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Summary
In this thesis a stability analysis of the abstract evolution 

equation is presented along with a discussion of the related questions 
of the existence and uniqueness of a global solution of such equations.
The results are presented in a functional analytic framework using the 
theory of operators in normed linear spaces. The approach employed 
is that of perturbation theory, the evolution equation is taken to 
be of the form
(i) z(t) + A(z,t) + B(z,t) = 0, z (0) = zo 
with the operator A(z,t) defined so that the solution of
(ii) z(t) + A(z,t) = 0 , z(0) = zq
is stable in the sense of Liapunov in the neighbourhood of the 
equilibrium state z£.

For a strict solution of (i) there are already a number of 
perturbation theorems based on the theory of m-accretive operators 
which enable the size of allowable perturbations B(z,t) to be determined 
which conserve the stability properties of the unperturbed system. The 
range of validity of these results has been extended first by showing 
that the conditions on B(z,t) can be relaxed so increasing the size of 
allowable perturbations and then by deriving new theorems where the condi­
tions are on A+B rather than on B. The theorems are more relevant 
in this form since de-stabilizing perturbations can now be included in 
the applications. The operator A of (ii) may be non-linear which enables 
the results to be used to determine a class of allowable errors in the 
modelling of a physical system.

This thesis also contains proofs of the existence and uniqueness of 
a mild solution of (ii) using the concept of evolution operators. The



underlying operator A is assumed to be linear but the perturbing 
operator can belong to one of several classes including those of un­
bounded linear operators and of non-linear operators. Estimates are 
made of the solution of the perturbed system to enable the stability 
properties of the solution to be deduced. The relation between these 
results and those obtained by the application of the methods of 
Liapunov is discussed. The results are applied to a humber of 
problems in science and engineering.
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§1 Introduction

The study of differential equations was initiated by Newton 
when he postulated his famous Laws of Motion, since that time the 
subject has developed into one of major importance because of the 
large number of physical laws that involve rates of change.

The classical methods of solution of differential equations 
were developed by Euler, Lagrange, Laplace and others, but the number 
of equations for which it is possible to find an explicit solution 
is relatively small. However, whether or not an explicit solution 
can be found, there are two fundamental questions that must be 
asked of any differential equation.

(i) Has the equation a solution? (The existence question)
(ii) Assuming an answer yes to (i), how many solutions are 

there? (The uniqueness question.)
In this thesis we are concerned with some answers to these questions 
when applied to partial differential equations that arise in the 
study of dynamical systems. We note here that many such systems can 
be modelled by a set of equations of the form 

(1.1) T t  + fi = 0 “ 1 * 2* —
with a set of prescribed initial values of z^, z^(0). The functions 
f^ may depend upon the time t, the dependent variables t. (i » 1 , 2 , .. .k) 
and their derivatives with respect to the space variables x.

T(j •= 1, 2, ... n). On introducing the vectors z = (zi, Z2 , Z 3 , ...z^)
Tand N(z,t) = (fi, f2 , ... f^) where the dependence upon z,t in N is in 

its most general sense as defined for the components f^, we have one 
equation with a single initial condition
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(1.2) z + N(z,t) =0, t > 0, z (0) = zo
which we shall refer to as the general abstract evolution equation.

With evolution equations there is a third important property 
to be studied once the existence and uniqueness of the solution has 
been established and that is the behaviour of z(t) as t + «. In 
describing the latter we shall use the ideas and definitions of 
Liapunov, which were developed around 1890, and compare the solution 
z(t) with that of the equilibrium state ẑ, which is the solution of 

the equation
N(z£,t) =0, t > 0.

In particular if llz(t) - Zgll is finite Vt and + 0 as t -*■ °° for all 
initial states zq in a neighbourhood of z^ then we shall say that 
the equilibrium point z£ is asymptotically stable and that the 
neighbourhood is a region of asymptotic stability. It is possible 
to discuss all three aspects of evolution equations without neces­
sarily having a knowledge of explicit solution of the equation.
This is particularly important when N(z,t) is non-linear in z because 
it is usually impossible to solve (1 .2 ) except by numerical techniques. 

In this thesis we suppose that N(z,t) is of the form 
A(z,t) + B(z,t)

and require that most of the properties of A(z,t) are known. In many 
of the examples A(z,t) will be the operator obtained from N(z,t) by 
the linearization method and be such that

(1.3) z(t) + A(z,t) = 0 z (0) = z q .

is stable in the sense of Liapunov. The operator B(z,t), which we shall 
refer to as the perturbation of the system (1.3), will be assumed to 
satisfy the condition B(zg,t) = 0 for all t > 0. In addition to

4<



2
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In particular if llz(t) - ẑ W is finite Vt and + 0 as t 4  “ for all
initial states z in a neighbourhood of z„ then we shall say that o t
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analysing the uniqueness and existence of solutions of (1.3) we 
have attempted:

(iii) to find the conditions required of B(z,t) so that the 
perturbed system (1 .2 ) is stable,

(iv) to find estimates of the solution of the perturbed system.
The results appertaining to (iii) are presented in the form of 
perturbation theorems and allow for A(z,t) to be a non-linear operator, 
but for (iv) most of the problems we examine will assume A(z,t) to be
a linear operator.

The results obtained here under (iii) and (iv) have a wider 
applicability than just to the mathematical model (1.2). It is well 
known that in constructing a model of a complex physical system some 
effects or processes may be approximated or ignored and so the model 
is usually not capable of describing all of the dynamical characteristics 
of the actual system. The unidentified terms of the system may be 
regarded as a perturbation of the model (1 .2 ) therefore once the 
stability and other properties have been established for the latter, 
we can use the perturbation theorems again to find the conditions 
that must be imposed on the unidentified part of the system so that 
the actual system has similar properties to that of the model.
Similarly an unspecified forcing term can be included amongst the 
unknown perturbations of a system, our results for linear perturbations 
of a linear model include estimates of the effect of such terms.

The results obtained depend upon the definition of the terra 
solution. In order to allow the greatest flexibility in this respect 
the material in this thesis is presented in a functional analytic 
framework, using in particular those ideas and results relating to

/
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the theory of operators in normed linear spaces. The definitions 
and basic facts of functional analysis required for the thesis are 
presented in Chapter §2 along with those from the Liapunov theory 
of stability. In §3 we present a survey of some of the more im­
portant known results concerning the existence and uniqueness of 
solutions of (1 .2 ) in order to provide the background to the later 
chapters. In §4 we present the perturbation theorems which give 
existence and uniqueness results for stable solutions of (1 .2 ) in 
the strictest sense of the term solution. These theorems include 
the case of A and B being non-linear operators as well as linear.
In the next two chapters §5, § 6 the idea of solution is relaxed 
slightly and we consider the existence and uniqueness of so-called 
'mild' solutions of (1 .2 ) along with methods of estimating the norm 
of the solution. These results are derived from the investigation 
of certain integral equations and are presented in two chapters. In 
§5 B(z,t) is taken to be linear whilst in §6 , B(z,t) is assumed to 
be non-linear but in both cases A is a linear operator.

Many papers have been written applying the idea of Liapunov 
functionals to a study of the stability of partial differential 
equations. In chapter §7 we present some general results concerning 
these functionals and their use with (1 .2) to illustrate an alternative 
approach to the methods of §5 to the problem of estimating the norm 
of the solution, it is shown that certain of the results for the linear 
equation can be obtained by either method.

In chapter § 8 the results of §4-6 are applied to a wide variety of 
problems drawn from engineering and science. These include various 
formulations of the beam problem and two problems from chemical
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engineering where the basic system is described by a coupled pair 
of partial differential equations. Some conclusions and remarks 

are made in §9.



§2 Topics in Functional Analysis
2.1. Introduction

In this chapter we introduce those ideas and results of functional 
analysis which we require for the rest of the work, placing particular 
emphasis on the theory of mappings of a Banach space onto a Banach 
space. The proofs and further details can be found in the standard texts 
of Kato [ 1] , Yosida [ 2] and Dunford and Schwartz [ 3] .
2.2. Normed Linear Spaces

We commence with the definitions of the terms semi-norm, norm and 
normed linear space.
Definition 2,1, Let X be a linear space over a field of scalars K (real 
or complex). If for every x?X there is associated a real number llxll 
such that for every x,y£X 

^  j (i) M x+y H < II xH + H y II
(ii) Haxll = |cx|. II xII for all a£K 

then I.I is called a semi-norm of X.
Definition 2.2. If II . II is a semi-norm on a linear space X such that 
(2 .2 ) Mxll = 0 iff x = 0

then B . II is called a norm on X.
Definition 2.3. A linear space X with a norm II.11 defined on it is called 
a normed linear space.

The product XxY of two linear spaces X,Y over the same field of 
scalars K consists of all ordered pairs {x,y} of elements xeX,yeY. The 
set XxY is a vector space if the addition operation in XxY is 
defined by

ctiixi.yi) + a2 {x2 ,y2 } = iaiX!+-a2x2,«iyi + a 2y2}
Vai,a2eK; xi,X2iX; yi,y2 6Y. If, in addition X and Y are normed linear
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1»
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spaces with norms H.H}., resPectively then XxY can be made a norrned
linear space. The norm in XxY may be chosen in many ways, the following 
are particularly useful

(i) J{x,y}H = ixiix + *y*Y » v x€X» y*Y
(2.3) _ l/p

(ii) ® {x,y}II = (Hxlly + Hyll£) , V xeX, y£Y, 1 < p < °°.
In any kind of analysis the idea of convergence is of fundamental 

importance but this requires a meaning for the distance d(x,y) between 
two elements x,y of a linear space satisfying the following axioms.

(i) d(x,y) > 0 and d(x,y) = 0 iff x = y
(2.4) (ii) d(x,y) < d(x,z) + d(z,y) (triangle inequality)

(iii) d(x,y) = d(y,x) 
for all x, y, z € X.

In a normed linear space this can be achieved by defining the 
distance function d(x,y) by
(2.5) d(x,y) = llx-y# .
Then we have the following definitions of convergence and of a Cauchy 
sequence.

Definition 2.4. A sequence {xn} C X converges strongly to x if

®xn~x® = 0* This is denoted by xn -*■ x.
In a normed linear space X if x_ ■* x. v •* v and -̂lm a = a.n ’ ;n  ̂ n-x» n *

a scalars, then n
( i )  i iS  “x 11 -  "x"• n̂ °° n

(2 .6 ) (ii) anxn -*■ ax

( i i i )  (xn+yn) x+y

Definition 2.5. A sequence {xn> C X is a Cauchy sequence if given any 
e > 0 there exists an integer N = N(e) > 0  such that Hxjjj-XjjII < e for 
any m,n > N.

Every convergent sequence in X is a Cauchy sequence.

»»



However not every Cauchy sequence converges to a limit xeX,
This leads to the idea of completeness.
Definition 2.6. If every Cauchy sequence {xn)«X converges strongly to 
a limit xeX, then X is said to be complete. A complete normed space 
is called a Banach space (B-space).

One particular type of B-space of special interest later is a 
uniformly convex B-space.
Definition 2.7. A B-space is uniformly convex if for any e > 0 there 
exists a 6 = -6 (e) > 0 such that Hxll < 1 , UyH < 1 and Rx-yR >  e 
implies Rx+yH < 2 (1-6 ).

We conclude this section by remarking that a given B-space X may 
have two (or more) norms defined on it. Equivalent norms are defined 
as follows.
Definition 2.8. If II . I i, B . H 2 denote two different norms defined on a 
Banach space X then they are equivalent if 3 a,8 , 0 < a < 8 < " such that 

alxll2 < HxB i < BHx II2 for all xeX.
2,3, Quasi-Norms and Fr^chet Spaces

If the requirement (2.1) (ii) in the definition of a semi-norm 
is replaced by the weaker condition

(2.7) l-x» = lx«, c ^ W "  = ° and IIXnT-vO 11 axn" = 0

then RxR, now satisfying (2.1) (i), (2.2) and (2.7) is called A quasi­
norm. The linear space X with quasi-norm II . II defined on it is called 
a quasi-normed space. As with the norm of a normed space the concept 
of quasi-norm can be associated with the axioms of distance and used to 
establish the concept of strong convergence d(xn,x) = 0 , with the 
properties (2.4).

A complete quasi-normed space is called a Frechet space, a B-space 
is a Frechet space but not vice-versa.



2.A. Hilbert Spaces
In many applications of linear spaces the concept of norm on its 

own does not provide sufficient structure, in particular it is impossible 
to define angle in terms of norms. This difficulty is overcome by 
introducing the idea of inner product.
Definition 2.9. If to every pair of elements x,y belonging to a linear 
space H there is associated a complex number (x,y) satisfying

(i) (otx.y) = n(x,y) aeK
(ii) (x,y) = (y,x) ( denotes complex conjugate)

( 2 . 8)
(iii) (x+y,z) = (x,z) + (y,z)
(iv) (x,x) > 0 and (x,x) = 0 iff x = 0  

then (x,y) is called an inner (or scalar) product on H.
An inner product space H can be made into a normed linear space 

by defining an 'induced' norm ||.|| on H with

(2.9) II x |l = (x,x)*.
A complete inner product space is called a Hilbert space. The following 
theorem provides a very useful test that can be applied to a Banach 

space to see if it is also a Hilbert space.
Theorem 2.1 If X is a Banach space and its norm satisfies the 
parallelogram law
(2.10) lx+ylt2 + flx-yl2 = 2{Bxll2 + ByB2} for all x,yeX then X
is a Hilbert space.
It is easy to see from this formula that a Hilbert space is uniformly 
convex.

A Hilbert space may have two inner products defined on it, in 
which case we can define the concept of equivalent inner products.
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Definition 2.10 If ( . , • ) 2  denote two distinct inner products

on H then they are said to be equivalent if their corresponding norms 

are equivalent (c.f. Definition 2.8).

2.5 Subsets of a Banach space

Let A be a set contained in a Banach space X. A point x€X is a 

limit point of the set A iff there exists a sequence of distinct 

elements {xn)cA such that {xn} converges strongly to x. The set con­

sisting of A and all its limit points is called the closure of A, 

denoted by A. A set A is closed iff A = A and is said to be dense in 

X if A = X. If A is closed and dense then A = X. The space X is 

separable if it has a countable dense subset.

Suppose aeA and xeX then II a-xll is bounded from below for any

aeA and therefore ln  ̂ II a-xll exists. aeA
Definition 2.11 The quantity Ha-xll is called the distance of the 

point x from the set A and is denoted by p(x,A). If A is closed and 

convex then there exists a point beA such that 

p(x,A) = II x—b II

We can now define the terms r - neighbourhood, bounded set and compact 

set.

Definition 2.12 The r - neighbourhood of a set AcX is the set of all 

points x i X  which have the property that 

0 < p(x,A) < r

where r > 0 is a given number. This neighbourhood will be denoted 

by S(A,r).

Definition 2.13 The set AcX is called bounded if 3 >1(<") such that

t x-yll < M for all x,ycA.

■
1»
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Definition 2.14 The set AcX is said to be compact in X if every
infinite subset BcA contains an infinite convergent sequence with 
limit in A.
2.6 Operators in Banach Spaces

Let A and B be two sets. The symbol f:A-*-B denotes a mapping or 
function that assigns to every element in A at least one element of 
B. Unless stated otherwise we shall assume that any function used in 
the following is single-valued, that is to each aeA there is assigned 
just one element beB. If in place of the two sets A and B we have 
two linear spaces U and V over the same field of scalars K then any 
mapping T:u-*v » T(u) = TueY which maps all (or part of) U into V is 
called an operator or, in the special case when V = K, a functional.
The domain of T, D(T) is the set of all ueU such that there is a veV 
for which Tu = v, the range of T,R(T) is the set (Tu:ueD(T)} and the 
kernel or null space of T is N(T) = ix:Tu = 0). If D(T) is dense in X 
then T is said to be densely defined.
Definition 2.15 T is a linear operator (or linear functional if V -  K) 

if the domain D(T) is a linear subspace of U and if
T(aui + Pu2) *= aT(ui) + BT(u2) for all a,8eK.

If T is linear and is a (1-1) map of D(T) onto R(T) there is an 
inverse operator T 1 which is a linear operator mapping R(T) onto D(T) 
such that

T- 1  Tu ■= u for utD(T) and TT_1v = v for veR(T).
If Ti and T2 are two linear operators both on X into Y then Ti = T 2 

iff D(Ti) = D(T2) and TiX = T2x for xeD(Ti) = D(T2). If D(Tj) &  D(T2) 
and TiX = T2x for all xeD(T4) then T2 is called an extension of Ti and
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Ti a restriction of T2.

T is a closed linear operator if its graph G(T), where 
G(T) = {{x,Tx}; xeD(T), {x,y}eXxY} 

is a closed linear subspace of XxY.
If T is a closed linear operator on X into X then T-£l is also 

closed for all £ in K.

In our work we shall be dealing with operators defined on riormed 
linear spaces. The presence of the concept of norm allows the ideas 
of continuity and boundedness to be applied to such operators.
Definition 2,16 Let X,Y be normed linear spaces and let T be an operator 
on D(T) £  X into Y. T is continuous at x 0eD(T) if given £>0 there 
exists 6>0 such that llTx-Tx Hy < e for all xeD(T) such that Hx-x0llx < <5.
T is continuous if it is continuous at every point of D(T).
Definition 2.17 T is a bounded operator if there exists a constant M 
such that
(2.11) #Txll < Mlxl for all xsD(T) .
If T is bounded with constant M as in (2.11) then the result can be 
extended to all xtX if D(T) = X, with the same M.

For a linear operator, continuity and boundedness are equivalent 
concepts.

The important concept of a contraction mapping is a special case 
of Definition 2.17.

Definition 2. 18 The mapping F of a normed linear space into itself is 
a contraction mapping if there exists a k, 0 < k < 1 such that
(2.12) ®Fx—FyH < kllx-yllx for all x,y€X .
Theorem 2.2 Contraction mapping theorem

Let X be a Banach space and F:X->X a contraction mapping. Then there 
exists a unique point x0eX such that Fx0 = x0, Xo is called the fixed 
point of F.
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If T is a bounded operator the bound of T, denoted by HTB is defined as
(2.13) "Tfl = sup(»Tx» : lx» < 1, xeD(T)) .
The set of all bounded linear operators with domain X and range in Y 
and with norm defined as the bound of T constitutesa new normed linear 
space which is denoted by £(X,Y). If, further,Y is a Banach space then 
so is -C (X,Y) . When X = Y, £ (X,X) is abbreviated to X (X) . The. topology 
induced on X(X,Y) by this norm is known as the uniform topology. There 
are alternative topologies produced by different norms. In particular 
there is the strong topology associated with the norm on the space Y, in 
this topology a sequence of operators {Tn}i£(X,Y) converges to T iff 
{Tnx} converges to Tx for every xtX.

We consider now the special case of £(X,Y) where Y is the field K 
so that X(x,Y) is the space of all continuous linear functionals on X, 
called the dual (or conjugate) space of X and denoted by X* The topology 
on X* in the sense of uniform topology on X(X,Y) described above is 
called the strong topology of X*whilst the topology on X* in the sense of 

the strong topology on X(x,Y) is called the weak* topology of X*.
Then X* with the strong topology is denoted by X^,the strong dual, 
whilst X* with the weak* topology is denoted by X* ,the weak* dual.

The introduction of the dual space allows the intro­
duction of the concept of weak convergence in X(X,Y).
Denoting the value of the functional x*e X* at x e  X by 
< x,x* >, a sequence {Tn } is said to converge weakly if 
<Tnx,f> converges for each x e X and f fc X*. For £ (X,Y) uniform 
convergence implies strong convergence implies weak convergence.

We mention here a particular map F of X into X* defined by 
x* € Fx iff <x,x*> = I x*J x

This map is called the duality map of X into X*. F may be a 
multi-valued mapping although if X* is uniformly convex then F(.)

“X*'x*
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is single-valued and uniformly continuous in every bounded set 

of X.
Since the dual space X* is itself a normed linear space it 

is possible to form a dual space (X*)* of X*. This space is called 
the second dual space ofX and denoted by X** By construction the 
elements of X** are continuous linear functionals which map the 
linear functionals of X* into K so if FcX**, f e X*

F(f) = < f, F > = C € K

= f(x)
for some x 6 X. Thus to each x e X  there corresponds an F e X**
the F corresponding x will be denoted by F^
It can be shown that the uniform norm of F, IlFxll, is equal to
II xll so that the mapping x -*■ Fx preserves norms. Also x -*• Fx is
a linear map and is thus an isometric isomorphism so that X can 
be regarded as part of X** without altering its structure as a 
normed linear space and we write X c: X** i.e. X is contained in 
X** algebraically and topographically.

If X = X** under this embedding then X is said to be reflexive. 
A uniformly convex Banach space is reflexive, consequently a Hilbert 
space is always reflexive.

We now return to the general theory of operators T on D(T) cz X 
into Y. For each linear operator T with D(T) = X there is an 
operator T*, the dual (or conjugate) of T with D(T*) 6 Yg and 

R(T*) e X| such that
(2.14) <Tx,y' > = < x, T* y' > for all x e D(T) and all

y' 6  D(T*).
If T i  I (X,Y) then T* € JC(Y*,X*) and II HI =  II T* II .

For X,Y Hilbert spaces the idea of the dual operator can be

1»
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extended to that of the adjoint of T, adjT. We first note that 
for X a Hilbert space there is a one-one correspondence Jx 
between the elements y e X and f e X* through the relation 

f(x) = (x,y) for all x 6 X and II fll = llytl
This correspondence is conjugate linear since

(aifi + a2 ii) ++ (oil f 1 + a 2 f2 ) (on,a2£K)
then if C(T) = X <T::,y’ > = y'(Tx) = (Tx,Jyy')y
and <x, T* y ' > = (T*y ' )(x) = (x,JxT*y ' )x .

Hence (Tx,JY y' )Y = (x,JxT*y' >x,
that is (Tx,y)y = (x, Jx T*Jy Jy)x

In the special case when Y = X we can write
(2.15) adj T = Jx T* J - 1

Definition 2.19 . T is self-adjoint if adj T = T.
We now consider operator-valued functions t -*• T(t) e Z (X,Y).

of a real or complex variable t. As in operator theory there are
three important kinds of convergence. T(t) is continuous in norm
(uniform convergence) if II T (t+h) - T(t) II -*■ 0 as h -+■ 0, T(t) is
strongly continuous if T(t) x is continuous with respect to the
norm topology for each x £ X. T(t) is weakly continuous if
< T(t) x, f > is continuous for each x t X and f fc X*. In a
similar way three kinds of differentiability can be introduced, in

dT (t)particular the strong derivative T (t) = — —  is defined by
(2.16) limit T(t+h)x - T(t)x

T'(t)x = ---------------
h -*• 0 h

and similarly for the weak derivative.

1»



There are also different forms of the integral J T(t)dt. Îf 

T(t) is continuous in norm then the integral can be defined as 

for numerically-valued functions. For a strongly continuous 

function T(t) the integral Jl(t)dt is the 'strong' integral 

with the properties that for each x e X

( / T(t)dt) x = /T(t?x dt, II / T(t)dtH < / HT(t) II dt
(2.17) j

f T(s) ds = T(t) (strong derivative), d t

2.7. Resolvent Set of an Operator

An operator T in a Banach space X can have eigenvalues 

and eigenvectors. An eigenvalue of T is a complex number It K 

such that there exists a non-zero x £ D(T)eX with

(2.18) T x = X x.

Thus X is an eigenvalue if the null space of (T - XI) is not 0. 

Since T does not necessarily have any eigenvalues it is more use­

ful to introduce the idea of a resolvent set.

Definition 2.20 Let T be a closed operator in X. Then £ t K is 

said to belong to the resolvent set P(T) of T if T - £1 is in­

vertible with

(2.19) R(C) = R (C,T) = (T - C D ' e  C(x).

The operator-valued function R(£) is the resolvent of T,

R(C) has domain X and range D(T) for any £ t P(T).

2.8. Some Important Spaces

We now present some details concerning particular Banach and 

Hilbert space of functions defined on an open set of Rn .

1»
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C(f2) is the set of all continuous functions u(x) = u (xj ,x2 ,.. .xn) defined 
on a compact set fi in Rn . It is a Banach space with norm

n
For bounded i2, L^(n)cL^(i2) for p > q algebraically and topologically 

i.e. II .11 < Kll .II , K a constant, since if feLP,geL^ then fgeLs for

The above spaces are spaces of functions defined in the ordinary or 
classical sense. For the purpose of describing the solutions of partial 
differential equations they are too restrictive, to obtain a wider class of 
space the idea of a function is generalized using the theory of distributions 
due to Schwartz. We require first the following definition.
Definition 2.21 The support of a function f is the smallest closed set of 
fl outside which f vanishes identically.
We note the following sets which are linear spaces but not Banach spaces.
(ft ((2) ( 0 < k < <*>) is the set of all complex-valued functions defined in
(2 which have continuous partial derivatives up to and including k (of order 
k < 00 if k = °°) .

(2 .2 0 ) Hull = II ull„,0, = Hull = max | u (x) | .

LP(S2) ( 1 < p < “) is the set of all Lebesgue-measurable functions u(x) on 
(2, a measurable subset of Rn, such that / |u(x) |^dx is finite. It is a
Banach space with norm
(2 .2 1 ) Hull = llullLp = ( / |u(x) |pdx)P (p > 1 )

In lft((2) two functions u and v are identified if u(x) = v(x) a.e. in (2. 
lft(J2) is a separable space.
L 2 (0) is a Hilbert space with inner product
(2.22)

q P
— = —  + —  with II fgll < II fII II gll (s ,p, q > 1 ) .s p q ö s p ö q ,r’^

X C„k((2) is the set of functions € (ft((2) with compact support.

•**« 4
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Let K be any compact subset of ft then we denote by D (ft) the space
OO

of all f€C0 (ft) whose support is in K. A family of semi-norms can be
defined on Dĵ (ft) by
(2.23) PK>m(f) - |s| ^ x€K|Dsf(x)| (m < °°)

gSl+S2+...+Sn
where Dsf(x) = ---------------  f(xi,X 2,...xn)

3x513x^2...3xnn
n

|s| = |(si,s2 f...sn)| = l s:
j = l

so that DK (ft) is a linear topological space. The inductive limit of the 
DK (ft)'s as K ranges over all compact subsets of ft is a linear topological 
space denoted by D(ft).
Definition 2.22 A linear functional f defined and continuous in D(ft) is 
called a generalized function or distribution in D(ft) and the value f (<i>) 
is called the value of the generalized function f at the testing 
function <f>fcD(ft).
If f is a generalized function in ft then

8 (<i>) = 0>eD(ft)
defines another generalized function g in ft called the generalized 
derivative or distributional derivative of f with respect to Xj. We note 
that any generalized function is infinitely differentiable in the sense 
of distributions as a consequence of the definition of D(ft).

We now define the following Banach spaces which are based on the 
concept of distributions.
Wk,P(ft) (k a positive integer, 1 < p < °°) is the set of all complex
valued functions f(x) defined in ft such that f and its distributional

n .
derivatives Dsf of order ]s| = I |s.| < k € L p (ft). WK,p(ft) is a Banach

j = l 3
space with norm

I»
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(2 .2  4) Ilf II. =( 7 / |DSf (x))|pdx)p, dx = dxidx2 ...dxn
k,P |s}<ki)

These spaces are usually referred to as Sobolev spaces.

W^fl) = W ^ O J )  with p = 2 is a Hilbert space.
Hk (fl). We have previously referred to the linear space (il) . It can be 

normed by

( 2. 25)  I l f I I , .  -  ( .■kK |s|<kfi
if(x)|2dx)i

By the theorem of completion ,Yosida [2], it is possible to complete this
space. The completion will be denoted by Hk (fl) which is in fact a Hilbert
space and also a proper subspace of Wk (fi) if ftcRn. If 0 = Rn,
Hk (Rn) = H ^ r") = Wk (Rn). o

The above definition of Wk,p(f2) is valid for k a positive integer.
By use of the theory of the Fourier transform we can extend the range of 

. . 1c ndefinition of W (fi) for = R to all kfR as follows.
We first define the Frechet space N(Rn) and the Fourier transform of 

an element of N(Rn).
K (Rn) is the set of functions feC°°(Rn) such that

®“Pn|x6Daf(x)| < - , (x6 = n xji)
j- 1

for every a = (ai ,ct2 ,.. .a ) and 8 = (Bi ,6 2 ,.. .8n) with non-negative integers
a. and 8. . The topology on N(Rn) is defined by a family of semi-norms of J k
the form

p(f) = *^Pn |p(x)Daf (x) | where P(x) is a polynomial.
ADefinition 2.23 Every fe N(Rn) has a Fourier transform f defined by

(2.26) f (£) = ( 2 F)-n/Z/-n/ 2  t -i<?,x>f (x)dx
Rn

where £ = (Cl ,£2 , ...£_). x " (xi,x2,...x ), <£,x> *= £ £.x. andj = j J J
dx *= dxidx? • • .dx •1 n
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Theorem 2.3 (Plancherel's Theorem) 
If f £ L 2 (Rn) then f e L2 (Rn) and

II fll 2 = II fll Lz •
In analogy with the idea of distribution defined above we have the 

following.
Definition 2.24 A linear functional Tdefined and continuous on N(Rn) is 
called a tempered distribution in Rn.

It can be proved that any function f in l,P(Rn) (p > 1) defines a 
tempered distribution. Thus in particular f EH^iR11) defines a tempered 
distribution T f . Now the Fourier transform of T f ,  T f ,  can be defined

If fe Hk (Rn) then € L 2 (Rn) for |a| < k by definition and hence
DjkTf e L 2 (Rn) (j = l,2,...n). Now

By Fiancherei's theorem it can be shown that thè norm ||f||. of f in 
given by (2.25) is equivalent to thè norm

through
Tf (f) = Tf(f), f É S(Rn)

with the property that

(2.27)

by Holder's inequality and so using (2.241
/ ( H x l 2 ) 1^ 2 dx < 00

i.e. (l + |x|2 )k/2Tf é L 2 (Rn).

(2.28) II fll = II (l + |x|2 )k/2TfllL2.
Hence the space Hk (Rn) can be renormed by II fll J* and thus defined as the 

totality of f 6 L 2 (Rn) such that II fll ̂  is finite. With this definition k 
can be any real number, not just a natural number.
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kIn order to define H (ft) for any real number k it is necessary to 
restrict ft to a smooth subset of Rn.
Definition 2.25 Let P be a point of the subset AcRn . A is smooth near 
P if there exists a neighbourhood U of P and a mapping <f>of U onto a 
spherical neighbourhood V of the origin such that

(i) <(> and <t> 1 are (1 ,1 ) and infinitely differentiable
(ii) 4>(AnU) - Vn{xeRn |xi = 0}.

If A is smooth near each of its points it is a smooth subset of Rn .
Following Aubin t 4] we have the following.

Definition 2.26 The space HS(ft) where ft is a smooth bounded open subset 
of Rn is the space of the restrictions to ft of functions f of Hs(Rn).

The Sobolev spaces have the following embedding properties. 
Theorem 2.4 Let ftcRn be a smooth bounded open set then
(i) Wm (ft)cLC*(n) algebraically and topologically for

± > ± _ m
q p n

(ii) /(ft)c ¿(ft) for j <P P
(iii) Hs(ft)c C(H) for s > y  
where p,q,m,j are integers.

2.9. Liapunov Stability Theory

We have described in the Introduction § 1 how a partial differential 
equation or a set of partial differential equations may be regarded as a 
single equation
(2.29, z(t) + N(z,t) = 0.

We now regard z as a function on the finite real interval I = f 0,t1 to 

a Banach space Z and N(z,t) as a given function or operator from IxZ to Z 
and associate with (2.29) an initial condition of the form 

*(t0> " zo-



Following Zubov [5] we assume that for any element z0eZ there exists 
a local solution of (2.29) which can be extended to a global solution 

zCzot^o) vaiid for all t > tQ with the properties:-
(i) for any zot z(z0 ,t,t0) is defined for all t > t0 and z(zo,t,t0)e 7, 

for all t > tQ > 0

(ii) z(z0 ,t,t0) = z0 when t = t0

Suppose that (2.29) has an equilibrium point z£ then 
(2 .3 0 ) z(zE,t,t0) = zE for t > tD
We have the following definitions, Zubov [51.
Definition 2.27 The equilibrium point z£ is stable if for any e>0 
there exists 6 > 0 such that if II zQ-zE|| 6 then II z (z0, t, t0 )-zEll < e 

for 0 < tQ < t.
Definition 2.28 If zE is stable and if

llz(z0 ,t,t0) - zjpll ■+ 0 as t + ” 
then zE is said to be asymptotically stable.
Definition 2.29 The set of all zQ e Z such that zE is asymptotically 
stable is called the region of asymptotic stability of the equilibrium 

solution zE .
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§3 The Abstract Evolution Equation 
3.1. Introduction

In the previous chapter we have presented the essential features 
of functional analysis that we require for a discussion of the abstract 
evolution equation
(3.1) z(t) + N(t,z) = 0, z (0) = zQ
where z is a function on the real interval X = [0,T] to a Banach space 
Z and N is a given function or operator from I x Z to Z. In studying 
the questions of existence and uniqueness of the solutions of (3.1) it is 
convenient to consider the equation in the following four different forms.
(i) The simplest type of equation is
(3.2) z(t) + Az (t) = 0, z (0) = zQ
where A is a linear operator in Z which may be bounded or unbounded.
(ii) As (i) but with A dependent upon t, i.e.
(3.3) z(t) + A(t) z (t) = 0, z (0) = zQ
for each t or almost all t > 0 .
(iii) The semi-linear form
(3.4) z(t.) + A(t) z (t) = g(t,z), z (0) = ZqU
where A(t) is as in (3.3) and g(t,z) is a non-linear function from I x Z to Z.
(iv) The general form (3.1) where N(t,z) = A(t)z(t) and A(t) is a non-linear 
operator in Z.
(3.5) i (t) + A(t) z (t) = 0, z (0) = z o

Each of the types (i) - (iv) is a homogeneous equation, we shall also 
refer to the corresponding in-homogeneous forms where there is a forcing 
term f(t) on the right-hand side of the equation.
3.2, The Linear Equation with A independent of t 

We consider now in detail (3.2) viz
(3.6) z(t) + Az (t) = 0 z (0) = zQ
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where A is a linear operator independent of t.

If A«JC(Z) the operator

U(t) = U. -tA
ln= 0

is well-defined as the series is absolutely convergent for all real t. 
—tAe 6 jC(Z) and satisfies the group property
(3.7)
Also

~(s+t)A -sA -tA e = e e

os d -tA . -tA -tA.(3.8) -7— e = -Ae *> -e Adt
where the derivative is taken to be defined by norms

i.e. U(t+h) - U(t) ■* 0 as h + 0 .n dtB
-tAThus z(t) = e zQ is a solution of (3.6) for any zQCZ, we call it a strict 

solution because it satisfies the following definition.
Definition 3.1 z(t) is called a strict solution of (3.2) if z(t) is contin-

• • d z •uous for t > 0, the strong derivative exists for t > 0, z(t)eD(A) for 
t > 0 and (3.2) holds true.

—tASuppose now A is an unbounded operator. The operator = e is 
no longer defined by a Taylor's series but by the limit

(3.9) -tA lim /T . t,.-n e *= _  (I + —A)n-*°° n
Kato [l] has shown that the limit exists if

(i) A is a closed operator in Z and D(A) is dense in Z

(3.10)
(ii) the negative real axis belongs to the resolvent set of 

A and the resolvent (A+£l) * 1 satisfies the inequality 
I (A + C D " 1“ <j, C > 0

and furthermore the limit, which we shall henceforth denote by Ut rather
— t A • • • •than e , has the properties of an exponential function, that is

1»
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(3.11)
The set {U }

s,t > 0

t tX)
is said to form a one parameter semi-group of operators

with the operator -A as the infinitesimal generator of the semi-group.
With A satisfying (3.10) Hu (t)Il < 1 and the semi-group is called 

a contraction semi-group. This result constitutes the Hille-Yosida 
theorem, the conditions (3.10) provide a necessary and sufficient set 
of conditions for the generation of a contraction semi-group. Also U 
is differentiable in t if z£D(A) with

solution of (3.6) is given by z(t) = U t z 0 if zo 0(A).
The conditions of (3.10) on A are sufficient but not necessary for 

A to generate a semi-group. Kato [ 1] gives three alternative sets of 
conditions, two of which are less restrictive than (3.10). On the first 
of the less restrictive ones (3.10) (ii) is replaced by

where M is a constant independent of Çandk. The corresponding operator

turn be replaced by the condition that the semi-infinite interval £ > P 
belongs to the resolvent set of -A and

Then the operator A + 81 generates a bounded semi-group U lt and the

so that is a particular type of evolution operator. The unique strong

(3.13) (A + ÇI)'k» < 4  ? >0* k = 1, 2, 3,
C

Ut is still strongly continuous for t > 0 and indeed all the previous 
results are valid except that now

«U« < M, U = 1 . t ’ o
In this case U is referred to as a bounded semi-group. (3.13) can in

(3.14) (A + Çl)_kn < — ^  ç > 8 , k * = l , 2 , 3 . . .
( c - e r

0

/*»«*
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«UH < Me t
et

-*■ Inin place of lu^l < M. lu I is not necessarily bounded as t 
this case Û_ is referred to as a quasi-bounded semi-group.

We consider next the following set of conditions on A where 
slightly more is assumed concerning the resolvent set of -A.

(i) A is closed and densely defined in Z
(ii) The resolvent set of -A contains the sector

(3.15) |arg C| < y  + w (w > 0 )
(iii) For any E > 0
• (A + Ç.I) *• < -f for | arg ç| < — + u>

with M£ independent of ?.
Any operator satisfying (3.15) generates a semi-group of operators

Ut which are holomorphic for |arg t| < u, uniformly bounded for
f»rg t| < u - e and strongly continuous within the sector |arg t| < w - £
at t = 0 with Uo = I. Such a semi-group is called a bounded holomorphic

• • d zsemi-group and has the property that z(t) = U t z 0 satisfies ^-(t) = -Az 
for t > 0 and any z0€Z rather than any z0 iD(A).

All the proofs for the above are given in Kato [ 1] . We note at 
this point that as far as the stability properties of the solution are 
concerned if the equilibrium point z = 0 of (3.8) is to be asymptotically 
stable in the sense of Liapunov then the semi-group must be such that 
•U I < Me“Wt (u > 0).

We consider now an alternative characterization of the generators 
of contraction semi-groups in terms of m-accretive operators.
Definition 3.2. The operator A (linear or non-linear) on a general 
Banach space Z is accretive if
(3.16) lx - y + X(Ax-Ay)H > IIx - yH for each x,yeD(A) and X > 0.
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If the range of I + XA is the whole of Z for some X > 0 then A 
is m-accretive.
Theorem 3.1. (Lumer-Phillips)
-A is the infinitesimal generator of a linear contraction semi-group 
on an arbitrary Banach space if and only if A is m-accretive and 
densely defined.

It is shown in [l] that an m-accretive operator A is necessarily 
densely defined on Z provided that Z is a reflexive Banach space.

We note here the following alternative condition for m-accretiveness. 
Theorem 3.2. If A is a densely defined closed linear operator such that 
D(A) and R(A) are both in a Banach space Z and if A and its dual A* 
are accretive then -A generates a contraction semi-group.

In the special case when Z is a Hilbert space, Z = H is reflexive and 
the condition (3.16) for accretiveness is equivalent to
(3.17) Re < Az, z >  > 0 for all z € D (A) 
where <, > denotes the inner product on H.

We consider now the in-homogeneous form of (3.2)
(3.18) z(t) + Az (t) = f(t), z (0) = zQ.
where f(t) is a given function with values in Z. If z(t) is a solution 
of (3.18) then

•$- U(t-s)z(s) = -U'(t-s)z(s) +U(t-s)z'(s)as
" U(t-s)Az(s) + U(t-s)[f(s) - Az(s)] by (3.12)
** U(t-s) f (s) .

Integrating this on (0,t) gives
t

(3.19) z(t) = U(t)z0 + J U(t-s)f (s)ds
o

provided that U(t-s)f(s) is integrable.
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We note that if U(t) is a quasi-bounded semi-group and f(t) is
continuously differentiable then (3.19) is a strict solution of (3.18)
for any zQeD(A) but (3.19) does not provide a strict solution of (3.18)
for every f(t) and zQ . However we can regard (3.19) as a form of
generalized solution of (3.18) and make the following definition.
Definition 3.3. For any zDeZ and integrable f(t)

t
z(t) = U(t)zQ + / U(t—s)f (s)ds

o
is called a mild solution of (3.18).
3.3. The Linear Equation with A dependent upon t.

We now consider the linear equation (3.3)
(3.20) z(t) + A(t)z(t) = 0 z(0) = zq

and give some basic results concerning the existence and uniqueness of 
solutions. A fuller account can be found in Carroll [6 ].

The important difference between the time dependent and time in­
dependent cases is that the semi-group operator of the latter becomes 
an operator in two variables G(t,r) called an evolution operator. The 
following is a basic result.
Theorem 3.3. If t -> A(t) e C° (¿(Z)) on the interval I = [0,T], (3.20)
has a unique strict solution given by z(t) = G(t,0)zQ where 
t + G(t,l)(C * 1 ti(Z)) is a solution of
(3.21) G + A(t)G = 0 with G(t ,t) - I, t > t .
The strict solution referred to here is essentially as in Definition 
3.1 but with z(t)eD(A(t)) for t > 0.
In addition G(t,x) has the following properties.

(i) G(t,t) “ G(t,s)G(s,T), t < s < t
(ii) G(t , t) = G(t,f) 1

(3.22)
(iii) the maps zq -*■ G(‘,0)zo : Z -*■ C (Z) and (t,s)

G(t,s) : I x I -*-¿(Z) are continuous.



Definition 3.4. A family of bounded linear operators G(t,s) on Z to 
itself defined for 0 < s < t < T, strongly continuous in the two 
variables jointly and satisfying

G(t,s) = G(t,r)G(r,s) , G(r,r) = 1 s < r < t 
is called a family of mild evolution operators.

We introduce two further types of evolution operators by the 

following.
Definition 3.5. If a family of mild evolution operators satisfies

(3.23) = "A(t)G(t,s)z (s < t)
and
(3.24) 8G(g*s)z = G(t,s)A(s)z (s < t)
for all zeD(A(t)) then (G(t,s)} is called a family of strict evolution 
operators. If however (3.24) is satisfied but (3.23) is not then the 
operators are called quasi-evolution operators.

Consider now the in-homogeneous equation with A(t) an unbounded 
operator
(3.25) z(t) + A(t)z(t) = f(t) z(x) = z0, T < t < T.
As in §3.2 we can construct the solution

t
(3.26) z(t) - G(t,T)z0+ / G(t,s)f (s)ds

T
provided G(t,s)f(s) is integrable.

We quote the following theorem due to Kato [ 7] which gives con­
ditions for (3.26) to be a strict solution of (3.25) when A(t) is an 
unbounded operator and -A(t) generates a strongly continuous contraction 
semi-group for each te[ 0,T] .
Theorem 3.4. Let -A(t) be the generator of a strongly continuous con­
traction semi-group for t€[ 0,T] with AA(t) 'll < M (thus HAl +A(t) II < 1/A

We now make a formal definition of a mild evolution operator.
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for X > 0.) If D(A(t)) = D with t -*■ A(t)A ' © e c ' f i  (Z)) then there 
exists a unique strong evolution operator G(t,s) and if feC*(Z) and zoeD 
then (3.26) gives the unique strong solution of (3.25) on [t ,T].

There is a similar theorem due to Yosida [8] when -A(t) generates
a strongly continuous semi-group.

C°(X. (Z)) denotes the space of bounded linear operators mapping Z s
into Z which are strongly continuous in t for t€[0,T].

It is clearly a possibility that (3.26) might be a mild solution of
(3.25) under less restrictive conditions than are given in this theorem. 
This idea is explored in Chapter 5 which contains some new results in 
this direction.
3.A. The semi-linear form

We consider next the semi-linear form (3.4) viz

The mild solution can be constructed as in the previous cases giving

If f(.,.) is continuous on IxB(b,z0) where B(b,z0) = B ** (zeZ; Bz-z0B <b} 
then (3.28) is well-defined and is also the strict solution of (3.27) as 
the right-hand side can be differentiated with respect to t.

Other results where f(t,z) is a bounded operator are given, in Kato [ 9] .
The case where f(t,z) is not bounded is, not surprisingly, more com­

plicated. If f is bounded relative to A there is a theorem due to Segal 
[ 10] for the case where A(t) = A is independent of t and the semi-group 
generated by -A is strongly continuous. In this result the domain D(A) 
of A is regarded as a Banach space with the graph norm II zH + RAzBand as 
such is denoted by [ D(A)] .

(3.27) z(t) + A(t) z (t) = f (t, z) z (t ) = z q .

(3.28)
T

9
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the right-hand side can be differentiated with respect to t.

Other results where f(t,z) is a bounded operator are given, in Kato [ 9] .
The case where f(t,z) is not bounded is, not surprisingly, more com­

plicated. If f is bounded relative to A there is a theorem due to Segal 
[ 10] for the case where A(t) = A is independent of t and the semi-group 
generated by -A is strongly continuous. In this result the domain D(A) 
of A is regarded as a Banach space with the graph norm II zll + BAzDand as 

such is denoted by [D(A)] .

C°(*C (Z)) denotes the space of bounded linear operators mapping Z s

(3.27) z(t) + A(t)z(t) = f(t,z) z (t ) = z q .

(3.28)
T

*
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Theorem 3.5. Let f(t,z) be defined on Ix[D(A)] to Z and differentiable 
in t and z. Let ft(t,z) be continuous on Ix[D(A)] to Z and Lipschitz 
continuous in z. Let fz(t,z) have an extension as a bounded linear 
operator on Z to Z and let the map t,z fz (t,z) be continuous from 
IxtD(A)] to £(Z) and Lipschitz continuous in z. Then 

i(t) + Az (t) = f(t,z), z ( t) = z^

(where A is as in the previous paragraph) has a unique local strong 

solution z€ C(IQ ;[D(A)] ) n C^Io»2) for any zo 6 0(A) where IQ is some 
interval smaller than I i.e. IQ = [ t ,T0] (T0 < T).

The local solution can be extended to a global solution in certain 
cases such as when the Lipschitz condition is satisfied uniformly for 
all ze Z  or if the initial data and f(t,z) are sufficiently small.

There are some more recent results concerning the global solution 
of (3.27) when f(t,z) = -B(z) where B is a continuous, everywhere defined, 
non-linear operator from Z to itself. Webb [ 11] has shown that if -A 
generates a contraction semi-group Tt, t > 0 and B is accretive then the 
solution of (3.27)

t
(3.29) U(t)z = T.tz - /Tt_sBU(s)zds

o
exists and is unique for all z«Z. Also the operator U(t), t > 0 of
(3.29) is a strongly continuous semi-group of non-linear contractions on 
Z i.e. U(t) is a function from [0,”) xZ to Z such that

(i) U(t)U(s)z = U(t+s)z for all t,s > 0, zeZ
(ii) Hll(t)y - U(t)zll < lly-zll for t > 0 and y,zeZ
(iii) U(0)z = z for all zeZ.

The operator A+B is m-accretive on Z and -(A+B) is the infinitesimal 
generator of U(t). The validity of this result was extended by Maruo and 
Yamada [12] to the case where A and B are both dependent on t (with T
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becoming an evolution operator U(t,s) with norm < 1) whilst Maruo [ 13] 
has shown that the condition that B(t) is everywhere defined can be 
relaxed provided -A is the infinitesimal generator of an analytic 
semi-group.
3.5. The Nonlinear Evolution Equation

Finally we consider the abstract evolution equation (3.1) in its 
most general operator form (3.5) viz:-
(3.30) z(t) + A(t) z (t) = 0 z (0) = zQ
where A(t) is a non-linear operator with domain and range in Z . As in 
the linear case the existence of a strong solution of (3.30) is linked 
with the property of m-accretiveness of the operator A(t) (or an 
equivalent condition).

Kato [14] has proved an important result concerning the strict 
solution of (3.30) when A(t) satisfies the three conditions

(i) the domain D of A(t) is independent of t
(ii) there is a constant L such that for all ye D  and

#A(t)y - A(s)yll < L(t-s) ( 1 + Il yII +11 A(s)yi )
(iii) for each t, A(t) is m-accretive, (i.e. A(t) satisfies

(3.16)).
(Thus A(t) is assumed to be uniformly Lipschitz continuous in t). The 
proof of the theorem uses the concept of the duality map F from Z to Z* 
(see §2). The duality map provides an alternative condition for 
accretiveness to (3.16) namely the following:

there is an element feF(x-y) such that
(3.32)

Re (Ax-Ay,f) > 0
for each x,y D(A).



33

Kato's theorem is:
Theorem 3.6. Assume Z*is uniformly convex and let A(t) satisfy (3.31).
For each z0eD there exists a unique function z(t)e Z on [0,T] satisfying
(3.30) such that
(a) z(t) is uniformly Lipschitz continuous on [0,T] with z(o) = zD,
(b) z(t)e D for each t«[ 0,T] and A(t)z(t) is weakly continuous on [ 0,T]
(c) the weak derivative of z(t) exists for all te[ 0,T] and equals 

-A(t)z(t).
(d) z(t) is an indefinite integral of -A(t)z(t), which is Bochner inte­

grable, so that the strong derivative of z(t) exists almost everywhere 
and equals -A(t)z (t) .

If, further, Z is uniformly convex then the strong derivative 
d z • •— (t) = -A(t)z(t) exists and is strongly continuous except at a countable d t
number of values of t.

The conditions in the above theorem are not necessary conditions, 
in a further paper Kato [ 15] introduced an alternative set of sufficient 
conditions more general than the first. The condition is given in the 
original paper in terms of the canonical restriction of an m-accretive 
(multiple-valued) operator depending upon t smoothly.
Definition 3.6. A is the canonical restriction of a multiple-valued 
operator B if Az is the set of all yeBz such that ||y|| = Hull.
Theorem 3.7. Let Z be a Banach space such that Z and Z* are uniformly 
convex. Suppose A is m-accretive and A(t)z = Az + yz - b(t), 0 < t < °° 
with D(A(t)) = D(A) where y is a real constant and béw'(I,Z) for each 
interval lc[0,°°). Then for each zQ €D(A) the equation 

z(t)€ - A(t)z(t) z(0 ) = zG

has a unique strong solution z(t) on [ 0 ,°°) with z(0 ) = zQ having the

A y
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properties (i) z(t)eD(A) for all t > 0
(ii) nA(t)z (t) n is of bounded variation on any finite 

subinterval of [ 0 ,°°) with no positive jumps,
(iii) z(t) € - A(t)°z(t) for almost all t > 0 

where A°(t) is the canonical restriction of A(t).
wJ(I,Z) is the set of all Z-valued functions u on I such that u 

is the indefinite integral of a strongly integrable function v on I.
When A(t) = A is independent of t and m-accretive these results 

can be used to introduce a semi-group of non-linear operators as in 
Webb's results described in the previous section. By setting z(t) = U t z 0  

a family of single-valued operators {UtJ, 0 < t < ”, is defined with domain 
D(A) and ranges in D(A). (Uj.) is a semi-group since UtUg = Ut+S and 
contractive since

»Uta - Utb« < IIa-b»
Ut» is strongly continuous in t and by continuity the Ut can be extended 
to be operators with domain D(A) and range in D(A).

The general problem of the generation of semi-groups of non-linear 
transformations on general Banach spaces has been discussed in depth by 
Crandall and Liggett [16], and Miyadera [17], and on Hilbert spaces by 
Crandall and Pazy [18]. In order to describe their results which are 
essentially extensions of the Hille-Yosida theorem to non-linear operators 
let the semi-groups U(t) on C, a subset of Z, be characterized as follows.

A semi-group on CcZ is a function U(t) on [0,«) such that U(t) 
maps C. into C for each t > 0 and satisfies

(i) U(t+s) = U(t) U(s) for t,s > 0 and
(ii) U(t)z = U (0)z = z for zee

A #



35

Further U(t) eQ^CC) if there exists a real number u) such that 
• U(t)x - U(t)yll < eUt 8x-yl 

for t > 0 and x,y€C.
The non-linear operators A are viewed as subsets of Z xZ and then

(i) Ax = (y : [x,y] € A}
(ii) D(A) = {x : Ax j
(iii) R(A) = U(Ax : x€D(A)}
For Hilbert spaces Crandall and Pazy [18 ]have obtained a complete

extension of the Hille-Yosida theorem to cover all of Q (C) when C isb)
a closed convex set. In this case, Qu (C) can be Put into 1 - 1 corres­
pondence with the set of subsets A of ZxZ for which A+ioI is accretive, 
R(I+XA) = Z for all X > 0 and toX < 1, and D(A) = C. In the case of a 
general Banach space, it has been remarked earlier after Theorem 3.7. 
that if Z* is uniformly convex then an m-accretive operator A can be 
associated with a non-linear semi-group. In the general case when Z* 
is not uniformly convex there is the following result due to Crandall 

and Liggett [16].
Theorem 3.8. Let AcZ xZ and let w be a real number such that A+coI is
accretive. If R(I+XA)=  D(A) for all sufficiently small X(> 0) the 

(3.33)
exists for ziD(A) and t > 0. If U(t)z is defined as the limit (3.33)

lim r — t .. —n „ (I +—A) z. n-*00 n

then U(t) € Qw (D(A)). Furthermore if A is a closed subset of Z x Z and 
zeD(A) and 0 < T < ” then the conditions (i) and (ii) below are 

equivalent:
(i) z(t) = (I +-A) "z for t e  [0 ,T) and z(t) stronglynr*00 n

differentiable almost everywhere,

/»»
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(ii) z(t) is a strong solution of 
Oez(t) + Az , z(0) = zo

on [0,T). This is the non-linear version of the result for linear 
contraction semi-groups.

Although the proofs of Crandall and Pazy are not valid when the 
assumption on A is of the form

l(I+XA)-n» <M(l-Xw)-n, Re X > u>, 
as in the Hille-Yosida theorem, they can be extended to the case of A 
dependent on t to provide a theorem which gives the existence of a 
non-linear evolution operator. This theorem, which extends Theorem 3.7. 
has like Kato's result the condition that D(A(t)) is independent of t.
A similar result to these two but with the condition on D(A(t)) relaxed 
and Z a Hilbert space is reported by Watanabe [19] .



§4. Perturbation Theorems

4.1. Introduction
In the previous chapter we have reviewed the known results 

concerning the existence of the various forms of solution of 
the abstract evolution equation in its most general form

(4.1) z(t) + N(t)z(t) = 0, z (t) = z0

We now suppose that (4.1) can be written in the form
(4.2) z(t) 4 A(t) z (t) 4 B(z,t) = f(t), z (t ) = zQ
where A(t) is a linear operator but B(z,t) may be linear or 
non-linear. Equation (4.2) provides a particularly useful form 
of (4.1) if A(t) is not the null operator for then we can regard 
B(z,t) as a perturbation of the operator A(t) i.e. B(z,t) is
a perturbation of the linear system
(4.3) z(t) 4 A(t)z (t) = 0, z (t ) = zQ
f(t) is simply a forcing term in the system (4.2).
In this thesis we are particularly interested in the problems 
of finding the conditions on B(z,t) that ensure that there exists 
a solution of the perturbed system
(4.4) z (t) 4 A(t) z(t) 4 B(z,t) = 0, z (t ) = zQ
which is stable in the sense of Liapunov given that there exists 
a stable solution of the basic unperturbed linear system (4.3).

In view of the theorem of Lumer and Phillips the important 
part of the analysis of the perturbed system is to obtain the con­
ditions on B(z,t) under which A(t) 4 B(z,t) is m-accretive given 
that A(t) is m-accretive. In this chapter we present some new 
theorems which provide results of this form. They are essentially 
extensions of the theorems of Kato [1,15 [Nelson and Gustafson [ 20] 
and Okazawa [21,22] for linear and non-linear m-accretive time-

independent operators.
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4.2. Linear Operators
Kato [ 1 ] has shown that if -A, -B both generate linear 

contraction semi-groups on a Banach space Z with D(B)3D(A) and 
if B is relatively bounded with respect to A with A bound less 
than {, that is

iBz-IKal z II + bll Azll , a > 0, 0 < b < j, z €d (A)
then -(A+B) generates a contraction semi-group on Z. Nelson 
and Gustafson [ 20] modified this result to show that for the same 
conditions on A but with B accretive and b < 1, then -(A+B) 
generates a contraction semi-group. It has been noted earlier 
in §3 that -A generates a contraction semi-group if and only if 
A is m-accretive and densely defined. If Z is reflexive and A 
m-accretive then A is automatically densely defined and for such 
spaces Okazawa [21]has extended the Nelson and Gustafson result 

to b = 1 .
R>r Hilbert spaces Okazawa [ 22] has shown that if A is 

m-accretive, B accretive, D(B)oD(A) and there are non-negative 
constants a and b £ I such that

then A+B is m-accretive if b < I and the closure of A-B is m-accretive

We extend these results in the following theorems.
Theorem 4.1 Let Z be a reflexive Banach space and A be m-accretive,
B accretive with D(B)mD(A). If for any integer n > 0 there exists an 

a > 0 such that

then A+B is m-accretive. In the limit as n -+ °° this condition becomes 
(4.6) II Bz® < aH zll + U(2A+B)zll, zGD(A), a>0.
Proof:- Split the operator by writing

/ 0 < Re< Az.Bz >+ aII zB2 + bII AzII2 , z^D(A)

if b =

z e n (A)

A + B A+  BB + (l-g)B where 0 < 8 < 1.
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Since B is accretive and D(B)3D(A) then gB is accretive and D(gB)3D(A) 
and so we may apply Okazawa's result [21] to conclude that An'gB is 

m-accretive if there exists an a > 0  such that 
(A. 7) I gBzIl < aII zB + lAzll , zSD(A).
If (A.7) is valid then since D((l-g)B)3D(Ah gB) we may again apply 
Okazawa's theorem to the perturbation (l-g)B of A+gB to conclude 
that A+B is m-accretive if there exists a'> 0 such that 
(A.8 ) H ( 1-g)BzH <a'0z » + » (A+gB)zl! , z6 D(A)
We now choose gso that (A.8 ) implies (A.7). Clearly if (A.8 )is 

valid then
(l-g)llBzlK a'llzll + llAzll + gllBzIl 

or (1 —2 g) II Bz II < a'llzll + II Azll
and this implies (A.7) if a' » a and 1—2g= g i.e. g = A We 
have thus shown that Ah B is m-accretive if there exists a > 0 such 
that

(A.9) II Bzll < 1 II z || H || ( lA h I B) zll , zeD(A).
2 2 2

We note that if B satisfies 
(A. 10) II Bzll < all zll H || Azll 
then

II Bz IK |all zll h A || Azll -A II Bzll 
2 2 2

hence
II Bz IK I all zll h || (fA h j b) zll

so that any B which satisfies the Okazawa hypthesis (A.10) also 
satisfies (A.9). However the converse is not true because B = pA,
1 < p < 3 satisfies (A.9) but not (A.10).

&
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P



AO

With n = 1, (4.5) is identical to (4.9). To prove (4.5) with 
n = 2 we let A+B = A+YB+(1-y )B where 0 < y < 1 and derive two condi­
tions similar to (4.7) and (4.8) but using (4.9) instead of Okazawa's 
condition (4.10). These conditions are
(4.11) IIYBzIl < fllzll + II (|a +Jy B)zII ztD(A)
and
(4.12) II (l-Y)Bzll < fllzll +II[|(A+y B) + J (1-y )B]zII , ztD(A)
If (4.12) is valid then

II (l-Y)Bzll < fllzll + II (|a +Jy B)zII + IlYBzIl + II i (1 -Y)Bzll , z<D(A) 
1-3y iwhich is identical to (4.11) if — j-1- = Y i.e.' Y = f* With this value

ofY (4.12) becomes
II Bzll < all zll + II (| A+|B)zll zeD(A)

which is (4.5) with n = 2.
The general result can be obtained by an induction argument.

In applications of the above theorem the assumption that B is 
accretive is very restrictive. The following theorem relaxes this 
condition.
Theorem 4,2. Let A be m-accretive and A+B be accretive on a reflexive 
Banach space Z with D(B)mD(A). If there exists an a > 0 and an a,
0 < a < 1 such that

II (A+B) zll < ll(^pA+B) zll + all z|| z e D (A)

then A+aB is m-accretive.
Proof:- By setting A+aB = (l-a)A+ a(A+B) for 0 < a < 1 and applying 
Theorem 4.1. we find that A+aB is m-accretive if there exists an 

a > 0 s.t.
II a (A+B) zll < all zll + H2(l-a)Az + a(A+B)zll zeD(A) 

which is the desired condition.

1»
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For Hilbert spaces we have a similar result to Okazawa's 
theorem [2 2 ] .
Theorem 4.3. Let A be .m-accretive and A+B accretive on a Hilbert
space H with D(B)nD(A). If there exists a' > 0, b > 1 such that

0 < Re <Az,Bz> + a'llzll2 + bllAzll2 z€D(A)
then A+-J-B is m-accretive. b
Proof:- It is easy to show that
(4.13) ||(^Z â+b)zII 2 - II (A+B)zll 2 = 4( HAzll 2 + Re<Az,Bz>• Ot • 0t I Ot

i . ■*Put a. = — then .using the condition b
0 < Re <Az,Bz> + a'llzll + bllAzll2

we have II (A+B) zll 2 < all zll 2 + 1̂— "̂'A+B jz[ 2
4a' 1where a ** —— (1-a). Hence by Theorem 4.2. A+^-B^is m-accretive.

Corollary Let A be m-accretive and ^A+B (b > I) be accretive on a
Hilbert space H with D(B)^D(A). If there exists a constant a > 0
such that

« *
0 < Re<Az,Bz> + all zll 2 + II Azll 2 zeD(A) 

then A+B is m-accretive.
Proof:- Set B = bB in Theorem 4.3. If b > 1 A+B is accretive if
■¿•(A+B) is accretive and the result follows directly, b
Theorem 4.4. Let A be m-accretive and A+B accretive on a Hilbert 
space H with D(B)=D(A). If there exist real constants a > 0 and 
b > 1 such that
(4.14) II B zll < a'llzll + bllAzll
then A+^-B is m-accretive.b ^
Proof:- Set b = ~a~ ~ where,y = ” 1 then b = With
a' = j (4.14) gives
0 <11 Az|| 2 -  all Azll (||| Zll + bllAzll) + z|| 2 + -y)| z | | . | |^ - .  Azll -  y | |  zll. II Bz||

P
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and so

from which it can be deduced that
II ( A + B ) z l l  <  a l l  z l l  + 2-a + Bz .a

Since b > 1 we have a < 1 so the conditions of Theorem 4.2. are
satisfied hence A + is m-accretive. b
Corollary:- Let A be m-accretive and A+bB be accretive, if there 
exists a > 0 such that

then A+B is m-accretive.
Proof:- Set B = bB (b > I) in Theorem (4.4)
We can obtain similar results for the theorems of Kato [ 1] and Nelson 
and Gustafson [ 20] .
4.3. Non-linear Operators

We now proceed to consider non-linear operators. We will 
generalize the following two perturbation theorems of Kato [15] by 
essentially the same methods as we have used for the linear case. 
Kato's results are as follows.

Let A and B be m-accretive operators, possibly non-linear and 
multiple-valued.
(i) Let B be locally A-bounded so that D(B)pD(A) and for each z€Z 
there are a neighbourhood U of z and constants a and b such that

(ii) Let A be m-accretive and B single-valued and accretive. Let B

II B z l l  <  a l l  z l l  +  II A z l l

(4.15) I I I  B z l l l  < a  ♦ b i l l A z l l l  f o r  z « D ( A ) n U
where I I I  AzJII = in/ II sll . If b <  1 then A+B is m-accretive. seAz

satisfy the conditions of (i) above. Furthermore assume that for each
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and so

0 <  II Azll 2 + ocRe < Az, Bz > + y'llzll2 + — II zll .ll̂ pAzll - -y)l zll .11 Bz|| 
from which it can be deduced that

Il (A+B) zll < all zll +||-^pAz + Bzj| .
Since b > 1 we have a < 1 so the conditions of Theorem 4.2. are
satisfied hence A + 4-B is m-accretive. b
Corollary;- Let A be m-accretive and A+bB be accretive, if there 
exists a > 0 such that

II Bzll < all zll + II Azll 
then A+B is m-accretive.
Proof :- Set B = bB (b > 1) in Theorem (4.4)
We can obtain similar results for the theorems of Kato [ 1] and Nelson 
and Gustafson [ 20] .
4.3. Non-linear Operators

We now proceed to consider non-linear operators. We will 
generalize the following two perturbation theorems of Kato [15] by 
essentially the same methods as we have used for the linear case. 
Kato's results are as follows.

Let A and B be m-accretive operators, possibly non-linear and 
multiple-valued.
(i) Let B be locally A-bounded so that D(B)3 D(A) and for each ze Z  
there are a neighbourhood U of z and constants a and b such that

, 2-a. 2a,,

(4.15) I Bzlll <a +blllAzlll for zi D(A)nU
inf iwhere III AzJII = ^ ‘̂ 11 sll . I f  b <  1 then A+B i s  m -acc re tiv e .

(ii) Let A be m-accretive and B single-valued and accretive. Let B 
satisfy the conditions of (i) above. Furthermore assume that for each

I*

(*»•
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zo €D(A) there are a neighbourhood U of ẑ  and constants a' and b' 
such that
(A. 16) II By-Bzll < a'lly-zll + b ’ IllAy—Azlll for y,z 6 D(A)nU
Then A+B is m-accretive if b < 1 and b' < 1.

We derive first the following extension of (i).
Theorem 4.5. With the same conditions on the operators A and B as 
in (i) above but with (4.15) replaced by

(4.17) IIIBzlll < all zll + bill ^ 2 --- (~2n- iy ) Az + ( ' ----( 2ri-D  j Bz »,z6r,(A)nU

for any integer n > 0, a > 0, b < 1 then A+B is m-accretive. In the 
limit as n + “ this condition becomes
(4.18) IIIBzIH < all zll + bill (2A+B)zlll z€D(A)nU.
P r o o f Let IIIAzlll = II zpll where zp € (Az) , IH8Bz||| = || zq|| where 
Zq fc {BBz) then
I I I  (A+BB)zlll = inf II (A+BB) zll < II z + zq|| < II zp|| + || z II < IIIAzlll + |||BBz||| 
hence the proof of this theorem is similar to the linear case. The 
essential difference will be illustrated in the proof of the next 
theorem.
Theorem 4.6. With the same conditions on the operators A and B as 
in (ii) above but with (4.15) replaced by (4.17) and (4.16) 
replaced by
(4.19) II Bz-Byll <a'llx-yll + b' III ̂ 2-- ^n^yyj (Az-Ay)

+ (' " -cẑ nry) (Bz"By)lil
then A+B is m-accretive if b < 1, b' < 1.
In the limit as n ■+ 00 this condition becomes

II Bz-Byll < a'llz-yll + b'lll2(Az-Ay) + Bz—Bylll for z,yf D(A)nU.
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P r o o f Split the operator A+B by writing it as A+6B+(1-B)B,
0 < B < I, as in the proof of Theorem 4.1. Applying Kato's result 
(ii) regarding B as a perturbation of A then (l-B)B as a perturba­
tion of A+BB we find that A+B is m-accretive if there exist non­
negative constants a, ai, a2 , S 3 , b, bi, b 2 , l>3 with each b < 1 

such that for y,zeD(A)nU
(4.20) HBBzIl < a + bllAzll
(4.21) II 8 (Bz—Byll < aillz-yll + billAz-Ayll
(4.22) II (l-B)Bzll < a2 + b2lll (A+BB)zlll
(4.23) II (1-6) (Bz-By)ll < a 3llz-yll + b 3lll(A+BB)z - (A+BB)ylll 
If (4.22) holds then we have

(1 — 6—b 2 8 )II Bzll < a 2+b 2HlAzlll
which gives (4.20) if we set a = 8a,

l-BO+bj) and b = Bb„ . . Wei-ea+b2r
require b < 1 i.e. 8b 2 < 1 — 6(1 +b2) which gives 8 < , . 1.—  . SinceI+ZD2
b 2 < 1 we can choose 8 = -j. In a similar way we can show that (4.23) 
implies (4.21) if 8 = -5 so that equations (4.20) - (4.23) can be 
replaced by the two conditions

II Bzll < | a 2 + b 2IH (|A + 1B )z II z ( D (A)n u(4.24) 
and

(4.25) II Bz—Byll < fa3llz-yll + b 3lll| (Az-Ay) + J (Bz—By) III j z,y e D(A) n IT 
The rest of the proof follows as in the linear case.

The accretiveness condition on B can be relaxed as in Theorem 
4.2. to obtain the following results.

Theorem 4.7. Let A be single-valued and m-accretive and A+B single­
valued and accretive with D(B)=D(A). If there exist non-negative 
constants a, ai, b, bi with b < 1 , bi < 1 and an 0 1, 0 < a < 1 such that

i



z € D (A) n U

(A.27) IIAz-Ay+Bz-Byll <aillz-yll + bill^-^(Az-Ay) + Bz-Byll; z,y€ D(A) n U
then A+aB is m-accretive.
P r o o f See proof of Theorem A.2.
Theorem A.8 . Let A be single valued and m-accretive, A+B be single-£■
valued and accretive on a Hilbert space H with D(B)=> D(A)=> 0. If
AO ■ BO = 0 and there exists a, b > 1 such that
(A.28) II Bz-Byll 2 < a2ll z-yll 2 + b‘llAz-Ayll2 z,y( D(A)n U

2then A + B is m-accretive.
Proof:- If

(A.29) (1 —b i) II Bz-Byll 2 < afllz-yll2+ ( -  ij || Az-Ayll 2

and bf(2 -a)/a = 1 then

II Az-Ay+BzrByll 2 = II Az-Ayll 2 + <Az-Av, Bz-By > + < Bz-By ,Az-Ay >

+ 0-b2)ll Bz-Byll 2 + bill Bz-Byll 2

^ II Az-Ayll 2 + <Az-Ay, Bz-By > + <Bz-By,Az-Ay >
+ a2II z-yll 2 +(^y - lj II Az-Ayll 2 + bill Bz-Byl!

= aiII z-yll 2 + llji-iAz-Ay) + b](Bz-By)|| 2

= a iII z-yll 2 + bill —j —i(Az-Ay) + (Bz-By)ll 2

Now (A.29) is valid if b2 = 1/b2, a2 = a2 /(]-b2), using (A.28), and so
we have (A.27) of Theorem A.7. Moreover since AO = BO = 0 the above is
true if y = 0 and we obtain

IIAz+Bzll < aiII zll + b II -^pAz+Bzil z£D(A)r*U
which is (A.26) of Theorem A.7. Since b > 1 then bi < 1 so all the
conditions of Theorem A.7. are satisfied and we have A+aB = A + — — ,B

1 +b~
is m-accretive.

Corollary With the same conditions as in Theorem A.8 . but with (l-e)A+B 
accretive instead of A+B accretive and (A.28) replaced by

(A .26) II (A+B)zll <  allzIl+bll^pAz+BzIl
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llBz-Byll2 < a 2llz-yll2 + (l-e2)ll Az-Ayll 2 z,y(D(A)flU
then A+B is m-accretive.

/ i xv2 \ _Proof:- Set B B and 1+b2 1-e. If (l-e)A+B is accretive
then so is (1-e) (A+B) and also A+B.
If iB z - B y ll2 < a 2ll z—yll 2 + (1-e2) II Az-Ayll

.2. 2 t • 2 >
II Bz-Byll 2 < a 2 (~y'j II z—yll 2 + II Az-Ayll 2

= a,2llz-yll2 + b2ll Az-Ayll 2
which is (4.28). Hence by Theorem 4.8. A+(l-e)B i.e. A+B is m-accretive. 
Theorem 4.9. Let A be single-valued and m-accretive, A+B be single­
valued and accretive on a real Hilbert space H, with D(B)=>D(A)=0. If 
AO = BO = 0 and there exists non-negative constants a', b' >1 such that 
(4.30) llBz-Byll < a * II z—yll + b ' II Az—Ay II

then for any 6 > 0, A + (l+iS)b' — 6 B m-accretive •
b ’-lProof: Choose as.t. 0 < a < r-, and let b = .b 2 -a then b < 1 and

-b'
a < 1 since b' > 1. Set a

2
a'(1+b) then squaring (4.30) gives 

0 < [b 2 (‘ir) " l] II Az-Ayll 2 + 2abllz-yll.ll^(Az-Ay)ll + (b2-l)II Bz-Byll 2 - 2abll z-yll. 
â * II z—yll + b ' II Az-Ayll j + a2ll z-yll 2 - 2|b2-^^ - 1 j II Az-Ayll£ a'll z-yll + b 'll Az-Ayll j 

which implies
II Az-Ayll 2 + 2 <Az-Ay, Bz-By >  + II Bz-Byll 2
< a2ll z-yll 2 + b2ll(Az-Ay) + Bz-Byll 2 + 2abll z-yll .11-—r— (Az-Ay) + Bz-Byll
i.e.
Moreover if AO

II Az-Ay + Bz-Byll < all z-yll + bll-^p(Az-Ay) + Bz-By||
= BO = 0 we can see that (4.30) implies

, 2-a,II (A+B)zll <  all zll + bll-^Az-BzIl a
so by Theorem 4.7. A+aB is m-accretive.

Since b' = we have « = '(Y+gib^S
it follows that 6 > 0 .

with 6 Since b < 1
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Corollary With the same conditions as in Theorem 4.9. but with 
(l-e)A+B accretive instead of A+B accretive and with (4.30) 
replaced by

(4.31) II Bz-ByII < all z-yll + b ' (1 —e)II Az-Ayll
then A+B is m-accretive.
Proof Set B = ^ | ̂ B = (l-e)B in Theorem 4.9.

In Chapter 8 we shall illustrate these results by applying the 
following version of the above corollary. We conjecture, in the light of 
the above results, that it is true.

Corollary. Let A be single-valued and m-accretive, (1-e) A+§ 
be single-valued and accretive on a neighbourhood Uof the origin of 
a real Hilbert space H with D(B) => D(A)° IPO.
If AO=BO = 0 and there exists non-negative constants a* ,b’ >1 such 
that II Bz - Byll < all z-yll + b’ (l-C)ll Az-Ayll
then A + B is m-accretive in U.

Note
In the above results we have not proved that the hypotheses of theorems 4.1 
and 4.5 can be weakened to

II Bz H « all zll + II 2Az + BzII , zeD(A)
but the subsequent results can be obtained without actually taking the 
limit as n -* ».
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§5 Perturbations of Linear Semi-Groups 
5.1. Introduction

We recall that in the survey of existence and uniqueness theorems 
in Chapter 3 we introduced the concept of a mild solution of a differen­
tial equation. For the linear homogeneous equation
(5.1) ¿(t) + A(t)z(t) + B (t) z (t) = 0 z(0) = zo
the mild solution is given by

t
(5.2) z (t) = T(t,0)zo - / T (t, p) B (p) z (p)dp

o
where T(t,s) is the evolution operator associated with A(t). Writing 
z(t) = U(t,s)z(s) we call U(t,s) the evolution operator associated with 
the operator A(-) + B(.) on A(T) = {(s,t), 0 < s < t < T> and define it 
by the integral equation

t
(5.3) U(t,s)z = T (t, s) z - /T(t,p)B(p)U(p,s)z dp

s
which can be derived from (5.2) using the properties of T(t,s).

In this chapter we discuss the properties of U(t,s) in the following 
situations:-

(i) T(t,s) = the strongly-continuous semi-group on Z which has -A 
as its infinitesimal generator and is such that
(5.4) IITj.ll < Me““*  (u> > 0)
so that

z(t) = T z t o
is the asymptotically stable strict solution of

& (t) + Az (t) = 0 z (0) = z €D(A).o
For B(*) we consider the two cases of B(*) bounded and B(<) unbounded.
(ii) T(t,s) is the evolution operator generated by -A(t) and is also a 
quasi-evolution operator in the sense that
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g
■g^T(t,s)z = T  (t,s)A(s)z z(D(A) a.e. 

with B(-) the class of (possibly) unbounded operators such that 
llT(t,s)B(s)zll < g(t-s) II zll z €. 7.

where g is a locally integrable positive function.
In each case we show that U(t,s) is a quasi-evolution operator 

with an exponential bound of the form
(5.5) IIU(t,s)ll < Me_(w““ l)(t-S).

From these properties we can derive conditions under which the 
perturbed system (5.1) is asymptotically stable in the sense of Liapunov 
and can also show that it is possible to estimate the solution of the 
in-homogeneous equation
(5.6) z(t) + A(t) z (t) + B(t)z (t) = f(t).

We make frequent use of the following inequality. (For a proof see 
Carroll [4]).
Gronwall's Inequality
Let ail (t ,T) , a (t) >0, zí 1 (t ,T) and assume b is absolutely continuous 
on [t ,T]. If

z (t) < b(t) + / a(y) z(y) dp
then

t t t .
z (t) < b(x) exp / a(y)dy + / b'(s) exp | /a(y)dyjds.

5.2. Bounded Perturbations of a Semi-Group Operator
Let T be a strongly continuous semi-group of operators with -A as

infinitesimal generator such that (5.4) is valid. Let B £ B̂ tf 0,T] ,JC(Z)) ,
the space of !(Z) valued operators strongly measurable and essentially
bounded in [0,T] so that there exists K such that
(5.7) l,B(t)H/(z) < K  a,e" on f0,Tl



50

We derive all the properties of U(t,s) in the following theorem.
The results can easily be generalized to the case where llB(t)ll̂ Ẑ) < 
K(t), [ 23] .
Theorem 5.1: There exists a unique solution of (5.3) with the following 
properties,
(i) U(t,.) is strongly continuous on [0,T] and U(.,s) is strongly 
continuous on [s,T] .
(ii) U(t,r)U(r,s) = U(t,s), U(t,t) = 1  0 < s < r < t < T
(iii) IIU(t, s)II < Me“ (a)_MK)(t's)
(iv) U(t,s) is a quasi-evolution operator [23] in the sense

g
■g^U(t,s)z = U(t,s) (A+B(s))z , z £ D(A) a.e.

P r o o f The proof of parts (i), (ii) and (iv) of this theorem can be 
found in [23], consequently it is not necessary to give all the details 
here. It is sufficient to observe the following remarks concerning the 
existence of a solution of (5.3).
We construct U(t,s)z by the method of successive approximations so that

OO

U(t,s)z = £ U (t,s)z with
n= 0  n

(5.8) Uo(t,s)z = T zt-s
t

(5.9) U (t,s)z = -JT B(p)U (p,s)z dpn * t—p n-Is
The integral in (5.9) is a well-defined Bochner integral since B(.)e
Bm ([ 0,T] , (Z) ) . Taking norms we obtain

t
HU (t,s)zll < / IIT B(p)II IIU (p,s)zll dp.n j t-p n- 1s

By writing IIUn (t,s)zH = gn (t,s) (n > 0) and llTt_pB(p)ll = K(t,p) we have
t

(5.10) gn (t,s) < /K(t,p)gn_] (p,s)dp.
s

For a given kernel K(t,p) we require minimally that gn(t,s) -*• 0 as n -*• “>. 
For our bounded operator B we have K(t,p; = MKe-“ t̂_P  ̂and it is easy to
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show by induction that
g (t,s) <M(MK)n llzll ill®!" e-w(t-s) n n!

N N
hence II Y U (t,s)zll<Y g (t,s) < M  exp [(MK-w)(t-s)] for all N and so

0 n 0 n00

Y U (t,s) is convergent on A(t) in the uniform topology. We can easily 
n= 0 n CO
show that U(t,s) = £ U (t,s) is a solution of (5.3) and so we have

n= 0 n
proved the existence of a solution with
(5.11) IIU(t,s)ll < Me"(“-MK)(t-s)

We can now estimate the effect of the perturbation operator B(.) 
and the forcing term f(.). We first define the ’mild' solution of (5.6) 
to be
(5.12) z(t) = U(t,0)z + f U(t,p)f(p)dp

so that if for example f£L2 [0,T,Z] we have z(. )eC [ [0,T] ,Z] . Note however 
that in general we are not able to differentiate (5.12) and obtain 
(5.6). To do so requires further assumptions on f and that U(t,s) is a 
strict evolution operator in the sense that it satisfies 

^U(t,s)z = - (A+B(t) )U (t, s) z z€D(A).
as well as the properties defined in our Theorem 5.1.

It is easy to show that (5.12) is equivalent to 
t t

(5.13) z(t) = TtZQ - /Tt_pB(p)z(p)dp + jTt_pf(p)dp

Using (5.11) and (5.12) together gives 

(5.14) II z(t)ll < Me"(t°“MK)tllz II + -(w-MK) (t-p ) . . f (p)II dp

from which we can estimate the effect of the perturbation operator 
B(.) and the forcing term f(.).

ME
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5.3. Unbounded Perturbations of a Semi-Group Operator
The second class of perturbation operator B(.) that we wish to 

consider is that of unbounded perturbations with the properties
(5.15) D(B(t)) = Z for all t,
(5.16) IIT _ B(s)zll <   --  HzII , t > s, zeD(B(s)), 0 < a < 1.

C S (t-s)“
We require conditions such that A+B(.) generates an evolution operator 
U(t,s) with
(5.17) IIU(t,s)II < M'e-Ul(t-s) , U)j > 0.
We note first that (5.16) implies that for any t >

B(s) has extension T B(s) to all of Z with t—s t~ s
(5.18) llTt _ s B(s)ll <

(t-s)^ t > s

(5.19) V t - s B(s) " Tt+p-sB(s) t > s -
Equation (5.3) is now taken as

s the operator

and
p > 0 .

t_______
(5.20) U (t, s)z = T z - J t B(p)U(p, s ) z dp 0 < s < t < T.c-s g t-p
We prove the following theorem which is essentially the same as the first 
two parts of Theorem 5.1.
Theorem 5.2. With IIT B(s)II given by (5.18) and ||T || < M  there exists a" C*"S t
unique solution of (5.20) with the following properties:-
(i) U(t,.) is strongly continuous on [0,T] and U(.,s) is strongly 
continuous on [s,T] .
(ii) U(t,r)U(r,s) = U(t,s), U(t,t) - I, 0 < s < r < t < T .
Proof:- We construct U(t,s) by successive iterations as in the proof
of Theorem 5.1. We have (5.10) with K(t,p) = -- —--

t (t-p)a
(5.21) i.e. g (t,s) < /-- ii—  g (p,s) dp , 0 < a. < 1.

s (t-p)a n _ 1
Although this kernel K(t,p) has a weak singularity at p = t we can,

’ *>
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following Micklin [24] , show that g^ft.s) is bounded by h^it.s) where

(5.22) i n ti. _s _ M[Nr(l-ot)r‘ f 1
h ( t , s )  = ------ -------- i-----  J ----------- 7---- rT73---- s d P"  1 a - ( n - l ) ( l - a )T(n-na) s (t-p)

_ M [ N r ( l - a ) ] n N n (1 -a)rin'+i~na] > ( 1 = the gamma function),
OO

h (t,s) is a power series in (t-s) , uniformly convergent for all
n= 0  n

OO

t < 03 hence Jg (t,s) converges uniformly on [0,T] . As in the case of a

bounded operator we can then deduce that \ U (t,s) is convergent on
n= 0 n

A(t) in the uniform topology and that it is a solution of (5.20). We 
also have U(t,t) = I.

To show that the solution is unique we suppose that there is 
another solution Uj (t,s) and let

R(t,s) = U(t,s) - Ui(t,s) . 
t

Then R(t,s)z = /T B(p)R(p,s)z dp

and t „
II R(t, s) zll < /-- -— — II R (p, s)zll dp.

s (t-p)a
which is the same form as (5.21). If we iterate this inequality a suf­
ficient number of times we obtain

t
II R(t, s)zll < C  / II R(p, s) zll dp (C > 0)

s
so R(t,s)z = 0 for all zCZ by Gronwall's inequality.

The semi-group property can be proved in a similar way.
r

U(t,r)lT(r,s)z = Tt_rTr_sz - Tt_r / Tr_pB(p)U(p, s)z do 
t________  s

-  j T t _ D , B ( o ' ) U ( p \ r ) U ( r , s ) z  d p ’ .

Using the semi-group property for T along with (5.19) and setting 
U(t,r)U(r,s) - U(t,s) = R(t,r,s) we have
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R(t,r,s)z « - / T ,B(p') R(p',r,s)z dp’ 
r L p

and so by Gronwall's inequality we have R(t,r,s)z = 0 VzeZ and s < r < t. 
Hence U(t,r)U(r,s) - U(t,s) = 0.

For the proof of continuity we write
t_______

U(t,s)z = Tt_gz - /Tt_pB(o)U(p,s)zdp. = T z + <J>(t,s)z 
s c

and note that T£_g is strongly continuous in sandt. Therefore we need 
consider only <l>(t,s)z. Take h > 0, tie[s,T), t2 6 (s,T] then we have

tj
<Kti+h,s)z - <Kti,s)z = / (Ttl+h_pB(P) - Ttl_pB(P))U(p,s)zdp

and

St, +h__________
+ t / Tti+h_pB(p)U(p,s)zdp

1 2 “h ______
<Kt2 ,s)z - <Kt2-h,s)z = J (t T "B(p) - T B(p)U(p,s)zdp12 P L2~n-p

+ / B(p)u(p,s)zdP- t2-Pt2“h
"II ̂  (t l+h, s)z - <t>(t2 ,s)zll <ll(Th-I) f Tti_pB(p)U(p,s)zdpll

1 1  +h *
+ J  ~(t\+ h- p)a  IIU(p,s)zlldp

using (5.19). Then II 4> (t l+h, s)z - <f>(ti,s)zll -*■ 0 as h + 0 by the strong 
continuity of Tt and the fact that 0 < a < ] and IIU(p,s)zll is bounded. 
<(>(t2 ,s)z ~ <p (t2-h, s) z -»■ 0 as h -*■ 0 for similar reasons.

Now take h > 0, Si€[0,T) and s2 6(0,T] then
t

II(j>(t, s i+ h ) z  -  <i>(t, s i ) zll <  /  IIT" BTp')ll IIU(p,si+h)z
s,+h s‘+h P

- U(p, Si)zll dp + / HTt_pB(p)|| IIU(p,si)zll dp
and si

ll<t>(t,s2-h)z - ¡)> (t, s2 ) zll < / II Tt B(p)|| II U(r, s2 -h)z
s2

- U(r,s2)zll dp + / IIT B(p)ll II U(r, s2-h) zll dp
s2-h c-p
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Since U(p,si) = U(p,si+h)U(si+h,sj) as h > 0 we have
II U (p, s j+h)z - U(p, s i) z|l < IIU(p,Sl+h)|l III - U(Sj+h,Si)z|| 

hence II(t,si-*-h)z - i))(t,si)z|| + 0 as h ■* 0 by the strong continuity of 
U(.,s) on [s,T] , the boundedness of IIU(t,s)ll and the property of ||Tt_pB(p)|| . 
II<J>(t,s2—h)z - 4>(t,s2)zll + 0 as h + 0 for similar reasons.

We now have to consider the problem of obtaining an estimate for 
IIU(t,s)ll when II T̂ ll < Me  ̂ (w > 0) similar to that given by (iii) of 
Theorem 5.1. for the case of a bounded operator. For simplicity in the 
following we assume that B is independent of t so that the operator 
U(t,s) is in fact a semi-group U(t,s) = Ufc_s where

v - v  - v dpo
An estimate of Ut could be found by summing the series

yM[Nr(1-Ct)1r . r ( 1 - a )
£ T [r+l-ra]

but in applications this could be difficult. An alternative approach is
to iterate the inequality (5.21) N times only where N is determined by
«  ( n(l-a) - a > 0 for n > N
K }  ( n(l-ct) - a < 0 for n < N
Then we have 
(5.24) g(t) < ! g (t) + TN C - a>-« / 8(p)dp

0 n T((N+1 ) (1-a)) o
-wtwith gD(t) = Me , and we may use Gronwall's lemma to obtain

(5.25) g(t) < MeCt + eCt / b'(p)~“Cpdp

where b(t) = j g (t) and C = TN(,-“>-a
0 n T((N+1) (l-a))

Since C > 0 this result has no use for our purposes.
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We can find a better estimate if we use the semi-group property 
of T to modify the estimate of IIT̂ BlI given by (5.18) and used above. 
From (5.19) with s = yt and using (5.4) we find that 

"T (l+Y)tB" < M e - ^ £ JL , t > 0

HT̂ Bll (i+Y)ae'

(5.26) i.e. IIFbII e“6t , t ta
(5.27) Ni = MNd+Y)“,

t > 0 where

8 = w y/O+ y ).
Theorem 5.2. is still valid as the additional term in the kernel 
K(t,p) is e ^  ^  which is bounded by unity. The corresponding
gn (t) are given by

g„(t) =Me~Bt [
- (w-B)p

r (n-na) o (t-p)a“(n 1)(l_0l)
dp , n > 1

and (5.24) is replaced by 
N

g(t) <«*-M  . I g (,) . / ( ! - » ) -  ÌM 1 H I 1*' /.-B(t-p) (c)dD 
’ n (N+l)(l-a)] o1

BtWe now use Gronwall’s lemma to estimate el g(t) and have 
g(t)e^C < Me^C + b(t)ei't

where b(t) = \ g (t)e6t and C =
1 n n ( N + l ) ( l - a ) ]

Thus in place of (5.25) we have
(5.28) g(t) < [M+b(t)]e-(6-C)t.
Clearly this estimate will depend upon T unless a = 0, j, §, ... =i— ...

N+l
and so will be of no use as such when we consider T -*• <*>. However
since we have

IIUtll < g(t) < Mae-tdit 0 < t < T
using the semi-group property of Ufc we can show that
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" V < M?e"“ inT
If Y = log Mi then

t " < e-<“ i ~Y> nT

hence IIU II < Mie" ^ 1 " T)(nT+1) nT+t. if Y > 0
so we have
(5.29) Ilutll <Mie-(“ 1~ Y )t (t > 0).
Since wi ■» B-C, U)i depends on T so that in determining conditions on 
the operator B, through the parameter Ni, for the origin of the perturbed 
system to be asymptotically stable we must optimise on T.

If Ni is small enough then we can find T such that
R-c > loSMl = logtM+b(t)1 T T

since C and b(T) increase continuously with Ni and T and are zero 
when Ni = 0 .

In contrast to the above analysis we will now find a stability 
criterion by estimating directly the solution of the integral equation

(5.30) h(t) < Me~“'t + Ni /■ h(p) dp
o (t-p)a

(5 .31 )  where h ( t )  = e^*IIU II and u ' = io-B.

Now suppose we can find a function H(t) which satisfies
(5.32) H(t) > Me““ t + Ni / — ^  dp Vt > 0

° (t-p)“
, t -a>»p

then H(t) > Me"^ 1 + MNi / ----- dp + ....
O (t-p)a

- h0 (t)
where hQ (t) is the solution of

hD (t) = Me-“ ' + Ni / -h-°--P) dp 
o (t-p)a

Moreover hQ (t) is greater than any h(t) which satisfies (5.30) hence 
H(t) > h(t) for all t > 0.

— '
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We look for H(t) in the form of an exponential bound Mie^ and note 
that il must be positive since if H(t) - Mie~CTt (a > 0), when we 
substitute into (5.32) we require

Mie 0t > Me"“ C + NiMi / — — ^  dp Vt > 0

i.e.
o (t-p)

M. > e’« ™ »  ♦ N iM i f £ L  dy 
o ya

for which there is no solution if a > 0 since the integral diverges
“St-»-». With H(t) - Mient (il > 0) we solve

(5.33) M j e ^  >  Me -u't NiM, /
t ilp

o (t-p)
dp Vt > 0 

11 — Cl
P t _  1~“(X Qt 00 1 —ry ft*-

SlnCe 6P = ~  1 ^  dy < £ _  / e " *  d y = ^ _  (,-«).o (t-p) l-a o i_a o p 1 «

we can see that (5.33) is satisfied if il is chosen so that
(5.34) Mlefit > Me"“'C + H i  ent (]-a).
If there exists 6 > 0 such that 

(5.35)

il

1 ■= Ni£(j-oO + s 
i l ,_ot

then (5.34) is satisfied for all t > T such that

(5.36) L " (“ 'ifi)T = jMl

and if Mi6 > M then (5.34) is valid for all t > 0. Hence we can find 
Mi,il(>0) such that

h(t) < Mient Vt > 0,
an estimate for this value of il being given by
(5.37) l > JLl_ r(|-a).

ilI_a

Using (5.31) and (5.37) we now have an estimate of ||U || in the form
(5.38) IIUtll - g(t) = e"Rth(t) < M 1 e^"®^t. 
where il1 a > NiTO-a).
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For stability we require !2 < B so on using (5.27) we need

I-a
a < -P-l+Y

(5.39) i.e. N,r(l-cO < jgj- 
But Nj = MN(1+y? so (5.39) becomes

MNr( l-a )  < 1+Y
The parameter Y is still at our disposal. The maximum value of 
. 1-a
1-Y
(5.40)

occurs when y 1-a so that the best estimate is
MNr( l-a )  <  u), _ a aa ( l - a ) 1 _ a .

In chapter § 8 Applications we are concerned specifically with 
the case a = {. We now obtain a comparison of the estimates 
obtained by the direct method (5.28) and by (5.40).

With a - J, N is equal to 1 so that (5.28) gives

g(t) < Me“ “ 6 + Me“6^ !  / — ---^dp + N?tt / e“6(t"D)g (p)dp
o (t-p) 1 o

The first integral on the right-hand side can be estimated from the

1-a
general result that

t  - a p
(5.41)

o
so that

U « « » *

^ ( t ^ « d p < w r y  c > °>

g(t) < Me -ut
e ~ B t  +  //u-8

-B(t-p)
g ( p ) d o .

Multiplying by ep and using Gronwall's lemma as before gives
+ [I_e- (u-6+N?,)t]]

Now u > 8 so for stability we require 8 > N?ir. Using (5.27) this 
becomes the condition that

> M 2N2(1+y )tt
> m n /F

which is identical to (5.40) with a = J.

' b
■v -



We observe that (5.38) provides for our class of unbounded 
operators the analogous result to (iii) of Theorem 5.1. for bounded 
operators. We can thus proceed to obtain estimates of the effect
of a forcing term as was done for bounded operators. Following
(5.12) through to (5.14) we find

(5.42) II z(t)ll < M i e -(8-w)tHz II + /M ie ete^ t-P)|fi * f  (p)lldp.

Finally we prove that the operator U(t,s) defined by (5.20) 
Nwith IT B ( s *  <

( t -Pr
that if D(B(S)) pp D(A) for almost all s,

is a quasi-evolution operator in the sense

(5.43) ■y-U(t,s)z = (U(t,s)A + U(t,s)B(s))z , z(D(A)
where U(t,s)B(s) is the extension of U(t,s)B(s) to all of Z. 

We first obtain an estimate on IIU(t,s)B(s)z|| . Since

(5.44)

then
hence

U(t,s)z = Tt_gz - JT B(p)U(o,s)zdP

U(t,s)B(s)z = Tt_sB(s)z - /T B U(p,s)B(s)z dp
s p

IIU(t, s )B (s)z ll  <  llzll + / ----2  IIU (p, s )  B(s)  z|| dp
(t-s)“ s (t-p)a

By comparison with the proof of Theorem 3.2. we can see that
(5.45) IIU(t,s)B(s)zll < ||z|| where H(t,s) is a bounded

(t-s)“
continuous function for 0 < s < t < T.
Theorem 5.3. U(t,s) defined by (5.44) is the unique solution of

t_______
(5.46) U(t,s)z = T z - / U(t,p)B(p)T zdpt s s P“s
Proof:- Let U'(t,s)z = T z ----- o t-s

U'(t,s)z = - / U* . (t,p)B(p)T zdp n s n- 1  p-s
CO

then U'(t>s)z * J U*(t,s)z is the unique solution of (5.46).
0 n oo

To show U*(t,s)z = U (t,s)z for all n, where U(t,s)z = Y U (t.s)z is n n  ̂ no
the solution of (5.44), we use a proof by induction.
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Suppose the assertion is true when n = k-1 and k-2 then 
t _____

U'(t,s)z = -¡Uj (t,p)B(p)T zdp
K. g K. 1 p S

-  -  / u .  ( t ,  p)B(p)T zdp
K. I p-S

t t_______  ____________
- / /Tt_rB(r) uk_2 (r,p)B(p)T zdr dp

8 p ^
Changing the order of integration which is valid because of (5.45) and 
using the assumption that Ufc_2 (t,s)z = Uk_?(t,s)z we have

t r________ ____________
U£(t,s)z = / /T B(r) u^_2 (r,p)B(p)T zdp dr

S St  p

m ~ I Tt-rB (r)Uk_i(r,s)zdr s
= U (t,s)z

t_____
Since U^(t,s) = UQ(t,s) = Tt_g and Uj'Ct.sJz = ~ / Tt_pB(P)T _gzdp = U!(t,s)z

s p s
we have the result.

Finally, using (5.46) we have for z^D(A):
t t t t_______
/ U(t,p)Azdp = / t Azdp - J f U(t,r)B(r)T Azdrdp. 
s s M s p c p

Changing the order of integration (again valid because of (5.45)) we 
have

t t t_____  r
/ U(t,p)Azdp = / T Azdp - / U(t,r)B(r) / T _ Azdpdr.
5 „ s p S s r-pt r r-s

Now Tfcz = z - /T Azdx and / t Azdp = / T Azdx hence
0 t 8 r_P ° t T
/ U(t,p)Azdp = z - T z - f U (t,s)B(r) [z~T _ z] dr 
s 8 t r S

= z - U(t,s)z - f U(t ,r)B(r) zdr

hence U(t,s)z - z = - / (U(t,p)A + U(t,p)B(p))zdp 
s

so that U(t,s) is a quasi-evolution operator.
5.4. Perturbation of an Evolution Operator

We now wish to show that an analysis similar to the above can be 
carried out in the more general case where A = A(t) so that the evolution

■ » ■ T
' *
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operator T(t,s) associated with -A(t) is not a semi-group. We 
assume that (5.16) is replaced by the condition
(5.47) lfT(t,s)B(s)z II <g(t-s)llzl|
where g(t) is a locally integrable positive function and T(t,s) is 
a quasi-evolution operator. (5.47) implies that for any t > s the 
operator T(t,s)B(s) has an extension T(t,s)B(s) to all of Z with
(5.48) llT(t,s)B(s)l < g(t-s) t > s and
(5.49) T(t, p)T(p, s)B(s) = T(t,s)B(s) s < o < t

We prove first a lemma and then obtain a generalized version 
of Gronwall's lemma. The proof of the lemma requires the following 
theorem, c.f. [3].
Theorem 5.4. Let f f and g 6  Lr where —  + i  > 1, p > 1  and r > 1 .
The convolution integral

x
h(x) - / f (x-y)g (y) dy

o
exists for almost all x and defines a function in Ls where
s" 1 = r" 1 + p‘ ‘ - I and llhll II <l!fll llgll .

s P r

Lemma 5.1. Let
t

(5.50) f(t) « h(t) + / g(t-s)f (s)ds
o

where h€L^[0,T], g€L'[0,T] and h,g are positive functions. Then 
there exists a unique solution of the integral equation f € L p[0,T]. 
Proof:- For g £ L l[0,T] we can set

(5.51) /e Wtg(t)dt = M for w > 0
o “

and note that for 0) sufficiently large M < 1.
t t . _ .

Now g * h - / g(t-s)h(s)ds < eU t / e_t0(t S)g(t-s)h(s)ds thus 
o o
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"* * hllLP[0 ,T] ^
< eU5r II e_a,t8 (t)llL .[0>T] II h(t)ll LP[0>T] 

by Theorem 5.4, and so by (5.51) we have

(5.52) "« * "'tflo.ll C "'<OHlP(0iI|.
Thus the Volterra operator G is well-defined where

t
(Gh)(t) = /g(t-s)h(s)ds. 

o
Equation (5.50) can now be solved by the method of successive 
approximations giving
(5.53)

where
with

f(t) = h(t) + l (Gnh)(t)
n=l

(G1̂ ) (t) = / gn(t-s)h(s)ds (n > 1 )
o

gl (t) = g(t) 
t

gn (t) = / g(t-s)gn_j (s)ds. (n > 2 ) .

To prove that the series part of (5.53) is convergent we prove by 
T

induction that fe g (t)dt < M  n as follows. The result is true o n u
for n = I by (5.51). If the result is valid for n-I we have 

T T t
/ e Utgn (t)dt = / e Wt / g(t-s)g (s)ds dt 
o o o n

T T _
“ / /e “ g(t-s)g _ (s)dt ds 

o s  n 1
Setting t = p+s we obtain
/ e Utgn (t)dt < / / e t0<'P+S^g(p)gn_j (s)dpds

V
wT.Thus II (G h)(t)ll^p < e llhll̂ p by (5.52). By choosing U) large enough 

so that < 1 the series part of (5.53) is convergent in L**[ 0,T] . 
Hence (5.53) is the unique solution of (5.50).

We can obtain a generalized form of Gronwall's Inequality as a 
Corollary to the above Lemma.
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Corollary; If f (t) < h(t) + / g(t-s)f (s)ds with h € L P[0,T], geL'[0,T]
o

and h,g positive then
00

f(t) < h(t) + l (G^Ht), 
n=l

and in particular if h = 0 then f *= 0 .
We can now proceed to the main theorem.

Theorem 5.5. If T(t,s) is a quasi-evolution operator satisfying
(5.47) then there exists a unique solution of the equation

t
(5.54) U(t,s)z = T(t,s)z - / T(t,p)B(p) U(p,s)zdp

s
with the properties
(i) U(t,.) is strongly continuous on [ 0,T] and U(.,s) is strongly 

continuous on [ s,T] .
(ii) U(t,r) U(r,s) = U(t,s), U(t,t) = 1, 0 < s < T < t < T
(iii) U(t,s) is a quasi-evolution operator

•— U(t,s)z = U(t,s)(A(s) + B(s))z, zeD(A(t)) a.e.
O S

Proof: The evolution-type operator U(t,s) of (5.54) is constructed 
by means of the iterative scheme 

UQ (t,s) = T(t,s)
t_________

U (t,s)z = (-l)n /T(t,p)B(p) U ,(p,s)z dp n n- 1o00

so that U(t,s) = Ju (t,s). If IIT(t,s)zll <h(t-s)llz|| and h e L P[0,T]
0 n00 oo

then by our lemma £u (t,s) is majorized by the series IT(t-s) + [ (GnK) (t-s) ,
0 n 1

OO

Hence £u (t,s) converges and the limit U(t,s) must satisfv (5.54).
0 n
The proofs of the uniqueness of the solution and the semi-group 

properties are similar to the earlier proofs, the generalized Gronwall 
inequality being used as necessary. Further the continuity proof is 
identical to the earlier proof of continuity for unbounded operators 
since the quasi-evolution operator T(t,s) is strongly continuous in

■T
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t and s, g(t) is locally integrable and I I ( p ,s)zll is bounded. The 
proof that U(t,s) is a quasi-evolution operator also follows the 
lines of the corresponding proof for unbounded operators but we 
offer the following proof as an alternative. From (5.54) we have

t
(5.55) U(t,s)B(s)z =T(t,s)B(s)z - / T(t,p)B(p) U(p,s)B(s)z dp

s
Also since T(t,s) is the quasi-evolution operator associated with 

-A(t) we have
t

T(t,s)z - z = - / T(t,a)A(a)z da
s

so on replacing z by A(a)z in (5.54) and integrating from s to t we 
have
t t t
/ U(t,a)A(a)zda = -T(t,s)z + z - J / T(t,p)B(p) U(p,a)A(a)z dpda
s
(5.56) = -T (t,s)z + z
From (5.55) we have

.-s '
I t T(t,p)B(p) U(p,a)A(a)z dadp.

t_________  t t t_________ ^
/u(t,a)B(a)zda = / T(t,a)B(a)zda - / / T(t,p)B(p) U(p,s)B(s)zdpda 
s s s a

t_________  t p _________
(5.57) = /T(t,a)B(a)zda - / / T(t,p)B(p) U(p,s)B(s)zdadp

s s s
Then on setting f(t,s)x = / (U(t,a)A(a)z + U(t,a)B(a)z)da

s
and adding (5.56) to (5.57) we have

t_________ t
f(t,s)z = -T(t,s)z + z + / T(t,a)B(a)zda - / T(t,p)B(p) f(p,s)zdp

B s
t_________

= -U(t, s)z - / T(t,p)B(p)U(p, s)zdp + z 
s
t_________ t_________

+ / T(t,a)B(a)zda - /T(t,p)B(p) f(p,s)zdp. 
s s

If R(t,s)z = f(t,s)z + U(t,s)z - z then we have

R(t,s)z B(P) R(p,s)z dp
s

* *
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Taking norms and using the generalized Gronwall lemma gives 
R(t,s)z = 0

and hence
t _ _ _ _ _ _ _

(5.58) U(t,s)z - z = - / [ U(t,a)A(a) + u(t,a)B(a)] z da
s

We now proceed to obtain a stability criterion by the direct 
method used earlier. We first note that if
(5.59) IIT(t,s)ll < Me_a)(t_s) , u) > 0, t > s 
then using (5.49) and taking norms we have
(5.60) HT(t,s)B(s)ll < Me“w(,:_p)g(p-s), s < p < t  

so on setting t - p  = a(t-s) we obtain
(5.61) IIT(t,s)B(s)ll < Me_wa(,:“s)g((l-a)(t-s)) , 0 < a <  1. 
We require an estimate of h(t,s) where

t
(5.62) h(t,s) <||T(t,s)x|| + / IIT(t, p) B(p)|| h(p,s) dp

s
Using (5.60) and (5.61) and setting h(t,s)ewa^t = k(t,s) (5.62) 
becomes
(5.63) k(t,s) <Me““ (1-a)(t_s) + M Jg((l-a)(t-p))k(p,s) dp

s
Noting that k(t,s) is a function of t-s and following the argument 
given earlier in the derivation of the stability criteria for -A 
generating a semi-group, we can show that
(5.64) k(t) < K(t)
where K(t) is given by

K(t) > Me'“ (,-a)t + M f g((l-a) (t-p))K(p) dp 
o

We estimate K(t) by setting

(5.65) K(t) = Pent 
then P,f2 must satisfy
(5.66) Pent > Me_l0t(I"a) + / g((l-a) (t-p) Penp dp

o
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Now / Penpg((1-a) (t-p))dp ■firPent ( l - a ) t  • -  - p jj
] e g(T)dT

(5.67)

1-a
ntPe

1-a N (say)
Thus P,fi satisfy (5.66) if 
(5.68) teQt > Me“Ut(1"a) + Pe-

ilt
1-a N

If P is large enough and (2 is estimated from the condition 
N(5.69) 1-a < 1

then (5.68) is valid for all t > s.
Using (5.64) and (5.65) we now have an estimate of ||U(t,s)|| 

in the form
mi ur*. i -toa(t-s), ^  „ (fi-wa) (t-s)IIU(t, s)ll = h(t,s) < e k(t,s) < Pe

For stability we require wa > fi. a is a parameter and is chosen to
maximise the allowable g(x) in the estimate (5.69) i.e.

(5.70)
jl-a)t

exp(“ • g (x)dT < 1-a.

subject to the condition fl < wa.



§ 6  Non-Linear Semi-Groups
6.1. Introduction

In §5 we have considered methods for estimating II U (t,s)zJI when 
U(t,s) is the semi-group generated by -(A+B) where A and B are linear 
operators. We now study semi-groups generated by -(A+B) where -A is 
a linear operator generating a semi-group T and B is a non-linear 
operator. The mild solution of ,
(6.1) i(t) + Az(t) + Bz(t) = 0 z(0) = zq
is given by the solution of the integral equation

t_____
(6.2) z(t) = Ttzo - /Tt_sBz(s)ds

o
the kernel of which is now a non-linear function of z(s).

We have reported in §3 that Webb [II] has shown that (6.2) has a 
unique solution of the form z(t) = U(t)zo if T is the semi-group of
operators which has as its infinitesimal generator -A, where A is a
linear m-accretive operator, and if B is a continuous everywhere defined 
non-linear accretive operator from Z to itself. The operator U(t), t > 0 
is a strongly continuous semi-group of non-linear contractions on Z with 
— (A+B) as the infinitesimal generator. These conditions are quite
severe. Consider for example the operator Bz = z3, z€L 2 [0,l] then 

1 1
/ z2dx is finite, however it does not follow that / z6dx is finite so that 

0  0
Bz ̂  L2 [ 0,1] and hence the operator B does not map Z to itself, it maps
Z into a larger space Zt such that zeZi. Therefore Webb's result is
not applicable to this problem. In this chapter we show that it is 
possible for (6.2) to have a unique solution even if B:Z-+Zi, ZCZ1 by 
assuming smoothness properties for the semi-group Tt, that is T maps 
the larger space Zi back to Z for t > 0.
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Following Pritchard and Ichikawa [ 25] we first develop 
local existence, uniqueness and regularity results and then consider 
the extension of the results to global solutions in order to discuss 
the stability of the solution. We can show that if T satisfies an 
estimate of the form

llTj.ll < Me“Ut u > 0
we are able to construct a ball of initial states centred at the origin
for which the non-linear system is asymptotically stable. However the
results have a wider application than this as they are applicable to
cases where the linear system is unstable but

llz(t)ll < II z II o
for all zq outside a region centred at the origin. We can show that 
the solution is global and can obtain stability results. The results 
are shown to be applicable in particular to non-linearities which are 
polynomials in z.
6.2. Local Existence, Uniqueness and Regularity Theory

The following theorem gives a set of conditions which ensure 
that the mild solution (6 .2 ) is unique and belongs to the space 
Lr[0,T,V],r > 1 where V is a Banach space such that VCZ. In a corollary 
to this theorem we show that z€C[0,T:Z], For convenience we abbreviate 
Lp[0,T]to Lp and Lp[0,T:Z] to Lp[ Z] .
Theorem 6.1. Let V,Zi,Z2 be Banach spaces with Vc Zj, V c Z 2 and 
Pl»P2 ,q»r,s,a,b be positive real constants such that pi > r > 1, 
p2 > q > 1 , s > 1 and r 1 = q 1 + s 1 - 1 .
Assume that

(i) Tte£(Zi,V)nr(Z2 ,V) for t > 0 with IITtz||v < gi(t)||z|lZi t > 0,
VzCZi and llTtzllv < g2 (t)llzllz ,̂ t > 0, Vz 6 Z2 where gi(t)eLPl and g2 (t)e.Lp2.

W m  »
i
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(ii) B : V-*-Z2 such that if z € L r[V] with llzll̂ rjy] < a then BzeLs[Z2]
and there exists b depending upon a with II Bzll sr . < b.t* l ^ 2 J
( i i i )  l lB z i- B z 2llL sj Z2] < kCll Z 1 IIL J-J VJ , II z 2IIL r J v J ) II z 1 —z 2I I J  v j where 

k:R+xR+ -*■ R+.

(iv) for Zi ,Z2 with II Z 111 Lr[V] < a* II z 2II Ll-[ Vj < a> then

» M Lq lc(ll zjll Lrj , 'I z2ll Lr[ v] ) < 1,
(v) for z € Z i o

II Si« Lr H*o»Zl + "82"Lq b < a
then there exists a unique solution of (6.2) in Lr[V].
P r o o f Let ft:V-»V be the map defined by

t
(Slz)(t) = T,_z - / T Bz(s)ds.

t o  '  t “ So
By assumptions (i) and (ii)
(6.3) ( i l z ) ( t ) l l v  <  g i ( t ) l l z ollZ i  + /  g 2 ( t —s)II B z ( s ) i l7 ds

The integral on the right-hand side is a convolution so by Theorem 5.4 
and the assumption that r 1 = q ' + s ' - I we have
(6.4) II ( f i z ) ( t ) l l L r [ v ]  <  l lg I ( t ) l l L r l !z0 llZ i  + l lg2llL q . IIBz IIl S [ Z j

Thus if II z|| j__r[ v] ** a we bave
(Qz) II L r j  V ] ** a(6.5)

by assumptions (ii) and (v) , hence SI maps the closed ball of radius a 
in Lr[ V] into itself.

t
Now (f2zi) (t) - (Slz2) (t) = /T (B^(s)—Bz 2 (s))ds

o t_s
so again by Theorem 5.4 and the assumption r 1 = q 1 + s 1 - 1 we have
( 6 . 6)

By assumption (iii), (iv) we have 
(6.7) IIS2zi-£2z2llLrj vj

S2z i - n z 2llL r [ v }  <  II g 2H Lqt 0 >t j IIBz i - B z 2IIl s [.Z2 j

Lr[ V]<  Kll z i —z 2ll
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with 0 < K < 1, therefore fi:V -»-V is a contraction mapping and hence 
there is a unique fixed point z(t) = fiz(t) in the closed ball of 
radius a in Lr[ V] .
Corollary 6.1, If we assume Tt€ jC(Z2 ,Z]) for t > 0 with
(6 .8 ) HT.zzll < g 3 (t>ll z2llC Z. J
and g 3 (t)£ LP[ 0,T] where p 1 * l-s *, then the unique solution of (6.2) 
in the closed ball in Lr[ V] also lies in C[0,T;Z!] .
P r o o f The term Ttzc in (6.2) clearly belongs to the space C[ 0,T;Z,]

t
by the strong continuity of Tt. Let u(t) = J t z2 (s)ds with z2 £ L s[Z2]

t °
We have llu(t)ll < / g 3 (t-s)ll z2 (s)ll _ dsZi Q' Z2

(6.9) <llg3llL p Hz2llLs[Z2]

by Holder's inequality since p~*+s 1 = 1.
Further if h > 0

llu(t+h) - u(t)II <  II (T -I)u(t)llZ l n Z i

(6.10) <  ll(T.-I)u(t)lln Z i

t+h

+ T t +h - s Z 2 ( s)dsl ' z ! '

+ " ® 3" LP[ 0,hl " Z2" Ls[ t, t+h,Z 2]
By the strong continuity of Tt, used on the right-hand side of (6.10) 
we can conclude that

Hu (t+h) - u(t)HZi = 0  

i.e. u(t) is continuous from the right.
For t > e > h > 0

u(t) - u(t-h) = (Tt-Tt_h)u(t-e) + / T t . h _ s z 2 (s)ds + /T z2 (s)ds
t - e  t - c

hence llu(t) -  « ( t - h ) ! ^  <  l ( V V h ) u (t-e)HZj + « 8 3 » ^  0 , e-h]» s,_e>t_h;Z2j

+ HBallLP[ 0>e] HZ2HLsf t_e>t;Z2]

from which
limit
e,h-*-0 II u (t) - u (t-h)llZi 0.

A
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i.e. u(t) is continuous from the left. Hence u(t) and therefore 
z(t) e (3 0,T;Zi] .

In most examples it is possible to choose Z\ = Z2 but this is 
not necessary and in many cases may not be desirable as the form of 
the non-linearity will often suggest the choice of Z2 in a natural 
way. There is no unique choice for V and Zi either, in the applica­
tions it will be shown that there are many different pairs of V ana 
Zi for a particular problem and that for each pair an optimal value 
of r can be obtained.

In the next section we will show that for certain initial states 
it is possible to extend the solution for all time. The application 
of Liapunov theory to this problem requires that the solution is more 
regular than in the above theorem. We have the following corollary. 
Corollary 6.2.
Let VicV be a Banach space such that

Then for any s allowed in the assumption (ii) of Theorem 6.1 and for m 
which satisfies m 1 = w *+s ’-1 with m < pi, w < P2 , the solution z(.) 
of (6.2) lies in Lm ([ e,T] ;Vi).
Proof:- We have

IIT zll <  g i( t ) l lz l l_  , 
t  V i  Z j

(i) T^JCCZi.VO, t > 0, with
, t > 0, for all z e Z. and gi£ L**1! e,T) for anyZ 1 *

e > 0 , pi >  1 .

(ii) Tt e£(z2,vi), t > 0 , with
IL , t > 0 for all z € Z 2 and g2€L^ [0,T], p2 > 1.

t
II zftill < e.itlllz II + f e* ft—sill Bz (s)ll_ ds

Thus

by Theorem 5.A. The result follows directly.
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6.3. Extension of a Local Solution to a Global Solution
Theorem 6.1 in the previous section gives conditions for the 

existence and uniqueness of a local solution of (6.2) in [0,T]. We

extended to a global solution. We note first that the form of the 
assumptions (iv) and (v) of Theorem 6.1 is such that II z0ll can be*’ 
chosen as large as we like by decreasing T. Alternatively if II zcll 
is chosen sufficiently small with

then for any finite T there is a local solution of (6.2) at least in 
a ball of finite radius a in Lr[ V] .

The first objective is to determine the maximal time interval 
for any given initial state. We consider various cases.
(i) Let gi € Lr[ 0,°°] , g2 € Ll[ g3€LP[0,«>], p_1+r_1 = q_1and’ set

then the solution with initial state zQ exists for all time and by 
optimizing the above inequalities with respect to a we can find the 
maximum ball (centred at the origin) of initial states for which this 

is true.
(ii) Let there exist M,w such that

now wish to derive conditions under which the local solution can be

( 6 . 11)
(i) b ~ a1+a, a > 0 as a -*■ 0
(ii) k(x,y) ~ a®, g > 0 x < a, y < a as a + 0

( 6 . 12)

If there exists an a such that

(6.13)
Y 2k(x,y) < 1 for all x,y < a 
Till z0ll + Y 2b < a

(6.14) -lot a) > 0

then by Corollary 6.1

(6.15) II z (t)ll ̂  < Me"“ 1 II zol| + Yab



and since II V £ (Zj >y) - II T(,-X) t+Xt«X (Zl ,V) f°r *ny ° < X < ' 
we have

" V x i z j . v )  <  llT( i - X ) t llx ( z 1, v ) l|Tx t " x ( z 1 )

(6.16) < Me_a)tg(l-X)t)
and similar expressions for ¡IT II - . . , Il T II _ - ..With theset ■*- 1Z2 »V) t i. (.Z2 » Zi ;
results, since (i) > 0, it is possible to show that (6.12) holds if we 
only assume glt g2, g3 are locally r, q, p - integrable respectively.

We now examine the behaviour of z(t) as t -► °°. for various cases. 
For (i) we can prove under the additional assumption (6.14) that
(6.17) z(t) -»0 as t -*■ <*>
if the injection of V into Z\ is continuous.
Since z € Lr[ 0,°°;V] there exists for any given e > 0 a time T* such that 

II z(T*)ll < ellzJIZi
Then (6.13) ensures that the solution with initial state z(T*) exists 
and on replacing b by eb in (6.15) we have the estimate

11 z(t)II < eMe"“ it̂ T*)IIZ0ll + eby2 for t > T* 
and the result follows. Case (ii) above is similar.
We now consider the situation where gJt g2, g3 are locally r, q, p - 
integrable and only the existence of a local solution is assured.
Consider a sequence {T^} i = 0, 1, 2 ... such that T. > T.l l'
assume there exist constants yl, Ì’ y2,i ’ ^3,i such that

llsllLr[ O.T.-T. ,1 1 * 1  i-lJ
“ Y . 1.* i > 0

(6.18) H ^ i/IIO.Tj-T. j] “ y m i > 0

11 8,1 LP[ O.T.-T. ,]1 1 I"! = y 3,i i > 0
Then for a fixed initial state zQ we can choose a value of a, a3 (say)
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and since IITt"X(Zi,V) llT(l-X)t+Xt"jC (Zi , v )  f o r  a n y  0 *  x  <  1
we have

l l T t l l x ( z 1, v ) < l l T ( . - X ) t " x ( z 1, v ) l | T x t , l x ( z l )
(6.16) < Me_Wtg(l-X)t)
and similar expressions for IIT II » . . , II T II . . ..With theset \Z 2 > V/ t -L \Lz y Z \ )

results, since (i) > 0, it is possible to show that (6.12) holds if we 
only assume gj, g2, g3 are locally r, q, p - integrable respectively.

We now examine the behaviour of z(t) as t -*■ °°. for various cases. 
For (i) we can prove under the additional assumption (6.14) that

(6.17) z(t) -*-0 as t -*■ 00
if the injection of V into Zj is continuous.
Since z 6 L r[0,«;V] there exists for any given e > 0 a time T* such that 

II z (T*)ll < ellz0ll
Then (6.13) ensures that the solution with initial state z(T*) exists 
and on replacing b by eb in (6.15) we have the estimate

II z (t)ll < eMe U,l't ^ l̂lZ0ll + eby2 for t > T* 
and the result follows. Case (ii) above is similar.
We now consider the situation where glt g2, g3 are locally r, q, p - 
integrable and only the existence of a local solution is assured.
Consider a sequence {T^} i = 0, 1,2... such that ’

assume there exist constants Yi,i! Y2(£ ; y3,i such

11 8" Lr[ 0,Ti~T^_1] " \,i i > 0

(6.18) llgllLq[ O.T.-T. ,] “ Y2,i ’ l i-l
i > 0

llgllLP[0,T.-T. ,] “ Y3,ii x 2. —  1 J
i > 0

Then for a fixed initial state zQ we can choose a value of a, a3 (say)
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and a value of T, Tj (say) such that the solution exists in [0,T] 
provided that

(6.19)
Y2 j k(x,y) < 1 for all x,y < a,

V i  lz0"., + V i  b i < aiZi
An estimate of llz(Ti)II is then obtained and the process repeated giving 
a new value of a (a2 say) and a value of T (T2 say). This requires that 

Y2 2 k(x,y) < 1 for all x,y < a2
( 6 . 20)

Y j  2 II  Z (T1) II + Y2 2 b 2 < a2

This process can be repeated indefinitely so that we have an infinite 
sequence {T^} depending upon the sequence {a^} . Then the limit {T.}

i -* oo
can be maximised for the choice of {a.}. If T. with i the solutionl l
can be extended for all time. Furthermore the value of the limit a.. li -»■ oo
will give some information on the behaviour of z(t) as t + »,

The crucial step in the above is the estimation of llz(T.)ll .
1

In the general case we can use corollary 6.1 and write

but in case of Hilbert spaces we can use Liapunov theory to provide a 
second method. This alternative will be discussed in the next chapter.

Some examples illustrating the results are given in §8.
6.A. Nonlinearities of Polynomial Form

Theorem 6.1 enables us to handle perturbations of the polynomial
type

n
(6.21) Bz « a.*1*

i=2 1
The following lemma is useful in showing that Bz given by (6.21) satisfies 
assumption (iii) of that theorem.
Lemma 6■1 Let u ]t u2 be positive real numbers then

u* + u* *u2 + u* 2“2 + ••• + u;> — ^-(u^+u^Kf r > 1.



Proof:- The result is trivial for r = 1. For r = 2 we have

ui + UjU2 + u| < §(uf+u§)
since u2 - 2ujU2 + u2 > 0.
Assume the result is true for r = n-2, i.e.

n-2n-2 n-3Uj + Uj u2 + + u„ n_1 / n-2 n-2.
(u! +u2 >

We first note that from Holder's inequality
xay® + x®ya < x+y (a+6 = 1, x,y > 0)

we can deduce that
r-s, s , s,r-s ^ r . . r a b + a b  < a + b (a,b >0, 0 < s < r)

Now
2(u"+u” lu2 + ...+u2*) = (uV 2+u'j Ju2 + ...+u^ 2) (Uj+Uj)+u"+u" *u2+...+u"
•'•2(û +u" *u2+...+u2) < ̂ t̂ -(u” 2+u” -)(uf+u|) + 2(u?+u2)

n+3, n n. . n-1 , n- 2  2 . 2 n-2 .= ~2 ~(uj+u2) + 2 (u 1 u2+UjU2 )
*r /n+3 n-1. , n^ n.< (—2~ + ~~2* (u 1 +u .)

n . n- 1 . . n ^ n+1 , n n... uj + uj u2 + ... + u2 < — (Ul+u2) q .e .D.
We will now investigate the application of Theorem 6.1 to nonlinearities
of the form (6.21). We assume that (i) is satisfied for Z2 = La [0,1] (c< > 1)
V = L [0,1] and some Banach space Zj . Then

t 1
( 6 . 22 ) X|l = ( / ziadx)a < ( / ziakdx)ak < ( / Znadx)an = II zll * 

Zz 0 0 0 V
if i < n, and so B:V -* Z2 since
(6 .2 3 )  llBzIL <  I  | a . |  l!zl|x

¿ 2  i=2 1 v
Furthermore by Minkowski's inequality

(6 .2 4 ) II BzIL < y Uiii=2
if s > 1Ls[ Z2] - .^'“H  Lis[ v]

Therefore if ns = r there exists b depending upon a such that if
II zll,Lr[ V] LS[Z,]< a then II Bzll < b.



77

For assumption (iii) we require an estimate of IIBz! —Bz2II
Since a > 1,

n 1 . . -
IIBz i -B5!2II <  l |a .  | ( /  ( z ^ - Z j) adx)a 

i= 2  1  0

n 1 -
l I3,- I ( / (z1 -z2)a (zi *+...+z2 )adx)C 
i- 2  1 0

n I J -  l . . -2“  S~L
<  l  | a . | { / ( Z l - z 2) nadx}na{ / ( z r 1 + . . . +Zr 1) n' I d x } na 

i= 2  1 0 0

which by Lemma 6.1 gives

z ^ llzl " z 2ll * *v { /  ( | z i  | 1_1 + | z 2 I1-1) n" 'd x }

not n- 1
(6 .25) II Bz j - B z 2II < ? 4 | -  1 " --------n / r /!_ i i - i  . i_ i 1-1 ..n-l j  ■, na

Z2 im2z - * 0
1 .22. , i l l

Since na > n-1 and / |zj I l)n 'dx < ( / |z.|nadx)n_I (i < n)
0 0

we have

II Bz j-Bzgll <  l  i | a . |  l lz ,- z 2llv (llZjlly-1 + II z 2IIy }
i-1

i= 2
Consider now the map

t
i)z(t) = T z - J T Bz (s)ds t o  Q t-s

Let W be the space Lr[ V] then
t T t

(6.26)11 / t Bz(s)dxll = ( / II / T Bzdsllf. dt) n c”s W n n t”s v
°  ° t  n -

<  ( J  ( g2( t - s )  l  | a . | II z(s)ll * d s ) rd t ) r

<  j 2|,.| I
i= 2 1

1 z (s)lly II Lqi

by Theorem 5.4, where

(6.27) Pi* + q . 1 >  1, p ^  qĵ  > 1  and Pi 1 + q ^  - 1 = r 1 :
Also IIT z II = ( / 1|T z llf.dt) 7

t ° W o t ° V

(6.28)
1T

<  ( /  gT(t)ll zJI,5 d t ) r  by assumption ( i )  
0 Z i

■g,lLrl zo"Zi



Thus ft is a map of W + W if 8 i€Lr, g 2 £ L pi and II z (s)ll * £ Lqi 
Therefore we require that
(6.29) p^ < p2, pj > r Vi < n .
Furthermore if we choose
(6.30) iqi = r

1
then II Hz(s)llyllLqi = (o/llz(s)llyqidt)qi = (J II z(s)ll^dt)r = II zll ̂  
so that we have 
(6.31) Hfiz(t) 11 <  H g ,11 r Hz0M + [ |ai| IIg 2ll pill  zll x .

w Z j  £ = 2 u  W

We now seek conditions under which is a contraction map. We
have

(6.32)

T t
linz,(t)-fe2 (t)ll = ( / ( /g2(t-s)ll BZl-Bz2ll ds)rdt)rW  0  6  Zn

" " d - d ' Zj I,,,!,,,

by Theorem 5.4 and Lemma 6 .1 where

(6.33) p“J + q“ 1 - 1 = r”1, p7j + q“ 1 > 1 , p!, q£ > I .
Applying (6.25) equation (6.32) becomes

II fizj ( t ) - f i z 2 (t)ll v <  J  | a i | ~ l l g 2llp ., II l l z i - z 2llv (llz1l|^“ i | | z ?! l ^ ' 1)||T q .

, n T • , • v(6.34) < V I « • I i il „ il ( t t\\ , ii1-1jji_ ii 1-i\ Yi

2 V ' L^i[ V) 
1

<  I  la i  l i  II 8 2ll _ , ( /  (Il z iII v _ * +H z 2II v _ 1 ) *^dt)"^i=| 2 j 1  0 v v
( / l l z 1- z 2l|r ) r  

0
where
(6.35) -l -i -iqi = r + Y£
If we choose iq£ = r as in (6.30) then
(6.36) (i-l)y. = r

(/Hz ll̂ i_l)Yidt)Yi = IzjlJ- 1

and we have
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n .
(6.37) «nz.-nzJ < y ±|a.|

1 2 W £ “ 2 2 1

Therefore || iiz t —f2z2|| is bounded if 
W

(6.38) p^' < p2 Vi < n. 
We require that the conditions

consistent.Condition (6.33) implies
(6.38) is then consistent with (6.29) 
and (6.30) gives

hence (6.34) gives

II gj t(llz1ll1 -I+llzJi_}'llz.-z2ll 
2 Pi W 2 W 1 W

on p,, p2, pit p^, q., r, jp,
(6.27) if we take p^' = p^ and 
. Eliminating q^ between (6.27)

are

-l
r 1 r

(6.39) i.e. Pi = r
r-i+ 1

so that to satisfy p^ < p2 Vi < n, we require

(6.40) p 2 > F T T ^
in addition to pj > r.

In the applications in 
is restricted by the form of

§ 8 we will demonstrate that the value of n 
the operator A.

y
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§7. Use of Liapunov Functionals
7.1. Liapunov Theory for Linear Operators

In Chapter 5 we have shown how to obtain estimates of the semi­
group of a perturbed operator where the perturbation operator is 
either bounded or belongs to a certain class of unbounded operators.
These results were then used to estimate the effect of a forcing 
term in the differential equation. However in applications it may 
be easier to estimate these effects via a Liapunov functional as in 
Plaut and Infante [ 26], constructed from the unperturbed homogeneous 
system
(7.1 ) z(t) + Az(t) = 0 z(0) - z0,
further the functional can also be used to obtain the estimate (5.4.) i.e. 

II Tjl < Me“Mt (w > 0)
for the semi-group Tt. For completeness we present here some results 
of Pritchard [ 27] which provide an important link between the theory 
of §5 and the use of Liapunov functionals because they provide a 
justification of the use of functionals.
Suppose that Z is a Hilbert space and that there exists an operator 
P(t)e £ (Z) for ti | 0,T] such that
(7.2 ) -i<y,P(t)z> - <y, (PA+A*P-W)z> = 0 ,at

P(T) = G
where W > 0, G > 0, <y,P(t)z> e C*[ 0,T] for y,zi D(A), < , > is the 
inner product on Z and
(7.3 ) inf <z,P(t)z> > pll zll2, p > 0, t€ [ 0,T] .
If we consider the Liapunov functional

V(t) = <z(t),P(t)z(t) >
then formally for the unperturbed system (7.1.) we have
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(7.4)

V(t) = ¿<*(t).P(t)*(t)>
“ <z(t),P(t)z(t) > + <z(t) ,P(t)z(t) > + <z(t),Pz(t)>
= -<Az(t),P(t)z(t) > + <z(t),P(t)z(t)> - <z (t) ,PAz (t) > 
= -<z(t),Wz(t) >

and for the perturbed in-homogeneous system (5.6.) we have
(7.5) V(t) = -<z(t),Wz(t) > - <B(t)z(t) ,P(t)z(t) >

- < z (t) ,P (t)B(t) z (t)> + <f,P(t)z(t>> + <  z(t),P(t)f >
Before we use these results it is necessary to justify the formal

differentiation. Since the strict solution of z = -Az is z(t) = T\zt o
for zq< D(A) the proof of (7.4) is straightforward. However if we have 
only a mild solution (5.12) of (5.6) the derivation of (7.5) is not so 
immediate, we need the following theorem.
Theorem 7.1. If P(t) satisfies (7.2) then

T
(7.6) P(t)z = T* GT z + / T* WT zdsT-t T-t £ s-t s-t
and if z(t) is given by (5.13) then

T
(7.7) <z(t),P(t)z(t)> = <z(t),Gz(T)> + J [<z(s),P(s)B(s)z(s)>

t
- <z(s),P(s)f(s)> + <P(s)B(s)z(s),z(s)> - <P(s)f(s),z(s)> 
+ <z (s) ,Wz(s)>]ds

P r o o f Proof of (7.7) is obtained by substituting (5.13) directly
into (7.6). (For more details see [27]).

To prove (7.6) we note that T* is the dual semi-group of Tt and
since Z is a Hilbert space T* is strongly continuous. P(t) given by
(7.6) satisfies (7.2) so the only problem is uniqueness.

Let Q(t) be another solution then R(t) = P(t)-Q(t) must satisfy
^<y,R(t)z> - <Ay,R(t)z> - <R(t)y,Az> = 0,

If we let S(t) = T* R(t)T for any s€[0,t) we obtain t-s t-s
^<y,S(t)z> = 0 y,z 6 D(A) .

R(T) = 0.
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that < T t_sy,R(t)T gz > = 0. But D(A) is dense in Z so that on letting
s *  t we obtain P(t) = Q(t) and so the solution is unique.
Differentiating (7.7) we obtain (7.5) for almost all t€[0,T].

From the conditions on P(t) and W there exist positive constants
p,w such that W > wl, p > sup IIP(t)ll

t[0,T]
Hence from (7.3) and (7.4)

pll z (t) II 2 < V < pll z (t) II2

Since R(T) = 0 we have S(T) = 0 hence <y,S(t)z> = 0, y,z€D(A) so

and

so that 

and

V < -wllz(t)ll 2 < - =  V 
P

II z (t)ll </l'e “Wt/255|| J p

rt"
-wt/2p

Using (7.5), if w > 2pK where pKH zll 2 > |<Pz,Bz> | we obtain

V < - ̂.~.2P.K

Setting V(t) = U 2 (t) we find

pvi -V(t) + -=̂T— P II f (t)ll 
p 2

. p r -X(t-s)U(t) < e"AtU(0) + Jj- / e' II f (s)|| d s

where X =
2p

Hence llz(t)ll <|
( ! )

-At,,e Hz + £ i /*t>5 o
-X(t-s). f (s)ll ds

which is a similar result to (5.14) or (5.42).
For many applications it is convenient to take the operator P 

to be independent of t so that

Pz = / T*WT zdt J t T
which is well-defined if IIT̂ I < Me -wt (w > 0). In this case the
analysis can be simplified by the introduction of a new Hilbert space 
ZQ with inner product <y,z>£ = <y,Pz> 2

1»
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(7.8) Then V(t) = llz(t)ll| and p = p = 1.
. <z(t) ,Wz(t) >_

From (7.4) V(t) = -<z(t),Wz(t)>_ = — — —  VZ <z(t),Pz(t)>z

(7.9)
since

< -IIW~^PW_ l̂ljC,(z)V = -2yV (say)
<" z, Wz > _ < wj z, Ŵ  z > _ <y,y> ^ II yll 2
<z,Pz> <z,?z> " <w-iy,pw-iy> llvripvrill IIyllz

From (7.9) 
and

llz(Ollz < e_2 pt||z(0)|||O
I T t , l j C ( z 0 ) <  e -yt

The estimate equivalent to (5.14) will now have the form
t

(7.10) I z (t)ll 7 < e-  ( y - K )  t „ z (0)11 • -(y-K) (t-p). f(p)llz dp ̂n
where ess supll B(t)ll r . < K. 

te[ 0,T] o’
Since the space ZQ and the constants y fK are essentially determined 

by the operator W a variety of estimates of the form (7.10) can be 
obtained. This could lead to an optimisation problem if suitable 
criteria could be formulated. We note that the dependence on K in 
the estimate (7.10) is such that it cannot be improved by splitting 
the operator B intofB+(l-p)B as in §4.
7.2 Liapunov Theory for Non-linear Semi-groups

In this section we develop a theory of Liapunov functionals based 
on the local existence theory of §6 . 2  which will enable us to extend the 
local solution for all time.

We assume that all the spaces are real Hilbert spaces and consider 
Liapunov functionals of the form 
(7.11) V(t) = <z(t),z(t) >

Li
in order to obtain estimates of II z (t)II _ . In most cases it is notZi
possible to develop a Liapunov theory on [ 0,T] but by using the regularity 
results of Corollary 6.2. a theory can be given for the interval f .
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We assume further that
(7.12) f(v) = -<Av,v> - <v,Av> *= HIDvIl2 + <Ev,v>_Z i Z i Z j z

for v€D(A), E€f(Zi), and the space Vj of Corollary 6.2. can be chosen 
so that D€f(Vj,Zj). Furthermore let

where each space is dense in the larger one, all injections are continuous 
and Zf = Zj.

Under these assumptions we have the following theorem.
Theorem 7.2, If the conditions of Corollaries 6.1. and 6.2. hold with 
m = 2, so that z e L2[ e ,T;V'j ] and if z £ Ls '[  e,T ;Z*] with s 1 + (s' ) _ 1 ■= 1 

and s as defined in Theorem 6.1. then

where Zq€ D(A) and z€ C 1 [0,T;Zj]. Then by (3.19) z is the solution of

For V defined by (7.11) and z defined by (7.15) we have
(7.17)V(t) = -<z(t),Az(t) > z - <Az(t) ,z(t) > z + 2 <z(t) ,z(t) > z
but z(t) e D(A) so by use of (7.12) we obtain

V(t) = (iDv(t)ll2 + <Ev(t),v(t)> + 2<zftl.zftl >zi

(7.13) D(A)c Vjc Zf cZjC Z2c V*

where z is the unique solution of (6.1) as given in Theorem 6.1.
Proof Consider the equation

t
(7.15) z(t) = T z + / T. z(s)ds t o  J t-so

(7.16) z + Az = z, z(0) = z .̂

Hence
T

Now D(A) is dense in Z, and C^O.TjZj] is dense in L2[ 0,T;Z2] so there

z € L s[0,T;Z2] respectively. We set

A
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§3 Applications

8.1. Introduction
In the previous chapters we have developed three particular sets of 

results relevant to the theory of abstract evolution equations, namely 
perturbation theorems for m-accretive operators and perturbation results 
for linear semi-groups and non-linear semi-groups. We now look at 
various problems drawn from engineering and science and demonstrate how 
our results can be applied to them. The objective is not necessarily to 
obtain new information for particular problems but rather to demonstrate 
that our methods are of a general nature with a wide range of applicability.
8.2, Application of Perturbation Theorems

We commence by applying our perturbation theorems to a set of 
related problems based on a beam subject to transverse vibrations. The 
basic model for such a system can be described by the non-dimensional 
equation
(8 .1 ) y + y = 0  0 < x < 1 , t > 0tt 'xxxx ’
with appropriate initial conditions and boundary conditions to describe 
the method of support or fixing of the ends of the beam. In our work here 
we will confine our attention to the problem of a simply-supported beam 
so that

(8 .2 ) y = yxx = 0 at x = 0 » 1

The other important end conditions can usually be accommodated by the 
simple procedure of altering the values of the constants in the fundamental 
inequalities that we use. See Freund and Plaut[28 ] for full details.

The model (8.1) can be refined in many ways c.f. Ball [ 29] , Sharma 
and Dasgupta [ 30] , in particular by including a term to describe the 
damping of the system due to a resistive medium. The resulting equation
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can then be written as
(8.3) *tt + 2?yt + yxxxx *= 0 t > 0 , £ > 0

with boundary conditions as in (8.2). We take this model as our 
underlying linear system because the solutions are asymptotically 
stable in the sense of Liapunov whereas the solutions of (8.1) 
are only stable. Equation (8.3) can be written in the abstract form

and D(A) = {wgH : Aw e H, v = y = = y^x = 0 at x = 0,1 } Then A
is m-accretive because

where yQ(x) denotes the equilibrium position of the arch. The non­
linear term is the axial constraint effect caused by the ends of the 
beam being held a fixed distance apart. Taking yQ (x) = 0 for simplicity, 
the non-linear term can be regarded as a perturbation of (8.3), so that
(8.7) takes the abstract form
(8 .8 ) w + Aw + Bw = 0,

(8.4) w + Aw = 0
by setting w = [y,v]^ with v = yt, and introducing the real Hilbert
space H with inner product

1
q AA AA

The operator A is formally defined by
(8.5) ( < w ltw2>  = /( yixxV 2xx+vlv 2 + C(viy2 +v2yi) + 2£2y iy2] dx.

(8 .6 ) Aw = t ~v,2 £v + yxxxxlT

<Aw,w> = £ / (v2 +y2 )dx > 0 for all weD(A)
0

and the range of (X+XA) is the whole of H if X > 0.
We now consider some further refinements of (8.3). In [26]

the motion of a shallow arch is assumed to be
(8.7)

0 < x < 1 , t > 0

I»
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with Aw defined by (8 .6 ) and
1

(8.9) Bw “ [ 0, —2y / y2dx]1.
0

B is not accretive because
] 1 1

<Bw,w> = / y 2dx(2£ / y2dx - /2vy dx) 5* 0.
0 x 0 X 0 **

We now apply our non-linear theory of Chapter 4, in particular the 
Corollary to Theorem 4.9 to determine a neighbourhood of the 

equilibrium point within which A+B is m-accretive.

We note first that if llwll < k then

( 8 . 10) k 2 > J (y2 +C2y2)dx > i ^ ! - )  / y 2 dx,
0 j ' 'o

1

and, on writing c. = / y£ dx (i «* 1 ,2 ) we have 
1 0 x
I 1

i J  (ciyixx_C2y2xx)2dx < J  (ci_c2 )2 y 2xxdx + c l ^ ! xx-y2xx)2dx

since (a+b) 2 < 2(a2+b2) if a,b are real. Also
1

(cj-c2) = / (yi2-y22) dx0 x x

0

[(/ (yix"y 2x)2dx] j [/ (yix+y2x)2dx]} 

[ ^ ‘o^(yixx"y2x* ) 2 d X ] 1

since

if y = y„

v2 fy2dx < / y2 dx
0 at x = 0 ,1 .

Combining these results we have

(8 .! O q/ (ciyixx_c2y2xx)2<lx < (f & t +T p i S y (y'xx-y>xx>2d*

(8 C2+ 1 0 u")k‘* .
*xx_y*xx) dx-

Now (IBw^Bwjll2 = 4 / (cjy, -c2y2 )2dx so we can conclude from
q XX XX

(8.11) that 3a > 0 such that

I Bw i -Bw 2II 2 < a 2 f (yi —y 2 )2dx <  a 2llwj-w2ll2
q XX XX
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with Aw defined by (8 .6 ) and
1 T(8.9) Bw = [ 0, -2y IVdx] .XXq x

B is not accretive because
1 1 1

<Bw,w> = J V d x ( 2 £ Jy^dx - /2vy dx) ? 0 .
0 x 0 0 **

We now apply our non-linear theory of Chapter A, in particular the 
Corollary to Theorem A.9 to determine a neighbourhood of the 
equilibrium point within which A+B is m-accretive.

We note first that if IIvHI < k then

( 8 . 10) k 2 >  /  ( y 2 +C2y2)dx > (£ Y  ) / y 2dx,0 XX ' 'o

and, on writing c. = / yf dx (i = 1 ,2 ) we have 
1 0 x

1 1 1
J I  (c i y j ~c *y2 ) 2<lx <  J  ( c i - c 2 ) 2y !  dx + c l  f i r i - y 2 v x ) 2dx

Q  A A  A  A  q  A A  0  A A  A A

since (a+b) 2 < 2(a2+b2) if a,b are real. Also
1

(ci-c2) = / (yi2-y2p  dx0 x x

[/ (yix_y2x)idx] i 1/  (yix+y2x)2dx] 

[f V  J  (yixx"y 2xx)2dx]i

since

i f  y  = y_

1 1
IT2 / y2dx < / y2 dx* J "V J J vv

= 0 at x = 0 , 1  .

Combining these results we have

_ (S^-HOu^k1* } ,
~ ( F + ttV  J (yixx“y2xx> dx-

1
Now ||Bw i -Bw 2II2 = A f (cjyj -c2y2 ) 2dx so we can conclude from

0 XX XX

(8 .1 1 ) that 3a > 0 such that
1

II Bw i ~Bw 2|| 2 < a2 J (yj —y2 )2dx <  a 2llwi-w2ll2
q XX XX
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therefore IIBW1 -BW2II < I a I IIW1-W2II
Also < (l-e)A(wi~W2 ) ,W1 -W2 > 

1
+ <  Bw i -BW2 ,W1-W2 >

" ( l - e ) Ç /[ ( v j - v 2) 2 + (yi 
0

— 2 / (ciyi -C2y2 ) ( v i - V 2 )dx + / 2Ç(yi~y2 )(c2y2
0 . xx 0

' 0
since

and by (8.11). Hence we can choose e > 0 so that (l-e)A+B is accretive 
if

Thus provided (8.12) is satisfied all the conditions of the Corollary 
to Theorem A.9 are fulfilled so that A+B is m-accretive in a neighbourhood 
of w = 0 and hence -(A+B) generates a non-linear contraction semi-group.
We note that assuming Ç is given (8.12) effectively determines the size 
of the neighbourhood for which the system is stable through the value 
of k. Furthermore if k is such that the inequality holds in (8.12) 
then there is a certain allowable class of perturbations of the non­
linear system which will ensure existence, uniqueness and stability 
of the perturbed system. This class of perturbations will be determined 
by application of the corollary to Theorem A.9. again but with A 
replaced by the operator A+B of (8 .8 ).

P
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therefore IIBW1-BW2II < |a| IIW1-W2II
Also < (1-E)A(wi~W2 ) ,W1 “W 2 > + <BW 1~BW2 ,W1 -W2 >

1
“ (i-e)5/[ (vi-v2 ) 2 + (yixx_:72xx)2]dx 

1 1
- 2 / (ciyi -c2y2 )(vi-v2)dx + / 2£(yi-y2)(c2y2 -Ciyi )dx

q  X X  X X  q  X “  X X

> (l-e>y [vi-vr (l^-(ciyIxx-c2y 2xx)] 2dx
. T/, _sr k" (8£ 2+l OTT1*) If', v2 ,
+ L(,-e)C- TPi)T (yixx_y2xx) dx

since
1 1
/ (yi-y2 )(c2y2 -ciyi )dx = c2 + / (ciyiyi +fi2yiy2 )dx + c2

q  X A  X X  q  X X  X X

^ Cj - (ci+C2)/ClC2 + Cl > 0
and by (8.11). Hence we can choose e > 0 so that (l-e)A+B is accretive 
if

r 2 ^ k V s ^  + lOTT1*)
5 1 v ^ p —

(8 .1 2 ) i.e . k2 < —iiLlZ)
(8 Ç2-e 1 07T1*) ‘

Thus provided (8.12) is satisfied all the conditions of the Corollary 
to Theorem 4.9 are fulfilled so that A+B is m-accretive in a neighbourhood 
of w = 0 and hence -(A+B) generates a non-linear contraction semi-group.
We note that assuming Ç is given (8.12) effectively determines the size 
of the neighbourhood for which the system is stable through the value 
of k. Furthermore if k is such that the inequality holds in (8.12) 
then there is a certain allowable class of perturbations of the non­
linear system which will ensure existence, uniqueness and stability 
of the perturbed system. This class of perturbations will be determined 
by application of the corollary to Theorem 4.9. again but with A 
replaced by the operator A+B of (8 .8 ).
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We can obtain an estimate of the solution directly by con­
sidering the Liapunov function V = llwll2 so that

1 1 1 1  
V = -2<w, (A+B)w> = -2? / (v2+y2 )dx - 4£( Jy 2 dx)J + 4 / vy ( / y2dx)dx

0 0 0 0

It is easy to show from this that if

ii w oii < j L E H p i B I

then II w (t)II < e ^  ̂  11  ̂  ̂t|l ŵ ll , WQ £D(A)nU. Hence the origin
is asymptotically stable in the sense of Liapunov.

We now consider the bending problem of a beam on a non-linear 
foundation following Sharma and DasGupta 130], taking as the equation 
of motion

(8.13) y _  + 2 £y + y + y sinh a y = 0  0 < x <  I, t > 0tt t xxxx ’
with a > 0. If we use the same abstract formulation as before A is
defined by (8 .6 ) and the perturbing term is

Bw = [ 0, y s inh ay]
1

Then <Bw,w> * / (yvsinhay + £ysinhay)dx ¡i o 
0

although y sinh ay > 0 for all a > 0, yi R, hence B is not accretive. 
In order to show that the conditions for the Corollary to Theorem 4.9 
apply in a neighbourhood of the equilibrium point w = 0 we observe 
first that if yi > y2 then

2 if
s inhayj -  sinhay2 = a(y!-y2)[ 1 + j j - ( y i + y i y 2+ y ! )  + j j - ( y i  + . . . )  + . . . ]  

<  y ( y i - y 2 ) [  2 + | y ( y i + y 2 ) + ^ - ( y i + y 2 ) + . . . ]

(by Lemma 6.1)

“  y ( y i ~ y 2 ) (coshayi+coshay2)
Further if llwll2 < k 2 by using the methods of Freund & Plaut [ 26] we
can establish the inequality (see Appendix I)

1
k2 > f (y2 + C2y2)dx > c2 8 2 where 8 - max [ y]

0 xx CKx<l

P
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Hence, using (8.13) and the inequality 
1 1

(8.15) ir1* / y2dx < / y 2dx (see ( 28] )
0 0

we can see that it is possible to choose e > 0 so that (l-e)A+B is accretive 
if k is such that

[ either (l-e)^ + ~ ^ — ycosh2̂  > 0 (y > 0 )

(l-e)!:1*̂  + £yacosh^~■ - ^ cosh2̂  > 0 (y < 0)
(8.16)

We also have

hence

llBwi-Bwjll2 = y2 f (sinhayi~sinhay2 ) 2dx 
0 1

< y 2a2 cosh2aS / (yi_y2 )2dx by (8.14)
y2a 2cosh2aP̂ ,. 2< -----p ----  II w 1 —W2II

IBW1-BW2II <  cosh^llW1-W2II .

Thus provided (8.16) can be satisfied all the conditions of the 
Corollary to Theorem 4.9 are fulfilled so that A+B is m-accretive in 
a neighbourhood of w = 0 and hence -(A+B) generates a non-linear contrac­
tion semi-group. We note that assuming y and a are given then (8.16) 
effectively determines the size of the neighbourhood for which the 
system is stable through the value of k = cR. Furthermore as with the



previous example if k is such that the inequality holds in (8.15) then 
there is a certain allowable class of perturbations of the non-linear 
system which will ensure existence, uniqueness and stability of the 
perturbed system. This class of perturbations will be determined by 
application of the Corollary to Theorem 4.9 with A replaced by the 
operator A+B derived from (8.13).

Finally for the beam problem we consider the stability of the non- 
planar, non-linear oscillations of a beam described by the coupled pair 
of equations Ho, Scott and Esley [ 31] .

(8.17)
'tt + Yiy + 2£y - }y / (y2+z2)dx = 0xxxx t xx_' 'x x
z + Y 2 Z + 2 £z - \z [ (y2+z2)dx = 0tt XXXX t XXgJ j x x

where y,z are the components of the displacement of a point on the neutral 
axis with respect to the two axes of symmetry for the cross-section of 
the beam perpendicular to the neutral axis. The parameters Yi» Y 2 are 
proportional to the two different values of inertia with respect to the 
two axes of symmetry.

TWe set w =.ly,u,z,v] where y£ = u and = v and choose the inner 
product

1
<wi,w2>  = /lYiyixxy 2xx + U1U2+ ?(yiu2 +y2ui) + 2£2y 1 y 2

+ Y 2 Z1.XXZ2XX + V 1 V 2 + C(ZlV2+Z2Vi) + 2£2 z 1 z2]dx 
then with the operator A describing the basic linear system of (8.17) 
defined by

Aw = [-.u,2 £u + y - v, 2£v + z ]'xxxx XXXX
we have

<Aw,w> J[C(u2+v2) + CYiyxx + ^Yzz^ldx >  0

if £ > 0 and A is m-accretive so the linear system is asymptotically stable.
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Taking the perturbing term Bw as the non-linear term in (8.17) we have
1 1 m

Bw *= [ 0, - JyxxJ (y£+z^)dx, 0, - [z / (y£+z£)dx]
so that < Bw i-Bw 2 ,wi-W2 >

1
= J /[ (uj-u2) (c2y 2xX-c1yixx) + (yi-y2> (c2 y 2xx-ciyixx)

(8.18) 0
+ (V1“ V2)(C2Z2 - C 1 Z 1 ) + (Z1~Z2)(C2Z2 “ ClZl )]dx.xx xx XX XX

1
where c. = f (y;2+zi 2 )dx. l 1 -̂x Lxo
Let llwll < k then

1 1
(8.19) k 2 > / (Yiy2 + C2y 2 + Y 2Z 2 + ?2z2)dx > 2  / (/yiy2 + /Y2z£)dx 0 xx xx 0 x
from which we can determine bounds on c .. Also it is not difficult toi
show that 

1
/ [ (yi-y2)(c2y 2xX-ciyixx) + (zi-*2)(c2 z2xx- cizixx)]dx > 0

so that the problem of showing that there exists e > 0 such that 
< (]-E)A(wl-W 2 ) ,W1 -W2 > + <Bwi-Bw2 ,W1 -W2  >  > 0 

effectively splits into two parts, each of which is similar to the 
one-dimensional problem discussed earlier.
Also, since the c. are bounded, we can show 3 an 'a' such that 

1
1

IIBw x -Bw 2II2 = i /[ (ciyi -C 2y 2 )2 + (C1Z, -C2Z2 ) 2]dxQ AA XX XX XX
<  all wi-w2ll 2

as in the previous one-dimensional case. Hence the conditions of the 
Corollary to Theorem 4.9 can be applied and we can derive a stability 
condition under which the non-planar oscillations of the beam will be 
asymptotically stable in the sense of Liapunov. With this problem also 
it will be possible to use the corollary again to determine an allowable 
class of perturbations of the non-linear system which will ensure existence, 
uniqueness and stability of the perturbed system.

*
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We now turn from problems concerning the beam to two further 
problems which are described by diffusion equations in the classical 

sense.
The stability of a chemical reaction in a porous catalyst in the 

presence of heat and mass has been investigated in a limited way by 
Wei [32] using Liapunov methods in the sense that they were applied 
to linearized versions of the partial differential equations governing 
the heat and mass transfer of the chemical reactions and not to the full 
non-linear versions. As has been pointed out by Pritchard [33] there is 
the possibility that even if the perturbations of the linearized system 
grow in time the actual perturbations may be bounded in time. To in­
vestigate whether this occurs or not, the non-linear terms must be 

considered in the analysis.
Following Wei we consider the pair of partial differential equations

Equations (8.20) describe the reaction when the Lewis number is equal 
to unity provided that the perturbations are restricted to those that do 
not change the value of (By+z) inside the particle. In the steady 
state By+z " 1+6 » under this condition equations (8 .2 0 ) are equivalent to 
each other so we need consider only (8.20(i)). Also 0 < y < 1 and 0 < z < 1.

0 < x < 1

concentration —  inside the catalyst, z the dimensionless temperature T/Toco
and the three parameters are:

<J>2 = Thiele modulus

B
Y - E/RT o
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Let yE (x) be the equilibrium function for y i.e. the solution of 

3ZV i 2 By(l"y) _ n
y exp r f e  - 0

with y = 1 at x = I and = 0 at x = 0 .
By  (1-y)Writing u = y-yE in (8.20(i)) and setting f(y) = exp for

convenience we have

(8 .2 i) -  |p -  + <(>2yEf(yE> -  <t'2yfCy)
, , 3u „1 and -sr- = 0 at x 3x 0 .with u * 0 at x 

This equation can be considered as 
u + Au + Bu = 0

j, 2
where Au and Bu = <t>2 (yf(y) ~ yEf •
Taking H as the real Hilbert space L Z[0,1] with inner product

1
<Ui,u2 > = / ujU2dx

1 ^ 2 i i v 2
we have <Au,u> = - /g^rudx = / dx > 0 and A = A* hence A is

m-accretive. Now
< Bu,u > = <t>2 / Cyf(y) - .y-f (yE)) (y-yE)dx 

0
1

- <t>2 /[y 2f(y) -yyE (f (y)+f(yE)) + y£f (yE^dx
o

which, since f (y) > 0 , is > 0 if and only if 

[ f ( y E> + f Cy)l 2 < Af (y ) f  (yE)
This is impossible hence B is not accretive.
However, we have

|Bui- Bu2 1 = 4>2 |yif (y i)  -  y 2f ( y 2 )|

< <t>2 |yi-y2 1 f (y2 >
<<f>2 |yi-y2 | eYî ,+s

since 1 < f (y) < e ^ 1+B and f(yi) < f(y2) if yi > y 2 .
Therefore there exists a such that
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Il Bui—Bu 2H 2 <  a II ui—1 1 2II 2 - 
hence IIBu i -Bu ì II <  |ot| ̂  Il ui —U2II

Furthermore
< (l-e)A(ui-u2 ),u1 -ui> + < B u 1-Bu 2,u j-u 2 >

- (1-e) / (|^ -|^2) dx + <p2 f (yif(yi) -y 2 £(y2 )Hyi_y2 )dx 
0 'dx dx ' 0

>  0

(8 .2 2 ) if (l-e) | 2 + 4>2 ( 1 - (, % ^ gBY/HB) > 0

since / dx >  ̂  / u2dx if u(l) = 0 and = 0 at x = 0

and we can show that
l y i f i y t ) - y 2f ( y 2 ) H y i - y 2) = 4>2l ( y j - y 2) f ( y i )  + y 2 (f ( y i ) - £ ( y 2 ) ) H y 1 - y 2l

>  <f>2 ( y i - y 2 > 2 + <f>2[ f  ( y i ) - f  <y2 )] l y i ~y 2 l

By ___\ By /1+B
4>2 ( y i - y 2) 2 ( i  -  ( 1+6 )2)

by using the fact that f(y) has greatest negative slope at y = 0 .

Hence, if

there exists e > 0 such that (8.22) is valid. Thus all the conditions 
for the Corollary to Theorem 4.9 are satisfied so that A+B is m-accretive 
and -(A+B) generates a non-linear contraction semi-group. The corollary 
can also be applied to the non-linear model to determine an allowable 

class of perturbations.

Pao[34] has investigated a more general model than Wei, described 

by the equations

(8.23) 1 

for t > 0 ,

(i) ut “ aiUxx - ux _cu + diV exp( T ^ T  ) + h l
(ii) vt - a2vxx - vx - d.vexpl-p^)

0 < x < 1 , with initial and boundary conditions in the form
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ajux (t:,0 ) - u(t,0 ) = 0 , ux (t,l) = 0

a2vx (t,°) - v(t,0 ) = 0 , vx (t,l) = 0

u(0 ,x) = (^(x), v(0 ,x) = <f>2 (x)
and with the ranges of u,v as 0 < u < 00 and 0 < v < 1 .

If (u_,,v ) is the equilibrium solution of (8.23) we have on Cj E
writing y = u-Uj,, w = v-vg

(8.26) i (i) S “ aiy5cx-yx-cy +d 1 [vexp ( i ^ r ) - vEexp(i^rE )]
(ii) a2wx x -wx - d 2 [vexp(T^ r)-vEexp(T^ rEj]

Let H be the real Hilbert space of ordered pairs z = (y,w)^ with 
inner product

I
< z ltz2> = / (yay 2 + wjw2)dx 

0
Then the coupled pair of equations (8.26) can be written as a single 
abstract evolution equation

z + Az + Bz = 0
Twhere Az = (-a y + y + cy, - a w  + w ) l'xx -'x 2 xx x

and Bz = fvexpj-p^-j- vE expj1 ^ rJ] (-d1 ,d2)T ..
]

Then <Az,z> = J  [ H ^ y ^  + yx + cy)y + (-a2wxx + wx)w]dx

“ Q/ [ aiyx 2 + c y 2  + a2wx2,dx
+ J[y2 (t,0 ) + y 2 (t, 1 ) + w 2 (t, 0 ) + w 2 (t,l)]

(8.24)

(8.25)

using the boundary conditions (8.24).
Since the constants aj, a2, c are positive in the applications
sidered by Pao, A is an accretive operator in these cases. The
of I+XA is H for all ye D(A) therefore A is m-accretive.

For the non-linear operator B, we have, on writing f(y) =
I

< Bz, z > = J [ vf (u) - Vgf (Ug) ] [ —d j y + d2w]dx 
0 for all z £ H so that B is not accretive.

con-
range
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For 0 < v < 1, we have

(8.27)
hence

Ivjf(uj) - v 2 f(u2)| < e Y{|Ul-u2| + |vj-v2|}

1
1IBZj-B z 2II2 = / (d2+d2)(Vjf(Uj) - v 2f(u2))2dx 

0 2„><  (dj+d^e^/{ |uj-u2 | + |vj-v2 | }2dx 
0

therefore there exists an a > 0 such that 
II Bzj-Bz.,11 2 < all Zj-z2ll 2 .

In order to show that there exists an e > 0 such that (1-e)A+B is
accretive we require the following inequality.

1
Consider I = f (a y 2 - k2y2)dx + J(y2 + y2) where a y  - y = 0

q * X O • 1 X

at x = 0 and y^ = 0 at x = 1. The integral part of I has an extreme 
value if y satisfies the Euler-Lagrange equation which for this 
integral is
(8.28) aiyxx + k2y = 0 .
This equation has a non-trivial solution fitting the specified boundary 
conditions if
(8.29) tan 1

✓aT kv'â
the solution being y = A cos --- (x-1).

Æ 7
The smallest positive root kj of (8.29) corresponds to a minimum value 
of the integral and gives the value of

Ï  [‘ _ cos2±i_ ]
Æ7

for I. Hence we have the inequality 

(8.30) / a i y x dx + H y 2 + y 2] >  ^  / y 2dx 
o oX '  0

We can now obtain conditions under which (1-£)A+B is accretive.

We have
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< ( l -e ) A ( z j - z 2) , Z j - z 2 > + < B z 1-B z 2 ,z 1- z 2 >

m o - o y . j i y j x - y « ) 2 + c ( y r y 2 ) 2 + a 2 ( w ^ - w ^ ) 2dx

+ H(yj-y2)2 + (yi~y2)i + (w,-w2>o + (Wj-w2)2]}
+ / id1 (y1 -y2 )(v 2f(u ) - v f(u ))

0 1 1

+ d2 (wj-w2) (Vjf (U[) - v 2f(u2))}dx
, 1  1

> (1-eXc+k,) / (y1-y2)2dx + (l-e)k2 / (w -w )2dx
i  1 0 0

- djeY / (|u,-u2| + |v1 -v2 |)(y1 -y2)dx
i° ,

-  d2eY /  ( | u i - u 2 | + | v j - v 2 |)(Wj-w2 )dx
0

by (8.27) and (8.30),k2 is the smallest positive root of the equation 
k 1tan ---- = ---- •
/a2 k/a2

1
Further d /(|uj-u2| + |vj-v2|)(y -y )dx

0 I
+ d2 /(lur u2l + |vj-v2 |) (wj-w2)dx 

, 0
<  /  <d i l y i _y2l2 + (d i +d2) | y j - y 2l l v ! - v 2 l + d2|V l - v 2 |2)dx 

< / < ( - ^ ¡ ( y i - y * ) 2 *I i ^ ) | v 1 -v2|2}dx

so that 3 c > 0  such that (l-e)A+B is accretive if the following
conditions are satisfied simultaneously:

]_

c + k\ - eY ( ^ ^ - )  > 0  
(8.31) J_

k2 2 - eY ( * 4 ^ ) >  0

These conditions determine the allowable size of the perturbation Bz 
for which the perturbed system is asymptotically stable through the values 
of dj and d2.

à



100

8.3. Application of the Linear Semi-group Results
We demonstrate the applicability of the results of §5 by 

considering three examples. The first is a one-dimensional dif­
fusion process, where the unperturbed system is 

*t “ zxx> z(x»0 ) = zo (x)
z (0 ,t) = z(l, t) = 0 , and z = L 2[ 0 ,1 ] .

Abstracting this equation it is easy to show that the solution is 
given in terms of a semigroup Tt> where

T z t o
-W2t

-n2 TT2t 1£2 e sinnirxj sinmryz (y)dy

and IIT II - . . < e t X (z)
Hence the class of perturbation operators we can allow must satisfy 
(5.18) and if the perturbed semigroup is to be negatively exponentially 
bounded we require (5.40).

For example if Bz = az^ then it is easy to show that
It T Bll <

'2 te
and so we require |a| < J—  —  2.06.
For our second example we consider the heat conduction problem in Rn, 
that is,

zt = V2z
with Z = L 2 (fi) where 12 is an open bounded set in Rn with boundary T.
On r we assume that part of the boundary Ti is insulated so that 
3z = 0 on Ti, and the rest of the boundary T/T1 is kept at ambient 
temperature which we take to be zero. Under certain smoothness conditions 
on (2 and T it is possible to show that the solution is given in terms 
of a semigroup T such that

||Ttll < Me for some to > 0.

1»
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8z

Now let us assume that the boundary part Tj is not perfectly 
insultated and in fact

= kz(r)
then we can regard this new problem as a perturbation of the original
problem. Using the methods of Curtain and Pritchard [ 34] we can
reformulate the problem so that the analysis of §5 can be applied.
Now B will map L 2 (0 functions into a larger space than L2 (£2) .
However the semigroup T is smoothing in that we are able to show that

IIT Bit <-,
C t‘

Therefore the results show the existence, uniqueness of the mild 
solution of the perturbed problem and stability will follow if

4MNr(J) < (3co)l

To illustrate the estimates for non-homogeneous equations we 
consider the non-dimensional equation [29] for the displacement y(x,t). 
of a simply supported column subject to an axial load p(t) and a 
distributed transverse load q(x,t),
(8.32) y t t  + 2£yt + yxxxx + p ( t ) y H  = q(x,t) 0 < x < I, t > 0 
The boundary conditions are y = y^x = 0 at x « 0,1 Vt > 0.
If we take H as the same Hilbert space as in the earlier examples on
the beam problem and assume that

ess sup. |p(t)| < p and q€L2[ 0 ,T;L2( 0 ,1] ] 
te[0,T]

then equation (5.4) may be written as 
w + Aw + Bw = Q

where Aw is as (8 .6 ), B(t)w = [ 0,p (t) yxxl T »Q = [ 0,q (x, t)] ̂ .
2

(8.33) Then <Bw,w> < £ — ---- IIMl 2 = u 1llwll2 (say)
2 /?*+!*■

1
and II Q(-, t)ll 2 = / cftx,t)dx.

0
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The semi-group T for the unperturbed system can be estimated by 
considering the Liapunov functional V = ||w||2, we have

1 ' c(8.34) V(t) < -25 / (v2+y2 )dx < -2cf 1 ---------r 1 V = -2yV (say)0  X X  L  ( C 2 + t t - ) 4  J
so that llTj.ll < e Pt.
Hence for the perturbed system (5.14) which is equivalent to(7.10) 
gives 
(8.35) IIw(t)II <  e“ (lJ_li )t:llwoll + / e-(P"pl) (t_p)||Q(-,p)||dp.

Since it is easy to find a constant X such that 
1 ■

(8.36) [ / y 2 dx] * > X sup |y(x,t)|
0 XX xe[ 0 ,1]

then using (8.33) and (8.35) we have the following bound on the
maximum displacement y (t).m
(8.37) ym (t) < X {e"(P-ljI)tllwoll + (t_p)|| Q(-,p)|| dp)

This result may be compared with
0

(8.38) y_(t) < --------r j
m XiTr1*-?2) ^

which is the result given in [26] for the case of small damping 
< t j ) and IIwoll = 0 .

We note that (8.38) can be obtained using our methods by taking the 
I

functional V = / (v2+2£vy+y2 )dy. Then in place of (8.33) and (8.341 
0 xx

we have
(8.39) 
where 2K

(8.40) 
Also

|p(t) I

| <Bw,w> | < Kllwll
. 2

/ it“-?2 
V - -2CV.

and

/y2 dx < -t V  V
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so that using (8.36) and (7. 10) with llwjl = 0 and \i = £ we have

8.4. Applications of the Results on Non-Linear Semi-groups
We consider three non-linear problems to illustrate various 

aspects of the theory of § 6 concerned with the estimation of non- 
1 inear semi-group s.

The first example is the heat equation in R 1 defined by the 
non-linear diffusion equation

with z(x,0) - z0 (x),z(o,t) - z(l,t) = 0. We consider the application 
of Theorem 6.1 to this problem. The semi-group T^ is that generated

theorems (Theorem 2.4) and work with the Scbolcv spaces H10! 0,1].

exist positive constants ci, C2 , cj, ci, such that the following in­
equalities are valid.

y (t) <  ̂m ■.X 2 0
J e-(Z- ir*p/2(ir%-c*) *) ( t -p ) II Q( ‘»P)II dP •

(8.41) z(t) = z + z 3 
XX 0 < x < 1

j 2
on L [0,1] by the operator -A = D(A) = ll*[0,]]n H^[0,1]. We take 
V = L °[ 0,1] , Z 2 = L [0,1], a > 1 and Nz = -z3. To avoid difficulties 
in estimating the norms of serai-groups in LP spaces we use embedding

We have iH 0,1] a L3a[ 0,1] if m > ~  - —  (see §2) so there

(i)

(see Appendix 2). Thus we require r < pj < 1/J -.jL.. 
(ii) N:z -*■ z3 maps V to Z2 and

therefore we have to ta
(iii) For 1 < a < 2

■Ttzi«v < llTtZl" " Zl" L1 < = g2 (t)ll z ill¿2
t



or if a > 2 , since L°c L 2

llTtZi" v < " V i V  IIziIIl 2 <■ Izill, g 2 (t)ll Zj||t* 6a z 2 " 2

Thus we require p2 < 1 / J - if I ^ ot < 2 or p 2 < 1/| if a > 2
(iv) Using Lemma 6.1 and the Holder and Minkowski inequalities we 
can show that

» Nz i -Nz 2IIlS[  < |ll Zl-z2ll L 3 S[ v] dl z !* ̂  3 S[ v] + I!z 2IÎ 3S[v))

(v) llTtZl"z2 = llTtZlV <  -j- Il Z ! II

or " V ^ z , < cJIZlllz

g3 (t)ll Zjll . if 1 < a < 2

= g3 (t)llz,ll if a > 2 .
-2 * 2

Let r 1 = q 1 + s 1 - I for r = 3s > 3. We require pi > r > 1 hence 
r < 1 /i - also we need p 2 > q > 1 where p2 is given by (8.42).
Solving for q in terms of s we have

3s(8.43) 3s-2

and provided there is a choice of admissible s, q, r we can choose 
a T such that
(8.44)
and zQ such that

3 a 2llg l ll Lq < 1

(8.45) llglllLrllz0llZi + llg2llLqa 3 < a.
We require with (8.43)

1 < s < 1/3(1 - 6a)
' 1 / ( 4  - i k > .  1 <  a  < 2

, 1 / ( 1  -ik>. “ > 2

and amongst permissible values we have

and 1 <

0 - 1 . Pi < 1 2 , r = 1 2 - e, q 6
S S

a = 2 , Pi < 6 , r ■ 6 - e, q 3
~ 2

a = », Pi < A. r " 4 - e, q = 2
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so that, for example, the solution lies in

We consider next the application of corollary 6.1. We have

Corollary 6.1 zeC[0,T;Zi].

The above calculations establish the conditions for the 
existence and uniqueness of a local solution in [0,T]. To obtain 
a global solution we proceed as follows.

The semi-group T generated by -A satisfies the inequality 
«Tjl,, , < e_Tr2tt X(Zj)

so we can replace gj, g 2 by e  ̂tg/(l-X)t) and e ^lr tg2 ((l~A)t) 
respectively. Then (8 .44) and (8.45) become

where Yi* Y 2 are defined in (6.12). The largest value of II zQll 
will be obtained when 3a2y 2 = 1 so if

the solution can be extended for all time and the region defined by
(8.46) will be asymptotically stable. For the best result the

The multistage time process based on (6.18) could also be 
applied to this example as could the Liapunov theory of §7. We will

a  <  2 .

1 <  a  <  2

hence for 1 ^ ot < 2 we require p < 4 whilst for a > 2 we require 
p ^ 1. In each case there exist admissible pairs p, s so by

3Y2a2 < 1

YjH z0ll + y 2a 3 <  a

(8.46) 2

quantity 2/3y1/3y~ should be maximised on X.

I»



consider briefly the latter method. The régularisation result
Corollary 6.2 can be applied with Zj = Z 2 and we find z el,2[ e.T;!!1] . 
Applying the Liapunov theory of §7 with

<Az,z >  + <z,Az> = -2 / z2 (x,t)dx, z 6 D(A)
Zi 0 ~ x'

we have

For z e H1! 0,1], z (0) = z (1 ) = 0

J ZxdX > 4llzllC[0,l]
hence

t I
l z ( t ) l l 2 ~ l lz (e)ll2 = - 2  / / tz2 (x,s) -ztx.s) ] dx ds

^  e 0

lz(T)l^- l l z ( e ) l ^ <  - 2 /IIz (s)II2[oj][4 - Il z (s)ll 2]ds
is valid for all £ > 0 and so

Nz(t)l! <llz0llZj Zl

if II z II < 2. Therefore the solution can be extended for all time
if IIzqII < 2 , and this condition defines a region of asymptotic 
stability.

In §6.'4 we investigated the application of the local existence
theorem 6 . 1  to the abstract evolution equation with a perturbation of
polynomial type.

Bz = - l a-z*. 
i= 2

Consider now the equation
n

(8.47) zt = zxx + ,I2 aizl 0 < x < 1

with z(x,o) = zQ(x), z(o,t) “ z(l,t) = 0 so that the semi-group is the 
same as in the previous example. With V = LnCt[0,l] Z2 = L [O, ll and
following the calculations for that example we require for the local

existence theorem that
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II B lZll H 1 <  RHzIIh j llzll̂ o 

II B j z l l < RJIzllH|+e II zll̂ o 
and IIBjzIÎ o <  H sup (z2) / z2dx < Cllzllyj+ llzll̂ j 

where h J+ denotes Hi+E and C is some generic constant.
The direct approach of the first two examples cannot be used 

in this problem because of the presence of two non-linearities. We 
look for solutions in the Banach space W where

W = Lr[ O.TjH1] n Lu[ 0,T;Hi+] 

and II zlw = llzllLr[0>T;Hl] + H*llLU{o,T:Hi+]
Noting that for the semi-group Tt we have on the interval [0,T], 

llTt,l£(Hi+) < C* llTtllJc(HI) < C> llTtll£(H°Hi+) ~j + , 

llTtllX(H°,H1) <  71’ 1 > 0
so that

II / T^_gBjz(s)dslljji < RC/llz(s)l!Hi Ilz(s)lly0ds 
o o

and hence by the convolution theorem, Theorem 5.4, we have

«/Tt_sB 1 z(s)dsllLr[0>T;Hl] <RCllzll Lr[ 0>T:H2] 11 z" £ u [  0 ,T ;h H

if u > 2. Similarly

B J  Tt-sN 1Z ( :S ')d s l1 LU[ 0 ,T ;Hi+] <  RC|1 zl1 Lu[ 0 ,T;H*+]11 2,1 L“[ 0 ,T ; Hi+]
For the second non-linearity B2z we have 

t
llJ Tt-sB2 z(s)dslILu[0,T;H{+l <  CnzllI.u(0,T:H!+]llz:l,Lr[ O.TjH1] 

if r > 4/3 and

ll/ Tt-sB2 z(s)dsllLr[0,T;H*+] ** CllzllLu[0,T:Hi+]llzllLr[0,T;H1] 
if u > 2. Finally

llTtZollLilO,T;H1] 0 1 zoNH° lf r < 2  

and llTtzol,LU{ 0,T;Hi+] < CI1 z 0 11 H° if u < 4-
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With these estimates we can deduce that if the mapping ft is 
defined by

t t
(ftz)(t) = TfcZo - / Tj__gBjZ (s)ds - /Tt_gB2 z(s)ds 

o o
then ft:W ■+■ W for z e H°, and there is a closed ball or radius a o
in W such that ft maps this ball into itself. If a is suitably small 
or the time interval is short enough ft is a contraction on this ball

. uand so there exists a local solution on W for y  < r < 2 and 2 < u < 4.
The upper constraint on r is essentially imposed by the condition
llT 11«. o „k  ** —  so that it is easy to show that z t L2[ e . T ^ 1] . t *• V.H |H )
It is also straightforward to show that z6  C[0,T:H°| .

The Liapunov theory of §7.2 can now be applied. We have
1 ,

- < A z ,z > h o < z ,Az > h o + z)z dx

2 / ( z ^ -^ z ^ d xR x'
and

1 0
-<Bz,z> = - / (Rzllzll̂ o + 2zz )z dxH q n X

- RJIzIl'o, ze D(A) .
Moreover / z2dx > it2 / z2dx , z 6 Ho[ 0 , 1 ] .
hence by Theorem 7.2

z (T)II£o " < /[ 2(z2 -iz2) - 2Rilzll *0]ds
e T
2RjHz(s)liy 1 ( 1  ) - llz(s)ll20]ds

Therefore if R < tt2 the solution exists for all time and llz(t)|| -*• 0
as t -*■ “>. If R > ir2 and II z0ll 2 < ^(1 ) then the solution exists for
all time and II z (t)ll 2 < ¿-(1 ). However if R > it2 and II z II 2 > ¿-(1 -J. )K K O R R
then again the solution exists for all time and II z(t)ll [ ^ - ( 1 )] ̂
or II z (t)ll < [ ^ - ( 1 -i- )]- as t -*• <=°.
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§9. Conclusions and Suggestions for Further Work

In this thesis we have developed two methods for analysing the 
stability of the solution of non-linear evolution equations. The 
results provide a useful addition to the known methods for such 
work, for example those of classical analysis using eigenfunction 
expansions and the direct method of Liapunov. As seen by the work of 
Chapter 7 the methods described in this thesis are related to and in 
some ways complementary to the latter approach.

In principle neither type of result is difficult to apply, however 
for some problems it will not be easy to find the appropriate inequalities 
required to verify the conditions of the perturbation theorem. (Theorem 
A.9 and its Corollary). For the second method relating to the semi­
group and mild solution of the equation the theorems depend upon 
estimates of IIT̂ BII in the form 
(9.1) IIT Bll < - a 0 < a < 1t t
where Tfc is the unperturbed semi-group and B is the perturbing operator. 
Whilst it may not be too difficult to establish the value of a we should 
note that in order to find the optimum result by establishing the 
largest region of asymptotic stability the value of C must be determined 
as accurately as possible. Very rough estimates may be found quite 
easily but values within 1 0 % say of the optimum value will be difficult 
to obtain. As is usual in such cases the complexity of the calculation 
increases with the degree of precision that is required. For a given 
problem there could be much difficult computation to be done in this 
direction of necessity involving some computing and numerical analysis.

The Liapunov theory of §7 is applicable only when the underlying 
spaces are Hilbert spaces. The development of a similar theory for

»»
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Banach spaces would seem to be a.desirable theoretical advance but 
will probably prove to be a very difficult task.

Despite the above comments the methods would seem to have a 
wide range of applicability to real problems in science and engineering 
particularly since most problems in these fields would be based on 
Hilbert spaces rather than Banach spaces. There would seem to be 
many possibilities concerning further applications of the results 
to problems other than those considered in § 8 particularly to those 
posed on Rn with n = 2 or 3. It can be seen from the nature of the 
imbedding theorems that the value of n will play a vital role in the 
application of the results for non-linear semi-groups (§6 ). Problems 
where the perturbation occurs on the boundary of the system are also 
of particular interest. One of these has been considered briefly in 
§ 8  using a result from [ 35] . Further work in this direction would 
seem to be desirable.

1 »
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§11 APPENDICES
Appendix 1

We require an inequality of the form
(A. 1) / (y2 +£2y2)dx > c 2B2 where 8 = max [ y]

0 XX 0<x<l
where y is an admissible deflection of a simply-supported uniform
beam. We use the method of Freund and Plaut [28] as follows.

Consider all admissible deflections y(x) such that 
1

(A.2) / (y2 +C2y2)dx = A 2 (A a constant).
0 XX

We maximise y(a) for any point 0 < a < 1 subject to the condition
(A.2) by application of Lagrange's method of undetermined multipliers.
We thus determine the function y such that

F[y] = y (a) + X[ / (y2 +£2y 2)dx - A2]
0 x

is stationary, where X is the undetermined multiplier. Setting the 
first variation equal to zero gives

n(a) + 2\j (yxxrixx+?2yri)dx = 0

and on integrating by parts and using the boundary conditions 
y = y ^ = 0 at x = 0 , 1  we find that y must satisfy

(A. 3) + £ y = -  2y<$(x-a)

where 6 denotes the Dirac delta function.
The solution of (A.3) is

y (x) =
/G(a,a)

where G(x,a) is the influence function for the beam and X has been 
determined in terms of A using (A.2). By symmetry the maximum value 
of y occurs at the centre point of the beam i.e. x = J and hence is 

given by
8 - A/G(],J)

1»
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The optimum value of c2 is then given by

c2 = J  (̂ 2y2)dx/62 = Girnr *
G(j,J) is found in the usual way by finding the solution of the 
equation

u + £zu = 6 (x - J) xxxx

such that u, 4 ~» 4 —4  are continuous for 0 < x < 1 whilst 4 —4  has a dx’ dx2 dx3
finite discontinuity of value 1 at x = subject to the boundary
conditions u u » 0 at x * 0 , I,XX
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Appendix 2

In this appendix we wish to illustrate the derivation of some 
of the estimates used in the examples. Consider the one-dimensional 
diffusion equation 
(A. A) zfc = z^ ,  z (0) = zQ
with boundary conditions z(0,t) = z(l,t) = 0  V t > 0. Let Tt be

32the semi-group generated by the operator - The solution of (A.4)
is well-known to be

°o 2 2
(A.5) T z = z(x,t) = Ibne-n 11 csin mrx, |x| ^  1

/ . 'where bR = 2 J zQsin ntTx dx. The Fourier transform of T£z is given by 
• “ 2 2 1

T£z = — —- ¿ b e n1Tt /sin mrx sin Cxdx 
/2^ I n - 1

= -ZL Jb -"V t (- l ) n f - L  - _L_]sinC
/2n 1 n

CO

By (2.28) HT z||2k = / (1+ |? | 2)k |T^z | 2dC*-CO
and for k < 1 it follows from Parseval's identity that

lV l| k <  p ‘T
00 b* -2 n2ir2t

Using the inequality
( 1 + | x+y | 2)s < 2 |s|(l + |x|2)s(l + |y|2 )lsl

valid for x € Rn, yC Rn, -°° < s < 00 it is not difficult to show that
/ |h(x-y) | 2 ( 1 + |x|2)Sdx < 2 ISI ( 1 + |y|2 )lsl /|h|2(l + ¡x|2)sdx 

RH. 2 Rn
Thus HTtzll2k < l ^2- e“2n 2lr2 t2k (l + (mr)2)k / (1+C2)k S2&. d?

1 —oo ^
Now e 2x t(l+x2)k has a maximum value when 1+x2 = so that 

llTtzllHk ^ 3  / (1+S2>^ dC-

and provided the integral exists we have 

11W  < ^ 2  "2o"l 2

*
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Appendix 2

In this appendix we wish to illustrate the derivation of some 
of the estimates used in the examples. Consider the one-dimensional 
diffusion equation 
(A. 4) zt *= zn , z (0) = zQ
with boundary conditions z(0,t) = z(l,t) = 0 V t > 0. Let T be

32the semi-group generated by the operator - The solution of (A.4)
is well-known to be 
(A. 5) T z *= z(x,t) = Ibne-n ts 

. 1

2 2n ïï t .‘ "in nTTx, x <  1

where bR = 2 J zQsin mix dx. The Fourier transform of T£z is given by 
. 00 2 2 1

T£z = — —  ¿ b e n17t / sin mix sin Cxdx 
v̂2 n 1 n - 1

= _iL  ¡ b e - " 2^2t ( _ , ) " [ <  _ M sinC
/2n 1 n U~nTI 5+mrJ

OO

By (2.28) HTtz||2k = / (1 + 1 c | 2)k |T£z | 2d? 1

and for k < 1 it follows from Parseval's identity that
co l 2 -9r.‘-7r-̂  . ■ ■ - k sin*!, ,,

lxtzll2k <  [2b-Se-2n2lr2t j"(l + |c|2)k- ^ -
1

Using the inequality
( 1 + | x+y | 2)s < 2 |s|(l + |x|2)s(l + |y|2)|s|

valid for x £ Rn, y£ Rn, -°° < s < 00 it is not difficult to show that
/ |h(x-y) | 2 ( 1 + |x|2)Sdx < 2 >S I ( 1 + |y|2) lSl /|h|2(l + |x|2)sdx 

Rnoo 2 2 „ Rn
Thus llT zll2k < l ^  e“2n 2ir2 t2k(l + (mr)2)k / (1+C2)k 1 ^ .  d?I —OO
Now e 2x t(1+x2)k has a maximum value when 1+x2 = so that

llTtzllHR < } bn • J  (>H2)k ̂  dC.
and provided the integral exists we have

11W  < - ^ 2  11 Zo" L2

*
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Alternatively

II

Now (l+n2ir2)ki 

so that there
II

2„ 2 xk -2n2ir2t

since lb | < llzJL , we have 

Ttzll2k < aiz0ll2, J(l+n2 7r2)k e'

J  ¡ e- ^ <
1 0

exists a constant c f such that 
c’V BHk < ^BT 1 V l1, <c> 0)

/tT
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