).  

 

 

2.6.9 Transformation  
 

2 µL of plasmid DNA (50-100 ng) was added to a 30 µL suspension of competent E. coli cells and 

incubated on ice for 30 minutes. Incubations were then heat-shocked at 42°C for 45 seconds and 
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cooled on ice for 2.5 minutes. Cells were then supplemented with 200 µL of SOC medium (Section 

2.2 Growth media) and incubated for 1 hour at 37°C at 180 rpm. Successfully transformed cells 

were identified by aseptic plating onto LB-agar containing the appropriate antibiotic selection and 

incubated at 37°C overnight.   

 

 

2.6.10 Isolation of plasmid DNA 
 

Plasmids propagated in E. coli TOP10 cells cultured in LB media plus plasmid specific antibiotic 

overnight were purified by the manufacturer’s instructions outlined within a Fermentas GeneJetTM 

miniprep extraction kit. 

 

 

2.7 Expression and purification of recombinant proteins 
 

Any deviation from the methods described are stated in the relevant chapter. 

 

Plasmids containing genes of interest were transformed into competent E. coli cells grown on 

antibiotic selective agar. Individual colonies were inoculated and incubated overnight at 37°C and 

180 rpm agitation and grown in a 5 mL volume of LB media with any required antibiotics. 

Overnight cultures were then used to inoculate 1 litre volumes of LB media plus the required 

antibiotic at 37°C until culture optical density achieved OD600nm 0.5-0.7. Recombinant protein 

expression was induced by addition of 1 mM Isopropyl-b-D-thiogalactopyranoside (IPTG) at 

which point incubation was continued unless otherwise stated at 37°C for 4 hours. Small volume 

expression trials were conducted with newly constructed plasmids to identify optimal induction 

temperatures to elicit the greatest quantity of recombinant protein. IPTG-induction conditions that 

were investigated included 37°C and 25°C for 4 hours and 16°C overnight. Cells were pelleted by 

centrifugation in a Beckman JLA-8.1000 rotor at 10,000 x g, and resulting cell pellets were 

transferred to containers and stored at -20°C. 
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2.7.1 Recombinant protein over-expression with E. coli tuner (DE3) cells  
 

Expression of recombinant proteins transformed within E. coli tuner (DE3) cell lines aid in protein 

folding leading to increasing soluble protein concentrations by induction of protein chaperones 

and the ability to titrate target protein expression with IPTG concentration. Cells were cultured at 

37°C as described in Section 2.7, with one exception. Cells were grown in the presence of two 

antibiotics, one determined by the resistance of the transformation plasmid and chloramphenicol 

to retain an intrinsic pLacl plasmid until optical density reached OD600nm 0.5-0.7. Tetracycline and 

arabinose at final concentrations 6 ng.mL-1 and 2 mg.mL-1 respectively were added to express 

different sets of chaperones. Tetracycline induced GroES/GroEL chaperones and arabinose 

induced DnaJ, DnaK and GrpE chaperones. Culture flasks were then incubated at 16°C for 1 hour, 

at which point, cultures were induced by 1 mM IPTG overnight at 16°C. Cells were pelleted at 

4°C by 10,000 x g centrifugation in a Beckman JLA-8.1000 rotor, and the resulting cell pellets 

were transferred to suitable containers and stored at -20°C. 

 

Small volume expression trials were conducted with newly constructed plasmids to identify 

optimal concentration of IPTG to elicit the greatest concentration of recombinant protein. 

 

 

2.7.1.1 SDS-Polyacrylamide Gel Electrophoresis  
 

A polyacrylamide resolving gel was cast in a Hoeffer Mighty Small gel kit, comprising 12% 

acrylamide:bis-acrylamide (37.5:1), 375 mM Tris pH8.8 and 0.4% (w/v) SDS. Once the resolving 

gel had set, a stacking gel (4% acrylamide:bis-acrylmide (37.5:1), 125 mM Tris pH 6.8, 0.4% 

(w/v) SDS) was cast above the solving gel. Both gels were polymerised by 10% (w/v) Ammonium 

persulphate (APS) and N,N,N,’,N’-Tetramethylethylenediamine (TEMED). To enable a straight 

interface between both gels, 96% (v/v) ethanol was overlain on the resolving gel while it set. The 

ethanol was then removed and the stacking gel was poured. A well-shaped comb was inserted into 

the unpolymerised stacking gel to create wells of selected size and number within the gel. Protein 

samples were mixed 5:1 with a 6 x sample buffer (6 x; 2.5% (w/v) bromophenol blue, 5% (v/v) b-

mercaptoethanol, 20% (v/v) glycerol, 63.5 mM Tris pH 6.8, 0.4% (w/v) SDS). 5-10 µg protein 
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samples and molecular weight standards were heat-denatured by 10-minute incubation using an 

Eppendorf Mastercycler Gradient thermocycler at 95°C. 20 µL maximum sample volume was 

pipetted into SDS-PAGE wells. SDS-Polyacrylamide Gel Electrophoresis (SDS-PAGE) utilised a 

Tris-glycine buffer system (Laemmli 1970). Gels were run at 180 volts (V) once submerged in 

SDS-PAGE running buffer (25 mM Tris pH 8.3, 190 mM glycine, 0.1% (w/v) SDS). The 

procedure was concluded once the dye front has migrated to the bottom of the gel. 

 

 

2.7.1.2 Development of SDS-PAGE 
 

Detection of separated protein were visualized by staining overnight with Instant Blue (Sigma-

Aldrich). Stained gels were rinsed in H2O and analysed using the Syngene GeneSnap G:Box Gel 

Documentation and analysis system. 

 

 

2.7.1.3 Western blotting 
 

Poly-histidine tagged recombinant proteins were initially separated by SDS-PAGE (Section 

2.7.1.1) along with histidine tagged protein markers (Invitrogen). The resolving gel was incubated 

in transfer buffer (25 mM Tris pH 8.3, 192 mM Glycine, 20% methanol (v/v) and 0.05% SDS) 

and layered on a PVDF membrane (Hybond-P, GE Healthcare) which was pre-soaked in methanol 

followed by a subsequent wash in deionising water followed by submersion in transfer buffer. The 

membrane and gel were placed within an electroblotting kit (BioRad) for one hour and thirty 

minutes at 120 V. To prevent non-specific binding, membranes were incubated at room 

temperature for 1 hour in 10% milk powder TBS solution plus 0.1% (w/v) Tween-20 (TBS-T). 

Membrane were then placed overnight still within the milk TBS-T solution at 4°C. 

 

Membranes were washed on three occasions with TBS-T for 10 minutes each followed by 

incubation in 5% milk TBS-T solution plus 20 µL of primary antibody (Anti-His IgG mouse 

monoclonal) (Roche) for one hour. Performed three 10 minutes TBS-T washed followed by 

incubation in 5% milk TBS-T solution plus 10 µL of secondary antibody (Anti-mouse IgG) and 
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horseradish peroxidase (Sigma) for 2 hours. Concluded with three final 15 minutes washes within 

TBS-T.  

 

The ECL solutions A and B (GE Healthcare) were mixed together within a darkroom and applied 

to the membrane for two minutes. Remove Excess solution was removed from the membrane and 

inserted within an cassette. The membrane was exposed to x-ray film for 5 minutes and then 

developed. 

 

 

2.7.2 Fractionation of lysed E. coli cells  
 

Weighted frozen cell pellets containing cells that over-expressed proteins of interest were thawed 

on ice and were resuspended per gram at 4°C with 3 mL of phosphate buffer saline (PBS) 

containing 20 µg.mL-1 DNAse, 1 µM of protease inhibitors leupeptin and pepstatin and 2.5 mg.mL-

1 chicken egg white lysozyme.  

 

Dependent upon the total volume of the resuspended cell solution, cells were lysed by two 

methods. Small volumes less than 10 mL such as those used in expression trials were sonicated 

using a Bandelin Sonoplus sonicator at 30% power on ice in three sets of 10 second periods 

interspaced by 20 seconds of cooling on ice. An aliquot of lysed cells was retained from each 

sample, and the remaining cell lysate was pelleted by centrifugation at 3,200 x g in an Eppendorf 

centrifuge 5810R for 10 minutes at 4°C. A consistent volume aliquot of the soluble phase of the 

eppendorf sample was isolated and run on an SDS-PAGE gel (Section 2.7.1.1 SDS-Page Gel 

Electrophoresis) along with the isolated whole cell lysate aliquot to determine percentage of 

soluble protein expressed.  

 

Large volume cell suspensions greater than 100 mL were lysed by gradual passage through a 4°C 

30 kpsi continuous cell disruptor (Constant Cell Disruption Systems) three times on ice. The 

resultant lysate was then pelleted by centrifuged at 4°C for 40 minutes at 25,000 x g. The 

suspension from this step contained solubly expressed proteins and membranes. The membrane 

fraction was further purified if required by further centrifugation in a Beckman Ti45 rotor at 4°C, 
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at 100,000 x g for 1 hour. The resulting pellet was isolated and resuspended using a glass 

homogenizer in a membrane resuspension buffer (25 mM Tris pH 7.5, 10 mM MgCl2, 1 M NaCl, 

20 mM (v/v) Glycerol). Proteins were extracted from the membrane fractions with 2% (v/v) Triton 

X-100 with gentle agitation gently at 4°C for 2 hours. The samples were then ultracentrifuged at 

150,000 x g at 4°C for 1.5 hours. 

 

 

2.7.3 Recombinant protein purification 
 

Any deviation from the methods described are stated in the relevant chapter. 

 

 

2.7.3.1 Affinity chromatography 
 

Immobilised metal affinity chromatography (IMAC) was utilised to purify poly-histidine tagged 

proteins. Two IMAC methods were implemented within this thesis using either a pre-packed 5 mL 

Nickel or Colbalt HisTrap column (GE healthcare) or a 5 mL column TALON Colbalt Metal 

Affinity Resin (Clontech) packed within an Econo-Pac® Chromatography column (BioRad). In the 

former case, equilibration, sample loading, column washing and final elution of the target protein 

was performed with the column as poured. In the latter case, the TALON resin was equilibrated, 

mixed with the protein sample with gentle agitation and then poured as a column, subsequent to 

which it was washed and then eluted to obtain the desired protein. 

 

For both IMAC methods, the metal resin was washed with 10 column volumes (CV) of sterile 

water, followed with 10 CV of purification buffer A (25 mM Tris pH 7.5, 10 mM MgCl2, 1 M 

NaCl, 20% (v/v) glycerol, 0.25 (v/v) TritonX-100) supplemented with 15 mM Imidazole. Pre-

packed columns were loaded with sample. Alternatively sample was mixed with 5 mL TALON 

Cobalt beads and incubated at 4°C for 1 hour, at which point the resin was poured as a column. 

Both IMAC methods then followed the same protocol. 
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Flow through sample loading for both column types was collected and columns were washed with 

a further 10 CV of purification buffer A plus 15 mM Imidazole before purified proteins were eluted 

in convenient volume fractions by a purification buffer A plus 1 M Imidazole gradient at 1 mL.min-

1 over 10 CV unless otherwise stated. Protein elutions were monitored by absorbance at 280 nm 

by the AKTA 10/100 system. Identification of protein fractions of interest and assessment of 

sample purity was achieved using SDS-PAGE. 

 

Pre-packed columns were cleaned with 10 CV of purification buffer A followed by 10 CV of 20% 

(v/v) Ethanol and stored at 4°C. 

 

 

2.7.3.2 Size exclusion chromatograph 
 

Samples were separated at room temperature by size either through the use of a Bio-gel® P200 

column (Bio-Rad) for peptidoglycan precursors or a Superdex 200 (GE Healthcare) for protein 

purification.  

 

A Bio-gel® P200 column (dimensions: diameter 2.5 cm/height 80 cm/volume 393 mL) was 

attached to the AKTA 10/100 system (GE healthcare) and equilibrate overnight in 2 CV of sterile 

water at a flow rate of 1 mL.min-1. Samples were resuspended after freeze-drying in 2 mL of sterile 

water and loaded onto the column with a 5 mL injection loop. The column was then eluted at a 

flow rate of 1 mL.min-1 where 5 mL fractions were collected. Elutions of species of interest were 

monitored by absorbance measured at 254 and 280 nm. 

 

The Superdex 200 column was attached to the AKTA 10/100 system (GE healthcare) and 

equilibrated in 2 CV of Gel filtration buffer (20 mM Tris pH 8.0, 100 mM NaCl and 10% (v/v) 

Glycerol). Samples were concentrated (Section 2.7.5) to 2 mL and loaded onto the column with a 

5 mL injection loop. The column was eluted at a flow rate of 1 mL.min-1 where 0.5 mL fractions 

were collected. Elutions were monitored by absorbance measured at 254 and 280 nm. 
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2.7.3.3 Ion exchange chromatography 
 

Purified protein samples were further purified by anion exchange chromatography. A MonoQ 5/50 

column (Sigma Aldrich), packed with the beads of the strong anion exchanger MonoQ, containing 

quaternary amine groups, mounted on an AKTA 10/100 system was washed with 10 CV of sterile 

water. The column was equilibrated with 10 CV of MonoQ buffer A (20 mM HEPES pH 7.6, 10 

mM NaCl, 10% (v/v) Glycerol), 10 CV of MonoQ buffer B (20 mM HEPES pH 7.6, 1 M NaCl, 

10% (v/v) Glycerol) and finally 10 CV of MonoQ buffer A. Samples were either concentrated or 

resuspended in MonoQ buffer A to a 2 mL final volume. Samples were injected onto the column 

followed by 10 CV of MonoQ buffer A. All flow through volumes were collected. Bound samples 

were eluted by a gradual NaCl concentration increase due to the percentage of MonoQ buffer B 

present. Small volume fractions were collected and samples identified by absorbance measured at 

218/254/280 nm or by SDS-PAGE.  

 

Peptidoglycan precursor samples resulting from fractionation by Bio-Gel P200 by size exclusion 

chromatography (Section 2.7.3.2) were further purified using the same method with alternate 

buffer compositions. Buffer A consisted of 10 mM Ammonium acetate pH 7.6 and buffer B 

consisted of 1 M Ammonium acetate pH 7.6. Small volume fractions were collected and samples 

identified by absorbance measured at 218/254/280 nm. 

 

 

2.7.4 Buffer exchange dialysis of recombinant protein  
 

Proteins purified in one buffer were often required to be transferred to another buffer. Specific 

buffers are stated within the relevant chapters. Generally, a 1 litre dialysis buffer was assembled 

and stored at 4°C. Dialysis tubing sufficient in length to contain the protein sample was washed in 

H2O and tied at one end and clipped to prevent leakage. The protein sample was added to the 

tubing and the other end was tied and clipped. The dialysis tubing was submerged in the required 

dialysis buffer and placed overnight at 4°C with a magnetic stirring bar on a magnetic stirrer. The 

buffer was gently and continually stirred overnight, to facilitate buffer exchange by dialysis.  
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2.7.5 Concentration of recombinant protein 
 

Dilute proteins were concentrated through a Satorius Vivaspin® centrifugal concentrator. 

Concentrator selection was dependent upon the molecular weight of the protein, being 

concentrated. Concentrators with molecular weight cut offs of 10, 30 or 100 kDa were used as 

appropriate. Large volumes were concentrated in stages within a 4°C centrifuge (Eppendorf 

Centrifuge 5810R) at 1,800 x g until the requisite protein volumes and concentrations were 

obtained. 

 

 

2.7.6 Quantification of recombinant protein 
 

There were two methods used to quantify protein concentration, the choice of either depending 

upon the presence of detergents. 

 

 

2.7.6.1 Bio-rad protein quantification 
 

Purified proteins in the absence of detergents were quantified using a Bio-rad colorimetric assay 

to determine concentration. 1 mL of diluted Bio-rad reagent (1:5; Bio-rad:H2O) plus 2 µL of the 

protein sample buffer was used as a blank control in plastic semi-micro cuvettes where absorbance 

was measured with a Jenway 6306 UV-visible spectrophotometer at 595 nm. 2 µL of purified 

protein sample was mixed with the reagent and absorbance measured. Samples exceeding the 

measureable range were diluted and multiple readings were taken to acquire an average. The 

formula for calculating protein concentration of a known sample is noted below; 

 

[Protein] (µg.mL-1) = (A595nm/0.1) x 1.95 x dilution factor x (1000/2). 

 

Formula based on a linear response of the assay between 0-20 µg bovine serum albumin (BSA) 

where an A595 of 0.1 was generated by 1.95 µg protein in the assay. 
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2.7.6.2 Bicinchoninic acid (BCA) protein quantification 
 

Purified protein in the presence of detergents were quantified using a Thermo Scientific Pierce 

BCA protein assay kit to determine concentration. Manufacturer’s instructions were followed. 25 

µL serial dilutions of a known BSA protein standard were combined with 1000 µL working BCA 

reagent (reagent A and B mixed at a 50:1 ratio) such that 10, 20, 30, 40 and 50 µg BSA were added 

to each assay. Solutions were incubated at 37°C for 30 minutes and absorbance was measured at 

562 nm using a Jenway 6306 UV-visible spectrophotometer. Standard values obtained were 

plotted against known standard concentrations and the concentration of the unknown sample 

treated identically to the BSA samples was interpreted from the resulting calibration curve. 

 

 

2.8 Synthesis of Lipid II and intermediates 
 

2.8.1 Biosynthesis of cytoplasmic peptidoglycan intermediates 
 

The protocol for production of individual cytoplasmic peptidoglycan precursors employed here 

was developed from the method described by Lloyd et al. (2008). Dependent upon the precursor 

required specific components of the cytosolic peptidoglycan pathway were incubated for 18 hours 

at 37°C within a final 2 mL reaction volume. The production of N-glycolylated variants of any 

described precursor was obtained by the exchanging of UDP-MurNAc from the reaction mixture 

with UDP-MurNGlyc (GVK biosciences). 

 

For the production of UDP-MurNAc-L-Ala, synthesis contained: 50 mM HEPES pH 7.5, 10 mM 

MgCl2, 50 mM KCl, 1 mM dithiothreitol (DTT), 200 µM NADPH, 6 mM ATP, 25 mM isocitrate, 

40 units isocitrate dehydrogenase (Sigma Aldrich), 500 units pyruvate kinase (Sigma Aldrich), 

200 mM PEP, 10 mM UDP-GlcNAc, 30 mM L-Ala, 300 µg MurA, 2000 µg MurB and 750 µg 

MurC. 
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For the production of UDP-MurNAc-L-Ala-D-Glu, synthesis contained the previously mentioned 

components plus 30 mM D-Glu and 1000 µg MurD. For the production of UDP-MurNAc-L-Ala-

D-Glu-L-Lys/m-DAP, synthesis contained the previously mentioned components plus 30 mM L-

Lys/m-DAP and 1250 µg MurE. For the production of UDP-MurNAc-L-Ala-D-Glu-L-Lys/m-

DAP-D-Ala-D-Ala, synthesis contained the previously mentioned components plus 30 mM D-

Alanyl-D-Ala and 1500 µg MurF. 

 

After incubation, synthesis were diluted with 5 mL of sterile water and the protein components 

were filtered out using a 10 kDa Vivaspin® centrifugal concentrator. 

 

 

2.8.1.1 Purification of cytoplasmic peptidoglycan intermediates 
 

Purification of the synthesised intermediates were performed by anion exchange chromatography 

as described in Section 2.7.3.3. Removal of acquired ammonium acetate was by size exclusion 

chromatography as described in Section 2.7.3.2 or more usually by three rounds of lyophilisation 

from water (Section 2.8.2). 

 

 

2.8.1.2 Quantification of cytoplasmic peptidoglycan intermediates 
 

The peptidoglycan precursors were quantified using the absorbance of the uracil ring (extinction 

coefficient at 260 nm = 10,000 M-1cm-1) permitting the measurement of produced precursor 

concentration within a quartz cuvettes using a Jenway 6303 UV-visible spectrophotometer. 

 

 

2.8.1.3 Biotinylation of UDP-MurNAc-pentapeptide 
 

UDP-MurNAc-pentapeptide and UDP-MurNGlyc-pentapeptide were synthesised as described in 

Section 2.8.1. Synthesised precusors were biotinylated using the EZ-linkTM Sulfo-NHS-LC-
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Biotinylation Kit (Sigma Aldrich) following the manufacturer’s instructions. Samples were freeze 

dried, resuspended in 50 mL sterile water and freeze dried again. Labelled and unlabelled 

monosaccharides were isolated by ion exchange chromatography. Lipid synthesis was conducted 

as described in Section 2.8.4. 

 

 

2.8.2 Lyophilisation of peptidoglycan intermediates 
 

Excess liquid was removed from dissolved peptidoglycan/lipid/protein solutions by freeze-drying. 

Solutions were transferred to round bottomed flask able to sufficiently accommodate the volume 

contained. Flasks were placed within liquid nitrogen and rotated constantly to evenly distribute the 

frozen solution throughout the inside of the flask. Flasks were placed onto the freeze-dryer and the 

vacuum pressure applied.  

 

 

2.8.3 Preparation of bacterial cell membrane enzymes for Lipid II synthesis  
 

Single colonies of M. flavus/ B. subtilis were inoculated in either LB or minimal media 100 mL 

overnight at 37°C with 180 rpm agitation. 800 mL of either fresh media was re-inoculated with 4 

mL 20% (w/v) glucose and 15 mL of overnight bacterial culture in 2 litre flasks. Flasks were 

subsequently incubated at 37°C and 180 rpm. The optical density at 600 nm of the cell culture was 

evaluated every hour and cells were harvested at 10,000 x g for 20 minutes at 4°C once cells 

entered log phase. The supernatant was discarded and pellets were resuspended in cold 

resuspension buffer (20 mM Tris pH 7.5, 1 mM MgCl2, 2 mM b-mercaptoethanol).  

 

Samples were centrifuged at 15,000 x g for 20 minutes at 4°C, the supernatant was removed and 

the pellet was resuspended in buffer at a ratio of 3 mL per gram of cells. 2.5 mg per mL of chicken 

egg lysozyme was added to the resuspended cells. The cells were incubated at 4°C with steady 

agitation for 20 minutes. Bacterial cells were lysed by repeated processing through a continuous 

cell disruptor (Constant Cell Disruption Systems) at 4°C and a constant pressure of 30 kpsi. Lysed 
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samples were transferred to centrifuge tubes and centrifuged at 10,000 x g for 1 hour at 4°C. The 

resulting supernatant was centrifuged again at 75,000 x g for 1 hour at 4°C. The pellet containing 

the cell membranes was retained and resuspended in a small volume (2.5 mL) of resuspension 

buffer. Protein concentration was determined with the Bio-rad protein assay (Section 2.7.6.1). 

Resuspended membranes were stored at -80°C. 

 

 

2.8.4 Small-scale synthesis of Lipid II  
 

Based upon published work by Breukink et al. (2003). 0.654 µg of extracted cellular membranes, 

0.57 mg.mL-1 MurG, 6 mM UDP-GlcNAc (Sigma-Aldrich), 4 mM UDP-MurNAc-pentapeptide 

or UDPMurNGlyc-pentapeptide, 4.8 µmol undecaprenyl phosphate and 40 µL buffer (100 mM 

Tris.HCl pH 8, 5 mM MgCl2, 1% (v/v) Triton X-100) were combined in a final volume of 200 µL 

and were incubated for 4 hours at 37°C. To isolate synthesized lipids, an equal volume of 6 M 

pyridine-acetate pH 4.2 and two volumes of N-butanol were added to the incubated synthesis. 

Reactions were transferred to glass tubes and centrifuged at 3,000 x g for 10 minutes. The upper 

phase (N-butanol) was retained, and washed with an equal volume of H2O. The upper lipid phase 

was subjected to rotary evaporation and frozen at -80°C. 

 

 

2.8.4.1 Purification of Lipid II 
 

Purification of synthesized lipids was conducted by anion exchange chromatography. 15 mL glass 

pipettes were clamped upright, glass wool was placed inside the base and 4 mL DEAE-Sephacel 

resin was poured into each. Columns were then washed with 40 mL of 1 M ammonium acetate, 

followed by 60 mL of H2O and finally 38 mL of solvent A (chloroform:methanol:water; 2:3:1). 

The flow-through for each wash was disposed of. Dried down synthesized lipids were resuspended 

completely in 6 mL of solvent A and loaded onto a DEAE-Sephacel column. The subsequent 

column flow through was collected for TLC analysis. Unbound contaminants were eluted from the 

column with 3 column volumes of solvent A. Separation of Lipid II from unreacted undecaprenyl 
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phosphate was achieved by eluting the column isocratically with increasing concentrations of 

ammonium bicarbonate (AB) between 50 mM to 1 M in solvent A. Aliquots from each elution 

were rotary evaporated and stored at -80°C for TLC analysis. 

 

 

2.8.4.2 Thin layer chromatography (TLC) of synthesized Lipid II 
 

A TLC tank was pre-warmed at 37°C. TLC plates were marked in pencil to evenly separate out 

pipetted samples. Marks were drawn 2.5 cm from the bottom of the plate and 1.5 cm from the side. 

The TLC plates were pre-heated at 60°C for 20 minutes prior to use. Purified dried lipid fractions 

were resuspended in a small volume (15 µL) of solvent A, and pipetted onto marked spots on the 

TLC plates in 2 µL aliquots and permitted to air dry. TLC mobile phase 

(chloroform:methanol:water:ammonia (88:48:10:1)) was poured into the TLC tank to a depth of 1 

cm. The loaded TLC plates were placed into the TLC tank which was then covered. Thin layer 

chromatography was allowed to run at 25°C for around 3 hours until the mobile phase was within 

1 cm of the top of the TLC plate. To visualize the separated species, plates were stained in a sealed 

container with iodine vapours. Results were scanned immediately as the stain faded rapidly. 

 

 

2.8.4.3 Quantification of Lipid II 
 

Two small 50 µL aliquots of Lipid II were dried down using nitrogen to remove the 

chloroform/methanol/water (2:3:1). A control aliquot of chloroform/methanol/ water (2:3:1) was 

also dried down. The contents of each vial were resuspended in a total of 50 µL volume of 50 mM 

HEPES, 10 mM MgCl2, 30 mM KCl, 1.5% (w/v) CHAPS pH 7.6 and supplemented with 50 µL 1 

M HCl. Vials were then boiled for 20 minutes, followed by a 5 minute 3,000 x g centrifugation. 

The pH of each vial was adjusted by addition of 1 M NaOH to pH 7.6. 

 

Quantification of Lipid II was measured as a function of phosphate released in the above acid 

hydrolysis. The structure of Lipid II contains two equivalents of Pi which were released from the 
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lipid in the form of inorganic pyrophosphate and probably also phosphate during acid hydrolysis. 

Therefore samples were treated with inorganic pyrophosphatase (IPP) to convert all remaining 

pyrophosphate to free Pi which was then measured using purine nucleoside phosphorylase (PNP) 

to catalyse the phosphorolysis of 7-methyl-6-guanosine (MESG) (Berry and Associates, USA) to 

ribose 1-phosphate and 7-methyl-6-thioguanine with the concomitant increase in absorbance at 

360 nm (A360 = 10000 M-1 cm-1 per Molar phosphate). 

 

The assay consists of 50 mM HEPES pH 7.6, 10 mM MgCl2, 1 units of Inorganic Pyrophosphatase, 

0.2 mM MESG and 1 unit of Purine Nucleoside Phosphorylase. 

 

 

2.9 Peptidoglycan intermediate accumulation 
 

2.9.1 B. subtilis peptidoglycan intermediate accumulation 
 

Single B. subtilis colonies were inoculated in minimal media (Section 2.2 Growth media) and 

grown overnight at 37°C. Subsequent cultures were then used to inoculate 1 L of minimal media, 

grown at 37°C and 180 rpm. OD600nm readings were taken until cells reached OD600nm 1.0. Pywac 

reporter screened cell wall active compounds and the positive control antibiotic vancomycin, were 

added at twice their MIC values and cultures were incubated for a further three hours. Cells were 

harvested by centrifugation at 3,200 x g for 10 minutes, the supernatant was then removed and the 

cell pellets were stored at 4°C. 

 

 

2.9.2 Trichloroacetic acid extraction of peptidoglycan intermediates 
 

Harvested pellets were cooled on ice and resuspended in ice cold 10% (w/v) Trichloroacetic acid 

(TCA), at a ratio of five mLs TCA per gram of pellet wet weight and incubated at 4°C with 

agitation for 30 minutes. Concurrent with the incubation, a Beckman JA 25.5 centrifuge rotor was 

also cooled at 4°C. After incubation, samples were centrifuged at 48,000 x g for 10 minutes at 
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4°C. The resulting supernatant was retained on ice. The TCA preciptitation protocol was repeated 

twice more on the pellet of the first extraction, with the volume of TCA half of the first extraction. 

The three supernatants were then combined.  

 

 

2.9.3 Di-ethyl ether extraction of TCA of peptidoglycan intermediate pool 
 

The total TCA supernatant was poured into a separating funnel and equal volume of ice cold di-

ethyl ether was added. The combined volume was mixed gently to extract the TCA. The ethanol 

and aqueous phases were separated. The aqueous phase was retained while the ether phase 

containing the TCA was discarded. The aqueous phase was reextracted twice more with equal 

volumes of ether. The pH of the aqueous phase was then adjusted to pH 7.2. The sample was rotary 

evaporated to remove residual solvents and freeze dried. Cell wall intermediates were isolated by 

size exclusion chromatography (Section 2.7.3.2) and ion exchange chromatography (Section 

2.7.3.3) and identified by Mass spectrometry (Section 2.12). 

 

 

2.10 Assessment of antimicrobial binding against biotinylated Lipid II 

variants 
 

2.10.1 Surface Plasma Resonance (SPR) 
 

Streptavidin coated SPR chips (GE healthcare) were analysed at 25°C using a Biacore T200 (GE 

healthcare). Individual labelled vials were inserted into the system containing 20 µg.mL-1 

biotinylated N-acetylated Lipid II DAP, biotinylated N-glycolylated Lipid II DAP, and biocytin to 

act as a control. The four flow cells of the SPR chip were washed three times with degassed and 

filtered HBS-EP buffer (0.01 M HEPES pH 7.4, 0.15 M NaCl, 3 mM EDTA and 0.005% (v/v) 

Surfactant P20). Each flow cell was prepared by immobilizing the specific biotinylated lipid or 

biocytin control onto the surface and washed once more with HBS-EP buffer. Investigated 

antimicrobials were prepared by serial dilution from concentrated stocks, with the DMSO 
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concentration, if required for antimicrobial solubility maintained across the concentration range. 

The antimicrobial dilutions were aliquoted into individual vials, labelled and randomized within 

the Biacore T200. The sensorgram was performed by injection of antimicrobials at 20 µL.min-1 

across all concentrations. Increasing concentrations of NaCl (0.5-5 M) were present to remove 

bound ligands if required to completely regenerate the SPR chip.  

 

 

2.10.2 Bio-Layer Interferometry (BLI)  
 

Biosensors coated in streptavidin or nickel-charged tris-nitriloacetic acid (Ni-NTA) were 

submerged in selected assay buffers for 10 minutes. The streptavidin assay buffer for Lipid II 

variants consisted of 25 mM Tris pH 8.0 and 0.1% (v/v) Triton X-100. The Ni-NTA assay buffer 

for PBP enzymes PonA1/A2 consisted of 50 mM Bis-Tris pH 8.0, 20 mM NaCl and 0.1% (v/v) 

Triton X-100. Within a 96 well black opaque microtiter plates known concentrations of 

biotinylated Lipid II variants and antimicrobials of interest were aliquoted into columns. 

Biosensors and the microtiter plate were inserted and integrated into the Octet RED96 biolayer 

interferometer system (FortéBio, Pall Inc.). The sensors were sequentially programmed to be 

submerged first into the wells containing the 2 µg.mL-1 biotinylated lipid II or  2 µM poly-histidine 

tagged PonA1/A2, to reversibly immoblise the ligands to the sensor. The bound sensors were 

washed three times in assay buffer.  The BLI assay was performed at 30°C and consisted of a 60 

second baseline measurement in assay buffer, a 120 second association step against a range of 

selected antimicrobial concentrations and a 120 second disassociation step in assay buffer. 
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2.11 Spectrophotometric assays 
 

2.11.1 Coupled NADH-linked pyruvate kinase/lactate dehydrogenase assay for 

amino acid Mur ligase activity 
 

Amino acid ligase activity was measured at an absorbance of 360 nm in a Varian Cary 100 

spectrophotometer by coupling the ligase catalysis generation of ADP to pyruvate kinase which 

rephosphorylated the ADP to ATP with the concomitant generation of pyruvate. Lactate 

dehydrogenase reduced the pyruvate to lactate oxidising one equivalent of NADH to NAD+ with 

the consequent drop in NADH absorbance at 340 nm. The addition of a single amino acid to the 

UDP-MurNAc/MurNGlyc intermediate consumes ATP releasing ADP and Pi from the reaction. 

ADP was then monitored over time as described above. 

 

The reaction mixture within a quartz cuvette contained 50 mM HEPES pH 7.6, 10 mM MgCl2, 1 

mM DTT, 50 mM KCl, 1 mM ATP, 2 mM PEP, 0.2 mM NADH, 5.8 Units/200 µL of Pyruvate 

kinase/Lactate dehydrogenase mix, 0.4 mM UDP-MurNAc/MurNGlyc intermediate and 40 

µg.mL-1 Mur enzyme. Once a level baseline was established 5 mM of the required amino acid was 

added. Absorbance was read over time at 37°C. 

 

 

2.11.2 Amplex Red assay for transpeptidase activity 
 

Transpeptidase activity was measured at 30°C with a Varian Cary 100 spectrophotometer by 

following the release of the terminal D-Alanine residue from the peptide stem of Lipid II variants. 

Here, D-alanine was oxidatively deaminated to pyruvate and hydrogen peroxide, where the latter 

was consumed by horseradish peroxidase (HRP) with the concomitant conversion of amplex red 

to the chromophore resorufin with an intense absorbance of 555 nm (ɛ1cm, 555 = 55, 000 M-1.cm-1). 

Amplex Red assay measured absorbance at A555nm. The assays were performed in quartz cuvettes 

and were comprised of 50 mM HEPES pH 7.6, 10 mM MgCl2, 50 µM Amplex Red, 33.51 

mM.min-1 d-amino acid oxidase (DAAO), 14.82 mM.min-1 HRP. A level baseline was achieved 



 
 

71 

before individual additions of Lipid II and PBP were inserted into the reaction mixture. Reactions 

were measured at 555 nm, if no activity was observed E. coli PBP 1b was added in excess as a 

positive control to the mixture to prove the reaction mixture was correct. The concentrations 

necessary for the assay for both DAAO and HRP catalytic activity were calculated independently.  

 

DAAO activity was measured by Dr. Adrian Lloyd at an absorbance of A340nm, the variation 

between the absence or addition of the D-amino acid, D-alanine (ɛ1cm, 340 nm = 6,220 M-1.cm-1) 

within the reaction volume. DAAO was prepared by dilution of the enzyme stock with 50 mM Tris 

pH 7.5, 50 mM lactitol, 10% (v/v) Glycerol, 5 mM EDTA, to a starting concentration of 54.13 

nM. The DAAO assay consisted of 50 mM Bis-Tris propane pH 8.5, 0.1% (v/v) Triton X-100, 20 

mM MgCl2, 5.8 units pyruvate kinase/lactate dehydrogenase mix, 0.3 mM NADH, 1.35 nM 

DAAO. The absorbance at 340 nm and 37°C was followed in a Cary UV/Vis spectrophotometer 

and after a control rate was determined, DAAO activity was initiated with 0.1 mM D-alanine. 

 

Horse radish peroxidase catalytic activity was measured at A555nm. The reaction volume consisted 

of 50 mM Bis-Tris propane pH 8.5, 20 mM MgCl2, 50 mM Amplex Red and 18.5 pM HRP. The 

enzyme was initially prepared in 50 mM Bis-Tris propane pH 8.5. Once a level baseline was 

achieved, hydrogen peroxide was added to a final concentration of 20 µM to initiate HRP activity. 

The resorufin extinction coefficient (ɛ1cm, 555 = 55, 000 M-1.cm-1) was used to calculate HRP 

activity. 

 

 

2.12 Mass spectrometry  
 

Purified intermediates and lipids were resuspended in 50% acetonitrile using a Waters Synapt G2 

Q-TOF Mass Spectrometer and analysed by negative or positive ion nanospray ionization mass 

spectrometry (ESI-MS) by Dr Adrian Lloyd and Mrs. Anita Catherwood, conducted within the 

Proteomic Facility RTP (School of Life Sciences, University of Warwick). Data analysis of the 

products were verified using MassLynx (Waters, USA). The instrument was calibrated in either 

ion mode with sodium iodide capillary voltage was 1.5 kV. 
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Chapter 3. The role of the N-glycolylated muramic acid in the  

protection of mycobacteria from host hydrolytic enzymes 
 

 

3.1 Introduction 
 

The core focus of this thesis is the role of the N-glycolylation of mycobacterial peptidoglycan 

against the host immune response of various organisms through utilization of hydrolytic enzymes. 

The unique structural modification identified in the Actinobacteria family (Raymond, et al. 2005) 

by which MurNAc subunits within the peptidoglycan sacculus are modified with oxygen is 

dependent upon the enzyme NamH (Rv3808) (Section 1.3.8.4), which converts UDP-MurNAc to 

UDP-MurNGlyc to form the MurNGlyc residues in the actinobacterial peptidoglycan. 

 

 

3.2 NamH deficient mutant 
 

The namH gene is comprised of 1551 base pairs encoding a 516 amino acid 57 kDa enzyme 

(Reddy, et al. 2009). To establish the function of the protein encoded by the namH gene, the 

construction of a namH mutant from the saprophyte M. smegmatis (Raymond, et al. 2005) was 

achieved. In this instance, excision of the known dominant b-lactamase gene blaS, (Flores, et al. 

2005) led to the formation of the strain PM965 followed by allelic exchange of the namH gene, 

leading to the creation of the blaS-; namH- double mutant PM979. Mass spectrometric analysis of 

the mycobacterial cell wall composition of the two newly created strains indicated that PM979 

produced solely MurNAc sugars throughout the peptidoglycan cell wall layer whereas the PM965 

blaS- strain incorporated both MurNGlyc and MurNAc moieties in a ratio of 7:3 during standard 

aerobic growth conditions (Raymond, et al. 2005). Previous investigations into PM979 concluded 

that namH deficient strains were 2-fold more susceptible to human lysozyme in minimal media 

such as 7H9 and 8-fold more susceptible in rich media such as LB (Raymond, et al. 2005). It was 

therefore proposed that NamH was important in hydrolytic enzyme resistance due in part to the 
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increase in hydrogen bonding along peptidoglycan chains (Raymond, et al. 2005) and interference 

caused by the N-glycolyl modification on recognition by peptidoglycan hydrolases.  

 

 

3.3 Experimental aims 
 

The acquisition of the two strains, PM965 and PM979 permitted the expansion of the investigation 

into the role of the N-glycolyl modification towards the mycobacterial response to various lytic 

hydrolases. Therefore, an investigation into the impact of N-glycolylation of peptidoglycan 

muramyl residues have on the sensitivity of M. smegmatis towards the hydrolytic enzymes, 

lysozyme and b-hexosaminidase was pursued. Further, exploration of peptidoglycan lytic 

properties of these enzymes at pH ranges physiologically similar to those found in and around the 

phagolysosome and plasma membrane was also undertaken. 

 

From this point onwards, M. smegmatis strain PM965 is referred to as wild type and PM979 as 

DnamH. The strains obtained from the Pavelka group were sequenced before delivery. 

 

 

3.4 Aerobic growth characterisation of M. smegmatis strains 
 

In order to characterize the growth kinetics of wild type and namH- M. smegmatis to determine 

any strain-specific variation in aerobic growth, the two M. smegmatis strains were inoculated from 

frozen stocks in nutrient 7H9 media supplemented with ADC and Tween80 (Section 2.2) in baffled 

flasks to maximise aeration during the normal phenotypical mycobacterial growth in aerobic and 

nutrient rich conditions. Results are depicted in Figure 3.1.  
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Figure 3.1 M. smegmatis Wild type and DNamH aerobic growth comparison. Cells were grown in 96 well 
microtiter plates in triplicate at 37°C with intermittent shaking every 20 minutes, absorbance was measured at OD600nm 
at 3 hour intervals for 48 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80). The 
cultured M. smegmatis wild type (Black) and DNamH (Blue) strains were standardized to an OD600nm of 1 and diluted 
further by a factor of 103 prior to incubation. Error bars represent standard deviation of triplicate measurements. 
Results show no observable variation between strains under standard growth conditions as defined by a student’s t-
test with a p-value >0.05. Ns = not statistically significant. 
 

 

In the previous investigation by the Pavelka group it was noted that the namH gene was not an 

essential requirement for the cell. The data shown in Figure 3.1 reports the same findings in aerobic 

and nutrient rich conditions. Both strains achieved a normal cellular growth pattern, exiting 

apparent lag phase after 24 hours and reaching stationary phase after 46 hours. The doubling time 

(Td) calculated from the exponential growth phase between hours 24 and 33 for the wild type 

strain (Figure 3.1: Black line) was 6.81 hours and for the DNamH strain (Figure 3.1: Blue line) 

was 6.96 hours. The Td variation between the two strains during exponential phase led to a 

measurable difference when comparing the area under the curve (AUC) for each strain. The 

DNamH produced an area under the curve value 8% less than the wild type. The growth curves of 

the wild type and NamH deficient strains were statistically analysed using an unpaired t-test to 

observe if there was a significant statistical difference between the two strains. A p-value less than 

0.05 permits the rejection of the null hypothesis that there is no statistically significant difference 

between two sets of data. The p-value was > 0.5 and so it was accepted that there was no observed 

difference between the two strains during normal cellular growth in nutrient media. 
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3.5 Anaerobic growth characterisation of M. smegmatis strains 
 

The N-glycolyl modification of MurNAc is only possible in the presence of molecular oxygen 

(Mahapatra, et al. 2005) and therefore the function of NamH is only significant in oxygen rich 

environments such as during normal cellular growth or during cellular resuscitation from a 

dormancy-like state amongst degraded granulomas. In a low oxygen environment or one that 

contains the absence of oxygen, the bacterial peptidoglycan sacculus can solely be formed from 

N-acetylated muramic acids. To ascertain the impact of an anaerobic environment on the 

phenotypic growth of the wild type and NamH- strains, the protocol adapted from Cordone, et al. 

(2011) was implemented. Cultures of 7H9 media supplemented with ADC and Tween80 

containing wild type and DNamH M. smegmatis strains were inoculated in baffled flasks in order 

to aerate the media and facilitate the incorporation of a higher percentage of MurNGlyc residues 

into the peptidoglycan of the wild type strain. Once cultures reached exponential phase, both 

strains were diluted to an OD600nm of 1 and 10-fold serial dilutions were pipetted onto both minimal 

media agar and tryptic soy broth (TSB) agar plates. These were incubated in anaerobic conditions 

for an extended period of 21 days to replicate the dormancy-like environment experienced by 

granuloma encased M. tuberculosis in infected macrophages. The strains were selected to be 

cultured on minimal media agar to mimic the nutrient and oxygen deprivation found within 

granulomas, whilst the TSB agar cultures were selected to mimic the absence of oxygen solely. 

Subsequently after 21 days the agar plates were transferred to aerobic conditions and incubated for 

a further 6 days to simulate the resuscitation of cells from the dormancy. The control for this 

experiment involved both media agar plates containing serial dilutions of both strains grown only 

in aerobic conditions for 6 days. The colony propagation controls before and after 6 day 37°C 

aerobic incubation are shown in Figure 3.2. 
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Figure 3.2 M. smegmatis colonization of selective nutrient agar during aerobic incubation. Serial dilutions of M. 
smegmatis strains wild type (top half of each plate) and DNamH (bottom half of each plate) grown on tryptic soy broth 
agar (top row) and minimal media (bottom row) plates for 0-6 days at 37°C in an aerobic environment. Serial dilutions 
labelled 1 (Dilution 101) to 8 (Dilution 108). A1-A2 Serially diluted M. smegmatis strains on TSB agar before 6 day 
aerobic incubation. B1-B2 Serially diluted M. smegmatis strains on TSB agar after 6 day aerobic incubation. C1-C2 
Serially diluted M. smegmatis strains on minimal media agar before 6 day aerobic incubation. D1-D2 Serially diluted 
M. smegmatis strains on minimal media agar after 6 day aerobic incubation. 
 

 

Results from Figure 3.2 indicate that both strains were culturable on both nutrient diverse agar 

plates within similar growth across the six days of aerobic incubation and were similarly able to 

colonise at a 10,000-fold dilution (10-4) from the initial starting OD600nm of 1. The minimal media 

(Figure 3.2: D1-D2) was observed to further permit culturable growth at a 100,000-fold dilution 

(10-5) for both strains. This slight disparity between the nutrient agar is likely due to an increased 

glucose concentration in the minimal media recipe compared to the tryptic soy broth (Section 2.2).  

 

The next stage of this investigation involved repeating the serial dilution of both strains on both 

sets of selected agar plates followed by incubation within an anaerobic environment for 21 days at 

37°C. Images of the serially diluted agar plated were taken before and after anaerobic incubation 

and are displayed in Figure 3.3. 
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Figure 3.3 M. smegmatis colonization of selective nutrient agar during anaerobic incubation. Serial dilutions of 
M. smegmatis strains wild type (top half of each plate) and DNamH (bottom half of each plate) grown on tryptic soy 
broth agar (top row) and minimal media (bottom row) plates for 0-21 days at 37°C in an anaerobic environment. Serial 
dilutions labelled 1 (Dilution 101) to 8 (Dilution 108). A1-A2 Serially diluted M. smegmatis strains on TSB agar before 
21 days anaerobic incubation. B1-B2 Serially diluted M. smegmatis strains on TSB agar after 21 days anaerobic 
incubation. C1-C2 Serially diluted M. smegmatis strains on minimal media agar before 21 days anaerobic incubation. 
D1-D2 Serially diluted M. smegmatis strains on minimal media agar after 21 days anaerobic incubation. 
 

 

The extended incubation period within a solely anaerobic environment led to the both strains being 

unable to visibly colonise the nutrient agar of either selective media at any investigated dilution 

(Figure 3.3). The anaerobically incubated agar plates were then placed within an aerobic incubator 

for six days, the equal time period as the solely aerobic controls at 37°C in Figure 3.2. Once 

completed, images of each plate were taken. The results of this experiment are presented in Figure 

3.4. 
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Figure 3.4 M. smegmatis colonization of selective nutrient agar during aerobic incubation following prolonged 
anaerobic incubation. Serial dilutions of M. smegmatis strains wild type (top half of each plate) and DNamH (bottom 
half of each plate) grown on tryptic soy broth agar (top row) and minimal media (bottom row) plates were incubated 
for 21 days at 37°C in an anaerobic environment. Plates were subsequently incubated aerobically at 37°C for 6 days. 
Serial dilutions labelled 1 (Dilution 101) to 8 (Dilution 108). A1-A2 Serially diluted M. smegmatis strains on TSB agar 
after 21 day anaerobic incubation. B1-B2 Serially diluted M. smegmatis strains on TSB agar after 21 days anaerobic 
incubation followed by 6 days aerobic incubation. C1-C2 Serially diluted M. smegmatis strains on minimal media 
agar after 21 days anaerobic incubation. D1-D2 Serially diluted M. smegmatis strains on minimal media agar after 21 
days anaerobic incubation followed by 6 days aerobic incubation. 
 

 

The results shown in Figure 3.4 show that once the nutrient agar plates incubated initially in 

anaerobic conditions were permitted to be incubated aerobic then the serially diluted aliquots of 

M. smegmatis strains on the surface of each media were able to colonise. Colony growth was 

noticeably reduced in both strains from the aerobic control experiment on the nutrient rich TSB 

agar plates. (Figure 3.4: B1-B2). Both strains demonstrated about a 100-fold decrease in bacterial 

survival from 104 dilution (Figure 3.2: B1) 102 dilution (Figure 3.4: B1) on the TSB nutrient agar 

plates. The ability to colonize at higher dilutions was less pronounced on minimal media agar 

(Figure 3.4: D2). Both strains once again equal displayed the capacity to form a single colony once 

diluted by 105. This was the exact maximum dilution observed in the aerobic control experiment 

(Figure 3.2: D2) for both strains, though the number of colonies was significantly more 

pronounced on the minimal media control plates. The variation in bacterial survival between the 

two selected agar plates after anaerobic incubation is likely due in part to oxygen deprivation being 
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a greater factor in M. smegmatis colonization than nutrient deprivation, as well as the slightly 

increased glucose concentration aiding colonization.  

 

Based on these results it could be concluded that namH is not essential to the viability of the cell, 

as reported by Raymond et al. (2005), not required to assist the resuscitation of dormant cells or 

support normal cellular growth whether during aerobic or anaerobic conditions. With time 

permitting further work could determine whether there had not been any reversion of the namH 

gene to the wild type sequence during colonization.  

 

 

3.6 M. smegmatis sensitivity towards lysozyme 
 

3.6.1 M. smegmatis sensitivity towards chicken egg white lysozyme 
 

The peptidoglycan of both wild type and namH deficient M. smegmatis strains have been shown 

to be substrates for lysozymes. To characterise the response of both strains to specific lytic 

enzymes, the minimal inhibitory concentration (MIC) of both strains challenged with chicken egg 

lysozyme in nutrient 7H9 media was assessed (Section 2.4.3). In short, cells were cultured from 

glycerol stocks in 7H9 nutrient media supplemented with ADC and Tween80 in baffled flasks to 

mid exponential phase to maximise oxygen distribution within the culture. Cells were diluted to 

an OD600nm of 0.1 and passed with a syringe through a 21-gauge needle to disrupt clumps of cells. 

Cells were diluted further by a factor of 103 and incubated in 96-well microtiter plates with 

increasing concentrations of chicken egg lysozyme in triplicate. Plates were incubated at 37°C 

with agitation for 60 hours under a gas permeable seal and OD600nm values were measured routinely 

every 3 hours. The MIC growth curves for both strains is presented in Figure 3.5. 
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Figure 3.5 The hydrolytic activity of chicken egg white lysozyme against the mycobacterial modifications of peptidoglycan. Wild type (a) and (b) DNamH 
M. smegmatis MIC growth curves against chicken egg white lysozyme. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking 
every 20 minutes, where the absorbance was measured at 600nm at 3 hour intervals for 60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% 
(w/v) Tween 80) with increasing concentrations of chicken egg white lysozyme. The cultured M. smegmatis wild type (a) and (b) DNamH strains were standardized 
to an OD600nm of 1 and diluted further by a factor of 104 prior to addition of enzyme and incubation. Error bars represent standard deviation of triplicate 
measurements. Chicken egg white lysozyme concentrations: 0 µg.mL-1 (Blue), 2 µg.mL-1 (Green), 4 µg.mL-1 (Pink), 8 µg.mL-1 (Orange), 16 µg.mL-1 (Purple), 32 
µg.mL-1 (Red), 64 µg.mL-1 (Yellow), 128 µg.mL-1 (Black), 256 µg.mL-1 (Brown). Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, 
*** = <0.001 and **** = <0.0001. Results: DNamH displayed greater susceptibility to chicken egg white lysozyme than wild type. MIC results: Wild type (a) 
32µg.mL-1, DNamH (b) 16µg.mL-1. 
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Chicken 
egg 
lysozyme 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

Wild 
type 
p-

values 
(a) 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

DNamH 
p-

values 
(b) 

0 21 8.01 - 0.23 - 21 7.9 - 0.23 - >0.05 

2 21 7.96 99.21 0.23 >0.05 24 6.42 86.59 0.21 >0.05 >0.05 

4 21 12.05 74.48 0.22 <0.01 30 8.28 65.34 0.21 <0.01 >0.05 

8 30 10.23 42.58 0.17 <0.0001 42 16.82 12.03 0.11 <0.0001 <0.001 

16 45 12.34 29.66 0.16 <0.0001 60 0.00 0.00 0.00 <0.0001 <0.001 

32 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.00 <0.0001 - 

64 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.00 <0.0001 - 

128 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.00 <0.0001 - 

256 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.00 <0.0001 - 
Table 3.1 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of chicken egg lysozyme. Wild type and 
DNamH strains incubated for 60 hours at 37°C with selected concentrations of chicken egg lysozyme produced growth curves measured at OD600nm in Figure 3.5. 
Variations between growth curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-

1), the area under the curve (AUC) percentage compared to the 0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth 
curve variations were statistically significant compared to each 0 µg.mL-1 control with p-values <0.05 deemed significant. The statistical significance of DNamH 
(b) growth curves compared to wild type (a) at equivalent chicken egg lysozyme concentrations were determined by p-values <0.05. 
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The standard control growth curve of the M. smegmatis wild type strain under aerobic and nutrient 

conditions displayed in Figure 3.5 (a) (Blue), showed a normal growth progression between phases 

and based on the initial dilution and media acclimatisation achieved observable growth above the 

background of the microtiter plate after 21 hours. The doubling time (Td) of the strain was 8.01 

hours with growth plateauing at OD600nm 0.23 after 45 hours. The statistical significance of the 

results in Figure 3.5 were analysed with a paired Student t-test comparing the standard growth 

phenotype OD values of the wild type control to those in the presence of increasing concentrations 

chicken egg lysozyme. Analysis of the wild type strain (Table 3.1) noted that all growth 

phenotypes except for cells grown in the presence of 2 µg.mL-1 were statistically significant 

compared to the 0 µg.mL-1 control. P-values for each concentration were 2 µg.mL-1 (>0.05), 4 

µg.mL-1 (<0.01) and 8-256 µg.mL-1 (<0.0001). 

 

The addition of 4 µg.mL-1 of chicken egg lysozyme (Figure 3.5 (a): Pink) to the wild type strain 

culminated in the first observable indication of cellular growth inhibition caused by the lysozyme. 

Although the initial apparent lag phase in the presence of 4 µg.mL-1 lysozyme matched the time 

frame of the 0 µg.mL-1 control at 21 hours, the gradient of growth during exponential phase was 

reduced leading to a 50% increase in doubling time to 12.05 hours. Growth plateaued at a similar 

optical density to the control OD600nm 0.22 though the area under the curve (AUC) for the 4 µg.mL-

1 data set was reduced by 25% compared to the control.  

 

Subsequent concentrations of lysozyme: 8 µg.mL-1 (Figure 3.5 (a): Orange) and 16 µg.mL-1 

(Figure 3.5 (a): Purple) differed from the lower concentrations due to the noted extended time 

period with apparent lag phase of 10 and 15 hours respectively. Both concentrations displayed a 

similar Td to 4 µg.mL-1, attaining 10.23 and 12.34 hours respectively. These two concentrations 

plateaued at a similar OD600nm entering stationary phase after 51 hours. The final optical density 

reached by 8 µg.mL-1 and 16 µg.mL-1 data sets was 74% and 69% the value obtained by the control. 

The AUC for both 8 µg.mL-1 and 16 µg.mL-1  concentrations were 57% and 69% relative to the 

control data set. The sixty-hour time frame of the experiment was insufficient to observe growth 

present in those wells containing 32 µg.mL-1 lysozyme, (Figure 3.5 (a): Red) leading to the MIC 

of the wild type strain being recorded as 32 µg.mL-1.  
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As noted in Figure 3.1 the DNamH strain demonstrated a comparable growth curve to the wild 

type under normal conditions. In  Figure 3.5 the DNamH control experiment (Figure 3.5 (b): Blue), 

presented a similar growth phenotype to the wild type control (Figure 3.5 (a)). Exponential growth 

was observed after 21 hours and the cell cultures within the triplicate wells reached stationary 

phase after 45 hours. The Td during exponential phase was also equivalent to the wild type strain 

at 7.9 hours. A student’s t-test analysis of the DNamH strain (Table 3.1) against chicken lysozyme 

indicated that all measured growth curves were statistically significant compared to the 0 µg.mL-

1 lysozyme absent control. P-values for each concentration were 2 µg.mL-1 (>0.05), 4 µg.mL-1 

(<0.01) and 8-256 µg.mL-1 (<0.0001). 

 

The addition of 2 µg.mL-1 chicken egg white lysozyme (Figure 3.5 (b): Green) led to an almost 

20% decrease in Td to 6.42 hours. A reason for this variation from the control data may be due in 

part to very low concentrations of lysozyme disrupting remaining mycobacterial cell clumps, not 

separated sufficiently by growth within media containing Tween80 or by not adequately passing 

through a narrow syringe before incubation. Other observed differences from the wild type strain 

in the 2 µg.mL-1  data set were more in keeping with previous incubation with lysozyme. The 

apparent lag phase was extended to 24 hours and the AUC data showed a reduction by 14% 

compared to the control.  

 

Doubling the enzyme concentration to 4 µg.mL-1 (Figure 3.5 (b): Pink) increased the Td to 8.28 

hours and extended the apparent lag phase to 30 hours but did not impact the maximum optical 

density reached during the stationary phase compared to 2 µg.mL-1. The AUC of the curve was 

reduced to 65% of the control which was 10% greater than the equivalent concentration against 

the wild type (Figure 3.5 (a): Pink). The final lysozyme concentration for which a measurable 

growth phenotype for the DNamH M. smegmatis strain could be measured was 8 µg.mL-1 (Figure 

3.5 (b): Orange), where the growth curve plateaued at 47.8% of the maximum optical density 

reached by the control. The Td of 8 µg.mL-1 lysozyme doubled from the control data set to 16.82 

hours and achieved an AUC of 14% relative to the control. All other lysozyme concentrations were 

sufficient to completely inhibit growth, leading to the conclusion that the MIC for chicken egg 



 
 

84 

white lysozyme against M. smegmatis DNamH cells was 16 µg.mL-1 (Figure 3.5 (b): Purple), 

which is half the MIC of the wild type (Figure 3.5 (a): Red).  

 

Student’s t-test analysis comparing the inhibition of growth curves for both M. smegmatis strains 

at equivalent chicken lysozyme concentrations (Table 3.1) indicated that concentrations below 4 

µg.mL-1 were not significant with p-values >0.05. Contrasting the two strains at equivalent chicken 

lysozyme concentrations at 8 µg.mL-1 and 16 µg.mL-1 which permitted observable growth in the 

wild type did demonstrate statistically significant data producing p-values for both concentrations 

of <0.001.  

 

Wells containing MIC or greater for both wild type and DNamH strains were pipetted onto TSB 

agar plates and incubated for 72 hours to determine the minimal bactericidal concentration (MBC). 

The findings are presented in Figure 3.6. 

 

 

 
Figure 3.6 Minimal bactericidal concentration of chicken egg white lysozyme against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations of lysozyme 
that did not produce growth (Figure 3.5) were pipetted in duplicate onto TSB agar to determine MBC. Each quadrant 
denotes the enzyme concentration in µg.mL-1. Results: Wild type MBC 64 µg.mL-1, ∆NamH MBC 32 µg.mL-1.  
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Although no growth was observed at these concentrations in the microtiter plates (Figure 3.5), 

once transferred to nutrient agar both strains incubated with 16 µg.mL-1 of chicken egg white 

lysozyme were able to colonise the agar plate (Figure 3.6). The wild type strain (Figure 3.6 (a)) 

also achieved colonisation after incubation with 32 µg.mL-1 of lysozyme, although the DNamH 

did not. The two remaining highest concentrations, 64 µg.mL-1 and 128 µg.mL-1 were sufficient 

to prevent any observable measurement of growth either within the microtiter plate or subsequently 

on agar. These results lead to the conclusion that the MBC values for both strains, 64 µg.mL-1 for 

the wild type and 32 µg.mL-1 for the DNamH are double the MIC concentrations for each strain. 

 

 

3.6.1.1 M. smegmatis sensitivity towards human lysozyme 
 

The human lysozyme variant has been shown to be significantly more potent than the chicken egg 

equivalent in cleaving sugar residues (Wu, et al. 2015). Previous investigations by the Pavelka 

group (Raymond, et al. 2005) noted the MIC for the newly constructed wild type (PM965) and the 

DNamH (PM979) M. smegmatis strains against human lysozyme were 16 µg.mL-1 and 8 µg.mL-1 

respectively. The MIC activity for both strains against human lysozyme was re-evaluated here 

(Figure 3.7). As the MIC assessment of chicken egg lysozyme showed that the lysozyme MIC was 

32 µg.mL-1, the decision was taken to change the investigated concentration range from 2-256 

µg.mL-1 to 1-128 µg.mL-1.  
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Figure 3.7 The hydrolytic activity of human lysozyme against the mycobacterial modifications of peptidoglycan. Wild type (a) and DNamH (b) M. smegmatis 
MIC growth curves against human lysozyme. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking every 20 minutes, where 
the absorbance was measured at 600nm at 3 hour intervals for 60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with 
increasing concentrations of human lysozyme. The cultured M. smegmatis wild type (a) and DNamH (b) strains were standardized to an OD600nm of 1 and diluted 
further by a factor of 104 prior to addition of enzyme and incubation. Error bars represent standard deviation of triplicate measurements. Human lysozyme 
concentrations: 0 µg.mL-1 (Blue), 1 µg.mL-1 (Green), 2 µg.mL-1 (Pink), 4 µg.mL-1 (Orange), 8 µg.mL-1 (Purple), 16 µg.mL-1 (Red), 32 µg.mL-1 (Yellow), 64 µg.mL-

1 (Black), 128 µg.mL-1 (Brown). Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, *** =  <0.001 and **** = <0.0001.  Results: 
DNamH displayed greater susceptibility to human lysozyme than wild type. MIC results: Wild type 16 µg.mL-1, DNamH 8 µg.mL-1.  
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Human 
lysozyme 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

Wild 
type 
p-

values 
(a) 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

DNamH 
p-

values 
(b) 

0 21 6.95 - 0.25 - 21 6.95 - 0.23 - >0.05 

1 21 7.16 84.58 0.22 <0.01 21 8.88 79.04 0.20 <0.01 <0.01 

2 27 11.71 54.09 0.19 <0.001 27 13.2 46.85 0.16 <0.001 <0.01 

4 33 12.42 36.60 0.15 <0.0001 33 19.2 25.92 0.12 <0.0001 <0.001 

8 36 15.40 26.29 0.13 <0.0001 60 0.00 0.00 0.05 <0.0001 <0.001 

16 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

32 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

64 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

128 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 3.2 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of human lysozyme. Wild type and DNamH 
strains incubated for 60 hours at 37°C with selected concentrations of human lysozyme produced growth curves measured at OD600nm in Figure 3.7. Variations 
between growth curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area 
under the curve (AUC) percentage compared to the 0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve 
variations were statistically significant compared to each 0 µg.mL-1 control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) 
growth curves compared to wild type (a) at equivalent human lysozyme concentrations were determined by p-values <0.05. 
 
 
 
 
 



 
 

88 

The growth kinetics of the wild type control correlated with the data obtained from the previous 

experiment involving chicken egg lysozyme (Figure 3.5 (a)). Growth was measurable after 21 

hours, the Td during exponential phase was 6.95 hours and the control reached a maximum optical 

density of 0.25 during stationary phase after 45 hours (Figure 3.7 (a): Blue). A student’s t-test 

analysis of the growth of wild type strain (Table 3.2) against human lysozyme demonstrated that 

all concentrations were statistically significant compared to the 0 µg.mL-1 lysozyme absent control. 

P-values for the wild type strain were 1 µg.mL-1 (<0.01), 2 µg.mL-1 (<0.001) and 4-128 µg.mL-1 

(<0.0001). 

 

The presence of 1 µg.mL-1 human lysozyme (Figure 3.7 (a) Green) did not impact the length of 

apparent lag phase or the time taken to reach stationary phase, which remained 45 hours, but did 

slightly increase the Td to 7.16 hours. The final optical density achieved by the 1 µg.mL-1  data set 

during stationary phase was reduced by 12% of the control and also impacted the AUC, calculated 

as 85% of the area obtained by the wild type control.  

 

The variation in the impact on growth of the wild type M. smegmatis strain between the human 

and chicken egg white lysozymes was most clearly evident with 2 µg.mL-1 of the enzyme (Figure 

3.7 (a): Pink). Whereas the chicken egg lysozyme did not impact upon the growth of M. smegmatis 

at this concentration, the human enzyme extended the apparent lag phase of M. smegmatis by 6 

hours, increased the Td to 11.71 hours and reduced the stationary phase OD by 22% and the AUC 

to 55% of the control value. Treatment of M. smegmatis with 4 µg.mL-1 human lysozyme (Figure 

3.7 (a): Orange) significantly extended the apparent lag phase of the organism to 33 hours, 

increased the Td to 12.42 hours where the corresponding AUC was reduced by 62% compared to 

the control. The final concentration of human lysozyme permitting an observable growth 

phenotype was 8 µg.mL-1 (Figure 3.7 (a): Purple), exiting apparent lag phase after 36 hours with 

a two-fold increase in the doubling time to 15.40 hours and a reduction by 72% of the AUC 

compared to the control. The 60-hour time frame was just insufficient to register growth from the 

16 µg.mL-1 (Figure 3.7 (a): Red) triplicate, leading the MIC to be observed to be 16 µg.mL-1. This 

concentration was half of the MIC result from chicken egg lysozyme against the wild type strain 

(Figure 3.5 (a)).  

 



 
 

89 

The human lysozyme MIC results for the DNamH strain (Figure 3.7 (b)) as with the wild type fell 

similarly in line with the results obtained against the chicken egg lysozyme variant (Figure 3.5 

(b)), although the potency of enzyme activity had notably increased. The DNamH control data was 

identical to the wild type M. smegmatis growth phenotype, producing observable growth after 21 

hours, with a Td of 6.95 hours and an entrance into stationary phase with an OD600nm of 0.24 after 

45 hours. Similarly, to the wild type strain, all concentrations of human lysozyme impacted the 

growth phenotype of the DNamH strain in a statistically significant manner (Table 3.2). P-values 

for each concentration were 1 µg.mL-1 (<0.01), 2 µg.mL-1 (<0.001) and 4-128 µg.mL-1 (<0.0001). 

 

The addition of 1 µg.mL-1 human lysozyme (Figure 3.7 (b): Green) did not extend the apparent lag 

phase but impacted the doubling time, increasing it to 8.88 hours. The AUC decreased by 11% and 

maximum stationary OD was 85% of the control data value.  

 

2 µg.mL-1 of human lysozyme (Figure 3.7 (b): Pink) was adequate enough to almost double the 

Td to 13.2 hours, reduce measurable growth such that the AUC total was 48%, extended the 

apparent lag phase by 6 hours and diminished the maximum OD reached during stationary phase 

to 69% of the control. The final concentration of human lysozyme to permit cellular growth was 4 

µg.mL-1 (Figure 3.7 (b): Orange). The growth curve AUC represented 30% of the control, the 

apparent lag phase and Td were increased to 32 hours and 19.2 hours respectively and culminated 

in a 53% maximum OD during stationary phases compared to the control. The MIC of the DNamH 

strain was 8 µg.mL-1 (Figure 3.7 (b): Purple).  

 

Student’s t-test analysis comparing the two M. smegmatis strains at equivalent human lysozyme 

concentrations indicated statistical significance variation between growth curves at each 

investigated concentration (Table 3.2). The significance increased as the concentration of human 

lysozyme increased. P-values produced at each concentration were <0.01 (1 and 2 µg.mL-1) and 

<0.001 (4 and 8 µg.mL-1).  

 

These values were consistent with the initial experiments reported by Raymond, et al. (2005), 

where the human lysozyme MIC of the wild type (PM965) strain was 16 µg.mL-1 and that of the 
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DNamH (PM979) was 8 µg.mL-1. Those human lysozyme concentrations from both strains (Figure 

3.7) which did not produce any visible sign of growth were transferred to nutrient agar to determine 

the MBC values for each strain. The results are shown in Figure 3.8. 

 

 

 
Figure 3.8 Minimal bactericidal concentration of human lysozyme against M. smegmatis strains. M. smegmatis 
wild type (a) and ∆NamH (b) cells were incubated in liquid media with increasing concentrations of lysozyme that 
did not produce growth (Figure 3.7) were pipetted in duplicate onto TSB agar to determine MBC values. Each quadrant 
denotes the enzyme concentration in µg.mL-1. Results: Wild type MBC 32 µg.mL-1, ∆NamH MBC 16 µg.mL-1.  
 

Plating onto agar those wells that did not produce any visible signs of growth (Figure 3.7), led to 

an MBC values of 32 µg.mL-1 for the wild type and 16 µg.mL-1 for the DNamH (Figure 3.8). These 

values are double the minimal inhibitory concentrations observed in Figure 3.7, and once again 

show that the DNamH strain is more susceptible to lysozyme than the wild type strain. 

 

 

3.6.1.2 Impact of pH on the sensitivity of M. smegmatis towards human 

lysozyme  
 

The standard pH for in vitro growth of mycobacteria is pH 6.8, commonly cultured within 7H9 

media. The pH range over which hydrolytic enzymes released from the phagolysosome are active 

can range between low acidic to slightly basic conditions. Since the phagolysosome is a low pH 

environment, pH 5 (Levitz, et al. 1999) the effects of enzyme activity during these extremes is 

important to analyse. M. smegmatis cells are unable to grow at a low pH as observed by their 

switch into a state of dormancy once encased within granulomas (Section 1.5). The protocol to 
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investigate mycobacterial survival at lower pH values with viable cells was described by Eric 

Brown’s group (Koo, et al. 2008). In short, incubated cells that had grown to exponential phase 

were diluted and passed through a syringe to break up any aggregated clumps. Cells were incubated 

in Hank’s Balanced Salt Solution (HBSS) buffer at specific pH ranges in the absence of specific 

nutrients to prevent growth along with the varying concentrations of hydrolytic enzymes. (Section 

2.5.1) After a selected time period of 1.5 hours the wells were pipetted onto agar plates in triplicate, 

incubated at 37°C for 72 hours and the resulting colonies counted and averaged.  

 

Before assessment of the hydrolytic enzymes was undertaken, serial dilutions of cell cultures were 

investigated to determine the range of visible colony separation necessary to accurately distinguish 

and count viable single colonies. As previously described, cells from both wild type and DNamH 

strains were cultured and once growth entered exponential phase, cultures were isolated from the 

nutrient growth by centrifugation and resuspended in HBSS buffer pH7. The optical density of 

each strain was diluted to OD600nm 0.1, from which serial 10-fold dilutions were prepared in HBSS, 

ranging from OD600nm 10-2 to 10-7. A 100 µL aliquots from each dilution were pipetted onto TSB 

agar plates and incubated at 37°C for 72 hours. Once incubation was complete the plates were 

examined and assessed for ease of visualising individual colonies. The serial dilutions of M. 

smegmatis cells are depicted in Figure 3.9. 

 

   
Figure 3.9 Colony count visibility of serially diluted M. smegmatis strains. Wild type (a) and DNamH (b) cells 
cultured to exponential phase in nutrient media, centrifuged and resuspended in HBSS buffer pH 7. Cells from both 
strains were diluted to OD600nm 0.1 and subsequently serially diluted 10-fold from OD600nm 10-2 to 10-7 to assess colony 
count viability. Result: OD600nm 10-5 dilution for both strain produced the most visible colony separation. 
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The results of Figure 3.9 depict that utilising a final dilution below OD600nm 10-5 for both strains 

leads to an insufficient number of colonies forming on the agar plates as a control in the absence 

of hydrolytic enzymes. Utilising a dilution above OD600nm 10-5 inversely leads to significant 

colonisation of the agar plate preventing the ability to distinguish between individual colonies. 

Based upon the results depicted in Figure 3.9 the standard final dilution utilised during the chapter 

for both strains was OD600nm 10-5 (0.00001).  

 

The controls for each experiment involved the wild type and DNamH strains incubated for the 

equivalent time period in HBSS buffer in the absence of enzyme as cells incubated in the presence 

of enzyme. To assess the difficulty of accurately counting single colonies in untreated controls on 

triplicate agar plates, both strains were diluted to OD600nm 10-5 and 100 µL pipetted onto individual 

agar plates. Plates were incubated for 72 hours and the resulting colonies were counted by hand. 

The results are displayed in Figure 3.10. 

 

 

 
Figure 3.10 Assessment of M. smegmatis strain serial dilution and HBSS incubation. M. smegmatis (a) wild type 
and (b) DNamH cells were incubated in 100 µL HBSS in a 96 well microtiter plate. After 1.5 hour incubation at 37°C 
bacterial survival was determined. Wells were pipetted on TSB agar plates and incubated at 37°C for 72 hours.  Colony 
forming units were counted and averaged from triplicate plates.  
 

 

The OD600nm 10-5 dilutions for both strains in Figure 3.10 were sufficient to permit an abundant 

number of viable colonies during control conditions. Each plate produced over 200 visible colonies 

with no signs of contamination.  
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The previously mentioned Brown (2008) protocol was applied to investigate the impact of varying 

concentrations of human lysozyme on M. smegmatis cells buffered to different pH values. The pH 

of the buffer was measured before and after the experiment to maintain accuracy. The initial 

experiment determined the effect of lysozyme at pH 7 at selected concentrations for both strains. 

The colony forming units (CFU) were counted and averaged and the percentage survival of each 

strain during incubation with each concentration of lysozyme was compared to the 0 µg.mL-1 

control. This data is demonstrated in Figure 3.11. 

 

 

 
Figure 3.11 In vitro human lysozyme assay for bactericidal activity against M. smegmatis at pH 7. M. smegmatis 
wild type (Black) and DNamH (Blue) cells were incubated with 0, 256, 1024, 4096 and 16384 µg.mL-1 of human 
lysozyme in 100 µL HBSS in a 96 well microtiter plate. After 1.5 hour incubation at 37°C bacterial survival was 
determined. Wells were pipetted on TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were 
counted and averaged from triplicate plates. Error bars represent standard deviation of these data. Statistically 
significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001.  Result: The 
DNamH strain was more susceptible at each human lysozyme concentration, producing fewer colonies than the wild 
type strain. 
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Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.0 100.00 ± 8.74 100.00 ± 13.13 N/A 

256 98.27 ± 17.24 91.55 ± 11.95 p >0.05 

1024 101.14 ± 8.84 70.22 ± 3.35 p <0.005 

4096 85.63 ± 12.47 52.00 ± 4.00 p <0.05  

16384 29.88 ± 8.67 5.33 ± 1.33 p <0.01  

Table 3.3 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 7. Results depicted in a graph in Figure 3.11. Standard deviation is of triplicate measurements. Statistically 
significant results were indicated by p-values <0.05. 
 

 

The initial CFU averages for the wild type strain in the absence of enzyme (0 µg.mL-1) was 77 ± 

6.76 (n=3) colonies per plate, 23% less than the equivalent result, 100 ± 13.13 (n=3) colonies for 

the DNamH strain. The percentage obtained from the initial experiment demonstrated that at pH 7 

(Figure 3.11) the difference between the two strains in terms of lysozyme susceptibility was visible 

from the lowest incubated concentration (Table 3.3). At 256 µg.mL-1 human lysozyme, the wild 

type showed a 1.7% decrease in bacterial survival count compared to the wild type control whereas 

the DNamH survival decreased by 8.5% compared to its control. 1024 µg.mL-1 human lysozyme 

failed to significantly impact upon the survival of wild type M. smegmatis strain, the bacterial 

survival was identical compared to the control within the margin of error. The DNamH strain 

incubated with 1024 µg.mL-1 suffered a notable drop in survival to 70% of the total colonies 

present in the control. 4096 µg.mL-1 was the lowest concentration of human lysozyme that altered 

bacterial survival of wild type cells, where the total number of colonies present decreased by 15% 

at this concentration. The DNamH strain on the other hand continued to display greater 

susceptibility with a 48% decrease in cell survival at this lysozyme concentration. The highest 

concentration of 16,384 µg.mL-1 human lysozyme tested reduced the survival of wild type M. 

smegmatis to below 30% total survival, whereas the NamH deficient strain to only 5% total 

bacterial survival.  
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A student’s t-test comparative analysis of the percentage survival of both strains against human 

lysozyme at pH 7.0 (Table 3.3) demonstrated that that initial survival variation at 256 µg.mL-1 was 

not deemed statistically significant with a p-value >0.05. Subsequent comparisons between strains 

at concentration greater than 256 µg.mL-1 were deemed statistically significant with p-values of 

<0.005 (1024 µg.mL-1), <0.05 (4096 µg.mL-1) and <0.01 (16384 µg.mL-1). This experiment 

successfully underlines the difference between the two stains first described by the Pavelka group 

as well as to indicate that the protocol published by the Brown group is applicable for this 

investigation.  

 

The standard protocol outlined in Figure 3.11 was subsequently repeated, except that the pH of the 

HBSS buffer was altered to pH 6.5, 6.0, 5.5 and 5.0. Due to the stark difference in survival of the 

DNamH strain observed between human lysozyme concentrations 4096 µg.mL-1 and 16384 

µg.mL-1 at pH 7.0 (Figure 3.11), a mid-point concentration of 8192 µg.mL-1 was selected to collect 

more data related to decline in bacterial survival to enzyme concentration. The following data sets 

were formed from triplicate colony counts on agar plates. The data was analysed and average 

colony counts obtained were equated against the 0 µg.mL-1 control of each data set as percentages, 

as depicted in Figure 3.12. 
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Figure 3.12 In vitro human lysozyme bacterial survival percentage assay for bactericidal activity against M. 
smegmatis wild type at selected pH. M. smegmatis wild type cells were incubated with 0, 256, 1024, 4096, 8192 and 
16384 µg.mL-1 of human lysozyme in 100 µL HBSS at pH 5.0 (Purple), 5.5 (Red), 6.0 (Blue) and 6.5 (Black) in a 96 
well microtiter plate. After 1.5 hrs incubation at 37°C bacterial survival was determined. Wells were pipetted onto 
TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate 
plates. Error bars represent standard deviation of triplicate measurements. Averages at each concentration were 
compared to the control 0 µg.mL-1 as a percentage. Statistically significant results are indicated with * = p-value <0.05, 
** = <0.01, *** = <0.001 and **** = <0.0001. Result: Percentage survival at each pH was consistent as human 
lysozyme concentration increased except pH 6.5 at higher concentrations which were significantly reduced. 
 

 

The initial data obtained from the colony counts of CFU from the wild type produce three similar 

sets of data and one outliner. The total colony count for the wild type in the absence of human 

lysozyme at pH 6.5 was reduced by 13% compared to the other conditions with an average of 238 

± 12.12 (n=3) colonies across the triplicate plates. The reason for this reduction is not due to the 

pH as 6.5 is the highest and nearest to neutral pH of the four investigated conditions. The nutrient 

media commonly used to culture M. smegmatis in vitro is stated as pH 6.8 (Section 2.2.1). A likely 

reason for this discrepancy is an initial pipetting error during the serial dilution of cells to achieve 

OD600nm 10-4. Each additional pH condition began similarly with an initial total near 280 single 

colonies per plate and concluded with 100 fewer colonies after 16384 µg.mL-1 human lysozyme 

incubation. The initial CFU average for the remaining pH conditions were 274.66 ± 10.26 (n=3) 

for pH 6.0, 275.00 ± 10.53 (n=3) for pH 5.5 and 289 ± 15.13 (n=3) for pH 5.0. 

 

The percentage bacterial survival of the wild type strain at each selected pH condition (Figure 

3.12) displayed a similar decline in bacterial survival against the two lowest investigated 
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concentrations, 256 µg.mL-1 and 1024 µg.mL-1. Each average bacterial survival percentage 

regardless of pH decreased by 15% compared to the 0 µg.mL-1 control once incubated with 1024 

µg.mL-1, indicating that although the colony count average was reduced for cells incubated at pH 

6.5 the effect of lysozyme activity was equivalent at all pH conditions. As observed in Figure 3.12 

increasing the concentration of human lysozyme above 4096 µg.mL-1 at pH 6.5 aided lysozyme 

activity (Figure 3.12: Black), decreasing the percentage survival compared to the corresponding 

results at pH 6.0 (Figure 3.12: Blue), by 19% at 4096 µg.mL-1, 17% at 8192 µg.mL-1 and 13% at 

16384 µg.mL-1. The final total survival for the wild type strain at 16384 µg.mL-1 was 50% at pH 

6.5, these results coupled with Figure 3.11 shows that reduction of the pH from pH 7 to pH 6.5 

decrease lysozyme activity and increased survival of the strain by 50% (Table 3.3). The activity 

of the enzyme is believed to be at its optimum at pH 7 (Yang, et al. 2011). The percentages 

obtained at pH 6.5 were statistically compared to those obtained at the lower pH conditions to 

determine their significance. The bacterial survival at the initial two lysozyme concentrations, 256 

and 1024 µg.mL-1 were deemed insignificant (p-value >0.05) where-as the three highest 

concentrations generating statistically significant results compared to the other conditions, with p-

values of <0.05 (4096 µg.mL-1), <0.001 (8192 µg.mL-1) and <0.01 (16384 µg.mL-1). 

 

The three remaining pH conditions, 6.0 (Figure 3.12: Blue), 5.5 (Figure 3.12: Red) and 5.0 (Figure 

3.12: Purple) mirror each other’s survival at each concentration with only slight deviation around 

the standard error. The gradual decline for each condition was not impacted significantly by pH or 

lysozyme concentration, where each condition permitted around 65% bacterial survival at the 

highest concentration 16384 µg.mL-1. The data from Figure 3.12 indicated that lysozyme activity 

towards the wild type strain did not alter between pH 6.0 and 5.0. 

 

The DNamH CFU survival frequency averages were plotted as % CFU viability relative to the  0 

µg.mL-1 lysozyme control for each pH against increasing lysozyme concentration as depicted in 

Figure 3.13. 
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Figure 3.13 In vitro human lysozyme bacterial survival percentage assay for bactericidal activity against M. 
smegmatis DNamH at selected pH. M. smegmatis DNamH cells were incubated with 0, 256, 1024, 4096, 8192 and 
16384 µg.mL-1 of human lysozyme in 100 µL HBSS at pH 5.0 (Purple), 5.5 (Red), 6.0 (Blue) and 6.5 (Black) in a 96 
well microtiter plate. After 1.5 hrs incubation at 37°C bacterial survival was determined. Wells were pipetted onto 
TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate 
plates. Error bars represent standard deviation of triplicate measurements. At each pH averages at each lysozyme 
concentration were compared to the 0 µg.mL-1 control as a percentage. Statistically significant results are indicated 
with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Result: Percentage survival at each pH was 
unchanged as human lysozyme concentration increased except pH 5.5 at lower concentrations. 
 

 

The average colony counts for the DNamH strain demonstrated greater deviation between pH 

conditions than the wild type strain. The initial 0 µg.mL-1 control averages for pH 6.5 and pH 5.5 

produced the greatest number of colonies per plate with an average of 381.33 ± 14.57 (n=3) and 

380.33 ± 15.63 (n=3) respectively. pH 6.0 supported growth of 339.66 ± 5.13 (n=3) colonies per 

plate, an 11% decrease from the other two pH values. The final pH test was 5.0, which produced 

the fewest number of DNamH strain colonies with an average count of 237 ± 14.73 (n=3). The 

reduction in the average of colonies at pH 5.0 compared to either pH 6.5 or pH 5.5 was 38%. The 

DNamH mutation of the knockout strain may have led to a decrease in cell tolerance to pH and 

increased lysis. This reduction at pH 5.0 was not observed in the wild type CFU which produced 

a similar CFU average to cells incubated at pH 6.0 and 5.5.  
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Combining the percentage survival of the DNamH strain at each incubated pH value (Figure 3.13) 

demonstrated the similar effect incubation with increasing concentrations of human lysozyme had 

on cells exposed to each pH value. The two extremes of the pH values investigated, pH 6.5 (Figure 

3.13: Black) and pH 5.0 (Figure 3.13: Purple) displayed the same propensity towards lysozyme 

susceptibility regardless of concentration, maintaining only a 3% difference in average bacterial 

survival. Each of the four pH values resulted in a final total bacterial survival percentage of close 

to 33% at 16384 µg.mL-1 human lysozyme, demonstrating that the alteration in pH conditions from 

pH 6.5 to pH 5.0 did not impact the activity of human lysozyme, similarly to the equivalent result 

obtained in the wild type in Figure 3.12. pH 5.5 (Figure 3.13: Red) was the only condition which 

demonstrated initial increased susceptibility towards 256 µg.mL-1 and 1024 µg.mL-1 to a greater 

degree with reductions of 10% and 15% respectively than other conditions, although once 

lysozyme concentration increased above 4096 µg.mL-1 the percentage bacterial survival at pH 5.5 

matched that observed at the other pH. The greater susceptibility was not visible during incubation 

with pH 5.0 (Figure 3.13: Purple), and is not believed to be caused by altering lysozyme activity. 

The percentage survival at pH 5.5 at 256 and 1024 µg.mL-1 lysozyme was compared to their 

equivalent results at other pH conditions and deemed statistically significant with p-values of 

<0.05 (256 µg.mL-1) and <0.005 (1024 µg.mL-1) respectively.  

 

The percentage bacterial survival results for human lysozyme incubation against both M. 

smegmatis strains at the four selected pH values were combined as detailed in Figure 3.14. 
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Figure 3.14 In vitro human lysozyme assay for bactericidal activity against M. smegmatis between pH 6.5 and 5.0. M. smegmatis wild type (Black) and 
DNamH (Blue) cells were incubated with 0, 256, 1024, 4096, 8192 and 16384 µg.mL-1 of human lysozyme in 100 µL HBSS at four specific pH values; (a) pH 6.5, 
(b) pH 6.0, (c) pH 5.5 and (d) pH 5.0 in a 96 well microtiter plate. After 1.5 hour incubation at 37°C bacterial survival was determined. Wells were pipetted on 
TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate plates. Error bars represent standard deviation 
of triplicate measurements. Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Result: The DNamH 
strain was more susceptible at each human lysozyme concentration and each selected pH to varying degrees.
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Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 5.09 100.00 ± 3.82 N/A 

256 93.97 ± 9.13 89.33 ± 4.84 p >0.05 

1024 85.43 ± 6.52 78.23 ± 3.73 p >0.05 

4096 64.14 ± 2.70 61.36 ± 3.43 p >0.05 

8192 53.08 ± 3.49 45.19 ± 4.03 p >0.05 

16384 49.71 ± 0.64 33.39 ± 4.36 p <0.005 

Table 3.4 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 6.5. Results depicted in a graph in Figure 3.14 (a). Standard deviation is of triplicate measurements. Statistically 
significant results were indicated by p-values <0.05.  
 

 

The highest pH condition investigated pH 6.5 (Figure 3.14 (a)) was still in the range of normal 

cellular growth for M. smegmatis (Piddington, et al. 2000). The decrease in pH from the initial 

investigation at pH 7 (Figure 3.11) eliminated the noted variation between the two strains towards 

human lysozyme. The decrease in survival for each strain at each selected lysozyme concentration 

were relatively equal to each other, as opposed to the observed survival deviation at pH 7. 

Incubation with the selected lysozyme concentrations at pH 6.5 lead to a gradual decline in 

bacterial survival by both strains (Table 3.4) as the lysozyme concentration increased, leading to 

49.71% and 33.39% total bacterial survival of the wild type and DNamH strains respectively at the 

highest investigated concentration, 16384 µg.mL-1. The decrease in wild type survival at pH 6.5 

between 256 and 4096 µg.mL-1 could be due to an increased activity of the enzyme compared to 

pH 7.0, although this was considered unlikely as this increased lysozyme activity was not also 

viewed in the DNamH strain data at pH 6.5 (Figure 3.14 (a)). The DNamH strain has previously 

been shown to be more susceptible to lysozyme than the wild type at pH 7.0 (Figure 3.11). The 

comparative survival between the two strains at the highest lysozyme concentration 16384 µg.mL-

1, increased by 20% in the wild type strain (49.71%) and 28% in the DNamH strain (33.39%) 

respectively at pH 6.5 compared to the equivalent results at pH 7 (Figure 3.11).  This indicated 

that the lysozyme had reduced hydrolytic activity at pH 6.5 compared to pH 7.0. The standard 

deviation for the wild type was greatest against incubation with the two lowest enzyme 



 
 

102 

concentrations at pH 6.5.  It is therefore possible that greater than normal variation between data 

points from these averages is the cause of discrepancy between the pH 7 and pH 6.5 data.  

 

A student’s t-test analysis (Table 3.4) of the human lysozyme concentrations against both strains 

at pH 6.5 indicate that bacterial survival variation between the two strains below 16384 µg.mL-1 

was statistically insignificant with p-values > 0.05. The p-value of 16384 µg.mL-1 was <0.005, 

which was deemed statistically relevant.   

 

 

Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 3.73 100.00 ± 1.51 N/A 

256 88.23 ± 2.92 88.12 ± 5.23 p >0.05 

1024 85.31 ± 6.47 74.58 ± 3.38 p >0.05  

4096 83.85 ± 6.61 61.13 ± 2.08 p <0.005 

8192 70.99 ± 4.13 52.11 ± 3.31 p <0.005 

16384 62.98 ± 2.74 37.09 ± 4.12 p <0.001 

Table 3.5 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 6.0. Results depicted in a graph in Figure 3.14 (b). Standard deviation is of triplicate measurements. Statistically 
significant results were indicated by p-values <0.05. 
 

 

Further reducing the pH to 6.0 led to a clear distinction between wild type and DNamH M. 

smegmatis strains as the lysozyme concentration increased (Figure 3.14 (b)). Initial colony counts 

at the lowest concentration, 256 µg.mL-1 for both strains culminated in an identical percentage 

survival (88%) (Table 3.5), however, the two strains deviated in their sensitivity to lysozyme from 

this point onwards. The DNamH strain demonstrated a gradual decline in bacterial survival as 

lysozyme concentration increased similar to the DNamH data obtained at pH 6.5 (Figure 3.14 (a)), 

culminating in a final 37% total bacterial survival at pH 6.0 at 16384 µg.mL-1 human lysozyme. 

The wild type displayed a slight increase in susceptibility towards the lysozyme at 256 µg.mL-1 

compared to the equivalent result at pH 6.5, reducing the percentage CFU to 88% of the control 

compared to 93% at pH 6.5. The wild type strain was unaffected as shown in Table 3.5 by the 
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subsequent increases in enzyme concentration, 85.31% survival at 1024 µg.mL-1 and 83.85% 

survival at 4096 µg.mL-1. The wild type strain resisted the activity of the lysozyme to a greater 

degree than previously demonstrated at pH 6.5, producing data more equivalent during incubation 

at pH 7 (Figure 3.11) terminating in a final bacterial survival at the highest lysozyme concentration 

13% greater than pH 6.5.  

 

The statistical significance between the two M. smegmatis strains at pH 6.0 were analysed (Table 

3.5). P-values determined that bacterial survival at concentrations 256 µg.mL-1 (>0.05) and 1024 

µg.mL-1 (>0.05) were not statistically significant whereas bacterial survival variations between 

concentrations 4096 µg.mL-1 (<0.005), 8192 µg.mL-1 (<0.005) and 16384 µg.mL-1 (<0.001) were 

statistically significant. 

 

 

Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± 
SD, n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 3.83 100.00 ± 4.10 N/A 

256 96.72 ± 5.71 77.30 ± 4.23 p <0.01 

1024 88.72 ± 2.27 59.51 ± 3.62 p <0.0005 

4096 84.00 ± 7.51 52.93 ± 1.84 p <0.005 

8192 76.36 ± 2.18 40.31 ± 3.68 p <0.0005 

16384 62.06 ± 4.00 33.82 ± 1.84 p <0.0005 

Table 3.6 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 5.5. Results depicted in a graph in Figure 3.14 (c). Standard deviation is of triplicate measurements. Statistically 
significant results were indicated by p-values <0.05. 
 

 

The bacterial survival shown in Table 3.6 of both M. smegmatis strains was the most divergent at 

pH 5.5 (Figure 3.14 (c)). From the lowest concentration of human lysozyme, 256 µg.mL-1 the 

bacterial survival of the two strains immediately diverged. This result differed from the other 

investigated pH conditions, with wild type and DNamH diminishing by equivalent percentages at 

pH 6.5 (Figure 3.14 (a)), 6.0 (Figure 3.14 (b)) and 5.0 (Figure 3.14 (d)) at the lowest investigated 

concentration 256 µg.mL-1. The wild type strain demonstrated almost the exact same relationship 
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between bacterial survival and human lysozyme concentration as the strain did at pH 6.0 (Figure 

3.14 (b)) except with an initial 6% increase in survival at the lowest enzyme concentration of 

96.7%. The DNamH strain was more sensitive to initial lysozyme concentrations demonstrating 

77% total survival at 256 µg.mL-1. This percentage survival was 10% reduced from equivalent 

values at pH 6.5 and 6.0. The knockout strain exhibited 59% total bacterial survival at 1024 µg.mL-

1 compared to 78% and 74% from the previous pH 6.5 (Figure 3.14 (a)) and pH 6.0 (Figure 3.14 

(b)) conditions.  

 

The more pronounced deviation between the bacterial survival percentages of two strains at pH 

5.5 than was observed during the two previously investigated pH conditions, did not continue with 

the final investigated concentration 16384 µg.mL-1. The variation between growth inhibition of 

each strain at pH 5.5 at the highest lysozyme concentration was equivalent to totals shown at pH 

6.0 (Figure 3.14 (b)), with 62% survival for wild type and 34% for DNamH. The equivalent total 

survival at 16384 µg.mL-1 for both strains at pH 6.0 (Figure 3.14 (b)) and pH 5.5 (Figure 3.14 (c)) 

indicate that enzyme activity may not alter between these two conditions and cell tolerance towards 

pH may be the reason for the greater variation observed at lower concentrations.  

 

All bacterial survival percentages for M. smegmatis DNamH compared to the wild type were 

measured to be statistically significant (Table 3.6). P-values for each concentration were 256 

µg.mL-1 (<0.01), 1024 µg.mL-1 (<0.0005), 4096 µg.mL-1 (<0.005), 8192 µg.mL-1 (<0.0005) and 

16384 µg.mL-1 (<0.0005).  
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Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 5.23 100.00 ± 6.21 N/A 

256 91.58 ± 5.73 92.68 ± 6.54 p >0.05 

1024 85.12 ± 4.90 74.12 ± 5.50 p >0.05  

4096 79.23 ± 3.61 58.08 ± 3.51 p <0.005 

8192 77.97 ± 3.63 43.60 ± 6.83 p <0.005 

16384 67.24 ± 6.83 32.77 ± 1.70 p <0.001 

Table 3.7 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 5.0. Results depicted in a graph in Figure 3.14 (d). Standard deviation is of triplicate measurements. Statistically 
significant results were indicated by p-values <0.05. 
 

 

The results obtained in Table 3.7 of the final and lowest pH condition, pH 5.0 (Figure 3.14 (d)) 

correlated strongly with the findings of human lysozyme activity at pH 6.0 (Figure 3.14 (b)). Both 

wild type and NamH deficient strains were equally susceptible to the lowest initial lysozyme 

concentration of 256 µg.mL-1, where CFU survival was 91.5% and 92.6% respectively compared 

to the lysozyme absent controls. Subsequent increases in lysozyme concentration led to an 

observable divergence between the two strains. As noted previously the wild type strain was more 

resilient to lysozyme with measurable bacterial survival diminishing gradually, to a final count 

32% less than the control at the highest concentration 16384 µg.mL-1. The DNamH strain survival 

decreased steadily by almost 15% with each increasing concentration, concluding with a final 

colony total 67% less than the control at 16384 µg.mL-1.  

 

The statistical significance of the pH 5.0 data (Table 3.7) also matched results obtained at pH 6.0. 

Concentrations 256 µg.mL-1 and 1024 µg.mL-1 were deemed statistically insignificant with p-

values >0.05. The three highest concentrations were deemed statistically significant with p-values 

<0.005 (4096 µg.mL-1), <0.005 (8192 µg.mL-1) and <0.005 (16384 µg.mL-1). 
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3.6.1.3 Impact of extended incubation on the sensitivity of M. smegmatis 

towards human lysozyme 
 

The other aspect of the protocol published by Eric Brown’s group, detailing methods to investigate 

mycobacterial susceptibility towards lytic enzymes is the effect of incubation time at a set pH 

(Koo, et al. 2008). To evaluate the impact of prolonged exposure to lysozyme, pH 5.0 was selected 

as this resembled the intra-phagolysosomal within infected macrophages (Flannagan, et al. 2009). 

The three separate incubation periods chosen were, 1.5 hours (Figure 3.15 (a)), 3 hours (Figure 

3.15 (b)) and 4.5 hours (Figure 3.15 (c)) using the same human lysozyme concentrations as 

mentioned previously.  
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Figure 3.15 Effect of duration of exposure of M. smegmatis to human lysozyme at pH 5.0. M. smegmatis wild type (Black) and DNamH (Blue) cells were 
incubated with 0, 256, 1024, 4096, 8192 and 16384 µg.mL-1 of human lysozyme in 100 µL HBSS at pH 5.0 in a 96 well microtiter plate. Microtiter plates were 
incubated for (a) 1.5 hours, (b) 3 hours and (c) 4.5 hours. After incubation at 37°C bacterial survival was determined. Wells were pipetted on TSB agar plates and 
incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate plates. Error bars represent standard deviation of triplicate 
measurements. Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001.  Result: Extended incubation 
led to decreased bacterial survival above 4096 µg.mL-1, variation between strains was not exacerbated.  
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Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 6.11 100.00 ± 5.75 N/A 

256 90.96 ± 5.48 83.80 ± 5.07 p >0.05 

1024 85.28 ± 4.16 64.27 ± 3.75 p <0.005  

4096 78.65 ± 4.19 53.58 ± 5.97 p <0.005 

8192 71.73 ± 5.02 44.16 ± 1.55 p <0.001 

16384 65.48 ± 3.87 30.22 ± 3.34 p <0.0005 

Table 3.8 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 5.0 incubated for 1.5 hours. Results depicted in a graph in Figure 3.15 (a).  Standard deviation of triplicate 
measurements. Statistically significant results were indicated by p-values <0.05. 
 

 

The standard incubation time of 1.5 hours (Figure 3.15 (a)) showed similar results to previous 

incubation data at pH 5.0 in Figure 3.14 (d) with a steady decline in survival as reported by CFU 

as the lysozyme concentration increased across both strains. As previously seen, the wild type 

survival percentages were higher than those seen in the NamH deficient strain (Table 3.8). The 

reduction in survival of M. smegmatis was steady with each concentration of human lysozyme 

leading to a drop of between 10-15% for both strains as concentration increased, culminating in 

final bacterial survival percentages of 65% for the wild type and 30% for DNamH strains. 

 

A student’s t-test comparison (Table 3.8) between wild type and DNamH indicated that all data 

points except for 256 were statistically significant with p-values for the DNamH data set >0.05 

(256 µg.mL-1), <0.005 (1024 µg.mL-1), <0.005 (4096 µg.mL-1), <0.001 (8192 µg.mL-1) and 

<0.0005 (16384 µg.mL-1) compared to the wild type strain. 
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Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 2.98 100.00 ± 4.13 N/A 

256 84.82 ± 4.06 88.78 ± 6.50 p >0.1 

1024 76.15 ± 2.86 59.03 ± 5.52 p <0.01  

4096 32.33 ± 4.48 15.84 ± 3.78 p <0.01 

8192 22.85 ± 2.57 11.20 ± 2.58 p <0.01 

16384 21.22 ± 2.25 7.87 ± 1.98 p <0.005 

Table 3.9 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 5.0 incubated for 3 hours. Results depicted in a graph in Figure 3.15 (b).  Standard deviation of triplicate 
measurements. Statistically significant results were indicated by p-values <0.05. 
 

 

Doubling the incubation period to 3 hours (Figure 3.15 (b)) in the presence of human lysozyme 

was observed to have smallest effect on survival of either strain at the lowest concentration of 

lysozyme, 256 µg.mL-1 with both wild type and DNamH strains of M. smegmatis being within 5% 

(Table 3.9) of the previous percentage survival after lysozyme exposure for 1.5 hours (Figure 3.15 

(a)). The wild type strain after 3 hour incubation with 256 µg.mL-1 produced 5% fewer colonies 

and the DNamH strain produced 5% more colonies than the equivalent result after 1.5 hours (Figure 

3.15 (a)). At 1024 µg.mL-1 human lysozyme, the DNamH strain colony percentage decreased by 

29%, though this result is 5% less than the equivalent result at 1.5 hours. The wild type survival 

after 3 hours decreased by 8% at the same concentration, 9% less than the equivalent result after 

1.5 hours. In the presence of 4096 µg.mL-1 lysozyme, the survival of the wild type and the 

knockout were 32% and 15% respectively after 3 hours of incubation (Figure 3.15 (b)), compared 

to 78% and  53% respectively after 1.5 hours of incubation (Figure 3.15 (a)).  

 

The dramatic decrease in survival did not continue as the concentrations of lysozyme doubled. 

Exposure to 8192 µg.mL-1 lysozyme led to the survival of wild type strain further decreasing in 

survival percentage by 10%, leading to a 22% total survival compared to the 0 µg.mL-1 control. 

Survival of the DNamH strain diminished only by a further 4% after treatment with 8192 µg.mL-1 

lysozyme to a total of 11% CFU present relative to that in the absence of lysozyme. Doubling the 

concentration of human lysozyme to 16384 µg.mL-1 did not significantly alter the survival 
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percentage of either strain compared to that observed at 8192 µg.mL-1 lysozyme, where wild type 

and NamH strain survival percentage decreased only by a further 1%, to 21% final CFU and 4% 

final CFU respectively. The final percentage results for both strains are both less than a third of 

the equivalent results after a 1.5 hour incubation (Figure 3.15 (a)). 

 

The DNamH 3-hour incubation data set mirrors the statistical significance of the 1.5-hour 

incubation with all except the initial 256 µg.mL-1 human lysozyme concentration achieving 

statistical significance (Table 3.9) compared to the wild type. P-values for the data set include 

>0.05 (256 µg.mL-1), <0.01 (1024 µg.mL-1), <0.01 (4096 µg.mL-1), <0.01 (8192 µg.mL-1) and 

<0.005 (16384 µg.mL-1). 

 

 

Lysozyme 
concentration 
(µg.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean ± SD, 
n=3)   

Significance student’s 
t-test (2) v (1) 

0.00 100.00 ± 3.62 100.00 ± 2.78 N/A 

256 86.44 ± 4.33 76.46 ± 4.00 p <0.05 

1024 76.03 ± 4.21 42.12 ± 4.67 p <0.001 

4096 22.31 ± 1.54 11.23 ± 1.46 p <0.005 

8192 11.90 ± 1.78 7.16 ± 1.74 p <0.05 

16384 10.57 ± 2.23 5.04 ± 1.15 p <0.05 

Table 3.10 Average bacterial survival by M. smegmatis wild type and DNamH strains against human lysozyme 
at pH 5.0 incubated for 4.5 hours. Results depicted in a graph in Figure 3.15 (c).  Standard deviation of triplicate 
measurements. Statistically significant results were indicated by p-values <0.05. 
 

 

The final duration of exposure for wild type and DNamH strains of M. smegmatis to increasing 

human lysozyme concentration was extended to 4.5 hours (Figure 3.15 (c)). The survival of the 

wild type strain was identical to the 3 hour exposure to 256 and 1024 µg.mL-1 lysozyme (86% at 

256 µg.mL-1 and 76% at 1024 µg.mL-1 lysozyme respectively) (Figure 3.15 (b)). The data depicted 

in table 3.10 indicates that at the two lowest concentrations evaluated there was little effect on 

increasing the incubation time from 3 to 4.5 hours for the wild type strain. Reminiscent of the data 

obtained on three hour exposure to human lysozyme, exposure of wild type M. smegmatis to 4096 
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µg.mL-1 lysozyme lead to a significant drop in survival to 22 % of the original control colony 

population. Matching the data obtained after 3 hour incubation, doubling the concentration of 

lysozyme to 8192 µg.mL-1 reduced the survival of the wild type strain by 10%, and doubling the 

concentration again to 16384 µg.mL-1 lysozyme reduced its survival by only 1%, culminating in a 

final percentage survival of 10%. The final three highest concentrations 4096 µg.mL-1, 8192 

µg.mL-1 and 16384 µg.mL-1 lysozyme impacted the wild type in a similar manner after 3 hour and 

4.5 hours with the only notable difference being the halving in percentage survival of these 

lysozyme concentrations obtained after 4.5 hours. 

 

The DNamH strain on the other hand showed greater initial susceptibility at 4.5 hours (Figure 3.15 

(c)) than during the three hour exposure to lysozyme (Figure 3.15 (b)). At 256 µg.mL-1 lysozyme 

reduced survival of the DNamH strain by 24% compared to the control, which was 12 % greater 

than the survival after a 3 hour incubation. Increasing the lysozyme concentration to 1024 µg.mL-

1 reduced survival by 57.88% indicating that while the wild type strain was more resilient even 

over longer periods such as 3 and 4.5 hours exposed to lower lysozyme concentrations, 256 and 

1024 µg.mL-1 the knockout was more susceptible after an extended period. The 50% increase in 

incubation time to 4.5 hours did not impact DNamH survival at the highest three concentrations. 

As seen previously a significant drop in colonies occurred during incubation with 4096 µg.mL-1 

lysozyme by 84%, relative to the survival percentages plateauing at 8192 µg.mL-1 (7%) and 16384 

µg.mL-1 lysozyme (5%). The percentage survival at the three highest lysozyme concentrations 

only deviated by 2-4% at 4.5 hours compared to their corresponding 3 hour values. 

 

The 4.5 hours data sets from both M. smegmatis strains were deemed to be entirely statistically 

significant from one another in the presence of human lysozyme (Table 3.10). P-values for the 

DNamH data set were <0.05 (256 µg.mL-1), <0.001 (1024 µg.mL-1), <0.005 (4096 µg.mL-1), <0.05 

(8192 µg.mL-1) and <0.05 (16384 µg.mL-1). 

 

The data sets from Figure 3.15 for each individual strain were compiled and analysed, to compare 

the wild type (Figure 3.16) and ∆NamH (Figure 3.17) strains resilience with respect to increasing 

lysozyme concentrations at pH 5.0 at 1.5, 3 and 4.5 hour exposure to the enzyme. 
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Figure 3.16 Compilation of the effect of various durations of exposure to increasing lysozyme concentrations 
on the survival of M. smegmatis wild type at pH 5.0. M. smegmatis wild type cells were incubated with 0, 256, 
1024, 4096, 8192 and 16384 µg.mL-1 of human lysozyme in 100 µL HBSS at pH 5.0  in a 96 well microtiter plate. 
After 1.5 (Black), 3 (Blue) and 4.5 (Purple) hours incubation at 37°C bacterial survival was determined. Wells were 
pipetted on TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged 
from triplicate plates. Error bars represent standard deviation of triplicate measurements. Averages at each 
concentration were compared to the relevant 1.5, 3 or 4.5 hour control at 0 µg.mL-1 lysozyme as a percentage. 
Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. 
Result: Increasing incubation period for wild type strain does not greatly impact at lysozyme concentrations below 
1024 µg.mL-1 but greatly impact at higher concentrations. Little difference between 3 hour and 4.5 hour incubations. 
 

Wild type M. smegmatis was resilient to lysozyme treatment regardless of the incubation time at 

the lowest two enzyme concentrations tested (Figure 3.16: 256 µg.mL-1 and 1024 µg.mL-1), 

indicating tolerance to the activity of lysozyme for extended periods under these conditions. Only 

once the lysozyme concentration exceeded 1024 µg.mL-1 did the period for which the organism 

was exposed to lysozyme become significant. At 1.5 hours (Figure 3.16: Black) the relationship 

between lysozyme concentration and survival was essentially a linear gradual decline.  However, 

during incubations extended to 3 (Figure 3.16: Blue) and 4.5 (Figure 3.16: Purple) hours, where 

the concentrations of human lysozyme the wild type strain was exposed to exceeded 1024 µg.mL-

1, there was a dramatic reduction in bacterial survival. As previously mentioned after both 3 and 

4.5 hour incubations with 4096 µg.mL-1 the colony count for both strains significantly reduced by 

over 65% and 78% respectively. The lysozyme activity plateaued after 4096 µg.mL-1, but survival 

was never fully prevented even at the highest lysozyme concentration of 16384 µg.mL-1 survival 
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remained at 21% after 3 hours and 10% after 4.5 hours. Little variation was obtained by increasing 

incubation from 3 to 4.5 hours for the wild type strain. 

 

The statistical significance of the three incubation periods on wild type survival against human 

lysozyme concentrations was investigated. The 3 and 4.5 hour survival percentages were compared 

against those obtained during a 1.5-hour incubation. The survival measured during 3 and 4.5 hour 

incubations against 256 and 1024 µg.mL-1 were deemed non statistically significant with p-values 

>0.05. All three subsequent human lysozyme concentrations for both extended incubations were 

deemed statistically significant. P-values for the 3-hour incubation were <0.001 (4096 µg.mL-1), 

<0.001 (8192 µg.mL-1) and <0.001 (16384 µg.mL-1). The 4.5-hour incubation produced p-values 

of <0.0001 (4096 µg.mL-1), <0.0001 (8192 µg.mL-1) <0.0005 (16384 µg.mL-1). 

 

The combined incubation results for the DNamH strain are shown in Figure 3.17. 

 

 
Figure 3.17 Compilation of the effect of various durations of exposure to increasing lysozyme concentrations 
on the survival of M. smegmatis DNamH at pH 5.0. M. smegmatis DNamH cells were incubated with 0, 256, 1024, 
4096, 8192 and 16384 µg.mL-1 of human lysozyme in 100 µL HBSS at pH 5.0  in a 96 well microtiter plate. After 1.5 
(Black), 3 (Blue) and 4.5 (Purple) hours incubation at 37°C bacterial survival was determined. Wells were pipetted on 
TSB agar plates and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate 
plates. Error bars represent standard deviation of triplicate measurements. Averages at each concentration were 
compared to the relevant 1.5, 3 or 4.5 hour control at 0 µg.mL-1 lysozyme as a percentage. Statistically significant 
results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001.  Result: Increasing 
incubation period for wild type strain does not greatly impact low concentrations but greatly impact high 
concentrations. Little difference between 3 hour and 4.5 hour incubations. 
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Comparing the data sets from only the DNamH strain (Figure 3.17), shows that the percentage 

survival of the strain is equal after both 1.5 (Figure 3.17: Black) and 3 hour (Figure 3.17: Blue) 

incubations against 256 µg.mL-1 and 1024 µg.mL-1 lysozyme, whereas extending the incubation 

to 4.5 hours (Figure 3.17: Purple) reduces the initial survival by 12% and 17% at these lysozyme 

concentrations respectively. Similarly, as with the wild type (Figure 3.16) after a 1.5 hour 

incubation the increase in lysozyme concentration lead to a gradual decrease in survival, whereas 

3 and 4.5 hour incubations decrease rapidly once exposed to greater than 4096 µg.mL-1. The 

variation between the two longest incubation periods is minimal after 4096 µg.mL-1, with each 

plateauing in a similar manner to the wild type. 

 

The statistical significance of the DNamH strain survival at various incubation time frames were 

analysed with a student’s t-test. The 3 and 4.5 hour incubation periods were compared to those 

obtained during the 1.5 hour incubation in a similar manner to the wild type strain. Each of the two 

lowest human lysozyme concentrations 256 and 1024 µg.mL-1 were deemed statistically 

insignificant (p-value >0.05) after extending the incubation to 3 hours and the three highest 

lysozyme concentrations were deemed statistically significant with p-values <0.001 (4096 µg.mL-

1), <0.0001 (8192 µg.mL-1) <0.001 (16384 µg.mL-1). Incubation for 4.5-hours produced a greater 

initial divergence in survival, relative to survival of DNamH cells incubated for 1.5 hours at all 

lysozyme concentrations except 256 µg.mL-1. P-values for the 4.5-hour incubation were <0.05 

(256 µg.mL-1), <0.005 (1024 µg.mL-1), <0.0005 (4096 µg.mL-1), <0.0001 (8192 µg.mL-1) and 

<0.0005 (16384 µg.mL-1). 

 

 

3.7 M. smegmatis sensitivity towards b-hexosaminidase 

 

The second hydrolytic enzyme released by the phagolysosome to be investigated in this chapter 

was b-hexosaminidase (Section 1.4.1.2.2). This enzyme is produced by both prokaryotes and 

eukaryotes (Hossain and Roslan 2014)  and the impact of hexosaminidases from both kingdoms 

was investigated on M. smegmatis.  
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3.7.1 M. smegmatis sensitivity towards Streptomyces plicatus b-hexosaminidase 
 

Initial experiments were conducted with S. plicatus b-hexosaminidase recombinantly expressed in 

E. coli. (Source NEB). The stock concentration of the enzyme was related to its activity in 

Units.mL-1, where one unit was defined as the amount sufficient to cleave 95% of the terminal b-

D-N-acetyl-galactosamine from 1 nmol of GalNAcb1-4Galb1-4Glc-7-amino-4-methyl-coumarin 

in 1 hour at 37°C in a total reaction volume of 10 µL. Knowledge of the activity of the S. plicatus 

b-hexosaminidase allowed the impact of known amounts of enzyme activity on M. smegmatis 

growth. Both M. smegmatis wild type and DNamH strains growth under standard aerobic 

conditions at pH 6.8 were measured in in the presence of increasing concentrations of S. plicatus 

b-hexosaminidase activity to observe enzymatic impact on cellular growth (Figure 3.18). 
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Figure 3.18 The hydrolytic activity of S. plicatus b-hexosaminidase against the mycobacterial modifications of peptidoglycan. Wild type (a) and DNamH 
(b) M. smegmatis MIC growth curves against S. plicatus b-hexosaminidase. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent 
shaking. Absorbance was measured at OD600nm at 3 hour intervals for 45 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) 
with increasing concentrations of S. plicatus b-hexosaminidase. The cultured M. smegmatis wild type (a) and DNamH (b) strain was standardized to an OD600nm of 
1 and diluted further by a factor of 104 prior to addition of enzyme and incubation. Error bars represent standard deviation of triplicate measurements. Streptomyces 
plicatus b-hexosaminidase concentrations: 0 Units.mL-1 (Blue), 30 Units.mL-1 (Black), 60 Units.mL-1 (Red). Statistically significant results are indicated with * = 
p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001.   Results: DNamH strain displays greater susceptibility to S. plicatus b-hexosaminidase than Wild 
type.  
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S. plicatus 
b-
hexosaminidase 
(Units.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

Wild 
type 
p-

values 
(a) 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

DNamH 
p-

values 
(b) 

0.00 21 5.88 - 0.31 - 21 6.19 - 0.31 - >0.05 

30 24 5.60 83.66 0.27 <0.05 24 5.88 70.01 0.25 <0.01 <0.05 

60 27 5.58 71.74 0.23 <0.01 27 7.60 28.97 0.15 <0.001 <0.01 

Table 3.11 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of S. plicatus b-hexosaminidase. Wild type 
and DNamH strains incubated for 60 hours at 37°C with selected concentrations of S. plicatus b-hexosaminidase produced growth curves measured at OD600nm in 
Figure 3.18. Variations between growth curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential 
phase (hours-1), the area under the curve (AUC) percentage compared to the 0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether 
the growth curve variations were statistically significant compared to each 0 µg.mL-1 control with p-values <0.05 deemed significant. The statistical significance 
of DNamH (b) growth curves compared to wild type (a) at equivalent S. plicatus b-hexosaminidase concentrations were determined by p-values <0.05. 
 
 
 
 
 
 
 
 
 



 
 

118 

The growth phenotypes produced by M. smegmatis wild type (Figure 3.18 (a): Black) and DNamH 

(Figure 3.18 (b): Black) strains in the absence of S. plicatus β-hexosaminidase match those 

observed previously in the rest of the chapter. Both strains produced visible signs of growth, 

exiting apparent lag phase after 21 hours, the Td measured during exponential phase was 5.88 

hours for the wild type and 6.19 hours for the DNamH. Stationary phase was reached after 42 hours 

at an OD600nm of 0.3.  

 

The 30 and 60 Units.mL-1 concentrations of Streptomyces b-hexosaminidase employed in this 

experiment equated to addition of 3 µg.mL-1 and 6 µg.mL-1 β-hexosaminidase protein respectively. 

The addition of 30 Units.mL-1 of Streptomyces b-hexosaminidase to the wild type strain (Figure 

3.18 (a): Blue) altered apparent lag phase relative to the 0 Units.mL-1 control by 3 hours to 24 

hours. The 30 Units.mL-1 result produced a slight decrease in Td between 27 and 36 hours to 5.60 

hours with the addition of b-hexosaminidase. The AUC of M. smegmatis wild type growth curves 

in the presence of 30 Units.mL-1 b-hexosaminidase was reduced to 83.66% and although the curve 

similarly plateaued after 42 hours, the OD600nm reached by stationary phase was 90% of the control. 

Increasing the b-hexosaminidase concentration to 60 Units.mL-1 (Figure 3.18 (a): Purple) extended 

the apparent lag phase by 6 hours to 27 hours. This data set was characterized by a similar Td to 

the control of 5.58 hours at 60 Units.mL-1 treated, though its AUC total was 71.74% of the 0 

Units.mL-1 control. The wild type strain entered stationary phase at a 22% lower optical density 

relative to when incubated in the absence of b-hexosaminidase. Both of the two b-hexosaminidase 

concentration data sets were identified as statistically significant (Table 3.11) when compared 

against the 0 Units.mL-1 wild type control with p-values of <0.05 (30 Units.mL-1) and <0.01 (60 

Units.mL-1) respectively. 

 

The M. smegmatis DNamH strain displayed an increase in susceptibility towards b-

hexosaminidase (Figure 3.18 (b)). The addition of b-hexosaminidase altered the apparent lag phase 

of the knockout strain at 30 Units.mL-1 by 3 hours to 24 hours (Figure 3.18 (b): Blue), and at 60 

Units.mL-1 (Figure 3.18 (b): Purple) by 6 hours to 27 hours. The Td of this strain in the presence 

of 30 Units.mL-1 b-hexosaminidase was 5.88 hours, equivalent to the Td of the 0 Units.mL-1 

control (Figure 3.18 (b): Black). The Td of the strain incubated with 60 Units.mL-1 b-
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hexosaminidase was increased to 7.60 hours. The stationary phase maximum optical density 

obtained by the DNamH control after 42 hours was decreased by 17% with the addition of 30 

Units.mL-1 b-hexosaminidase and by 52% with 60 Units.mL-1 relative to the 0 Units.mL-1 control. 

The AUC for the DNamH strain in the presence of 30 Units.mL-1 b-hexosaminidase was 70.01% 

of that of the 0 Units.mL-1 control. The DNamH strain incubated with 60 Units.mL-1 b-

hexosaminidase produced an AUC of 28.97% of the 0 Units.mL-1 control. These AUC values were 

reduced by 13.65% and 42.77% respectively, compared to the wild type strain. The growth curves 

produced by the DNamH strain in the presence of S. plicatus β-hexosaminidase were analysed by 

a student’s t-test (Table 3.11) to determine statistical significance compared to the 0 Units.mL-1 

control . Both concentrations produced statistically significant inhibition to DNamH growth curves 

with p-values of <0.01 (30 Units.mL-1) and <0.001 (60 Units.mL-1) respectively.  

 

Comparisons between the two M. smegmatis strains at equivalent β-hexosaminidase 

concentrations were also analysed and both of the variations depicted from growth curves at 30 

(<0.05) and 60 (<0.01) Units.mL-1 were deemed statistically significant between each strain. 

 

 

3.7.2 M. smegmatis sensitivity towards human b-hexosaminidase 
 

The human equivalent of b-hexosaminidase shares only 25% sequence similarity to the S. plicatus 

version (www.ncbi.nih.gov/BLAST). According to Koo et al. (2008) the minimum concentration 

of human b-hexosaminidase  required to achieve a significant decrease in survival was only 4 

Units.mL-1. The impact of between 0.5 to 4 Units.mL-1 of human b-hexosaminidase on the growth 

of M. smegmatis wild type and DNamH strains was evaluated (Figure 3.19).  
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Figure 3.19 The hydrolytic activity of human b-hexosaminidase against the mycobacterial modifications of peptidoglycan. Wild type (a) and DNamH (b) 
M. smegmatis MIC growth curves against human b-hexosaminidase. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, 
absorbance was measured at OD600nm at 3 hour intervals for 48 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with 
increasing concentrations of human b-hexosaminidase. The cultured M. smegmatis wild type (a) and DNamH (b) strains were standardized to an OD600nm of 1 and 
diluted further by a factor of 104 prior to addition of enzyme and incubation. Error bars represent standard deviation of triplicate measurements. Human b-
hexosaminidase concentrations: 0 Units.mL-1 (Blue), 0.5 Units.mL-1 (Green), 1 Units.mL-1 (Pink), 2 Units.mL-1 (Orange), 4 Units.mL-1 (Red). Statistically 
significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001.   Results: DNamH displays greater susceptibility to human 
b-hexosaminidase than wild type at each concentration. MIC results: Wild type 4 Units.mL-1, DNamH 4 Units.mL-1. 
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Human 
b-
hexosaminidase 
(Units.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

Wild 
type 
p-

values 
(a) 

Apparent 
Lag 

phase 
(h) 

Td 
(h-1) 

AUC 
(%) 

Stationary 
Phase 

OD600nm 

DNamH 
p-

values 
(b) 

0 21 6.93 - 0.31 - 21 6.41 - 0.31 - >0.05 

0.5 24 7.35 87.21 0.30 <0.05 24 10.37 45.02 0.19 <0.001 <0.001 

1 24 11.90 50.92 0.20 <0.001 24 13.45 29.59 0.14 <0.001 <0.05 

2 27 11.36 36.73 0.17 <0.001 27 14.96 25.73 0.13 <0.001 <0.05 

4 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 3.12 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of human b-hexosaminidase. Wild type and 
DNamH strains incubated for 60 hours at 37°C with selected concentrations of human b-hexosaminidase produced growth curves measured at OD600nm in Figure 
3.19. Variations between growth curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase 
(hours-1), the area under the curve (AUC) percentage compared to the 0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the 
growth curve variations were statistically significant compared to each 0 µg.mL-1 control with p-values <0.05 deemed significant. The statistical significance of 
DNamH (b) growth curves compared to wild type (a) at equivalent human b-hexosaminidase concentrations were determined by p-values <0.05. 
 
 
 
 
 
 
 



 
 

122 

The human b-hexosaminidase concentration range identified by Koo, et al. (2008) was appropriate 

for evaluation of the MIC of human b-hexosaminidase. Based upon the specific activity of the 

enzyme, 20 Units.mg-1 amount of enzyme activity used in Figure 3.19 equated to additions in 

µg.mL-1 was 25 µg.mL-1, 50 µg.mL-1, 100 µg.mL-1 and 200 µg.mL-1 human b-hexosaminidase 

respectively. The human b-hexosaminidase MIC for the wild type M. smegmatis was 4 Units.mL-

1 (Figure 3.19 (a) Red). The control data, wild type growth in the presence of 0 Units.mL-1 b-

hexosaminidase (Figure 3.19 (a): Blue) was characterised by a apparent lag phase of 21 hours, a 

Td of 6.93 hours and an entrance into stationary phase at OD600nm 0.31 after 45 hours. Significance 

student’s t-test of the wild type strain against human b-hexosaminidase (Table 3.12) demonstrated 

that the results depicted by the addition of all investigated concentrations were statistically 

significant compared to the 0 Units.mL-1 control. P-values for each concentration were <0.05 (0.5 

Units.mL-1), <0.001 (1 and 2 Units.mL-1) and <0.0001 (4 Units.mL-1) respectively.  

 

The addition of 0.5 Units.mL-1 of enzyme (Figure 3.19 (a) Green) had a slight impact on the growth 

phenotype of the strain, compared to the growth of wild type M. smegmatis in the absence of  b-

hexosaminidase. The lowest investigated concentration led to an apparent lag phase duration of 24 

hours, an increase in Td to 7.35 hours and the reduction of the AUC percentage to 87.21%. The 

incubation of wild type cells with either 1 (Figure 3.19 (a) Pink) or 2 (Figure 3.19 (a) Orange) 

Units.mL-1 of human b-hexosaminidase had similar effects on reducing growth. Both data sets 

demonstrated observable growth after 24 and 27 hours respectively, 3 and 6 hours longer than the 

control. The Td for both data sets was 11.90 hours and 11.36 hours respectively, and the AUC of 

each growth curve in the presence of 1 or 2 Units.mL-1 b-hexosaminidase were respectively 

50.92% and 36.73% that of the control.  

 

The M. smegmatis DNamH strain 0 Units.mL-1 control (Figure 3.19 (b) Blue) demonstrated a 

similar growth curve to the wild type control (Figure 3.19 (a) Blue) with a 21 hour apparent lag 

phase a Td of 6.41 hours and a final stationary phase OD600nm value of 0.31. All of the investigated 

concentrations of human b-hexosaminidase inhibited growth to a statistically significant degree 

with p-values of <0.001 (0.5, 1 and 2 Units.mL-1) and <0.0001 (4 Units.mL-1) respectively. 
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The M. smegmatis NamH strain was more sensitive to growth inhibition by b-hexosaminidase at 

every concentration of the enzyme investigated (Figure 3.19 (b)) compared to the wild type (Figure 

3.19 (a)).  This was exemplified most clearly by the impact of 0.5 Units.mL-1 of b-hexosaminidase 

on growth of the DNamH. Whereas this concentration of b-hexosaminidase minimally impaired 

growth of the wild type strain (Figure 3.19 (a) Green), the growth of the DNamH strain (Figure 

3.19 (b) Green) was significantly attenuated with respect to all currently used measures of growth. 

DNamH cells did not display visible signs of growth in the presence of 0.5 Units.mL-1 b-

hexosaminidase until 3 hours after the control, the AUC was 45.02% of the value obtained by the 

0 Units.mL-1 control absence of the enzyme, and the cells achieved an OD600nm of 0.19. The Td 

was also almost two-fold greater, requiring 10.37 hours compared to 6.41 hours for the control.  

 

Raising the b-hexosaminidase concentration to 1.0 Units.mL-1 b-hexosaminidase (Figure 3.19 (b) 

Pink) further impaired growth, the cells exited apparent lag phase after 24 hours the AUC was 

measured at 29.59% relative to the untreated control, and the Td was raised to 13.45 hours 

culminating in a final OD600nm value during stationary phase of 0.14. The addition of 2 Units.mL-

1 b-hexosaminidase (Figure 3.19 (b) Orange) as seen in the wild type did not significantly increase 

the inhibition of growth over that caused by 1 Units.mL-1 of b-hexosaminidase producing only a 

5% difference in AUC (25.73%) and a Td only 1.5 hours greater (14.96 hours) compared to 1 

Units.mL-1. The MIC for the DNamH strain was 4 Units.mL-1 (Figure 3.19 (b) Red), identical to 

that of the wild type, sufficient to inhibit observable growth. The true difference between the two 

strains was most evident from a comparative student’s t-test. Each of the investigated 

concentrations of human b-hexosaminidase which permitted cell growth were deemed statistically 

significant (Table 3.12) between each M. smegmatis strain. P-values for each concentration were 

<0.001 (0.5 Units.mL-1), <0.05 (1 Units.mL-1) and <0.05 (2 Units.mL-1). 
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3.7.2.1 The relationship between M. smegmatis sensitivity towards human b-

hexosaminidase and pH 
 

As with previous experiments, the activity of the human b-hexosaminidase enzyme was studied 

according to Koo, et al. (2008) at pH conditions representative of the of the enzyme within the 

phagolysosome at pH 5.0 and throughout the cytoplasm of the macrophage at pH 7.0 (Koo, et al. 

(2008). The concentrations of human b-hexosaminidase that M. smegmatis was exposed to were 

between 0.5-4 Units.mL-1. The average colony counts for each strain were converted into 

percentage survival at each concentration of human b-hexosaminidase compared to the 0 

Units.mL-1 control. The results are shown in Figure 3.20. 
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Figure 3.20. Effect of exposure of M. smegmatis to increasing concentration of human b-hexosaminidase at pH 5.0 and 7.0. M. smegmatis wild type (Black) 
and DNamH (Blue) cells were incubated with 0, 0.5, 1, 2 and 4 Units.mL-1 of human b-hexosaminidase in 100 µL HBSS at (a) pH 7.0 and (b) pH 5.0 in a 96 well 
microtiter plate. Microtiter plates were incubated for 1.5 hours. After incubation at 37°C bacterial survival was determined. Wells were pipetted on TSB agar plates 
and incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate plates. Error bars represent standard deviation of triplicate 
measurements. Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Result: DNamH was more 
susceptible to b-hexosaminidase at each pH but variation between strains was less pronounced at pH 5.0.  
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b-hexosaminidase 
concentration 
(Units.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean 
± SD, n=3)   

Significance 
student’s t-test 
(2) v (1) 

0.0 100.00 ± 6.55 100.00 ± 8.03 N/A 

0.5 91.15 ± 6.78 67.10 ± 10.91 p <0.05 

1.0 80.16 ± 10.65 50.41 ± 6.84 p <0.05 

2.0 54.42 ± 8.26 29.91 ± 9.67 p <0.05 

4.0 36.86 ± 7.24 9.58 ± 6.23 p <0.01 

Table 3.13 Average bacterial survival by M. smegmatis wild type and DNamH strains against 
human b-hexosaminidase at pH 7.0 incubated for 1.5 hours. Results depicted in a graph in Figure 
3.20 (a). Standard deviation of triplicate measurements. Statistically significant concentrations indicated 
with p-values <0.05. 
 

 

The colony count for both strains at pH 7.0 was above 200 CFU, with the wild type 

producing a triplicate average of 248 ± 16.28 (n=3) colonies per plate and the DNamH 

strain an average of 202 ± 16.19 (n=3). At pH 7.0, the survival of the DNamH strain 

was consistently 25-30% less than that of the wild type strain (Figure 3.20 (a)). The 

decline in survival of wild type M. smegmatis with increasing b-hexosaminidase 

concentration was gradual, decreasing between 10-15% over every incremental 

increase in b-hexosaminidase concentration (Table 3.13). The wild type strain survival 

was diminished by 4 Units.mL-1 human b-hexosaminidase to 36% of the average CFU 

obtained in the 0 Units.mL-1 control.  

 

The most significant reduction in survival of the DNamH knockout was achieved by 

incubation with the lowest concentration of 0.5 Units.mL-1 b-hexosaminidase (Figure 

3.20 (a)). Once incubated with the enzyme survival of the DNamH strain decreased by 

33%, three times greater than the impact of this concentration of b-hexosaminidase on 

the wild type. The survival decreased in a dose dependant manner decreasing by almost 

20% with each increasing enzyme concentration, culminating in 9.58% survival of 

DNamH cells relative to that of untreated DNamH cells at 4 Units.mL-1 b-

hexosaminidase. Each of the human b-hexosaminidase concentrations produced 

statistically significant variation between the two strains at pH 7.0 (Table 3.13), with 

p-values of <0.05 (0.5, 1 and 2 Units.mL-1) and <0.01 (4 Units.mL-1). 
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b-hexosaminidase 
concentration 
(Units.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean 
± SD, n=3)   

Significance 
student’s t-test 
(2) v (1) 

0.0 100.00 ± 4.68 100.00 ± 6.13 N/A 

0.5 87.02 ± 2.99 68.00 ± 2.95 p <0.005 

1.0 65.34 ± 2.35 47.76 ± 2.72 p <0.005 

2.0 45.78 ± 3.58 29.25 ± 2.05 p <0.005 

4.0 28.12 ± 2.27 12.31 ± 1.84 p <0.001 

Table 3.14 Average bacterial survival by M. smegmatis wild type and DNamH strains against 
human b-hexosaminidase at pH 5.0 incubated for 1.5 hours. Results depicted in a graph in Figure 
3.20 (b). Standard deviation of triplicate measurements. Statistically significant concentrations indicated 
with p-values <0.05. 
 

 

Both strains produced triplicate average CFU counts above 300 at pH 5.0, with the wild 

type cultivating an average CFU of 303 ± 14.17 (n=3) and the DNamH a CFU average 

of 365 ± 22.36 (n=3). When the growth response of wild type and DNamH M. 

smegmatis to b-hexosaminidase was evaluated at pH 5.0 (Figure 3.20 (b)), the more 

observable variation between strains at pH 7.0 (Figure 3.20 (a)) was less apparent at 

pH 5.0 with both strain producing similar declines in total averages at each selected 

concentration. Previously the wild type strain maintained a difference in survival of 25-

30% in excess of that displayed by the DNamH strain regardless of the b-

hexosaminidase concentration. This discrepancy was reduced to 18-16% between the 

two strains at pH 5.0 (Table 3.14).  

 

The greatest change between the two pH conditions was the effect on the survival of 

the wild type strain, not the DNamH, as has previously been observed in this chapter. 

Although the bacterial survival percentages remained higher for the wild type compared 

to the DNamH, the wild type strain displayed more pronounced susceptibility to b-

hexosaminidase at all measured concentrations at pH 5.0 than the previously 

investigated pH 7.0 (Table 3.13). The difference was most pronounced at 1 Units.mL-1 

with a 15% drop in bacterial survival for the wild type at pH 5.0 relative to that seen at 

pH 7.0. The change of pH from pH 7.0 to 5.0 once again diminished the DNamH 

survival, most notably during incubation with the lowest enzyme concentrations, 

however subsequently the DNamH strain produced only slight variations in survival 
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percentages when comparing the strain’s survival at both pH 7.0 and pH 5.0 conditions. 

Though the variation between the two strains was narrower at pH 5.0 than at pH 7.0, 

the standard deviation between triplicate results was also narrower leading to the 

percentage bacterial survival of both strain at all investigated concentrations being 

statistically more significant than at pH 7.0. P-values for each concentration were 

<0.005 (0.5, 1 and 2 Units.mL-1) and <0.001 (4 Units.mL-1). 

 

The data sets from the wild type and DNamH strains were considered separately and 

comparisons were made on enzyme activity and bacterial survival between each 

selected pH condition. The wild type strain survival percentage is shown in Figure 3.21. 

 

 

 
Figure 3.21. Impact of pH on wild type M. smegmatis survival of b-hexosaminidase treatment. M. 
smegmatis wild type cells were incubated with 0, 0.5, 1, 2 and 4 Units.mL-1 of human b-hexosaminidase 
in 100 µL HBSS at pH 7.0 (Black) and pH 5.0 (Blue) in a 96 well microtiter plate for 1.5 hours at 37°C. 
Bacterial survival was then determined. Wells were pipetted on TSB agar plates and incubated at 37°C 
for 72 hours.  Colony forming units were counted and averaged from triplicate plates. Error bars represent 
standard deviation of triplicate measurements. Averages at each concentration were compared to the 
control 0 µg.mL-1 as a percentage. Statistically significant results are indicated with * = p-value <0.05, 
** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. Result: The wild type 
strain showed increased susceptibility for each concentration at pH 5.0. Any impact of pH on survival 
was most noticeable at 1 Units.mL-1.  
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The wild type strain in Figure 3.21 showed a greater resilience to b-hexosaminidase at 

pH 7.0 (Figure 3.21: Black) than pH 5.0 (Figure 3.21: Blue). At pH 7.0 the percentage 

of bacterial survival, indicated that cells resisted lysis to a greater extent especially at 

1.0 Units.mL-1 than at pH5.0. The strain was observed to be more susceptible to the 

human b-hexosaminidase after incubation at pH 5.0 with each concentration indicating 

that the enzyme is more active towards the wild type at the lower pH condition, 

equivalent to the known pH of the phagolysosome than at neutral conditions. At pH 5.0 

the survival percentage of the wild type strain is most similar to pH 7.0 at 0.5 Units.mL-

1 with survival deviating by only 3%. This  percentage reduction increased to 14% at 

1.0 Units.mL-1 compared to pH 7.0. The final two investigated concentrations 2.0 and 

4.0 Units.mL-1 reduced percentage survival each equally by a further 9% as the 

concentration doubled. A student’s t-test determined than the variation between 

percentage bacterial survival of the wild type strain at pH 7.0 and 5.0 at each human b-

hexosaminidase concentration was not statistically significant with p-values >0.05. 

 

The DNamH strain pH comparison data is depicted in Figure 3.22. 

 

 
Figure 3.22. Impact of pH on DNamH M. smegmatis survival of human b-hexosaminidase 
treatment. M. smegmatis DNamH cells were incubated with 0, 0.5, 1, 2 and 4 Units.mL-1 of human b-
hexosaminidase in 100 µL HBSS at pH 7.0 (Black) and pH 5.0 (Blue) in a 96 well microtiter plate for 
1.5 hours at 37°C. Bacterial survival was then determined. Wells were pipetted on TSB agar plates and 
incubated at 37°C for 72 hours.  Colony forming units were counted and averaged from triplicate plates. 
Error bars represent standard deviation of triplicate measurements. Averages at each concentration were 
compared to the control 0 µg.mL-1 as a percentage. Statistically significant results are indicated with * = 
p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. Result: 
DNamH strain was equally susceptible to b-hexosaminidase at each pH.  
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Figure 3.22 shows an equivalency between data sets at each investigated pH condition. 

The impact of b-hexosaminidase activity on the survival of the DNamH M. smegmatis 

strain did not alter between the two pH values, maintaining the same measured 

reduction in percentage bacterial survival as hexosaminidase concentration increased. 

Percentage survival for each data point was within 3% and the standard error, therefore 

none of the human b-hexosaminidase concentrations against the DNamH strain at the 

two investigated pH conditions were deemed statistically significant (p-values >0.05). 

 

The human variant of b-hexosaminidase was difficult to reliably acquire and available 

only from a single source (Sigma-Aldrich). The low quantity provided and the 

infrequent availability meant that further investigations with human b-hexosaminidase 

were not possible within the time available. An alternative variant was procured to 

attempt to extend this line of investigation. 

 

 

3.7.3 M. smegmatis sensitivity towards bovine b-hexosaminidase 
 

The final version of b-hexosaminidase tested for its impact on M. smegmatis growth 

was the bovine variant, as mycobacterial infection in cattle is caused by M. bovis and 

is a significant issue in agriculture (Mathews, et al. 2006). The sequence similarity 

between the human and bovine alpha and beta b-hexosaminidase subunits are 84% and 

70% respectively (www.ncbi.nih.gov/BLAST). The bovine b-hexosaminidase had an 

enzymatic activity of around 50 Units.mg-1. Based on this information, mycobacterial 

strains were incubated with bovine b-hexosaminidase concentrations of 2.5, 5 and 10 

Units.mL-1 at pH 5.0. The specific enzyme activity equates these concentrations to 50, 

100 and 200 µg.mL-1.  

 

The percentage bacterial survival data for both strains against bovine b-hexosaminidase 

was analysed and depicted in Figure 3.23. 
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Figure 3.23. Impact of bovine b-hexosaminidase on the survival of M. smegmatis at pH 5.0. M. 
smegmatis wild type (Black) and DNamH (Blue) cells were incubated with 0, 2.5, 5 and 10 Units.mL-1 
of bovine b-hexosaminidase in 100 µL HBSS at pH 5.0 in a 96 well microtiter plate. for 1.5 hours at 
37°C. Bacterial survival was then determined. Wells were pipetted on TSB agar plates and incubated at 
37°C for 72 hours.  Colony forming units were counted and averaged from triplicate plates. Error bars 
represent standard deviation of triplicate measurements. Averages at each concentration were compared 
to the control 0 µg.mL-1 as a percentage. Statistically significant results are indicated with * = p-value 
<0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. Result: 
Concentrations of bovine b-hexosaminidase investigated were insufficient to impact bacterial survival 
of either strain. 
 

 

b-hexosaminidase 
concentration 
(Units.mL-1) 

Wild type % (1) 
Survival (mean ± 
SD, n=3)  

DNamH % (2) 
Survival (mean 
± SD, n=3)   

Significance 
student’s t-test 
(2) v (1) 

0.0 100.00 ± 3.16 100.00 ± 2.03 N/A 

2.5 100.24 ± 5.96 99.89 ± 5.98 p >0.05  

5.0 102.73 ± 2.84 97.65 ± 2.50 p >0.05 

10.0 98.72 ± 10.32 103.10 ± 5.67 p >0.05 

Table 3.15 Average bacterial survival by M. smegmatis wild type and DNamH strains against 
bovine b-hexosaminidase at pH 5.0 incubated for 1.5 hours. Results depicted in a graph in Figure 
3.23. Standard deviation of triplicate measurements. Statistically significant concentrations indicated 
with p-values <0.05. 
 

 

The control colony count totals for both strains were robust enough to compare colony 

count survival with increasing concentrations of bovine b-hexosaminidase. Total 

averages achieved by the wild type and DNamH strain were 270 ± 8.50 (n=3) and 325 

± 6.65 (n=3) CFU respectively. The addition of bovine b-hexosaminidase at the 
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concentrations investigated (Figure 3.23) were unable to reduce the colony count in 

either strain.  

 

The percentage survival for both strains remained steady regardless of enzyme 

concentration. The exposure of wild type M. smegmatis to bovine b-hexosaminidase 

concentrations (Figure 3.23 (a)) more than double the Units.mL-1 MIC of the human 

counterpart reduced survival by only 1.28% (Table 3.15) after incubation with 10 

Units.mL-1 equivalent to 200 µg.mL-1. The DNamH strain (Figure 3.23 (b)) increased 

in the number of viable colonies present during 10 Units.mL-1 incubation to 103% of 

the total achieved by the strain in the absence of enzyme although this was not 

statistically significant (Table 3.15). The concentrations of hydrolytic enzymes may 

have been too low to significantly impact survival of M. smegmatis but may have 

disrupted remaining clumps of cells not homogenised sufficiently during cell 

preparation. None of the investigated concentration produced statistically signifcant 

data. It is impossible to determine if whether the inactivity of the hexosaminidase was 

due to substrate specificity, low enzyme activity or an inactive batch of enzyme. 

 

The human and bovine variants of b-hexosaminidase was difficult to procure compared 

to the variants of lysozyme investigated, therefore avenues of the investigation 

undertaken were narrower than expected. Outstanding experiments will be outlined in 

further work (Section 3.9).  

 

 

3.8 Discussion  
 

 

3.8.1 N-glycolyl modification during aerobic and anaerobic growth 
 

The absence of the namH gene prevents the incorporation during mostly aerobic 

incorporation of N-glycolylated sugars into the wider peptidoglycan layer. This 

deficiency does not significantly impact upon the aerobic phenotypic growth profile of 

the DNamH mutant compared to the wild type strain (Figure 3.1), suggesting that the 

presence of the modification does not positively or negatively impact growth alone 
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(Raymond, et al. 2005). The NamH enzyme utilises molecular oxygen but was shown 

to not be essential for cellular propagation on nutrient rich or deficient agar during 

resuscitation from an anaerobic environment (Figure 3.2). The incorporation of N-

glycolylated Lipid II which occurs solely during aerobic conditions, does not lead to 

the conclusion that the expression of namH is vital in aiding cell reanimation from 

dormancy within newly ruptured granulomas initiating a more active disease state in 

the previously latent mycobacteria (Cordone, et al. 2008). Based upon these results, the 

purpose of NamH does not appear to accelerate growth when oxygen concentrations 

are the only limiting factor. 

 

 

3.8.2 N-glycolyl modification against lysozyme 
 

Based upon the previous investigated documented by Raymond, et al. (2005) the 

absence of N-glycolylated saccharides within the peptidoglycan structure of M. 

smegmatis led to a greater susceptibility towards lysozyme. The previously observed 

M. smegmatis MIC for human lysozyme (Raymond, et al. 2005) was successfully 

repeated for both strains (Figure 3.7), with the DnamH deficient variant susceptible at 

half the concentration of the wild type. MIC experiments were conducted at pH 6.8 for 

optimal growth of the mycobacteria, which is also within the optimal range of human 

lysozyme activity (Pincus, et al. 1977). Interactions between mycobacteria and 

lysozyme at this pH would take place surrounding the plasma membrane of host’s 

macrophages (Koo, et al. 2008) and based upon results the absence of N-glycolylated 

peptidoglycan in the DNamH strain would impede mycobacterial growth two-fold 

compared to wild type due in part to the steric hindrance of N-glycolylation preventing 

lysozyme binding. MIC assessment of hen egg white lysozyme (Figure 3.5) 

demonstrated a requirement for a two-fold greater required concentration of this protein 

compared to that of the human lysozyme for inhibition of phenotypic growth in both 

strains. Chicken lysozyme MIC variation matched the findings of human lysozyme 

with the namH deficient mutant displaying a lack of growth at half the MIC of the wild 

type. MBC values for both investigated lysozymes were consistently double the MIC 

result for each strain (Figure 3.6 and Figure 3.8).  
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Assessment of mycobacterial bacterial survival on nutrient agar after human lysozyme 

incubation at optimal activity pH 7 (Figure 3.11), demonstrated similar findings to the 

MIC investigation (Figure 3.7). The percentage bacterial survival was more 

pronounced in the DnamH strain than the wild type although the percentage difference 

between each strain at increasing concentrations remained equivalent. Increasing the 

human lysozyme concentration greater than 256 µg.mL-1 equally impacted the survival 

of both strains, indicating that the absence of N-glycolylation does not lead to more 

susceptible organism in excess lysozyme concentrations.  

 

The reduction of the pH of the incubation to 6.5 reduced the efficacy of the lysozyme 

and increased the survival of both strains, a characteristic most pronounced in the 

DNamH strain, narrowing the previously observed disparity between wild type and 

DNamH strain susceptibility to lysozyme (Figure 3.14). The effectiveness of human 

lysozyme did not measurably diminish as pH was reduced from pH 6.0 to pH 5.0 

(Figure 3.14) more in keeping with the acidic environment generated within the 

phagolysosome (Flannagan, et al. 2009). These results imply that human lysosome 

activity would not be greatly impacted by the gradual decrease in pH within the 

phagolysosome to around pH 5.0 caused by H+ ion pumps (Forster and Kane 2000), 

although as shown the lysozyme would have the greatest activity within a more neutral 

environment such as near the cell membrane. Variations observed to bacterial survival 

in the NamH deficient mutant at pH 5.5 demonstrated decreased survival at the lowest 

investigated human lysozyme concentrations, indicating increased enzyme activity, 

although this effect was not observed at either pH 6.0 or pH 5.0 and was likely caused 

by a discrepancy during the generation of diluted enzyme stocks.  

 

Extending the incubation time frame above 1.5 hours (Figure 3.15) was not deemed 

necessary to increase the variation in survival between the two strains and based upon 

the findings of this investigation increasing the incubation above 3 hours was not 

necessary unless required to measure low human lysozyme concentrations. The lack of 

variation in human lysozyme activity at decreasing pH conditions appears to be due in 

part to the length of incubation. Wild type survival was especially greatly impacted by 

extending the incubation phase decreasing at a more pronounced degree at high 

concentrations, though the gulf in susceptibility between strain remains constant. 
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Prolonged exposure to hydrolytic enzymes at acidic pH conditions mimics the purpose 

of the phagolysosome. If mycobacteria are unable to escape through the rupture of the 

phagosomal membrane by type VII secretion systems (van der Wel, et al. 2007), the 

combination of synergistic conditions aid in cell lysis by hydrolytic activity. 

 

 

3.8.3 N-glycolyl modification against b-hexosaminidase 
 

Initial b-hexosaminidase investigations were conducted with S. plicatus b-

hexosaminidase. The organism is commonly identified within soil (Hasani et al. 2014) 

which is also the habitat for non-tubercular mycobacteria such as M. smegmatis 

(Tsukamura, et al. 1976). Though focus of this thesis was primarily towards host 

macrophage invasion of mycobacteria, the b-hexosaminidase from S. plicatus 

permitted in vitro assessment of Streptomyces-secreted enzymes on mycobacteria. Due 

to similarity of targeting by both b-hexosaminidase and lysozyme, the presence of 

solely N-acetylated peptidoglycan of the DNamH strain once again correlated with 

growth impairment compared to the wild type (Figure 3.18). The MIC for both strains 

was not established due to insufficient concentrations of available stocks of S. plicatus 

b-hexosaminidase. 

Human b-hexosaminidase was ten-fold more active than the S. plicatus variant, and 

impeded the growth phenotype of both strains to produce an MIC (Figure 3.19). In the 

first instance, during the MIC assessment of hydrolytic enzymes against wild type and 

DNamH M. smegmatis mycobacterial strains the MIC was equal. Both strains displayed 

growth at 2 Units.mL-1 but not at 4 Units.mL-1. These results do not indicate 

equivalency, however. Comparisons between both strains at each investigated human 

b-hexosaminidase concentration demonstrated statistically significant variation in their 

enzyme susceptibility. Further investigation at 3 Units.mL-1 would likely lead to MIC 

variation between strains. 

 

Measuring the strain survival of treatment by human b-hexosaminidase at the two 

extreme host pH conditions, pH 7.0 and pH 5.0 showed that the wild type maintained 

its resilience to inactivation by b-hexosaminidase inhibition over DNamH regardless of 

pH condition (Figure 3.20). Though comparisons between each strain at pH 5.0 
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appeared to show a narrower gulf between strain survival (Figure 3.20), analysis of 

each strain at both pH conditions (Figure 3.21 and Figure 3.22) presented no 

statistically significant alteration in bacterial survival at pH 7.0 compared to 5.0. This 

indicated that the alteration of pH does not impact the enzyme. Other factors therefore 

must be important to increase mycobacterial lysis within the phagolysosome. Both the 

human b-hexosaminidase MIC assessment (Figure 3.19) and the bacterial survival 

utilised the equivalent enzyme concentration range. The 60 hour time frame of the MIC 

data led to complete growth inhibition at 4 Units.mL-1 compared to the 1.5 hour 

incubation for bacterial survival leading to 10% survival in both strains. The 

requirement for extended enzyme incubation periods requires further study to ascertain 

significance.  

  

The data reported here indicated that human b-hexosaminidase activity was stable 

between both pH 7 and 5, which would be advantageous in vivo to the enzyme once 

located with a newly formed phagolysosome as the pH of the compartment is gradually 

reduced to aid mycobacterial cell lysis.  

 

Human b-hexosaminidase is also known to be located at both the more pH neutral cell 

membrane (Koo, et al. 2008) therefore, the ability to maintain a stable activity 

regardless of its cellular location would be important to aid in the immune response 

whether during initial contact with the mycobacteria or during phagolysosome 

degradation.  

 

The initial investigations into bovine b-hexosaminidase at equivalent concentrations to 

the human variant failed to produce an impact on growth of wild type or DNamH M. 

smegmatis at pH 5.0. The optimal conditions for enzyme activity needs to be identified 

before further investigations can be conducted.  
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3.9 Further work 
 

 

• Equivalent enzyme comparison 

 

The investigations made against bovine b-hexosaminidase were insufficient to reduce 

survival of either M. smegmatis strains (Figure 3.23). These concentrations were 

equivalent to active concentrations of human b-hexosaminidase (Figure 3.20) and 

acquiring increased quantities of the enzyme are required to determine the optimum 

active concentration of bovine b-hexosaminidase. Initial investigations have been made 

into a selection of both lysozymes and b-hexosaminidases from a range of hosts to 

make broad comparisons between enzymatic activity towards mycobacterial 

interactions. It would be useful to standardise the activity of all investigated enzymes 

to ensure equivalent activities of enzymes were being used to draw important 

comparisons such as between the two mammalian host’s immune responses during 

extended incubation or at selected pH conditions resembling the conditions within the 

phagolysosome of host’s macrophages. One possible method to determine equivalency 

could be adapted from Koo et al. (2008) measuring alterations in the optical density of 

set M. smegmatis cultures at selected time points with various enzyme concentrations.  

 

 

• Enzyme stability 

 

Aerobic growth phenotypes of M. smegmatis strains were assessed against hydrolytic 

enzymes at 37°C for up to 60 hours due to the slow growth rate of mycobacteria. During 

the experiment sub MIC concentrations led to cells remaining within apparent lag phase 

for extended periods before demonstrating exponential growth. To ascertain whether 

measurement of growth is due to each strain overcoming a stable enzyme concentration 

or whether extended incubation periods lead to a denaturing and reduced efficacy of 

the enzyme which in turn permits cellular growth, control experiments utilising each 

investigated enzyme will be incubated at 37°C in the absence of mycobacteria prior to 

repeating the hydrolytic enzyme susceptibility of mycobacteria and contrast the results 

with non-preincubated enzymes to determine overall stability.  
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• Synergy between lysozyme and b-hexosaminidase 

 

Release of enzymes by the phagolysosome impacts the cell wall of invading 

mycobacteria. Synergy between b-hexosaminidase and lysozyme would aid in 

increasing mycobacterial cell lysis thereby priming the innate immune system (Weiss 

and Schaible 2015). Lysozyme and b-hexosaminidase both cleave the b-1,4 glycosidic 

bonds between MurNAc/MurNGlyc and GlcNAc within the peptidoglycan, although it 

has been suggested that b-hexosaminidase targets terminal sugar rings (Fernandes, et 

al. 1997). Based on this differential specificity, the possibility of synergy between b-

hexosaminidase and lysozyme should be investigated to complement the investigations 

made for each isolated enzyme, with respect to their antimycobacterial activity. 

 

 

• Other lytic enzymes 

 

Expanding upon the initial work involving the organism S. plicatus b-hexosaminidase  

(Figure 3.18), examining the role of other secreted hydrolytic enzymes from organisms 

and phages is an important area of investigation. Lytic bacteriophages release 

endolysins (Schmelcher, et al. 2012) which has a similar hydrolytic mode of action 

against peptidoglycan as other investigated enzymes to bypass the bacterial cell wall to 

invade and utilise the replication mechanisms of the host to propagate. There has been 

interest in the exploitation of mycobacteriophage endolysins in the regard (Catalão and 

Pimentel 2018). Resuscitation promoting factors (RPFs) are secretory protein encoded 

by MTB (Kana, et al. 2008) which cleave peptidoglycan monomers to signal the 

presence of an aerobic environment to previously dormant cells. Studies involving RFP 

knockout, in a wild type and DNamH background might reveal relationship between N-

glycolylation and RPF function and any possible relationship with emergence from 

dormancy. 
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• M. tuberculosis DNamH 

 

Collaborators in the Mukamolova lab at the University of Leicester have generated an 

MTB DNamH strain. Once obtained, the investigations made in M. smegmatis against 

variants of lysozyme and b-hexosaminidase will be repeated, to evaluate the difference 

between the low pathogenic M. smegmatis and the more highly pathogenic MTB as it 

relates to incorporation of the N-glycolyl modification into tubercular PG. Similar to 

the work done with M. smegmatis DNamH the percentage of N-glycolyl PG 

incorporation will be measured by methods outlined by Raymond, et al. (2005) 

isolating the peptidoglycan layer of aerobically grown cells and analysing the 

components by mass spectrometry. These experiments could be complemented by 

anaerobic studies to analysis more closely the relationship between dormancy, NamH 

activity and environmental oxygen tension. 

 

 

• Survival within amoeba  

 

The ability to probe intracellular survival of mycobacteria within various hosts is 

important. Non-tuberculosis mycobacteria are commonly isolated from water and soil 

environments containing free-living amoeba (Hu, et al. 2017). Many of the intracellular 

survival mechanisms adopted by mycobacteria within macrophages were likely honed 

against amoeba, as the Mycobacterium tuberculosis complex organisms have been 

identified as amoeba-resistant. Collaborators in the Wellington lab at the University of 

Warwick are investigating the relationship between amoeba and intracellular bacteria. 

Experiments would include measuring at a range of environmental conditions the 

survival difference within the amoeba between the wild type and NamH strains, as 

MTB has been demonstrated to survive for 14 days (Medie, et al. 2011).  
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3.10 Conclusion 
 

The mycobacterial incorporation of MurNGlyc into the peptidoglycan sacculus has 

been demonstrated in this chapter to enable resistance to the activities of lytic enzymes 

such as lysozyme and b-hexosaminidase from a range of potential hosts and competing 

organisms. The absence of namH is not essential to cell propagation in aerobic 

conditions but dramatically impacts upon the resilience of the organism to hydrolytic 

enzymes at low pH environments and during extended incubation periods. Initial 

assessment of enzyme activity ranges were established in all expect bovine b-

hexosaminidase, with comparisons between equivalent activities yet to be determined. 
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Chapter 4. The role of the N-glycolylated muramic acid in the 

protection of mycobacteria from antimicrobial susceptibility  
 

 

4.1 Introduction 
 

As previously stated (Section 1.2) mycobacteria are attributed to a number of global 

diseases such as tuberculosis and leprosy. The standard antimicrobial therapies against 

mycobacterial infection are becoming increasingly less potent as the percentage of 

antimicrobial resistance rises (Section 1.7.4). A number of key antimicrobials target 

specific synthetic steps or structures of the bacterial cell wall which have no eukaryotic 

equivalents (Yount and Yeaman 2013).  

 

Mycobacteria are inherently resilient to cell wall targeting antimicrobials due to the 

composition of the cell wall structure containing the mycolyl-arabinogalactan-

peptidoglycan (mAGP) complex (Hett and Rubin 2008) and due to the expression of 

antimicrobial degrading enzymes like b-lactamases such as BlaS (Flores, et al. 2005). 

The standard treatment for tuberculosis infection (Section 1.7.1) is a combination 

therapy of four antimicrobials, isoniazid, rifampicin, ethambutol and pyrazinamide. 

The increase in widespread resistance to standard treatments had led to utilization of 

second-line antimicrobials like vancomycin (Soetaerta, et al. 2015). 

 

The N-glycolylation of mycobacterial peptidoglycan monosaccharides has been shown 

in the previous chapter to be important in aiding mycobacterial tolerance towards 

hydrolytic enzymes such as lysozyme.  
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4.2 Chapter Aim 
 

The importance of the N-glycolyl modification in determining the activity of cell wall 

targeted antimicrobials was evaluated utilizing clinically well-established antibiotics as 

well as the newly discovered antimicrobial teixobactin (Ling, et al. 2015) and its 

derivative Arg-teixobactin (Jad, et al. 2015).  

 

 

4.3 DMSO tolerance of M. smegmatis strains 
 

Standard investigations into the antimicrobial activity of compounds against bacterial 

strains are commonly performed in nutrient media (EUCAST 2000). Many 

antimicrobials utilised within this chapter were insufficiently soluble in aqueous 

solution and required dissolution initially in dimethyl sulfoxide (DMSO), a dipolar 

aprotic solvent (Alastruey-Izquierdo, et al. 2012). To acertain mycobacterial tolerance 

for DMSO increasing percentages of the latter were incubated with growing M. 

smegmatis wild type and NamH deficient cells. The impact of DMSO on mycobacterial 

proliferation is shown in Figure 4.1. 

 



 143 

 
 
 

 
Figure 4.1 DMSO tolerance of M. smegmatis. Wild type (a) and NamH deficient (b) cells were grown in the presence of increasing concentrations of DMSO to identify 
optimal tolerance for the solvent, in 96 well microtiter plates in triplicate at 37°C with intermittent shaking. Absorbance was measured at OD600nm at 3 hour intervals for 60 
hours. Each well contained 100 µL 7H9 media supplemented with ADC + Tween80. The cultured M. smegmatis cells were standardized to an OD600nm of 1 and diluted further 
by a factor of 104 prior to incubation. Error bars represent standard deviation of triplicate measurements. DMSO concentration (v/v): 0% (Blue), 1% (Pink), 2% (Green), 3% 
(Orange), 4% (Purple), 5% (Red). Statistically significant results of comparisons of growth at increasing DMSO concentrations compared to 0% (v/v) DMSO for each strain 
are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. Result: DMSO concentrations below 2% (v/v) did not 
alter growth whereas DMSO concentration above 2% (v/v) significantly reduced growth.  
 
 
 
 



 144 

 
 
 
 
DMSO 
Conc 
(v/v) 
(%) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.03 - 0.26 - 21 6.76 - 0.25 - >0.05 

1 21 6.91 104.31 0.26 >0.05 21 6.73 101.50 0.25 >0.05 >0.05 

2 21 6.84 103.67 0.25 >0.05 21 6.69 101.50 0.24 >0.05 >0.05 

3 27 6.81 82.26 0.24 <0.01 27 6.71 80.66 0.24 <0.01 >0.05 

4 30 7.19 62.23 0.21 <0.001 30 6.96 60.29 0.20 <0.001 >0.05 

5 45 15.61 12.12 0.13 <0.0001 45 19.25 8.76 0.11 <0.0001 >0.05 

Table 4.1 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of DMSO. Wild type and DNamH strains incubated for 60 
hours at 37°C with selected concentrations of DMSO (v/v) produced growth curves measured at OD600nm in Figure 4.1. Variations between growth curves were measured by 
time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 0 
% control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 % control with p-
values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent DMSO concentrations were determined by 
p-values <0.05. 
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The impact of DMSO concentration was investigated in order to ascertain the maximum 

percentage of DMSO compatible with normal cellular growth of M. smegmatis. Both 

wild type and NamH deficient strains responded to DMSO equally, with no significant 

variation noted between the strains (Table 4.1). The standard growth phenotype of the 

wild type (Figure 4.1 (a) Blue) and DNamH (Figure 4.1 (b) Blue) strains both exited 

apparent lag phase after 21 hours, achieved a Td of 7.03 and 6.76 hours respectively 

and reached stationary phase at OD600nm 0.26 and 0.25 respectively after 45 hours.  

 

The growth curves produced for each strain were analysed separately by a Student’s t-

test (Table 4.1) to compare the growth inhibition observed with increasing 

concentrations of DMSO against the 0% (v/v) DMSO control. Results indicated that 

growth variation by DMSO concentrations below 3% (v/v) in both strains were not 

deemed statistically significant with p-values >0.05 (Table 4.1). The growth inhibition 

measured by addition of 3% (v/v) DMSO or greater were equally statistically 

significant against both M. smegmatis strains with p-values of <0.01 (3% (v/v)), <0.001 

(4% (v/v)) and <0.0001 (5% (v/v)) respectively. T-test comparisons of M. smegmatis 

strains at equivalent DMSO concentrations determined that any variation between wild 

type and DNamH growth curves was not statistically significant with p-values >0.05. 

 

The first deviation from the growth phenotype was observed with the addition of 3% 

(v/v) DMSO (Figure 4.1 Orange) equally in both M. smegmatis strains. The M. 

smegmatis cells incubated with 3% (v/v) DMSO differed most notably from the 0% 

(v/v) control during apparent lag phase, which with the presence of the solvent 

increased by a further 6 hours resulting in a 27 hour duration before growth was 

observed. 3% (v/v) DMSO did not impact the Td or final OD600nm value reached during 

stationary phase in both strains, but due to the extended apparent lag phase reduced the 

AUC to around 80% (Table 4.1) of the 0% (v/v) control.  

 

The addition of 4% (v/v) DMSO (Figure 4.1 Purple), extended apparent lag phase of 

both wild type and DNamH M. smegmatis strains to 30 hours, increased the Td 

marginally to 7.19 hours in the wild type and 6.96 hours in the DNamH strain and 

decreased the AUC to 62.23% and 60.29% respectively. At 5% (v/v) DMSO (Figure 

4.1 Red) the most noted impact on phenotypic growth was observed. The apparent lag 
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phase for both strains was extended to 45 hours, the Td during exponential phase 

doubled to 15.61 hours in the wild type and 19.25 hours in the DNamH strain. The AUC 

of both M. smegmatis strains was significantly impacted with values of 12.12% (wild 

type) and 8.76% (DNamH) respectively. 

 

Based upon the findings shown in Figure 4.1 The decision was taken to utilize 2% (v/v) 

DMSO for all required investigations. Therefore 2% (v/v) DMSO was also added to 

control wells in the absence of antibiotic.  

 

 

4.4 Antimicrobial MIC assessment of the M. smegmatis wild type and 

DNamH strains  

 

The two M. smegmatis strains acquired from the Pavelka group (Raymond, et al. 2005) 

were generated initially by removal of the dominant b-lactamase gene blaS, (Flores, et 

al. 2005) creating the strain PM965 denoted as “wild type” in this chapter. Strain 

PM979 deemed “DNamH” was subsequently formed by allelic exchange of the namH 

gene from PM965 creating the double mutant blaS- namH-. Mass spectrometric analysis 

of the composition of the mycobacterial cell wall structures constructed by the wild 

type strain detailed a 7:3 ratio of N-glycolylated monosaccharides to N-acetylated 

monosaccharides (Raymond, et al. 2005) within the peptidoglycan chains. The DNamH 

mutant strain produced peptidoglycan chains containing solely N-acetylated 

monosaccharides. Raymond, et al. (2005) assessed antimicrobial susceptibility of both 

strains against single concentrations of amoxicillin (20 µg), ampicillin (10 µg), 

isoniazid (5 µg) and ethambutol (50 µg). The average zones of inhibition for both 

strains were equal against isoniazid and ethambutol, with the DNamH strain more 

susceptible to both amoxicillin and ampicillin. This effect on the DNamH strain was 

caused by the deletion of the blaS- gene. This permitted assessment of b-lactam 

antimicrobials as M. smegmatis blaS+ strains exposed to the ampicillin disk diffusion 

assay exhibited no zone of inhibition (Flores, et al. (2005)). Additionally, here the 

absence of blaS+ in the PM965 strain permitted comparison of the impact of the NamH 

knockout and therefore N-glycolylation on b-lactam sensitivity of M. smegmatis. 
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Known antibiotics with distinct cellular targets were evaluated with respect to their 

MIC and MBC values against both M. smegmatis strains. 

 

 

4.4.1 Ampicillin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Ampicillin is a b-lactam antibiotic due to its structure containing a b-lactam ring (Kong, 

et al. 2010) as demonstrated in Figure 4.2. 

 

  
Figure 4.2: The structure of the b-lactam antibiotic Ampicillin. Molecular weight: 349.41; Chemical 
formula: C16H19N3O4S. The above schematic was created using ChemBioDraw. The coloured 
substructure (Blue) is the portion of the b-lactam that mimics the D-alanyl-D-alanine terminus of the 
PBP substrate. 
 

The targets of ampicillin are the transpeptidase domains of penicillin binding proteins 

(PBPs) due to the structural similarity of the D-alanyl-D-alanine dipeptide terminus of 

the pentapeptide stem of peptidoglycan saccharides to the b-lactam (Figure 4.2 

highlighted blue) (Hujer, et al. 2005). The PBP active site serine forms a covalent bond 

with the antibiotic impeding the construction of the overall peptidoglycan sacculus. 

Both M. smegmatis strains have had the blaS gene excised, removing the dominant M. 

smegmatis b-lactamase, BlaS. The enzyme is targeted specifically to degrade and 

inactivate b-lactam antibiotics such as ampicillin by hydrolysing the b-lactam ring 

(Abraham, et al. 1988). The M. smegmatis blaS+ strain had an ampicillin MIC of 128 

µg.mL-1 whereas removal of the blaS gene reduced the MIC to 2 µg.mL-1 (Flores, et al. 

2005). Antimicrobial analysis of the two M. smegmatis PM965 and PM979 strains 

revealed that the double knockout DNamH mutant was more susceptible towards 

ampicillin (Raymond, et al. 2005). Both blaS- M. smegmatis strains were reassessed in 

Figure 4.3 against increasing concentrations of ampicillin to evaluate the MIC of the 

antibiotic.  
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Figure 4.3 The impact of N-glycolylation of peptidoglycan on sensitivity of M. smegmatis growth to ampicillin. Wild type (a) and (b) DNamH M. smegmatis MIC growth 
curves against ampicillin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 60 hours. 
Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of ampicillin at a total DMSO concentration of 2% (v/v). M. 
smegmatis wild type (a) and (b) �NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. Error bars 
represent standard deviation of triplicate measurements. Ampicillin concentrations: 0 µg.mL-1 (Blue), 0.015 µg.mL-1 (Green), 0.03 µg.mL-1 (Pink), 0.06 µg.mL-1 (Orange), 
0.125 µg.mL-1 (Purple), 0.25 µg.mL-1 (Red), 0.5 µg.mL-1 (Yellow), 1 µg.mL-1 (Black) and 2 µg.mL-1 (Brown). Statistically significant results of comparisons of growth of 
increasing ampicillin concentrations compared to growth at 0 µg.mL-1 ampicillin for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = 
<0.0001. Ns = not statistically significant. Results: DNamH displayed greater susceptibility to ampicillin than wild type. MIC results: Wild type (a) 0.5 µg.mL-1, DNamH (b) 
0.25 µg.mL-1. 
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Ampicillin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs (a) 
p-values Apparent 

Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 6.54 - 0.30 - 21 7.35 - 0.30 - >0.05 

0.015 21 8.13 77.15 0.25 <0.001 24 8.35 73.53 0.24 <0.001 >0.05 

0.03 24 7.95 52.45 0.19 <0.001 24 8.63 59.89 0.20 <0.001 >0.05 

0.06 27 9.04 36.38 0.17 <0.0001 30 11.25 31.42 0.14 <0.0001 <0.01 

0.125 36 11.90 23.46 0.15 <0.0001 42 18.43 12.08 0.11 <0.0001 <0.01 

0.25 36 26.45 9.95 0.10 <0.0001 60 0.00 0.00 0.05 <0.0001 <0.01 

0.5 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

1 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

2 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.2 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of ampicillin. Wild type and DNamH strains incubated for 
60 hours at 37°C with selected concentrations of ampicillin produced growth curves measured at OD600nm in Figure 4.3. Variations between growth curves were measured by 
time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 0 
µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent ampicillin concentrations 
were determined by p-values <0.05. 
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The MIC assessment of the wild type (Figure 4.3 (a)) and DNamH (Figure 4.3 (b)) 

demonstrated that the absence of N-glycolylated peptidoglycan moderately sensitised 

M. smegmatis to ampicillin. This results reinforced the findings of Raymond, et al. 

(2005), emphasising the increased resilience of the wild type strain. 

 

The normal growth phenotype of the wild type (Figure 4.3 (a) Blue) and DNamH 

(Figure 4.3 (b) Blue) strains were used as controls to compare against growth in the 

presence of ampicillin. The normal cell growth of both strains exited apparent lag phase 

after 21 hours, during exponential phase demonstrated a doubling time (Td) of 6.54 

(wild type) and 7.35 (DNamH) hours respectively and plateaued during stationary phase 

at a maximum optical density of OD600nm 0.3 after 45 hours.  

 

The presence of increasing concentrations of ampicillin led to a gradual increase in the 

duration of apparent lag phase and the Td within exponential phase as well as a 

reduction in the final stationary phase OD600nm and the AUC compared to the 0 µg.mL-

1 strain control. The four lowest ampicillin concentrations 0.015 µg.mL-1 (Figure 4.3 

Pink), 0.03 µg.mL-1 (Figure 4.3 Green), 0.06 µg.mL-1 (Figure 4.3 Orange) and 0.125 

µg.mL-1 (Figure 4.3 Purple) permitted M. smegmatis growth of both strains, but 

displayed a more pronounced effect on the growth of the DNamH strain. Variation 

between the two strains was most evident after the incubation of cells with 0.25 µg.mL-

1 (Figure 4.3 Red) ampicillin. The wild type strain demonstrated observable growth 

after 36 hours (Table 4.2) whereas the DNamH strain did not show any measurable 

growth in nutrient media during the 60 hour experiment. The ampicillin MIC for the 

DNamH strain was therefore concluded as 0.25 µg.mL-1, half the 0.5 µg.mL-1 MIC 

(Figure 4.3 (a) Yellow) of the wild type. 

 

The growth curves in Figure 4.3 were analysed with a Student’s t-test against the 

normal cellular phenotype expressed in the 0 µg.mL-1 control (Table 4.2) of each strain. 

This showed that the inhibition towards wild type growth attributed to ampicillin at 

each investigated concentration was deemed statistically significant with p-values 

<0.001 (0.015 and 0.03 µg.mL-1) and <0.0001 (0.06-2 µg.mL-1) respectively. DNamH 

strain inhibition attributed to all ampicillin concentrations were also deemed 
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statistically significant with p-values of <0.001 for ampicillin concentrations 0.015 and 

0.03 µg.mL-1 and <0.0001 for all remaining concentrations between 0.06 to 2 µg.mL-1.  

 

The significance of the observed variation in the responses of the wild type (Figure 4.3 

(a)) and DNamH (Figure 4.3 (b)) M. smegmatis strains to equivalent ampicillin 

concentrations showed that variation in antimicrobial inhibition caused by addition of 

less than 0.03 µg.mL-1 ampicillin to both strains was not statistically significant with a 

p-value >0.05. The variation observed at concentrations greater than 0.03 µg.mL-1 were 

deemed statistically significant from one another with p-values at each concentration 

(0.06, 0.125 and 0.25 µg.mL-1) of <0.01. 

 

To determine if no growth equates to bacterial killing, microtiter plate well contents at 

the 60 hour time point were pipetted onto TSB agar plates to evaluate ampicillin MBC 

for both M. smegmatis strains. Results are shown in Figure 4.4. 

 

 

 
Figure 4.4 Minimal bactericidal concentration of ampicillin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of ampicillin that did not produce growth (Figure 4.3) were pipetted in duplicate onto TSB agar to 
determine the MBC. Each quadrant denotes the ampicillin concentration in µg.mL-1. Results: Wild type 
MBC 1 µg.mL-1, ∆NamH MBC 0.5 µg.mL-1.  
 

The MBC assessment of wild type (Figure 4.4 (a)) and DNamH (Figure 4.4 (b)) cells 

after incubation with MIC or greater concentrations of ampicillin showed that the 

DNamH strain remained more susceptible to the antimicrobial, with an MBC half the 

value obtained in the wild type. The MBC values were 1 µg.mL-1 (wild type) and 0.5 

µg.mL-1 (DNamH), which were double the corresponding MIC values for each strain.  
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4.4.2 Isoniazid MIC assessment of M. smegmatis wild type and DNamH 

strains 

 

Isoniazid is one of the four standard first-line antimicrobials against tuberculosis 

infection (Metcalfe, et al. 2008). A prodrug activated within mycobacteria by the heme 

enzyme KatG (Metcalfe, et al. 2008). Once active, the drug targets mycolic acid 

synthesis, a major component of the mycobacterial cell wall which forms the mAGP 

complex (Quemard, et al. 1991). The structure of isoniazid is shown in Figure 4.5. 

 

 

 
Figure 4.5: The structure of the antibiotic Isoniazid. Molecular weight: 137.14; Chemical formula: 
C6H7N3O.The above schematic was created using ChemBioDraw. 
 

Raymond, et al. (2005) assessed isoniazid activity against the M. smegmatis PM965 

and PM979 strains and concluded that no variation in susceptibility was observed in 

the DNamH strain compared to the wild type. These finding were reassessed to 

determine the isoniazid MIC for both strains in Figure 4.6. 
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Figure 4.6 The impact of N-glycolylation of peptidoglycan on sensitivity of M. smegmatis growth of isoniazid. Wild type (a) and (b) DNamH M. smegmatis MIC growth 
curves against isoniazid. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 60 hours. 
Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of isoniazid at a total DMSO concentration of 2% (v/v). M. 
smegmatis wild type (a) and (b) ∆NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. Error bars 
represent standard deviation of triplicate measurements. Isoniazid concentrations: 0 µg.mL-1 (Blue), 0.125 µg.mL-1 (Green), 0.25 µg.mL-1 (Pink), 0.5 µg.mL-1 (Orange), 1 
µg.mL-1 (Purple), 2 µg.mL-1 (Red), 4 µg.mL-1 (Yellow). Statistically significant results of comparisons of growth at increasing isoniazid concentrations compared to growth at 
0 µg.mL-1 isoniazid for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. Results: Both strains 
display equal susceptibility to isoniazid. MIC results: Wild type (a) 2 µg.mL-1, DNamH (b) 2 µg.mL-1. 
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Isoniazid 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs (a) 
p-values Apparent 

Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.14 - 0.30 - 21 7.19 - 0.29 - >0.05 

0.125 21 7.10 99.89 0.30 >0.05 21 7.02 94.28 0.28 >0.05 >0.05 

0.25 21 7.10 76.28 0.24 <0.01 21 7.18 91.01 0.26 <0.05 <0.05 

0.5 24 7.80 57.68 0.19 <0.001 24 8.85 63.69 0.21 <0.001 >0.05 

1 45 13.75 9.48 0.12 <0.0001 45 14.29 9.28 0.12 <0.0001 >0.05 

2 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

4 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.3 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of Isoniazid. Wild type and DNamH strains incubated for 
60 hours at 37°C with selected concentrations of isoniazid produced growth curves measured at OD600nm in Figure 4.6. Variations between growth curves were measured by 
time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 0 
µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent isoniazid concentrations were 
determined by p-values <0.05. 
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The absence of the N-glycolyl modification did not appear to impact the isoniazid MIC, 

with both wild type and DNamH strains producing equivalent growth curves at equal 

concentrations of isoniazid (Table 4.3). In this data set, the growth curves for the wild 

type (Figure 4.6 (a) Blue) and DNamH (Figure 4.6 (b) Blue) strains in the absence of 

isoniazid were virtually identical to the equivalent data in the ampicillin experiment 

(Figure 4.3) whereby strains demonstrated an apparent lag phase of 21 hours, produced 

Td of 7.14 and 7.19 hours respectively and entered stationary phase around OD600nm 

0.3 after 45 hours.  

 

The addition of the lowest investigated isoniazid concentration 0.125 µg.mL-1 (Figure 

4.6 Green) to both strains did not alter the normal distribution of growth compared to 

the equivalent 0 µg.mL-1 control. The duration of apparent lag phase, the Td and the 

final OD600nm during stationary phase demonstrated no observable inhibition towards 

cellular growth at 0.125 µg.mL-1 isoniazid (Table 4.3). Doubling the concentration of 

isoniazid to 0.25 µg.mL-1 (Figure 4.6 Pink) in both strains only impacted the final 

OD600nm value during stationary phase. Both the duration of apparent lag phase and Td 

remained constant to their respective 0 µg.mL-1 controls. This variation caused by 0.25 

µg.mL-1 isoniazid reduced the AUC of both strains to 76.28% (wild type) and 91.01% 

(DNamH) respectively (Table 4.3). 

 

The subsequent isoniazid concentrations 0.5 µg.mL-1 (Figure 4.6 Orange) and 1 µg.mL-

1 (Figure 4.6 Purple) were insufficient to prevent growth during the 60 hour experiment 

and equally effected both M. smegmatis strains increasing apparent lag phase, Td and 

reducing stationary phase OD (Table 4.3). The AUC values during 0.5 µg.mL-1 

isoniazid incubation were 57.68% (wild type) and 63.69% (DNamH) respectively, 

whilst during 1 µg.mL-1 isoniazid incubation were reduced significantly to 9.48% (wild 

type) and 9.28% (DNamH) (Table 4.3) respectively. The isoniazid MIC for both M. 

smegmatis strains was 2 µg.mL-1. Both the wild type (Figure 4.6 (a): Red) and DNamH 

(Figure 4.6 (b): Red) were completely inhibited at this concentration. 

 

A Student’s t-test analysis of both strains comparing the inhibition observed in the 

presence of increasing concentrations of the antimicrobial isoniazid to the 0 µg.mL-1 

control for each strain produced matching results at almost all investigated 



 157 

concentrations (Table 4.3). The addition of 0.125 µg.mL-1 to either strain inhibited 

growth in a manner than was not deemed statistically significant with p-values >0.05. 

The presence of 0.25 µg.mL-1 isoniazid produced statistically significant results in both 

strains compared to their 0 µg.mL-1 controls with p values of <0.01 (Wild type) and 

<0.05 (DNamH) respectively. Isoniazid concentrations greater than 0.25 µg.mL-1 

resulted in equally statistically significant inhibition in both strains culminating in p-

values of <0.01 (0.5 µg.mL-1) and <0.001 (1-4 µg.mL-1) respectively. 

 

T-test comparisons made between strains during incubation with equivalent isoniazid 

concentrations determined than any strain specific variation in growth curves was 

deemed not be statistically significant with p-values >0.05 in all concentrations except 

at 0.25 µg.mL-1 isoniazid due to the difference noted in measured AUC (Table 4.3), 

which led to growth curve variation between strains at this sole concentration deemed 

significant with a p-value of <0.05. 

 

Wells containing the MIC and higher isoniazid concentrations incubated with both M. 

smegmatis strains were transferred onto TSB agar plates and incubated for 72 hours to 

determine the MBC values. The results are shown in Figure 4.7.  

 

 

 
Figure 4.7 Minimal bactericidal concentration of isoniazid against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of isoniazid that did not produce growth (Figure 4.6) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the isoniazid concentration in µg.mL-1. Results: Wild type MBC 
8 µg.mL-1, ∆NamH MBC 8 µg.mL-1.  
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As observed in the MIC growth curve analysis (Figure 4.6) the isoniazid MBC for both 

strains was 8 µg.mL-1. Therefore, the presence of the N-glycolyl modification present 

in the wild type M. smegmatis peptidoglycan did not alter MBC relative to the DNamH 

strain which possessed exclusively MurNAc based peptidoglycan. The isoniazid MBC 

was 4 times greater than the isoniazid MIC values of 2 µg.mL-1. 

 

 

4.4.3 Ramoplanin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Ramoplanin is a gram-positive-directed, broad spectrum antimicrobial which inhibits 

transglycosylase activity of PBPs by binding specifically to Lipid II and preventing the 

extension of peptidoglycan chains (Fang, et al. 2006). Ramoplanin was initially 

proposed to inhibit MurG through binding of Lipid I (Reynolds, et al. 1990), although 

due to its size and high solubility is unlikely that ramoplanin would easily traverse the 

cell membrane (Fang, et al. 2006). The structure of ramoplanin is detailed in Figure 

4.8. 

 

 
Figure 4.8: The structure of the glycolipodepsipeptide antibiotic Ramoplanin. Molecular weight: 
2524.04; Chemical formula: C117H150ClN21O40. The above schematic was created using ChemBioDraw. 
 

The MIC of ramoplanin with respect to inhibition of growth of both M. smegmatis 

strains was assessed in Figure 4.9. 
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Figure 4.9 The impact of N-glycolylation of peptidoglycan on sensitivity of M. smegmatis growth of ramoplanin. Wild type (a) and (b) DNamH M. smegmatis MIC growth 
curves against ramoplanin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 60 hours. 
Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of ramoplanin with a total DMSO concentration of 2% (v/v). 
The cultured M. smegmatis wild type (a) and (b) DNamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and 
incubation. Error bars represent standard deviation of triplicate measurements. Ramoplanin concentrations: 0 µg.mL-1 (Blue), 0.125 µg.mL-1 (Green), 0.25 µg.mL-1 (Pink), 0.5 
µg.mL-1 (Orange), 1 µg.mL-1 (Purple), 2 µg.mL-1 (Red), 4 µg.mL-1 (Yellow), 8 µg.mL-1 (Black) and 16 µg.mL-1 (Brown). Statistically significant results of comparisons of 
growth at increasing ramoplanin concentrations compared to growth at 0 µg.mL-1 ramoplanin for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 
and **** = <0.0001. Ns = not statistically significant. Results: Both strains display equal susceptibility to ramoplanin. MIC results: Wild type (a) 2 µg.mL-1, DNamH (b) 2 
µg.mL-1.  
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Ramoplanin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.22 - 0.29 - 21 7.81 - 0.29 - >0.05 

0.125 21 8.43 77.34 0.25 <0.01 24 9.53 62.07 0.21 <0.001 <0.01 

0.25 30 9.04 48.99 0.20 <0.0001 33 8.80 38.96 0.19 <0.0001 <0.01 

0.5 30 10.20 33.26 0.15 <0.0001 42 10.40 14.59 0.15 <0.0001 <0.001 

1 54 11.32 5.36 0.12 <0.0001 54 11.12 1.89 0.09 <0.0001 <0.05 

2 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

4 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

8 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

16 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.4 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of Ramoplanin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of Ramoplanin produced growth curves measured at OD600nm in Figure 4.9. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent Ramoplanin concentrations 
were determined by p-values <0.05. 
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The control growth curves demonstrated by the wild type (Figure 4.9 (a) Blue) and 

DNamH (Figure 4.9 (b) Blue) strains in the absence of the ramoplanin during this 60 

hour incubation was used as a marker to compared the incubation of increasing 

antimicrobial concentrations. In this set of experiments, cells exited apparent lag phase 

after 21 hours, produced a Td of 7.22 (wild type) and 7.81 (DNamH) hours respectively 

and both reached an OD600nm of 0.29 after 45 hours during stationary phase (Table 4.4).  

 

The addition of increasing concentrations of ramoplanin resulted in an equivalent MIC 

of 2 µg.mL-1 (Figure 4.9 Red) for both strains during the 60 hour experiment. The lower 

preceding ramoplanin concentrations 0.125 µg.mL-1 (Figure 4.9 Green), 0.25 µg.mL-1 

(Figure 4.9 Pink), 0.5 µg.mL-1 (Figure 4.9 Orange) and 1 µg.mL-1 (Figure 4.9 Purple) 

demonstrated a gradual decline in growth measured by the reduction in the AUC of 

both strains compared to their respective 0 µg.mL-1 controls (Table 4.4), although 

inhibition was observed to a greater degree in the DNamH strain.  

 

The growth curves of both wild type and DNamH strains in the presence of increasing 

concentrations of ramoplanin were analysed with a Student’s t-test against the 

equivalent growth curve of each strain in the absence of the antimicrobial to determine 

where observed inhibition was statistically significant (Table 4.4). Results show that all 

investigated concentrations of ramoplanin produced statistically significant inhibition 

compared to the strain’s respective 0 µg.mL-1 control. The addition of the lowest 

investigated concentration 0.125 µg.mL-1 led to significant inhibition in both strains 

with p-values of <0.01 (Wild type) and <0.001 (DNamH) respectively. Subsequent 

concentrations (0.25-16 µg.mL-1) of ramoplanin produced equivalent statistical 

significance in both strains with p-values of <0.0001 for each investigated 

concentration. 

 

Comparative Student’s t-tests between the wild type and DNamH strains at equivalent 

concentrations of ramoplanin were assessed to determine if inter-strain growth curve 

variation was statistically significant (Table 4.4). Results demonstrated that all 

observed differences between strains at matching concentrations were found to be 

statistically significant with p-values of <0.01 (0.125 and 0.25 µg.mL-1), <0.001 (0.5 

µg.mL-1) and <0.05 (1 µg.mL-1) respectively. 
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After the 60 hours incubation period, wells which did not produce observable M. 

smegmatis growth for either strain were pipetted in 10 µL volumes onto TSB agar and 

incubated at 37°C for 72 hours for MBC assessment. Results are shown in Figure 4.10. 

 

 

 
Figure 4.10 Minimal bactericidal concentration of ramoplanin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of ramoplanin that did not produce growth (Figure 4.9) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the ramoplanin concentration the M. smegmatis strains were 
exposed to in µg.mL-1. Results: Wild type MBC 4 µg.mL-1, ∆NamH MBC 4 µg.mL-1. 
 

The ramoplanin MBC assessment in Figure 4.10 showed that both M. smegmatis strains 

had the equivalent MBC value of 4 µg.mL-1. Cells incubated at ramoplanin 

concentrations 4 µg.mL-1, 8 µg.mL-1 or 16 µg.mL-1 were unable to propagate on TSB 

agar.  This concentration was double the MIC value (Figure 4.9) for each M. smegmatis 

strain. 
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4.4.4 Tunicamycin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Tunicamycin is an antimicrobial that targets numerous cellular processes. The inhibitor 

prevents protein N-glycosylation and  impacts not only peptidoglycan biosynthesis but 

also the bridging of teichoic acids to peptidoglycan (Price, et al. 2005). The 

peptidoglycan biosynthesis target of tunicamycin is the active site of MraY which it 

irreversibly binds to preventing the conversion of undecaprenyl phosphate and UDP-

MurNAc-pentapeptide to Lipid I (Al-Dabbagh, et al. 2008). The structure of 

tunicamycin is shown in Figure 4.11.  

 

 

 
Figure 4.11: The structure of the Tunicamycin. Molecular weight: 844.95; Chemical formula: 
C39H64N4O16. The above schematic was created using ChemBioDraw. 
 

 

To determine the impact of N-glycolylation of peptidoglycan on mycobacterial 

sensitivity to this antibiotic, the tunicamycin MIC for M. smegmatis wild type and 

DNamH strains were determined (Figure 4.12). 
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Figure 4.12 The impact of N-glycolylation of peptidoglycan of peptidoglycan on sensitivity of M. smegmatis growth to tunicamycin. Wild type (a) and (b) DNamH M. 
smegmatis MIC growth curves against tunicamycin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 
hour intervals for 60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of tunicamycin at a total DMSO 
concentration of 2% (v/v). M. smegmatis wild type (a) and (b) ∆NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to 
wells and incubation. Error bars represent standard deviation of triplicate measurements. Tunicamycin concentrations: 0 µg.mL-1 (Blue), 2 µg.mL-1 (Green), 4 µg.mL-1 (Pink), 
8 µg.mL-1 (Orange), 16 µg.mL-1 (Purple), 32 µg.mL-1 (Red) and 64 µg.mL-1 (Yellow). Statistically significant results of comparison of growth at increasing tunicamycin 
concentrations compared to growth at 0 µg.mL-1 tunicamycin for this strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not 
statistically significant. Results: Both strains display equal susceptibility to tunicamycin. MIC results: Wild type (a) 32 µg.mL-1, DNamH (b) 32 µg.mL-1. 
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Tunicamycin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 6.82 - 0.31 - 21 6.73 - 0.31 - >0.05 

2 21 7.93 97.02 0.30 >0.05 21 7.44 90.34 0.30 >0.05 >0.05 

4 21 7.62 76.78 0.25 <0.01 21 8.19 82.83 0.27 <0.01 >0.05 

8 21 8.69 64.68 0.22 <0.001 21 8.56 60.93 0.21 <0.001 >0.05 

16 30 11.30 42.37 0.18 <0.001 36 13.56 20.50 0.14 <0.0001 <0.001 

32 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

64 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

128 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.5 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of tunicamycin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of tunicamycin produced growth curves measured at OD600nm in Figure 4.12. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent tunicamycin concentrations 
were determined by p-values <0.05. 
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In this set of experiments, the M. smegmatis wild type (Figure 4.12 (a) Blue) and 

DNamH (Figure 4.12 (b) Blue) control growth curves both exited apparent lag phase 

after 21 hours, with a log phase Td of 6.82 and 6.73 hours respectively and both 

plateaued after 45 hours at an OD600nm of 0.31 (Table 4.5). The addition of the lowest 

concentration to both M. smegmatis strains 2 µg.mL-1 (Figure 4.12 Green), led to 

similar growth curves to the 0 µg.mL-1 controls in terms of apparent lag phase duration 

and final stationary phase OD but differed when measuring exponential phase. The Td 

of each growth curve increased by around an hour to 7.93 (wild type) and 7.44 

(DNamH) hours respectively. The subsequent tunicamycin concentrations 4 µg.mL-1 

(Figure 4.12 Pink) and 8 µg.mL-1 (Figure 4.12 Orange) did not impact apparent lag 

phase which remained constant at 21 hours (Table 4.5) but reduced the AUC of both 

strains by further increasing Td and reducing stationary phase.  

 

The final sub MIC of tunicamycin investigated for both strains was 16 µg.mL-1 (Figure 

4.12 Purple). At this concentration deviation was observed between the two strains for 

the first time. The previous concentrations of tunicamycin produced a maximum of 7% 

variation between AUC values of each strain at equivalent concentrations compared to 

their respective control (Table 4.5). The addition of 16 µg.mL-1 extended apparent lag 

phase by 6 hours in the NamH strain compared to the wild type resulting in a 21.87% 

difference in AUC values. The tunicamycin MIC for both strains was equivalent at 32 

µg.mL-1 (Figure 4.12 Red). 

 

A Student’s t-test analysis of both the wild type and DNamH strains against increasing 

concentrations of tunicamycin compared to their respective 0 µg.mL-1 control (Table 

4.5), demonstrated that the addition of the antimicrobial at 2 µg.mL-1 produced no 

statistically significant inhibition  (p-value >0.05). Investigated concentrations above 

this 2 µg.mL-1 threshold for both strains were each deemed statistically significant. The 

inhibition observed at 4 and 8 µg.mL-1 tunicamycin produced p-values of <0.01 and 

<0.001 respectively. The statistical significance of the inhibition attributed to 16 

µg.mL-1 tunicamycin against the DNamH (p-value <0.0001) strain was more 

pronounced than the wild type (<0.001). This result was the only observed difference 

between the two strains with all subsequent tunicamycin concentrations (32-128 

µg.mL-1) generating p-values of <0.0001.  
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Comparisons made between the two strains at each concentration of tunicamycin 

indicated that all variations observed between strains at equivalent concentrations was 

not statistically significant (p-values >0.05), except the variation noted between the two 

strains at 16 µg.mL-1 which was deemed statistically significant with a p-value of 

<0.001. 

 

Concentrations of tunicamycin which did not produce observable growth, 32 µg.mL-1 

or greater were transferred onto TSB agar plates to measure the MBC. Results are 

shown in Figure 4.13. 

 

 

 
Figure 4.13 Minimal bactericidal concentration of tunicamycin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of tunicamycin that did not produce growth (Figure 4.12) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the tunicamycin concentration in µg.mL-1. Results: Wild type 
MBC 64 µg.mL-1, ∆NamH MBC 64 µg.mL-1.  
 

Tunicamycin MBC assessment (Figure 4.13) showed that although 32 µg.mL-1 

tunicamycin (Figure 4.12 Red) was the MIC sufficient to inhibit growth during 

antimicrobial incubation, this concentration was not completely bactericidal towards 

M. smegmatis cells. Increasing the tunicamycin concentration to 64 µg.mL-1 led to a 

lack of observable growth for both strains and was therefore defined as the MBC.  
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4.4.5 Mersacidin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Mersacidin is an antimicrobial peptide made from 20 amino acids including uncommon 

residues such as lanthionine and is therefore termed as a lantibiotic (Schmitz, et al. 

2006). The structure of mersacidin is shown in Figure 4.14. 

 

 

 
Figure 4.14: The structure of the lantibiotic Mersacidin. The above schematic was created using 
ChemBioDraw. Unusual amino acid abbreviations: Abu aminobutyric acid: Dha: dehydroalanine.  
 

Mersacidin is targeted towards Lipid II, binding to which inhibits transglycosylase 

activity and the formation of elongated peptidoglycan chains (Appleyard, et al. 2009). 

Mersacidin activity is most pronounced towards Gram-positive organisms due to the 

increased cellular percentage of peptidoglycan (Schleifer and Kandler 1972). 

Assessment of the mersacidin MIC against the two M. smegmatis strains at a 

concentration range of 2 µg.mL-1 to 128 µg.mL-1 is shown in Figure 4.15. 
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Figure 4.15 The impact of N-glycolylation of peptidoglycan on sensitivity of M. smegmatis growth on mersacidin. Wild type (a) and (b) DNamH M. smegmatis MIC 
growth curves against mersacidin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 
60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of mersacidin with a total DMSO concentration of 
2% (v/v). M. smegmatis wild type (a) and (b) ∆NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. 
Error bars represent standard deviation of triplicate measurements. Mersacidin concentrations: 0 µg.mL-1 (Blue), 2 µg.mL-1 (Green), 4 µg.mL-1 (Pink), 8 µg.mL-1 (Orange), 16 
µg.mL-1 (Purple), 32 µg.mL-1 (Red), 64 µg.mL-1 (Yellow) and 128 µg.mL-1 (Black). Statistically significant results of comparison of growth at increasing mersacidin 
concentrations compared to growth at 0 µg.mL-1 mersacidin for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not 
statistically significant. Results: Both strains were equally susceptibility to mersacidin. MIC results: Wild type (a) 32 µg.mL-1, DNamH (b) 32 µg.mL-1. 
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Mersacidin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.78 - 0.30 - 21 7.72 - 0.29 - >0.05 

2 21 7.99 87.58 0.28 <0.05 21 9.17 92.11 0.26 <0.05 >0.05 

4 24 7.99 76.68 0.25 <0.01 30 9.48 58.99 0.24 <0.001 <0.001 

8 33 9.00 44.44 0.21 <0.001 33 10.69 38.73 0.18 <0.0001 <0.01 

16 42 8.94 24.54 0.16 <0.0001 36 10.31 30.32 0.16 <0.0001 <0.01 

32 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

64 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

128 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.6 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of mersacidin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of mersacidin produced growth curves measured at OD600nm in Figure 4.15. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent mersacidin concentrations 
were determined by p-values <0.05. 
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In this set of experiments the standard 0 µg.mL-1 mersacidin wild type (Figure 4.15 (a): 

Blue) and DNamH (Figure 4.15 (b): Blue) control growth curves were characterised by 

identical 21 hour apparent lag phases before entering exponential phase with Td values 

of 7.78  (wild type) and 7.72 (DNamH) hours respectively. Growth of both strains 

plateaued after 45 hours at OD600nm of 0.3 (wild type) and 0.29 (DNamH) respectively 

(Table 4.6). 

 

The addition of mersacidin at the lowest investigated concentration, 2 µg.mL-1 (Figure 

4.15 Green)  demonstrated equivalent inhibition towards each strain. The antimicrobial 

at this concentration did not impact the duration of the apparent lag phase, although it 

did marginally increase the Td and reduce the final stationary phase OD. This resulted 

in an AUC reduction to around 90% of their respective 0 µg.mL-1 controls (Table 4.6). 

Doubling the concentration of mersacidin to 4 µg.mL-1 (Figure 4.15 Pink) led to the 

most notable variation between the two strains, demonstrating an increased potency 

towards the DNamH strain not observed during incubation at 2 µg.mL-1.  The two 

strains produced a 6 hour difference in duration of the apparent lag phase with 24 hours 

for the wild type and 30 hours for the DNamH strain. This result combined with the 

wild type Td of 7.99 hours compared to DNamH 9.48 hours led to an AUC difference 

of 17.69% (Table 4.6).  

 

The subsequent mersacidin concentrations 8 µg.mL-1 (Figure 4.15 Orange) and 16 

µg.mL-1 (Figure 4.15 Purple) permitted growth of both M. smegmatis strains. Both 

concentrations led to similar Td values in the wild type (9 hours) and DNamH (10 hours) 

strains, although the apparent lag phase was more pronounced in both strains at the 

highest concentration (Table 4.6). 32 µg.mL-1 (Figure 4.15 Red) mersacidin was 

sufficient to present no observation of M. smegmatis growth of either strain and was 

therefore identified as the MIC value. 

 

Statistical significance of the impact of mersacidin on M. smegmatis wild type was 

determined relative to growth in the absence of the drug by a Student’s t-test (Table 

4.6). The wild type inhibition observed during incubation with all investigated 

concentrations of mersacidin were measured as statistically significant with p-values of 

<0.05 (2 µg.mL-1), <0.01 (4 µg.mL-1), <0.001 (8 µg.mL-1) and <0.0001 (16-128 µg.mL-
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1) respectively. Inhibition attributed to all mersacidin concentrations against M. 

smegmatis DNamH cells were statistically significant (Table 4.6) with p-values <0.05 

(2 µg.mL-1), <0.001 (4 µg.mL-1) and <0.0001 (8-128 µg.mL-1). 

 

Comparative t-test analysis comparing wild type and DNamH growth curves at the same 

concentrations of mersacidin (Table 4.6) demonstrated that growth curve variation at 2 

µg.mL-1 was not statistically significant (p-value >0.05). All subsequent mersacidin 

concentrations demonstrating increased potency towards the DNamH strain were 

statistically significant with p-values of <0.001 (4 µg.mL-1) and <0.01 (8 and 16 µg.mL-

1) respectively. 

 

Wells containing both M. smegmatis strains incubated with mersacidin concentrations 

32, 64 and 128 µg.mL-1 were pipetted onto TSB agar to determine the mersacidin MBC. 

Results are shown in Figure 4.16. 

 

 

 
Figure 4.16 Minimal bactericidal concentration of mersacidin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of mersacidin that did not produce growth (Figure 4.15) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the mersacidin concentration in µg.mL-1. Results: Wild type 
MBC 64 µg.mL-1, ∆NamH MBC 64 µg.mL-1. 
 

Mersacidin at 64 µg.mL-1 or greater (Figure 4.16) was bactericidal to both strains 

equally and so 64 µg.mL-1 was determined to be the MBC. 
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4.4.6 Moenomycin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Moenomycin is an antimicrobial which reversibly binds directly to the active site of 

peptidoglycan glycosyltransferases (PGTs), preventing the extension of peptidoglycan 

chains by addition of Lipid II (Ostash, et al. 2009). The structure of the 

phosphoglycolipid antibiotic moenomycin shown in Figure 4.17 strongly resembles the 

known structure of Lipid IV, comprised of two Lipid II  subunits. 

 

 

 
Figure 4.17: The structure of the glycosyltransferase antibiotic Moenomycin. Molecular weight: 
1554.62; Chemical formula: C69H111N4O33P. The above schematic was created using ChemBioDraw. 
 

Moenomycin was original identified as a product of Streptomyces ghanaensis (Ostash, 

et al. 2009) and demonstrated potent activity towards gram-positive organisms, but due 

to unsuitable pharmacokinetics more commonly administered in agriculture (Galley, et 

al. 2014). The MIC of moenomycin against both M. smegmatis PM965 and PM979 

strains was assessed in Figure 4.18. 
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Figure 4.18 The impact of N-glycolylation of peptidoglycan on sensitivity of M. smegmatis growth to moenomycin. Wild type (a) and (b) DNamH M. smegmatis MIC 
growth curves against moenomycin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 
60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of moenomycin at a total DMSO concentration of 2% 
(v/v). M. smegmatis wild type (a) and (b) ∆NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. 
Error bars represent standard deviation of triplicate measurements. Moenomycin concentrations: 0 µg.mL-1 (Blue), 50 µg.mL-1 (Green), 90 µg.mL-1 (Pink), 130 µg.mL-1 
(Orange), 170 µg.mL-1 (Purple), 210 µg.mL-1 (Red), 250 µg.mL-1 (Yellow). Statistically significant results of comparison of growth at increasing moenomycin concentrations 
compared to growth at 0 µg.mL-1 moenomycin for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically 
significant. Results: DNamH was more susceptible to moenomycin than wild type. MIC results: Wild type (a) 210 µg.mL-1, DNamH (b) 170 µg.mL-1. 
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Moenomycin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 6.95 - 0.30 - 21 7.59 - 0.30 - >0.05 

50 24 9.73 59.84 0.22 <0.001 21 9.97 57.22 0.20 <0.001 >0.05 

90 30 10.67 39.67 0.17 <0.001 33 13.40 24.65 0.16 <0.0001 <0.01 

130 42 13.32 14.92 0.14 <0.0001 42 17.63 5.70 0.10 <0.0001 <0.05 

170 54 28.99 3.17 0.08 <0.0001 60 0.00 0.00 0.05 <0.0001 <0.05 

210 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

250 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.7 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of moenomycin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of moenomycin produced growth curves measured at OD600nm in Figure 4.18. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent moenomycin concentrations 
were determined by p-values <0.05. 
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In this set of experiments, the 0 µg.mL-1 control included to compared against wild type 

(Figure 4.18 (a) Blue) and DNamH (Figure 4.18 (b) Blue) growth curves inhibited by 

addition of increasing concentration of moenomycin, both exited apparent lag phase 

after 21 hours, generated a Td within exponential phase of 6.95 and 7.59 hours 

respectively and plateaued during stationary phase at OD600nm 0.3 (Table 4.7).  

 

The addition of the lowest investigated concentration of moenomycin 50 µg.mL-1 

(Figure 4.18 Green) to both strains similarly altered growth, increasing the Td to 9.73 

(Wild type) and 9.97 (DNamH) hours respectively and significantly reduced the AUC 

to 59.84% (Wild type) and 57.22% (DNamH) compared to their respective controls 

(Table 4.7). Subsequent moenomycin concentrations, 90 µg.mL-1 (Figure 4.18 Pink) 

and 130 µg.mL-1 (Figure 4.18 Orange) permitted measurable growth from both strains 

but demonstrated greater potency towards the DNamH strain. The most noted variation 

between the two M. smegmatis strains was most evident in cells incubated for 60 hours 

with 170 µg.mL-1 (Figure 4.18 Purple) moenomycin. This time frame was sufficient for 

the wild type (Figure 4.18 (a) Purple) to demonstrate measurable growth after a 54 hour 

duration within apparent lag phase. The DNamH strain on the other hand was unable to 

display observable growth (Figure 4.18 (b) Purple), therefore the MIC for namH- 

deficient strain was 170 µg.mL-1. Increasing the moenomycin concentration to 210 

µg.mL-1 (Figure 4.18 (a) Red) prevent the wild type from propagating within the 

nutrient microtiter wells and was therefore determined to be the MIC. 

 

A Student’s t-test was done for the growth curves produced from each individual M. 

smegmatis strain with increasing concentrations of moenomycin against the 

corresponding 0 µg.mL-1 control. All moenomycin concentrations for both strains were 

deemed statistically significant. For the wild type strain moenomycin concentrations 50 

and 90 µg.mL-1 produced growth curves with p-values of <0.001. For each subsequent 

concentration the wild type growth curve inhibition resulted in p-values of <0.0001 

(130-250 µg.mL-1). For the DNamH strain the inhibition attributed to 50 µg.mL-1 led to 

a statistically significant growth curve with a p-value of <0.001. All subsequent 

moenomycin concentrations possessed p-values of <0.0001 (90- 250 µg.mL-1). 

 



 178 

Moenomycin impacted the DNamH strain to a greater degree than the wild type at 

equivalent concentrations based upon the AUC values generated. A Student’s t-test 

analysis of the variation between the two strains at equal concentrations was conducted 

and determined that the disparity between growth curves from each strain was 

statistically significant above 50 µg.mL-1 (p-value >0.05). All subsequent moenomycin 

concentrations produced p-values of <0.01 (90 µg.mL-1) and <0.05 (130 and 170 

µg.mL-1) respectively.  

 

Wells containing cells incubated with moenomycin concentrations at the MIC or 

greater were pipetted onto TSB agar plates to determine the MBC in Figure 4.19. 

 

 

 
Figure 4.19 Minimal bactericidal concentration of moenomycin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of moenomycin that did not produce growth (Figure 4.18) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the moenomycin concentration in µg.mL-1. Results: Wild type 
MBC 250 µg.mL-1, ∆NamH MBC 210 µg.mL-1.  
 

The variation between the two M. smegmatis strains observed during moenomycin MIC 

determination (Figure 4.18) continued into MBC assessment in Figure 4.19. Both 

strains were able to propagate on TSB agar after incubation with 170 µg.mL-1 

moenomycin. Increasing the concentration to 210 µg.mL-1 did not impact the wild type 

which still grew but the DNamH strain was unable to colonize the agar plate therefore 

indicating that the MBC for the DNamH strain was 210 µg.mL-1. The highest 

concentration of moenomycin, 250 µg.mL-1 was sufficient to prevent mycobacterial 

growth in both strains and was therefore the MBC value for the wild type strain. 
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4.4.7 Vancomycin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Vancomycin is a first generation glycopeptide antibiotic and common therapy against 

gram-positive organisms (Chua, et al. 2009) and a secondary therapy to numerous drug 

resistant M. tuberculosis infections (Soetaerta, et al. 2015)). The mode of action of 

vancomycin is to form hydrogen bonds towards D-alanyl-D-alanine (Wang, et al. 

2018), the terminal dipeptide residues of the peptide stem of extracellular disaccharide 

pentapeptides, preventing their incorporation into the wider peptidoglycan architecture 

(Ge, et al. 1999). The structure of vancomycin is depicted in Figure 4.20. 

 

 

 
Figure 4.20: The structure of the antibiotic Vancomycin. Molecular weight: 1447.27; Chemical 
formula: C66H75Cl2N9O24. The above schematic was created using ChemBioDraw. 
 

The MIC of vancomycin was determined for each of the two M. smegmatis strains in 

Figure 4.21. 
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Figure 4.21 The impact of N-glycolylation of peptidoglycan on the sensitivity of M. smegmatis growth to vancomycin. Wild type (a) and (b) DNamH M. smegmatis MIC 
growth curves against vancomycin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 
60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of vancomycin to a total DMSO concentration of 2% 
(v/v). M. smegmatis wild type (a) and (b) ∆NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. 
Error bars represent standard deviation of triplicate measurements. Vancomycin concentrations: 0 µg.mL-1 (Blue), 0.06 µg.mL-1 (Green), 0.125 µg.mL-1 (Pink), 0.25 µg.mL-1 
(Orange), 0.5 µg.mL-1 (Purple), 1 µg.mL-1 (Red), 2 µg.mL-1 (Yellow) and 4 µg.mL-1 (Black). Statistically significant results are indicated with * = p-value <0.05, ** = <0.01, 
*** = <0.001 and **** = <0.0001. Ns = not statistically significant. Results: DNamH displays greater susceptibility to vancomycin than wild type. MIC results: Wild type (a) 
2 µg.mL-1, DNamH (b) 1 µg.mL-1.  
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Vancomycin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.12 - 0.31 - 21 6.81 - 0.30 - >0.05 

0.06 21 7.33 97.30 0.29 >0.05 24 7.30 81.92 0.26 <0.05 <0.01 

0.125 24 7.10 81.86 0.28 <0.05 27 7.94 65.15 0.25 <0.01 <0.01 

0.25 30 7.79 54.61 0.24 <0.01 33 8.32 40.60 0.19 <0.001 <0.01 

0.5 36 9.10 32.38 0.16 <0.001 48 9.98 10.78 0.15 <0.0001 <0.001 

1 42 10.72 18.50 0.14 <0.0001 60 0.00 0.00 0.05 <0.0001 <0.001 

2 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

4 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.8 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of vancomycin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of vancomycin produced growth curves measured at OD600nm in Figure 4.21. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent vancomycin concentrations 
were determined by p-values <0.05. 
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The wild type (Figure 4.21 (a) Blue) and DNamH (Figure 4.21 (b) Blue) 0 µg.mL-1 

controls were utilised during this experiment to compare against vancomycin inhibition 

of growth curves. Both strains exited apparent lag phase after 21 hours, produced a Td 

of 7.12 (Wild type) and 6.81 (DNamH) hours respectively and reached stationary phase 

after 45 hours achieving a final OD600nm during stationary phase of 0.30 (Table 4.8). 

 

Vancomycin at each investigated concentration impacted the growth of DNamH M. 

smegmatis cells to a greater degree than the wild type at each equivalent concentration 

(Figure 4.21). The addition of the lowest investigated concentration 0.06 µg.mL-1 

(Figure 4.21 (a) Green) did not alter the duration of apparent lag phase or the Td 

compared to the 0 µg.mL-1 control (Figure 4.21 (a) Blue) in the wild type but did impact 

both measurements in DNamH cells (Figure 4.21 (b) Green) compared to the 0 µg.mL-

1 control (Figure 4.21 (b) Blue). Subsequent vancomycin concentrations 0.125 µg.mL-

1 vancomycin (Figure 4.21 Pink), 0.25 µg.mL-1 vancomycin (Figure 4.21 Orange) and 

0.5 µg.mL-1 vancomycin (Figure 4.21 Purple) each gradually decreased the growth of 

both strains but still permitted observable growth to be measured. The presence of 1 

µg.mL-1 vancomycin (Figure 4.21 Red) completely inhibited growth of the DNamH M. 

smegmatis cells (Figure 4.21 (b) Red) during the 60 hour experiment time frame. The 

wild type cells (Figure 4.21 (a) Red) demonstrated growth after 42 hours (Table 4.8). 

Doubling the vancomycin concentration to 2 µg.mL-1 (Figure 4.21 (a): Yellow) was 

sufficient to completely inhibit growth in the wild type. The MIC of the M. smegmatis 

strains based upon the findings in Figure 4.21 was 2 µg.mL-1 for the wild type and 1 

µg.mL-1 vancomycin for the DNamH strain, half the MIC of the wild type. 

 

The statistical significance (Table 4.8) of the inhibition of wild type growth caused by 

increasing concentrations of vancomycin compared to the 0 µg.mL-1 control was 

analysed with a Student’s t-test. The inhibition attributed to the lowest concentration, 

0.06 µg.mL-1 was deemed not statistically significant with a p-value >0.05. Subsequent 

concentrations of vancomycin were increasingly statistically significant with p-values 

of <0.05 (0.125 µg.mL-1), <0.01 (0.25 µg.mL-1), <0.001 (0.5 µg.mL-1) and <0.0001 (1-

4 µg.mL-1) respectively. The statistical significance (Table 4.8) of the DNamH strain to 

each of the vancomycin concentrations was deemed statistically significant and to a 
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greater degree than their wild type counterparts. The p-values for each concentration 

were <0.05 (0.06 µg.mL-1), <0.01 (0.125 µg.mL-1), <0.001 (0.25 µg.mL-1) and <0.0001 

(0.5-4 µg.mL-1) respectively. 

 

A Student’s t-test analysis comparison (Table 4.8) between the wild type and DNamH 

strains at comparative concentrations of vancomycin determined that all investigated 

concentrations of the glycopeptide produced variable inhibition to DNamH M. 

smegmatis growth curves that was deemed statistically significant with p-values <0.01 

(0.06-0.25 µg.mL-1) and <0.001 (0.5-1 µg.mL-1). Both strains were completely 

inhibited by 2 and 4 µg.mL-1 vancomycin therefore variations were not statistically 

significant (p-value >0.05). 

 

MIC and greater concentrations of vancomycin were pipetted onto TSB agar plates to 

assess MBC values for both strains against the antimicrobial. Results are shown in 

Figure 4.22. 

 

 

 
Figure 4.22 Minimal bactericidal concentration of vancomycin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of vancomycin that did not produce growth (Figure 4.21) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the vancomycin concentration in µg.mL-1. Results: Wild type 
MBC 4 µg.mL-1, ∆NamH MBC 2 µg.mL-1. 
 

The variation in susceptibility towards vancomycin noted during antimicrobial 

incubation was also observed during MBC assessment. The wild type strain (Figure 

4.22 (a)) was not able to grow in the presence of 2 µg.mL-1 vancomycin in nutrient 

media, but once cells were isolated and grown in TSB agar growth was observed.  
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The MBC for the wild type was 4 µg.mL-1. Similarly DNamH cells were unable to grow 

in the presence of 1 µg.mL-1 during MIC assessment but were able to propagate on TSB 

agar. The MBC for the DNamH strain was 2 µg.mL-1, half the value observed for the 

wild type. 

 

 

4.4.8 Teixobactin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Due to the expanding resistance of micro-organisms towards front-line drug treatments, 

the requirement for alternative candidates have led to antimicrobial peptides as a valid 

source of potential antibiotics (Toke, et al. 2005). Possessing low toxicity and potent 

specific biological activities, the natural product teixobactin and its discovery are 

championed as a unique method of antimicrobial exploration. The structure of 

teixobactin is depicted in Figure 4.23. 

 

 

 
Figure 4.23: The structure of the small molecule antibiotic Teixobactin. Molecular weight: 1242.49; 
Chemical formula: C58H95N15O15. The above schematic was created using ChemBioDraw. 
 

An unconventional depsipeptide, teixobactin contains both methylphenylalanine and 

enduracididine as well as four D-amino acids critical for antimicrobial activity (Ling, 

et al. 2015). The 1242 Dalton peptide elicits a mode of action which differs from 

common therapeutics of bacterial infection (Piddock, et al. 2015), binding the prenyl-

pyrophosphate-GlcNAc region of Lipid II, a highly conserved motif in bacteria. The 

antimicrobial peptide elucidated potent activity (< 1 µg.mL-1) towards both 

mycobacteria and Gram-positive bacteria, in addition to drug resistant strains, although 

it did not exhibit activity towards Gram-negative bacteria (Ling, et al. 2015).  
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Teixobactin is synthesized from a newly identified b-proteobacterium, Eleftheria 

terrae. The natural product was described through a new technique of isolating and 

growing previously unculturable organisms termed iChip (Sherpa, et al. 2015). In short, 

soil samples were diluted to contain approximately a single bacterial cell and 

transferred to a set channel. Two semi-permeable membranes enclosed each channel 

and the whole device was positioned within soil. Dissemination of both nutrients and 

important growth factors across the membranes permitted the secretion of potential 

antibiotics as well as the growth of unculturable bacteria in a natural environment.  

 

The teixobactin compound was acquired from Ling et al. (2015) and the stated MIC 

against M. tuberculosis of 0.125 µg.mL-1 was investigated in M. smegmatis wild type 

and DNamH strains in Figure 4.24.  
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Figure 4.24 The impact of N-glycolylation of peptidoglycan on the sensitivity of M. smegmatis growth to teixobactin. Wild type (a) and (b) DNamH M. smegmatis MIC 
growth curves against teixobactin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour intervals for 
60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of teixobactin at a total DMSO concentration of 2% 
(v/v). M. smegmatis wild type (a) and (b) �NamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to wells and incubation. 
Error bars represent standard deviation of triplicate measurements. Teixobactin concentrations: 0 µg.mL-1 (Blue), 0.007 µg.mL-1 (Green), 0.015 µg.mL-1 (Pink), 0.03 µg.mL-1 
(Orange), 0.06 µg.mL-1 (Purple), 0.125 µg.mL-1 (Red) and 0.25 µg.mL-1 (Yellow). Statistically significant results of comparison of growth at increasing concentrations of 
teixobactin compared to growth at 0 µg.mL-1 teixobactin for each strain are indicated with * = <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically 
significant. Results: Both strains were equally susceptible to teixobactin. MIC results: Wild type (a) 0.125 µg.mL-1, DNamH (b) 0.125 µg.mL-1.  
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Teixobactin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.36 - 0.29 - 21 7.95 - 0.29 - >0.05 

0.007 24 11.03 53.00 0.22 <0.01 24 10.25 57.16 0.22 <0.01 >0.05 

0.015 36 16.69 20.11 0.13 <0.001 33 16.61 23.41 0.14 <0.001 >0.05 

0.03 48 19.41 4.97 0.1 <0.0001 48 21.47 3.80 0.09 <0.0001 >0.05 

0.06 48 22.42 3.40 0.09 <0.0001 48 19.86 3.32 0.09 <0.0001 >0.05 

0.125 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

0.25 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.9 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of teixobactin. Wild type and DNamH strains incubated 
for 60 hours at 37°C with selected concentrations of teixobactin produced growth curves measured at OD600nm in Figure 4.24. Variations between growth curves were measured 
by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 
0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to each 0 µg.mL-1 
control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent teixobactin concentrations 
were determined by p-values <0.05. 
 
 
 



 188 

In this set of experiments the control (0 µg.mL-1 teixobactin) growth curves of the wild 

type (Figure 4.24 (a) Blue) and DNamH (Figure 4.24 (b) Blue) strains, both produced 

observable growth after 21 hours, with a Td during exponential phase of 7.36 (Wild 

type) and 7.97 (DNamH) hours respectively and both strains plateaued at an OD600nm of 

0.29 during stationary phase after 45 hours.  

 

The introduction of teixobactin at the concentrations investigated impacted both M. 

smegmatis strains equally, producing similar levels of inhibition at equivalent 

concentrations (Table 4.9). The lowest two investigated concentrations of teixobactin 

0.007 µg.mL-1 (Figure 4.24 Green) and 0.0015 µg.mL-1  (Figure 4.24 Pink) significantly 

impacted growth reducing the AUC of both strains to around 55% and 22% of the 

growth obtained by their respective 0 µg.mL-1 controls (Table 4.9). 

 

The final two concentrations that permitted growth were 0.03 µg.mL-1 (Figure 4.24 

Orange) and 0.06 µg.mL-1 (Figure 4.24 Purple). Both teixobactin concentrations once 

incubated with each M. smegmatis strain demonstrated equal growth over the measured 

60 hours. All cells exited apparent lag phase after 48 hours, produced a Td of 20 hours 

and measured greatly reduced AUC values between 3% and 4% total compared to their 

respective 0 µg.mL-1 control (Table 4.9). It is likely these AUC values are under 

estimated because the experiment was terminated before growth under these conditions 

reached stationary phase. The addition of 0.125 µg.mL-1 teixobactin (Figure 4.24 Red) 

was sufficient to completely inhibit growth in both strains and therefore was established 

as the MIC for both the wild type and DNamH strains. This value was the same MIC as 

published by Ling, et al. (2015) against MTB. 

 

Each of the investigated teixobactin concentrations produced M. smegmatis wild type 

and DNamH growth curves which were equally statistically significant compared to the 

0 µg.mL-1 control (Table 4.9). P-values for each teixobactin concentration were <0.01 

(0.007 µg.mL-1), <0.001 (0.015 µg.mL-1) and <0.0001 (0.03-0.25 µg.mL-1) 

respectively. A Student’s t-test (Table 4.9) comparing variations between both strains 

at equivalent concentrations of teixobactin indicated that there was no statistical 

significance at any investigated concentration with all investigated growth curves 

producing p-values >0.05.  
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Wells containing the teixobactin MIC or greater for both strains were transferred onto 

TSB agar plates and incubated for 72 hours to establish MBC values. The results are 

displayed in Figure 4.25. 

 

 

 
Figure 4.25 Minimal bactericidal concentration of teixobactin against M. smegmatis strains. M. 
smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing concentrations 
of teixobactin that did not produce growth (Figure 4.24) were pipetted in duplicate onto TSB agar to 
determine MBC. Each quadrant denotes the teixobactin concentration in µg.mL-1. Results: Wild type 
MBC 0.25 µg.mL-1, ∆NamH MBC 0.25 µg.mL-1. 
 

As with the equivalent MIC values (Figure 4.24) for both strains the MBC values were 

also equivalent. Growth was observed for both strains from wells containing the 

teixobactin MIC of 0.125 µg.mL-1 in each of the triplicate results but no growth was 

observed in any quadrant containing cells incubated with 0.25 µg.mL-1 teixobactin. 

Therefore, the teixobactin MBC for both M. smegmatis strains was 0.25 µg.mL-1. 

 

 

4.4.9 Arg-Teixobactin MIC assessment of M. smegmatis wild type and 

DNamH strains 

 

Building upon the identification of the newly discovered teixobactin structure as a 

potent antimicrobial, analogues of the structure were synthesized in vitro by Jad, et al. 

(2015). Arginine-teixobactin (Arg-Teixobactin) substitutes the unique cyclic 

guanidine-based amino acid L-allo-endurcididine residue for the linear L-Arginine 

(Figure 4.26 highlighted in red). The analogue displayed similar but reduced potency 

relative to unmodified teixobactin towards Gram-positive organisms and equivalent 
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inactivity towards Gram-negative organisms. The structure of arg-teixobactin is shown 

in Figure 4.26 highlighting the structural variation between the analogue and 

teixobactin. 

 

 

 
Figure 4.26 The structure of the modified small molecule antibiotic Teixobactin, designated 
Arginine-Teixobactin (Arg-Teixobactin). Molecular weight: 1229.47; Chemical formula: 
C58H94N15O15. The variation in chemical structure from Teixobactin is highlighted (red). The above 
schematic was created using ChemBioDraw. 
 

The teixobactin analogue, although less active than the original towards Gram-positive 

organisms was not tested against mycobacteria. Therefore, the compound was acquired 

from Jad, et al. (2015) and similarly tested to determine MIC values against both M. 

smegmatis strains. These results are shown in Figure 4.27. 



 191 

 
 

 
Figure 4.27 The impact of N-glycolylation of peptidoglycan on the sensitivity of M. smegmatis growth to Arg-teixobactin. Wild type (a) and (b) DNamH M. smegmatis 
MIC growth curves against Arg-teixobactin. Cells were grown in 96-well microtiter plates in triplicate at 37°C with intermittent shaking, OD600nm was measured at 3 hour 
intervals for 60 hours. Each well contained 100 µL culture media (7H9, ADC, 0.05% (w/v) Tween 80) with increasing concentrations of Arg-teixobactin at a total DMSO 
concentration of 2% (v/v). M. smegmatis wild type (a) and (b) DNamH strains were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to addition to 
wells and incubation. Error bars represent standard deviation of triplicate measurements. Arg-teixobactin concentrations: 0 µg.mL-1 (Blue), 0.03 µg.mL-1 (Green), 0.06 µg.mL-

1 (Pink), 0.125 µg.mL-1 (Orange), 0.25 µg.mL-1 (Purple), 0.5 µg.mL-1 (Red), 1 µg.mL-1 (Yellow) and 2 µg.mL-1 (Black). Statistically significant results of comparison of growth 
at increasing arg-teixobactin concentrations compared to growth at 0 µg.mL-1 arg-teixobactin for each strain are indicated with * = p-value <0.05, ** = <0.01, *** = <0.001 
and **** = <0.0001. Ns = not statistically significant. Results: Both strains were equally susceptible to Arg-teixobactin. MIC results: Wild type (a) 0.5 µg.mL-1, DNamH (b) 
0.5 µg.mL-1.  
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Arg-
Teixobactin 
(µg.mL-1) 

Wild type M. smegmatis DNamH M. smegmatis (b) vs 
(a) 
p-
values 

Apparent 
Lag 
phase 
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

Wild 
type 
p-values 
(a) 

Apparent 
Lag 
phase  
(h) 

Td  
(h-1) 

AUC  
(%) 

Stationary 
Phase  
OD600nm 

DNamH 
p-
values 
(b) 

0 21 7.56 - 0.29 - 21 7.14 - 0.30 - >0.05 

0.03 21 9.46 79.44 0.24 <0.01 24 9.48 61.71 0.24 <0.01 <0.05 

0.06 27 10.64 53.20 0.22 <0.001 33 9.83 42.89 0.19 <0.001 <0.05 

0.125 33 12.61 37.11 0.19 <0.001 36 15.67 26.94 0.14 <0.0001 <0.01 

0.25 36 17.02 15.42 0.12 <0.0001 39 20.32 13.62 0.12 <0.0001 >0.05 

0.5 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

1 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

2 60 0.00 0.00 0.05 <0.0001 60 0.00 0.00 0.05 <0.0001 - 

Table 4.10 Statistical comparisons of M. smegmatis growth curves in the presence of increasing concentrations of arg-teixobactin. Wild type and DNamH strains 
incubated for 60 hours at 37°C with selected concentrations of arg-teixobactin produced growth curves measured at OD600nm in Figure 4.27. Variations between growth curves 
were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells during exponential phase (hours-1), the area under the curve (AUC) percentage 
compared to the 0 µg.mL-1 control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations were statistically significant compared to 
each 0 µg.mL-1 control with p-values <0.05 deemed significant. The statistical significance of DNamH (b) growth curves compared to wild type (a) at equivalent arg-teixobactin 
concentrations were determined by p-values <0.05. 
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The growth of M. smegmatis in the presence of increasing arg-teixobactin 

concentrations was compared to the wild type (Figure 4.27 (a) Blue) and DNamH 

(Figure 4.27 (b) Blue) strain control growth curves in the absence of the antimicrobial. 

Both controls exited apparent lag phase after 21 hours, established a Td of 7.56 and 

7.14 hours and reached a final stationary phase OD600nm of 0.29 and 0.3 respectively 

after 45 hours (Table 4.10).  

 

The addition of each investigated concentration of arg-teixobactin 0.03 µg.mL-1 (Figure 

4.27 Green), 0.06 µg.mL-1 (Figure 4.27 Pink), 0.125 µg.mL-1 (Figure 4.27 Orange) and 

0.25 µg.mL-1 (Figure 4.27 Purple) gradually increased the duration of the apparent lag 

phase, the Td during exponential phase as well as reduced the AUC of both strains 

(Table 4.10). The potency of the antimicrobial analogue was slightly more pronounced 

against the DNamH strain at each arg-teixobactin concentration except 0.25 µg.mL-1. 

The presence of 0.5 µg.mL-1 arg-teixobactin (Figure 4.27 Red) or greater was sufficient 

to prevent any observation of cell growth in both investigated strains over the 60 hours. 

Therefore, the wild type and DNamH M. smegmatis arg-teixobactin MIC was 

determined to be 0.5 µg.mL-1.  

 

A Student’s t-test analysis to determine the statistical significance of the impact of arg-

teixobactin on M. smegmatis wild type growth curves compared to the 0 µg.mL-1 

control (Table 4.10) was conducted. Each of the arg-teixobactin concentrations were 

deemed statistically significant from the 0 µg.mL-1 wild type control, with p-values of 

<0.01 (0.03 µg.mL-1), <0.001 (0.06 and 0.125 µg.mL-1) and <0.0001 (0.25-2 µg.mL-1) 

respectively. A Student’s t-test of DNamH growth curves comparing the addition of 

arg-teixobactin to the 0 µg.mL-1 control (Table 4.10) showed that as with the wild type 

the inhibition observed by the presence of each concentration was deemed statistically 

significant with p-values <0.01 (0.03 µg.mL-1), <0.001 (0.06 µg.mL-1) and <0.0001 

(0.125-2 µg.mL-1) respectively. 

 

Though the addition of teixobactin did not differentially impact the two M. smegmatis 

strains, the analogue did display a slight increased activity towards the DNamH with all 

but one of the p-values comparing both strains at equivalent arg-teixobactin 
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concentrations statistically significant with p-values of <0.05 (0.03 and 0.06 µg.mL-1) 

and <0.01 (0.125 µg.mL-1) respectively.  

 

Wells containing MIC or greater concentrations of arg-teixobactin were pipetted onto 

TSB agar plates and incubated for 72 hours. MBC values were determined in Figure 

4.28. 

 

 

 
Figure 4.28 Minimal bactericidal concentration of arg-teixobactin against M. smegmatis strains. 
M. smegmatis wild type (a) and ∆NamH (b) cells incubated in liquid media with increasing 
concentrations of arg-teixobactin that did not produce growth (Figure 4.27) were pipetted in duplicate 
onto TSB agar to determine MBC. Each quadrant denotes the arg-teixobactin concentration in µg.mL-1. 
Results: Wild type MBC 2 µg.mL-1, ∆NamH MBC 2 µg.mL-1.  
 

The MBC values for arg-teixobactin in Figure 4.28 were once again equivalent for both 

strains at 2 µg.mL-1. This concentration was 8 times the MBC value of 0.25 µg.mL-1 

for teixobactin (Figure 4.25). The MBC was also 4 times the arg-teixobactin MIC value 

of 0.5 µg.mL-1, unlike the 2 fold increase in MBC over MIC seen in investigation of 

the antimicrobial properties of teixobactin. 

 

 

4.5 Synthesis of Biotinylated Lipid II (MurNAc/NGlyc) 
 

To further probe the role of the N-glycolyl modification in peptidoglycan in vitro 

synthesis of UDP-MurNAc-pentapeptide (DAP) and UDP-MurNGlyc-pentapeptide 

(DAP) were synthesized according to Lloyd et al. (2008) (Section 2.8). In short UDP-

MurNAc and UDP-MurNGlyc were incubated for 18 hours at 37°C within a final 2 mL 
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reaction volume with the L-alanine, D-glutamate, m-DAP and the D-alanyl-D-alanine 

dipeptide and the corresponding MurC-F ligases. Synthesized UDP-MurNAc/NGlyc-

pentapeptides (DAP) were isolated by centrifugal concentrator filtration and purified 

by anion exchange chromatography. 

 

Both UDP muramyl pentapeptide were analysed by mass spectrometry to determine if 

synthesis was successful. The mass spectra for UDP-MurNAc-pentapeptide is found in 

Figure A2.1 (Appendix 2) and for UDP-MurNGlyc-pentapeptide in Figure A2.2 

(Appendix 2). The observed and expected m/z values for each variant are recorded in 

Table 4.11. 

 

 

UDP 
Species 

Observed 
(m-1)/1 

Expected 
(m-1)/1 

Observed 
(m-2)/2 

Expected 
(m-2)/2 

Observed 
(m-3)/3 

Expected 
(m-3)/3 

UDP-
MurNAc-
pentapeptide 
(DAP) 

 
1192.34 

 
1192.33 

 
595.67 

 
595.66 

 
396.77 

 
396.77 

UDP-
MurNGlyc-
pentapeptide 
(DAP) 

 
1208.33 

 
1208.32 

 
603.66 

 
603.66 

 
402.10 

 
402.10 

Table 4.11 The mass/charge ratio for the peptidoglycan precursors UDP-MurNAc-pentapeptide 
(DAP) and UDP-MurNGlyc-pentapeptide (DAP). The observed and expected singly (m-1)/1, doubly 
(m-2)/2 and triply (m-3)/3 charged species of each monosaccharide. 
 

Results determined the sole presence of each correct monosaccharide variant. The 

singly (Observed 1192.34, expected 1192.33), doubly (Observed 595.67, expected 

595.66) and triply (Observed 396.77, expected 396.77)) charged species for UDP-

MurNAc-pentapeptide as well as the singly (Observed 1208.33, expected 1208.33), 

doubly (Observed 603.66, expected 603.66) and triply (Observed 402.10, expected 

402.10) charged species for UDP-MurNGlyc-pentapeptide were detected. 

 

Both UDP muramyl pentapeptides were then labelled on the amino group of their m-

DAP residues with biotin (Section 2.8.1.3). The biotinylated UDP muramyl 

pentapeptides were then purified by ion exchange chromatography with a monoQ 5/50 

resin column to isolate biotin-labelled from unlabelled UDP muramyl pentapeptides. 
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The purification of biotinylated UDP-MurNAc-pentapeptide (DAP) is shown in Figure 

4.29. 

 

 

 
Figure 4.29 Ion exchange chromatography of biotinylated UDP-MurNAc-pentapeptide (DAP) 
from unlabelled UDP-MurNAc-pentapeptide (DAP). (i) Unlabelled UDP-MurNAc-pentapeptide 
(DAP) (conductivity 21.98 mS.cm-1) and (ii) Biotinylated UDP-MurNAc-pentapeptide (DAP) 
(conductivity 30.12 mS.cm-1) were isolated by MonoQ 5/50 GL resin. Red trace is absorbance at 254nm, 
blue trace: absorbance at 280nm and black trace; conductivity. Peak identities were confirmed by mass 
spectrometric analysis. 
 

The ion exchange chromatogram (Figure 4.29) of the biotinylated UDP-MurNAc-

pentapeptide sample resolved two distinct peaks from the initial sample. Peak (i) 

(Figure 4.29: (i)) eluted at a conductivity of 21.98 mS.cm-1. The second noted peak (ii) 

(Figure 4.29: (ii)) eluted once conductivity achieved 30.12 mS.cm-1. Based on the loss 

of the amino group positive charge on the m-DAP moiety on modification with biotin 

increasing the net negative charge, strengthening its binding to an anion exchanger 

relative to the unbiotinylated species it was believed that the biotinylated 

monosaccharide eluted second. To confirm the identity of each isolated species, 

samples were analysed by mass spectrometry. The mass spectra of the first peak is 

evaluated in Figure A2.3 (Appendix 2) and the second peak in Figure A2.4 (Appendix 

2). 

 

Results of mass spectra analysis determined that the initial eluted peak (Figure 4.29: 

(i)) contained UDP-MurNAc-pentapeptide (DAP) singly (Observed 1192.34, expected 

1192.33), doubly (Observed 599.67, expected 595.66) and triply (Observed 396.77, 

expected 396.77) charged species. The second eluted peak (Figure 4.29: (ii)) was 

evaluated to contain biotinylated UDP-MurNAc-pentapeptide (DAP) singly (Observed 
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1418.41, expected 1418.41) and doubly (Observed 708.70, expected 708.70) charged 

species.  

 

The biotinylated UDP-MurNGlyc-pentapeptide (DAP) was purified from unlabelled 

UDP-MurNGlyc-pentapeptide (DAP) by ion exchange chromatography as shown in 

Figure 4.30. 

 

 

 
Figure 4.30 Ion exchange chromatography of biotinylated UDP-MurNGlyc-pentapeptide (DAP) 
from unlabelled UDP-MurNGlyc-pentapeptide (DAP). Noted peaks (i) Unlabelled UDP-MurNGlyc-
pentapeptide (DAP) (conductivity 22.71 mS.cm-1) and (ii) Biotinylated UDP-MurNGlyc-pentapeptide 
(DAP) (conductivity 30.28 mS.cm-1) were isolated by MonoQ 5/50 GL resin. Red trace is absorbance at 
254nm, blue trace: absorbance at 280nm and black trace; conductivity. Peak identities were confirmed 
by mass spectrometric analysis. 
 

The ion exchange purification of the biotin-labelled and unlabelled UDP-MurNGlyc-

pentapeptide (DAP) shown in Figure 4.30 indicates the separation of two nucleotide 

species peaks. The first peak (Figure 4.30: (i)) eluted with a conductivity of 22.71 

mS.cm-1. The second isolated peak (Figure 4.30: (ii)) eluted with a conductivity of 

30.28 mS.cm-1. Based upon the previous UDP-MurNAc-pentapeptide (DAP) ion 

exchange purification in Figure 4.29 the secondary peak is likely to contain the labelled 

monosaccharide and the first peak contains unlabelled UDP-MurNGlyc-pentapeptide 

(DAP). The two isolated peaks were analysed by mass spectrometry to distinguish 

between biotinylated and unbiotinylated UDP N-glycolyl muramyl pentapeptide. The 

mass spectrum of the first isolated peak is shown in Figure A2.5 (Appendix 2) and the 

second peak in Figure A2.6 (Appendix 2). 
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Results demonstrated that the first eluted peak (Figure 4.30: (i)) contained the 

unlabelled UDP-MurNGlyc-pentapeptide (DAP) with singly (Observed 1208.33, 

expected 1208.32) and doubly (Observed 603.66, expected 603.66) charged species 

identified. The mass spectrum analysis of the second isolated elution (Figure 4.30: (ii)) 

confirmed the presence of biotinylated UDP-MurNGlyc-pentapeptide (DAP) with 

singly (Observed 1434.40, expected 1434.40) and doubly (Observed 716.69, expected 

716.69) charged species detected. 

 

Both biotinylated UDP muramyl pentapeptides were utilized to generate biotinylated 

versions of N-acetylated Lipid II (DAP) and N-glycolylated Lipid II (DAP) (Section 

2.8.1.3). The anticipated structure of biotinylated N-acetylated Lipid II (DAP) and 

biotinylated N-glycolylated Lipid II (DAP) is shown in Figure 4.31. 

 

 

 
Figure 4.31 The structure of biotin labelled N-acetylated Lipid II DAP and N-glycolylated Lipid II 
DAP (L-Ala-D-Glu-m-DAP-D-Ala-D-Ala). Biotinylation (labelled red) occurs at the third amino acid 
(m-DAP) position. The N-glycolylation of muramic acid (labelled blue) The above schematic was 
created using ChemBioDraw. 
 

Once Lipid II synthesis was complete and lipid products were extracted with by 

pyridine-acetate and N-butanol separation followed by anion exchange 

chromatography (Section 2.7.3.3) samples were analysed by mass spectrometry to 
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confirm the synthesis of the desired biotinylated Lipid II variants. The results of 

biotinylated N-acetylated Lipid II (DAP) as shown in Figure A2.7 (Appendix 2) and 

biotinylated N-glycolylated Lipid II (DAP) as shown in Figure A2.8 (Appendix 2). 

 

Synthesis of biotinylated N-acetylated Lipid II was successful, as singly (Observed 

2144.13, expected 2144.12), doubly (Observed 1071.56, expected 1071.55) and triply 

(Observed 714.04, expected 714.03) charged species were measured (Figure A1.7). The 

mass spectral analysis of the biotinylated N-glycolylated Lipid II (DAP) in Figure A2.8 

also correctly identified the singly (Observed 2160.11, expected 2160.11), doubly 

(Observed 1079.55, expected 1079.55) and triply (Observed 719.36, expected 719.36) 

charged species of the labelled N-glycolylated lipid (Figure A1.8). 

 

 

4.6 Binding affinity of biotinylated Lipid II variants to antimicrobials 

 

To determine whether N-glycolylation impacted on the binding of antibiotics that act 

through binding to Lipid II, the binding affinity of biotin labelled Lipid II variants were 

measured by interactions with streptavidin coated sensors through surface plasma 

resonance (SPR) and Bio-layer interferometry (BLI) analysis of N-acetylated and N-

glycolylated Lipid II DAP species to ramoplanin, mersacidin and vancomycin. 

 

 

4.6.1 SPR analysis of binding of biotinylated Lipid II variants to 

antimicrobials 

 

Biotin labelled Lipid II (DAP) variants were first assessed by SPR. The technique 

immobilises the biotinylated lipids via binding to streptavidin coated chips. SPR 

measured light refraction between a gold layer within the glass slide and the 

overflowing solution which have two unique refractive indexes (Roper 2007). 

Excitation of the plasmons on the surface by light leads to an electric field intensity 

throughout the gold surface and a subsequent reduction in the reflected light intensity 

at a given incident angle (Tang, et al. 2011). The streptavidin-biotin bound lipid 

molecules produce a measurable baseline SPR angle. The addition of potential binding 
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partners such as antimicrobials can lead to alterations in this SPR angle as interactions 

occur and the mass on the gold surface increases. These interactions result in a 

measurable binding curve (Lund-Katz, et al. 2010). A basic example of this binding 

profile is depicted in Figure 4.32. 

 

 

 
Figure 4.32 Standard SPR sensorgram. An immobilised ligand interaction with a complementary 
binding partner within a flowing solution across the sensor surface alters the SPR angle and forms a 
binding curve. Once partner is remove from flow response is altered and sensor is regenerated. Figure 
source from Biacore – Sensor Surface Handbook (GE Healthcare).  
 

The binding of in this case antimicrobials to immobilised lipids occurs through distinct 

phases within a sensorgram (Figure 4.32). Pre-binding measures the baseline of bound 

biotinylated lipids. The addition of the binding partner to the flow solution leads to a 

measured binding curve from which an association rate (kon) can be measured as 

binding saturation is achieved. Dissociation is then subsequently measured in the 

absence of the binding partner to the flow solution, from which a dissociation rate can 

be obtained (koff). The final step if necessary is then regeneration of the chip to re-

establish the initial baseline. The entire reaction is measured in response units (RU) and 

by comparing the kon and koff rates an equilibrium dissociation constant (Kd) can be 

deciphered for the binding interaction, as a ratio koff/kon.  

 

Biotinylated Lipid II variants were fixed to a streptavidin coated chip as outlined in 

Section 2.10.1. A control run is performed for each antimicrobial tested with a flow 

solution absent of the investigated antimicrobial. The sensorgram produced by this 
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result is subtracted from each sensorgram run at varying antibiotics concentrations to 

remove background alterations to signalling. 

 

 

4.6.1.1 SPR analysis of binding of biotinylated Lipid II variants to 

ramoplanin 

 

MIC assessment of ramoplanin with respect to M. smegmatis indicated that there was 

no statistical significance in terms of sensitivity to the drug between cells which were 

comprised of solely N-acetylated peptidoglycan (DNamH) or both N-acetylated and N-

glycolylated peptidoglycan (wild type) (Figure 4.9). 

 

Immobilised biotin-labelled N-acetylated Lipid II (DAP) and N-glycolylated Lipid II 

(DAP) were exposed to two fold serial dilutions of ramoplanin from 500 µM to 3.90 

µM to measure binding affinity. Flow cells were initially exposed to buffer only for 60 

seconds, ramoplanin was added to the flow solution for 180 seconds followed by solely 

buffer again for a further 240 seconds. The SPR ramoplanin binding curves are shown 

in Figure 4.33. 
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Figure 4.33 SPR binding affinity of ramoplanin to streptavidin-immobilised biotinylated Lipid II (DAP) variants. Sensorgram of (a) biotin labelled muramyl N-acetylated 
Lipid II (DAP) and (b) biotin labelled muramyl N-glycolylated Lipid II (DAP) binding to increasing concentrations of ramoplanin. Binding affinity measured in response units 
(RU) for 180 seconds. Ramoplanin concentrations: 500 µM (Blue), 250 µM (Green), 125 µM (Pink), 62.50 µM (Orange), 31.25 µM (Purple), 15.625 µM (Red), 7.81 µM 
(Yellow) and 3.90 µM (Black).  
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The initial binding response to ramoplanin at all investigated concentrations was 

immediate for both N-acetylated (Figure 4.33: (a)) and N-glycolylated (Figure 4.33: 

(b)) variants of Lipid II (DAP). The addition of ramoplanin to the flow solution at 60 

seconds instantly registered significant alterations in the binding response at each 

concentration. The increase was most notable at 500 µM ramoplanin (Figure 4.33 Blue) 

which instantly measured 800 RU (N-acetylated) and 500 RU (N-glycolylated) 

increases in signal.  

 

Ramoplanin concentrations 500 µM and 250 µM (Figure 4.33 Green) did not appear to 

plateau during the 180 second flow solution in with ramoplanin was present, with both 

reaching their maximum RU value at the conclusion of the run. Ramoplanin 

concentrations 125 µM (Figure 4.33 Pink) and 62.50 µM (Figure 4.33 Orange) 

achieved steady state after 140 seconds for both Lipid II variants, whereas 

concentrations between 32.25 µM (Figure 4.33 Purple) and 3.90 µM (Figure 4.33 

Black) plateaued immediately once ramoplanin was added to the flow solution. Once 

the ramoplanin was removed from the flow solution the binding response for each 

concentration immediately reduced, and returned to near baseline after 400 seconds. 

 

Based upon the apparently concentration-independent immediacy of both ramoplanin 

association and dissociation, the kinetics of association and dissociation of ramoplanin 

from the immobilised Lipid II variants could not be compared. Instead, the maximum 

measured response during ramoplanin binding at equivalent concentrations for each 

Lipid II variant were compared as shown in Figure 4.34. 
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Figure 4.34 SPR steady state response of immobilised biotinylated Lipid II (DAP) variants binding 
to ramoplanin. Comparison of streptavidin bound biotin labelled N-acetylated Lipid II (DAP) (Black) 
and N-glycolylated Lipid II (DAP) (Grey) maximum response units (RU) value to interactions with 
increasing concentrations of ramoplanin. The percentage decrease in relative response compared to the 
500 µM highest concentration for both Lipid II variants is labelled. 
 

The steady state comparisons made in Figure 4.34 demonstrate the clear binding 

preference of ramoplanin binding to the N-acetylated Lipid II over the N-glycolylated 

molecule over the entire ramoplanin concentration range. The percentage difference 

between each biotinylated Lipid II variant remained constant at all ramoplanin 

concentrations, where the N-glycolylated Lipid II (DAP) RU value was consistently 

observed to be 63-65% of the N-acetylated variant. The constant percentage difference 

indicted that even at low concentrations ramoplanin binds more readily to the N-

acetylated Lipid II (DAP). 

 

 

4.6.1.2 SPR analysis of binding of biotinylated Lipid II variants to 

mersacidin 

 

The second investigated antimicrobial whose binding affinity for Lipid II variants were 

determined by SPR was mersacidin. Mersacidin MIC assessment of wild type and 

DNamH strains (Figure 4.15) demonstrated no observable variation in susceptibility to 

the antimicrobial in wild type cells expressing either both N-acetylated and N-

glycolylated peptidoglycan or the DNamH M. smegmatis whose peptidoglycan is solely 

N-acetylated (Raymond, et al. 2005). The binding affinity as revealed by two fold serial  

dilutions of mersacidin from 500 µM to 3.90 µM was assessed in Figure 4.35.  
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Figure 4.35 SPR binding affinity of mersacidin to streptavidin immobilised biotinylated Lipid II (DAP) variants. Sensorgram of (a) biotin labelled muramyl N-acetylated 
Lipid II (DAP) and (b) biotin labelled muramyl N-glycolylated Lipid II (DAP) binding to increasing concentrations of mersacidin. Binding affinity measured in response units 
(RU) for 180 seconds. Mersacidin concentrations: 500 µM (Blue), 250 µM (Green), 125 µM (Pink), 62.50 µM (Orange), 31.25 µM (Purple), 15.625 µM (Red), 7.81 µM 
(Yellow) and 3.90 µM (Black).  
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The observation of an immediate increase in RU once the antimicrobial was added to 

the flowing solution seen in Figure 4.33 was reminiscent of the behaviour of ramoplanin 

although the increase was less pronounced. However the association/dissociation 

kinetics were still too rapid to analyse and therefore estimates of kon, koff and kd could 

not be made. The increase for 500 µM (Figure 4.35 Blue) was 65 RU (N-acetylated) 

and 60 RU (N-glycolylated) respectively. Binding of mersacidin to both lipid II variants 

was not characterised by a steady increase or maintained plateau, at each antibiotic 

concentration (Figure 4.35) with peaks and valleys caused by periods of binding 

association and dissociation during the addition of the antimicrobial to the flowing 

solution. Steady state was achieved for each concentration below 250 µM.  

 

The dissociation of mersacidin after 240 seconds was also immediate at each 

concentration and altered the binding curve, causing it to drop below the baseline of the 

sensorgram due to the analyte absent buffer altering the refractive index of the sensor 

as it is being regenerated to baseline. The maximum RU for each mersacidin 

concentration was plotted versus mersacidin concentration to compare the binding 

affinity of the antibiotic to each immobilised lipid as shown in Figure 4.36. 

 

 
Figure 4.36 SPR steady state response of immobilised biotinylated Lipid II (DAP) variants binding 
to mersacidin. Comparison of streptavidin bound biotin labelled N-acetylated Lipid II (DAP) (Black) 
and N-glycolylated Lipid II (DAP) (Grey) maximum response units (RU) value to interactions with 
increasing concentrations of mersacidin. The percentage decrease in relative response compared to the 
500 µM highest concentration for both Lipid II variants is labelled. 
 

The steady state comparison of mersacidin binding in Figure 4.36 demonstrated an at 

best, marginal preference of the antimicrobial in binding to the N-acetylated Lipid II 
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(DAP) (Figure 4.36 Black) than the N-glycolylated Lipid II (DAP) Figure 4.36 Grey) 

at concentrations less than 31.25 µM. At 500 µM the maximum RU achieved by each 

lipid was 103.87 RU (N-acetylated) and 84.07 RU (N-glycolylated). The percentage 

difference in RU between binding of N-glycolyl and N-acetyl Lipid II species at these 

higher concentrations was 19.07% (500 µM) 12.92% (250 µM), 2.2% (125 µM) and 

7.74% (62.5 µM) although the significance of these differences was too small to rule 

out simple experimental errors as a source of the RU differences. Concentrations below 

62.5 µM demonstrated a greater equivalency between the two lipids with N-

glycolylated lipid producing slight increases in percentage difference at lower RU 

values. Variations between the two lipids were 4.44% (31.25 µM), 13.76% (15.625 

µM), 1.22% (7.81 µM) and 7.79% (3.90 µM). However again, these differences were 

too small to be considered indicative of a genuine influence of N-glycolylation on  

mersacidin binding to Lipid II. 

 

The binding affinity of N-acetylated lipid towards mersacidin decreased gradually at 

the highest concentrations followed by a plateau as the antimicrobial concentration was 

serially diluted. The percentage decreases in RU for the N-acetylated lipid relative to 

the 500 µM value were 29.64% (250 µM), 53.04% (125 µM), 69.35% (62.5 µM), 

78.31% (31.25 µM), 82.99% (15.625 µM), 83.51% (7.81 µM) and 83.82% (3.9 µM)  

 

The binding affinity of the N-glycolylated lipid towards mersacidin also decreased 

gradually at high concentrations and remained constant at low concentrations. The 

percentage decreases in RU for the N-glycolylated lipid were 24.27% (250 µM), 

43.24% (125 µM), 65.06% (62.5 µM), 72.01% (31.25 µM), 76.10% (15.625 µM) and 

79.38% (7.81 µM) and 78.44% (3.9 µM). 

 

 

4.6.1.3 SPR analysis of binding of biotinylated Lipid II variants to 

vancomycin  

 

The MIC assessment of vancomycin showed that cells absent of N-glycolylated 

peptidoglycan were more susceptible to the actions of the antimicrobial, reducing both 

the MIC (Figure 4.21) and MBC (Figure 4.22) by half. The SPR binding analysis of 
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both N-acetylated and N-glycolylated biotinylated Lipid II (DAP) was therefore 

undertaken to determine if N-glycolylation directly affected the binding of this 

antibiotic to Lipid II. SPR results are shown in Figure 4.37. 
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Figure 4.37 SPR binding affinity of vancomycin to streptavidin immobilised biotinylated Lipid II (DAP) variants. Sensorgram of (a) biotin labelled muramyl N-acetylated 
Lipid II (DAP) and (b) biotin labelled muramyl N-glycolylated Lipid II (DAP) binding to increasing concentrations of vancomycin. Binding affinity measured in response units 
(RU) for 180 seconds. Vancomycin concentrations: 500 µM (Blue), 250 µM (Green), 125 µM (Pink), 62.50 µM (Orange), 31.25 µM (Purple), 15.625 µM (Red), 7.81 µM 
(Yellow) and 3.90 µM (Black).  
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Like mersacidin, vancomycin also demonstrated an initial increase in the binding curve 

with the addition of the antimicrobial to either lipids. At 500 µM the response of each 

lipid achieved during steady state was 383.17 RU for the N-acetylated lipid (Figure 

4.37 (a)) and 261.10 RU for the N-glycolylated lipid (Figure 4.37 (b)). Once 

vancomycin was removed from the flowing solution the binding curve at each 

concentration immediately reverted to the baseline, therefore preventing accurate KD 

assessment. The RU values obtained during steady state for each concentration of 

vancomycin bound to each variant of Lipid II (DAP) was compared to assess binding 

affinity (Figure 4.38). 

 

 

  

 
Figure 4.38 SPR steady state response of immobilised biotinylated Lipid II (DAP) variants binding 
to vancomycin. Comparison of streptavidin bound biotin labelled N-acetylated Lipid II (DAP) (Black) 
and N-glycolylated Lipid II (DAP) (Grey) maximum response units (RU) value to interactions with 
increasing concentrations of vancomycin. The percentage decrease in relative response compared to the 
500 µM highest concentration for both Lipid II variants is labelled. 
 

Similar to the results obtained for mersacidin in Figure 4.36, the greater the 

concentration of the antimicrobial the more pronounced the preference for the N-

acetylated variant of Lipid II (DAP). The difference reduced with the decrease in 

vancomycin concentration, where below 15.625 µM vancomycin, both N-glycolylation 

and N-acetylation lipids behaved identically, although the reduced RU values for each 

diluted vancomycin concentration, made estimates of response ratios unreliable. The 

percentage variation between the N-glycolylated and N-acetylated lipids were 31.% 

(500 µM), 27.95% (250 µM), 24.75% (125 µM), 17.20% (62.5 µM), 12.26% (31.25 
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µM), 0.65% (15.625 µM), 11.88% (7.81 µM) and 19.86% (3.90 µM). The greater 

variation observed at 7.81 µM and 3.90 µM was due to the low RU obtained with 

11.88% difference between 28.28 RU (N-acetylated) and 31.64 RU (N-glycolylated). 

 

The binding affinity of N-acetylated lipid towards vancomycin decreased gradually at 

the highest concentrations followed by a plateau as the antimicrobial concentration was 

serially diluted. The percentage decrease in RU for the N-acetylated lipid relative to the 

response at 500 µM vancomycin (0%) were 31.00% (250 µM), 54.55% (125 µM), 

72.58% (62.5 µM), 82.60% (31.25 µM), 89.23% (15.625 µM) 92.61% (7.81 µM) and 

94.12% (3.90 µM).  

 

The binding affinity of the N-glycolylated lipid towards vancomycin also decreased 

gradually at high concentrations and remained constant at low concentrations. The 

percentage decrease in RU for the N-glycolylated lipid were 26.76% (250 µM), 49.81% 

(125 µM), 66.68% (62.5 µM), 77.60% (31.25 µM), 84.09% (15.625 µM), 87.87% (7.81 

µM) and 89.66% (3.90 µM). 

 

 

4.6.2 BLI of biotinylated Lipid II variants to antimicrobials 

 

Biotin labelled Lipid II (DAP) variants were also bound on streptavidin sensors to 

assess antimicrobial binding affinity by bio-layer interferometry. In short, the binding 

of antimicrobials in solution to immobilised lipids on biosensor tips alters the measured 

wavelength (Dl) shifting the interference pattern caused by an increase in the thickness 

of the biological layer (Sultana, et al. 2015). These variations can be detected and 

analysed to assess binding affinity. The major difference between SPR and BLI is the 

formers use of a constantly flowing solution over the coated surface as opposed to the 

BLI transfer of coated sensors between various solutions (Shah, et al. 2015). The stages 

of an example BLI as demonstrated in Figure 4.39. 
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Figure 4.39 Basic BLI binding assessment. Biotin labelled lipids are bound to streptavidin coated 
sensors and exposed to antimicrobials to assess binding association and dissociation by variations to the 
measured wavelength. Figure source 2bind molecular solutions. 
 

 

BLI binding assessment was measured as described by Figure 4.39 by streptavidin 

coated sensors immobilising biotin labelled lipids and the binding 

association/dissociation of antimicrobials measured by alterations in the measured 

wavelength. The BLI protocol outlined in 2.10.2 was utilised against teixobactin, the 

newly synthesised cell wall active antimicrobial and the analogue arg-teixobactin. Each 

compound was assessed at two fold diluted  concentrations between 500 µM and 15.62 

µM. The pre-binding baseline assessment was 30 seconds, antimicrobial association 

was for 60 seconds and antimicrobial dissociation was for 60 seconds. The results are 

shown in Figure 4.40. 
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Figure 4.40. Binding affinity of biotinylated Lipid II variants against newly identified antimicrobial teixobactin and the synthesised analogue arginine-teixobactin. 
Sensorgrams of streptavidin coated sensors bound to N-acetylated Lipid II and N-glycolylated Lipid II were assessed by their affinity towards two-fold serial dilutions from 
500 µM to 15.6 µM of teixobactin and arg-teixobactin (i). Reference sensors were used to remove any non-specific binding (ii). (a) N-acetylated Lipid II (DAP) and teixobactin, 
(b) N-glycolylated Lipid II (DAP) and teixobactin, (c) N-acetylated Lipid II (DAP) and arg-teixobactin and (d) N-glycolylated Lipid II (DAP) and arg-teixobactin. Binding 
constants were measured with the Octet Data Analysis software on an Octet Red, by global fitting the data with the 1:1 heterogenous ligand model. 
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The equilibrium dissociation constants (KD) for both Lipid II (DAP) variants against both 

teixobactin and arg-teixobactin determined from Figure 4.40 are shown in table 4.12. 

 

 

Lipid 
II 

Antimicrobial KD 
(M) 

KD 
Error 

Ka 
(1/Ms) 

Ka 
Error 

Kd  
(1/s) 

Kd 
Error 

NAc Teixobactin 1.55 
10-3 

8.14 
10-4 

1.04 
10+2 

5.38 
10+2 

1.61 
10+0 

1.44 
10-1 

NGlyc Teixobactin 3.30 
10-4 

5.46 
10-5 

5.92 
10+2 

7.02 
10+2 

1.95 
10+0 

2.25 
10-1 

NAc Arg-
Texiobactin 

1.25 
10-3 

1.27 
10-4 

7.40  
10+2 

5.70 
10+1 

9.21 
10-1 

6.10 
10-2 

NGlyc Arg-
Texiobactin 

1.21 
10-3 

1.02 
10-4 

1.08  
10+3 

6.77 
10+1 

1.30  
10+0 

7.42 
10-2 

Table 4.12. The equilibrium dissociation constants, KD for biotinylated Lipid II variants to teixobactin and arg-
teixobactin. N-acetylated  and N-glycolylated Lipid II (DAP) attached to streptavidin biosensors binding measured 
against concentrations of Teixobactin and Arg-teixobactin between 1000 µM and 15.62 µM.  
 

Teixobactin results from table 4.12 indicated that the antimicrobial demonstrated a greater binding 

affinity with the N-glycolylated Lipid II (DAP) with a KD of 0.33 mM, five times greater compared 

to the KD with the N-acetylated Lipid II (DAP) of 1.55 mM. The KD is based upon the relationship 

between the association (ka) and dissociation (kd) of teixobactin towards each lipid. The rate of 

dissociation for each lipid was similar with kd values of 1.61 s-1 (N-acetylated) and 1.95 s-1 (N-

glycolylated). The variation was noted during association with ka values of 104 Ms-1 (N-acetylated) 

and 592 Ms-1 (N-glycolylated) respectively. 

 

The arginine analogue of teixobactin displayed a similar binding affinity towards each of the lipids 

compared to texiobactin with a lower KD of 1.25 mM for the N-acetylated lipid than the 1.22 mM 

for the N-glycolylated lipid. The association constant of each lipid was 74 Ms-1 (N-acetylated) and 

108 Ms-1 (N-glycolylated) respectively, which led to the KD variation observed. The dissociation 

constant for each lipid was 0.9 s-1 (N-acetylated) and 1.30 s-1 (N-glycolylated) respectively. 
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4.7 Discussion 

 

4.7.1 Antimicrobial MIC assessment of DNamH M. smegmatis 

 

Mycobacteria are inherently resistant to antimicrobials (Hett and Rubin 2008) due in part to the 

expression of b-lactamases, efflux pumps and the composition of the mycobacterial cell wall. The 

incorporation of N-glycolylated Lipid II within the mycobacterial peptidoglycan layer was 

previously demonstrated to increase resistance towards hydrolytic enzymes as well as 

antimicrobial therapies. These treatments commonly target unique structural architecture 

displayed solely by bacteria, without a eukaryotic equivalent such as peptidoglycan.  

 

Generation of blaS-, and blaS- namH- strains by Flores, et al. (2005), permitted the probing of 

antimicrobial susceptibility of mycobacteria against standard treatments and measured average 

zones of clearing at set concentrations of antibiotics. Previously published results by Raymond, et 

al. (2005) demonstrated that antimicrobials such as isoniazid and ethambutol which targeted non 

peptidoglycan synthesis components, were equally active towards both mycobacterial strains 

whereas, the b-lactam antibiotics ampicillin and amoxicillin produced greater zones of inhibition 

against namH deficient organisms. Further assessment of antimicrobial efficacy towards these 

strains was required as well as an expansion of investigated targets. 

 

The low aqueous solubility of the antimicrobials considered in this chapter required the 

determination of mycobacterial solvent tolerance. Growth of both blaS-, and blaS- namH- strains 

was equally sensitive to increasing percentages of DMSO. Nevertheless, a solvent concentration 

of 2% (v/v) DMSO (Figure 4.1) effectively solubilised the investigated antimicrobials without 

impacting mycobacterial growth. 
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4.7.1.1 The impact of non-peptidoglycan targeted antimicrobials on M. 

smegmatis growth 

 

Acquisition of the DNamH M. smegmatis knockout mutants led to initial reassessment of standard 

isoniazid antimicrobial treatment. Both wild type and knockout M. smegmatis were equally 

sensitive to this antibiotic to which they responded with the same MIC and MBC values (Figure 

4.6). Mycolic acids form a complex with both peptidoglycan and arabinogalactan (mAGP) 

(Alderwick, et al. 2015) Isoniazid targets mycolic acid synthesis particularly the 2-trans-enoyl-

acyl carrier protein reductase, InhA (Marrakchi, et al. 2000).  Consistent with this therefore, is the 

observation made here that the potency of isoniazid is unaffected by the nature of the N-acyl group 

appended to the muramyl component of the  peptidoglycan. 

 

 

4.7.1.2 The impact of peptidoglycan targeted antimicrobials on M. smegmatis 

growth 

 

Raymond, et al. (2005), observed that growth of  DNamH M. smegmatis with a peptidoglycan 

containing entirely N-acetylated muramyl residues was more sensitive to ampicillin, the 

corresponding wild type strain which contained both N-acetylated and N-glycolylated sugars. 

Ampicillin differentially impacted the growth of wild type and DNamH M. smegmatis strains, 

reducing the MIC and MBC of the DNamH strain to half that of the wild type (Figure 4.3 and 

Figure 4.4). Both the wild type and DNamH cells are blaS- mutants which also increase b-lactam 

susceptibility due to the absence of the b-lactamase BlaS.  

 

Previously studied blaS- M. smegmatis displayed an ampicillin MIC of 2 µg.mL-1 (Flores, et al. 

2005), greater than the corresponding 0.5 µg.mL-1 and 0.25 µg.mL-1 values observed here for the  

wild type and DNamH strains respectively (Figure 4.3). The discrepancy between the two sets of 

findings is unknown though the results obtained by Flores, et al. (2005) was from a separate M. 

smegmatis strain not related to the one used here that was acquired from Raymond, et al. (2005). 

However, there was no indication that ampicillin MIC assessment was measured below 2 µg.mL-
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1 in Flores, et al. (2005), suggesting that differences in ampicillin sensitivity could be artifactual.. 

The functional impact  of N-glycolylation modification of monosaccharides may involve changes 

in  recognition by PBPs of their peptidoglycan precursor substrates or the rapidity with which the 

transglycosylase polymerises the substrate, where this activity is greater with N-glycolylated 

precursors which therefore compete better against  b-lactam challenge, resulting in soothe  wild 

type was more resistant than DNamH to ampicillin. 

 

The pool of investigated antimicrobials was expanded to include a number of inhibitors which 

specifically target either transglycosylase activity of PBPs or MraY. Ramoplanin prevents 

transglycosylation by binding to the head group of Lipid II (Fang, et al. 2006). Its inclusion 

permitted an assessment of whether N-glycolylation impacted the binding affinity of the 

antimicrobial, in part explaining the abundance of MurNGlyc:MurNAc saccharides within the 

peptidoglycan layer (Raymond, et al. 2005). Growth of NamH deficient M. smegmatis was more 

significantly attenuated than wild type by ramoplanin, although, the final MIC was the same (1 

µg.mL-1) for both strains (Figure 4.9). 

 

Generation of biotin labelled N-acetylated (Figure 4.29) and N-glycolylated (Figure 4.30) Lipid II 

allowed for a more detailed SPR investigation into the binding of ramoplanin to the individual 

variants of Lipid II. Here, ramoplanin bound more strongly to N-acetylated lipids than N-

glycolylated lipids (Figure 4.34), maintaining a stable 35% measured response across all 

investigated ramoplanin concentrations. Combining the findings of the MIC assessment and the 

SPR binding affinity show that the decreased susceptibility of the wild type strain could be 

attributed to the increased percentage of N-glycolylated lipids within the peptidoglycan layer, 

resulting in reduced interactions with the antimicrobial. 

 

The transglycosylase inhibitor mersacidin functions by chelation of Lipid II preventing the binding 

to the TG domain of PBPs (Appleyard, et al. 2009). Mersacidin MIC assessment revealed that as 

with ramoplanin, solely N-acetylated peptidoglycan of the DNamH strain was more susceptible 

than the wild type at equivalent mersacidin concentrations (Figure 4.15), though the MIC for both 

strains was the same.  Both antimicrobials bind directly to Lipid II. Data therefore indicates that 

the interactions between both ramoplanin and mersacidin and Lipid II are impeded by the presence 
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of the N-glycolyl group, however, this detriment was not able to solely increase cell antimicrobial 

tolerance at MIC concentrations. The binding affinity  of mersacidin to biotin labelled N-acetylated 

Lipid II were greater than N-glycolylated Lipid II at high concentrations of mersacidin (Figure 

4.36). The N-acetylated binding preference was diminished as investigated antimicrobial 

concentrations were reduced with binding affinity of the two lipid variants remaining equivalent. 

Conclusions drawn from this data were that in high concentrations of mersacidin binding to the N-

acetylated lipid was increased compared to the N-glycolylated lipid leading to the NamH strain 

demonstrating increased susceptibility to this antibiotic..  

 

Tunicamycin targets the active site of MraY located on the cytosolic face of the cytoplasmic 

membrane.  The drug and binds irreversibly to MraY to prevent the formation of Lipid I (Al-

Dabbagh, et al. 2008). As previously stated, N-glycolylation occurs within the cytosol of the 

mycobacteria unlike other common peptidoglycan modifications (Moynihan and Clarke 2010). 

MIC assessment (Figure 4.12) concluded that relative to wild type, the DNamH strain was equally 

impacted by each tunicamycin concentration with no noted statistically significant variation 

between strains, yielding identical with tunicamycin MIC values. Competitive inhibition by 

tunicamycin of  the MraY active site was therefore unaffected by the N-glycolylation of its  UDP-

MurNGlyc-pentapeptide substrate.  

 

The MIC assessment of moenomycin showed that the DNamH strain is more susceptible than the 

wild type and displayed notable variation in comparing the growth phenotype of wild type and 

DNamH M. smegmatis strains. Moenomycin mimics Lipid IV and inhibits peptidoglycan 

glycosyltransferases (Galley, et al. 2014). It is possible that the N-glycolyl modified Lipid II bound 

more tightly than the N-acetylated lipid to these enzymes and so competed better against 

moenomycin for TG active sites. Therefore, removal of the N-glycolyl moiety from the 

mycobacterial peptidoglycan would, as observed, increase the sensitivity to moenomycin 

inhibition, rendering the DNamH strain more sensitive to the drug than the wild type. 

 

The prevalence of antimicrobial resistance in tuberculosis has led to the utilisation of vancomycin 

as a secondary antibiotic therapy (Chua, et al. 2009), targeting the extracellular D-alanyl-D-alanine 

of the amino acid stem of disaccharide pentapeptides (Wang, et al. 2018). The importance of the 
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N-glycolyl group to antimicrobial resistance was clearest during vancomycin MIC assessment 

(Figure 4.21). The DNamH strain demonstrated increased susceptibility at each evaluated 

vancomycin concentration and was entirely inhibited from growth at half the vancomycin 

concentration of the wild type.  

 

These results complemented the findings of the SPR binding affinities towards the antimicrobial 

by each modified Lipid II (Figure 4.38). Mersacidin as observed with other antimicrobial 

preferentially binds to the N-acetylated more readily than the N-glycolylated lipid II equivalent. 

This preference was shown across all but the lowest of concentrations. Vancomycin interacts with 

the terminal residues of the peptide stem, so therefore interactions impeded by the hydroxyl group 

attached to the muramic acid saccharide must depend upon the three dimension structure of the 

intermediate (Figure 1.8).  Alternatively, the rate of synthesis of the N-glycolylated lipid II and/or 

its incorporation into the cell wall might be such that N-glycolylated precursors are better able to 

out-compete the impact of vancomycin (and for that matter other cell wall antibiotics) than N-

acetylated species, accounting for the greater sensitivity of NamH M. smegmatis to vancomycin 

and other peptidoglycan directed antimicrobials. 

 

Antimicrobial resistance towards standard therapies also is leading to the need for new discoveries 

and treatments. The newly isolated teixobactin is being hailed as a major breakthrough with a 

unique target of the prenyl-pyrophosphate-GlcNAc region of Lipid II (Ling, et al. 2015). MIC 

assessment determined that N-glycolylated substrates did not the activity of teixobactin with the 

MIC and MBC values for both the wild type and DNamH strains being equivalent. Teixobactin 

binding affinities towards each variant of lipid were evaluated by BLI (Figure 4.40) which 

demonstrated that the antimicrobial had a five times lower KD for the N-acetylated lipid relative 

to its the N-glycolylated homologue. The observed preferential binding although, did not impede 

the MIC of the DNamH.  Interactions between the antimicrobial and the N-glycolyl may reduce 

binding efficiency but not to a significant enough degree to impede the mycobacterial growth 

phenotype of the DNamH. Again, the impact of the binding affinity of teixobactin may well be 

offset by differential rates of peptidoglycan synthesis driven by N-glycolylated relative to N-

acetylated precursors. 
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The teixobactin analogue, arginine-teixobactin has been previously described as possessing more 

modest antimicrobial activity than teixobactin (Jad, et al. 2015), which was demonstrated with an 

MIC four times greater (Figure 4.27) and an MBC eight times greater (Figure 4.28) in the analogue 

compared to the original. Both wild type and DNamH M. smegmatis  strains demonstrated the same 

MIC and MBC values against arg-teixobactin, although sub MIC concentrations impacted the 

DNamH to a more significant degree than the wild type. Binding affinities of the two lipid variants 

were evaluated against the analogue by BLI and findings concluded that arg-teixobactin interacts 

with an equal KD value to both lipids. The analogue is formed by the utilisation of L-arginine 

substituted in place of the original residue, L-allo-endurcididine. This substitution reduces both 

the activity of the antimicrobial and the interactions with the N-glycolyl group of the wild type 

compared to teixobactin.  

 

 

4.8 Further work 

 

 

• Assess namH- susceptibility with a blaS+ strain 

 

The M. smegmatis strains investigated were both blaS-, removing the dominant b-lactamase 

(Raymond, et al. 2005), reducing the resistance of the strains to common b-lactam antibiotics such 

as ampicillin (Flores, et al. 2005). This chapter demonstrated that the blaS- namH- M. smegmatis 

strain demonstrated greater susceptibility than the solely blaS strain to ampicillin. Generation of 

both blaS+ and blaS+ namH- strains and implementation of antimicrobial assessment would 

determine the relationship between the b-lactamase enzyme and the N-glycolylation of Lipid II in 

providing increased resistance during antimicrobial therapy. 

 

 

• Explore methods of peptidoglycan intermediate labelling  

 

Biotinylation occurs at the third amino acid of the pentapeptide stem. The close proximity to the 

stem terminal may affect the interactions with antimicrobials such as vancomycin. Therefore, 
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investigation of other methods of labelling peptidoglycan intermediates that are either smaller in 

size or located elsewhere on the intermediate may be warranted. One alternative is dansylation 

(Bouhss et al. 2008) the modification of the third position amino acid of the pentapeptide stem by 

dansyl chloride to fluorescently label Lipid II.  

 

 

• Improve SPR coating 

 

Issues arose with the SPR analysis and measuring association and dissociation binding, due to over 

saturation during the coating of the SPR streptavidin coated flow cells.  Application of a lower set 

of  concentrations of each biotinylated lipid loaded onto each flow cell to achieve a set response 

unit value would increase the time period from initial antimicrobial interaction to complete 

saturation permitting binding analysis to be determined. 

 

 

• Assess further antimicrobials by BLI and SPR 

 

An avenue of investigation highlighted by the results reported here would be to expand the 

investigation into variants of Lipid II and their associated binding affinities towards a broader 

range of antimicrobials. 

 

 

4.9 Conclusion  
 

The absence of N-glycolylated peptidoglycan monosaccharides impacted the susceptibility of M. 

smegmatis cells depending on the mode of action of the antimicrobial. Compounds which targeted 

the pentapeptide stem or enzymes which interact with it will be more susceptible than those that 

targeted other structures. The binding affinity of these compounds was greater towards the N-

acetylated lipids in most cases providing an explanation for the role of the N-glycolyl modification 

in antimicrobial resistance. 
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Chapter 5. Variations in mycobacterial peptidoglycan synthesis 

enzymes 
 

 

5.1 Introduction 

 

The N-glycolylation of peptidoglycan investigated in previous chapters are modified during 

aerobic conditions (Raymond, et al. 2005) throughout the cytoplasmic formation of the 

peptidoglycan subunit Lipid II (Vollmer 2008). This alteration differs from other common 

peptidoglycan modifications such as O-acetylation (Section 1.3.8.1) and N-deacetylation (Section 

1.3.8.2) due to cellular localization of enzymes which enact these modifications (Moynihan and 

Clarke 2010). The ability of mycobacterial organisms to synthesize N-glycolylated Lipid II solely 

during aerobic conditions has led to investigations into the role of NamH on the cellular flux of 

peptidoglycan biosynthesis, with particular focus on the Mur ligases.  

 

 

5.2 M. leprae peptidoglycan biosynthesis 
 

Due to the effects of significant genomic degradation, the mycobacterial pathogen M. leprae does 

not possess a functional gene equivalent to NamH, and instead contains only a pseudogene 

(ML0085c) (Mahapatra, et al. 2008). Therefore M. leprae is unable to create N-glycolylated 

peptidoglycan, expressing only the N-acetylated variant. The implementation of N-glycolylated 

lipids within the peptidoglycan layer confers resistance to both hydrolytic enzymes and 

antimicrobials (Raymond, et al. 2005) as has been described previously in this thesis.  

 

The Mur ligases within M. leprae also possesses specific characteristics. As with other 

mycobacteria, the first enzyme in the peptidoglycan biosynthesis pathway MurA (Nasiri, et al. 

2017) demonstrates inherent resistance towards the antimicrobial fosfomycin (De Smet, et al. 

1999). The antimicrobial’s mode of action is to modify the MurA active site cysteine residue to 

inhibit activity. The mycobacterial murA gene sequence translates an aspartate residue at this 
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position to counteract inhibition. The standard amino acid sequence for a broad range of organisms 

affix the pentapeptide stem with an L-alanine residue at position one by the enzyme MurC 

(Vollmer 2008). M. leprae MurC adheres an L-lysine at the muramic acid saccharide instead 

(Mahapatra, et al. 2000). 

 

 

5.3 Experimental aims  

 

To probe the mycobacterial variations in peptidoglycan synthesis, through cloning, expression and 

characterization of a range of mycobacterial peptidoglycan enzymes within the pathway. To 

investigate the effect of N-glycolylated substrates on mycobacterial Mur ligases and PBPs to 

measure the variation on cell flux and binding affinity compared to the N-acetylated substrate. 

 

 

5.4 M. leprae MurA 
 

The murA gene of the organism Mycobacteria leprae is 1254 bp long with a comparative protein 

sequence similarity to other mycobacteria of 95.9% (M. tuberculosis) and 90.67% (M. smegmatis) 

respectively as shown in Figure 5.1 (www.ncbi.nih.gov/BLAST).  
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Figure 5.1 Protein sequence alignment of the peptidoglycan synthesis gene murA within selected mycobacteria. 
M. tuberculosis, M. leprae, and M. smegmatis demonstrate a significant amount of amino acid homology between 
organisms. (*) indicate conserved residues, (:) indicate strongly similar residues and (.) indicate weakly similar 
residues. (www.ncbi.nih.gov/BLAST). The active site aspartate at position 118 for each enzyme is highlighted in red. 
 

The murA gene was acquired from GenScript, and was synthesized to present a NdeI restriction 

site at the 5’ end and a XhoI restriction site at the 3’ end. The restriction sites are shown in Table 

2.3. The gene was selected to be optimized for expression within E. coli and inserted within a 

standard pUC57 vector (Section A1.1). The murA gene was amplified by PCR (Section 2.6.1) to 

determine its presence within the plasmid using pUC57 forward and reverse primers (Section 

2.6.8) corresponding to genetic sequences upstream and downstream of the murA gene sequence 

within the multiple cloning region of the pUC57 plasmid. The annealing temperature during PCR 

was 48°C. Results of this PCR are shown in Figure 5.2. 
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Figure 5.2 PCR amplification of M. leprae murA. 1% Agarose gel electrophoresis of M. leprae murA gene utilizing 
forward and reverse primers targeting the up- and downstream regions of the multiple cloning site with the vector 
pUC57. Lane 1. DNA marker, Lane 2. M. leprae murA. Result: observation of single amplified 1.25 kb DNA band 
corresponding to the known size of M. leprae murA 
 

DNA amplified by PCR showed a single bold band with an estimated size, based upon the DNA 

markers (Figure 5.2) of 1.25 kb corresponding to M. leprae murA. The gene contained within the 

sample plasmid was sent for sequencing analysis with the same primers and returned a positive 

and accurate genetic match for murA. 

 

 

5.4.1 Cloning of M. leprae MurA 

 

M. leprae murA gene was amplified by PCR, using the pUC57 forward and reverse primers. The 

gene and the expression plasmid pCOLD (Section A1.2) were digested by NdeI and XhoI 

restriction enzymes (Section 2.6.2). Following restriction, digested products were purified (Section 

2.6.3) to isolate the genetic material and quantified to determine the DNA concentration. Digested 

plasmid concentration was 220 ng/µL and the murA gene insert was 344 ng/µL. To prevent the 

pCOLD plasmid reannealing, 30 minutes incubation with shrimp alkaline phosphatase (SAP) was 

performed before ligation (Section 2.6.4). The ratio of murA to vector was 3:1 for ligation to 

maximize potential annealing. Samples were incubated for 1 hour and transformed into E. coli 

TOP10 cells. Successful ligations were identified through E. coli TOP10 propagation on ampicillin 

imbedded agar due to the pCOLD vector containing an ampicillin resistance cassette. Newly 

formed pCOLD-murA plasmids were evaluated for in-frame matching of the original M. leprae 

murA gene utilizing pCOLD forward and reverse primers. pCOLD plasmids lack a poly-histidine 
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tag sequence to aid purification of recombinant proteins. Primers were created, complementing the 

murA gene to adhere a C-terminal poly-histidine tag sequence and a cleavable TEV region, to 

remove the expressed tag following protein purification. Due to the size of these regions, the TEV 

and histidine tag sequences were added in stages to improve cloning efficiency. The genetic 

sequences of the TEV and histidine tag are described in Table 2.2. Once completed M. leprae 

murA genes were once again digested and ligated into pCOLD vectors as described previously, 

generating two versions of murA, one labelled and one unlabeled for further investigations. The 

resulting genes were sequenced to confirm the presence of the implemented modifications and also 

the retained murA sequence. 

 

 

5.4.2 Expression of M. leprae MurA 
 

pCOLD-M. leprae murA plasmids containing the poly-histidine tag sequence were transformed 

(Section 2.6.9) into competent (Section 2.4.2) E. coli tuner (DE3) expression cells, cultured in 

liquid media and initiated recombinant protein expression through IPTG induction (Section 2.7.1). 

Once incubation was completed cells were pelleted by centrifugation and fractionated (Section 

2.7.2). Cell debris and the insoluble fraction was isolated by centrifugation, and the soluble 

fractions were analysed by both SDS-PAGE and Western blotting. Results are demonstrated in 

Figure 5.3.  
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Figure 5.3 SDS-PAGE and Western blot analysis of expressed M. leprae MurA. Recombinant MurA protein was 
expressed in E. coli tuner (DE3) cells by the addition of 1 mM IPTG and reduction of incubation temperature from 
37°C to 16°C to induced the TEE element. Cells were pelleted, resuspended and lysed by sonication and soluble 
fractions isolated for electrophoresis separation. Proteins were run on two  SDS-PAGE gels, one (A) was Coomassie-
stained and another (B) was Western blotted onto a PVDF membrane with anti-His antibodies. Lanes A1: Protein 
marker, A2: Expression of M. leprae MurA (1), A3: Expression of M. leprae MurA (2), A4: Expression of empty 
plasmid, B1: Western blot maker, B2: Expression of M. leprae MurA (1), B3: Expression of M. leprae MurA (2), B4: 
Expression of empty plasmid. Results: Presence of histidine tagged M. leprae MurA detected in each sample.   
 

The findings of Figure 5.3 displayed that M. leprae MurA was successfully expressed in the  

E. coli tuner (DE3) cell line (Figure 5.3: A2-A3 Blue rectangle). Both the SDS-PAGE gel and the 

Western blotting x-ray produced a noticeable band correlating in size to the protein markers at 

around 46 kDa, the correct weight for the enzyme. The Western blotting x-ray shows that this 

protein bound with the anti-His antibodies due to the expression of the C-terminal poly-histidine 

tag. The expression of the empty plasmid (Figure 5.3: A4) did not lead to expression of MurA as 

expected. 

 

 

5.4.3 M. leprae MurA active site mutant 
 

To complement the investigation into M. leprae MurA, the decision was taken to create an active 

site mutant to probe the interactions between the enzyme and the antimicrobial fosfomycin (De 

Smet, et al. 1999). The active site of M. leprae MurA is resistant towards perturbation by the 

antimicrobial due to an aspartate residue at position 118 in the amino acid sequence (Figure 5.1 

Highlighted red). Fosfomycin susceptibility has been previously described in MurA enzyme which 

utilize an active site cysteine residue.  
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5.4.3.1 Site directed mutagenesis of M. leprae MurA active site 

 

The M. leprae MurA gene was optimized for E. coli, which led to the amino acid sequence 

remaining equivalent, although selected codons were altered to aid expression in E. coli. The 

original aspartate residue was transcribed from the genetic sequence GAT, to transcribe a cysteine 

residue in its place the codon substitution must be altered to either TGT or TGC. The latter was 

selected and overlapping extended primers containing this substitution were synthesized. Site 

directed mutagenesis primers were used on pCOLD-M. leprae murA (C-terminal poly-histidine 

tag) plasmids to amplify the substituted gene through PCR (Section 2.6.6). The genetic sequences 

for each primer are illustrated in Table 2.4. Resulting genetic material was sequenced to confirm 

the implementation of the mutation before digestion by NdeI and XhoI and the resulting murA 

(D118C) mutant gene was ligated into pCOLD vectors as described previously. 

 

 

5.4.3.2 Expression of M. leprae MurA active site mutant 
 

pCOLD-M. leprae murA (D118C) active site mutant plasmid was transformed into E. coli tuner 

(DE3) and cultured till cells reached OD600nm 0.5-0.7. Exponentially grown cells were then induced 

with 1 mM IPTG at 16°C overnight. Cells were isolated, fractionated and centrifuged to separate 

the soluble phase, which was then analysed by SDS-PAGE and Western blotting as displayed in 

Figure 5.4. 
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Figure 5.4 SDS-PAGE and Western blot analysis of expressed M. leprae MurA active site mutant. Recombinant 
MurA active site mutant protein was expressed in E. coli tuner (DE3) cells by the addition of 1 mM IPTG and reduction 
of incubation temperature from 37°C to 16°C to induced the TEE element. Cells were pelleted, resuspended and lysed 
by sonication and soluble fractions isolated for electrophoresis separation. Proteins were run on two  SDS-PAGE gels, 
one (A) was Coomassie-stained and another (B) was Western blotted onto a PVDF membrane with anti-His antibodies. 
Lanes A1: Protein marker, A2: Expression of M. leprae MurA mutant, A3: Expression of empty plasmid,  B1: Western 
blot maker, B2: Expression of M. leprae MurA mutant, B3: Expression of empty plasmid,. Results: Presence of 
histidine tagged M. leprae MurA detected. 
 

SDS-PAGE analysis (Figure 5.4A: Blue rectangle) noted a large protein band equivalent to the 

known 46 kDa size of M. leprae MurA. This band was confirmed to be poly-histidine tagged based 

upon the Western blot x-ray (Figure 5.4B). 

 

 

5.5 M. leprae MurC 

 

The second M. leprae Mur enzyme investigated within this chapter is MurC, the first amino acid 

ligase which attaches N-glycine at position one of the pentapeptide stem (Mahapatra, et al. 2005) 

to only N-acetylated muramic acid due to M. leprae NamH being designated as a pseudogene 

(Mahapatra, et al. 2005). The 1485 bp M. leprae murC gene was synthesized with an N-terminal 

5’ NdeI enzyme restriction site and a C-terminal 3’ XhoI restriction site, along with E. coli 

expression optimization of codon selection. The protein sequence similarity between other 

mycobacterial MurC enzymes was 71.91% (M. smegmatis) and 79.15% (M. tuberculosis) as 

shown in Figure 5.5. 
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Figure 5.5 Protein sequence alignment of the peptidoglycan synthesis gene murC within selected mycobacteria. 
M. leprae, M. tuberculosis, and M. smegmatis demonstrate a significant amount of amino acid homology between 
organisms. (*) indicate conserved residues, (:) indicate strongly similar residues and (.) indicate weakly similar 
residues. (www.ncbi.nih.gov/BLAST). 
 

 

5.5.1 Cloning of M. leprae MurC 

 

The M. leprae murC gene was initially assessed by PCR to confirm the correct gene length of the 

synthesized product. Forward and reverse primers specific for the standard pUC57 vector were 

utilized with an annealing temperature of 48°C. The findings of PCR amplification are detailed in 

Figure 5.6. 
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Figure 5.6 PCR amplification of M. leprae murC. 1% Agarose gel electrophoresis of M. leprae murC gene utilizing 
forward and reverse primers targeting the up- and downstream regions of the multiple cloning site with the vector 
pUC57. Lane 1. DNA marker, Lane 2. M. leprae murC. Result: observation of single amplified 1.48 kb DNA band 
corresponding to the known size of M. leprae murC. 
 

Results from Figure 5.6 identified a single amplified DNA band 1.5 kb in length. The synthesized 

gene was evaluated by sequencing methods employing the forward and reverse pUC57 primers. 

Results confirmed the presence of the full length M. leprae murC gene sequence correctly 

synthesized. Similarly, to the investigation into M. leprae MurA, the gene was re-cloned into 

pCOLD vector following the established protocol, and required the addition of a poly-histidine tag 

sequence and a cleavable TEV region. The primers required to modify the murC  C-terminal are 

shown in Table 2.2. Once the TEV and poly-histidine tag sequences were added to the murC gene, 

it was re-cloned into a pCOLD vector and identified by sequencing. 

 

 

5.5.2 Expression of M. leprae MurC 

 

The pCOLD-M. leprae murC (C-terminal poly-histidine tag) was transformed into E. coli tuner 

(DE3) cells and cultured at 37°C until early exponential phase. Cells were induced to express 

recombinant proteins by addition of 1 mM IPTG and further incubated at 16°C overnight. Cells 

were fractionated by sonication (Section 2.7.2) and centrifuged to isolate the soluble protein phase. 

Samples were analysed by SDS-PAGE and Western Blot as shown in Figure 5.7.  
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Figure 5.7. SDS-PAGE and Western blot analysis of expressed M. leprae MurC. Recombinant MurC protein was 
expressed in E. coli tuner (DE3) cells by the addition of 1 mM IPTG and reduction of incubation temperature from 
37°C to 16°C to induced the TEE element. Cells were pelleted, resuspended and lysed by sonication and soluble 
fractions isolated for electrophoresis separation. Proteins were run on two  SDS-PAGE gels, one (A) was Coomassie-
stained and another (B) was Western blotted onto a PVDF membrane with anti-His antibodies. Lanes A1: Protein 
marker, A2: Expression of M. leprae MurC (1), A3: Expression of M. leprae MurC (2), A4: Expression of M. leprae 
MurC (3), A5: Expression of empty plasmid,  B1: Western blot maker, B2: Expression of M. leprae MurC (1), B3: 
Expression of M. leprae MurC (2), B4: Expression of M. leprae MurC (3), B5: Expression of empty plasmid. Results: 
Presence of histidine tagged M. leprae MurC detected in each sample.  
 

Results of Figure 5.7 demonstrated that incubation conditions and IPTG concentration were 

sufficient to generate the recombinant MurC protein. SDS-PAGE findings (Figure 5.7A: Blue 

rectangle) indicated the presence of a protein which corresponded to the known 51 kDa weight of 

M. leprae MurC. Western blotting definitively identified this protein as bound to anti-His 

antibodies due to the expression of the poly-histidine tag. Soluble active protein was not able to be 

obtained from the current protocol. 

 

 

5.6 M. smegmatis Mur ligases 
 

M. smegmatis is noted as the mycobacterial standard during investigations, due to its low virulence 

and relatively rapid growth rate (He and De Buck 2010). Collaborators in the Roper laboratory at 

the University of Warwick were determining the crystal structure of M. smegmatis MurC and 

MurD and permitted the enzymes binding affinities to be assessed against the two possible 

muramic acid substrates variants, UDP-MurNAc/UDP-MurNGlyc for MurC and UDP-MurNAc-

L-ala/UDP-MurNGlyc-L-ala for MurD. Unlike M. leprae, M. smegmatis possesses a NamH 

hydroxylase and is therefore able to generate N-glycolylated substrates for Mur ligases. Binding 
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favorability of the enzymes was determined by coupled NADH-linked pyruvate kinase/lactate 

dehydrogenase assay to amino acid Mur ligase activity (Section 2.11.1). 

 

 

5.6.1 The kinetic profile of M. smegmatis MurC binding affinity towards 

muramic acid variants  
 

The Michaelis-menten enzymatic kinetics graph result for M. smegmatis MurC against UDP-

MurNAc and UDP-MurNGlyc are shown in Figure 5.8 and the kinetic parameters extrapolated 

utilizing GraphPad Prism 6 are displayed in Table 5.1. 

 

 

 
Figure 5.8. Initial rate of M. smegmatis MurC enzyme velocity against muramic acid variants. Michaelis-menten 
graphs depicting the variation in binding affinity of MurC towards UDP-MurNAc and UDP-MurNGlyc substrates at 
a varying range of concentrations between 0.1 and 2.0 mM. Reaction measured at 340 nm through coupling to the 
conversion of phosphoenolpyruvate to lactate and measuring the oxidation of NADH to NAD+. Graph constructed 
using GraphPad Prism 6. 
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Mur 
Ligase 
 
 

UDP-MurNGlyc 
 

UDP-MurNAc Ratio 

KmApp 
(µM) 

KcatApp 
(min-1) 

KcatApp/ 
KmApp 
(min-1/ 
µM)  
b 

KmApp 
(µM) 

KcatApp 
(min-1) 

KcatApp/ 
KmApp 
(min-1/ 
µM)  
a 

b/a 

MurC 1296 ± 
256 

306.5 ± 
16.09 

0.2364 30380 ± 
69010 

165.6 ± 
333.3 

0.00545 43.38 

Table 5.1.  M. smegmatis MurC kinetic activity constants comparison between binding affinity towards UDP-
MurNAc and UDP-MurNGlyc substrates. Km and Kcat extrapolated from the Michaelis-menten kinetic graph in 
Figure 5.8. 
 

 

M. smegmatis MurC demonstrated a significant variation in binding affinities towards each of the 

two possible muramic acid substrates. The investigated concentration range of 0.1-2.0 mM 

permitted a hyperbolic relationship between MurC and UDP-MurNGlyc, although the binding 

affinity did not saturate at the concentrations investigated. The UDP-MurNAc substrate however 

displayed a simple linear relationship. The enzyme showed one sided favorability towards the N-

glycolyl substrate with a 43 fold higher affinity and a Km of 1.29 mM, compared to the N-acetyl 

substrates Km of 30.38 mM. 

 

 

5.6.2 The kinetic profile of M. smegmatis MurD binding affinity towards 

muramic acid variants 
 

The Michaelis-menten enzymatic kinetics graph result for M. smegmatis MurD against UDP-

MurNAc-L-ala and UDP-MurNGlyc-L-ala are shown in Figure 5.9 and the kinetic parameters 

extrapolated utilizing GraphPad Prism 6 are displayed in Table 5.2. 
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Figure 5.9 Initial rate of M. smegmatis MurD enzyme velocity against muramic acid variants. Michaelis-menten 
graphs depicting the variation in binding affinity of MurD towards UDP-MurNAc-L-ala and UDP-MurNGlyc-L-ala 
substrates at a varying range of concentrations between 0.01 and 1.0 mM. Reaction measured at 340 nm through 
coupling to the conversion of phosphoenolpyruvate to lactate and measuring the oxidation of NADH to NAD+. Graph 
constructed using GraphPad Prism 6. 
 

 

Mur 
Ligase 

 
 

UDP-MurNGlyc-L-Ala 
 

UDP-MurNAc-L-Ala Ratio 

KmApp 
(µM) 

KcatApp 
(min-1) 

KcatApp/ 
KmApp 
(min-1/ 
µM) 
b 

KmApp 
(µM) 

KcatApp 
(min-1) 

KcatApp/ 
KmApp 
(min-1/ 
µM)  
a 

b/a 

MurD 10.83 ± 
1.71 

8109 ± 
241.1 

750.83 49.68 ± 
8.96 

7319 ± 
237.00 

147.26 5.09 

Table 5.2.  M. smegmatis MurD kinetic activity constants comparison between binding affinity towards UDP-
MurNAc and UDP-MurNGlyc substrates. Km and Kcat extrapolated from the Michaelis-menten kinetic graph in 
Figure 5.9. 
 

The relationship between MurD and both substrate variants was hyperbolic with both interactions 

plateauing at concentrations greater than 0.2 mM. The noted significant catalytic preference for 

the N-glycolyl substrate observed in Figure 5.8 for MurC was not sustained in MurD (Figure 5.9), 

although MurD still demonstrated an over five-fold higher affinity for the N-glycolyl substrate. 

The narrower variation of substrate Km values, 10.83 µM in UDP-MurNGlyc-L-ala and 49.68 µM 

in UDP-MurNAc-L-ala, led to a lower range of investigated substrate concentrations between 0.01 

mM and 1.0 mM. 

 

 

0 .0 0 .5 1 .0
0 .0 0

0 .0 5

0 .1 0

0 .1 5

M . s m e g m a t is  M u rD  +  U D P M u rN A c -L -A la /U D P M u rN G ly c -L -A la  k in e tic s

[S u b s tra te  m M ]

A
b

s 
3

4
0

n
m

M u rN A c -L -A la

M u rN G ly c -L -A la



 236 

5.7 M. tuberculosis PonA1 and PonA2  

 

M. tuberculosis utilizes two bifunctional PBPs, PonA1 (Rv0050) and PonA2 (Rv3682) to 

incorporate newly synthesized Lipid II subunits to the overall peptidoglycan architecture (Kieser, 

et al. 2015). Collaborators from the Besra laboratory at the University of Birmingham, provided 

both PBPs genes within pET21b expression vectors (Section A1.1.3). 

 

 

5.7.1 Expression of M. tuberculosis PonA1 and PonA2 

 

M. tuberculosis PonA1 and PonA2 genes were sequenced to determine the presence of the PBP, 

in frame with the addition of a C-terminal poly-histidine tag sequence. PonA1 was confirmed as 

2460 bp and PonA2 as 2430 bp in length. Vectors were then transformed into E. coli BL21 (DE3) 

expression strains (Section 2.6.9), and successful insertion of the plasmid was observed through 

ampicillin resistance selection. Recombinant PBPs were expressed as described previously 

(Section 2.7.1).  

 

 

5.7.2 Purification of M. tuberculosis PonA1 and PonA2 

 

Recombinantly expressed M. tuberculosis PonA1 and PonA2 contained a C-terminal poly-

histidine tag permitting purification by IMAC as detailed in Section 2.7.3.1 and shown in Figure 

5.10 and Figure 5.11. 
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Figure 5.10 Purification of M. tuberculosis PonA1. 12% SDS-PAGE analysis gels of Immoblised metal affinity 
chromatography (5 mL Cobalt) elutions by imidazole (IM) gradient of purified recombinantly expressed PonA1 from 
E. coli BL21 (DE3) expression cell line. Bands visualized by Coomassie blue staining. Lanes A1: Protein marker, A2: 
Flow through, A3: Wash through, A4: 0mM IM, A5: 10mM IM, A6: 30mM IM, A7: 50mM IM, A8: 100mM IM, A9: 
150mM IM, B1: Protein marker, B2: 200mM IM, B3: 250mM IM, B4: 300mM IM, B5: 350mM IM, B6: 400mM IM, 
B7: 450mM IM, B8: 500mM IM, B9: 500mM IM. Identification of PonA1 for further concentration noted by black 
rectangle. 
 

IMAC purification of M. tuberculosis PonA1 led to mostly successful isolation from other cellular 

components. PonA1 is an 85 kDa protein present during elution with imidazole concentrations 30-

150 mM in Figure 5.10 (Highlight with black rectangle). Eluted fractions corresponding to wells 

A6-9 were combined and dialyzed (Section 2.7.4) overnight at 4°C in PBP specific assay buffer 

(Section 2.10.2). The PBP was then concentrated (Section 2.7.5) below 1 mL total volume and the 

concentration quantified by BCA (Section 2.7.6.2). PonA1 concentration was 3.2 mM. Purification 

was not entirely successful with other band present in the purified sample which may impact 

binding.  

 

 
Figure 5.11 Purification of M. tuberculosis PonA2. 12% SDS-PAGE analysis gels of Immoblised metal affinity 
chromatography (5 mL Cobalt) elutions by imidazole (IM) gradient of purified recombinantly expressed PonA2 from 
E. coli BL21 (DE3) expression cell line. Bands visualized by Coomassie blue staining. Lanes A1: Protein marker, A2: 
Flow through, A3: Wash through, A4: 0mM IM, A5: 10mM IM, A6: 30mM IM, A7: 50mM IM, A8: 100mM IM, A9: 
150mM IM, B1: Protein marker, B2: 200mM IM, B3: 250mM IM, B4: 300mM IM, B5: 350mM IM, B6: 400mM IM, 
B7: 450mM IM, B8: 500mM IM, B9: 500mM IM. Identification of PonA1 for further concentration noted by black 
rectangle. 
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PonA2 was eluted from the IMAC column at a similar imidazole concentration as PonA1. The 84 

kDa PBP was removed from the column between 30-150 mM IM, fraction corresponding to wells 

A6-9 (Figure 5.11) were pooled and dialyzed overnight in PBP buffer. The recombinant protein 

was then concentrated and the resulting volume was quantified as containing 4.1 mM PonA2. 

Purification was once again not solely successful with the final elution containing more than one 

band. 

 

 

5.7.3 Binding affinity of M. tuberculosis PonA1/PonA2 to Lipid II variants 

 

PonA1 and PonA2 were assessed by BLI (2.10.2) to measure the binding affinity of the penicillin 

binding proteins to the two possible modified peptidoglycan subunits, N-acetylated Lipid II and 

N-glycolylated Lipid II. As described previously, biotinylated Lipid II variants were immobilized 

on streptavidin sensors and interactions between 0.2 µM set lipid concentrations and a range of 

PBP concentrations between 0.03 µM and 0.5 µM were evaluated. The BLI buffer solution utilized 

was altered to specify for optimal PBP activity (Section 2.10.2). The BLI sensorgrams for each 

Lipid II variant against both PonA1 and PonA2 are shown in Figure 5.12 and the KD results 

extrapolated for each PBP are shown in Table 5.3. 



 239 

 
Figure 5.12. Binding affinity of biotinylated Lipid II variants against M. tuberculosis penicillin binding proteins PonA1 and PonA2. Sensorgrams of 
streptavidin coated sensors bound to N-acetylated Lipid II and N-glycolylated Lipid II were assessed by their affinity towards two-fold serial dilutions from 0.5 
µM to 0.03 µM of PonA1 and PonA2. Reference sensors were used to remove any non-specific binding. (a) N-acetylated Lipid II (DAP) and PonA1, (b) N-
acetylated Lipid II (DAP) and PonA2, (c) N-glycolylated Lipid II (DAP) and PonA1 and (d) N-glycolylated Lipid II (DAP) and PonA2. Binding constants were 
measured with the Octet Data Analysis software on an Octet Red, by global fitting the data with the 1:1 heterogenous ligand mode
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Lipid II PBP KD (M) KD 
Error 

Ka 
(1/Ms) 

Ka  
Error 

Kd 
(1/s) 

Kd 
Error 

NAc PonA1 5.39 10-8 7.17  
10-10 

9.71 
10+3 

7.59 
10+1 

5.24 
10-4 

5.63  
10-6 

NAc PonA2 5.50 10-8 8.26  
10-10 

8.81 
10+3 

7.95 
10+1 

4.84 
10-4 

5.82  
10-6 

NGlyc PonA1 1.14 10-7 1.40  
10-9 

6.89 
10+3 

6.92 
10+1 

7.82 
10-4 

5.62  
10-6 

NGlyc PonA2 8.02 10-8 1.93  
10-9 

1.00 
10+4 

1.77 
10+2 

8.05 
10-4 

1.32  
10-5 

Table 5.3. The equilibrium dissociation constants, KD for biotinylated Lipid II variants to M. 
tuberculosis PonA1 and PonA2. N-acetylated and N-glycolylated Lipid II (DAP) attached to 
streptavidin biosensors binding measured against concentrations of M. tuberculosis PBPs, PonA1 and 
PonA2 between 0.5 µM and 0.03 µM.  
 

The equilibrium dissociation constants, of both PBPs in Figure 5.12 towards the N-

acetylated Lipid II exhibited a similar binding affinity value of 53.9 nM for PonA1 and 

55.0 nM for PonA2 (Table 5.3) respectively. The rate of association for each PBP were 

comparatively close with Ka values of 971 Ms-1 (PonA1) and 881 Ms-1 (PonA2). The 

dissociation constant for each penicillin binding protein against the N-acetylated lipid 

was 0.524 ms-1 (PonA1) and 0.484 ms-1 (PonA2) respectively.   

 

The N-glycolylated Lipid II (DAP) displayed a slight preference in binding affinity 

towards PonA2 with a KD of 80.2 nM compared to PonA1 with a KD of 114.0 nM. Ka 

for each PBP was 689 Ms-1 (PonA1) and 1000 Ms-1 (PonA2) respectively. The 

dissociation constants for each PBP against the N-glycolylated lipid were 0.782 ms-1 

(PonA1) and 0.805 ms-1 (PonA2) respectively. 

 

Comparisons observed between the binding affinities of each lipid variant towards a 

single PBP, showed that PonA1 preferentially binds at half the KD to the N-acetylated 

lipid than the N-glycolylated lipid, whereas PonA2 binds with equal affinity towards 

each lipid. 
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5.8 Discussion  
 

5.8.1 M. leprae Mur enzymes 
 

Initial investigations have been implemented with M. leprae Mur enzymes. Both MurA 

and MurC were successfully obtained and re-cloned into pCOLD expression vectors 

with poly-histidine tags employed to aid recombinant protein folding at lower 

temperatures. Both enzymes were expressed and generated soluble protein. Site 

directed mutagenesis was enacted to probe the sensitivity of M. leprae MurA to 

fosfomycin through the substitution of an active site aspartate residue (De Smet, et al. 

1999). The active site mutant was also expressed and soluble. These initial experiments 

will be built upon to investigate the peptidoglycan regulation undertaken to control 

synthesis in response to external pressures such as starvation and antimicrobial therapy 

(Section 5.9 Further work). 

 

 

5.8.2 M. smegmatis Mur enzymes 
 

Previous chapters have demonstrated the importance of N-glycolylated peptidoglycan 

for mycobacteria to resist hydrolytic enzymes and antimicrobials. The binding affinities 

of M. smegmatis Mur ligases, MurC and MurD were probed to identify potential 

catalytic bias between the N-acetylated and N-glycolylated substrates. Kinetic 

assessments of binding affinities illustrated that the M. smegmatis Mur ligases 

displayed a higher affinity towards the N-glycolylated substrate. This impact was most 

significant for MurC with a 43 fold greater efficiency. The noted bias decreased 

significantly for MurD, demonstrating only a 5 fold preference. These findings were 

similar to a collaborators within the laboratory measuring the binding affinity of M. 

tuberculosis Mur ligases (Unpublished). Results showed a 30 fold preference for the 

N-glycolylated substrate by MurC, although each subsequent ligase, the preference was 

diminished until substrate affinities were equivalent for MurF. The incorporation of N-

glycolylated saccharides is therefore a priority in mycobacteria, likely attributed to the 

organisms need to rapidly respond to host’s immune responses or antimicrobial 

treatments.  
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5.8.3 M. tuberculosis PBPs 
 

M. tuberculosis implements the bifunctional PBPs, PonA1 and PonA2 to construct the 

wider peptidoglycan sacculus and insert either N-acetylated or N-glycolylated lipids 

into the architecture depending upon the external conditions and challenges to maintain 

mycobacterial cell wall integrity. The BLI assessment of M. tuberculosis PBPs showed 

that there was little difference between PonA1 and PonA2 in their binding affinities 

towards each specific version of Lipid II (DAP). There was specificity observed in each 

PBP’s own preferences. PonA1 showed twice as great affinity towards the N-acetylated 

lipid as the N-glycolylated, whereas PonA2 had similar affinities regardless of lipid 

binding partner. 

 

Chen, et al. (2013) however, directly tested PonA1 activity towards lipid II analogues 

and found that the N-glycolylated lipid II was two-fold more efficient than its N-

acetylated counterpart.  The apparent discrepancy may well result from the weaker 

binding of N-glycolylated as opposed to the N-acetylated substrate binding seen in this 

project. This might be countered by a much higher maximal velocity of N-glycolylated 

transglycosylation as seen by Chen, et al. (2013). 

 

 

5.9 Further work 
 

 

• Characterise activity of M. leprae Mur enzymes 

 

M. leprae MurA, a MurA active site mutant and MurC were successfully cloned and 

expressed. The Mur enzymes require an assessment of enzymatic activity 

characterization towards peptidoglycan intermediate synthesis of UDP-enolpyruvyl-

GlcNAc (MurA and MurA mutant) and UDP-MurNAc-L-glycine (MurC) respectively 

compared to known Mur enzymatic activities within other organisms (Munshi, et al. 

2013). Once standard M. leprae MurA activity is established, the effect of 

peptidoglycan synthesis can be perturbed by the MurA inhibitor, fosfomycin to 

determine the extent to which the active site amino acid substitution impacts 
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antimicrobial susceptibility of the commonly resistant enzyme. The M. leprae MurC 

implementation of L-glycine at position one of the pentapeptide stem should be re-

examined to reiterate the lack of binding preference between L-glycine and L-alanine 

(Mahapatra, et al. 2000). The experiment could also be expanded to include all amino 

acid. 

 

 

• CwlM 

 

Recent findings (Boutte, et al. 2016) have identified the protein CwlM as a key factor 

in the regulation of MurA activity. Association of the protein with MurA once 

phosphorylated by the serine/threonine protein kinase, PknB increased the Mur 

enzymes activity by around 30 fold. Investigations should be conducted into identifying 

an equivalent gene in M. leprae, determining if the gene can be expressed or is simply 

a pseudogene and if so have the gene synthesize and expressed to determine the impact 

of M. leprae peptidoglycan synthesis. 

 

 

• Assess M. leprae MurC catalytic bias towards muramic acid variants 

  

Investigate the potential for catalytic bias of M. leprae MurC towards the N-

glycolylated substrate compared to the N-acetylated variant as observed in M. 

smegmatis. Determine if the fact that the NamH equivalent in M. leprae is a pseudogene 

has led to no retained substrate binding preference. 

 

 

• Assess PonA1 and PonA2 binding affinity towards antimicrobials 

 

The M. tuberculosis PBPs were expressed with a poly-histidine tag, which permits the 

proteins to be bound to Ni-NTA anti-histidine antibody biosensors for BLI binding 

affinity assessment. Interactions between PonA1/PonA2 and PBP targeted 

antimicrobials such as b-lactam antibiotics and moenomycin should be investigated to 

decipher preferential binding of the antimicrobials.  
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5.10 Conclusion 
 

Mycobacterial peptidoglycan synthesis possesses a number of unique variations to aid 

resistance from antimicrobial interaction. Catalytic preferences towards the N-

glycolylated saccharide was shown within the Mur ligases though this effect diminished 

as the amino acid stem extended. Rapid implementation of peptidoglycan modification 

likely attributes to mycobacterial virulence.  

 

 

 
 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 245 

Chapter 6. Elucidating the role of known cell wall active 

compounds 
 

 

6.1 Inhibition screening 
 

A collaboration between the University of Warwick and McMaster University was initiated 

to investigate the role of newly identified cell wall active compounds with antimicrobial 

activity. The compounds were identified through a new screening process described below 

created to avoid the issues commonly occurring in previous screens (De Pascale 2007). 

Previous screening methods utilised a vanH promoter-reporter merged to the lacZ gene to 

evaluate growth inhibition followed by targeted activity towards the bacterial cell wall. Such 

methods are incomplete in that they only target a specific step in peptidoglycan synthesis 

such as transpeptidation, although the screening process published by (Czarny, et al. 2014) 

reports on any inhibition of any step of the entire bacterial cell wall pathway.  

 

 

6.1.1 Pywac compounds 
 

The screening process performed at McMaster University by the Brown lab focused on the 

noted upregulation of the ywaC gene upon suppression of wall teichoic acid (WTA) 

synthesis (D’Elia, et al. 2009). Teichoic acids are designated as WTA due to interactions 

with peptidoglycan and lipoteichoic acids if anchored to lipids. Comprised from either 

glycerol phosphate or ribitol phosphate and attached by phosphodiester bonds, these 

bacterial polysaccharides are covalently bound to MurNAc subunits of the peptidoglycan 

sacculus (Brown, et al. 2014). WTA are major components of the bacterial cell wall, and in 

similar abundance to peptidoglycan in Gram-positive organisms, although absent from 

Gram-negative organisms (Swoboda, et al. 2010).  

 

The vast majority of previously identified anti-bacterials which are specific for the bacterial 

cell wall elicit activity towards peptidoglycan synthesis (Bush 2012) although WTA 

synthesis is currently emerging as an encouraging new target. The screen utilises the gene 

ywaC, observed to exhibit GTP pyrophosphokinase activity (Czarny, et al. 2014). This 
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generally uncharacterised protein belongs to a class of enzymes that catalyse the production 

of a bacterial “alarmone”, guanosine tetra(penta)phosphate ((p)ppGpp) during cellular 

stresses (Hauryliuk, et al. 2015). In turn by binding to both b and b’ subunits of RNA 

polymerase, the alarmone alters promoter preference, as well as upregulation and 

downregulation of genes, prompts precise transcriptional level gene expression (Merrikh, et 

al. 2009) and is part of the sw regulon, a collection of genes upregulated in the presence of 

cell wall antimicrobials. The screening process utilises a promoter-reporter system 

comprised of the promoter of ywaC and the lux genes from which the enzyme luciferase is 

expressed enabling a real-time luminescence signal. Luciferase catalyses the oxidation of a 

long-chain aliphatic aldehyde and reduced Flavin mononucleotide (FMNH2) by molecular 

oxygen to yield H2O, flavin mononucleotide (FMN) and a fatty acid (Baldwin, et al. 1975). 

This reaction leads to the emission of blue-green light at a wavelength of 490 nm (Wiles, et 

al. 2005). 

 

 

 
Figure 6.1 The enzymatic luminescence reaction of reduced flavin mononucleotide and a long chain 
aldehyde. Luciferase catalyses the oxygen dependent oxidation of FMNH2 and a long chain aldehyde to FMN 
and a fatty acid with the emission of light at 490 nm. 
 

The screen comprised wild type B. subtilis 168 (EB6) single colonies containing the Pywac-

Lux promoter-reporter plasmids cultured LB overnight, supplemented with erythromycin. 

Harvested cells were subsequently diluted and spotted onto the surface of solid LB agar 

incorporating potential inhibitors. Assay luminescence was evaluated for 19 hours, where 

emission was measured at 490 nm with the isoprenoid biosynthesis inhibitor fosmidomycin 

(Howe, et al. 2013) employed as a high emission control and DMSO as a low emission 

control. Potential inhibitors that elicited a positive luminescence response were selected for 

secondary screening. Osmoprotectants such as sucrose or divalent cations like magnesium 

chloride have been observed to mitigate the cell wall deficiencies of compromised cells as 
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well as supress PywaC activity. The secondary screen was conducted in the same manner as 

the first on solid agar with the addition of MgCl2, sucrose and maleic acid (MSM) to the 

liquid LB. Nine compounds were identified (designated as pywac 1-9 from the remainder of 

this thesis), displaying concentration dependant prominent luminescence emissions, which 

were also moderately quelled by osmoprotectants and induced morphology changes in cells 

at sub MIC levels. 

 

 

6.1.2 Pywac compound structures and MIC concentrations 
 

The chemical formulas, structures and MIC for the pywac compounds 1-9 against B. subtilis 

as outlined in Czarny, et al. (2014) are recorded in table 6.1. 
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Compound 
Name 

Chemical  
formula 

Molecular  
mass (Da) 

Chemical Structure MIC 

Pywac 1 C23H21BrN2O3 453.34 

 

4µM 

Pywac 2 C19H18N2O3S 354.42 

 

2µM 

Pywac 3 C14H14N2O3S 290.34 

 

32µM 

Pywac 4 C25H18ClFN2O5 480.88 

 

16µM 

Pywac 5 C16H15N3O5S 361.37 

 

32µM 

Pywac 6 C16H16ClNO4S 353.82 

 

8µM 

Pywac 7 C17H17ClN2O2S2 380.91 

 

16µM 

Pywac 8 C14H9ClF3N3O22- 343.69 

 

8µM 

Pywac 9 C19H20N2O2 308.38 

 

4µM 

Table 6.1 The cell wall active compounds identified by PywaC screening, designated pywac 1-9. Molecular 
weights, structures and MIC for B. subtilis (structures produced in ChemBio Draw 7) from (Czarny, et al. 
(2014)). 
 

 

Br

O

N NH

O

O

O

O

N
H

S

O
NH

(E)-5-(4-(benzyloxy)-3-ethoxybenzylidene)-2-iminothiazolidin-4-one
Chemical Formula: C19H18N2O3S

Exact Mass: 354.10
Molecular Weight: 354.42

m/z: 354.10 (100.0%), 355.11 (20.5%), 356.10 (4.5%), 356.11 (2.0%)
Elemental Analysis: C, 64.39; H, 5.12; N, 7.90; O, 13.54; S, 9.05

PyWac2

O

O

NH

S

O

NH

(Z)-5-(4-(allyloxy)-3-methoxybenzylidene)-2-iminothiazolidin-4-one
Chemical Formula: C14H14N2O3S

Exact Mass: 290.07
Molecular Weight: 290.34

m/z: 290.07 (100.0%), 291.08 (15.1%), 292.07 (4.5%), 292.08 (1.1%)
Elemental Analysis: C, 57.92; H, 4.86; N, 9.65; O, 16.53; S, 11.04

PyWac3

O

O

Cl

N

NH

F

O

O O

(Z)-5-(4-(benzyloxy)-3-chloro-5-methoxybenzylidene)-1-(2-fluorophenyl)pyrimidine-2,4,6(1H,3H,5H)-
trione

Chemical Formula: C25H18ClFN2O5
Exact Mass: 480.09

Molecular Weight: 480.88
m/z: 480.09 (100.0%), 482.09 (32.0%), 481.09 (27.0%), 483.09 (8.6%), 482.10 (3.5%), 482.09 (1.0%)

Elemental Analysis: C, 62.44; H, 3.77; Cl, 7.37; F, 3.95; N, 5.83; O, 16.64

PyWac 4

O

N O S O

O

N

O

N

2-morpholinophenyl benzo[c][1,2,5]oxadiazole-4-
sulfonate

Chemical Formula: C16H15N3O5S
Exact Mass: 361.07

Molecular Weight: 361.37
m/z: 361.07 (100.0%), 362.08 (17.3%), 363.07 
(4.5%), 363.08 (1.4%), 362.07 (1.1%), 363.08 

(1.0%)
Elemental Analysis: C, 53.18; H, 4.18; N, 11.63; O, 

22.14; S, 8.87

PyWac 5

O

N O S O

O

Cl

2-morpholinophenyl 3-chlorobenzenesulfonate
Chemical Formula: C16H16ClNO4S

Exact Mass: 353.05
Molecular Weight: 353.82

m/z: 353.05 (100.0%), 355.05 (32.0%), 354.05 (17.3%), 356.05 
(5.5%), 355.04 (4.5%), 357.04 (1.4%), 355.06 (1.4%)

Elemental Analysis: C, 54.32; H, 4.56; Cl, 10.02; N, 3.96; O, 
18.09; S, 9.06

PyWac 6

HO

S
S

N
H

N

O Cl

(E)-N'-(2-chlorobenzylidene)-4-hydroxy-3-(methylthio)-4,5,6,7-tetrahydrobenzo[c]thiophene-1-
carbohydrazide

Chemical Formula: C17H17ClN2O2S2
Exact Mass: 380.04

Molecular Weight: 380.91
m/z: 380.04 (100.0%), 382.04 (32.0%), 381.05 (18.4%), 382.04 (9.0%), 383.04 (5.9%), 384.03 (2.9%), 

383.04 (1.7%), 381.04 (1.6%), 382.05 (1.6%)
Elemental Analysis: C, 53.61; H, 4.50; Cl, 9.31; N, 7.35; O, 8.40; S, 16.83

PyWac 7

N

F
F

F
Cl

N
N

-O O-

(E)-4-((2-(3-chloro-5-(trifluoromethyl)pyridin-2-yl)-2-methylhydrazono)methyl)benzene-1,3-bis(olate)
Chemical Formula: C14H9ClF3N3O2

2-

Exact Mass: 343.03
Molecular Weight: 343.69

m/z: 171.52 (100.0%), 172.52 (32.0%), 172.02 (15.1%), 173.02 (4.8%), 172.02 (1.1%), 172.52 (1.1%)
Elemental Analysis: C, 48.93; H, 2.64; Cl, 10.31; F, 16.58; N, 12.23; O, 9.31O

O

N

N
H

(E)-2-(5-(tert-butyl)-2-methylfuran-3-carbonyl)-3-(phenylamino)acrylonitrile
Chemical Formula: C19H20N2O2

Exact Mass: 308.15
Molecular Weight: 308.38

m/z: 308.15 (100.0%), 309.16 (20.5%), 310.16 (2.0%)
Elemental Analysis: C, 74.00; H, 6.54; N, 9.08; O, 10.38
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6.2 Experimental aims 
 

To investigate the impact of the nine recently discovered cell wall active compounds on 

peptidoglycan synthesis as reported by evaluation of accumulated intermediates of the 

peptidoglycan cytosolic or membrane linked phases during incubation in excess of the MIC. 

 

 

6.3 DMSO tolerance of B. subtilis 
 

The nine presumptive cell wall active compounds are insoluble in aqueous solution but 

soluble in DMSO. Growth of cells are known to have certain tolerances for solvents, though 

above a certain threshold a noticeable decrease in cellular growth can be observed Therefore 

it was important to identify the tolerance of B. subtilis wild type cells to increasing 

concentrations of DMSO. Throughout this chapter to minimise the impact of highly complex 

nutrient media preventing accumulation of cellular intermediates, minimal nutrient media 

(Section 2.2.4) was used. DMSO tolerance of B. subtilis is demonstrated in Figure 6.2. 

 

 

 
Figure 6.2 DMSO tolerance of B. subtilis. Cells were grown in the presence of increasing 
concentrations of DMSO to identify optimal tolerance for the solvent, in 96 well microtiter plates in 
triplicate at 37°C with intermittent shaking. Absorbance was measured at 600nm at 3 hour intervals for 
24 hours. Each well contained 100 µL minimal media. The cultured B. subtilis cells were standardized 
to an OD600nm of 1 and diluted further by a factor of 104 prior to incubation. Error bars represent standard 
deviation of triplicate measurements. DMSO concentration: 0%  (v/v) Blue, 1% (v/v) Pink, 2% (v/v) 
Green, 3% (v/v) Orange, 4% (v/v) Purple, 5% (v/v) Red. Statistically significant results are indicated 
with * = p-value <0.05, ** = <0.01, *** = <0.001 and **** = <0.0001. Ns = not statistically significant. 
Result: DMSO percentages above 1% (v/v) slightly impacted phenotypic growth, with 5% (v/v) reducing 
overall growth curve area by 18%.  
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[DMSO]  
(v/v) 
(%) 

B. subtilis 
Apparent 

Lag 
Phase 

Duration 
(h) 

Td 
(h-1) 

AUC (% of 
0%  DMSO) 

Stationary 
Phase OD600 

nm attained 

p-values 

0 3 2.76 - 0.50 - 

1 3 2.78 92.38 0.50 >0.05 

2 3 3.20 92.38 0.49 <0.05 

3 3 3.22 90.47 0.47 <0.01 

4 3 2.94 91.13 0.47 <0.01 

5 3 3.61 82.63 0.46 <0.001 
Table 6.2 Statistical comparisons of B. subtilis growth curves in the presence of increasing 
concentrations of DMSO. B. subtilis incubated for 24 hours at 37°C with selected concentrations of 
DMSO (v/v) produced growth curves measured at OD600nm in Figure 4.1. Variations between growth 
curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells 
during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 0 % 
control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations 
were statistically significant compared to each 0 % control with p-values <0.05 deemed significant.  
 

The normal growth phenotype of the wild type B. subtilis strain (Figure 6.2: 0% Blue) 

in the absence of DMSO exited apparent lag phase after 3 hours. The control data set 

produced a doubling time (Td) during exponential phase of 2.76 hours and reached an 

OD600nm of 0.5 during stationary phase after 21 hours. The addition of DMSO at any 

concentration tested against B. subtilis cells did not lead to the significant impact 

observed in M. smegmatis cells cultured in 7H9 media (Figure 4.1). Any investigated 

concentration of DMSO did not delay the exit from apparent lag phase which remained 

3 hours, however it did lead to slight variations in the Td of co-incubated cells and a 

gradual decrease in the area under the curve (AUC) from the 0% (v/v) control. The 

observed Td and AUC for each data set were 1% (v/v) DMSO: 2.78 hours, 92.38% 

(Figure 6.2: Pink), 2% (v/v) DMSO: 3.20 hours, 92.38% (Figure 6.2: Green), 3% (v/v) 

DMSO: 3.22 hours, 90.47% (Figure 6.2: Orange), 4% (v/v) DMSO: 2.94 hours, 91.13% 

(Figure 6.2: Purple) and 5% (v/v) DMSO: 3.61 hours, 82.63% (Figure 6.2: Red). A 

Student’s t-test was implemented to assess the significance of growth variation in the 

presence of each concentration of DMSO. Each of the DMSO concentrations added 

produced statistically significant variation to B. subtilis growth curves expect 1% (v/v) 

(p-value >0.05) with p-values of <0.05 (2% (v/v)) and <0.01 (3% and 4% (v/v)) and 

<0.001 (5% (v/v)) respectively. 
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Based upon the results obtained from Figure 6.2 the decision was taken to standardise 

a 2% (v/v) DMSO total concentration across all investigations within this chapter 

involving B. subtilis cells exposed to pywac compounds or just to the no compound 

DMSO control.  

 

 

6.4 B. subtilis MIC of pywac compounds 
 

To corroborate the findings of Czarny, et al. (2014) (Table 6.1) growth of B. subtilis at 

the reported MIC concentration of the nine compounds was monitored to validate the 

previous findings for subsequent MIC investigations in this chapter. Growth at the MIC 

for each individual pywac compound was determined in triplicate within minimal 

media. The phenotypic growth for B. subtilis cells against each pywac compound MIC 

is shown in Figure 6.3. 

 

 

 
Figure 6.3 MIC of cell wall active pywac compounds against B. subtilis. Cells were grown in the 
presence of proposed MICs of pywac compounds 1-9 in 2% DMSO in 96 well microtiter plates in 
triplicate at 37°C with intermittent shaking. Absorbance was measured at OD600nm at 3 hour intervals for 
24 hours. Each well contained 100 µL minimal media. The cultured B. subtilis cells were standardized 
to an OD600nm of 1 and diluted further by a factor of 104 prior to incubation. Error bars represent standard 
deviation of triplicate measurements. Control: (Blue) B. subtilis cells grown in absence of compounds 
plus 2% (v/v) DMSO. pywac MIC: pywac 1 4µM (Pink), pywac 2 2µM (Green), pywac 3 32µM 
(Orange), pywac 4 16µM (Purple), pywac 5 32µM (Yellow), pywac 6 8µM (Red), pywac 7 16µM 
(Turquoise), pywac 8 8µM (Magenta), pywac 9 4µM (Black). Result: All proposed MIC values for each 
pywac compound were either correct or overstated as reported in Czarny, et al. (2014).  
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The findings show that the MICs observed by Czarny et al. (2014) were consistent with 

the results shown in Figure 6.3 for all nine pywac compounds. None of the 

concentrations of each pywac compound tested permitted observable growth of B. 

subtilis cells. 

 

Building upon these results the main focus of this chapter was to observe the potential 

accumulation of cell wall intermediates during incubation with concentrations of pywac 

compounds exceeding their MIC values. Therefore, a positive control was required to 

ascertain the variation between normal cellular distribution of intermediates and 

compound specific causes of intermediate accumulation. For a positive control the 

antibiotic vancomycin was selected, which binds to the final D-alanyl-D-alanine 

residues of the PG precursor pentapeptide stem (Soetaerta, et al. 2015) inhibiting the 

subunit from incorporating into the peptidoglycan cell wall layer. The implementation 

of this control within B. subtilis cells would ultimately indicate that an increased 

concentration of vancomycin greater than the MIC would lead to an observable 

accumulation of UDP-MurNAc-pentapeptide DAP due to the further progress along the 

PG pathway being blocked by sequestration of Lipid II by vancomycin. The MIC of 

the B. subtilis wild type strain was identified as 0.03 µg.mL-1 by Fang, et al. (2014). 

The MIC of vancomycin against B. subtilis cells was assessed in Figure 6.4. 

 

 
Figure 6.4 MIC of vancomycin against B. subtilis. Cells were grown in the presence of the proposed 
MIC (Pink), 2x MIC (Green) and 4x MIC (Orange) of vancomycin in 2% (v/v) DMSO in 96 well 
microtiter plates in triplicate at 37°C with intermittent shaking. Absorbance was measured at 600nm at 
3 hour intervals for 24 hours. Each well contained 100 µL minimal media. The cultured B. subtilis cells 
were standardized diluted to an OD600nm of 10-4 prior to incubation. Error bars represent standard 
deviation of triplicate measurements. Control: (Blue) B. subtilis cells grown in absence of vancomycin 
plus 2% (v/v) DMSO. Result: The previously observed MIC value for vancomycin against B. subtilis 
was repeatable here.  
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The results found in Figure 6.4 validate the findings of Fang, et al. (2014). Incubation 

of B. subtilis cells with 0.03 µg.mL-1 vancomycin or greater (Figure 6.4) was sufficient 

to completely inhibit growth. The equivalent MIC of vancomycin in µM was 0.02 µM. 

The decision was taken to assess both 2x MIC (0.04 µM) and 5x MIC (0.1 µM) 

vancomycin on late exponentially growing B. subtilis cells to assess whether either are 

sufficient to obtain noticeable accumulation of the desired peptidoglycan precursor 

intermediates. 

 

 

6.5 Analysis of B. subtilis peptidoglycan precursor intermediate 

standards 
 

To compare and identify isolated peaks of interest from the ion exchange 

chromatography and mass spectrometry data of B. subtilis cells, known cytosolic 

peptidoglycan intermediates were processed individually to act as standards. The cell 

wall intermediates produced by B. subtilis are known to contain a DAP residue at 

position three of the pentapeptide stem (Vermeulen, et al. 1984). The structure of each 

of the seven peptidoglycan intermediates: UDP-GlcNAc, UDP-enolpyruvyl-GlcNAc, 

UDP-MurNAc, UDP-MurNAc-L-alanine, UDP-MurNAc-L-alanyl-g-D-glutamate, 

UDP-MurNAc-L-alanyl-g-D-glutamyl-meso-diaminopimelate and UDP-MurNAc-L-

alanyl-g-D-glutamyl-meso-diaminopimelyl-D-alanyl-D-alanine; abbreviated to UDP-

MurNAc, UDP-MurNAc-L-Ala, UDP-MurNAc-L-Ala-D-Glu, UDP-MurNAc-L-Ala-

D-Glu-m-DAP and UDP-MurNAc-L-Ala-D-Glu-m-DAP-D-Ala-D-Ala respectively 

are shown in Figure 6.5. 
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Figure 6.5: The structures of the cytosolic peptidoglycan intermediates of B. subtilis. (a) UDP-GlcNAc, (b) UDP- enolpyruvyl-GlcNAc, (c) UDP-MurNAc, (d) UDP-
MurNAc-L-Ala, (e) UDP-MurNAc-L-Ala-D-Glu, (f) UDP-MurNAc-L-Ala-D-Glu-m-DAP and (g) UDP-MurNAc-L-Ala-D-Glu-m-DAP-D-Ala-D-Ala. The above schematic 
was created using ChemBioDraw. 
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Known peptidoglycan intermediate standards synthesised within the lab by the 

BaCWAN facility utilising the methods outlined in Section 2.8.1 and used to identify 

the elution position of each peptidoglycan intermediate on fractionation of the B. 

subtilis cytosolic metabolite pool, by anion exchange as described in Section 2.7.3.3. 

Samples were diluted in 10 mM ammonium acetate to 1 mM and 2 mL volumes were 

loaded onto the column. Notable peaks of interest were retained for subsequent 

characterisation by mass spectrometry. The ion exchange chromatograms for each 

peptidoglycan intermediate standard are shown in Figure 6.6. 
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Figure 6.6: Anion exchange chromatography of peptidoglycan intermediate standards. Elution position defined by conductivity at the center of the peak of standard 
elution (i) UDP-GlcNAc (conductivity 16.41 mS.cm-1), (ii) UDP-enolpyruvyl-GlcNAc (conductivity 45.57 mS.cm-1), (iii) UDP-MurNAc (conductivity 40.61 mS.cm-1), (iv) 
UDP-MurNAc-L-Ala (conductivity 34.68 mS.cm-1), (v) UDP-MurNAc-L-Ala-D-Glu (conductivity 41.29 mS.cm-1), (vi) UDP-MurNAc-L-Ala-D-Glu-m-DAP (conductivity 
38.54 mS.cm-1), (vii) UDP-MurNAc-L-Ala-D-Glu-m-DAP-D-Ala-D-Ala (conductivity 34.77 mS.cm-1). Samples were fractionation by MonoQ 5/50 GL resin. Red trace is 
absorbance at 254 nm, blue trace: absorbance at 280 nm and black trace; conductivity. 
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The 254 nm and 280 nm absorbance measured for each peptidoglycan intermediate 

standard showed single distinct peaks during ion exchange chromatography 

purification (Figure 6.6). One common identifier of eluted intermediates is the 

A254nm/A280nm ratio, which for uridine is 1:2.86 (Dawson, et al. 1986). The conductivity 

mS.cm-1 at which each of the standards eluted permitted preliminary and presumptive 

identification of potential peaks of interest obtained from ion exchange of metabolite 

pool extracted from B. subtilis treated with the pywac compounds. The conductivity at 

which each standard eluted is tabulated in table 6.3.  

 

 

UDP species Conductivity mS.cm-1 
UDP-GlcNAc 16.41  

UDP-enolpyruvyl-GlcNAc 45.57 

UDP-MurNAc 40.61 

UDP-MurNAc-L-Ala 34.68 

UDP-MurNAc-L-Ala-D-Glu 41.29 

UDP-MurNAc-L-Ala-D-Glu-m-DAP 35.85 

UDP-MurNAc-L-Ala-D-Glu-m-DAP-

D-Ala-D-Ala 

34.77 

Table 6.3 Conductivity of peptidoglycan precursor intermediate standards. Eluted from monoQ 
5/50 column by ion exchange chromatography 
 

To ensure that components of peaks eluted by anion exchange could be successfully 

characterised by mass spectrometry, the eluted peaks for each standard were subjected 

to three rounds of freeze drying in 50 mL H2O to remove the ammonium acetate. 

Samples were resuspended in H2O and prepared for mass spectrometry at a final 

concentration of 50 µM in 50% (v/v) acetonitrile, and subsequently analysed by 

negative ion mode mass spectrometry. The predicted mass:charge ratios (m/z) of each 

of the peptidoglycan intermediate standards are displayed in table 6.4, and compared to 

their observed value. 

 

All mass spectrometry was carried out in this thesis were by Dr Adrian Lloyd and Mrs. 

Anita Catherwood. Full spectra results are shown in Figures A3.1 to Figure A3.7 in 

appendix 3 with embedded zoomed in  m/z ranges of interest.  
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UDP Species (m-1)/1 (m-2)/2 (m-3)-3 

Observed Expected Observed Expected Observed Expected 
UDP-GlcNAc 606.07 606.07 302.53 302.53 - 201.35 

UDP enol pyruvoyl GlcNAc 676.08 676.07 337.53 337.53 - 224.68 

UDP-MurNAc 678.09 678.09 338.54 338.54 - 225.35 

UDP-MurNAc-L-Ala 749.14 749.13 374.07 374.06 - 249.03 

UDP-MurNAc-L-Ala-D-Glu 878.18 878.17 438.59 438.58 - 292.05 

UDP-MurNAc-L-Ala-D-Glu-m-

DAP 

1050.26 1050.25 524.63 524.62 - 349.41 

UDP-MurNAc-L-Ala-D-Glu-m-

DAP-L-Ala-L-Ala 

1192.34 1192.33 595.67 595.66 - 396.77 

Table 6.4 The mass/charge ratio for the peptidoglycan cytosolic DAP intermediate standards. Singly [M-H]-, doubly [M-2H]2- and triply [M-3H]3- charged observed and 
expected species of the various peptidoglycan DAP intermediates. 
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The mass spectrometry data from Figure A3.1 to Figure A3.7 (Appendix 3) identified the 

peptidoglycan intermediate standards isolated from ion exchange chromatography (Figure 6.6). 

Singly ([M-H]-) and doubly ([M-2H]2-) charged species were located within the full spectra which 

related to the known m/z ratios outlined in table 6.4. The data obtained from processed cells in the 

absence of antimicrobials, in the presence of excess MIC of vancomycin or excess MIC of  pywac 

compounds was then compared to the known standards to identify peaks of interest that were 

potentially comprised of accumulated of peptidoglycan intermediates. These monoQ conductivity 

comparisons were only used as an initial marker for potential identification due to differing 

methods of acquiring intermediates, synthesis versus accumulation. Potential intermediates were 

confirmed by mass spectrometry. 

 

 

6.6 Normal cellular distribution of B. subtilis peptidoglycan intermediates  

 

Growth of B. subtilis in minimal media was selected as a means of accumulating quantities of cell 

wall intermediates in the presence of the pywac compounds without competition from components 

of more complex media such as nutrient rich LB media. Pywac compounds were co-incubated at 

2x MIC (Table 6.1) with B. subtilis cells once they had reached late exponential phase at 37°C, at 

this point the protocol devised by Dr. Adrian Lloyd (Section 2.9.1)  was then used to isolate a 

crude fraction containing cytoplasmic peptidoglycan precursors which were further purified by 

size exclusion (Section 2.7.3.2) and ion exchange chromatography (Section 2.7.3.3) and species 

of interest were further characterised by mass spectrometry (Section 2.12). 

 

Alongside the pywac compounds, two sets of control samples were also implemented. One control 

was a baseline examination of standard intermediate accumulation of B. subtilis cells in the 

absence of inhibitors to understand the normal cellular distribution of cell wall intermediates. The 

second set of controls were B. subtilis cells exposed to 2x and 5x MIC of vancomycin. Both sets 

of controls were incubated in minimal media and exposed to 2% (v/v) DMSO to accurately 

compare controls to investigated samples.  
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The inhibitor-free B. subtilis control sample absent of inhibitors was processed first. The 

chromatogram from size exclusion chromatography is displayed in Figure 6.7. 

 

 

 
Figure 6.7: Size exclusion chromatography of B. subtilis control cells TCA extracted cells. Noted peak at (i) 83.29 
mL. Samples were eluted by Bio-gel P2 resin. Red trace is absorbance at 254 nm, blue trace is absorbance at 280 nm 
and black trace; conductivity. 
 

 

The gel filtration of the control B. subtilis sample (Figure 6.7) displayed the normal distribution of 

eluted peaks from control lysophilised cells separated out by size alone. Wavelengths of A254nm 

(Figure 6.7: Red) and A280nm (Figure 6.7: Blue) were measured along with the conductivity (Figure 

6.7: Black). Size exclusion chromatography isolated three separate peaks. The most prominent 

peak was the first (Figure 6.7: (i)) which eluted from the column after 83.29 mL and produced the 

initial increase in both measured wavelengths and conductivity. Based on previous work 

performed in the laboratory (Dr Adrian Lloyd, personal communication) it was observed that cell 

wall intermediates are amongst the first species to elute from the gel filtration due to their large 

comparative size.  

 

The A254nm/A280nm  ratio of the species in peak (i) was 1.72, slightly lower than expected for the 

presence of uridine containing components with an expected ratio of 2.86). This initial peak was 

isolated, freeze-dried and resuspended in water when a 2 µL aliquot was taken and added to 998 

µL of H2O. The A260nm of this dilution was 0.047. Subsequent samples mentioned in this chapter 

would also be assessed in the same way. All samples were diluted based on this measurement to 
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that of the most dilute sample (A260nm 0.02) prior to monoQ ion exchange to ensure that equal 

volume loading equated to loading of the same amount of material on a nucleotide basis. Further 

fractionation of peak (i) from Figure 6.9 on this basis by anion exchange on a MonoQ 5/50 GL 

resin column is shown in Figure 6.8. 

 

 

 
Figure 6.8: Anion exchange chromatography of isolated peptidoglycan intermediate peak of B. subtilis control 
cells. Noted peaks (i) (conductivity 13.65 mS.cm-1), (ii) (conductivity 16.78 mS.cm-1), (iii) (conductivity 21.27 mS.cm-

1), (iv) (conductivity 24.14 mS.cm-1), (v) (conductivity 32.93 mS.cm-1), (vi) (conductivity 38.85 mS.cm-1) and (vii) 
(conductivity 46.13 mS.cm-1). Red trace is absorbance at 254 nm, blue trace: absorbance at 280 nm and black trace; 
conductivity. 
 

The monoQ elution profile of the B. subtilis control (Figure 6.8) indicated the presence of a number 

of isolated peaks, from the initial size exclusion eluted peak (Figure 6.7: (i)). Seven notable peaks 

were visualised. The mAu intensity of each peak decreased as the conductivity within the column 

increased. Based upon the comparative conductivity of peptidoglycan intermediate standards, B. 

subtilis control isolated peak (ii) (16.78 mS.cm-1) eluted at a similar point to UDP-GlcNAc 

standard (Figure 6.6 (i): 16.41 mS.cm-1), isolated peak (v) (32.93 mS.cm-1) eluted at a similar point 

to both standards UDP-MurNAc-monopeptide (Figure 6.6 (iv): 34.68 mS.cm-1) and UDP-

MurNAc-pentapeptide (DAP) (Figure 6.6 (vii): 34.77 mS.cm-1), isolated peak (vi) (38.85 mS.cm-

1) eluted at a similar point to standard UDP-MurNAc-tripeptide (DAP) (Figure 6.6 (vi): 38.54 

mS.cm-1) and isolated peak (vii) (46.13 mS.cm-1) eluted comparatively to standard UDP-

enolpyruvyl-GlcNAc (Figure 6.6 (ii): 45.57 mS.cm-1). However, elution conductivity is not 

sufficient to identify potential peptidoglycan intermediates, particularly because the A254/A280 

ratio for the species fractionated in Figure 6.8 were not consistent with the presence of uridine 



 262 

nucleotides. Therefore each of the monoQ B. subtilis control peaks (Figure 6.8) were collected and 

processed by mass spectrometry to attempt confirmation of the presence of cell wall intermediates 

and their relative abundance during unimpeded cellular growth. The mass spectra for each isolated 

peak are analysed from Figure A3.8 to Figure A3.14 in Appendix 3.  

 

Mass spectrometric analysis of the first two eluted peaks (i) (Figure 6.8: (i) conductivity 13.65 

mS.cm-1) and (ii) (Figure 6.8: (ii) conductivity 16.78 mS.cm-1) from the B. subtilis control monoQ 

purification shown in Figure A3.8 and Figure A3.9. Both peaks contained the initial subunit of the 

entire peptidoglycan biosynthesis pathway, UDP-GlcNAc, consistent with the conductivity data. 

Analysis of the mass spectrum of peaks (i) and (ii) identified singly charged ([M-H]-) species of 

UDP-GlcNAc: (i) expected m/z 606.07, observed m/z 606.08, (ii) expected m/z 606.07, observed 

m/z 606.08.  

 

The potential accumulation of UDP-GlcNAc by the pywac compounds would suggest although 

not be necessarily indicative of inhibition of MurA the first enzyme in the pathway which converts 

UDP-GlcNAc into UDP-enolpyruvyl-GlcNAc. For each of the mass spec results it should be noted 

is the presence of a single peak with a m/z ratio of 237.09 (Figure A3.8) consistently found 

amongst all samples. The most likely cause is a contaminant found in the acetonitrile, though 

assumed to not interfere with the results. 

 

Mass spectrometric analysis of the next two subsequent monoQ isolated peaks (iii) (Figure 6.8: 

(iii) conductivity 21.27 mS.cm-1) and (iv) (Figure 6.8 (iv) conductivity 24.14 mS.cm-1) from the 

B. subtilis control purification both contained UDP-MurNAc-pentapeptide DAP, the final subunit 

of the cytosolic peptidoglycan biosynthesis pathway. Mass spectra analysis of peaks (iii) (Figure 

A3.10) and (iv) (Figure A3.11) identified the doubly charged ion of UDP-MurNAc-pentapeptide 

in both samples. [M-2H]2- (iii) expected 595.66 m/z, observed m/z 595.67, (iv) expected m/z 

595.66, observed m/z 595.68 respectively. No singly charged species were identified though for 

either peak.  

 

The fifth identifiable peak from the isolated monoQ fractions of the B. subtilis control sample was 

in elution (v) (Figure 6.8 (v) conductivity 32.93 mS.cm-1). Mass spectra analysis (Figure A3.12) 
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revealed that this peak contained singly ([M-H]- observed m/z 878.19, expected m/z 878.17) and 

doubly ([M-2H]2- observed m/z 438.59, expected m/z 438.58) charged species consistent with the 

presence of UDP-MurNAc-dipeptide, the product of MurD and the substrate of MurE. Proposed 

accumulation at this stage in the peptidoglycan cell wall biosynthesis would indicate that flux 

through the MurD step was in excess of that through MurE. 

 

The final two isolated peaks eluted from the control sample (vi) (Figure 6.8 (vi) conductivity 38.85 

mS.cm-1 and (vii) (Figure 6.8 (vii) conductivity 46.13 mS.cm-1) on evaluation by negative ion mass 

spectrometry ((vi) Figure A3.13 and (vii) Figure A3.14) did not detect signals comparable to any 

of the known cell wall intermediates.  

 

Overall, elutions of peptidoglycan intermediates in the Bacillus subtilis control experiment was 

similar to the elution order observed by the standards, UDP-GlcNAc, UDP-MurNAc-pentapeptide 

(DAP) and UDP-MurNAc dipeptide (Figure 6.6 and Figure 6.8). 

 

The control data set established an estimation of conductivity ranges for each peptidoglycan 

intermediate. The inability to determine the other notable intermediates, UDP-MurNAc, UDP-

MurNAc-monopeptide and UDP-MurNAc-tripeptide DAP from the eluted peaks is not believed 

to be a problem. The control sample is the observation of normal cellular growth with the 

peptidoglycan pathway unimpeded. During this time intermediates within the pathway should be 

continually turned over at normal rates so long as ATP is present. Unless the pathway was inhibited 

the amount of any one intermediate should be constant at steady state. 

 

 

6.6.1 Intermediate accumulation of B. subtilis vancomycin control 

 

Whilst the control sample illustrated that Bacillus subtilis demonstrated detectable concentrations 

of the accumulated cytosolic intermediates UDP-GlcNAc, UDP-MurNAc-dipeptide and UDP-

MurNAc-pentapeptide (DAP) under normal cellular conditions the presence of the positive control 

vancomycin in excess MIC should specifically favour the accumulation of the peptidoglycan 

intermediate UDP-MurNAc-pentapeptide (DAP). Lysophilised cell contents from both the 2x and 
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5x MIC incubation were separated by size exclusion chromatography with a Bio-gel P2 column 

with a 2 mL loading volume in Figure 6.9.  

 

 

 
Figure 6.9: Size exclusion chromatography of B. subtilis TCA extracts of cells incubated with excess MIC 
vancomycin. (a) 2x MIC chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak (i) 83.29 mL. (b) 5x MIC 
chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak (i) 80.75 mL. 2 mL loading volume. Red trace is 
absorbance at 254nm, blue trace: absorbance at 280nm and black trace; conductivity. 
 

Findings for the positive control were similar to the normal cellular control absent of 

antimicrobials (Figure 6.7). The primary elution peak for both concentrations (Figure 6.9: (a): (i) 

and (b): (i))) were at 83.29 mL and 80.75 mL respectively. The gel filtration of 2x and 5x MIC 

vancomycin differed solely by the intensity of the measured absorbance of the initial peaks pre 85 

mL. The 2x MIC sample peak (i) plateaued at 45 mAu for A254nm whereas the 5x MIC control peak 

(i) attained a peak height of 180 mAu at A254nm, four times the signal emitted by the potential 

intermediates found at 2x MIC vancomycin. The concentration of the inhibitor increased the 

accumulation of the primary peak and reduced the observed secondary and tertiary peaks. 

 

Primary peak elutions of both vancomycin positive controls were isolated, measured at A260nm, 

diluted to an equivalent absorbance and further separated on the monoQ column as shown in Figure 

6.10. 
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Figure 6.10: Anion exchange chromatography of gel filtration elutes (peak (i)) from B. subtilis treated with 
excess MIC vancomycin. (a) 2x MIC chromatogram of isolated peaks by MonoQ 5/50 GL resin. Noted peak (i) 
(conductivity 26.55 mS.cm-1). (b) 5x MIC chromatogram of isolated peaks by MonoQ 5/50 GL resin. Noted peak (i) 
(conductivity 25.15 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance at 280nm and black trace; 
conductivity. 
 

The addition of twice the MIC of vancomycin was sufficient to alter the normal distribution of 

intermediates viewed in the control (Figure 6.8), culminating in the increased absorbance of a 

single eluted peak, which eluted from the monoQ column at a conductivity of 26.55 mS.cm-1 

(Figure 6.10). This peak (i) has an absorbance of 48 mAu at A254nm, 2.5 times greater than the next 

most abundant species. Purification of the control sample showed that the initial elution peak UDP-

GlcNAc (Figure 6.8 (i)) reached a maximum absorbance of 60 mAu (A254nm). The corresponding 

UDP-GlcNAc initial elution peak in the 2x vancomycin sample amounted to only a third of that 

value at 20 mAu at A254nm. The increased accumulation of peak (i) in the presence of 2x MIC of 

vancomycin reduced the relative overall abundance of the surrounding peaks. Vancomycin is 

known to cause UDP-MurNAc-pentapeptide accumulation. This species which eluted from the 

control monoQ experiment (Figure 6.8: (iv)) at a conductivity of 24.14 mS.cm-1, was comparable 

to the conductivity at elution of peak (i) (Figure 6.10a) from the 2x MIC incubation (26.55 mS.cm-

1). The A254/A280 ratio of peak (i) at its apex was 2.78, consistent with the expected value of 2.86 

for a uridine containing nucleotide. 

 

The addition of five times the MIC of vancomycin lead to the presence of a single peak during ion 

exchange chromatography (Figure 6.10 (b): (i)) of greater magnitude than previously observed. 

The measured intensity of this peak reached 332 mAu at an absorbance of 254 nm which was 6.93 

times greater than the equivalent peak noted during monoQ purification of B. subtilis incubated 

with 2x MIC of vancomycin (Figure 6.10: (a)). The A254/A280 ratio of peak (i) in Figure 6.10 (b) 
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was 2.32. The peak eluted at a conductivity of 25.15 mS.cm-1, and dominated the elution profile. 

This observable accumulation of an intermediate diminished the absorbance of surrounding 

fractions as the proportion of the peak (i) material increased greatly. Each of the 2x and 5x MIC 

vancomycin prominent peaks from ion exchange purification were analysed by mass spectrometry 

to identify the potential presence of specific peptidoglycan intermediates. The data obtained from 

the 2x MIC vancomycin sample mass spectrometry is shown in Figure A3.15. 

 

The mass spectral analysis in Figure A3.15 indicated the detection of a UDP-MurNAc-

pentapeptide (DAP) dimeric species ([M-2H]2- observed m/z 595.6666, expected m/z 595.6629). 

The incubation of 2x MIC of the positive control is sufficient to accumulate and identify the 

specific intermediate targeted by antibiotic inhibition. The data obtained from the 5x MIC 

vancomycin sample mass spectrometry is shown in Figure A3.16. 

 

The mass spectral analysis (Figure A3.16) identifies the fraction as containing UDP-MurNAc-

pentapeptide (DAP) ([M-2H]2- observed m/z 595.6667, expected m/z 595.6629; [M-3H]3- 

observed m/z 396.774, expected m/z 396.7727). These observations mirrored what was observed 

with the 2x vancomycin MIC control (Figure A3.15). The accumulation of the intermediate was 

sufficient enough to be visible on the full mass spectra (Figure A3.16 (a)). The results for the 

positive controls indicated that this protocol is capable of investigating the potential of the pywac 

compounds to accumulate intermediates from the peptidoglycan pathway. The 2x MIC treatment 

was deemed efficient enough to measure a response and was chosen as the investigated 

concentration of the cell wall active pywac compounds. 

 

 

6.6.2 Intermediate accumulation of B. subtilis against pywac compounds 

 

Pywac compounds were incubated with a sufficient culture volume to produce a final harvested 

cell wet pellet weight of 1 g to provide sufficient material for further analysis. Each of the B. 

subtilis cultures incubated with pywac compounds were processed and peaks of interest further 

investigated. Results for pywac compounds 1-9 are combined based on similar ion exchange 

chromatography elution profile and mass spectrometry detect or lack thereof.  
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6.6.2.1 Intermediate accumulation of B. subtilis against pywac compounds 1, 3, 

5, 6 and 7 

 

The effects of pywac compounds 1, 3, 5, 6 and 7 on B. subtilis cellular contents were analysed by 

size exclusion and ion exchange chromatography in Figure 6.11. 
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Figure 6.11: Size exclusion and ion exchange chromatography of B. subtilis TCA extracts of cells incubated with 2x MIC pywac 1, 3, 5, 6 and 7. (i) Pywac 
1 (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 95.51 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 
5/50 GL resin. Noted peak (i) (conductivity 18.12 mS.cm-1). (ii) Pywac 3 (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 
96.34 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. Noted peak (i) (conductivity 25.47 mS.cm-1). (iii) Pywac 5 (a) Size exclusion 
chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 133.27 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 24.26 mS.cm-1). (iv) Pywac 6 (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 133.28 mL. 
(b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. Noted peak (i) (conductivity 25.68 mS.cm-1). (v) Pywac 7 (a) Size exclusion 
chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 133.28 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 24.17 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance at 280nm and black trace; conductivity.
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The size exclusion chromatogram (Figure 6.11: (i)-(v) (a)) of B. subtilis cells incubated 

with 2x MIC of pywac compounds 1, 3, 5, 6 and 7 differed from the B. subtilis control 

(Figure 6.7). The control chromatogram displayed isolated individual peaks whereas 

the pywac samples displayed a narrower elution profile with multiple peaks of similar 

intensities visualised. The elution of the pywac 1 and 3 samples was displaced by an 

extra 12 mL compared to the control, whereas pywac 5, 6 and 7 samples were displayed 

by an extra 49 mL. The major reason for these variations was the twice necessary 

repacking of P200 column with Bio-gel P2 resin, due to accidental damage. Each 

subsequent size exclusion chromatography in this chapter except B. subtilis incubation 

with pywac 2 (Figure 6.12) was performed with the repacked column.  

 

As with previous experiments the initial eluted peak from size exclusion 

chromatography (Figure 6.11 (a): (i)) was isolated for each sample and further 

fractionated by ion exchange chromatography (Figure 6.11 (b)). Although the gel 

filtration data differed from the control, the B. subtilis pywac compounds 

chromatograms produced during MonoQ purification were reminiscent of the peak 

distribution observed with the control data (Figure 6.8), with one exception observed 

in each. A single noted variable peak of interest, greater in intensity than during the 

control was eluted from the MonoQ column of each sample.  

 

The conductivity of the noted peak (i) for pywac 1 (Figure 6.11 (i) (b)) was 18.12 

mS.cm-1, with an absorbance three times greater than equivalent peaks found in the 

control. Based on the conductivity value alone, the accumulation of this peak is between 

conductivity results obtained for the intermediates UDP-GlcNAc (Figure 6.8 (ii) 16.78 

mS.cm-1) and UDP-MurNAc-pentapeptide (DAP) (Figure 6.8 (iii) 21.27 mS.cm-1) 

identified in the control purification. The ratio between A254nm/A280nm however was 

3.82, not the expected 2.86 ratio proposed for intermediates containing a uridine ring. 

 

The conductivity of the noted peaks (i) for pywac 3 (Figure 6.11 (ii) (b)), 5 (Figure 6.11 

(iii) (b)), 6 (Figure 6.11 (iv) (b)) and 7 (Figure 6.11 (iv) (b)) were 25.47 mS.cm-1, 24.26 

mS.cm-1, 25.68 mS.cm-1 and 24.17 mS.cm-1 respectively. Comparing these 

conductivity values to the B. subtilis control (Figure 6.8) suggests a similar conductivity 

observed in elutions containing UDP-MurNAc-pentapeptide (DAP) (Figure 6.8 (iv) 

conductivity 24.14 mS.cm-1), although the A254nm/A280nm ratios observed for each peak 
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do not demonstrate the 2.86 ratio commonly used to identify the elutions containing a 

uridine ring. 

 

The mass spectrometric analysis of these peaks are shown from Figure A3.17 to Figure 

A3.21 in Appendix 3. 

 

Based upon the m/z range investigated and the values attributed to known intermediates 

it was concluded that the incubation of B. subtilis with pywac compounds 1, 3 5, 6, and 

7 does not lead to an accumulation of cell wall peptidoglycan intermediates. The signals 

analysed from the isolated elutions (Figure 6.11 (b): (i)) did not denote any of the 

known m/z values or spectral properties of peptidoglycan intermediates, leading to the 

conclusion that the observed accumulation of the sample was not a peptidoglycan 

precursor. 

 

 

6.6.2.2 Intermediate accumulation of B. subtilis against pywac 

compound 2 
 

 

 
Figure 6.12: Size exclusion and ion exchange chromatography of B. subtilis TCA extracts of cells 
incubated with 2x MIC pywac 2. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 
resin. Noted peak at (i) 83.30 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL 
resin. Noted peak (i) (conductivity 18.80 mS.cm-1) and (ii) (conductivity 22.11 mS.cm-1). Red trace is 
absorbance at 254nm, blue trace: absorbance at 280nm and black trace; conductivity. 
 

The size exclusion chromatogram of the TCA extracted sample from B. subtilis exposed 

to 2x MIC pywac 2 (Figure 6.12 (a)) was similar in elution profile to the control, with 

a notable initial peak (i). As cells incubated with pywac 2 were processed before the 

gel filtration column was repacked, leading to the elution of components of pywac 2 
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sample starting at 83.30 mL similar to that of the control (Figure 6.7). The monoQ 

purification (Figure 6.12 (b)) profile was characterised by elution of peaks (i) (Figure 

6.12 conductivity 18.80 mS.cm-1) and (ii) (Figure 6.12 conductivity 22.11 mS.cm-1). 

These peaks eluted at a conductivity similar to those that in the B. subtilis control 

contained UDP-GlcNAc (Figure 6.8: (ii)) and UDP-MurNAc-pentapeptide (DAP) 

(Figure 6.8: (iii)) respectively. The two peaks were isolated and analysed by mass 

spectrometry in Figure A3.18 and Figure A3.19 in Appendix 3. 

 

Analysis (Figure A3.18) of the first isolated peak (i) from Figure 6.12 (b) failed to 

identify a species with a mass to charge ratio consistent with that of any known cell 

wall intermediate. Therefore, this peak was not caused by accumulation of 

peptidoglycan precursors. 

 

Mass spectral analysis (Figure A3.19) of the second eluted peak of note from Figure 

6.12 (b) (ii) provided an immediately recognisable UDP-MurNAc-pentapeptide (DAP) 

doubly and triply charged signal ([M-2H]2- Observed m/z 595.66 expected m/z 595.66, 

[M-3H]3- Observed m/z 396.77, expected m/z 396.77). The increase in absorbance of 

the second isolated peak was slightly greater than the equivalent peak from the control 

sample (Figure 6.8: (iii). Proposed accumulation of UDP-MurNAc-pentapeptide by the 

pywac compounds would suggest inhibition of either the enzymes involved in lipid 

synthesis such as MraY catalysing the formation of lipid I, recycling of undecaprenyl 

pyrophosphate back to undecaprenyl phosphate or that the compounds binds directly to 

the D-Alanyl-D-Ala subunit in a similar manner to vancomycin. 

 

 

6.6.2.3 Intermediate accumulation of B. subtilis against pywac 

compounds 4 and 9 
 

The size elution and ion exchange chromatography of B. subtilis cell extracts incubated 

with pywac compounds 4 and 9 are shown in Figure 6.13. 
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Figure 6.13: Size exclusion and ion exchange chromatography of B. subtilis TCA extracts of cells 
incubated with 2x MIC pywac compounds 4 and 9. (i) Pywac 4 (a) Size exclusion chromatogram of 
isolated peaks by Bio-gel P2 resin. Noted peak at (i) 133.28 mL. (b) ion exchange chromatogram of 
isolated peaks by MonoQ 5/50 GL resin. No noted peaks were identified. (ii) Pywac 9 (a) Size exclusion 
chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 133.28 mL. (b) ion exchange 
chromatogram of isolated peaks by MonoQ 5/50 GL resin. No noted peaks were identified. Red trace is 
absorbance at 254nm, blue trace: absorbance at 280nm and black trace; conductivity. 
 

The addition of pywac compounds 4 and 9 to B. subtilis cells led to a similar size 

exclusion elution profile (Figure 6.13 (a)) observed as a result of treatment with other 

pywac compounds (Figure 6.11 (a)) with no obvious accumulation. The volume taken 

to reach the initial elution was 40 mL greater than previously observed for both 

compounds at 133.28 mL. The volume difference was due to further reconstruction of 

the Bio-gel P200 column. The initial eluted peak for both cell extracts from gel 

filtrations were further purified by ion exchange (Figure 6.13 (b)). The results appeared 

to match the control sample (Figure 6.8) leading to the conclusion that pywac 

compounds 4 and 9 did not alter the cell intermediate pool extracted and therefore no 

fractions were sent to be further analysed by mass spectrometry. Results indicated that 

the target of pywac compounds 4 and 9 in B. subtilis remains to be identified. 
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6.6.2.4 Intermediate accumulation of B. subtilis against pywac 8 
 

 
Figure 6.14: Size exclusion and ion exchange chromatography of B. subtilis TCA extracts of cells 
incubated with 2x MIC pywac 8. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 
resin. Noted peak at (i) 133.27 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 
GL resin. Noted peak (i) (conductivity 18.85 mS.cm-1). Red trace is absorbance at 254nm, blue trace: 
absorbance at 280nm and black trace; conductivity. 
 

The penultimate compound tested, pywac 8 produced a unique size exclusion elution 

profile (Figure 6.14 (a)). Here pywac 8 treated cell extracts chromatographed in a 

similar manner reminiscent of either the control (Figure 6.7) or the vancomycin positive 

controls (Figure 6.9) with a significant initial peak separate from the subsequent peaks. 

The further purification of this fraction (Figure 6.14 (b)) led to an ion exchange 

chromatogram with a noted difference from the control sample (Figure 6.8). The first 

and major eluting peak (Figure 6.14 (b): (i)) with a conductivity of 18.85 mS.cm-1 was 

more pronounced though not equivalent to the vancomycin positive controls, with a 

marked reduction in surrounding peaks. As previously observed, the initial control peak 

(Figure 6.8 (i)) contained the UDP-GlcNAc intermediate, which if accumulated to a 

degree would decrease the concentration of UDP-MurNAc-pentapeptide (DAP) 

previously observed in the subsequent peaks. The initial elution was analysed by mass 

spectrometry in Figure A3.24 in Appendix 3 to identify the presence of potential 

intermediates.  

 

The mass spectrometry data in Figure A3.24 positively identified the fraction as 

containing the singly charged species of UDP-GlcNAc ([M-H]- observed m/z 606.08, 

expected m/z 606.07).  

 

 

 



 274 

6.7 Purification of non-peptidoglycan intermediate standards 
 

A number of the ion exchange purifications identified a potential accumulation during 

pywac incubation not attributed to peptidoglycan intermediates. Other possible 

candidates for accumulation that would impact the peptidoglycan pathway include the 

nucleotides adenosine tri-phosphate (ATP), adenosine di-phosphate (ADP) and 

adenosine mono-phosphate (AMP), the structures of whom are displayed in Figure 

6.15.  

 

 

 
Figure 6.15: The structure of Adenosine mono-phosphate (AMP), Adenosine di-phosphate (ADP) 
and Adenosine tri-phosphate (ATP). Molecular weight: AMP 347.22, ADP 427.20, ATP 507.18; 
Chemical formula: AMP C10H14N5O7P, ADP C10H15N5O10P2, ATP C10H16N5O13P3. The above schematic 
was created using ChemBioDraw. 
 

A key component of peptidoglycan pathway is the utilisation of ATP for the formation 

of the pentapeptide stem to UDP-MurNAc catalysed by the Mur ligases C-F (Munshi, 

et al. 2013), generating ADP. Inhibition targeted towards an ATP synthase would 

impact the ability of the cell to generate ATP and lead to accumulation of ADP. 

Samples from monoQ fractionation of gel filtration elutes of B. subtilis sample extracts 

treated with pywac compounds 1, 3, 5, 6, and 7 displayed isolated peaks of greater 

intensity than the control sample (Figure 6.8) but analysis of these peaks revealed that 

they did not contain known species of peptidoglycan intermediates. To establish 

whether these samples contained adenosine nucleotides initially, standards of ATP, 

ADP and AMP at a ratio of 3:2:1 were chromatographed by ion exchange 

chromatography in Figure 6.16 to observe elution conductivity and amenability to mass 

spectral analysis in Figure A3.25. 
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Figure 6.16: Anion exchange chromatography of AMP, ADP and ATP standards. Noted peaks (i) 
AMP (conductivity 15.94 mS.cm-1), (ii) ADP (conductivity 31.55 mS.cm-1), (iii) ATP (conductivity 
43.21 mS.cm-1) were isolated by MonoQ 5/50 GL resin. Red trace is absorbance at 254nm, blue trace: 
absorbance at 280nm and black trace; conductivity. 
 

The three adenosine standards eluted consecutively with sufficient separation to 

distinguish between peaks. The standards eluted in the order of AMP (Figure 6.16 (i)), 

ADP (Figure 6.16 (ii)) and ATP (Figure 6.16 (iii)) with 254 nm absorbances measured 

at the stated ratio of 1:2:3. The conductivity of each standard was 15.94 mS.cm-1 

(AMP), 31.55 mS.cm-1 (ADP) and 43.21 mS.cm-1 (ATP). Standards were analysed by 

mass spectrometry in Figure A3.25 in Appendix 3. The known m/z values for each 

singly, doubly and triply charged species are presented in table 6.5 Comparing eluted 

conductivities of ATP, ADP and AMP to those peaks of interest accumulated during 

pywac incubation, it was clear that the pywac peaks were not adenosine nucleotides.  

 

 

Adenosine nucleotide (m-1)/1 (m-2)/2 (m-3)-3 
ATP 505.98 252.49 167.99 

ADP 426.02 212.51 141.34 

AMP 346.05 172.52 144.68 
Table 6.5 The mass/charge ratio for ATP, ADP and AMP. Singly (m-1)/1, doubly (m-2)/2 and triply 
(m-3)/3 charged species of the adenosine nucleotides. 
 

The mass spectral analysis of standards showed the presence of singly charged species 

of each adenosine nucleotide. ATP (Figure A3.25 (i)) ([M-H]- observed m/z 505.9882, 

expected m/z 505.9888), ADP (Figure A3.25 (ii)) ([M-H]- observed m/z 426.0229, 

expected m/z 426.0217) and AMP (Figure A3.25 (iii)) ([M-H]- observed m/z 346.0559, 

expected m/z 346.0554).  
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Another non-peptidoglycan intermediate standard to compare against the pywac 

accumulation was NADPH. The cofactor is utilized by MurB to reduce the 

enolpyruvate double bond on UDP-GlcNAc-enolpyruvate generating UDP-MurNAc. 

The structure is depicted in Figure 6.17. 

 

 

 
Figure 6.17: The structure of NADPH. Molecular weight: 727.41; Chemical formula: C21H28N7O16P32-

. The above schematic was created using ChemBioDraw. 
 

A 1000 µL aliquot 1 mM stock of NADPH was loaded onto a monoQ column to analyse 

the purity of the sample and identify the elution conductivity as described in Figure 

6.18. 

 

 

 
Figure 6.18: Anion exchange chromatography of NADPH standard. Noted peaks (i) (conductivity 
18.93 mS.cm-1) was isolated by MonoQ 5/50 GL resin. Red trace is absorbance at 254nm, blue trace: 
absorbance at 280nm and black trace; conductivity. 
 

The NADPH standard eluted (Figure 6.18) at a conductivity of 18.93 mS.cm-1. Th 

conductivity of the elution of NADPH was similar to the conductivity of the first B. 

subtilis monoQ purification peak, commonly containing UDP-GlcNAc. This 
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conductivity was too low to equate with unknown pywac accumulations. The standard 

was analysed by mass spectrometry in Figure A3.26 in Appendix 3.  

 

The mass spectra analysis of NADPH (Figure A3.26) identified the doubly ([M-2H]2- 

observed m/z 371.54, expected m/z 371.53) charged species relating to the cofactor. 

Previously isolated elutions did not match NADPH. 

 

 

6.8 Inhibition of Lipid II synthesis  
 

The activity of the pywac compounds towards the bacterial cell wall likely encompasses 

more than just the cytosolic pathway. UDP-MurNAc-pentapeptide the product of the 

cytosolic pathway is converted into lipid linked intermediates by the enzymes MraY 

and MurG (Lloyd, Brandish et al. 2004) (Section 1.3.4). In vitro Lipid II is constructed 

through the utilisation of bacterial membranes supplemented with UDP-GlcNAc and 

undecaprenyl phosphate (Breukink, van Heusden et al. 2003). Extracted bacterial 

membranes contain native MraY, the standard protocol for this technique comprises of 

M. flavus membrane due to the increased abundance of the required enzymes. This 

method is preferred to expressing the recombinant MraY protein due to the difficulty 

of purifying this enzyme which is a ten transmembrane protein (Lloyd, Brandish et al. 

2004). Small scale synthesis of Lipid II samples was prepared as outlined in Section 

2.8.4 with any alterations to the protocol mentioned. 

 

 

6.8.1 Lipid II synthesis utilising B. subtilis membranes 
 

As the activity of the pywac compounds was tested in B. subtilis cells, the protocol was 

adapted to incorporate the membranes of this organism. Membranes were extracted 

from cells grown to exponential phase within minimal media and LB as detailed in 

Section 2.8.3. The activity of the membranes harvested from cells grown under these 

conditions was trialled as a small scale Lipid II synthesis (Section 2.8.4), with all 

reagents employed scaled down to 25% of the full lipid synthesis and samples were 

incubated at 37°C overnight. The resulting lipids were analysed by Silica TLC (Section 



 278 

2.8.4.2) accompanied by a Lipid II (DAP) positive control. The results are shown in 

Figure 6.19.  

 

 

 
Figure 6.19: TLC of fractions from lipid synthesis of Lipid II (DAP) to assess membrane activity 
in selected media. B. subtilis membranes extracted from cells in LB (1) and minimal media (2). Lipid II 
(DAP) standard 50 µM (3) identifies the migration of the lipid. Silica gel TLC plate chromatography 
with Chloroform/methanol/Water ammonia (88:48:10:1) solvent. TLC plate stained with iodine vapour. 
(a) Lipid II, (b) the origin and (c) denotes the solvent front. 
 

The migration of the lipids was indicated by the location of the Lipid II (DAP) positive 

control (Figure 6.19 (3a)) Lipids (Figure 6.19 (1a) and (2a)) were synthesised from each 

of the small scale synthesises. The utility of minimal media for growth did not impact 

on the efficacy of the membranes with respect to lipid synthesis (Figure 6.19 (2)) 

compared to membranes prepared from cells grown in nutrient LB media (Figure 6.19 

(1)). Based on this result all lipid synthesis experiments used B. subtilis membranes 

grown from minimal media to aid in determining inhibition. 
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6.8.2 Lipid synthesis in the presence of pywac compounds  
 

The full scale synthesis of lipid II was performed in the presence of 50 µM of each 

pywac compound for 4 hours at 37°C. A control synthesis in the absence of compound 

was also performed as a comparison. The reduced time frame from overnight 

incubation to 4 hours was decided upon to maximise the sensitivity of the technique to 

detection of inhibition of lipid synthesis by the pywac compounds. Once the incubation 

was complete the lipid phase was extracted by pyridinium acetate, N-butanol and H2O 

additions (Section 2.8.4). A small amount of each synthesis was separated from the 

main volume and all volumes were desiccated to remove liquid. The small unpurified 

aliquots were resuspended in a small amount of solvent A (2:3:1 

Chloroform:Methanol:Water) and spotted onto warmed TLC plates to monitor lipid 

synthesis utilising TLC chromatography (Section 2.8.4.2). TLC plates were stained 

with iodine vapours and imaged as shown in Figure 6.20.  

 

 

 
Figure 6.20: TLC of unpurified fractions from lipid synthesis of Lipid II (DAP) co-incubated with 
50µM of pywac compounds 1-9 and no compound control C. Silica gel TLC plate chromatography 
with Chloroform/methanol/Water ammonia (88:48:10:1) solvent. TLC plate stained with iodine vapour. 
(a) Synthesised lipid, (b) undecaprenyl phosphate, (c) undecaprenyl pyrophosphate, (d) the origin and 
(e) denotes the solvent front. 1-9 refers to pywac compounds 1-9. C refers to lipid control. 
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Results from Figure 6.20 indicate the presence of lipids in all synthesised samples 

(Figure 6.20 (a)). The variation in the migration of these lipids was caused be the 

uneven absorption of the TLC running buffer to the silica plate, preferentially migrating 

at an accelerated rate in the centre of the plate. The ability of the B. subtilis membranes 

to synthesise lipids was observed to be successful in the presence of all pywac 

compounds although this result alone does not identify the type of lipid produced. The 

absence of any form of inhibition would lead to the formation of Lipid II. Inhibition 

solely of MurG by the pywac compounds would lead to the creation of Lipid I, which 

would migrate to a similar extent as Lipid II on silica TLC. The results suggested that 

the nine pywac compounds do not elicit activity towards MraY, as hindrance would 

culminate in the absence of synthesised lipid and the presence of UDP-MurNAc-

pentapeptide.  

 

 

6.8.2.1 Purification of synthesised lipids co-incubated with pywac 

compounds 
 

The extracted unpurified aliquots identified the synthesis of lipids when B. subtilis was 

co-incubated with pywac compounds. The remaining desiccated synthesised lipids 

samples were purified by anion exchange chromatography on DEAE Sephacel as 

described in Section 2.8.4.1. Previous investigations from other members of the 

laboratory (Julie Tod, personal communication) have indicated that Lipid II DAP 

remained bound to the column at high ammonium bicarbonate (AB) concentrations (0.2 

M) and required a second 1 M wash to elute. Based upon this knowledge once all 

synthesised lipid samples were purified isocratically by AB concentrations ranging 

from 50 mM to 1 M, small aliquots were taken of the three most concentrated elutions 

of AB (500 mM, 1 M and 1 M repeat) for each pywac incubated sample. The three 

aliquots were resuspended in chloroform/methanol/water (2:3:1) (solvent A) and 

loaded onto Silica TLC plates. Figure 6.21 displays the TLC of purified lipids incubated 

with pywac compounds 1-3 as well as the compound absent control. Figure 6.22 

displays the TLC of purified lipids incubated with pywac compounds 4-9. 
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Figure 6.21: Thin-layer chromatography of purified lipid fractions co-incubated with 50 µM 
pywac compounds 1, 2 3 and no compound control. Lipid synthesis utilizing B. subtilis membranes 
extracted from cells in minimal media co-incubated with compounds pywac 1 (1a-c), pywac 2 (2a-c) 
pywac 3 (3a-c) or without compound control (C1-3). Lipids eluted from DEAE sephacel fast flow resin 
column by isocratic additions of ammonium bicarbonate 50 mM to 1 M. Silica gel TLC plate 
chromatography with Chloroform/methanol/Water ammonia (88:48:10:1) solvent. TLC plate stained 
with iodine vapour. (a) Lipid II, (b) the origin and (c) denotes the solvent front. Lipids eluted during the 
second 1M AB wash highlighted by black squares. 
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Figure 6.22: Thin-layer chromatography of purified lipid fractions co-incubated with 50 µM 
pywac compounds 4, 5, 6, 7, 8 and 9. Lipid synthesis utilizing B. subtilis membranes extracted from 
cells in minimal media co-incubated with compounds pywac 4 (4a-c), pywac 5 (5a-c), pywac 6 (6a-c), 
pywac 7 (7a-c), pywac 8 (8a-c) and pywac 9 (9a-c). Lipids eluted from DEAE sephacel fast flow resin 
column by isocratic additions of ammonium bicarbonate 50 mM to 1 M. Silica gel TLC plate 
chromatography with Chloroform/methanol/Water ammonia (88:48:10:1) solvent. TLC plate stained 
with iodine vapour. (a) Lipid II, (b) the origin and (c) denotes the solvent front. Lipids eluted during the 
second 1M AB wash highlighted by black squares. 
 

TLC of the purified pywac lipid samples (Figure 6.21 (a), Figure 6.22 (a)), identified 

the presence of purified lipids within the repeat 1 M ammonium bicarbonate elution. 

None of the purified lipids or any excess reagents or impurities were observed within 

the 500 mM and the first 1 M elution. Each of the synthesised lipids migrated to a 

comparable degree as the control (Figure 6.21: control (a)) with only minor variation 

most notably pywac sample 7. The solvents present in purified lipid samples were 

removed by desiccation and samples were submitted for negative ion mass 

spectrometry analysis.  
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6.8.2.2 Identification of lipids co-incubated with pywac compounds 
 

Lipids were synthesised by the displacement of UMP from UDP-MurNAc-

pentapeptide (DAP) by undecaprenyl phosphate to form Lipid I, which was 

subsequently glucosaminylated with UDP-GlcNAc to form Lipid II. These reactions 

were catalysed by MraY and MurG respectively. The expected m/z ratios for negative 

ion singly, doubly and triply charged species of Lipid I (DAP) and Lipid II (DAP) are 

recorded in table 6.6.  

 

 

Lipid species Expected m/z 
(m-1)/1 (m-2)/2 (m-3)-3 

Lipid I DAP (MurNAc) 1714.97 856.98 570.99 

Lipid II DAP (MurNAc) 1918.04 958.51 638.67 

Table 6.6 The mass/charge ratio for N-acetylated Lipid I DAP and N-acetylated Lipid II DAP. 
Singly (m-1)/1, doubly (m-2)/2 and triply (m-3)/3 charged species stated. 
 

Each of the small scale synthesis were successful in producing lipids in the presence of 

all pywac compounds as observed by the TLC results (Figure 6.21 and Figure 6.22). 

To distinguish between the two possible variants, Lipid I and Lipid II each sample was 

subjected to mass spectrometric analysis beginning with the compound absent control 

in Figure A3.27.  

 

The mass spectral analysis (Figure A3.27) of the control Lipid II synthesis sample 

detected the singly ([M-H]- observed m/z 1918.03 expected m/z 1918.04) and doubly 

([M-2H]2- observed m/z 958.51 expected m/z 958.51) charged species of Lipid II DAP, 

confirming the accuracy of the protocol utilised (Section 2.8.4). The purified pywac 

incubated lipid samples were subsequently analysed by mass spectrometry from Figure 

A3.28 to Figure A3.36. 

 

The synthesis of Lipid II (DAP) by B. subtilis membranes despite the presence of  each 

pywac compound was confirmed by negative ion mass spectrometry (Figure A3.28 to 

Figure A3.36). The doubly (expected m/z 958.51) and triply (expected m/z 638.67) 

charged m/z ratios for each species agreed with the expected values for with Lipid II 
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(DAP). The mass spectral analysis confirmed that the activity of pywac compounds 1-

9 was likely not targeted towards either MraY or MurG, with potentially one exception. 

Analysis of pywac 7 lipid synthesis (Figure A3.34) determined that the relative 

abundance of the lipid was dramatically reduced compared to the other samples. 

Relating the intensity of the doubly charged [M-2H]2- ion of Lipid II DAP to that of the 

constant presence of the unknown solvent contaminant (255.2346 m/z). The signal for 

the pywac 7 sample was negligible relative to that of other lipid samples.  

 

Lipid II was not the sole cellular structure observed in all samples. The presence of 

other peptidoglycan precursors in pywac 2 and 3 samples during mass spectrometry 

analysis was shown in Figure A3.37 and Figure A3.38 respectively. 

 

Two of the analysed samples incubated with pywac 2 (Figure A3.37) and pywac 3 

(Figure A3.38) were also determined to contain singly ([M-H]- expected m/z 606.07) 

and doubly ([M-2H]2- expected m/z 302.53) charged species of UDP-GlcNAc. Both 

samples were analysed (Figure A3.29 and Figure A3.30) and as previously mentioned 

a significant abundance of both dimeric and trimeric species characterising Lipid II 

(DAP) were detected. Detection of UDP-GlcNAc in these samples is likely attributed 

to errors during purification and collection of separated phases, as Lipid I was not 

detected by mass spectrometry in either sample which would be observed during MurG 

inhibition.  

 

Quantification of the purified lipid samples was undertaken to assess the comparative 

concentration of Lipid II once incubated with pywac compounds. The method used is 

described in Section 2.8.4.3. The concentration of each synthesised lipid II is stated in 

table 6.7 
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Lipid sample Lipid concentration 

Control 120 µM 

Pywac 1 110µM 

Pywac 2 128 µM 

Pywac 3 139 µM 

Pywac 4 111 µM 

Pywac 5 121 µM 

Pywac 6 105 µM 

Pywac 7 27 µM 

Pywac 8 116 µM 

Pywac 9 123 µM 

Table 6.7 Concentrations of synthesised Lipid II co-incubated with 50 µM of pywac compounds 1-
9. Small scale lipid synthesis of 200 µL final volume. Lipids were purified on a DEAE Sepharose Fast 
Flow resin column with isocratic increases in ammonium bicarbonate from 50 mM to 1 M. Quantification 
of lipids by measurement of phosphate release assay at A360nm. Control sample is synthesised in the 
absence of pywac compounds. 
 

The concentrations quantified in table 6.7 clearly demonstrate that in the presence of 

pywac 7 B. subtilis membranes produced 22% of the concentration of Lipid II DAP 

relative to that accumulated in the compound absent control. This disparity explains the 

noted variation in mass spectra analysis utilising equal final volumes from the final 

DEAE sepharose column elution. This data may indicate that pywac 7 is targeted 

towards hindrance of lipid synthesis, although further investigations are required to 

confirm findings.  

 

In all other pywac incubations, Lipid II DAP was synthesised to quantities that were 

within 10% of the control leading to the conclusion that pywac compounds 1-6 and 8-

9 did not impact Lipid II DAP synthesis significantly. 
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The concentrations measured for pywac compounds 2 and 3 were likely artificially 

inflated slightly due to the presence of UDP-GlcNAc contaminants which can also 

release phosphate groups, increasing the determined Lipid II concentration. 

 

 

6.9 Intermediate accumulation of S. aureus  
 

Preceding the initial investigation into the mode of action of the pywac compounds 

with respect to B. subtilis, the decision was taken to expand the investigation into 

another organism. As the peptidoglycan pentapeptide stem of B. subtilis contains the 

residue DAP at position three, the Gram-positive organism S. aureus was selected due 

to the incorporation of L-Lysine at position three. 

 

The intension was to repeat the accumulation protocol with a Gram-positive organism 

in order to evaluate potential differences in peptidoglycan biosynthesis with cells that 

incorporate L-lysine into position 3 of the peptidoglycan peptide stem, which may aid 

in determining the role of each pywac compound. 

 

Unfortunately due to health issues and time constraints a complete investigation could 

not be completed. The experiment data reported in this section are therefore intended 

as a marker for subsequent exploration. The MIC values for S. aureus were not 

established and experiments within this section utilised previously observed MIC 

values for B. subtilis (Table 6.1). Therefore these results cannot be accurately compared 

to equivalent B. subtilis experiments. Due to the high MIC values of pywac compounds 

3, 4, 5 and 7 and the limited availability of these compounds, they were omitted from 

further investigation.  

 

S. aureus was evaluated to determine its response to pywac compounds 1, 2, 6, 8, 9 as 

well as a 2x MIC vancomycin positive control.  
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6.9.1 DMSO tolerance of S. aureus 
 

In a similar manner to B. subtilis (Figure 6.2) the tolerance of S. aureus cells towards 

DMSO was assessed. Increasing percentages of DMSO were added to diluted 

exponentially grown cells to evaluate the effect the presence of DMSO has on normal 

observed growth. The results are depicted in Figure 6.23.  

 

 

 
Figure 6.23 DMSO tolerance of S. aureus. Cells were grown in the presence of increasing 
concentrations of DMSO to determine the tolerance of staphylococcus proliferation for the solvent, in 
96 well microtiter plates in triplicate at 37°C with intermittent shaking. Absorbance was measured at 
OD600nm at 3 hour intervals for 24 hours. Each well contained 100 µL minimal media. S. aureus cells 
were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to incubation. Error bars 
represent standard deviation of triplicate measurements. DMSO concentration: 0% (v/v) Blue, 1% (v/v) 
Pink, 2% (v/v) Green, 3% (v/v) Orange, 4% (v/v) Purple, 5% (v/v) Red. Result: DMSO percentages 
between 1-3% (v/v) slightly impacted phenotypic growth equally, with 4-5% (v/v) reducing growth by a 
greater degree. 
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[DMSO] 
(%) 

S. aureus 
Apparent 

Lag 
Phase 

Duration 
(h) 

Td 
(h-1) 

AUC (% of 
0%  DMSO) 

Stationary 
Phase OD600 

nm attained 

p-values 

0 3 1.72 - 1.04 - 

1 3 1.89 93.16 1.00 <0.05 

2 3 1.91 92..53 1.03 <0.05 

3 3 1.99 90.65 1.06 <0.05 

4 3 2.07 81.49 0.927 <0.01 

5 3 2.29 75.78 0.909 <0.01 
Table 6.8 Statistical comparisons of S. aureus growth curves in the presence of increasing 
concentrations of DMSO. S. aureus incubated for 24 hours at 37°C with selected concentrations of 
DMSO (v/v) produced growth curves measured at OD600nm in Figure 4.1. Variations between growth 
curves were measured by time taken to exit apparent lag phase (hours), the doubling time (Td) of cells 
during exponential phase (hours-1), the area under the curve (AUC) percentage compared to the 0 % 
control (%), the OD600nm value achieved during stationary phase and whether the growth curve variations 
were statistically significant compared to each 0 % control with p-values <0.05 deemed significant.  
 

Results show that staphylococcal cells were less tolerant to concentrations of DMSO 

than B. subtilis (Figure 6.2). In the absence of DMSO (Figure 6.23: Blue) S. aureus 

exited apparent lag phase after 3 hours, multiplied with a  Td of 1.72 hours during 

exponential phase and entered stationary phase after 15 hours at an OD600nm of 1.0. The 

addition of DMSO regardless of concentration did not impede the exit from apparent 

lag phase which remained at 3 hours. The doubling time increased slightly with each 

increase in total percentage of DMSO present. The Td results were: 1% (v/v) 1.89 hours 

(Figure 6.23: Pink), 2% (v/v) 1.91 hours (Figure 6.23: Green), 3% (v/v) 1.99 hours 

(Figure 6.23: Orange), 4% (v/v) 2.07 hours (Figure 6.23: Purple), 5% (v/v) 2.29 hours 

(Figure 6.23: Red). Similarly, to the doubling time, the increased addition DMSO 

caused a gradual decrease in AUC: 1% (v/v) 93.16%, 2% (v/v) 92.53%, 3% (v/v) 

90.65%, 4% (v/v) 81.49%, 5% (v/v) 75.78%. The statistical significance of each 

concentration was <0.05 (1%, 2% and 3% (v/v)) and <0.01 (4% and 5% (v/v)) 

respectively. 

 

Based upon these results the decision was taken to continue utilising 2% (v/v) DMSO 

to solubilise the pywac compounds. Controls incubated in the absence of these 
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compounds contained the equivalent percentage of DMSO to account for the impact of 

DMSO alone. 

 

 

6.9.2 Analysis of S. aureus peptidoglycan intermediate standards 
 

The examination of S. aureus permitted a comparison between the implementation of 

the third residue of the UDP-MurNAc peptide stem. The MurE ligase of most Gram 

positive organisms adds a L-lysine to the third position whereas B. subtilis MurE 

utilises DAP. The incorporation of L-lysine required the evaluation of new UDP-

MurNAc-tri and pentapeptide (Lys) standards. Previously evaluated peptidoglycan 

intermediate standards (Figure 6.6) minus the UDP-MurNAc-tripeptide (DAP) and 

UDP-MurNAc-pentapeptide (DAP) were still applicable to this investigation. The 

structures of both UDP-MurNAc-tripeptide (Lys) and UDP-MurNAc-pentapeptide 

(Lys) were presented in Figure 6.24. 

 

 

 
Figure 6.24: The structures of cytosolic peptidoglycan intermediates of S. aureus. (a) UDP-
MurNAc-tripeptide Lys (L-Ala-D-Glu-L-Lys) (b) UDP-MurNAc-pentapeptide Lys (L-Ala-D-Glu-L-
Lys-D-Ala-D-Ala). The above schematic was created using ChemBioDraw. 
 

UDP-MurNAc-tripeptide (Lys) and UDP-MurNAc-pentapeptide (Lys) standards at a 

final concentration of 1 mM were synthesised as outlined in Section 2.8.1 and were 

characterised by ion exchange chromatography to establish the estimated conductivity 
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required for the elution of each species. The chromatogram for each standard is shown 

in Figure 6.25.   

 

 

 
Figure 6.25: Anion exchange chromatography of S. aureus peptidoglycan intermediate standards. 
Noted peak (a) UDP-MurNAc-tripeptide (L-Ala-D-Glu-L-Lys) (conductivity 25.21 mS.cm-1), (b) UDP-
MurNAc-pentapeptide (L-Ala-D-Glu-L-Lys-D-Ala-D-Ala) (conductivity 26.31 mS.cm-1). Samples were 
analysed using a MonoQ 5/50 GL resin. Red trace is absorbance at 254 nm, blue trace: absorbance at 
280 nm and black trace; conductivity. 
 

Both the tripeptide and pentapeptide standards eluted similarly from the monoQ column 

(Figure 6.25) with conductivities of 25.21 mS.cm-1 (Figure 6.25 (a)) and 26.31 mS.cm-

1 (Figure 6.25 (b)) respectively. Both standards produced only a single significant peak 

which was analysed by mass spectrometry in Figure A3.39 (tripeptide) and Figure 

A3.40 (pentapeptide) in Appendix 3. The known m/z ratios for each S. aureus 

peptidoglycan intermediate are stated in table 6.9. 

 

 

UDP Species (m-1)/1 (m-2)/2 (m-3)-3 
UDP-GlcNAc 606.07 302.53 201.35 

UDP-GlcNAc-enolpyruvyl 676.07 337.53 224.68 

UDP-MurNAc 678.09 338.54 225.35 

UDP-MurNAc-L-Ala 749.13 374.06 249.03 

UDP-MurNAc-L-Ala-D-Glu 878.17 438.58 292.05 

UDP-MurNAc-L-Ala-D-Glu-L-Lys 1006.26 502.63 334.75 

UDP-MurNAc-L-Ala-D-Glu-L-

Lys-D-Ala-D-Ala 

1148.34 573.66 382.10 

Table 6.9 The mass/charge ratio for the peptidoglycan cytosolic gram-positive lysine intermediates. 
Singly (m-1)/1, doubly (m-2)/2 and triply (m-3)/3 charged species of the various peptidoglycan 
intermediates. 
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The mass spectral analysis (Figure A3.39) of the UDP-MurNAc-tripeptide (Lys) 

standard elution (Figure 6.25 (a)) identified the singly ([M-H]- observed m/z 1006.27, 

expected m/z 1006.269), doubly ([M-2H]2- observed m/z 502.63, expected m/z 

502.630) and triply ([M-3H]3- observed m/z 334.75, expected m/z 334.751) charged 

species matching the known values attributed to the intermediate. 

 

The mass spectral analysis (Figure A3.40) of the UDP-MurNAc-pentapeptide (Lys) 

standard elution (Figure 6.25 (b)) identified the singly ([M-H]- observed m/z 1148.34, 

expected m/z 1148.343), doubly ([M-2H]2- observed m/z 573.67, expected m/z 

573.667) and triply ([M-3H]3- observed m/z 382.11, expected m/z 382.109) charged 

species matching the known values attributed to the intermediate. 

 

 

6.9.3 Normal cellular distribution of S. aureus peptidoglycan 

intermediates  
 

Utilising the protocol outlined in Section 2.9 S. aureus cells in the absence of inhibitors 

were grown to late exponential phase and whilst other S. aureus cells were then 

incubated with pywac compounds or vancomycin, the control sample continued 

incubation for the remaining three hours with the addition of equivalent DMSO 

percentage to that added with the pywac compound samples. Cellular extracts for 

chromatographic purification were prepared according to Section 2.9.2 and Section 

2.9.3 and were fractionated by size exclusion chromatography followed by ion 

exchange chromatography. These results are shown in Figure 6.26.  
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Figure 6.26: Size exclusion and ion exchange chromatography of S. aureus TCA extracted control 
cells. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. Noted peak at (i) 83.55 
mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. Noted peaks (i) 
(conductivity 15.49 mS.cm-1), (ii) (conductivity 18.63 mS.cm-1), (iii) (conductivity 22.49 mS.cm-1), (iv) 
(conductivity 28.33 mS.cm-1), (v) (conductivity 33.38 mS.cm-1), (vi) (conductivity 39.03 mS.cm-1), (vii) 
(conductivity 46.05 mS.cm-1), (viii) (conductivity 49.74 mS.cm-1), (ix) (conductivity 57.84 mS.cm-1) and 
(x) (conductivity 70.31 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance at 280nm 
and black trace; conductivity. 
 

The size exclusion chromatogram of the S. aureus control (Figure 6.26 (a)) separated 

lysed cell contents in a similar manner to B. subtilis samples. Initial conductivity 

increase correlated with a measurable A254nm/A280nm increase in absorbance which 

eluted from the column after 83.55 mL. The significant fraction (i) was isolated and 

freeze-dried. The S. aureus control sample was resuspended in monoQ buffer A 

(Section 2.7.3.3), a A260nm reading was taken from each sample and was diluted to a 

standard absorbance of 0.03 before purification on an equilibrated monoQ 5/50 column. 

The elution profile of S. aureus cells shows similarity to the equivalent result in B. 

subtilis cells (Figure 6.7), with a significant initial peak and a subsequent gradual 

decrease in peak intensities. The initial peak reached 270 mAu at an absorbance of 254 

nm. Ten noted peaks (Figure 6.26 (b): (i) - (x)) were eluted from the monoQ column of 

the initial S. aureus gel filtration peak. These elutions were isolated and analysed by 

negative ion mass spectrometry to identify peptidoglycan intermediates in the standard 

elution profile as shown from Figure A3.41 to Figure A3.50. 

 

The first five eluted peaks from ion exchange chromatography (Figure 6.26 (b)) all 

contained peptidoglycan intermediates as detected by mass spectrometry (Figure A3.41 

to Figure A3.45). The first eluted peak (Figure 6.26 (b): (i)) with a conductivity of 15.49 

mS.cm-1 contained the UDP-GlcNAc, the first precursor of the peptidoglycan pathway 

([M-H]- (observed m/z 606.0739, expected m/z 606.0738). The second eluted peak 

(Figure 6.26 (b): (ii)) with a conductivity of 18.63 mS.cm-1 also contained UDP-

GlcNAc ([M-H]- (observed m/z 606.0738, expected m/z 606.0738). The conductivity 
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of the first two eluted peaks were either side of the conductivity obtained by the UDP-

GlcNAc standard (Figure 6.6 (i): conductivity 16.41 mS.cm-1) although this might 

reflect the variation in the gradient of ammonium acetate between the two runs. The 

remaining three eluted peaks analysed in (Figure A3.43 to Figure A3.45) were 

evaluated to all contain UDP-MurNAc-pentapeptide (Lys). The standard for this 

intermediate eluted at a conductivity of 26.31 mS.cm-1 (Figure 6.25 (b)). The elution 

conductivity of these S. aureus control peaks was 22.49 mS.cm-1 (Figure 6.26 (b): (iii)), 

28.33 mS.cm-1 (Figure 6.26 (b): (iv)) and 33.38 mS.cm-1 (Figure 6.26 (b): (v)). As with 

the UDP-GlcNAc standard, two of these peaks fell either side of the elution value 

produced by the pentapeptide (Lys) standard. Mass spectra analysis identified the 

doubly charged UDP-MurNAc-pentapeptide (Lys) species within the three peaks, 

(Figure A3.43) (iii) ([M-2H]2- (observed m/z 573.6703, expected m/z 573.6679), 

(Figure A3.44) (iv) ([M-2H]2- (observed m/z 1148.3480, expected m/z 1148.3437) and 

(Figure A3.45) (v) ([M-2H]2- (observed m/z 1148.3492, expected m/z 1148.3437) 

respectively.  

 

From the isolated S. aureus control peaks (vi) (conductivity 39.03 mS.cm-1) to (x) 

(conductivity 70.31 mS.cm-1) the mass spectra analysis (Figure A3.46 to Figure A3.50) 

produced no further evidence of peptidoglycan intermediates, therefore all eluted peaks 

with conductivity greater than 39.03 mS.cm-1 were eliminated from further 

consideration.  

 

The absence of either UDP-MurNAc-monopeptide, -dipeptide or -tripeptide was not 

unexpected as similar findings were found with B. subtilis (Figure 6.8). This might 

suggest these intermediates were being consumed as fast as they were formed in the 

pathway under normal conditions. 

 

 

6.9.4 Intermediate accumulation of S. aureus vancomycin control 
 

Cell wall active pywac compounds were previously incubated with B. subtilis cells at 

twice the MIC (µM) of the positive control vancomycin (Figure 6.10). The stated 

vancomycin MIC for S. aureus strains is between 0.5-2 µg.mL-1 (Prakash, et al. 2008). 
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To assess the MIC of the S. aureus strain used here, the impact of growth of vancomycin 

concentrations between 0.5-2 µg.mL-1 was assessed (Figure 6.27).  

 

 

 
Figure 6.27 MIC of vancomycin against S. aureus. Cells were grown in the presence of the 
vancomycin 0.5 µg.mL-1 (Pink), 1 µg.mL-1 (Green) and 2 µg.mL-1 (Orange) in 2% (v/v) DMSO in 96 
well microtiter plates in triplicate at 37°C with intermittent shaking. Absorbance was measured at 
OD600nm at 3 hour intervals for 24 hours. Each well contained 100 µL minimal media. S. aureus cells 
were standardized to an OD600nm of 1 and diluted further by a factor of 104 prior to incubation. Error bars 
represent standard deviation of triplicate measurements. Control: (Blue) S. aureus cells grown in absence 
of vancomycin plus 2% (v/v) DMSO. Result: The proposed MIC values for vancomycin against S. aureus 
was correct.  
 

Each of the vancomycin concentrations investigated (Figure 6.27) were sufficient to 

completely inhibit observable growth. Therefore 1 µg.mL-1 was selected as ³ 2x MIC 

against S. aureus cells. Following incubation and extraction by TCA/Di-ethyl ether the 

2x MIC positive control sample was processed by size exclusion chromatography and 

ion exchange chromatography. The chromatograms for each purification step are 

presented in Figure 6.28. 
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Figure 6.28: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 2x MIC vancomycin. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 
resin. Noted peak at (i) 81.47 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL 
resin. Noted peak (i) (conductivity 18.97 mS.cm-1). Red trace is absorbance at 254nm, blue trace: 
absorbance at 280nm and black trace; conductivity. 
 

The positive control gel filtration (Figure 6.28 (a)) lead to separation of two distinctive 

elution peaks. The first was the standard elution after 81.47 mL measured to coincide 

with the increase in conductivity and the second larger and broader peak eluting after 

175 mL. As with the standard protocol the first peak was further purified by a monoQ 

column (Figure 6.28 (b)) which led to a very different elution profile than observed in 

the control sample (Figure 6.26 (b)). Instead for the distribution of a number of 

individual elution peaks the 2x MIC positive control displayed a single prominent peak 

with conductivity 18.97 mS.cm-1 with the surrounding peaks severely diminished. The 

proposed intermediate contained within the elution should be UDP-MurNAc-

pentapeptide (Lys) although the elution conductivity does not accurately match the 

equivalent for the standard (Figure 6.25 26.31 mS.cm-1) but is closer to one of the 

control peaks containing the pentapeptide with a conductivity of 22.49 mS.cm-1 (Figure 

6.26 (b): (iii)). This variation potentially shows the difference from cellular and in vitro 

synthesis of peptidoglycan intermediates but more likely may result from the fact the 

ammonium acetates gradients differ in conductivity.min-1. The monoQ purified peak 

was analysed by mass spectrometry and the data is displayed in Figure A3.51.  

 

Mass spectra analysis (Figure A3.51) identified the 2x vancomycin MIC positive 

control peak as containing UDP-MurNAc-pentapeptide (Lys). The singly ([M-H]- 

observed m/z 1148.34, expected m/z 1148.343) and doubly ([M-2H]2- observed m/z 

573.67, expected m/z 573.667) charged species were detected. These data indicated that 
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the expected accumulation of UDP-MurNAc-pentapeptide (Lys), resulting from 

vancomycin-challenge could be easily detected in S. aureus.  

 

 

6.9.5 Intermediate accumulation of S. aureus against pywac 

compounds 
 

Once again as outlined during the investigation with B. subtilis (Section 6.6.2), pywac 

compounds were incubated with a sufficient culture volume to produce a final harvested 

wet pellet cell weight of 1 g to aid the investigation. Each of the S. aureus cultures 

incubated with the remaining pywac compounds were processed and peaks of interest 

further investigated. 

 

 

6.9.5.1 Intermediate accumulation of S. aureus against pywac 1 
 

 
Figure 6.29: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 4 µM pywac 1. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. 
Noted peak at (i) 84.99 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 25.46 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance 
at 280nm and black trace; conductivity. 
 

Incubation of the gram-positive S. aureus cells with pywac 1 led to a size exclusion 

elution profile (Figure 6.29 (a)) similar in distribution to the control sample but with a 

significant increase in the 254 nm absorbance measured from the initial elution (Figure 

6.29 (a): (i)). The peak plateaued around 240 mAu and eluted after 84.99 mL, compared 

to the equivalent control peak of 60 mAu after 85.55 mL (Figure 6.26 (a): (i)). The 

further purification by ion exchange chromatography (Figure 6.29 (b)) of this peak led 
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to an elution profile similar in nature to the 2x MIC vancomycin control (Figure 6.28 

(b)) with a single prominent elution of over 2.5 times greater than the next greatest 

peak, eluting with a conductivity of 25.46 mS.cm-1. Comparing this value to the 

standard elution peaks of the control situates the pywac 1 accumulated peak between 

two control peaks which both contained UDP-MurNAc-pentapeptide (Lys) (Figure 

6.26 (b)) with conductivities of 22.49 mS.cm-1 (Figure 6.26 (b): (iii)) and 28.33 mS.cm-

1 (Figure 6.26 (b): (iv)). The peak of interest was analysed by mass spectrometry in 

Figure A3.52. 

 

Mass spectral analysis of the pywac 1 accumulated peak (Figure A3.52) did not identify 

the presence of any peptidoglycan cell wall intermediates, although an abundant signal 

was measured at 474.1960 m/z relating to an unknown compound.  

 

 

6.9.5.2 Intermediate accumulation of S. aureus against pywac 2 
 

 
Figure 6.30: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 2 µM pywac 2. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. 
Noted peak at (i) 95.93 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 20.99 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance 
at 280nm and black trace; conductivity. 
 

The size exclusion chromatography (Figure 6.30 (a)) of S. aureus cells incubated with 

pywac 2 produced a similar elution profile to incubation with pywac 1 (Figure 6.29 (a)) 

displaying a single prominent initial peak after 95.93 mL with a 254 nm absorbance of 

580 mAu. Further purification of this elution led to an ion exchange chromatogram 

(Figure 6.30 (b)) which contained a solitary eluted peak with a 254 nm absorbance of 

over 1200 mAu. There was no observed distribution of peaks surrounding the 

prominent elution. The conductivity of this peak was 20.99 mS.cm-1, which when 
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compared to the control profile (Figure 6.26 (b) fells between the second (18.63 mS.cm-

1) and third (22.49 mS.cm-1) eluted peaks containing UDP-GlcNAc and UDP-MurNAc-

pentapeptide (Lys) respectively. The peak was analysed by mass spectrometry in Figure 

A3.53. 

 

Mass spectral analysis of the eluted sample (Figure A3.53) identified the singly ([M-

H]- observed m/z 1006.27, expected m/z 1006.26), doubly ([M-2H]2- observed m/z 

505.63, expected m/z 502.63) and triply ([M-3H]3- observed m/z 334.75, expected m/z 

334.75) charged species of UDP-MurNAc tripeptide (Lys), the substrate for amino acid 

ligase MurF. The tripeptide was not identified in the S. aureus control ion exchange 

chromatogram (Figure 6.26 (b)) and the tripeptide (Lys) standard (Figure 6.25 (a)) 

eluted with a greater conductivity of 25.21 mS.cm-1.  

 

The presence of the tripeptide moiety means that intermediate accumulation must have 

occurred and was solely due to the presence of the compound. As the tripeptide is 

accumulated it means that the compound inhibited one of three enzymes. MurF, the 

final Mur ligase in the addition of the pentapeptide stem to the UDP-MurNAc moiety 

which adheres the terminal D-alanyl-D-alanine. D-alanine racemase (Alr) which 

converts L-alanine to D-alanine or D-alanine-D-alanine ligase (DdlB), the enzyme that 

catalyses D-alanyl-D-alanine from two D-alanine residues. 
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6.9.5.3 Intermediate accumulation of S. aureus against pywac 6 
 

 
Figure 6.31: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 8 µM pywac 6. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. 
Noted peak at (i) 86.50 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 62.04 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance 
at 280nm and black trace; conductivity. 
 

The size exclusion chromatogram (Figure 6.31 (a)) of the pywac 6 sample displayed an 

initial elution peak after 86.50 mL. The sharp second peak is an artefact of pausing the 

AKTA during the run. Further purification of this initial peak lead to an ion exchange 

chromatogram (Figure 6.31 (b)) similar in distribution to the control sample (Figure 

6.26 (b)) with one exception. Once the monoQ was exposed to 100% monoQ buffer B 

(1 M ammonium acetate) and the conductivity plateaued at 62.04 mS.cm-1, a significant 

eluted peak was observed. This peak had a greater conductivity value than any of the 

peptidoglycan cell wall intermediates or the ATP standard control (Figure 6.16). The 

peak was analysed by mass spectrometry to determine the presence of peptidoglycan 

precursors in Figure A3.54. 

 

Mass spectral analysis in Figure A3.54, exploring the species contained within the 

noted peak of interest (Figure 6.31 (b)) determined as expected that the intensity of the 

elution was not attributed to the presence of any investigated cell wall intermediate. 

Based upon the m/z range investigated no known cellular metabolites were identified. 
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6.9.5.4 Intermediate accumulation of S. aureus against pywac 8 
 

 
Figure 6.32: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 8 µM pywac 8. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. 
Noted peak at (i) 82.48 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 16.02 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance 
at 280nm and black trace; conductivity. 
 

The addition of pywac 8 to S. aureus cells lead to an overall similar size exclusion 

profile (Figure 6.32 (a)) to the control (Figure 6.26 (a)) with a smaller than average 

initial elution. Further purification of this isolated peak by ion exchange 

chromatography (Figure 6.32 (b)) demonstrated the same elution profile against pywac 

compound 8 exposed to B. subtilis cells (Figure 6.14). The similarity stems from the 

initial elution peak appearing more pronounced and acute that the equivalent displayed 

by the control peak, with fewer surrounding elution peaks. The peak eluted with a 

conductivity of 16.02 mS.cm-1, which falls between the conductivity of two control 

elutions, 15.49 mS.cm-1 and 18.63 mS.cm-1 respectively, containing UDP-GlcNAc. The 

intensity of the peak was not significantly different from other observed elutions in the 

profile so significant accumulation does not appear to be the cause of the distribution 

seen in the profile. The peak was analysed by mass spectrometry in Figure A3.55. 

 

Mass spectral analysis (Figure A3.55) of the isolated peak determined the presence of 

UDP-GlcNAc ([M-H]- observed m/z 606.08, expected m/z 606.07). This result 

mirrored the equivalent result obtained in B. subtilis cell against 2x MIC of pywac 2 

(Figure 6.14). 
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6.9.5.5 Intermediate accumulation of S. aureus against pywac 9 
 

 
Figure 6.33: Size exclusion and ion exchange chromatography of S. aureus TCA extracts of cells 
incubated with 4 µM pywac 9. (a) Size exclusion chromatogram of isolated peaks by Bio-gel P2 resin. 
Noted peak at (i) 84.39 mL. (b) ion exchange chromatogram of isolated peaks by MonoQ 5/50 GL resin. 
Noted peak (i) (conductivity 64.74 mS.cm-1). Red trace is absorbance at 254nm, blue trace: absorbance 
at 280nm and black trace; conductivity. 
 

The final compound investigated was pywac 9, which produced a similar ion exchange 

chromatogram (Figure 6.33 (b)) to another purification elution profile observed in cells 

incubated with pywac 6 (Figure 6.31 (b)). The standard distribution of elution peak 

followed the control chromatogram closely but once monoQ buffer B percentage was 

increased to 100% and the conductivity plateaued at 64.74 mS.cm-1 a noted eluted peak 

(Figure 6.33 (b): (i)) was measured. This level of conductivity is not attributed to any 

of the investigated peptidoglycan intermediates or any or the non-intermediate 

standards. The pywac 9 chromatogram mirrored the chromatogram observed for pywac 

6 cellular extracts. The pywac 9 peak (i) was analysed by mass spectrometry in Figure 

A3.56. 

 

Mass spectra analysis of pywac 9 incubated cells (Figure A3.56) could not locate 

charged species relating to any of the peptidoglycan intermediates, leaving the elution 

as currently unidentified.    
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6.10 Discussion 
 

Cell wall active compounds with unknown mode of action were identified by the 

upregulation of the ywac gene based on a reduction in the measured synthesis of wall 

teichoic acids (D’Elia, et al. 2009). These nine pywac compounds were acquired to 

ascertain whether the peptidoglycan biosynthesis pathway contained the proposed 

targets. Previously stated MIC of these compounds (Czarny, et al. 2014) was 

successfully confirmed (Figure 6.3) and DMSO tolerance of the B. subtilis control was 

established because of the requirement of these compounds for DMSO as the vehicle 

(Figure 6.2).  

 

 

6.10.1 B. subtilis cytosolic phase intermediate accumulation 

assessment  
 

The initial probing of the B. subtilis cytosolic phase of peptidoglycan synthesis utilised 

the assessment of peptidoglycan intermediate accumulation in the presence of 2x MIC 

of pywac compounds compared to a control. Pywac compounds 4 and 9 produced 

similar anion exchange elution profiles to the control. Pywac compounds 1, 3, 5, 6 and 

7 generated single isolated peaks not found within the control, although mass 

spectrometric analysis could not identify peptidoglycan intermediates within these 

elutions. Expanding the possible range of targets to include alternative metabolites such 

as ATP and NADH did not lead to a positive identification of these species. These six 

pywac compounds were therefore assumed to not elicit their mode of action within the 

cytosolic phase of peptidoglycan biosynthesis.  

 

Only two of the pywac compounds (2 and 8) impacted the growth of B. subtilis relative 

to that seen in the presence of DMSO alone.  Pywac 2 also caused accumulation of a 

species which registered as a slight increase in the intensity of one of the species 

detected on ion exchange fractionation of B. subtilis metabolites (Figure 6.12), which 

was identified as UDP-MurNAc-pentapeptide, the final precursor of the cytosolic phase 

of peptidoglycan biosynthesis. Accumulation of this intermediate was also observed 

during incubation with the positive control, vancomycin. Although at 2x MIC of 
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vancomycin accumulation of UDP-MurNAc-pentapeptide was so prominent that it 

dominated the ion exchange chromatogram (Figure 6.10)., This was not observed with 

pywac compound 2. Accumulation of UDP-MurNAc-pentapeptide could therefore 

have arisen through the inhibition of MraY (Alderwick, et al. 2015) (which consumes 

UDP-MurNAc-pentapeptide to generate Lipid I).  Alternatively, and in a similar 

manner to vancomycin, pywac compound 2 might have bound directly to the terminal 

D-alanyl-D-alanine of the pentapeptide stem impeding further enzymatic interaction 

(Soetaerta, et al. 2015). Incubation with excess concentrations of pywac 8 led to the 

accumulation of the first peptidoglycan intermediate of the pathway, UDP-GlcNAc 

(Figure 6.14). This might have arisen through inhibition of the enzyme catalysing the 

first committed  step of the peptidoglycan pathway, MurA.  This enzyme is also the 

target of the antimicrobial fosfomycin, which inhibits MurA through modification of a 

cysteine within the active site of the enzyme.(Nasiri, et al. 2017). 

 

 

6.10.2 Pywac inhibition of B. subtilis lipid synthesis 
 

Based upon the utilisation of B. subtilis as the test organism, the standard protocol for 

lipid synthesis was altered to include membranes extracted from the Gram-positive 

organism. The ability to generate lipids was not impeded by this deviation, permitting 

the investigation to probe the membrane associated enzymes required for lipid synthesis 

in B. subtilis. Co-incubation of 2x MIC of each pywac compound during lipid synthesis 

still led to formation of Lipid II. Lipids once purified were each identified as solely 

Lipid II. Quantification of lipids synthesised (Figure 6.7) demonstrated that co-

incubation with each pywac compound except pywac 7 failed to modify the extent of 

Lipid II synthesis. These results likely indicate that these eight compounds did not 

inhibit either of the two enzymatic steps involving MraY and MurG in the formation of 

Lipid II.  

 

The protocol for lipid synthesis involved an incubation overnight. To better evaluate 

synthesis, the protocol was shortened to four hours. Results showed no inhibition 

amongst eight of the nine compounds during this time period, though the rate of lipid 

synthesis before it plateaus was unknown. Further work would require reducing the 
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time frame of synthesis by hourly increments to ascertain when synthesis plateau 

occurs. The investigation will definitively show that whether there was zero inhibition 

in the previous experiment or whether the control rate of synthesis was rapid but the 

four hour time frame was sufficient for inhibited samples to generate equivalent 

concentrations of lipid. 

 

Quantification of lipid synthesis co-incubated with pywac compound 7 reduced the 

concentration of Lipid II by almost 80%. The target of pywac 7 is likely one the two 

enzymes vital for lipid synthesis, MraY which catalyses the addition of undecaprenyl 

phosphate to UDP-MurNAc pentapeptide forming Lipid I or MurG which appends a 

GlcNAc subunit onto Lipid I (Bouhss, et al. 2008). Since based upon the TLC, Lipid II 

was generated but at a lesser concentration and Lipid I did not appear to be generated 

as assessed by mass spectrometry, the likely target is MraY. 

 

 

6.10.3 S. aureus cytosolic phase intermediate accumulation assessment 
 

Pywac active compounds were additionally exploited for initial probing of the 

peptidoglycan synthesis pathway of a second Gram-positive organism, S. aureus. The 

reason for the selection was to ascertain whether previously investigated cell wall active 

compounds which did not lead to observable accumulation of intermediates were 

targeted towards other cellular structures or if variations in the amino acids composition 

of the pentapeptide stem would increase accumulation and aid identification. B. subtilis 

cells implement m-DAP at position three of the stem whereas S. aureus insert L-lysine. 

The pywac compounds were identified as cell wall active in B. subtilis (Czarny, et al. 

2014), although potential targets such as UDP-MurNAc-tripeptide (L-lys) and its 

synthesis may be better substrates for the compounds.  

 

Intermediate accumulation utilising B. subtilis MIC values of S. aureus cells by pywac 

compounds 1 6 and 9 led to the accumulation of an individual peak not observed 

through the elution profile of the DMSO control.  For both pywac compounds 6 and 9, 

this species eluted at a similar conductivity value, although neither of these nor the 

species detected in the presence of pywac compound 1 contained  cell wall 
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intermediates. As previously investigated, the incubation of a Gram-positive organism 

with 2x MIC pywac compound 8 led to a variable elution profile within the initial eluted 

peaks, with mass spectrometric analysis identifying the presence of UDP-GlcNAc 

(Figure 6.32). Investigations into S. aureus with pywac compound were performed 

without the knowledge of the S. aureus MIC, therefore these results must be established 

before broad conclusions can be drawn and compared to the findings against B. subtilis 

cells.  

 

The final compound initially probed against S. aureus was pywac 2. A significant 

accumulation of UDP-MurNAc-tripeptide (L-Lys) was identified with consequent and 

dramatic suppression of the contribution to the elution profile of other species (Figure 

6.30). The accumulated elution against B. subtilis was measured to contain UDP-

MurNAc-pentapeptide (DAP) (Figure 6.12). Comparisons between the two elution 

profiles demonstrates that although the pentapeptide peak of B. subtilis is slightly more 

pronounced that the equivalent in the compound absent control, the S. aureus 

accumulation attributed to pywac 2 incubation was far more significant.   

 

Accumulation the tripeptide would indicate an inability to attach the terminal D-alanyl-

D-alanine residues, leading to the potential compound targets being either MurF, Alr 

or DdlB. The amino acid ligase MurC-F possess equivalent reaction mechanism 

attaching the specific amino acid to high-energy tetrahedral intermediates. This 

uniformity in function commonly equates to all four mur ligases being susceptible to 

the same antimicrobials, such as phosphinate inhibitors (El Zoeiby et al. 2003). 

Therefore, the target for pywac compound 2 would likely be the terminal D-alanyl-D-

alanine to the peptide stem in a similar mode of action to vancomycin. The second 

potential target, the formation of D-alanyl-D-alanine by Alr and DdlB are known to be 

the cellular targets of the antimicrobial D-cycloserine (Feng, et al. 2003). Comparisons 

between pywac compound 2 and D-cycloserine in future investigation could lead to a 

positive identification of the cellular target. 
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6.10.4 Potential isolation of incomplete gel filtration intermediate 

pools 
 

Once the intermediate accumulation protocol was concluded a number of potential 

issues arose surrounding the method used. The acquisition of the initially eluted peak 

from gel filtration of B. subtilis cell contents was isolated based upon previous 

purifications undertaken by Dr. Adrian Lloyd during purification of UDP-MurNAc-

pentapeptide, known to elute earlier than other cellular low molecular weight 

components. Purification of B. subtilis lysed cell material commonly generated a 

primary broad peak corresponding to an increase in conductivity. Secondary and 

tertiary peaks were discarded based upon initial recommendation. Peptidoglycan 

intermediate standards were purified by anion exchange to establish the possible 

conductivity range of elution, although these initial investigations were not conducted 

to establish common elution volumes for the peptidoglycan intermediate standards 

during gel filtration. Results obtained within this chapter are valid comparisons of the 

initial eluted peak and there was no evidence that the intermediate pools were being 

split from the purified totals, although this potential oversight will be rectified in further 

work. 

 

 

6.11 Further work 
 

 

• Redesign accumulation protocol 

 

Standardise initial gel filtration step by calibrating the Biogel P200 with UDP-

MurNAc-pentapeptide, tripeptide, dipeptide, monopeptide and UDP-MurNAc, to know 

that those fractions on the Biogel P200 elution will in an unbiased way contain the 

maximum available concentration of the precursor under consideration because it is 

possible that Pywac compounds that did not generate a UDP precursor response may 

have appeared to do so because the relevant precursor pool was missed on gel filtration. 
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• Establish pywac compounds MIC against S. aureus and repeat intermediate 

accumulation 

 

Determine the MIC values for each pywac compound against S. aureus. Repeating the 

accumulation protocol with known 2x MIC of the pywac active compounds against S. 

aureus will allow a direct comparison between both investigated Gram-positive 

organisms. The protocol will also permit further probing into pywac compound 

targeting and the role of specific peptidoglycan pentapeptide stem variations on 

compound activity. 

 

 

• Investigate PBP inhibition 

 

One unexplored phase of peptidoglycan synthesis to investigate is the activity of the 

cell wall active compounds against the penicillin binding proteins (PBPs). After lipid 

synthesis, the final steps of peptidoglycan synthesis lead to incorporation of Lipid II 

precursors into the overall cell wall sacculus which involves a number of PBPs utilising 

transglycosylase and transpeptidase activity. The transglycosylase activity of PBPs 

polymerises Lipid II subunits together to increase the overall sacculi. This process has 

known inhibitors such as moenomycin a mimic of Lipid IV (Ostash, et al. 2009), the 

designation for the combination of two bound Lipid II molecules, which fit in the 

transglycosylase pocket. It is worth testing the pywac compounds on this enzymatic 

step to find out if they mimic moenomycin (based on structural similarities) or possibly 

lead to inhibition through binding to another site. The transpeptidase activity of PBPs 

where by the amino acid stems of the Lipid II moieties are cross-linked at the 3-4 

position, releasing D-Ala residues would also be impacted by transglycosylase 

inhibition in the bifunctional transglycosylase/transpeptidase PBPs, however it is also 

possible that the transpeptidase function might itself be uniquely targeted . Assays to 

assess both PBP functions are vital to identifying modes of action against the currently 

unknown targets of half of the investigated pywac compounds. 
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• Assess inhibition of cytosolic Mur enzymes 

 

A selected number of pywac compound appear to contribute to the accumulation of 

certain peptidoglycan intermediates. Individual Mur enzyme assays exist for synthesis 

of the intermediates (Section 2.8.1). Incubation with excess concentrations of pywac 

compounds will establish whether inhibition of individual enzymes occurs through 

utility of a coupled NADH-linked pyruvate kinase/lactate dehydrogenase assay for 

amino acid Mur ligase activity (Section 2.11.1). Once established, concentration 

specific investigation to probe the efficacy of each compound against the targeted 

enzymes will be undertaken using such an assay, taking care to ensure the coupling 

system was not compromised by the Pywac compounds. 

 

 

• Pywac synergy with other antimicrobials 

 

Assessing potential synergy between pywac compounds and standard antimicrobials 

that target peptidoglycan (Vancomycin, Fosfomycin and Clavulanic acid), protein 

(Chloramphenicol) and DNA (Ciprofloxacin) synthesis may aid in determining pywac 

mode of action towards cellular structures. 

 

 

6.12 Conclusion 
 

Newly discovered pywac compounds 1-9 are known to be active against the bacterial 

cell wall but their exact targets were unknown. Initial investigations against B. subtilis 

cells determined their MIC values and the range of possible targets for each pywac 

compound was narrowed down by probing two of the three distinct phases during the 

biosynthesis of peptidoglycan. Further probing of these targets is required before exact 

identification can be determined but these discoveries are important for identifying new 

interactions with new and extant targets to aid against the rise in antimicrobial 

resistance of standard therapies. 
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Chapter 7. General discussion and final conclusions 
 

The global threat of tuberculosis affects approximately one third of the world’s 

population (Houben and Dodd 2016). The increased prevalence of mycobacterial 

infection is due to insufficient drug therapy options attributed to multi-drug resistance 

towards standard mycobacterial antimicrobials (Zhang and Yew 2009). Mycobacteria 

are also inherently resistant to treatment by antimicrobials due to the expression of b-

lactamases (Heesemann 1993) as well as the composition of their cell wall. The mAGP 

complex provides protection from external threats such as the administered 

antimicrobials and the secretion of host hydrolytic enzymes, through modifications 

made to cell wall structure. Mycobacteria and other representatives of the 

Actinobacteria modify the peptidoglycan layer through incorporation of N-acetylated 

and N-glycolylated lipids, the latter by utilisation of a NamH hydroxylase within an 

aerobic environment (Mahapatra, et al. 2008). The inclusion of the N-glycolylated lipid 

has previously been determined to increase mycobacterial resilience towards challenge 

by both lysozyme and b-lactam antibiotics (Raymond, et al. 2005).  

 

The purpose of this thesis was to expand the current understanding of the function of 

N-glycolylation, especially with respect to mycobacterial responses to antibiotics and 

to external stresses during host invasion that cause lysis as well as to document the 

impact of N-glycolylation on  peptidoglycan synthesis. The utilisation of a M. 

smegmatis DnamH mutant which produces solely N-acetylated peptidoglycan was key 

in this regard. 

 

 

7.1 Impact of N-glycolylation on standard mycobacterial growth 
 

Standard mycobacterial phenotypic growth remained unaltered by the absence of N-

glycolylated saccharides in typical aerobic conditions (Section 3.4). Furthermore, 

exposure of DNamH M. smegmatis to an extended anaerobic incubation to mimic in 

vitro, the environment created within an enclosed granuloma in vivo, was consistant 

with the view that  illustrated the discovery that namH expression was not vital to 

resuscitation of the mycobacteria during re-exposure to aerobic conditions.  This 
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conclusion was supported by the observation that wild type and DNamH strains 

exhibited equivalent propagation on both nutrient rich and deficient media on return to 

aerobic conditions (Section 3.5). 

 

 

7.2 Impact of N-glycolylation on hydrolytic enzymes interaction 
 

Previous investigations into the expression of solely N-acetylated mycobacterial 

peptidoglycan (Raymond, et al. 2005) revealed an increase in the susceptibility of M. 

smegmatis to lysozyme, a key secretion of the host immune response (Callewaert and 

Michiels 2010). The MIC of human lysozyme was two-fold greater in mycobacterial 

cells utilising N-glycolylated components, and these results were confirmed in this 

thesis (Section 3.6.1.1). Activity of the enzyme against mycobacterial peptidoglycan 

was concluded to be optimal at pH 7.0, and decline in lysis was observed when the pH 

was reduced to 6.0. Between pH 6.0 and 5.0 the activity of human lysozyme remained 

constant (Section 3.6.1.2) illustrating the efficacy of the enzyme as the pH within the 

phagolysosome is reduced to aid lysis. The increased susceptibility of the N-glycolyl 

deficient mycobacteria was noted as constant across each investigated pH.  

 

The impact of the duration of exposure to  lysozyme on mycobacterial survival was 

examined with a two and three-fold increase in duration (Section 3.6.1.3). Comparisons 

between these two time increases led to minimal variation with mycobacterial lysis 

plateauing at investigated concentrations and the divide between strain susceptibility 

remained constant. Increases to incubation time frame exacerbated mycobacterial cell 

lysis on both strains equally at lysozyme concentrations above 1024 µg.ml. In 

conclusion, N-glycolyl deficient mycobacteria remained more susceptible to human 

lysozyme, with the enzymatic activity being (a) stable at phagolysosome pH conditions 

and (b) more effective during longer exposure. 

 

The investigation of host-mediated challenge to mycobacterial proliferation extended 

to include b-hexosaminidase, a hydrolytic enzyme previously observed as being 

expressed specifically during mycobacterial infection in humans (Koo, et al. 2008). 

Human b-hexosaminidase (which hydrolyses the b-1,4 glycosidic bond between 
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peptidoglycan subunits in a similar manner to lysozyme) generated a two-fold lower 

MIC and MBC in the exclusively N-acetylated mycobacteria (Section 3.7.2).  This 

result was consistant with the data of Koo, et al. (2008) who identified b-

hexosaminidase during mycobacterial infection close to the host macrophage plasma 

membrane at a more neutral pH environment as well as the acidic phagolysosome.  

Here, the activity of the enzyme was unaltered at either condition (Section 3.7.2.1) and 

at both conditions the NamH deficient strain was equally susceptible to lysis. 

 

The focus of further work should be on potential synergistic interactions between host 

hydrolytic enzymes, to ascertain the impact of equivalent activities of different 

peptidoglycan-hydrolytic enzymes encompassing the range of pH conditions present 

within macrophage, as well as the binding affinities of each enzyme to N-acetylated 

and N-glycolylated lipids to confirm preferential binding and explain increased 

susceptibility.    

 

 

7.3 Impact of N-glycolylation on antimicrobial therapy 
 

The generation of a namH and blaS deficient M. smegmatis mutant permitted the 

evaluation of antimicrobial mycobacterial therapies and the implementation of N-

glycolylated peptidoglycan to oppose lysis. Previously published studies (Raymond, et 

al. 2005) showcased the increased susceptibility of DNamH to b-lactam antibiotics and 

the unaltered sensitivity towards non-peptidoglycan targeted antimicrobials. These 

findings were confirmed and extended within this thesis (Section 4.4). Both 

investigated mycobacterial strains lacked the BlaS b-lactamase to assess the impact of 

b-lactams on N-glycolylated deficient mycobacteria. The blaS- namH- double mutant 

was two-fold more susceptible to ampicillin than the solely blaS- mutant, whereas both 

strains were equally sensitive to isoniazid. The N-glycolylated lipid may aid against b-

lactam interaction due to the reduced time frame observed to synthesis the N-

glycolylated version of Lipid II (Chapter 5), or through aiding substrate recognition of 

PBPs. 
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MIC and MBC susceptibility of N-glycolyl deficient mycobacteria were equivalent to 

the wild type during exposure to antimicrobials targeting transglycosylase activity. 

Although ramoplanin and mersacidin which both bind directly to Lipid II, demonstrated 

increased activity towards the DNamH strain at sub MIC values (Section 4.4). The 

susceptibility was explained through measuring of antimicrobial binding affinities 

towards modified variants of Lipid II. Both antimicrobials demonstrated a greater 

binding response in the presence of N-acetylated substrates than N-glycolylated at 

equivalent concentrations (Section 4.6). Preference towards the N-acetyl group 

establishes a possible raison d’etre for maintenance by  M. smegmatis of a 7:3 ratio of 

MurNGlyc to MurNAc saccharides within the peptidoglycan layer during aerobic 

conditions. N-glycolylation occurs prior to the lipid linked steps of peptidoglycan 

synthesis that occur on the inner and outer faces of the cytoplasmic membrane.  

However, results indicated the administration of tunicamycin, an active site inhibitor of 

MraY (MurX), did not lead to an alteration in antimicrobial susceptibility dependent 

upon the presence of the N-acetyl/N-glycolyl group (Section 4.4).   Moenomycin which 

mimics Lipid IV and blocks binding to the TP and TG domains of bifunctional PBPs 

such as mycobacterial PonA1 and PonA2, displayed increased activity towards NamH 

deficient mycobacteria (Section 4.4). This would potentially indicate that 

implementation of the N-glycolyl group on Lipid II substrates may improve PBP 

binding to outcompete moenomycin. This hypothesis was counteracted by binding 

affinity assessments of M. tuberculosis PonA1 and PonA2 (Chapter 5) which 

demonstrated that the binding affinities towards Lipid II of PonA1 were two-fold 

greater with the N-acetylated lipid and PonA2 demonstrated equivalent affinities 

towards each lipid.    

 

Due to the expansion of multidrug resistant mycobacterial strains to primary treatments, 

the requirement for secondary therapies such as vancomycin has increased. The N-

glycolylation of peptidoglycan of the wild type strain assists in mitigating the activity 

of the antimicrobial, as registered by the decreased survival of the DNamH strain 

(Section 4.4). Assessment of lipid binding affinities towards vancomycin supports the 

hypothesis that mycobacteria include high percentages of N-glycolylated lipids to 

decrease recognition and reduce cell lysis (Section 4.6).   
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The proliferation of resistance has led to a requirement for newly antimicrobial 

therapies. Teixobactin has been touted as a break through, due to its unique targeting 

towards the prenyl-pyrophosphate-GlcNAc region of Lipid II (Ling, et al. 2015), and 

the current lack of observable resistance. MIC assessment of both investigated strains 

concluded that the mycobacterial composition of the peptidoglycan layer did not impact 

the susceptibility of M. smegmatis to teixobactin with equivalent MIC values (Section 

4.4). Binding affinity of the antimicrobial towards the peptidoglycan lipid precursors 

demonstrated a five-fold preference  towards the binding of N-acetylated lipid II 

compared to its N-glycolylated variant, although this interaction appeared to not have 

impact susceptibility. Due to the lack of current observable resistance, teixobactin 

analogues have been created by a number of collaborators to evaluate key structural 

components of the antimicrobial (Jad, et al. 2015). Arg-teixobactin displayed a four-

fold reduction in MIC activity towards mycobacteria (Section 4.4), due in part to the 

substitution of the L-allo-endurcididine residue with L-arginine, which impacted the 

preferential binding affinity observed for the original teixobactin towards N-acetylated 

lipids.  

 

Future experiments should focus on overcoming difficulties noted during assessment 

of binding affinities, especially the use of less intrusive lipid labelling and discovery 

into the optimal SPR chip coating concentrations to reduce the time frame of binding 

saturation. Expanding the range of antimicrobials investigated to examining 

antimicrobial synergy to circumvent resistance. 

 

 

7.4 Impact of N-glycolylation on peptidoglycan synthesis 
 

The main focus of this thesis was the impact of N-glycolylated lipids embedded with 

the peptidoglycan on response to   external agents such as enzymatic and antimicrobial 

activity. A number of mycobacteria possess more unique variation in relation to 

peptidoglycan synthesis. Chapter 5 illustrated the initial investigations into a wide range 

of mycobacterial enzymes and the role of each enzymatic deviation from the common 

procedure. 
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Mycobacterial MurA species are inherently resistant to fosfomycin due to an aspartate 

substitution of the more common active site residue cysteine (De Smet, et al. 1999). 

One aspect of this chapter was to re-sensitise M. leprae MurA to fosfomycin. The 

mycobacterial enzyme was acquired and cloned within a pCOLD expression vector, to 

aid expression at decreased temperatures. The gene was modified append a C-terminal 

poly-histidine tag to the murA coding sequence. Site directed mutagenesis was 

implemented to alter the DNA sequence to replace an aspartate residue with  a cysteine 

residue. Genes encoding both potentially fosfomycin sensitive and resistant MurA 

proteins were successfully expressed and identified through Western blotting. Further 

work would compare the activity of the enzymes in the presence of fosfomycin as well 

as the binding affinity of the antimicrobial to the enzymes.   This work will be greatly 

facilitated by the recent discovery of a protein cofactor (CwlM,  Boutte et al., 2016) 

that when phosphorylated, activates mycobacterial MurA activity. 

 

M. leprae MurC inserts L-glycine at position one of the pentapeptide stem instead of 

the commonly observed L-alanine (Mahapatra, et al. 2000). Previous studies have 

determined that there is no enzymatic preference for the amino acid, but the reason for 

this deviation remains unknown. Due to genomic degradation, M. leprae does not 

utilise N-glycolylated peptidoglycan, as NamH encodes only for a pseudogene (Muro, 

et al. 2011). N-glycolylation occurs on UDP-N-acetyl muramic acid product of MurB, 

and therefore each of the Mur ligases can utilise an N-glycolylated substrate. The 

purpose of this investigation was to determine whether M. leprae Mur ligases have a 

catalytic preference for muramic acid substrates as unable to generate N-glycolylation 

precursors. M. leprae MurC was cloned in a similar manner to M. leprae MurA, within 

a pCOLD expression vector with a C-terminal poly-histidine tag. Successful expression 

was confirmed by Western blot. 

 

The investigation into Mur ligases and catalytic preference of substrates was expanded 

through acquisition of M. smegmatis MurC and MurD. Results demonstrated a 

significant substrate preference for the N-glycolylated muramic acid at a ratio of 43:1 

compared to the N-acetylated variant for MurC. This ratio decreased significantly to 

5:1 during assessment of MurD. This decrease in favourability as the amino acid stem 

was extended has also been observed in M. tuberculosis (Unpublished). Each 
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subsequent Mur ligase demonstrated a reduced catalytic preference until the ratio was 

almost 1:1 for M. tuberculosis MurF.  

 

The reason for this catalytic bias can potentially be narrowed down based upon previous 

investigations within this thesis. The M. smegmatis wild type and DNamH strains 

displayed matching phenotypic growth during aerobic conditions (Section 3.4). 

Extended anaerobic incubation to replicate dormancy followed by aerobic incubation 

to replicate resuscitation also produced equivalent propagation in both the wild type 

and NamH strains. These two results indicate that implementation of N-glycolylated 

peptidoglycan does not appear to be to either aid standard mycobacterial growth during 

aerobic conditions or aid growth from dormancy. Based upon chapter 3 and 4, N-

glycolylation appears to be utilised specifically against external enzymatic and 

antimicrobial recognition and lysis, and the catalytic bias of Mur ligases maybe to 

rapidly alter the peptidoglycan layer composition to resist these interactions. 

 

The binding affinity towards both N-glycolylated and N-acetylated Lipid II was 

expanded to include the primary PBPs of M. tuberculosis, PonA1 and PonA2. A two-

fold increase in affinity was noted for PonA1 towards the N-acetylated lipid over the 

N-glycolylated lipid, whereas binding affinity for PonA2 for either substrate was almost 

equal.   

 

 

7.5 Cell wall active drug discovery 
 

The pursuit of new antimicrobials to combat antimicrobial resistance has led to the 

generation of new screening techniques. The utilisation of ywaC, a gene which encoded 

an enzyme important in the catalysis of the bacterial alarmone (p)ppGpp were coupled 

with lux genes to produced real-time luminescence signals during bacterial stress 

(Czarny, et al. 2014) and screen potential antimicrobials. Nine cell wall active 

compounds, termed Pywac 1-9 were identified as impacting the mAGP complex in B. 

subtilis, through the exact targets were unknown.  
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The Pywac compounds MIC (Czarny, et al. 2014) values against B. subtilis were 

accurately confirmed in chapter 6, and an intermediate accumulation protocol was 

implemented to probe the cytosolic peptidoglycan precursor intermediates as potential 

targets (Section 6.6.2). Pywac 4 and 9 did not alter the intermediate elution profile 

produced by the compound free control. Pywac 1, 3, 5, 6 and 7 each produced a single 

previously unforeseen elution, though none of these peaks contained peptidoglycan 

precursors or co-factors. Pywac 8 increased the elution peak containing UDP-GlcNAc 

and Pywac 2 did the same for UDP-MurNAc-pentapeptide (DAP). With the targets of 

the majority of the Pywac compounds still unknown, the lipid synthesis portion of the 

pathway was also probed (Section 6.8.2). TLC analysis of 2x Pywac MIC incubation 

during lipid synthesis utilising B. subtilis cell membranes, identified the presence of 

lipids within each sample which when purified were all found to contain Lipid II. All 

Pywac compounds were determined to not impede lipid synthesis once equivalent lipid 

synthesis concentrations were established in each sample compared to the control, 

except Pywac 7 which reduced the lipid synthesised concentration by 80%. The 

presence of reduced quantities of Lipid II within the Pywac 7 sample indicate that the 

compound likely elicits its actions on either MraY or MurG. Further investigations are 

required. 

 

Initial investigations with a secondary Gram-positive organism, S. aureus was used due 

the variation in the amino acid attached to the third position compared to B. subtilis.  

This led to a noted accumulation attributed to two Pywac compounds (Section 6.9). 

Once again Pywac 8 led to an increase in the elution of a peak containing UDP-GlcNAc 

and Pywac 2 caused a significant single eluted peak containing UDP-MurNAc-

tripeptide (Lys). Inhibition of MurA by Pywac compound 2 would lead to accumulation 

of UDP-GlcNAc, other inhibitors with this target include fosfomycin (Bugg, 1999). 

Inhibition of MurF, DdlB or Alr would lead to accumulation of UDP-MurNAc-

tripeptide (Lys) (Bugg, 1999). D-cycloserine is an antimicrobial which also targets 

DdlB and Alr whereas MurF inhibition is caused by phosphinate inhibitors (Bugg, 

1999). Further investigations expanding the scope of possible targets to include the 

extracellular components of peptidoglycan biosynthesis such as PBPs, and investigate 

potential synergy and antagonism with other known antimicrobial to narrow possible 

targets. 
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7.6 Final conclusion 
 

The purpose of this thesis was to increase current understanding of a unique structural 

modification within the mycobacterial genus and the impact it elicits to aid in the 

virulence of the organism which is a global issue. Initial findings made throughout this 

thesis will provide a broader platform to examine N-glycolylation and the key traits 

which lead to its continued prevalence with the mycobacterial cell wall. 
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Appendix 1 
 

Plasmids and constructed vectors utilising acquired mycobacterial genes optimised for 

expression in E. coli mentioned in chapter 5. 

 

 

A1.1 Plasmids  
 

A1.1.1 pUC57 
 

The standard plasmid utilised for synthesised gene amplification within E. coli. The 

2710 base pair vector contained an Ampicillin resistance gene and a multiple cloning 

site (MCS). Restriction enzymes BsaI/NdeI and XhoI were used to insert synthesised 

genes. Genes synthesized by GenScript were acquired within this vector. The Vector 

map of pUC57 is presented in figure A1.1. 

 

 

 
Figure A1.1 The vector map of pUC57. The plasmid contained an Ampicillin resistance gene, a lacZ 
operon and a multiple cloning site (MCS). Modified from www.genscript.com 
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A1.1.2 pCOLD 
 

The pCOLD plasmid (4392 bp) was specifically applied to aid in expression of difficult 

to solubilise, low yield proteins. The vector contained an ampicillin resistance gene, a 

cold shock protein A (cspA) promoter, a translation enhancing element (TEE) and an 

N-terminal poly-histidine tag. The vector promoter cspA up-regulated downstream 

genes during cold-shock, which was an instant temperature decrease during incubation 

from 37°C to 15°C. The TEE was a five amino acid sequence (MNHKV) which 

enhances the translation of expressed proteins within E. coli. Incubation in cold 

conditions reduced expression of unwanted proteins, focusing expression of plasmid 

genes, increasing yield and solubility in comparison to standard strategies of E. coli 

expression. Restriction enzymes employed during this thesis on the pCOLD 

cloning/expression region were NdeI and XhoI. The vector map for pCOLD is 

exhibited in figure A1.2. 

 

 

 
Figure A1.2 The vector map of pCOLD. The plasmid contained an Ampicillin resistance gene, a 
multiple cloning site, an N-terminal poly-histidine tag sequence, a lac operator, a translation enhanced 
element (TEE) and a cold shock cspA promoter. Modified from www.clontech.com 
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A1.1.3 pET21b 
 

The T7 expression vector pET21b was 5442 bp containing a lac operator, an ampicillin 

resistance gene, a N-terminal T7 tag sequence and an optional C-terminal poly-histidine 

tag. Restriction enzymes utilised within the cloning/expression region of pET21b were 

NdeI and XhoI to excise the T7 tag. The vector map for pET21b is depicted in figure 

A1.3. 

 

 

 
Figure A1.3 Vector map of pET21b. The expression plasmid contained an Ampicillin resistance gene, 
a multiple cloning site, a C-terminal poly-histidine tag sequence and a lac operator. Adapted from 
www.merckmillipore.com 
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A1.2 Gene plasmid constructs  
 

Construct Description Selection Affinity tag Source 
pUC57:murA M. leprae murA (full 

length) in pUC57 
vector 
Optimised for 
expression in E. coli 

Ampicillin Untagged GenScript 

pUC57:murC M. leprae murC (full 
length) in pUC57 
vector Optimised for 
expression in E. coli 

Ampicillin Untagged GenScript 

Table A1.1 Gene constructs obtained in this project 
 
 
Construct Description Selection Affinity tag Source 
pCOLD:murA 
N-term 

M. leprae murA (full 
length) in pCOLD 
vector 

Ampicillin TEV-cleavable 
N-term 6-His 

Cloned for  
this project 

pCOLD:murA 
C-term 

M. leprae murA (full 
length) in pCOLD 
vector 

Ampicillin TEV-cleavable 
C-term 6-His 

Cloned for  
this project 

pCOLD:murA 
(mutant) 
N-term 

M. leprae murA 
D118C (full  
length) in pCOLD 
vector 

Ampicillin TEV-cleavable 
N-term 6-His 

Cloned for  
this project 

pCOLD:murA 
(Mutant) 
C-term 

M. leprae murA 
D118C (full  
length) in pCOLD 
vector 

Ampicillin TEV-cleavable 
C-term 6-His 

Cloned for  
this project 

pCOLD:murC 
N-term 

M. leprae murC (full 
length) in pCOLD 
vector 

Ampicillin TEV-cleavable 
N-term 6-His 

Cloned for  
this project 

pCOLD:murC 
C-term 

M. leprae murC (full 
length)  
in pCOLD vector 

Ampicillin TEV-cleavable 
C-term 6-His 

Cloned for  
this project 

pET21b:ponA1 M. tuberculosis 
ponA1 
(full length) in  
pET21b vector 

Ampicillin TEV-cleavable 
C-term 6-His 

Cloned for  
this project 

pET21b:ponA2 M. tuberculosis 
ponA2 
(full length) in  
pET21b vector 

Ampicillin TEV-cleavable 
C-term 6-His 

Cloned for  
this project 

Table A1.2 Gene constructs created in this project 
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Appendix 2 

 
Mass spectrometric analysis of synthesised peptidoglycan precursors, generated in the 

formation of biotinylated N-acetylated Lipid II (DAP) and biotinylated N-glycolylated 

Lipid II (DAP) in Chapter 4. 
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Figure A2.1: Negative ion mass spectra of synthesized UDP-MurNAc-pentapeptide DAP. (a): mass spectra with [M-H]- (observed 1192.34, expected 1192.33) 
and [M-2H]2- (observed 595.67, expected 595.66). (b): Zoomed in view of [M-3H]3- (observed 396.77, expected 396.77) (deconvoluted by MassLynxTM software 
(Waters, USA).  
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Figure A2.2: Negative ion mass spectra of synthesized UDP-MurNGlyc-pentapeptide DAP. (a): mass spectra with [M-2H]2- (observed 603.66, expected 
603.66) and [M-3H]3- (observed 402.10, expected 402.10). (b): Zoomed in view of [M-H]- (observed 1208.33 expected 1208.32) (deconvoluted by MassLynxTM 
software (Waters, USA).  
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Figure A2.3: Negative ion mass spectra of unlabelled UDP-MurNAc-pentapeptide DAP. (a): mass spectra with [M-H]- (observed 1192.34, expected 1192.33) 
and [M-2H]2- (observed 595.67, expected 595.66). (b): Zoomed in view of [M-3H]3- (observed 396.77, expected 396.77) (deconvoluted by MassLynxTM software 
(Waters, USA).  
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Figure A2.4: Negative ion mass spectra of biotinylated UDP-MurNAc-pentapeptide DAP. (a): mass spectra with [M-2H]2- (observed 708.70, expected 708.70). 
(b): Zoomed in view of [M-H]- (observed 1418.41, expected 1418.41) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A2.5: Negative ion mass spectra of unlabelled UDP-MurNGlyc-pentapeptide DAP. (a): mass spectra with [M-2H]2- (observed 603.66, expected 603.66) 
and [M-3H]3- (observed 402.10, expected 402.10). (b): Zoomed in view of [M-3H]3- (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A2.6: Negative ion mass spectra of biotinylated UDP-MurNGlyc-pentapeptide DAP. (a): mass spectra with [M-2H]2- (observed 603.66, expected 
603.66) and [M-3H]3- (observed 402.10, expected 402.10). (b): Zoomed in view of [M-3H]3- (deconvoluted by MassLynxTM software (Waters, USA). 

 
 
 



 357 

 
 
 
 

 
Figure A2.7: Negative ion mass spectra of biotinylated N-Acetylated Lipid II DAP. (a): mass spectra with [M-2H]2- (observed 1071.56, expected 1071.56) and 
[M-3H]3- (observed 714.04, expected 714.04). (b): Zoomed in view of [M-H]- (observed 2144.13, expected 2144.13) (deconvoluted by MassLynxTM software 
(Waters, USA).   
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Figure A2.8: Negative ion mass spectra of biotinylated N-Glycolylated Lipid II DAP. (a): mass spectra with [M-2H]2- (observed 1080.05, expected 1080.05) 
and [M-3H]3- (observed 719.70, expected 719.70). (b): Zoomed in view of [M-H]- (observed 2161.11, expected 2161.11) (deconvoluted by MassLynxTM software 
(Waters, USA).   
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Appendix 3 
 

Mass spectrometric analysis of potential peptidoglycan intermediate accumulated elutions, 

isolated by size exclusion chromatography and ion exchange chromatography from chapter 6. 
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Figure A3.1: Negative ion mass spectrometry of peptidoglycan standard UDP-GlcNAc. (a): mass spectra with [M-H]- (observed 606.07, expected 606.07) and [M-2H]2- 
(observed 302.53, expected 302.53). (b): Zoomed in view of [M-H]- peak shown in (a). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.2: Negative ion mass spectrometry of peptidoglycan standard UDP- enolpyruvyl-GlcNAc. (a): mass spectra with [M-H]- (observed 676.08, expected 676.07) 
and [M-2H]2- (observed 337.53, expected 337.53). (b): Zoomed in view of [M-2H]2- peak shown in (a). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.3: Negative ion mass spectrometry of peptidoglycan standard UDP-MurNAc. (a): mass spectra with [M-H]- (observed 678.09, expected 678.09). (b): Zoomed 
in view of [M-2H]2- (observed 338.54, expected 338.54). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.4: Negative ion mass spectrometry of peptidoglycan standard UDP-MurNAc-monopeptide (L-Alanine). (a): mass spectra with [M-H]- (observed 749.14, 
expected 749.13). (b): Zoomed in view of [M-2H]2- (observed 374.07, expected 374.06). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.5: Negative ion mass spectrometry of peptidoglycan standard UDP-MurNAc-dipeptide (L-Ala-D-Glu). (a): mass spectra with [M-H]- (observed 878.18, 
expected 878.17) [M-2H]2- (observed 438.59, expected 438.58). (b): Zoomed in view of [M-2H]2- peak shown in (a). (deconvoluted by MassLynxTM software (Waters, USA).
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Figure A3.6: Negative ion mass spectrometry of peptidoglycan standard UDP-MurNAc-tripeptide (L-Ala-D-Glu-m-DAP). (a): mass spectra with [M-H]- (observed 
1050.26, expected 1050.25) [M-2H]2- (observed 524.63, expected 524.62). (b): Zoomed in view of [M-3H]3- (observed 349.41, expected 349.41). (deconvoluted by 
MassLynxTM software (Waters, USA).
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Figure A3.7: Negative ion mass spectrometry of peptidoglycan standard UDP-MurNAc-pentapeptide (L-Ala-D-Glu-m-DAP-D-Ala-D-Ala). (a): mass spectra with [M-
H]- (observed 1192.34, expected 1192.33) and [M-2H]2- (observed 595.67, expected 595.66) (b): Zoomed in view of [M-3H]3- (observed 396.77, expected 396.77). 
(deconvoluted by MassLynxTM software (Waters, USA).
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Figure A3.8: Negative ion mass spectrometry of the isolated accumulated peak (i) from B. subtilis control. (a): full mass spectra (no identifiable m/z). (b): 
mass spectra of UDP-GlcNAc [M-H]- (observed 606.08, expected 606.07) (zoomed in view of (a)). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.9: Negative ion mass spectrometry of the isolated accumulated peak (ii) from B. subtilis control. (a): full mass spectra (no identifiable m/z). (b): 
mass spectra of UDP-GlcNAc [M-H]- (observed 606.08, expected 606.07) (zoomed in view of (a)). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.10: Negative ion mass spectrometry of the isolated accumulated peak (iii) from B. subtilis control. (a): full mass spectra (no identifiable m/z). (b): 
mass spectra of UDP-MurNAc-pentapeptide (DAP) [M-2H]2- (observed 595.67, expected 595.66) (zoomed in view of (a)). (deconvoluted by MassLynxTM 
software (Waters, USA). 
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Figure A3.11: Negative ion mass spectrometry of the isolated accumulated peak (iv) from B. subtilis control. Peak (iv): (a): full mass spectra (no identifiable 
m/z). (b): mass spectra of UDP-MurNAc-pentapeptide (DAP) [M-2H]2- (observed 595.68, expected 595.66) (zoomed in view of (a)). (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.12: Negative ion mass spectrometry of the isolated accumulated peak (v) from B. subtilis control. (a): full mass spectra (no identifiable m/z). (b): 
mass spectra of UDP-MurNAc-dipeptide [M-H]- (observed 878.19, expected 878.17) (zoomed in view of (a)). (c): Mass spectra of [M-2H]2- (observed 438.59, 
expected 438.58). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.13: Negative ion mass spectrometry of the isolated accumulated peak (vi) from B. subtilis control. Full mass spectra (no identifiable m/z). 
(deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.14: Negative ion mass spectrometry of the isolated accumulated peak (vii) from B. subtilis control. Full mass spectra (no identifiable m/z) 
(deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.15: Negative ion mass spectrometry of the isolated accumulated peak of UDP-MurNAc-pentapeptide (DAP) from B. subtilis incubated with 2x 
MIC vancomycin. (a): mass spectra of [M-2H]2- (observed 595.66, expected 595.66). (b): Observed isotope distribution of [M-2H]2- (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.16: Negative ion mass spectrometry of the isolated accumulated peak of UDP-MurNAc-pentapeptide (DAP) from B. subtilis incubated with 5x 
MIC vancomycin. (a): mass spectra with [M-2H]2- (observed 595.67, expected 595.66) and [M-3H]3- (observed 396.77, expected 396.77) (deconvoluted by 
MassLynxTM software (Waters, USA). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3-. 
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Figure A3.17: Negative ion mass spectrometry of the isolated accumulated peak (i) from B. subtilis cells incubated with 2x MIC pywac 1. Full mass spectra, 
no identifiable peptidoglycan intermediate m/z (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.18: Negative ion mass spectrometry of the isolated accumulated peak from B. subtilis incubated with 2x MIC pywac 3. Full mass spectra, no 
identifiable peptidoglycan intermediate m/z (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.19: Negative ion mass spectrometry of the isolated accumulated peak from B. subtilis incubated with 2x MIC pywac 5. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.20: Negative ion mass spectrometry of the isolated accumulated peak from B. subtilis incubated with 2x MIC pywac 6. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.21: Negative ion mass spectrometry of the isolated accumulated peak from B. subtilis incubated with 2x MIC pywac 7. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.22: Negative ion mass spectrometry of the isolated accumulated peak (i) from B. subtilis incubated with 2x MIC pywac 2. Full mass spectra, (no 
identifiable peptidoglycan intermediate m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
 
 
 
 
 



 382 

 
Figure A3.23: Negative ion mass spectrometry of the isolated accumulated peak (ii) from B. subtilis incubated with 2x MIC pywac 2. (a): full mass spectra 
of UDP-MurNAc-pentapeptide (DAP) with [M-2H]2- (observed 595.67, expected 595.66) and [M-3H]3- (observed 396.77, expected 396.77). (deconvoluted by 
MassLynxTM software (Waters, USA). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3-.  
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Figure A3.24: Negative ion mass spectrometry of the isolated accumulated peak of B. subtilis cells incubated with 2x MIC pywac 8. (a): mass spectra (no 
identifiable m/z). (b): Observed isotope distribution of UDP-GlcNAc [M-H]- (zoomed in view of [M-H]- peak shown in (a)) (observed 606.08, expected 606.07) 
(deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.25: Negative ion mass spectrometry of ATP ADP and AMP standards. (a): mass spectra with (i) ATP [M-H]- (observed 505.98, expected 505.98), 
(ii) ADP [M-H]- (observed 426.02, expected 426.02) and (iii) AMP [M-H]- (observed 346.05, expected 346.05). (b): Zoomed in view of ATP [M-H]- peak shown 
in (a)). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.26: Negative ion mass spectrometry of NADPH. (a): mass spectra with [M-2H]2- (observed 371.54, expected 371.53) (deconvoluted by MassLynxTM 
software (Waters, USA). (b): Zoomed in view of [M-2H]2- peak shown in (a)).  
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Figure A3.27: Negative ion mass spectrometry of control Lipid II DAP synthesis. (a): mass spectra with Lipid II DAP [M-2H]2- (observed 958.51, expected 
958.51) (deconvoluted by MassLynxTM software (Waters, USA). (b): mass spectra with [M-H]- (observed 1918.03, expected 1918.04).  
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Figure A3.28: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 1.  (a): mass spectra with [M-
2H]2- (observed 958.51, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (b): Mass spectra of [M-
3H]3- (observed 638.67, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.29: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 2. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.68, expected 638.67).  (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.30: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 3. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.68, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.31: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 4. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.67, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.32: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 5. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.68, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.33: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 6. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.68, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.34: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 7. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.35: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 8. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)). (c): Mass spectra of [M-
3H]3- (observed 638.68, expected 638.67). (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.36: Negative ion mass spectrometry of Lipid II (DAP) synthesis sample incubated with 50 µM pywac compound 9. (a): mass spectra with [M-
2H]2- (observed 958.52, expected 958.51) [M-3H]3- (observed 638.68, expected 638.67). (b): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-
2H]2- peak shown in (a)). (c): Mass spectra of [M-3H]3-. (deconvoluted by MassLynxTM software (Waters, USA). 
 



 396 

 
Figure A3.37: Negative ion mass spectrometry of UDP-GlcNAc present during Lipid II DAP synthesis incubated with 50 µM pywac 2. UDP-GlcNAc (a): 
mass spectra with [M-H]- (observed 606.07, expected 606.07) and [M-2H]2- (observed 302.53, expected 302.53) (deconvoluted by MassLynxTM software (Waters, 
USA). (b): Observed isotope distribution of [M-H]- (zoomed in view of [M-H]- peak shown in (a)). (c): Observed isotope distribution of [M-2H]2- (zoomed in view 
of [M-2H]2- peak shown in (a)). 
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Figure A3.38: Negative ion mass spectrometry of UDP-GlcNAc present during Lipid II DAP synthesis incubated with 50 µM pywac 3. UDP-GlcNAc (a): 
mass spectra with [M-H]- (observed 606.07, expected 606.07) and [M-2H]2- (observed 302.53, expected 302.53) (deconvoluted by MassLynxTM software (Waters, 
USA). (b): Observed isotope distribution of [M-H]- (zoomed in view of [M-H]- peak shown in (a)). (c): Observed isotope distribution of [M-2H]2- (zoomed in view 
of [M-2H]2- peak shown in (a)). 
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Figure A3.39: Negative ion mass spectrometry of MurNAc-tripeptide Lys standard. (a): mass spectra with [M-H]- (observed 1006.27, expected 1006.26) and 
[M-2H]2- (observed 502.63, expected 502.63) (deconvoluted) by MassLynxTM software (Waters, USA). (b): Zoomed in view of [M-3H]3- (observed 334.75, 
expected 334.75) peak shown in (a). 
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Figure A3.40: Negative ion mass spectrometry of MurNAc-pentapeptide Lys standard. (a): mass spectra with [M-H]- (observed 1148.34, expected 1148.34), 
[M-2H]2- (observed 573.67, expected 573.66) (deconvoluted by MassLynxTM software (Waters, USA). (b): Zoomed in view of [M-3H]3- (observed 382.11, 
expected 382.10). 
 
 
 



 400 

 

 
Figure A3.41: Negative ion mass spectrometry of the isolated accumulated peak (i) from S. aureus control. (a): full mass spectra of accumulated peak (i), no 
identifiable m/z. (b): mass spectra of UDP-GlcNAc [M-H]- (observed 606.07, expected 606.07) (zoomed in view of (a)). (deconvoluted by MassLynxTM software 
(Waters, USA). 
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Figure A3.42: Negative ion mass spectrometry of the isolated accumulated peak (ii) from S. aureus control. (a): full mass spectra of accumulated peak (ii), 
no identifiable m/z. (b): mass spectra of UDP-GlcNAc [M-H]- (observed 606.07, expected 606.07) (zoomed in view of (a)). (deconvoluted by MassLynxTM 
software (Waters, USA). 
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Figure A3.43: Negative ion mass spectrometry of the isolated accumulated peak (iii) from S. aureus control. (a): full mass spectra of accumulated peak (iii), 
no identifiable m/z. (b): mass spectra of UDP-MurNAc-pentapeptide Lys [M-2H]2- (observed 573.67, expected 573.66) (zoomed in view of (a)). (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.44: Negative ion mass spectrometry of the isolated accumulated peak (iv) from S. aureus control. (a): full mass spectra of accumulated peak (iv), 
no identifiable m/z. (b): mass spectra of UDP-MurNAc-pentapeptide Lys [M-H]- (observed 1148.34, expected 1148.34) (zoomed in view of (a)). (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.45: Negative ion mass spectrometry of the isolated accumulated peak (v) from S. aureus control. (a): full mass spectra of accumulated peak (v), 
no identifiable m/z. (b): mass spectra of UDP-MurNAc-pentapeptide Lys [M-H]- (observed 1148.34, expected 1148.34) (zoomed in view of (a)). (deconvoluted by 
MassLynxTM software (Waters, USA). 
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Figure A3.46: Negative ion mass spectrometry of the isolated accumulated peak (vi) from S. aureus control. No identifiable m/z observed. (deconvoluted by 
MassLynxTM software (Waters, USA).  
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Figure A3.47 Negative ion mass spectrometry of the isolated accumulated peak (vii) from S. aureus control. No identifiable m/z observed. (deconvoluted by 
MassLynxTM software (Waters, USA).  
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Figure A3.48: Negative ion mass spectrometry of the isolated accumulated peak (viii) from S. aureus control. No identifiable m/z observed. (deconvoluted 
by MassLynxTM software (Waters, USA).  
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Figure A3.49: Negative ion mass spectrometry of the isolated accumulated peak (ix) from S. aureus control. No identifiable m/z observed. (deconvoluted by 
MassLynxTM software (Waters, USA).  
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Figure A3.50: Negative ion mass spectrometry of the isolated accumulated peak (x) from S. aureus control. No identifiable m/z observed. (deconvoluted by 
MassLynxTM software (Waters, USA).  
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Figure A3.51: Negative ion mass spectrometry of the isolated accumulated peak of UDP-MurNAc-pentapeptide (Lys) from S. aureus incubated with 2x 
MIC vancomycin monoQ fraction. (a): mass spectra with [M-H]- (observed 1148.34, expected 1148.34), [M-2H]2- (observed 573.67, expected 573.66) 
(deconvoluted by MassLynxTM software (Waters, USA). (b): Zoomed in view of [M-H]- peak shown in (a). 
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Figure A3.52: Negative ion mass spectrometry of the isolated accumulated peak from S. aureus incubated with 4 µM pywac 1. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.53: Negative ion mass spectrometry of the isolated accumulated peak of UDP-MurNAc-tripeptide (Lys) from S. aureus incubated with 2 µM 
pywac 2. (a): mass spectra with [M-2H]2- (observed 502.63, expected 502.63) (deconvoluted by MassLynxTM software (Waters, USA). (b): Mass spectra of [M-
H]- (observed 1006.27, expected 1006.26). (c): Observed isotope distribution of [M-2H]2- (zoomed in view of [M-2H]2- peak shown in (a)).  
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Figure A3.54: Negative ion mass spectrometry of the isolated accumulated peak from S. aureus incubated with 8 µM pywac 6. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.55: Negative ion mass spectrometry of the isolated accumulated peak of UDP-GlcNAc from S. aureus incubated with 8 µM pywac 8. (a): mass 
spectra (no identifiable m/z). (b): Observed isotope distribution of UDP-GlcNAc [M-H]- (zoomed in view of [M-H]- peak shown in (a)) (observed 606.08, expected 
606.07) (deconvoluted by MassLynxTM software (Waters, USA). 
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Figure A3.56: Negative ion mass spectrometry of the isolated accumulated peak from S. aureus incubated with 4 µM pywac 9. Full mass spectra (no 
identifiable m/z) (deconvoluted by MassLynxTM software (Waters, USA). 
 
 
 
 
 
 
 


